
Online Education Through Shared Resources
by

Randall Graebner
Submitted to the Department of

Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering
In Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2000

0 Randall Eugene Graebner 2000. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
and distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of

Electrical Engineering and Computer Science
May 2000

Certified by
Harold Abelson

Professor, Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

A

Online Education Through Shared Resources
by

Randall Graebner
Submitted to the Department of

Electrical Engineering and Computer Science
on May 2000, in partial fulfillment of the

requirements for the degree of
Master of Engineering

In Electrical Engineering and Computer Science
Abstract

Abstract

This paper details the research into, design of, and implementation of a system for
Collaborative Learning and Administration of Students and Staff (CLASS) to
complement the traditional brick-and-mortar classroom. The system is centered on the
user with the goal of providing significant new capabilities to both students and faculty
alike. The modeling of classes and user groups significantly helps promote collaboration
between users as these user communities can remotely interact with other users within the
same community, have asynchronous access to information, and manage their individual
roles and contributions as a community member. One of the primary goals of CLASS is
to leverage its integrated data model so information can be exchanged between classes
and departments. The CLASS system shows that it is possible to build a user-centric
system that is capable of complementing traditional classes. It also shows that modeling
classes and departments as online communities, when correctly implemented, can save
time for both the students and instructors.

Thesis Supervisor. Harold Abelson
Title. Professor, Department of Electrical Engineering and Computer Science

2

Acknowledgements

I would first like to thank Doctor Philip Greenspun for suggesting and supervising this
project. I would also like to thank Aileen Tang, a fellow Masters of Engineering student,
for sharing this project with me. Without her dedication and organization, this project
would not have been nearly the success that it is. In addition, I would like to thank Hal
Abelson for his strong feedback and for making this project possible.

I also owe thanks to the people at ArsDigita for allowing me to use the ArsDigita
Community System as well as helping me efficiently adapt the software to meet the
educational needs of this project. Special thanks go to Richard Li for putting up with my
trivial questions and for helping out during crunch time.

Finally, this thesis is dedicated to my fianc6e, Kimberly Doucette. Her constant support
and encouragement have allowed me to make it through these past four year.

3

Contents
1 Introduction

1.1 Motivation
1.2 The idea
1.3 Overview
1.4 Division of project
1.5 The paper

2 A user-centric system
2.1 User-centric versus class-centric
2.2 Use cases

2.2.1 The student
2.2.2 The teaching assistant
2.2.3 The professor
2.2.4 The department administrator
2.2.5 The system administrator

3 Related Work
3.1 Blackboard
3.2 WebCT
3.3 Command
3.4 eCollege.com
3.5 Eduprise.com
3.6 Virtual-U
3.7 Serf

4 Goals and Design
4.1 Goals
4.2 System Design

4.2.1 Users and user groups
4.2.2 Classes, Subjects, and Departments
4.2.3 Assignments, Exams, and Class Projects
4.2.4 Content Management and Distribution
4.2.5 Security and Permissions
4.2.6 Collaboration and Coaching
4.2.7 System Portal
4.2.8 Permanent information access

5 Implementation
5.1 Technology and implementation decisions

5.1.1 Information storage
5.1.2 Web server
5.1.3 Community building

5.2 System organization and data model

4

7
7
8
9
12
13

15
15
17
17
17
19
23
24

25
26
27
28
29
31
32
32

35
35
38
38
40
42
44
45
47
49
50

51
51
51
53
55
56

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

5.3 Security
5.3.1
5.3.2
5.3.3
5.3.4

5.4 Usability
5.4.1
5.4.2
5.4.3

Users, user groups, and roles
Departments and subjects
Classes
Sections and Teams
Assignments, Exams, and Class Projects

User identification
General methods
File permissions
Auditing information

The Portal: a customizable view of the system
Calendar
Permanent information access

7 Potential effects of the system
6.1 Competitive Analysis
6.2 Why this system is different
6.3 Use by universities

8 Conclusions
8.1 Future work

8.1.1 Enhanced security
8.1.2 Increased functionality for departments
8.1.3 Increased coaching and collaboration
8.1.4 Reports
8.1.5 Usability
8.1.6 Templating
8.1.7 Online testing
8.1.8 Increased educational functionality

8.2 Initial system complete

9 Appendix
A Competitive Analysis Tables

A. 1 Developmental Features
A.2 Instructor Tools
A.3 Instructional Features
A.4 Student Tools
A.5 Administrator Tools

B Data model

5

6 Feedback

57
58
59
61
61
62
62
64
65
66
67
67
68
69

70

75
75
76
78

79
79
79
81
80
83
83
84
85
85
86

89
90
90
92
93
94
95

96

10 Bibliography 128

List Of Figures
2.1: Screenshot of a group bulletin board 17
2.2: Screenshot of an Administrator's view of an assignment page 18
2.3: Screenshot of a class homepage 19
2.4: Screenshot of office hours scheduling page 20
2.5: Screenshot of a list of students in a class 21
2.6: Screenshot of a student information page, including grades 22
2.7: Screenshot of marks given by a grader 23
2.8: Screenshot of System Administrator home page 24

5.1: Figure showing organization of system 56
5.2: Screenshot of a portal page 68

6

Chapter 1: Introduction
1.1 Motivation

The past decade has witnessed an ongoing information revolution that has

allowed information to spread faster than ever before. This ability to immediately share

information has spurred a dramatic growth in online communities, as it is now possible

for people in different geographic regions to easily share their thoughts and ideas. This

newfound ability to instantaneously share information has allowed us to bring more and

more of our lives online. People are using the Internet to do everything from reading the

news to planning for their retirement. The number and variation of services available to

people is unprecedented. However, even with all of this growth, educators have not yet

fully harnessed the power of the Internet.

A significant number of traditional classes use the web to supplement lectures and

recitations by posting relevant information such as recent news and handouts. There are

even many different services available to host class websites. Many, in fact, do an

adequate of using the web as a collaboration tool by providing tools such as real-time

chat, virtual whiteboards, and threaded discussion forums. However, the one thing

missing in virtually all of these standalone web sites and commercial web services is the

interaction of classes with each other. Since most of these services have been developed

to either complement a traditional brick-and-mortar class or teach a standalone class

online they were designed using a class-centric paradigm rather than a user-centric one

[Pau92b]. Therefore, these services exist as a large collection of standalone class

websites.

7

The area of online education desperately needs a centralized, integrated, user-

centric system that is extensible and customizable enough to handle the needs of large

universities while still being simple enough to be used by a single professor. Current

software solutions in the area of online-education have been built to be usable from the

perspective of the professor, not from the perspective of the student.

1.2 The idea

Numerous studies have shown that the ability to collaborate is the key to allowing

the web to enhance the student's learning experience [Woo97]. Without collaboration,

the web becomes nothing more than an easily accessible file storage system. The web

presents the perfect environment for collaboration as it allows students to communicate

with each other both in real time through chat rooms and streaming audio and

asynchronously through bulletin boards and shared file storage systems. English

teachers, for example, have found that a collaborative writing environment provides an

effective means of encouraging students to write more and to learn from one another

through critiquing each other's writings. In addition, teachers from a wide variety of

areas have found that web-based discussions can lead to greater participation in class

discussions by all students involved [Hil90, Mor95, Cli90].

Building a collaborative web site can be a fairly straightforward task. However,

people will not use the web site unless it is both easy to use and provides users with

significant new capabilities that have the potential to make their lives easier. A web site

must be easy to use because most users will not spend a large amount of time trying to

8

figure out exactly how to use it. In addition, it must provide the user with new

capabilities otherwise potential users will keep doing things the way they currently are.

[Gre99]

The system for Collaborative Learning and Administration of Students and Staff

(CLASS) described by this thesis attempts to provide all classes of users with significant

new capabilities while keeping the site simple and easy to use. In order to accomplish

this large task, the system has been designed using a user-centric approach rather than the

traditional class-centric approach. The reasoning behind this is simple; the most

powerful way to enhance the learning and teaching experiences is through online

communities and collaboration.

1.3 Overview

The CLASS system attempts to provide significant new capabilities to three types

of users: system administrators, instructors, and students. The system reduces the

maintenance responsibilities of the system administrators by delegating responsibility to

the instructors. For the system to run properly, the administrators will need to make sure

that there are nightly backups and the machines are running correctly. The only other

responsibility they have is to create departments when the system is first installed and

classes when they do not belong to any departments. Delegating the authority of creating

most classes to the department administrators potentially decreases the amount of work

required of the system administrator. User registration is completely automated and

department and class administrators are able to control who is and is not in their groups.

9

Class instructors benefit to a much larger degree than system administrators. The

online education system provides instructors with the ability to collaboratively develop

documents, share a single grade book, monitor the progress of individual students, issue

assignments and receive answers online as well as the ability to easily reuse past course

material. In addition, the inclusion of bulletin boards and chat rooms make it possible for

students to help other students learn the material, thus removing some of the burden of

answering questions and explaining the material normally placed solely on the instructors

of the class.

The system helps instructors by providing them with a package of automated tools

to teach the class. In the same way, the CLASS system is able to help out students.

Bulletin boards, for instance, foster collaboration by allowing students to post questions

whenever they want. In addition, other students in the class have the ability to answer the

question before the instructor. In this way, the students asking questions obtain the

desired information quicker than they would have otherwise and the answering student

learns by explicitly explaining the answer to the question. This forum is more helpful to

students then word of mouth help because if the student posting an answer is wrong,

other students can easily point this out. In addition, since users can view all postings

made by all other users, the user posting the question can read other postings made by the

user that answered the question. This cabability allows users to check the credibility of

one another before blindly following a suggestion.

To complement the bulletin boards, students are provided with chat rooms. Thus,

students not only get asynchronous help from postings on the bulletin boards but they are

10

also able to ask questions and get immediate feedback from instructors and other students

without everyone having to be in one centralized, physical location. Finally, and most

importantly, the CLASS system provides users with a unified portal page that allows

users to view important information for all of their classes on a single page rather than

having to visit four or five individual class homepages.

In order to provide these new capabilities, the CLASS system models the

classroom as a database-backed web service where members of each class belong to well-

defined groups of users. As a result, the members of these communities can remotely

interact with other users within the same community, have asynchronous access to

information, and manage their individual roles/contributions as a community member.

How does this translate to the system's application to education? Students can

obtain help from the teaching staff remotely during online office hours. In addition, they

can share knowledge and help answer questions asked by fellow students when the

teaching assistants (TAs) are not available. The teaching staff can collaboratively develop

course materials and distribute them via a centralized mechanism. Instead of collecting

student grades from many TAs, each maintaining their own records separately, professors

have immediate access to all student data in a single format, managed by one database.

Finally, all users have access to a reliable archive of all news, announcements, and

activities that are relevant to them.

11

1.4 Division of project

This thesis is a collaborative effort between Aileen Tang and Randy Graebner.

Their collaborative efforts have been in data modeling, high-level system design, design

and implementation of the pages used by a single class, bug fixes, usability and

communicating with MIT's Sloan School of Management. On the individual level,

Randy has been working in designing and implementing the overall security and

permissions of the system. In addition, he has made extensive revisions to the file

storage system to facilitate permission records on file versions rather than only the files

themselves. Randy has written this entire paper, although he does use some of Aileen's

work in sections 2.2, 4.2.2, 4.2.4, 4.2.7, 5.3.4, and 5.4.1. Aileen has been working on

customizing the portal system to provide students with a single access point to all

relevant information about their classes. She has also worked to integrate the bulletin

board and chat modules into the system.

1.5 The paper

Now that an overview of the project has been presented, the paper discusses further

design and implementation issues present in the system.

Chapter 2, A User-centric System, defines the term user-centric and outlines some of the

differences between user-centric and class-centric systems. The chapter concludes with

several use cases so the user can better understand how the system described by the rest

of the paper can be used.

12

Chapter 3, Related Work, discusses previous work done in this area. There are several

companies offering enterprise level software solutions to this problem. Their work is

examined so that a clear contrast can be drawn between their work and this system.

Chapter 4, Goals and Design, discusses the high-level goals and structure of the system as

well as several specific design issues.

Chapter 5, Implementation, presents the technology used to implement the educational

system, comparing these choices to the goals of the system.

Chapter 6, Feedback, discusses some of the feedback we received from pilot classes, how

we modified our design based on this feedback as well as what we leamed from it.

Chapter 7, Potential effects of the system, compares this project to the related work

presented in chapter 2. In addition, it talks about potential users of the system and how

they will use it.

Chapter 8, Conclusions, discusses the success of this project and outlines future

enhancements that will be made to the system to make it an enterprise level solution.

13

Chapter 2: A user-centric system
The main difference between the CLASS system and other software packages is

that CLASS attempts to provide a broad range of functionality to the user while most

other systems try to provide a large number of tools to create a class. This chapter

discusses some of the key differences between user-centric and class-centric systems. It

then concludes with several scenarios describing how different types of users can each

use the system.

2.1 User-centric versus class-centric

A user-centric system is one that tries to provide the user with easy access to as

much information as possible in a clear and organized fashion. User-centric systems try

to make it easy for users to use, personalize and manipulate a large set of tools that can be

used to facilitate teaching a class online. Class-centric systems, in contrast, try to provide

the largest toolset to facilitate the teaching of a single class online. For the most part,

class-centric systems are customizable on the class level rather than the individual level.

Class-centric systems are usually a subset of user-centric systems as class-centric systems

provide a large set of tools presented in a single standard format while user-centric

systems provide most of the same tools in a user interface customized to meet the needs

of the individual user rather than the needs of the class as a whole.

User-centric systems provide users with features such as a personalized interface

and a centralized log in point for all of their classes. In addition, user-centric systems

provide users with the ability to customize the default page they view when the log on to

14

the system as well as the ability to view specific class information with a single click

after logging in. Users of these types of systems have access to personal calendars that

provide them with the ability to keep track of personal items on the same calendar as

class and university wide events. In addition, these systems foster a sense of community

among users by providing features such as an accessible class directory so that users can

easily locate information about other users within the system. This information can range

from the user's name and email address to a portrait and a list of all postings a user has

ever made to a particular bulletin board. In addition, user-centric systems allow users to

keep a record of all classes they have participated in as well as a repository of all of the

work they have completed for those classes.

Class- centric systems provide users with a large amount of functionality on a per

class basis but lack the personalization provided by a user-centric system. For instance,

class-centric systems lack centralized login pages and personalized calendars. In

addition, many class-centric systems lack fundamental collaboration tools such as

bulletin boards and chat rooms. And, those that do provide these tools do not provide

most of the features normally found with them. For instance, bulletin boards in class-

centric systems typically do not allow users to perform actions such as viewing all of the

postings made by a particular user. In addition, class-centric systems normally do not

provide a mechanism for classes to relate to one another. This is undesirable for several

reasons. First, there is no way to see if one class is a prerequisite of another. Second,

there is no way to determine if two classes are actually the same class offered at different

times. Finally, this inability to link classes means that every time a professor wants to

15

create the class web page for the next semester, they have to start from scratch instead of

simply modifying a copy of the web page from the previous term.

2.2 Use cases

One of the goals of the CLASS system is to provide its users with easy access to

information and simple navigation around the site. After logging in, users arrive at a

portal page (discussed in section 5.4.1) that gives them one-click access to most class

material relevant to their roles so that they may conveniently plan, track, and complete

their tasks. The CLASS system uses knowledge about the user to give the user important

information in a timely manner. In order to provide the reader with a better

understanding of some of the ways the CLASS system can be used, this section walks

through how a student, teaching assistant, professor, department administrator, and

system administrator can each use the site.

2.2.1 The Student

Ben is a student in 6.840. He logs on to the CLASS system via the main server

index page. After logging on, he is taken to the portal where he sees that he has two

assignments due and one quiz this week. Clicking on the link for the problem set due on

Thursday takes him to the assignment's information page, where he uploads his

submission for the problem set. Bob then decides to find his teammates for the 6.916

project to discuss their data model. He returns to the portal page (which is referred to as

his workspace) and selects the class homepage for 6.916. From the 6.916 index page,

Bob is reminded by the new announcement that there will be a guest speaker from Oracle

16

in next week's lecture. He clicks on the link to Q&A Forums on the left hand side of the

page and selects his team's private Q&A Forum from the list of discussion forums

relevant to the class. From the Q&A forum, he can view all the threads about the

discussion of their project, the Site for Hunger, and posts an answer to the discussion

about their data models (Figure 2.1).

Site for Hunger

Your Workspace : Online Education System Discussion Forums : Site for IHunger

[Ask a Question Search I Unanswered Questions INew Answers 3

. Data Model Discussion

. Site design

Full Text Search: SubmitQ ery

This forum is maintained by Bob Thomas. You can get a summary of the forum's age and content from the statistics page.

If you want to follow this discussion by email, click here to add an aert.

bobmir t.edu

Figure 2.1: 6.916 Project discussion Q&A forum for the Site for Hunger Team.
Notice that since Bob created the forum for his team, his email appears at the
bottom of the page.

2.2.2 The Teaching Assistant

Alyssa is a graduate teaching assistant for 6.001 who is also taking a class called

E- Commerce Architecture Project (ECAP). From her workspace, she clicks on the link to

March 23 and adds a 6.001 problem set due on that day. Then she clicks on the link to the

6.001 administration page and looks up assignment submissions for Problem Set 1. She

sees that 4 of her students have not been evaluated for Problem Set 1 (Figure 2.2), so she

downloads the answers for each student, updates their submissions with her comments

and uploads them again. She then fills out the student evaluation form for Problem Set 1

17

for each student and submits the form with the grades and comments, checking the radio

button to make the evaluation viewable to the students. These evaluations go into the

database, and from the grades list for Problem Set 1 she can see the grades for all students

who have been evaluated for the problem set.

Problem Set I
Ym de*pce Stz-ure and h o of C", rult qroAt~ Hotrie Ad siiratio it. One As ignl

Assimswnt name: Prombm Set 1
Descdption: this is problem set I

DThe Date: MarcI 15. 200

Date Assiped: March L 20M
WHIj tM assipmant Yc;

Ua gmdud7
Fracdrno nrFatl Or"e: 100%

Grade Cronp Mne
WiOI studets subnit Yes

answrs electronically?
Asigued By: Acen Tn

Last Mbadirved: Marck 1. 2000

The frolowing students have not been evaluated for Protem Set I

Mie foloing students hawe bctn evsduated for Problem Set 1

No studwtt Wev beieva i

Figure 2.2: This shows information about an assignment as well as a list of students
who have and have not been graded on the assignment.

Alyssa then returns to her workspace and clicks on the link to the ECAP homepage. The

right hand side of the course homepage displays all new announcements posted since her

last login and any assignments, exams, and projects that are due within the week (Figure

2.3). She finds and downloads a new handout that has been uploaded since her last login.

18

ECAP

Ch atso ke aa

Tesdung Asasmaz

Figure 2.3: The course homepage shows exams and handouts for the coming week as
well as a picture of a randomly chosen student or faculty member.

2.2.3 The Professor

Professor Smith is a lecturer for ECAP. He logs on to the CLASS system and

from the portal page clicks on April 14 to schedule office hours with each student in the

class to discuss their term project. From the office hours scheduling page, he specifies

office hours in 15-minute increments from 11am to 4pm, with noon- 1pm reserved for

lunch (Figure 2.4). He then returns to his workspace and enters the ECAP administration

page. He uploads lecture notes for both yesterday's and next week's lecture. He grants

all users read permission for yesterday's lecture notes and he only grants teaching

assistants read permission for next week's lecture notes because he wants the TA's to

19

Add Office Hours

Anir WaksfI c ECAP Iime : AdU7N4(r' . A dd C)Hce HUrS

Locaiaou

Date Ap1i ziFiTI7o
Start Tine, ,1 9 |0 _]A
End Tioe:F t FrII2P1 1

How long would you like eah 115 Miutes
appointent to Lait?

Do yol want to allow the dass
to see th nnauev of people Ysged s

up for a guielt time slot?

Figure 2.4: The professor is able to schedule blocks of time to allow students to
automatically sign up for office hours.

proof read the lecture notes before giving them to the students. He then spams students

in the class about signing up for office hours on April 14. Then he enters the ECAP staff

only bulletin board and posts an answer to the thread about course content development

for the second half of the semester. After adding this information, Professor Smith

remembers that he needs to schedule a meeting with Brian Berns, a student, to discuss his

performance in another class taught by Professor Smith, 6.916. But, he does not

remember Brian's email address so he goes to the list of students and sorts the page by

the student's last name (Figure 2.5). While he is there, he decides to view Brian's

performance in the class. By clicking on Brian's name, he is able to view all of Brian's

grades and the comments left by the graders (Figure 2.6). In addition, he sees a picture of

Brian so he is now able to put a face with the name. After reviewing Brian's grades, he

notices that Brian did not do well on Problem Set 2. But, since he did well on everything

20

else, Professor Smith clicks on the name of the TA and realizes that the TA has graded

everyone harshly (Figure 2.7).

I

All Students in Software Engine
Web Services (Spring, 2000)

Your Worksvace Sofware Enpjieenig ofinmovaive
Admirisarain $ludents

Name

Adler Jord

Agboh, Peter

Anand, Ishaa

Artz, Miaelba

BakkelundClrisian

Beader, Ryain

BkAtsas. Aznelos

Bonnet, Mike

.Brown, chad

Bvnz-Clarke. Adrian

Chak, Da)

Chant, Peter

Chao, Tony

Cho, W&-ha
Chi. Michael

Cox. Pick

Email

jsadcer@nitedu

pmagbhOh@ eda

ianand@mit edu

tlypbzmtcdu

draco@mitedu

tbender@miLedu

apgl@redait cdi

mbormet~aw ii

adrianbc@mitcda

chak@mit edu

pscrthnk4 berkeley.
tchao@mit edu

wychenauckik4beike

mchu@mikedu

rick@rcscomp.betkele

ering of Innovative

Web Services (Sp=, 2000) Home

Acconunt
Nwinber

95

186

V Dropped

181

183 Dr pped
13

1352 Dropped

90

64

9&.

91

du 8,

93

jedu 81
t~I'S1SIL* ?"~ ..

Figure 2.5: Professors can view a list of all students in the class.
sorted by the student's name, email address, or account number.

The list can be

21

Y r cr , 9e16 UtiS' a on HU -Atniri-ont Sw-dents One Student

Figure 2.6: Professors and teaching assistants can view the grades and comments
received by students. They can also see who did the grading and click
through to see how that person has graded other students.

22

Information for Paul Hulbers

User Roes; Te Achm Asitn

Evaluations given by Paul

-g* Waa1e 4 on PUqr et i

kr5 on P t m

- P"Afbo} S 0 bI Pr$up S

board.Abo k Se-

2.24 TeDpr mt on Ptroblr

on and goe to the de artmensadminisratio pe. Frmtee ese htteei o

- a o, 5$ on robmSe

ya j n 5.68 0 as on givinfgpIthe r6 Petd qA;,m.8 Ona prolem srt 2

ac an cae pges Sine th p s c

cr age s w fo teT day
boardA.o. 5onPeenSe

2.2.4- The~j Deatmn AdmnstraormS

FJgir 2.7:rfessis nd reaofingrasistntcng see hew graersstgrdearsthe

He has recently been notified that they will be offering a new course, 5.688. So, he logs

on and goes to the department's administration page. From there, he sees that there is not

yet a subject named 5.688 so he adds one giving the instructor of the class permission to

administer the subject and class web pages. Since the professor can now take over and

create the class web page, Jim's work for the day is complete.

23

2.2.5 The System Administrator

Ben Jones is the system wide administrator of the system. He logs on to the

CLASS system and sees that there are 14 different departments and 37 total subjects in

the system (Figure 2.8). He know that the Management department is course 15 so he

creates the department, giving the department head permission to administer the

department. He then remembers that he needs to add the capability for classes to be

given over the summer so he goes and adds a summer term. When he is done with that,

he is done with his duties for the day and logs out.

Education Adminsttration

Deparnts

I Cd 6 EwrterAd Emnee dmt

Ntearmi' sriete A EUOinvrq agBILd25kAV.?414
4 Ardt-,hge

Figure 2.8:SystemAdm nisrtos getm a tope down vew ofa Mth syte. erhe

can iew ll o th dearte nts s el a usrand sbets wtih

sEyst Atmtp.hm, yz_
13 Oces EnAgMzres 20!5|18% bWne t

Figure 2.8: System Administrators get a top down view of the system. Here, they
can view all of the departments as well as users and subjects within the

system.

24

Chapter 3: Related Work
There are currently many different commercial systems available that can be used

to enhance the learning experience through bringing course materials and collaboration to

the World Wide Web. This chapter presents a description of some of these products so

that the reader will have an idea of the type of work that has already been done and why

this project is different.

Almost all commercial software solutions for online education come with

standard tools to facilitate both synchronous and asynchronous collaboration and

communication. The synchronous communication tools include items such as virtual

whiteboards and chat rooms while the asynchronous communication tools include

bulletin boards, file postings, email, and audio/visual media files. Most software

packages do an adequate job providing these tools but their design philosophy is flawed

as most designs are centered on the class rather than the user.

Previous work done in this area has been in creating software packages to

facilitate using a class on the Internet. In order to do this, most designers have created

class-centric systems. For example, most packages do not allow the user to see

information about multiple classes on the same page. And, a surprisingly large

percentage of software solutions do not even allow professors to manage groups of users

[ComOO].

This chapter reviews several of these software packages, pointing out how they

are class-centric in design. In addition, the discussions relate back to the use cases

25

presented in chapter two so that the user can begin to see the differences between these

systems and the CLASS system described by this paper.

3.1 Blackboard

Blackboard.com is a company that was founded with the vision of "transforming

the Internet and other online networks into powerful environments for teaching and

learning." [BlaOOb] And, to a large extent, the software that they have produced has the

ability to do this. Their Blackboard Couselnfo is a standalone software package that can

be used to facilitate the online teaching needs of a university. It is written in Java and

mod perl accessing a mySQL database, runs on Apache and provides the standard tools

of chat, bulletin boards, email, online testing, audio/visual streaming files, and a virtual

whiteboard [BlaOOa].

The Blackboard CourseInfo Enterprise Edition is one of the few online education

packages that try to use a user-centric model rather than a course-centric one. This fact is

most apparent in their MyBlackboard page that provides a personalized user interface and

centralized login point for all of the tools offered by the system. From the MyBlackboard

page, a student can access all of their course home pages and receive all campus wide

announcements.

The MyBlackboard page, while slightly simplifying the interface for the average

user, falls far short of changing the product from course-centric to user-centric. In order

to successfully do that, the system would need to further personalize the portal with a

page like the portal page provided by the CLASS system. The CLASS portal page

26

includes information such as relevant news for every class, a single calendar displaying

information for all of the user's classes, and links to the relevant collaboration tools.

Currently, the portal provided by MyBlackboard falls short of shifting the software from

a class-centric to a user-centric paradigm as it only offers generic services such a

centralized login location, campus wide announcements, links to off campus merchants,

and a personal, standalone calendar [BlaOOa].

3.2 WebCT

World Wide Web Course Tools (WebCT) is a multi-lingual tool that facilitates

the creation of web based educational environments. It uses three main methods of

accomplishing this goal. First, it allows the course instructor to customize the user

interface by setting custom color schemes and page layouts. Second, it provides a set of

standard teaching tools such as bulletin boards, chat rooms, online quizzes, whiteboards,

and presentation areas. Finally, it provides a set of tools that can be used by the

instructor such as collaborative grading and course layout templates [WebOO].

WebCT provides a large amount of functionality to make life easy for the student.

For instance, when students read a multi-page handout, they can mark where they are and

come back to it later. In addition, it is possible for students to make permanent, private

notes and associate any such notes with a page of course content for future reference.

Students can also use built in self-evaluation tools to judge their progress in the class.

WebCT provides a large variety of useful tools for creating a web site. However,

it has several disadvantages. First, it is written in Perl using a proprietary database.

27

While the database does provide an API for interfacing with it, it would be much easier

for the programmer if a standard database were used. Second, there is no easy way to

relate courses. It is not possible to say that two classes are the same but are offered at

different times. Third, WebCT is course-centric. While it does offer portal page, the

portal is only personalized to a small degree and does not include a combined calendar

nor does it provide links to relevant information for the classes for which a user is

registered. Finally, and most importantly, there is no convenient way to group students

together. This makes group projects much more difficult to manage in addition to

lacking the ability to easily send email to a subset of the students in the class.

3.3 Command

Command is a course-centric Web-based course management and delivery system

developed at MIT in conjunction with industry partners such as Intel, IBM, and Lotus

[ComOO]. It is modeled after the traditional course homepage, which provides a

repository for course documents and information. Command has made good progress

towards its goal of storing information as it is possible for professors to easily upload

assignments and their solutions and students can easily upload their answers. However,

in reaching this goal, the developers have used a class-centric model and have, to a large

degree, neglected collaboration tools and usability.

Command fails to be user-centric in many ways. This fact is most apparent when

it is noticed that feature development was centered on making life easier for the

instructors while ignoring the needs of the students. For instance, there is no entry point

where students can gain speedy access to their course websites. Instead, students must

28

either bookmark each course web page individually or find the course in the class listings

every time they enter the site. This is in clear contrast to systems like CLASS and

Blackboard that provide the student with a unified entry point to all of the classes. The

course calendar provided by the CLASS system on the first page after logging in is

buried 3 pages deep in the Command system.

The lack of collaboration tools is perhaps the largest hole and in the Command

package and it is the single largest reason the Command is classified as a class-centric

system. The system lacks the file versioning that is essential for collaborative document

development. In addition, the system's only means of facilitating student-to-student

collaboration is through a single class bulletin board. The system does not even have a

simple chat room. Usability of the system is not much better. The calendar, an often-

used feature, requires the user to go three pages into the system to see it and even when

the student reaches the calendar, it only displays information relevant to the particular

class instead of information for all of the classes for which the student is registered. This

is in contrast to the user-centric CLASS system that provides the student with a single

calendar of all a user's courses on the first page after the user logs in.

3.4 eCollege.com

eCollege.com offers a large set of tools for use by universities, faculty, and

students. Their Campus Gateway product provides all of the standard online educational

tools such as bulletin boards, chat rooms with archiving, syllabus creation,

announcements, collaborative grading, online testing, and automatic email archiving.

Professors have access to general usage statistics on the bulletin boards and chat rooms in

29

addition to integrating the syllabus with the online calendar. Students can create a

personal home page on the server, view their grades in the classes they are taking, and are

provided with useful links to outside sites such as the local credit union and other non-

university related web sites [EcoOO].

CampusPortal, also offered by eCollege.com, takes the Campus Gateway idea one

step further. This product includes all of the features of the Campus Gateway in addition

to the ability to tie the system with a university's existing database as well as other

outside resources. CampusPortal also includes additional tools for use by the professor to

aid in creating the web site.

The CampusPortal software package provides the ability to create an entire online

campus. However, it lacks key features such as the ability to associate courses with each

other and a unified view of all classes for the students. The lack of course association

means that, among other things, there is no easy way to say that two classes are actually

the same class offered during two different semesters. In addition, both CampusPortal

and Campus Gateway are implemented with a class-centric approach. This is made most

apparent by the fact that they both lack personalization on the user level. When users log

in, for example, they do not see a consolidated view of their classes. In addition, where

student teams can easily be assigned to projects in the CLASS system, the eCollege suite

of tools does not allow an instructor to easily assign tasks or grades to groups of students.

30

3.5 Eduprise.com

Eduprise.com is an "e-leaming solution" [Edu99] originally developed at the

University of North Carolina. The developers wanted to create an easy to use system to

facilitate teaching over the Internet. The system, which runs only on the Microsoft NT

and Macintosh operating systems, provides a large set of tools while allowing for easy

customization of the site. In addition, the site has been built such that professors can

choose whether they want to teach a class entirely over the web or if they want to use it to

simply complement a traditional class. Eduprise not only provides bulletin boards and

chat rooms but it also provides statistics on their usage, timed and untimed online tests,

the ability to include streaming audio and video as part of the class, the ability to group

lectures and problem sets into lessons, personal home pages for students and more.

Eduprise, like many of its competitors, has been designed around using the system

for a single class. While the system succeeds in providing most features desired by the

faculty, this class-centric model makes it difficult for students in multiple classes to use

the site. For instance, it does not have simple functionality such as showing students the

classes for which they are currently enrolled. Also, while the system does provide a

calendar view of the term for a given class, if a student is taking four classes, they have to

view four different calendars in order to see all of their assignments. This means that a

student will have to go to every home page and then to the calendar. That is a total of

eight pages that a user taking four classes must visit. This is in stark contrast to the user-

centric design of the CLASS system that allows users to view a consolidated calendar and

assignment list on a single page.

31

3.6 Virtual-U

Developers at Simon Fraser University have been working in conjunction with

several companies to produce Virtual-U, a customizable virtual campus for distributed

learning. Virtual-U provides a fairly complete set of services to the end user, including

many of the standard online educational tools such as bulletin boards, chat rooms, online

assignment submission, online tests, collaborative grading, and course structuring

materials. In addition, the system has been designed to be multi-lingual so users can use

the site in their choice of Spanish, French, Portuguese, or English [VirOO].

Virtual-U is a self-contained module that can be completely customized as a

single web service by any university or individual. This means that universities using the

software can customize it so that it looks like a continuous part of the pre-existing

computing system. However, a major drawback to the system is that it has been built

with the implicit assumption that students will only be taking one class at a time. For

instance, in order to see the calendar for a single class, a student must find the class in the

course listings, click to the home page and then click on the calendar link. Only then can

students view the calendar (or syllabus) for the class. Forcing students to repeat this for

every class is not a user-friendly feature. In addition, Virtual-U does not have any way

to relate classes to one another. Therefore, it is not possible for a student to easily be able

to see if one class is a prerequisite for another or if the class has ever been offered before.

3.7 Serf

Server-side Educational Records Facilitator (Serf) is a web based distance

education developed by Fred Hofstetter, a professor at the University of Delaware, in

32

collaboration with PBS [SerOO]. Serf offers the smallest feature set out of all of the

software packages reviewed. The Serf environment provides students with access to

standard features such as a course syllabus, bulletin board, chat room, and mailing lists.

In addition, it provides a collaborative grade book so that many instructors can make

entries into the same grade book. From the students' perspective, they can view their

grades on the web site thus giving them an idea of how they are doing in the given class.

Also, students are able to submit their assignments online and view the syllabus in the

form of a calendar [IcuOO].

Serf has been designed with the goal of being easy to use. The pages are laid out

nicely and links are self-explanatory. The system has been developed with the user

experience in mind and tries to give the instructor a lot of flexibility in designing both the

content and user interface for a class while still keeping a consistent interface for use by

the students. For the most part, Serf succeeds at being easy for the student to navigate.

However, there are some major areas where it could be improved. For instance, students

must wade through the course catalog to get to the class home page. This can take a lot

of time, especially if the student is using the system for multiple classes. A better

approach, one used by the CLASS system described in chapters 4 and 5, is to present

information and links for all of the classes a student is registered for on the first page seen

by the student after logging in.

While Serf does provide most of the core functionality of most distance learning

web sites, including online exams, it is lacking some core collaborative tools. For

instance, it lacks the ability to group students into teams or sections. In addition, it does

33

not provide an area for students to upload personal files or files that can be shared among

different students. Many of the problems found in Serf stem from the fact that it was

designed under a class-centric paradigm rather than a user-centric one. These

deficiencies, combined with its requirements that the system only works on servers

running Microsoft NT and Microsoft SQL Server make this solution less than optimal.

34

Chapter 4: Goals and Design
The overarching goal of the CLASS system is to make life easier for all of the

people involved in learning and teaching. This is an ambitious goal that will have to be

reached by taking small steps. The first step to reaching this goal is to convince faculty

and students to use the system. However, it may be difficult to obtain the cooperation of

the faculty that must use the software. What might cause difficulties in adopting such a

system? One main obstacle is that most teachers are content using whatever method they

are currently using. Whether they are using one of the software packages described in

chapter 3 to manage their website, they are managing their own site, or they do not have a

website at all, it could prove difficult to convince the faculty that the CLASS system will

be worth the effort of switching from their current system. To overcome this obstacle,

the system must make the transition from their current method to this system as painless

as possible. In addition, the system must provide an easy way for users to maintain and

update their web sites. This chapter discusses some of the high level goals of the CLASS

system followed by a discussion about the design of several key sections of the system.

4.1 Goals

The main goal of the CLASS system is to supplement classroom learning by

providing all of its users with significant new capabilities. Any system that is going to be

adopted must meet several criteria. First, the system must provide substantial

improvement above and beyond the tools currently used by the teaching faculty. These

new capabilities can include, among many other things, easy distribution of files, a shared

grade book, and viewing reports of student progress. If it does not, the faculty will allow

35

inertia to play its role and will not start using the new system. Second, the system must

provide significant new capabilities to the student including easy access to information

for all of their classes as well as the ability to ask questions at any time that is convenient

for them. If students do not have a good reason to use it then, like the faculty, they will

continue doing what they are used to doing. Third, and most importantly, the system

must foster collaboration. If students and faculty do not collaborate with each other then

the system is nothing more than a fancy file storage system. In addition, collaboration is

the foundation for many of the tools that can ultimately make life easier for the users of

the system. Finally, the system must be easy to use. If either students or faculty have a

difficult time using the system, they will not use it. Unless both groups of users

consistently use the system, it will not effectively serve its purpose.

If the CLASS system is going to meet these criteria, it must provide at least the

following minimal feature set:

" Faculty must be able to add collaboration tools such as bulletin boards and

chat rooms by simply giving them a name, setting the permissions, and

pressing a button to create it.

" Faculty must be able to comment on the performance of any student or group

within the class and view comments left by other faculty. This includes the

grades for students on all of their assignments. This collaborative grade book

must be accessible to the faculty in no more than 2 pages. If it is much

deeper, the faculty may be reluctant to use the system.

36

" Faculty and students alike must be able to easily collaborate using bulletin

boards and chat rooms for online office hours and question and answer

sessions.

* Students must be no more than a two clicks away from the information they

need. This means that if a student is viewing a problem set for one class, he

should be able to view the assignments for another class in no more than two

page views.

" The system must be designed in such a way that no single user or

administrator can be the bottleneck for the creation of new classes or the

addition of any collaboration tools or users to a given class web page.

" Faculty and staff must be able to view information about classes as a whole as

well as information about particular problem sets or particular problems on

problem sets.

" The system must do no harm. That is, the system must not make some

features more difficult to do while other features easier. For instance, most

professors like to reuse material from semester to semester. The system must

make it easy for professors to do this by providing a mechanism to "copy" a

web page, assignment, or handout from a previous semester. If it did not then

it would be causing harm as creating a new class on the system would be more

difficult for the professor than if he was not using the system.

This feature set is the absolute minimum the CLASS system can start with. In order to be

fully functional, it must provide additional features such as the easy creation and online

tests as well as customized reports from the data already present within the database.

37

4.2 System Design

Administering and participating in an online community can be simplified into

two distinct tasks; uploading information to the database and reading it back out. The

challenge arises in deciding which information to solicit from the user, how to store that

information in the database and how to organize the information on the screen when it is

given back to the user. The system must be designed in such a way that users will never

question why they are giving a certain piece of information to the system. In addition,

users should never be confused about what they are seeing. Finally, the information

should be efficiently organized in the database so that the programmer can easily

manipulate whatever data is needed without making the user wait for a long period of

time. This section discusses some of the design issues that were considered during the

development of the CLASS system as well as some of the alternatives.

4.2.1 Users and user groups

The use of the CLASS system begins and ends with its users. These are the

people that will be contributing to the online community and making it grow. If the users

are not happy or cannot access what they need, they will not return. In general, the end

users are either class instructors or students. It may even be the case that some users are

instructors for some classes while students in other classes. In addition, the general

public, who will not need to identify themselves, may also use the system.

The identity of the user is important in determining whether the user is allowed to

perform a specific function. For instance, the system should only allow instructors to

grade student homework submissions. And, only students should be prompted to turn in

38

their homework. In addition, the identity of the user is also important for tracking the

user's actions as well as notifying them of particular events. Also, in order for an online

community to work effectively, the system must be able to tell other community

members who made what posting. Thus, when a user first enters the system, they should

be given the chance to identify themselves to the system.

Once the system knows who the user is, it is able to customize the interface

appropriately. For instance, it is able to show the user information about appropriate

classes and can provide links that are appropriate to the user's role within the system (this

is discussed in more detail in sections 4.2.2 and 5.2.1). Also, once the system knows the

identity of a user, it can easily collect information about the user such as postings the user

has made to bulletin boards and chat rooms. In addition, people with the appropriate

permissions can then go in and access any recorded information about a given user. This

is convenient in cases where a student is on the border for a particular grade and a

professor would like to measure their participation. The information lookup can also

work the other way. Students may want to find out when a professor has office hours or

information about potential teammates. Or, it may be the case that an academic advisor

wants to find detailed information about a given student.

In addition to identifying users, the system needs to be able to identify groups of

users. For instance, the system needs to know which subset of users belong to a certain

class. Or, which subset of that class belongs to a given team. Knowing this information

allows the system to provide links to private discussion forums or folders within the

39

virtual file system to specific groups. Thus, being able to group the users together is an

essential part of collaboration and properly restricting access to certain areas of the site.

4.2.2 Classes, Subjects, and Departments

Classes are modeled as groups consisting of users each with distinctive

membership roles (e.g. students, TA's, instructors, etc.). This approach was chosen

because many users make up a single class and these users have distinct roles, each of

which have distinct permissions within the system. Modeling classes as groups of users

allows the system to easily create class bulletin boards, messages of the day, and chat

rooms that are only viewable by members of the class. In addition, it provides an easy

way for the programmer to query the database, leaving out information that is not

relevant to members of the class.

The altemative to making classes a type of user group is to treat classes as their

own entity. This is the approach that is taken by many of the systems discussed in

chapter 3. By making classes their own object, we are making classes the center of the

system and this design can make it difficult to customize the system for the user. In

addition, the ArsDigita Community System (the toolkit that is used as a foundation for

the CLASS system) is centered on user groups and all of the standard tools provided for

group wide functionality such as bulletin boards and chat rooms. If the system were to

treat a class as its own object rather than a user group, the CLASS system would not be

able to take full advantage of the many key features of the ACS. Finally, classes are

actually just a group of users studying the same material. Therefore, it is only natural to

represent a class as a user group.

40

Each class is a child of a subject, which owns properties such as name, semester,

description, and faculty in charge but does not associate with any users. Thus, we are

able to model class offerings during different semesters as instances of the same subject.

This design allows us to build a simple interface between different offerings of the same

subject and allows for easy migration of a subject offering from one semester to the next.

At the beginning of a semester, the current offering of 6.001, for example, automatically

"obsoletes" the 6.001 class offered in the previous term. We can therefore preserve

classes offered during previous semesters while only the current class is considered

"alive" in the system.

While classes are modeled as groups of users, subjects are not. The reason for

this is that there are normally only a few people that have any interest in maintaining the

properties of a subject or creating the classes. And, these people are almost always

members of the department to which the subject belongs. Therefore, members of the

department are responsible for maintaining information within the subject.

The other alternative would be to make subjects user groups. This path was not

taken because subjects do not need bulletin boards or chat rooms nor do users ever need

to spain members of a subject. In addition, if subjects were treated as a user group, then

every time a subject was created or the professor in charge of the subject changes then

someone would have to update the membership of the user group. In the case of adding

the new subject, the department administrator would have to select a user to be in charge.

In terms of switching control of the subject, the professor that used to be in control would

have to explicitly add a new faculty member to the group. This is a less an optimal

41

situation because it may be the case that the departing faculty member is not in charge of

the subject any more because they are no longer working for the university. In this case,

the department would have to solicit the system wide administrator to go in and fix the

permissions. For these reasons and many more, subjects are modeled as a separate entity

rather than as a type of user group.

Unlike subjects and much like classes, departments are modeled as user groups.

Departments consist of a group of users that are in charge of maintaining the subjects

within the departments. Departments will always have multiple members and could

greatly benefit from having features such as a group folder in the file system and

departmental bulletin boards. To handle the common case where subjects are joint

offerings between two or more departments, a many-to-many mapping table links

subjects to departments by their primary keys. This mapping table carries information

that is specific to a subject-department pair (e.g. subject number, level of credit).

4.2.3 Assignments, Exams, and Class Projects

Every class has assignments and many classes have exams and class projects.

And, since this information is going to be frequently requested, it must be stored in the

database in an efficient manner. There are many different ways that this can be done.

First, it would be easy to create a table for assignments, one for exams and yet another for

projects. Storing all of the information in different tables would make it extremely easy

for the programmer to know which information to solicit for each type of task. In

addition, it would be obvious to a new programmer where assignments, exams, and

projects are stored. However, this method has the disadvantages of having to maintain

42

three separate tables and having to write a separate set of pages for soliciting and

displaying information for each type of task.

A second option for storing this information is to store all of the assignments and

exams in one table and the projects in a second table. This makes sense because

assignments and exams require the same type of information. In addition, projects tend

to be separate from exams and assignments because many projects are done in groups and

it is often desirable to have extra information stored for each group. However this, like

the first possibility, has the disadvantage of requiring extra pages for soliciting the

information and more complicated database queries when the system is generating

reports.

A third approach, the one taken by the CLASS system, is to store all information

about assignments, exams, and projects in a single table. There are many advantages to

this approach. First, all three types of tasks require similar information such as a name,

when the task is due, who assigned it, and a pointer to a URL or file describing the task.

In addition, some classes have group assignments and it does not make sense to treat

project teams and assignment teams any differently. Rather, by storing all of the tasks in

a single table, we can have a single user group type that can be used to group users

working on the same project or assignment. In addition, it greatly simplifies queries used

to generate reports. Finally, storing all of the tasks in the same table greatly simplifies

the way grades are stored within the system. It is now possible to have the grades table

contain a single column referencing the tasks table rather than having three separate

columns, only one of which could not be null.

43

This was a difficult decision because there are many different valid ways that

assignments, exams, and class projects could be represented within the database. The

CLASS system stores all of the information in a single table because all three tasks are

fundamentally the same. The original design of the system called for exams and

assignments to be stored in the same table with projects in separate tables. However, as it

was realized that all three tasks could be assigned to individuals or groups, the design

changed to only use a single table. This design decision simplified both the tasks

representation as well as the storing of grades and evaluations within the system.

4.2.4 Content Management and Distribution

The online education system uses a centralized file storage system to organize and

serve all course material and student assignment submissions. This material can include

content such as lecture notes, handouts, assignments, research papers, exams, and student

projects and can take the form of any type of file from a Microsoft Word document to a

JPG image. The interface used for this uploading allows the user to upload either a file

from their computer or a URL referencing a remote web page. The interface should be

easy to understand and should allow the user to set the permissions on the file when it is

uploaded. In addition, it is essential for the file system to allow for file versioning and

permissions per version rather than per file. The reasoning for this can be seen in the

following scenario:

A week before a quiz, a professor uploads a draft of the quiz solutions and notifies
the teaching staff to look over them and fix anything that is not quite correct. A
teaching assistant then downloads the solutions, fixes a few typos and then
uploads a new version. Later, a recitation instructor downloads the updated

44

version, adds another possible solution to one of the problems and then uploads
the update version. After the quiz has been administered, the professor can then
simply change the permissions on this third version so that all the students may
now view it.

If the permissions were implemented on a per file basis rather than per version, the

students would be able to see old versions of the solutions even though they should not

have permission to view them. By using a central file system and implementing

permission on a per version granularity, the system promotes collaborative document

creation.

This same file system also acts as a centralized location for the development,

distribution, and submission of assignments. There are several reasons for taking this

approach. First, the professor can collaboratively develop an assignment in the same

manor as described in the scenario above. When the document is complete, the professor

can make it available to the class. Then, students can upload their solutions to this same

repository, allowing the instructors to download and grade the student submissions. In

addition, using a central file storage system allows the student to make their submissions

available to the public therefore creating a portfolio of their work simply by using the

CLASS system. In addition, using a single file system for all files provides an easy way

to copy files from one class to another or from one department to another. If separate file

systems were used, the transfer could be much more involved.

4.2.5 Security and Permissions

Now that the system knows who the user is and has information both about users

and classes, it needs to make sure that users are only allowed to view what they have

45

permission to view. The system must also ensure that it is possible for users to privately

create a document and then, when it is finished, make the latest version available to all

users. To effectively meet these goals, the system must provide several features. First,

the system must provide variable security. Some parts of the system should be open for

the public to view and others should only be viewable by a single user. Second, the

system must provide variable levels of user verification. The system administrator

should be able to decide if all access should be over encrypted or unencrypted

connections and whether or not to use client certificates (or kerberos) for client

authentication. If some sort of client authentication were not performed (and only SSL is

used), then it would be possible for an intruder to take over someone's email address and

break into his or her account. This is a less than optimal situation when the system is

used to store personal information and grades.

There are several ways to meet the goal of providing variable levels of security.

First, the system could provide group wide security. This would allow everyone in a

particular group to view particular information. This solution will not work if a class is a

user group because we do not want to allow students to see the grades of other students.

The solution would work, however, if we made professors a user group and students a

second user group and a class would be the combination of these two groups. This

solution, however, is less than optimal because this makes it difficult to have class-wide

collaboration since it would require all of the collaborative tools be to open to multiple

groups instead of only a single group. This many to one mapping is not desirable as it

would require an extra mapping table where restricting features to a single group only

requires an extra column in the feature's table.

46

A second solution, one used by the CLASS system, is to provide security based

on a user's role within the group. The CLASS system uses this approach because it

provides the most flexibility. The roles for a class are professor, teaching assistant,

student, and dropped. When the group is a department of a university, the roles can be

administrator and member. Using this approach, the permissions become conceptually

simple. For instance, the system can be set up so that only professors and teaching

assistants can see the grades of students in the class. In addition, this approach provides

professors with the flexibility of being able to decide on a per class basis which groups of

users with which roles should be able to perform certain tasks. There are many different

cases where this feature is useful. For instance, one professor may want to allow the

general public to download assignments while another professor does not want to let the

general public see any part of the class web page. Or, it may be the case that a professor

does not want teaching assistants to be able to upload assignments but they can see

grades and another professor wants to let teaching assistants upload assignments but not

see the grades.

4.2.6 Collaboration and Coaching

A traditional brick-and-mortal classroom experience includes the two key

components of collaboration between students and faculty as well as the coaching of

students by the instructors. In order to be successful, the CLASS system must try to

emulate and enhance these key features.

47

The CLASS system must provide students with the opportunity to interact with

other students and faculty through both synchronous and asynchronous means. Users of

the system interact asynchronously in many different areas of the site. The most obvious

of these is the class bulletin board. However, students should also be invited to comment

on class projects as well as exchange email with each other. For synchronous

collaboration, students and instructors should be able to interact in a real-time chat forum.

This allows students to discuss assignments with each other as well as probe the

instructors for help. The system design should also allow the easy integration of

additional plug-ins (such as video conferencing and Java-based white boards) as they

become available.

In addition to easy communication and collaboration, the classroom experience

also offers the ability for instructors to coach the students towards their goals. One easy

way to facilitate this is to provide instructors with up to date information about how

individual students are doing in a particular class. The CLASS system can make this

process easy for the instructor by using the online grade book to provide a detailed view

of each student's progress. That is, professors should be able view all of the grades and

comments for a particular student on a single page thus easily being able to see how a

student is doing in the class and what assignments have and have not been graded (as

discussed in section 2.2.3 and seen in Figure 2.6). In addition, a professor can view a

table showing all students and their problem set grades so that it is easy to determine

which student performed the best or worst on a particular problem set. And, if desired,

the professor can drill down into the page and view the comments for a particular student.

These two formats were chosen because they allow the professor to view the grades of

48

the entire class or the grades for a particular student. This allows the professor to easily

find students that are performing noticeably below the class average and then view

detailed information specific to that student.

4.2.7 System Portal

A user-customizable portal page is the centerpiece of the system. When users

first log in, they are presented with a customizable portal page that pushes important

information in front of the user. The portal page should be a page that users are willing

to visit several times a day, using the pages as a centralized management location for

their academic and (to a lesser extent) non-academic lives. To be successful in attracting

users, the portal imitates the features and benefits of other portal pages such as MyYahoo

and MyNetscape.

The CLASS portal page has been designed with several criteria in mind. First, the

system must be easy to use. Users can add, delete, and rearrange pieces of the portal

page using the same user interface provided by major commercial portals. Second, the

portal page must be tightly integrated with the educational system. The portal page can

contain announcements for all of a user's classes, a consolidated academic and personal

calendar, as well as links to all upcoming and past exams, assignments, and projects.

Third, the portal page must be convenient for the user. Users want to be able to access

information quickly and easily. Therefore, everything should be only a few clicks from

the top-level portal page. Finally, the portal page must be diverse. Not on should it

provide information highly relevant to the user's education but it should also provide

49

customizable information such as stock quotes, current weather conditions, and personal

bookmarks.

When a user first logs on to the system, the portal page contains space for class

information such as bulletin boards, recent announcements, assignments and projects. In

addition, it contains a space for current weather conditions and stock quotes. All of this

is customizable at the system wide level. Therefore, if a system administrator wants to

allow users to link to streaming versions of their favorite mp3, it would be a simple

addition. Providing this flexibility and customization provides the portal page with the

greatest chance of being efficiently used.

4.2.8 Permanent information access

One feature that is often overlooked in web sites is permanent URLs. It is never a

good idea to break a link because people tend to bookmark and link to pages. Thus, it is

imperative that the online education system keeps permanent URLs for every file ever

uploaded to the system. There are many different ways to point to this uploaded file and

they all work equally as well as long as all URLs are unique and they do not change. In

addition, it would be ideal if a human could determine what the URL was simply by

looking at it as this makes the system much more user friendly.

50

Chapter 5: Implementation
This chapter includes an overview of the implementation of a user-centric online

education system. The chapter starts with an introduction to the tools used to create the

site. It then continues with an overview of how the system is organized and a discussion

of the data model. This is followed by an overview of how security and authorization is

handled. Finally, the chapter concludes with a discussion of the usability of the system.

5.1 Technology and implementation decisions

Achieving the ambitious goals outlined in chapter four requires the careful

selection of tools. If the instruments used to create this system are chosen poorly then the

system will never be adopted. This section briefly discusses which tools are used by this

system and why they were chosen.

5.1.1 Information storage

The CLASS system must be able to store a tremendous amount of information

about the users and classes of the system. In addition to storing basic user and class

information, it must be able to keep records of all of the bulletin board and chat postings

as well as storing all of the files uploaded as assignments or student solutions. The

system must also be able to access all of its information quickly and easily. In addition, it

must be able to search through all course material for key words or patterns that may be

present within any of the information. Since course material could include anything from

Microsoft Office documents to PDF files to images, the storage location must be able to

be searched using many different techniques. Another requirement for the CLASS

51

system is that it must be easy to create backups of the data stored within the system and it

must be easy to transfer the data from its current location to different location and

possibly even into a different storage method.

There are many different ways to provide this type of storage. One common

solution is to store all of the information in files within the file system and accessed

through Common Gateway Interface (CGI) programs. Yet another common answer is to

store all of the user and class information in a relational database and all of the uploaded

files in the file system. Another approach is to store all of the information, including the

uploaded files, in the database. The two previous approaches allow the programmer to

access the data in a variety of ways, including CGI programs as well as other interpreted

and compiled languages. Still another solution to this problem is to store persistent

objects in serialized form in the file system, accessing them through a related

programming language.

The CLASS system stores all of the information in a relational database as this

solution comes the closest to meeting the needs of the system. Relational databases are

robust yet fast. They are faster than CGI scripts and persistent objects when storing and

accessing data. In addition, they are easy to program using the tools outlined below. The

relational database chosen for the initial implementation of this system is Oracle 8i

[OraOO], a commercial database focused on providing fast and robust access to Internet

services. The Oracle relational database is a powerful and robust database that is easy to

program. It supports transactions and has a relatively robust recovery mechanism. In

addition, it uses mostly ANSI SQL which means that even after the system is written, it

52

will be possible to port it on to another database if the need arises. Oracle has been

designed so that it can talk to other databases. So, if the registrar's office of a university

using this educational system is running Microsoft SQL Server the system will still be

able to communicate with the database of the registrar. Oracle also possesses a full text

search engine that allows the user to search through text strings and all files stored in the

database. Since it is desirable for users to be able to search though uploaded files, the

system stores all files in the database instead of the file system.

The CLASS system will run Oracle on a Unix operating system for two reasons.

First, since many people will be relying on the system working at all times, we want the

operating system to be reliable. Unix is one of the most stable and reliable operating

systems currently available. Second, Oracle is developed on Unix. This means that new

releases of Oracle and bug fixes for current releases are available first on Unix. It also

means that Oracle is tested the most thoroughly on Unix which means that Oracle is

going to be the most stable when running on Unix.

5.1.2 Web server

There are many different web servers available on the market. The task is to

decide which server to use. Apache is the most popular solution to the problem and is

widely supported by a large user group. Oracle web server is the option that would

provide the system with the fastest server and would remove a layer of complexity from

the system as it is built directly in to the Oracle database. However, the CLASS system

uses AOLserver [Ame95].

53

AOLserver was chosen for several reasons. First, AOLserver has a proven track

record as it serves the billions of hits a day received by http://aol.com. This is in stark

contrast to the java server included within Oracle which is in only its second release and

has not been tested on large volume web sites. Second, AOLserver is multithreaded.

That is, it runs using only two processes rather than dozens or even hundreds. In

addition, it maintains a pool of open database connections, distributing them when

needed. This is in contrast to Apache, which forks a new process whenever another page

is requested and if that process needs access to the database, it requests a new connection

with the database. These two features combine to force the Apache web server to

perform slower than the efficient AOLserver.

In addition to performance issues, development concerns also played a role in

selecting a web server. AOLserver provides both a Tcl and a C interface. This is

convenient because Tcl can solve most problems encountered in web programming and if

Tcl cannot solve it, the programmer can use the C API within AOLserver or the Java API

provided within Oracle. AOLserver provides the Tcl interface for the developer for

several reasons. First, Tcl is a non-typed language and everything is represented as a

string. This is a feature especially suited to use on the web since everything sent to the

user's web browser is a string and everything sent to the database is a string. Thus, Tcl

does not force the programmer to convert between types. Second, Tcl is an interpreted

language and therefore is a fast development tool since it does not need to be compiled.

Finally, Tcl is a simple language that is easy to leam so there is not a large leaming curve

for people programming in Tcl for the first time.

54

There are three final reasons for selecting AOLserver as the web server. First,

like Apache, it is open source so if the system requires a feature not offered by the server,

it is possible to add that capability to the server. In addition, if AOLserver follows

historical trends, the open sourcing of it will cause it to become even more reliable and

robust as additional programmers contribute to its code base. Second, AOLserver was

chosen so that the system can be built using the ArsDigita Community System, discussed

in the section below. Finally, there is a modAOLserver that allows AOLserver to run

within Apache. Thus, if at a later time there were a need to run Apache instead of

AOLserver, it would be straightforward to change the web server. A conversion from

Apache to AOLserver would not be as simple.

5.1.3 Community building

As was discussed in chapter 4, in order for the CLASS system to meet its goals, it

must be a user-centric software package that fosters collaboration. Rather than starting

from scratch, the CLASS system is built upon the ArsDigita Community System (ACS)

[ARSOO]. The ACS provides a lot of the core functionality that the system requires

including bulletin boards, chat rooms, and a user-centric data model. In addition, the

ACS provides a user groups module that allows users to be placed into categorized

groups. These groups, in turn, make up the core of the educational system. The ACS

provides a perfect starting point for this project as it uses the same technology chosen for

the online education system and is a proven solution for creating high volume, user-

centric community web sites.

55

The ACS already provides many of the essential tools for successfully building a

community. Therefore, this thesis is focused on harnessing existing tools in the ACS to

effectively create online educational communities and extending the ACS with

functionality specific to education. Such functionality includes administration of classes

and departments as well as online grading and the collaborative development of

documents such as class assignments and solutions.

5.2 System organization and data model

The CLASS system is complex and therefore contains many different pieces.

There are users that are members of and have roles in groups; there are classes, subjects,

and departments; and there are assignments, exams, and projects in addition to everything

provided by the ArsDigita Community System (Figure 5.1).

)department departmnent

subject subj ect subject subject subject

class class class class class class

Assigments, exams,

projects, announc ements,
se ctions, and teams

Figure 5.1: A diagram of the hierarchy representing the structure of the data model.
Departments can have multiple subjects and subjects can belong to multiple
departments. A subject can have multiple classes but a class can only belong
to one subject. The departments and classes are built on top of core ACS

56

Implemented on
top of ACS users,

user groups,
bulletin board,
chat room, file

storage, and news

features. The system can be entered at any level of the diagram. Finally,
every class contains announcements, exams, projects, sections, and teams.

This chapter discusses in detail the implementation of many of these parts as well

as how the data is modeled. Each section loosely follows the design discussion of

chapter 4. The SQL and PL/SQL referred to are located in Appendix A.

5.2.1 Users, user groups, and roles

A user is any person who uses or visits the CLASS system. Thus, any person

interacting with the system is a user. Conceptually, a user can be identified by their

name, email address, password or any other provided information. Or, if the user decides

to not provide any information, they can be identified by their IP address, browser type,

and operating system. However, anonymous user tracking only works for a single user

session since the system does not know whether or not the machine is a public terminal

and thus used by multiple users. In addition, this method does not allow the system to

relate anonymous user sessions to each other since there is no way to determine if it is the

same user even if all of the above conditions are the same. If a user wishes to access any

private information or make any contribution to the site, they must log in using their

email address and password.

User groups are simply ways of associating users with one another. Groups can

vary in size from having no members to including every single registered member in the

system. A user must be registered with the system in order to be part of a group.

Examples of groups are classes, recitation sections, teams, and departments. Within these

groups, users have roles. These roles reflect the position of the user within the group.

57

For instance, a group of type class has roles of Professor, Teaching Assistant, Student,

and Dropped.

The CLASS system uses tables from the ArsDigita Community System (ACS) to

represent users, user groups, and user group membership. There are several reasons for

this. First, these tables are a fairly complete data model for storing demographic,

personal, and professional information about people using the system and the groups to

which they belong. Second, the ACS relies heavily on these tables and if the educational

system does not use these tables it would not be possible to fully take advantage of the

many user-centric features of the ACS. Third, the ACS already has an extensive

permissions system built using these tables. This existing code gives us a strong starting

point for implementing security throughout the system. Finally, starting with a well

thought out and tested set of tables greatly simplifies the task of creating a user-centric

system. When everything is dependant upon a central users table, it is difficult to create a

system centered on anything else.

5.2.2 Departments and Subjects

Departments are a main piece of the CLASS system. Departments contain many

subjects, instances of which are classes. In an effort to keep the system user-centric, the

system treats departments as user groups. That is, a department is simply a group of

users along with a little bit of extra information stored in a helper SQL table.

Departments are groups because a department is really just a group of people all striving

to teach the same type of material. In addition, there are needs for items such as

58

department wide bulletin boards, news postings, and chat rooms. The simplest way to do

this is to keep the design user-centric by making departments a user group.

A many-to-many mapping table is used to associate departments to subjects. This

method was chosen because most departments will offer many subjects and some

subjects will be offered by multiples departments. Classes are grouped into subjects

because it is often the case that a class is offered every semester and has information that

is common to every offering of the class. Currently, anyone in a department has the

authority to create and manage any subject within that department.

In contrast to departments and classes, subjects are not user groups. Rather, a

single SQL table within the database represents subjects. Subjects are not implemented

as user groups because people do not make up subjects. Instead, a group of classes forms

a subject. Most people belong to either an instance of the subject, a class, or to the

department offering the subject and therefore there is no direct way to map users to a

subject.

5.2.3 Classes

Supplementing physical classes is the main purpose of the educational system.

The system does this by modeling the classroom as a database-backed web service where

every class is simply a group of users. This model promotes collaboration because it

allows every class to have its own bulletin boards, chat rooms, and file storage systems.

In addition, classes are able to take advantage of the many other built in features of the

ACS.

59

Every member of a class has exactly one of four roles in the group. Professors are

the head of the class and have permission to perform every action within the class

homepage. They are able to view all official class documents as well as grades and

reviews for everyone. In addition, they have the ability to determine the permissions

other roles have within the class homepage. Teaching assistants help the professors teach

and can do things such as holding online office hours and grading students. Students can

view certain class documents and participate in any open class forums. Finally, there are

students that have dropped the class. They remain part of the class user group mainly for

record keeping purposes.

Dividing the users into roles not only simplifies the implementation of the

permissions but it also allows the system to collect certain information about the user

depending on the role of the user. For instance, the system requests a student

identification number for every student in the class. Normally, this is simply the

student's university identification number that can be used by the professor when

reporting grades. However, it does not make sense to collect this information for a

professor. Instead, if the user is a professor or a teaching assistant, the system will

request information such as office hours, phone number, and office location. This is just

one of the ways the user interface is customized for the user depending on what his role is

within the class.

60

5.2.4 Sections and Teams

Sections and teams are two areas of classes that are vital to collaboration.

Representing sections within the system allows section leaders to post information

specific to that section and it also promotes collaboration in smaller, more intimate

groups. And, the easiest way to allow this is by modeling sections as subgroups of

classes. They are stored in the database as user groups with their parent group

identification number referencing the class to which the section belongs.

Teams are an essential part of a collaborative educational system because team

assignments and projects are an integral part of many traditional classes. And, like

sections, teams are simply represented as subgroups with the class as the parent. This

allows team members to upload private team information as well as private and public

status reports. In addition, teams can easily set up private bulletin boards, chat rooms,

and file storage folders.

5.2.5 Assignments, Exams, and Class Projects

As was discussed in section 4.2.3, the CLASS system stores all information

pertaining to assignments, exams, and class projects in the same database table. For an

individual assignment, the information is stored in the table and the system knows what

to do from there. However, when the assignment or project is to be done by a team, a

helper table is needed. This helper table was originally a table that mapped user groups

(teams) to projects and held a small amount of extra information such as a description of

the particular project the team is working on. However, we ran into several problems

with this implenentation. Mainly, we realized that it is sometimes the case that multiple

61

teams work on the same project. This would mean that our mapping table of class

projects to teams would have to be many to one. However, that would require storing a

lot of redundant information. So, the final decision was to make each project group a

user group with some extra information. This had several benefits. First, if a team of

three people were working on the project, it is straightforward to copy that group into the

project group. Second, if two teams merged for whatever reason, the second team can

simply be copied into the project group and all comments about individual groups before

the merge stay in tact. Finally, this scheme provids a cleaner implementation for

displaying and processing grades in the case where the same team worked on multiple

projects.

5.3 Security

The online education system contains a large amount of sensitive information

such as personal information about every single user, student grades, and private

handouts such as exams before they are administered. Therefore, the system goes

through great measures to verify that users are who they say they are so that it may keep

sensitive information out of the hands of people who should not see it. This section

outlines how some of the security is implemented.

5.3.1 User identification

In order for the education system to be secure, the system must be completely

confident that the user requesting a page has been properly identified. When the user first

enters the site, they are asked to input their email and a password. This information is

62

then sent over a secure (SSL) connection. When the system receives this information, the

password is encrypted and checked against the encrypted password stored in the

database. If the two match, the system grants the user access.

Once the user has access, the system must be able to save this state so that it does

not repeatedly ask the user for their email and password. To do this, the server stores a

cookie on the user's machine. This cookie contains a random length token string and is

only sent over SSL. This cookie is only sent to a client once and the token string is

different every time a user logs in. Thus, there is no possible way that two users could

end up with the same token string. A second, insecure token is used for user access when

the connection is not encrypted. Thus, if the session is not encrypted, the system assumes

that the information is not vital and so allows the token identification strings to be passed

in the clear. When the session is secure, the secure token string is used to identify the

user thus guaranteeing that the secure token is only sent over an encrypted connection

when it is sent back to the server.

One final step is taken to ensure correct user identification. Every 20 minutes

(this number is configurable), the system will issue another token string and invalidate

the original string. Thus, even if someone were to sniff the insecure token, it would only

work for less than 20 minutes.

The major weakness of this scheme is that, while information sent during a

session is secure, the user verification mechanism is less than ideal. The CLASS system

does not currently prevent anyone from using someone else's email address for a short

period and registering as him or her. In that case, the intruder could potentially have

63

access to confidential information (especially if the intruder posed as a department

administrator). To achieve a high level of security, the CLASS system will need to be

upgraded to use an authentication process with a trusted root such as the Kerberos

principal at MIT. This is discussed more section 8.1.1.

5.3.2 General methods

Now that the system knows who the user is, it must also be able to determine

which class or department the user is trying to access. This information is stored in an

SQL table that is keyed off of the token string used to identify the user. This way, the

system does not have to issue a cookie for every group for which the user is a member.

In addition, storing this information in the database means that the pages will not have to

pass this identification number through the URLs.

When a user requests a class or department page, the system obtains the user

identification number as well as the associated group identification from the database.

Then, every page takes this information, along with a specified action, and performs a

check to make sure that the user has permission to perform a given action. For instance,

one action is "View Student Grades." In order for a user to see the grades of all of the

students in the class, the user has to have a role within the class that has explicit

permission to perform the "View Student Grades" action. The procedure executing on

every page takes the action, user identification number and group identification number

as arguments and verifies that the user has the correct role in the group to perform the

specified action. If they do not, an appropriate error message is displayed.

64

A second type of verification that is performed uses row level permissions. That

is, every secure row in the database has a separate permissions record. Specifically, it is

possible for the creator of a document to determine who can and cannot see it by setting

the permissions record. The default user interface allows the row administrator to grant

other read, write, comment, or administrative privileges to individual users, groups of

users, or users with a certain role within a group. This is convenient when the system

needs to determine the permissions of users based on what information they are trying to

retrieve rather than what page they are trying to view.

5.3.3 File permissions

The CLASS system wants to promote user collaboration among friends taking the

same class as well as among instructors and all other users. One major part of this

collaboration is the file system. Collaborative document development is one of the

important benefits of using this system. As such, the system needs to make sure that the

authors of the document can privately collaborate on the document, only making it public

when it is complete.

There are several different approaches that can be taken to solve this problem.

First, every single document uploaded can be considered a different file. This is not an

ideal solution because when a document is developed collaboratively, there are many

versions of the same document and the database and user interface should reflect this

fact. The second option is to place permissions on every file. Again, this is not a good

idea as it is not normally the case that authors want to allow all of the people viewing a

final draft to also be able to view the first draft. A third solution, one taken by the

65

CLASS system, is to have a separate permissions record for every version of every file

uploaded to the system. This way, it is possible to collaborate on a document with only a

few people while showing the final version to the general public.

Now that every version has its own permissions record, the problem is

determining how to provide users with a simple interface. The CLASS system has

greatly simplified the user interface for use by instructors. When instructors upload files,

they are only asked to set read and write permissions. And, they are only give the options

of "Only Professors," "Professors and Teaching Assistants," "All members of this class,"

and "General Public." This way, users of the CLASS system are not exposed to the

complexity of groups and roles. In addition, if a professor wishes to collaborate on a

document with someone that is not in the class, the professor still has the option to go

into the class folder in the file storage system and manually give the user permission to

edit the document.

5.3.4 Auditing information

In a collaborative development environment, documents evolve and information

changes. In order to better track mutating state in these important database tables, the

updates and deletes of information in several tables must be audited so they can be

recovered if necessary. When information in the database changes, it is useful to know

which user changed what information when. Therefore, in addition to copying all of the

old data and recording when the change was made, the IP address and user identification

number of the modifying user are also recorded in the separate audit table. Oracle

automatically inserts data into audit tables upon update and deletion of a row from the

66

corresponding tables via audit triggers (see data model in Appendix Section A). Currently

we are auditing important configuration information about departments, subjects, and

classes, in addition to grades information from tables like edugrades,

edustudentanswers, and edustudentevaluations.

5.4 Usability

One of the main goals of this system is to provide a usable, personalized

environment for the user. This section describes several steps that were taken to try to

make the system more user friendly.

5.4.1 The Portal: a customizable view of the system

The central feature of the online education system is the portal page. This is the

page that is seen by all users when they first log in. The page contains information such a

customizable stock quotes, current weather conditions, a customized calendar (discussed

in section 4.2.7), links to class homepages, discussion boards, and chat rooms, and class

news. Since all types of users use this portal, every user can decide which of the above

items are included on their personal page. In addition, every user can customize the stock

and weather sections so that they receive information relevant to them. This portal page,

which has been built on top of a core ArsDigita Community System module, can easily

be extended to contain more custom information. For instance, if the Sloan School of

Management wanted to include a section of headlines from the magazine The Economist

then it would only take one person a few hours to write a program to retrieve the

headlines from the magazine's online site and display them on the portal page. This is

67

one large advantage this system has over proprietary systems such as WebCT. WebCT

cannot be customized because the end user cannot view the code. However, the system

described by this thesis is open source so anyone with some time can extend and

customize this page.

Figure 5.2: A personal education portal. Note that the user is a teaching assistant
for 6.001 and therefore has a link to the administration pages. However,
since the user is only a student in 6.823 and 6.826, there are not links to the
administration pages.

5.4.2 Calendar

A customized calendar is a key feature of a user's portal page. The calendar is a

modified version of the ArsDigita Community System's calendar module. The

modifications that were made enable the calendar to display class-related events and due

dates for every class a user is registered for. In addition, a user can add personal events

68

to this calendar, thus having a central page with all personal and academic information.

The calendar acts as an easy entry point to information about assignments and person

events. In addition, it allows class administrators to easily add assignments and exams

for any day simply by clicking on the number in the calendar.

5.4.3 Permanent information access

One easy way to add usability to a web based system is to provide permanent

URLs. A stable Intemet requires a stable set of links. Therefore, this system creates user-

readable unique permanent URLs for every version of every file uploaded. The CLASS

system does not use the scheme provided by the PURL [Onl00] software mechanism

because the CLASS system does not require the URL parsing or indirection provided by

the PURL software. However, there is no reason that the system could not use the PURL

software directly.

Currently, the CLASS system simply requires all file requests to go through a

URL filter that parses the URL and returns the appropriate file. The CLASS system

assigns a unique integer to every uploaded version. Then, when a user wants to retrieve

the version, the URL is simply the name they gave to the file followed by the file

extension with the single variable passed to the file being the version identification

number. This method provides a permanent, human-readable, unique, able to be book

marked URL for every file ever uploaded to the system.

69

Chapter 6: Feedback
During the course of development, two separate classes, both of which provided

valuable feedback, tested the CLASS system. The first class, Software Engineering of

Innovative Web Services (6.916) used an early version of the system to facilitate

collaboration and grading for the course. The second class, Ecommerce and

Architecture, started out with the same system but received periodic upgrades as

development progressed.

The feedback received from 6.916 was mostly positive. The main features used

by the instructors were the bulk spamming module with archiving and collaborative

grading. The instructors found the system intuitive to use and appreciated the

collaborative ease of grading. The only other feature they attempted to use was project

administration. This section of the system received negative reviews at first. However,

as the semester progressed and the functionality improved, the instructors started liking

the system. The chief complaint initially was that the workflow for creating project

groups was not intuitive and was very long. Initially, it required five page views to create

a project instance and then another two page views for every individual that was added to

the team. To remedy this, we removed two of the pages from the workflow for creating a

project. In addition, we allowed students to automatically sign up to be in their own

teams thus removing the burden of having the instructors create the teams.

These problems with creating and management of project teams taught us two

things. First, five page views to create one item is too many. Users do not want to have

to wait for five separate pages to load in order to add one item to the system. This is

70

especially true when the user has to go through this process several times in a row. The

second thing that we learned from this experience is that projects should be teams rather

than mapped to teams. We found that making the projects themselves teams greatly

reduced the complexity of the page flow and it also reduced the complexity of pages

displaying project information. In addition, this change made it much easier to allow

students to sign up for term projects. The initial reasoning for linking teams to projects

was that the purpose of a team is to complete a project or an assignment. However, from

the feedback gathered from 6.916, we found that there is a need for teams and project

groups to exist as separate entities. The reasoning for this is simple. Many classes have

group final projects. To model this, we need user groups. However, there are also some

classes that have teams start on projects and then join efforts and there are also classes

that have small teams that work on several projects with other teams. To model this, we

could either have a one to many project to team map or we could have a projects type of

user group. We chose the latter because it simplifies the page flow as well as grade

calculations although both of the alternatives would have worked.

In contrast to 6.916, the feedback we received from the Ecommerce and

Architecture class was mostly negative until the end of the semester. This class was a

small, discussion-oriented seminar that did not have problem sets or tests. The class was

set up such that the students had to write a paper every couple of weeks and meet with the

instructor during the other weeks to discuss past papers as well as the student's progress

on their current paper. Students used the site mainly to view their grades on assignments

as well as viewing new assignments and downloading handouts. The teaching assistant

used the site for distribution of materials as well as some grading. The instructor only

71

used the site sporadically and gave us no feedback. Whenever he needed something done

with the site, he would ask the teaching assistant to do it.

The Ecommerce and Architecture class provided us with valuable feedback about

our design and has helped us shape the CLASS system into a better-rounded system. The

first thing that we learned was that our original design was heavily biased towards

technical classes with weekly problem sets and it was not broad enough to support small,

seminar based classes. Specifically, the site was not nearly as fostering of collaboration

as we would have liked. Some of the core features desired by the class were missing.

For instance, the original system did not have a way for students to automatically register

for office hours. For large technical classes, posting a time and room is enough because

so many students that show up that it is not feasible to have appointments. However, this

class was small and the professor allowed the students to schedule thirty-minute

appointments with him. Another feature that this class wanted was the ability for

students to post comments about projects done by other students. The twist was that the

owner of the project should be able to see the comments without the name of the student

that posted the comment, the teaching assistant and professor should be able to see all

comments and all names and other students should only be able to see their own

comment. We never even entertained this scenario in our design although once it was

brought up it seemed reasonable.

The second lesson we immediately leamed from this class was that users that are

not familiar with computers or do not speak English well had a difficult time navigating

the site. We learned this because the teaching assistant fell into both categories while

72

some students fell into each. The main problem was that the functionality provided by

the links was not clear enough. For instance, the teaching assistant would add an

assignment and upload a corresponding file. Then, to change the corresponding file, she

would go into the file system and get lost instead of finding the assignment and using that

interface to perform the change. She was getting lost in the file storage system because it

contains permissions information as well as information about when the file was

uploaded and the file type; all information that was previously hidden to her. The

teaching assistant repeatedly made this same mistake for assignments, lecture notes, and

handouts. Therefore, one of the first modifications we made to the system was removing

the link to the file storage system. Once this was done, she was able to find the

appropriate assignment and easily edit it. Another area that confused both the teaching

assistant and instructor was the use of teams. This feedback was consistent with the

feedback we received from 6.916 and the remedy was the same.

One final thing we learned from the teaching assistant is that she wanted a way to

allow all grades for an assignment to be hidden to the students until all students were

graded at which point she would be able to, with one press of a button, reveal all of the

grades. This is actually a feature that we included in our original design but did not get

around to implementing. From this feedback, we found that this is actually a useful

feature.

The feedback we received from the students was not nearly as informative. The

only strong opinion they expressed was that they wanted easier access to their grades.

That is, the original design of the system required that to see a grade, you had to view

73

information about an assignment. However, students wanted the ability to view all of

their grades, along with class distribution and averages, on a single, consolidated page.

As we started incorporating the feedback into the design, user feedback steadily

became more positive. We added things such as automatic scheduling of office hours, we

removed the link to the raw file storage system, and we reworded a lot of the messages a

user saw. In addition, we modified the workflow for adding teams and projects. Finally,

we removed the requirement that all assignments have an associated file.

The experience of having two drastically different pilot classes taught us a lot.

First, the feedback has taught us that making a user-centric system does not guarantee

that the system will be usable. In addition to being user-centric, the system needs to be

general enough to meet the needs of most users and classes while specific enough to be

useful. This is a difficult medium to achieve but is definitely something that must be

considered when the system is being designed. Second, we found that different classes

are structured in different ways and that there is not a general mold that all classes will

nicely fit into. We learned that getting feedback early and often from potential users is a

good way to keep the design from being too biased towards one type of class. And, we

learned that simplicity is best. If providing a really neat feature that is only somewhat

useful to the end user greatly complicates the user interface then it is best to not include

the feature at all. This was especially apparent with exposing the end user to the raw file

storage system.

74

Chapter 7: Potential effects of the system

7.1 Competitive Analysis

As was outlined in chapter three, there have been many different online educational

systems created before this one and there will be many more created after this one. How

does this system compare in functionality and usability to the many other systems on the

market? Appendix A provides several tables comparing the functionality of this system

to the functionality of fourteen commercial systems. As can be seen, the CLASS system

possesses a large amount of the functionality provided by the commercial systems.

However, due to time constraints, it does not include all of the possible functionality. For

instance, the CLASS system does not include large blocks of functionality such as an

online testing system. In addition, there are many features within the system that could be

made customizable that currently are not.

While the CLASS system does not provide all of the functionality provided by most

other systems, it does make information more accessible to users. The system does this

in two ways. First, it provides a portal page that contains links to information relevant to

the user for the current month. In addition, it provides direct access to class pages,

bulletin boards, and chat rooms. None of the systems reviewed in Chapter 3 contain this

much information on a single page. Rather, most current systems force the user to visit

each class homepage to retrieve this information. The second way the CLASS system

makes information more accessible to users is through the class homepage. This system

automatically notifies the user when a new handout or assignment has been added to the

homepage. In addition, links to information such as handouts, exams, and quizzes only

75

show up if there is something to see on the target page. Many of the current software

packages show these links even if there is nothing on the other end, thus leading the user

to a dead end. A final way the homepage provides more information to the user is it will

randomly select a student or faculty member from the class and display their name and

picture, therefore "forcing" people to meet other people in the class. This same portrait

functionality is used on the student information page. If a student or faculty member in

the class wants to find information about another student, they are not only able to view

the student's name, email, and portrait but they also see a list of bulletin board items they

have posted. Currently, most other commercial products do not offer this functionality.

In addition to trying to provide the user with more easily accessible information, the

CLASS system also tries to foster community and collaboration, thus allowing everyone

to learn from everyone, not just the teaching assistants. This is one large thing that is

missing in many of the commercial systems on the market today. Through the portal

page, the system allows the user to access almost any information they need within only a

few clicks. This includes giving the student the option to view the most recent postings

on class bulletin boards and chat rooms for all of a student's classes. This is a major

improvement over most commercial systems that require the user to first go the class

home page then to the bulletin board to view the most recent postings.

7.2 Why this system is different

As was discussed in section 3.1, there are many different competing types of

online educational systems that provide many different collaborative tools to the internet.

The CLASS system, however, is different because it is user-centric. It has been designed

76

with the user in mind rather than a single class. In addition, it provides many features

that help reduce administrative tasks, and increase the collaborative potential of the

system. The CLASS system helps reduce administrative tasks by delegating the work

down to the department and class level. For instance, to request a class on the Command

system, the instructor or TA must fill out a form and then someone must do a check to

make sure the information is correct and approve it. Since the approval is probably

someone going to a page and pressing a button, it is not a big deal. But, if a single user

had to do this for hundreds of classes during a one or two day period, it would become a

very time consuming task. The CLASS system, on the other hand, allows each

department to administer this information. So, when a class is added, they simply have to

click on a few links and the class is there. Currently, this method requires more work to

create a single class. However, if there were 300 classes over six departments, this would

delegate the work to the administrative staff of six separate departments as opposed to a

single one. In addition, once a professor has taught a class one semester, they have the

authority to add the class for the next semester. After several semesters, the

administrative burden placed on the departments will be minimal.

In addition to trying to slowly delegate administrative tasks to the end user, this

system tries to promote collaboration through bulletin boards, chat rooms, and a

customizable portal page. The customizable portal page is a feature not available in most

other educational systems and sets the CLASS system apart. The unified portal page

allows users to customize what information they see as well as where on the page they

see it. Some options for the user include a consolidated calendar with hyper linked

personal information integrated with class schedules, recent information from class

77

bulletin boards and chat rooms, as well as a variety of other items such as recent stock

quotes and local weather information. The selection of items can be expanded or

restricted by the site wide administrator. Therefore, if the system were to add a streaming

video section or a real time white board, the system administrator could elect to make that

information available on the portal page. Placing this information on the portal page

provides the user with access to most information about any class within a single click.

This feature not only provides the user with a lot of information but it also pushes the

bulletin boards and chat rooms in front of the user by showing them the latest information

and placing them one click away from joining in on the discussion.

7.3 Use by universities

This educational system has been built for MIT's Sloan school of Management.

They have requested a highly customizable, highly collaborative educational environment

that will allow their professors to easily create interactive web sites to supplement

traditional lectures. In addition, Dartmouth's Tuck School of Management has also

expressed interest in using the system to run all of its classes. Finally, ArsDigita

University will be using this software to administer all of its classes. All three schools

are looking to use the software beginning the Fall 2000 semester. In addition to these

three schools, Olin University and the University of San Francisco are also interested in

using this online education system to enhance the student learning experience.

78

Chapter 8: Conclusions
After examining many existing educational packages and then designing and

building our own, two points of interest remain. First, we must discuss what remains to

be done to turn this system into a robust enterprise solution suitable for use by the major

universities mentioned in section 7.3. Second, we must examine what we have learned

from the experience of building such a large educational system.

8.1 Future Work

The future work described here gives a broad overview of a few of the many

enhancements that need to be made to convert this educational system into a world-class

enterprise solution. Some of the proposed changes, such as online testing,

personalization of material, and the data mining used in creating reports for both

instructors and students will require major additions to the current system and may prove

to be technically challenging. Other changes, such as providing the ability for an

instructor to customize text or reveal all student grades at once will not require

fundamental changes or additions to the current system but will bring the CLASS system

closer to its goal of being highly flexible and usable.

8.1.1 Enhanced security

The system currently relies on the user logging in by providing their email and a

password. This password is then encrypted and checked against the encrypted password

also stored in the database. If the passwords match, the user's cookie is set as is

described in section 5.3.1. While this method, when used with the other measures

79

described in section 5.3, is secure, it does not guarantee that users are who they say they

are. The current implementation does not prevent someone from registering as someone

else and gaining access to private information. The use of client certificates or some

other authentication process with trusted root does guarantee that users are who they

claim they are. Therefore, using digital certificates is a better way to handle security

when they are feasible. Many large universities already use digital certificates so asking

the members of the university to use them for the site will not be a problem. However,

when universities want to invite alumni and the general public who may not be familiar

with certificates the issue becomes more complicated. Certificates are not as desirable

when users are not familiar with them because obtaining them may be enough of a

deterrent for many users to never use the site. Therefore, a future enhancement will be to

incorporate the use of digital certificates in such a way that the administrator of the

system can easily determine whether or not they want to use them.

8.1.2 Increased functionality for departments

The current system currently uses departments as a means to group subjects

together. In reality, however, departments are much more complicated than just a group

of subjects and the system should reflect this. One place to significantly improve the

functionality of departments is to add more roles within the user group. Currently, the

system only provides two distinct roles, administrator and member. Instead of using

these roles, the system should try to model a real department by adding roles for

department heads, secretaries, research scientists, tenured and non-tenured faculty,

undergraduate and graduate students majoring in the department, and students taking

80

classes offered by the department. This new hierarchy will allow the system to provide

significant new capabilities to members for the departments. Adding roles will allow

users to send email to all users of any given role. In addition, each role will be able to

have their own bulletin boards and chat rooms.

Finally, and most importantly, adding new roles to departments will allow tighter

security within the system. Currently, all members of a department can view information

about all classes in the department. In addition, they all have permission to edit

properties of the department and add new subjects. These are actions that can easily be

made more secure by adding roles to department user groups. The one drawback to

adding more roles is that it makes managing the system more complex. And, as we

learned from the Ecommerce and Architecture class, more complexity can lead to a less

user-friendly system. Therefore, when the new roles are added we must be careful to

strike a balance between functionality and usability.

8.1.3 Increased coaching and collaboration

The educational system was built with the goal of providing an easy to use

collaborative environment to complement physical classes. However, only a small

number of collaborative tools have actually been incorporated into the system. There are

many more tools that could be integrated or developed that would make this system an

even more fruitful place to learn.

The ArsDigita Community System (ACS) has many different tools that the

system has not even begun to tap into. For instance, community members should be able

81

to comment on exams or projects. If an instructor has an addendum to an assignment or

students have questions, the discussion about it should be located directly on the

assignment information page. In addition, the system should be tied into the ACS wimpy

point module that allows users to collaboratively create presentations. Finally, the system

should be integrated with the ACS coaching module so that students can receive

automatic email reminders before problem sets or tests.

To aid the instructors in coaching, the system should take advantage of the data it

has to provide the professor with useful information. For instance, the system should be

able to tell the professor which students are not doing well or that students did not

understand a particular section of a particular lesson. Defining and implementing these

new features for the teaching staff will prove challenging but will also provide large

benefits to the end user.

In addition to the ACS related tools and data mining, the online education system

should also include a real-time whiteboard so that students and faculty alike can

communicate with diagrams as well as chat. This would greatly enhance online office

hours as students and instructors would easily be able to convey equations to each other.

And, if students are allowed to take "snap shots" of the white board then they will have a

record of exactly the instructor wrote on the board. In some instances, this could be a

significant improvement over having the student frantically copying the drawing while

trying to comprehend the material.

82

8.1.4 Reports

The system currently tries to provide new capabilities to the instructors of

individual classes by providing detailed information about each particular user.

However, it does not currently provide department administrators or other faculty with

new capabilities. For instance, there is no easy way for a department administrator to see

a list of classes for the current semester with the enrollment. In addition, department

administrators should be able to view the history of a subject. They should be able to

view when classes within the subject have been offered, who taught the class and how

many students took it. In addition, the system should generate system wide reports for

each student. These reports would be useful for academic advisors that would like to see

how a particular student is performing. These are just a few examples of the many ways

useful data could be extracted from the database and displayed to the user in an attempt to

make the site more useful.

8.1.5 Usability

As was discussed in section 4.1, people are not going to use the system unless it is

extremely easy to use and it makes their life easier. To better increase the usability of the

system, study groups could be asked to use it and make suggestions. In addition, as more

classes start using the system, there will be user interface changes that will need to be

incorporated.

In addition to this invaluable user feedback, the system could also add several

features that would make the site much more convenient to use. To complement the

reports mentioned in section 8.1.4, the system should provide the ability for

83

administrators to batch upload information concerning classes or students or even class

material such as online tests. In addition, it would be convenient for instructors if they

could easily download student grades into a spreadsheet. Students should be allowed

them to make inline comments when they are reading articles or other material uploaded

by the professor. And, for all of the users, the functionality of the portal site would be

greatly increased if the number and variety of tables were increased. For instance, the

portal page should also included information such as recent news, movies, and sports.

8.1.6 Templating

Currently, all of the class home pages look identical. The only way to tell them

apart is to look at the page title where it says the name of the class. This is an undesirable

situation since the needs of every class are different. For some classes, the default setup

will work well. However, other classes will want to add certain graphics or will have

certain other categories they would like to display.

The easiest way to accommodate the needs of creative professors is to place of the

files into templates defaulting to the current homepage setup. This will provide

professors with the ability to easily change the look and feel of their course homepage

without changing the look and feel of all of the other homepages in the system. A

templating system would also allow departments to easily give all of their pages a unified

look and feel so that it will be obvious to the user which course or department they are

currently viewing.

84

8.1.7 Online testing

The CLASS system should include an online testing and self-evaluation package.

This would be a significant new capability for students because it would allow teaching

assistants to create practice tests that students could take online. Students could then use

the results to evaluate their current knowledge in the class. In addition, online tests

provide a significant new capability for instructors, as it would allow them to administer

tests online. Online tests should include questions that are essay, short answer, multiple

choice, true/false, multiple select, fill in the blank or any combination of those types. All

of the questions except for the essay and short answer could easily be automatically

graded.

8.1.8 Increased educational functionality

The CLASS system should include a lot more functionality to support explicit

educational use. The system described by this paper only implements a few of the many,

many different features that need to be implemented to make this a highly usable and

flexible system. For instance, the system should employ data mining techniques to help

in course management. For example, instructors should have the option of grading tasks

on a per problem basis. This way, professors could easily tell that most students did

poorly on problem two of assignment six. This would be an easy way for the system to

help professors improve their assignments. Another example of data mining would be to

provide the professor with an automatically generated list of students doing poorly in

class or a list of students that did not do well on a particular lesson within the class.

85

Other improvements include increased support for creating content, better

modularity, and interoperability. The system should provide instructors support for

creating online tests, assignments, or other course material. In addition, the system

should be modular enough so that programmers wishing to adopt the system can easily

write their own module and "plug it in." Finally, the system should provide support for

syncing the portal calendar with the user's palm pilot or even another portal, such as

MyYahoo.

8.2 Initial system complete

There are many different online educational resources available today. However,

there are not many that are free and open source. And, there are even fewer that are

centered on the user. This project has been a success even though it has not completely

met all of its original goals.

Most of the high level goals of the system have been met. We have shown that it is

possible to build a user-centric, collaborative system capable of complementing a class

and that it is possible to integrate collaborative tools within an educational system. We

have been able to provide important information to users with a minimal number of page

loads and we have been able to delegate administrative responsibility onto users of the

system. We have not been able, however, to meet our goal of strong security. Rather

than spending time on implementing client certificates in AOLserver, we have spent our

time on developing and designing other features. Not achieving this goal, however, is not

a major setback because there are stopgap measures that could be taken to reach this goal.

86

For instance, the system could run modAOLserver within Apache, which does have

certificates.

The goal of fostering collaboration within a user-friendly system is much harder

to evaluate as there is no easy way to evaluate this without the system experiencing

widespread use. The system has the potential to foster collaboration through the many

collaborative tools provided by the system so this could be considered to be a success.

The usability of the system, however, is a place that needs a great deal of work. As

discussed in section 8.1, there are many features that could be added that would enhance

the usability of the system. In addition to these features, however, we have found that the

existing user interface should be modified. As discussed in chapter 7, a pilot class at

MIT's Sloan School of Management found some areas of the system intuitive and while

they found other areas of the system to be cryptic. While we have tried to make the more

cryptic sections more usable, there is no way to reliably test this until the system is used

by a larger variety of users.

Despite these shortcomings, and the long list of future work, the project is a

success as it shows that it is possible to create a user-centric, open source system that is

capable of supporting a simple class. We have also found that anyone designing a future

user-centric system must take great care to make sure the user and groups of users are at

the center of every feature of the system. If a designer ever stops doing this, the system

immediately shifts towards a class-centric design and a significant amount of new user

capabilities are lost. This was made most apparent to us when our initial implementation

of class projects revolved around projects for a class rather than projects as user groups.

87

We had great difficulty creating a user-friendly workflow with this model. However,

once we modeled project teams as groups, the workflow became apparent.

As outlined in section 8.1, there is still a lot of work to be done to turn this into a

highly usable and flexible system. Many of the improvements will be challenging to

make but now that a solid user-centric base has been created, future development will

have a strong base to build upon. We hope to be able to complete many of these desired

features within the coming months so that schools such as MIT's Sloan School of

Management, Dartmouth's Tuck School of Management, and ArsDigita University will

be able to use this system next fall.

88

Appendix
A Competitive Analysis Tables

This appendix reviews a series of software systems, including the one created for

this thesis. The number corresponding to each system below represents the numbers for

the column headings found in each of the following tables. A column noted with a "Y"

represents a feature that the product possesses. Please note that just because two or more

systems possess the same feature does not mean that those features function in the exact

same manner. Appendix B has been broken up into 6 tables: Developmental Features,

Instructor Tools, Instructional Features, Student Tools, Technical Support, Administrator

Tools. With the exception of columns 1, 12, and 15, most of this information can be

found in a study conducted at Marshall University [ComOO]. Reprinted with permission.

1. System described in thesis
2. Blackboard
3. Convene
4. Embanet
5. eCollege.com
6. IntraLearn
7. TopClass
8. WebCT
9. Web Course In A Box
10. Integrated Virtual Learning Environment (IVLE)
11. LUVIT
12. Serf
13. Virtual-U
14. Eduprise.com
15. Command

89

A.1 Developmental Features

DEVELOPMENTAL
S1 2 5 16 7 1 12 131141151FEATURES 8m ni i9 ---

Content format will allow for >1
simple transfer to/from another Y y Y Y1 Y1YY
endor's platform

Platform uses open data I
standard so that it can

YYYY_ Y Y Y Y Y Y Yi Y Ycommunicate with existing
I-versity database applicationsj

Content can be authored on Pjs

___ ___ ___ __ _y 1<_1Yj Y YYYYYYYYYY Y Yj

C es can be taken using a PC - -Ell.
gWindows 95/98/NT

Courses can be taken using a
Macintosh running OS 7.5 or Y Y Y YY Ye YYY

ogreater I I __

[Platform provider is supportive ~ ~~ 1- j~ II I~i
omplemeninIMSstandard Y Y Y Y Y Y11Y YaY1 Y Y Y

Platform provider is supportive - - -- - i

__ __ __ a_ I _
of implementing AICC Y Y Y Y YY Y Y Y Y y y
standards within product I
Platform utilizes standard Y Y -Y1Y Y YY
IHTML for content creation F,'E YI E F E E yy
FPatform is structured so
students can view all of their i

current courses when they log 4 - - i _ 1 I
on L I .J

Platform's server software will iI
run on DEC Unix i .I I- 1E. -il-il- Y

Platform's server software will y
rnon Windows NT F E F E E E I'

Multiple choice questions can
be created\scored with Y Y Y Y Y Y Y Y Y Y Y
platform's authoring software

True\False questions can be
created\scored with platfor's Y Y Y Y Y Y Y Y Y _Y

creauthoring software

[Matchmn auestions can be Y Y Y Y iYmYnYzYzYiY

90

dcsreated\scored awit platfors
authoring software

91

IShort answer questions can be;j i i i
Jcreated\scored with platform's I YYLY 'Y YjYIY! ' I
fauthoring softxware I- __I__ I __I__

Essay questions can be- -IJ[I - i -

authoring software ~ ~ ' JYYY

Platform supports question tage
database for management of test Y Y Y Y Y Y Y
questions IL

Platforms supports reportingw

feaureas frstuetions YY Y Y Y Y Y Y Y YYY Y

Platform supports Microsoft -
Ie net Explorer 4.x and newer Y Y Y Y Y Y Y Y Y YY Y YiY

glatform aivbe tstinegnte
for courses to debugged before Y Y YY Y Y Y

atrutsing stagevllisu7i7

Platform alows author to new
course as student without Y Y Y Y YI Y Y Y Y Y YYIY

xlogging out esn aY -YIY
Platform has built-in threaded

Idiscussion. list capabilities I___ ___ F_ F_ Ejj i Ei IIIEY
11Platform has built-hn chat ii EYE E E E D ELPlatform can be integrated with I ~ ~ I

Real networks video and audio 4Y1 Y jYY I Y 17FY Y Y
products I _ i_ I I F r
Platform can be integratedwiv th

Macromedia Slhockwave Y YII IY IY Y Y Y Y-
products

rendor provides development 1 11---------

Maaeetcomponent willi____ [l ~

student progress

existing test questions in I Fab I
delimted format -P E F.I __ __

A.2 Instructor Tools

INSTRHCTOR TO ELS i] [OT P :FF F W]I2i W1

Course planning_]1L7[1 7Y LY]IAYiIYY IYT71Y
ICourse managing]L JL__JL MJM LM _]I Y LY I Yni MJ- M _M_
Fast course revising Y] xY][Y]Yi [1T]i[1

jCourse monitoring 11_J7y1 Y1 7[[77Y] IZ YI
Intutiona1 designing]Jy 7IY]TJ[7]Yi[~ziiz i 1
rsening information 11Z[Y J]LIY 1 Y1 Y[YLi1 LYLY 1

IOn-line testing]LY]IY_]IMiYiYtl _Y 1 J111Y7 1 LE_
jrit gradiij LfJT7IyYIa1JYf]<

Managing records i LY Y]Y lY YJ Yl 7Y LY LY IYYY
Vequired7 YIj<I] JrE [L I L

[Cusoiztinof student j,9 I][7y[1[yFm tto fs I EIy E IL LLJL
Student tracking o tiYLYJYny YlYTY'Y Y

lAutomated grading lYlxIYx IY]IYIYIY
vlof control ove[1rn 1 F Idesign II[I ii - Ii I1.I__ i__

Instructor can assign
specific course material

to idividual or group of
jstudents IL_ II-LI.Y ---__I-IL -

ultiple choice self test
tutorial questions - Y Y Y Yi Y Y Y Y Y1
(automatic marking) i
"Fill in the blank" self test
tutorial questions - Y Y Y Y Y Y Y Y Y
(automatic marking) - I- -

Customized feedback to
ttorial questions [LL [iEL.1EE 1

Redirect path of tutorial
depending on question Y Y Y Y
answers

Timed quizzes (graded
th permanent mark Y Y Y

etention) 1 -L

92

A.3 Instructional Features

93

INSTRUCTIONAL F>1 W
1~P 2113 F41St ~ 9 1 IF 1213 ii141FEATURES 9 __ __ ~n

Faculty to student- - li1 :
asynchronous Yi Y ! F YI

communication is possible~ I9i~i11
Faculty to student I-

~Faculty can make their Y if - Y1
~ownchanges to content FE 1YE E JII]LY_'i1YF i 2LL Yj

consistent interface i FF E 17:
IPlatfonrrincludes an W~yl~yIj~I iyiyl~il
linternal e-nmail client___jLFF I[]E EE[1EJ 'Fj[IEI -

Platformn has e-mail 11 11 I 11 1j[7___
magement capabilities YYY YYYk nfor students ----I-I-I-I--------I __ __ L

Patformhas e-mail -_ __

for faculty ___J _ _II _ _

Platform supports multiple

~instructors for a single Y Y71 Y YI1Z Y YY

A.4 Student Tools

STUDENT TOOLS ji3 14F1 21 3 11 [1T,7 i 1 1
l :fenficafion III il_ __i-

nBookmark mansaget jYT E] TiIY]Y 1ZZT I]M Fl El
JMultimedia support j_ JjY ?flY]liLl]Y JLYLY JY [Y Y L

F-Trivate e-mail , [7IL [y 7y Y]yI][7Y u[7iZZI
File submissions Y Y Y Y IY I YIYWEIK]IT Y
Teaded discussions ji lY] TIYUl [L[y] TTI1
Kourse Chat rooms Y 1 1 Y 1717ZY xCL~Ll i]~ 7lvJL
Logged chat IY- Y IP Ii Y1- _ _ - -

Vteboard ilY ~lwl~[~d E
Self-assessing YIL Y T Y Yh Y

Desktop based file17[f-
kana gement for Y Y fY I
ploading to server

IStudy skill building YI YY Y YT[Z 17
[Un-timed quizzes [7 YY]lY1Y Y] I

IOne question-at-a-time Y y

1function __ Iii ay 1E 'I1y _____ IY E 1 FI.-iI__
Bulletin I _LI 1YYIYjYu±I'

tbad/oferencing Os~iIil l --- Y
[Image database I'I I I([I I i I l1~ I-
Sgrdent access to own

c cess to course grade [yF
[distribution -- --

Automated glossary tool Y YYY Y Y Y
Automated index tool I]YI[1IYlYI 11111 Y
Online assistance [iY iY Y iY Y Y]YY]
Search tool for course 7 J7 k 1

[Student presentations area YJY Y YI Y

Allows user to view all
class events on one
consolidated page once
oglogged in.

Student can make private
[annotation of material.
Student Homepage Tool. YY]

94

A.5 Administrator Tools

ADMINiSTRATOR
423 4 5 6 7 8:9 10 11 l 2 131 15TOOLS i1 3 a mU -Server Y j1Y YY Y YI Y7 YY Y

Clint/ebinterface Y 1 Y Y Y Y Y~ YX±Y YYLYY YY!
Autoriza iotoo L[ZY Y7 TT Y7Y Y Y7 71 7
ogout feature Y 7 F 1 F

Resource monitoring Y Y 7 YtY Y Y[Y[YTY) Y [I
Remote access tools Y Y Y Y Y Y 7 Y Y T Y

tool l]___[iYIi7i JY Y[_aStentotols ~Y Y Y17TiY117T 1 1IY 77

TE7E__T_ -- rYL71 1y-jf rimE E7
Instructor support [J7] Tj[Y [3 7YYIY a ELY

dministrator support

jAbility to export raw data 711717]17Y7111[7Y Y 1Y Y Y 11i1Yi

s s ion function 7 i
ecuriy access Y Y Y YY iiY Y YY YE i

~Variable level of security Y11 IY Y111Y1[Z1Y IYL] I Yii LIYiLYZ
rOnline registration YE]iY Y i Y E Y YYY

bc uplod to rei~ter 77171 171171E I[Y T[71T [E F] T 7111 17

ustco reation]Y Y Y
lnstructors can create iygYs Yof studeYntY Y]L. I IYi

greups of scut.. IIEE]EFYTYI

95

B Data Model
This is the data model that is used to drive the online education system described

by this thesis. Many of the tables reference tables from the ArsDigita Community
System. For the following tables, please see http://software.arsdigita.com/www/doc/sql/
users, user-groups, fs_files, fsversions, usergroup_type, usergrouptypefields,
userigroup-type memberfields, country_codes, states, and portal-pages.

-- instead of having a classes table, we just define a user group
-- type of "educlass"

-- for the class name we'll use "group name" (a default field from
-- the user-groups table); everything else will have to be in
-- educlassinfo; this is a bit tricky since we need to
-- keep the definitions for the helper edu-classesinfo table in
-- sync with what we insert into user-group-type-fields (used
-- to generate UI)

-- we don't store much contact info in the classes table; if we need
-- to send out a report on system usage, we send it to all the people
-- with the admin role in this user group

-- this table holds the terms for the classes (e.g. Fall 1999)

create sequence eduterm_idsequence start with 1;

create table eduterms (
term_id integer not null primary key,
termname varchar(1 00) not null,
startdate date not null,
enddate date not null

-- we want the above table to automatically start with a term that extends over all time
-- (or at least 100 years) for classes that people take at their own pace

insert into eduterms (term-id, termname, startdate, enddate)
select edutermidsequence.nextval, 'No Term', sysdate, add-months(sysdate,1200)
from dual
where 0 = (select count(*) from eduterms);

-- for a multi-department university, we need to this to sort courses
-- by department; we're going to want private discussion groups, etc.
-- for people who work in departments, so we make this a user group

-- to find the department head and other big staffers, we look at people with

96

-- particular roles in the user-group-map

create table edu-departmentjinfo (
group-id integer primary key references user-groups,
-- for schools like MIT where each department has a number
departmentnumber varchar(1 00),
-- we'll generate a home page for them but if they have one already
-- we can provide a link
externalbhomepagejurl varchar(200),
mailing-address varchar(200),
phone number varchar(20),
faxnumber varchar(20),
inquiry_email varchar(50),
description clob,
missionstatement clob,
lastmodified date default sysdate not null,
lastmodifying user references users,
modifiedip-address varchar(20)

-- we want to audit the department information

create table edu departmentinfoaudit (
groupid integer,
departmentnumber varchar(1 00),
extemal-homepagejurl varchar(200),
mailing-address varchar(200),
phonenumber varchar(20),
faxnumber varchar(20),
inquiry_email varchar(50),
description clob,
missionstatement clob,
lastmodified date,
lastmodifyingjuser integer,
modifiedjp-address varchar(20)

-- we create a trigger to keep the audit table current

create or replace trigger edqudepartment infoaudittr
before update or delete on eduidepartmentinfo
for each row
begin

insert into edu-department_infoaudit (

97

groupid,
department number,
externalhomepage-url,
mailingaddress,
phone number,
faxnumber,
inquiry email,
description,
missionstatement,
lastmodified,
lastmodifying-user,
modifiedjp-address)

values (
:old.groupid,
:old.departmentnumber,
:old.extemalhomepagejurl,
:old.mailingaddress,
:old.phone-number,
:old.fax_number,
:old.inquiry-email,
:old.description,
:old.missionstatement,
:old.lastmodified,
:old.lastmodifyinguser,
:old.modifiedip-address);

end;

show errors

-- now, lets create a group of type department and insert all of
-- the necessary rows to generate the user interface on the /admin pages

declare
n~departments-group-types integer;

begin
select count(*) into ndepartments-groupjtypes from userugroupjtypes where

group-type ='edudepartment';
if ndepartments-groupjtypes = 0 then

insert into user-group-types
(group-type, pretty-name, pretty plural, approval policy,
defaultnewmember policy, group-moduleadministration)
values
('edu-department','Department','Departments','wait','open','full');

98

insert into user-groupjtypefields (group-type, columnname,
pretty name, column-type, columnactual-type, columnextra, sortkey)
values
('eduwdepartment', 'department-number', 'Department Number', 'text',
'varchar(100)', ", 1);

insert into userigroup-typejields (group-type, columnname,
prettyname, column-type, columnactuaLtype, columnextra, sortkey)
values
('eduldepartment', 'externalhomepage_url', 'Extemal Homepage URL',
'text', 'varchar(200)', ", 2);

insert into user-groupjtypejields (group-type, columnname,
pretty-name, column-type, columnactuaLtype, columnextra, sortkey)
values
('edu-department', 'mailing-address', 'Mailing Address', 'text',
'varchar(200)', ", 3);

insert into user groupjtypejfields (groupjtype, columnname,
prettyname, column-type, columnactuaLtype, columnextra, sortkey)
values
('edu-department', 'phone-number', 'Phone Number', 'text', 'varchar(20)', ",

4);

insert into user groupjtype-fields (grouptype, colum_name,
pretty-name, column-type, columnactuaLtype, columnextra, sortkey)
values
('edu-department', 'faxnumber', 'Fax Number', 'text', 'varchar(20)', ", 5);

insert into user group-type-fields (group-type, columnname,
pretty-name, column_type, columnactual type, columnextra, sortkey)
values
('edu_department', 'inquiryiemail', 'Inquiry Email', 'text', 'varchar(50)', ",

6);

insert into user group-typejfields (group-type, columnname,
prettyname, column-type, columnactuaLtype, columnextra, sortkey)
values
('edu-department', 'description', 'Description', 'text', 'clob', ", 7);

insert into user group-typejields (group-type, columnname,
prettyname, column-type, columnactuaLtype, columnextra, sortkey)
values
('edu-department', 'missionstatement', 'Mission Statement', 'text', 'clob', ",

8);
end if;

99

end;

-- now we want to create a view to easily select departments

create or replace view edudepartments
as
select

user-groups.groupid as departmentid,
group-name as departmentname,
department number,
external_homepageurl,
mailing-address,
phone number,
faxnumber,
inquiry email,
description,
missionstatement

from user-groups, edudepartmentinfo
where user groups.groupid = edu-departmentinfo.groupid
and group-type ='edu-department'
and activep ='t'
and approvedp =T;

-- we model the subjects offered by departments

create sequence edu-subjectjidsequence;

--we don't store the subject number in edu subjects
-- may have more than one number

create table edusubjects (

because a joint subject

subject-id integer primary key,
subject-name varchar(1 00) not null,
description varchar(4000),
-- at MIT this will be a string like "3 -0-9"
credithours varchar(50),
prerequisites varchar(4000),
professors inscharge varchar(200),
lastmodified date default sysdate not null,
last modifying-user not null references users,
modifiedip_address varchar(20) not null

100

-- we want to audit edu_subjects

create table eduwsubjects-audit (
subjectid
subjectname
description
credithours
prerequisites
professors incharge
lastmodified
lastmodifying-user
modifiedip-address

integer,
varchar(1 00),
varchar(4000),
varchar(50),
varchar(4000),
varchar(200),
date,
integer,
varchar(20)

-- we create a trigger to keep the audit table current

create or replace trigger edusubjects audit_trigger
before update or delete on edusubjects
for each row
begin

insert into edu-subjects-audit (
subject-id,
subject-name,
description,
credit-hours,
prerequisites,
professors incharge,
lastmodified,
lastmodifyinguser,
modifiedip-address)

values (
:old.subjectid,
:old.subjectname,
:old.description,
:old.credithours,
:old.prerequisites,
:old.professors-incharge,
:old.lastmodified,
:old.last_modifyinguser,
:old.modifiedJp-address);

end;

show errors

101

create table edu_subject-department map (
department-id integer references user groups,
subjectjid integer references edu subjects,
-- this would be the full '6.014' or 'CS 101'
subject-number varchar(20),
grad p char(1) default 'f check(gradp in ('t','f)),
primary key (departmentid, subjectid)

-- now we create classes. A class is a particular subject being taught in a particular
-- term. However, we can also have special cases where a class is not associated with
-- a term and we can even have classes that stand by themselves and aren't associated
-- with subjects, e.g., an IAP knitting course
-- (IAP = MIT's Independent Activities Period)

-- the PL/SQL statement cannot create the table so we do it here.
-- create a table to hold the extra info for each group of type
-- 'educlasses'

create table educlass info (
groupid integer not null primary key references user-groups,
termid integer references eduterms,
subject id integer references edusubjects,
-- if the class doesn't start or end on the usual term boundary, fill these in
startdate date,
enddate date,
description varchar(4000),
-- at MIT, something like 'Room 4-23 1, TR 1-2:30'
whereandwhen varchar(4000),
syllabusid integer references fsfiles,
-- we keep references to the class folders so that we can link to them directly
-- from various different parts of the system.
assignmentsfolderid references fsfiles,
projectsjfolderid references fsfiles,
lecturenotesfolderid references fs_files,
handoutsfolderid references fsfiles,
examsfolderid references fs_files,
-- will the class web page and the documents on it be open to the public?
public-p char(1) default 'f check(publicp in ('t','f)),
-- do students receive grades?
grades.p char(l) default 'f check(grades-p in ('t','f)),
-- will the class be divided into teams?
teams-p char(l) default 'f check(teams-p in ('t','f)),

102

exams-p char(1) default 'f check (exams-p in ('t', 'f)),
-- does the class have a final exam?
finalexam p char(1) default 'f check (final examp in ('t','f)),
lastmodified date default sysdate not null,
lastmodifying-iuser references users,
modifiedip-address varchar(20)

-- this table audits educlassinfo
create table educlassinfo audit (

groupid integer,
term_id integer,
subject-id integer,
startdate date,
enddate date,
description varchar(4000),
whereandwhen varchar(4000),
syllabus-id integer,
assignmentsfolderid integer,
projects-folderid integer,
lecturenotesfolderid integer,
handoutsfolderid integer,
examsfolderid integer,
public-p char(l),
grades-p char(l),
teams-p char(l),
exams-p char(l),
finalexam-p char(1),
lastmodified date,
lastmodifyingjuser integer,
modifiedip-address varchar(20)

-- we create a trigger to keep the audit table current

create or replace trigger educlassinfoaudit trigger
before update or delete on educlassinfo
for each row
begin

insert into educlassinfo audit (
groupid,
termid,
subject-id,
startdate,

103

enddate,
description,
where and when,
syllabusid,
assignments folderid,
projectsfolderid,
lecturenotesfolderid,
handoutsfolderid,
examsfolderid,
publicp,
grades-p,
teamsp,
examsp,
finalexam-p,
lastmodified,
lastmodifying_user,
modifiedip-address)

values (
:old.groupid,
:old.termid,
:old.subjectjid,
:old.startdate,
:old.enddate,
:old.description,
:old.whereandwhen,
:old.syllabusjid,
:old.assignments_folderid,
:old.projects folderid,
:old.lecture notes-folder id,
:old.handoutsfolderid,
:old.examsfolderid,
:old.publicp,
:old.gradesp,
:old.teamsp,
:old.examsp,
:old.finalexamp,
:old.last_modified,
:old.lastmodifyinguser,
:old.modified_ip-address);

end;

show errors

declare
n_classes-group-types integer;

104

begin
select count(*) into nclasses-group-types from usergroupjtypes where
group-type ='educlass';

if nclasses-group-types = 0 then
insert into usergroupjtypes

(group-type, pretty name, pretty-plural, approval-policy,
defaultnewmember policy, group-moduleadministration)

values
('educlass','Class','Classes','wait','open','full');

insert into user-groupjtypefields (group-type, column-name, prettyname,
column type, columnactual-type, columnextra, sortkey)

values
('educlass', 'termid', 'Term Class is Taught', 'text', 'integer', 'not null references

edu terms', 1);

insert into user-groupjtypejields (group-type, column name, prettyname,
columnjtype, columnactuaLtype, columnextra, sortkey)

values
('educlass', 'subjectid', 'Subject', 'text', 'integer', 'not null references edusubjects', 2);

insert into usergroupjtypejfields
(group-type, columnname, prettyname, column-type, columnactuaLtype,

columnextra, sort-key)
values
('educlass', 'startdate', 'Date to Start Displaying Class Web Page', 'date', 'date', ", 3);

insert into user-groupjtypejfields (group-type, column-name, prettyname,
column type, columnactuaLtype, columnextra, sortkey)

values
('educlass', 'enddate', 'Date to Stop Displaying Class Web Page', 'date', 'date', ", 4);

insert into user grouptype fields (group-type, column-name, pretty-name,
columnitype, columnactuaLtype, columnextra, sort_key)

values
('educlass', 'description', 'Class Description', 'text', 'varchar(4000)', ", 5);

insert into user-group-typefields (group-type, column-name, prettyname,
columntype, columnactual type, columnextra, sort_key)

values

105

('edu class', 'whereandwhen', 'Where and When', 'text', 'varchar(4000)', ", 6);

insert into user grouptype fields (group-type, columnname, prettyname,
columntype, columnactual_type, column_extra, sort-key)

values
('edu class', 'syllabus id', 'Syllabus ID', 'integer', 'integer', 'references fs-files', 7);

insert into usergroup-type-fields (group-type, columnname, pretty name,
columntype, columnactual_type, columnextra, sort-key)

values
('edu class', 'assignments-folderid', 'Assignments Folder', 'integer', 'integer',

'references fsfiles', 8);

insert into user group-type-fields (group-type, columnname, prettytname,
column_type, columnactual_type, columnextra, sort-key)

values
('edusclass', 'projectsfolder id', 'Projects Folder', 'integer', 'integer', 'references

fs_files', 8.5);

insert into usergroup-typejfields (group type, columnname, prettyname,
column_type, columnactual_type, columnextra, sort-key)

values
('edu-class', 'lecturenotesfolderid', 'Lecture Notes Folder', 'integer', 'integer',

'references fsfiles', 9);

insert into user-groupjtypejfields (group-type, columnname, prettyname,
columntype, columnactual_type, columnextra, sort-key)

values
('edusclass', 'handoutsfolderid', 'Handouts Folder', 'integer', 'integer', 'references

fsfiles', 10);

insert into userroup-typefields (groupjtype, columnname, prettyname,
columntype, columnactual_type, columnextra, sort-key)

values
('edu class', 'public p', 'Will the web page be open to the public?', 'boolean', 'char(l)',

'default "t" check(public-p in ("t","f'))', 11);

insert into user group-type-fields (group-type, columnname, pretty-name,
column_type, columnactual_type, columnextra, sort-key)

106

values
('educlass', 'grades-p', 'Do students recieve grades?', 'boolean', 'char(l)','default "f'

check(gradesp in ("t","f'))', 12);

insert into user-group_type-fields (group-type, column-name, pretty-name,
columnjtype, columnactualtype, columnextra, sort_key)

values
('educlass', 'teamsp', 'Will the class be divided into teams?', 'boolean',

'char(l)','default "f' check(teams-p in ("t","f'))', 13);

insert into user-group-type fields (group-type, column-name, pretty-name,
columntype, columnactualtype, columnextra, sortkey)

values
('educlass', 'examsp', 'Will the class have exams?', 'boolean', 'char(l)','default "f'

check(examsp in ("t","f'))', 14);

insert into userigroupjtypejfields (group-type, column-name, pretty-name,
colunmtype, columnactuaLtype, columnextra, sortkey)

values
('educlass', 'finalexamp', 'Will the class have a final exam?', 'boolean',

'char(l)','default "f' check(final exam p in ("t","f'))', 15);

insert into user-group-type-fields (group-type, column-name, prettyname,
columntype, columnactuaLtype, columnextra, sortkey)

values
('educlass', 'examsfolderid', 'Exams Folder', 'integer', 'integer', 'references fsfiles',

16);

end if;
end;

-- create a view for current classes whose webpages we should display
-- to students

create or replace view educurrentclasses
as
select

user-groups.groupid as classid,
group-name as class-name,
educlassinfo.term-id,
subject-id,

107

educlassinfo.startdate,
educlassinfo.enddate,
description,
where and when,
syllabusid,
lecturenotesfolderid,
handoutsfolderid,
assignments folderid,
projectsfolderid,
examsfolderid,
publicp,
gradesp,
teamsp,
exams-p,
final exam-p

from user-groups, educlassinfo
where user-groups.groupid = educlass-info.groupid
and group-type ='educlass'
and active-p =T
and existence-public-p='t'
and approvedp =T
and sysdate<educlassinfo.enddate
and sysdate>=educlassinfo.startdate;

-- create a view for all active classes in the system - these are so
-- professors can access the admin pages even though students don't see
-- these classes

create or replace view educlasses
as
select

user-groups.groupid as classid,
group-name as classname,
educlassinfo.term_id,
subjectid,
edu-class-info.start-date,
educlassinfo.enddate,
description,
whereandwhen,
syllabus-id,
lecturenotesfolderid,
handoutsfolderid,
assignments folderid,
projectsfolderid,
examsfolderid,

108

publicp,
grades-p,
teamsp,
exams-p,
finalexam-p

from user-groups, edu-classinfo
where userigroups.groupid = educlassinfo.groupid
and group-type ='educlass'
and active-p ='T
and existence_public_p='t'
and approved-p =T;

-- now, we want to be able to store information about each individual in
-- a class so we create an entry in user groupjtypememberfields

insert into user-grouptype_memberfields
(group_type, role, fieldname, fieldtype, sort-key)
values
('educlass', 'student', 'Institution ID', 'shorttext', 1);

insert into user-group-typememberfields
(group-type, role, fieldname, fieldjtype, sort-key)
values
('educlass', 'dropped', 'Institution ID', 'shorttext', 2);

insert into user-grouptype_memberfields
(group_type, role, fieldname, field.type, sort-key)
values
('educlass', 'student', 'Student Account', 'short-text', 3);

insert into user-grouptypememberfields
(group_type, role, fieldname, fieldjtype, sort-key)
values
('educlass', 'dropped', 'Student Account', 'shorttext', 4);

insert into user-grouptype-.memberfields
(group_type, role, fieldname, field.type, sorLkey)
values
('educlass', 'ta', 'Office', 'shorttext', 5);

insert into usermgroupjtypememberfields
(group_type, role, fieldname, fieldtype, sort key)
values
('edu class', 'professor', 'Office', 'short-text', 6);

109

insert into user groupjtypememberfields
(group-type, role, fieldname, fieldtype, sort-key)
values
('edu-class', 'professor', 'Phone Number', 'shorttext', 7);

insert into user-groupjtype-memberfields
(group_type, role, fieldname, fieldjtype, sort-key)
values
('edu-class', 'ta', 'Phone Number', 'short-text', 8);

insert into user-groupjtype-memberfields
(group-type, role, fieldname, fieldtype, sort-key)
values
('edu class', 'ta', 'Office Hours', 'shorttext', 9);

insert into usergrouptype memberfields
(group_type, role, fieldname, field type, sort-key)
values
('edu-class', 'professor', 'Office Hours', 'shorttext', 10);

-- we want to be able to divide classes further into sections.
-- this is nice for tutorials and recitations.

-- you can get the class for the section from the parent-groupid from user-groups

create table edusection info (
groupid integer not null references user groups,
sectiontime varchar(100),
sectionplace varchar(1 00)

declare
n_section-groupjtypes integer;

begin
select count(*) into nsection-groupjtypes from user-groupjtypes where group-type =
'edusection';

if nsection-groupjtypes = 0 then
insert into usergroupjtypes
(group-type, pretty-name, pretty-plural, approval-policy,
defaultnewmember policygroup-moduleadministration)

110

values
('edu-section','Section','Sections','wait','open','full');

insert into user groupjtypefields (group_type, columnname,
prettyname, column-type, column_actuaLtype, columnextra, sortkey)
values
('edu section', 'sectiontime', 'Section Time', 'text', 'varchar(l00)', ", 2);

insert into user groupjtypefields (group-type, columnname,
prettyname, column-type, column_actual type, columnextra, sortkey)
values
('edu-section', 'sectionplace', 'Section Place', 'text', 'varchar(1 00)', ", 3);

end if;
end;

- we want to create a view to it is easy to retrieve information about sections

create or replace view edusections
as
select

user-groups.groupid as sectionid,
group-name as sectionname,
parent-groupid as classid,
sectiontime,
section place

from user-groups, eduwsectioninfo
where user groups.groupid = edusectioninfo.groupid
and group-type ='edusection'
and active-p ='T
and approvedp ='T;

declare
n_classes-group-types integer;

begin
select count(*) into nclasses-groupjtypes from user group-types where
group-type ='edudepartment';

if nclasses-group-types = 0 then
insert into user group-types
(groupjtype, prettyname, pretty-plural, approvaLpolicy,
defaultnewmemberpolicy, group-module administration)
values

111

('edudepartment','Department','Departments','wait','open','none');
end if;

end;

-- we are implementing teams as subgroups so lets create a view to see them

create or replace view eduteams
as
select

groupid as teamid,
group-name as teamname,
parent-groupid as classid,
adminemail,
registrationdate,
creation-user,
creationip_address,
existencepublicp,
newmember_policy,
email-alert-p,
multi rolep,
groupadminpermissions-p,
index page enabledp,
body,
htmLp,
modificationdate,
modifying-user

from user-groups
where group-type ='eduteam'
and activep ='T
and approved-p ='T;

-- Create eduteam group type
declare
n_teams-group-types integer;

begin
select count(*) into njteams-group-types from user-group-types where
group-type ='eduteam';

if nteams-group-types = 0 then
insert into usergroup-types
(group-type, pretty-name, pretty-plural, approvaLpolicy,
defaultnewmember-policygroup-module-administration)
values
('eduteam','Team','Teams','wait','open','none');

end if;
end;

112

/

create sequence edutextbookssequence start with 1;

create table edutextbooks (
textbookid integer not null primary key,
title varchar(200),
author varchar(400),
publisher varchar(200),
-- isbn has to be a varchar and not a number because some ISBNs have the letter
-- x at the end; ISBN will be just the digits and letters mushed together
-- (no dashes in between), amazon.com style
isbn varchar(50)

-- map the textbooks to classes

create table educlassestotextbooks-map (
textbookid integer references edutextbooks,
classid integer references user-groups,
required~p char(l) default 't' check (requiredp in ('t','f)),
comments varchar(4000),
primary key (classid, textbook-id)

create sequence edu-grade-sequence;

-- records the grade types and their relative weights. This table will not
-- capture the qualitative factors, but should take care of the
-- quantitative portion of the final grade

create table edu-grades (
grade-id integer not null primary key,
grade-name varchar(1 00),
classid integer not null references user-groups,
comments varchar(4000),
-- weight is a percentage (0 to 1)
weight number check (weight between 0 and 100),
lastmodified date default sysdate not null,
lastmodifyinguser not null references users,
modifiedJp-address varchar(20) not null

113

-- we want to audit edu-grades so we know if anyone changes anything

create table edugradesaudit (
grade_id integer,
gradename varchar(100),
class-id integer,
comments varchar(4000),
-- weight is a percentage
weight number,
lastmodified date,
lastmodifying-user integer,
modifiedip-address varchar(20),
delete-p char(1) default(f) check (delete-p in ('t','f))

-- we create a trigger to keep the audit table current

create or replace trigger edu-grades audit trigger
before update or delete on eduwgrades
for each row
begin

insert into eduwgradesaudit (
grade_id,
grade-name,
classid,
comments,
weight,
lastmodified,
lastmodifyinguser,
modifiedip-address)

values (
:old.gradejid,
:old.gradename,
:old.classid,
:old.comments,
:old.weight,
:old.lastmodified,
:old.lastmodifyingiuser,
:old.modified_ip-address);

end;

show errors

114

-- we want to be able to easily keep track of lecture notes/handouts
-- note that we do not keep track of author or date uploaded or even
-- a comment about it. We do not because is all kept in the
-- fsfiles table, which eduhandouts references. We keep the handoutname
-- in both places because we will be displaying that a lot and we do not
-- want to always have to join with fsfiles

create sequence eduhandoutidsequence start with 1;

create table eduhandouts (
handoutid integer not null primary key,
classid integer references user-groups,
handoutname varchar(500) not null,
file_id integer references fsfiles not null,
- what kind of handout is this? Possibilities include
- lecturenotes and announcement
handout-type varchar(200),
- what date was this handout given out
distributiondate date default sysdate

create sequence edutask-sequence;

-- includes assignments, projects, exams, and any other tasks a student might be
-- graded on

create table edustudent tasks (
taskid integer primary key,
classid not null references usergroups,
grade-id references edu-grades,
-- we have to have a task type so we can categorize tasks in the
-- user pages
tasktype varchar(1 00)

check (tasktype in ('assignment', 'exam', 'project')),
taskname varchar(100),
description varchar(4000),
-- the date we assigned/created the task
dateassigned date,
-- we want to know the last time the task was modified
-- (the permissions were changed or a new version was uploaded, etc)
lastmodified date,
-- could be date assignment is due, or date of an exam
duedate date,
-- this references the fsfiles fileid that holds either the
-- actual assignment available for download or the url of the

115

- - assignment
file_id references fsfiles,
-- who assigned this?
assignedby not null references users,
-- This column is for projects where students can
-- assign themselves to teams.
self assignablep char(1) default 'f check (self assignable-p in ('t','f)),
self assigndeadline date,
-- how much is this assignment worth compared to the others with
-- the same gradeJd (e.g. under the same grade group)?
-- weight is a percentage
weight number check (weight between 0 and 100),
requires-grade-p char(1) check (requires-gradep in ('t','f)),
-- whether the task is submitted/administered online
online-p char(1) check (online-p in ('t','f)),
-- if an assignment has been deleted we mark it as inactive
active-p char(1) default 't' check (activep in ('t','f))

-- views for assignments, exams, and projects
create or replace view edu projects
as

select
taskid as project-id,
classid,
taskjype,
assigned.by as teacherid,
gradejid,
taskname as projectname,
description,
dateassigned,
lastmodified,
due-date,
file-id,
weight,
requires-gradep,
onlinep as electronicsubmission-p

from edu student tasks
where taskjype=project'
and activep='t';

create or replace view eduexams
as

select
taskid as examid,

116

task_type,
classid,
assignedby as teacherid,
gradeid,
task-name as exam-name,
description as comments,
date assigned as creationdate,
lastmodified,
duedate as dateadministered,
file-id,
weight,
requires-gradep,
online-p

from edustudenttasks
where task type='exam'
and activep='t';

create or replace view edu-assignments
as

select
taskid as assignment id,
task type,
classid,
assignedby as teacherid,
gradeid,
taskname as assignmentname,
description,
dateassigned,
last modified,
duedate,
fileid,
weight,
requires-gradep,
online p as electronicsubmission-p

from edustudenttasks
where task type ='assignment'
and activep='t';

-- we want to be able to post the solutions and associate the solutions
-- to a given file

create table edutasksolutions (
taskid references edustudenttasks,
fileid references fsfiles,

primary key (task-id, filelid)

117

-- we want a table to map student solutions to assignments
-- this is what allows students to upload their finished papers, etc.

create table edustudentanswers (
studentid references users,
taskid references edustudenttasks,
fileid references fsfiles,
-- this is the date of the last time the solutions were changed
lastmodified date default sysdate not null,
last modifying-user not null references users,
-- modifiedip-address is stored as a string separated by periods.
modified-ip_address varchar(20) not null

create table edustudentanswersaudit (
studentid integer,
taskid integer,
fileid integer,
-- this is the date of the last time the solutions were changed
lastmodified date,
last modifying-user integer,
-- modifiedip-address is stored as a string separated by periods.
modified-ipaddress varchar(20)

-- we create a trigger to keep the audit table current

create or replace trigger edu-studentanswersaudittr
before update or delete on edustudentanswers
for each row
begin

insert into edustudentanswersaudit (
studentid,
taskid,
fileid,
lastmodified,
lastmodifyinguser,
modifiedip-address)

values (
:old.studentid,
:old.taskid,
:oldfileid,

118

:old.lastmodified,
:old.lastmodifyingjuser,
:old.modified_ip-address);

end;

show errors

-- this is where we keep the student grades and the evaluations
-- that students receive from teachers

create sequence eduevaluationid-sequence;

create table edustudentevaluations (
evaluationid integer primary key,
classid not null references user groups,
-- must have studentid or teamid
student id references users,
team_id references user-groups,
taskid references edustudenttasks,
-- there may be several times during the term that the professor
-- wants to evaluate a student. So, the evaluation type
-- is something like 'endofterm' or 'midterm'
evaluation type varchar(1 00),
grader-id not null references users,
grade varchar(5),
comments varchar(4000),
showstudent-p char(l) default 't' check (show student-p in ('t','f)),
evaluationdate date default sysdate,
lastmodified date default sysdate not null,
lastmodifyingjiser not null references users,
-- modifiedip-address is stored as a string separated by periods.
modifiedip-address varchar(20) not null

-- we want to audit the evaluations table

create table edustudentevaluations audit (
evaluationid integer,
classid integer,
- - must have student id or team id
student id integer,
teamid integer,
task-id integer,

119

evaluationtype varchar(100),
graderid integer,
grade varchar(5),
comments varchar(4000),
showstudent-p char(l),
evaluationdate date,
lastmodified date,
last modifying user integer,
modifiedjipaddress varchar(20)

-- we create a trigger to keep the audit table current

create or replace trigger edu-studentanswersaudittr
before update or delete on edustudentanswers
for each row
begin

insert into edustudentanswersaudit (
studentid,
taskid,
file-id,
lastmodified,
lastmodifyinguser,
modifiedip-address)

values (
:old.studentid,
:old.taskid,
:old.fileid,
:old.lastmodified,
:old.last_modifyingjuser,
:old.modifiedip-address);

end;

show errors

-- now, we want to hold information about each project. It is possible
-- to have one term project but many instances of that project. For
-- instance, "Final Project for 6.916" is a term project that would
-- be kept in the edutasks table but ArfDigita.org is a project
-- instance that would be kept in this table. There is a many to
-- one mapping

-- we make taskid not null because every project has to be part of

120

-- some sort of task (either an assignment or a project)
-- we make it a task because all evaluations are done on tasks

create sequence eduprojectinstanceid-seq start with 1;

create table eduprojectinstances (
projectinstanceid integer not null primary key,
projectinstancename varchar(200),
project_instanceurl varchar(500),
-- which project is this an instance of?
projectid integer not null references edustudenttasks,
description varchar(4000),
approvedp char(l) default 'f check(approvedp in ('t','f)),
approveddate date,
approving-user references users(userjid),
-- we want to be able to generate a consistent user interface so
-- we record the type of project.
project-type varchar(l 0)

default 'team' check(projecttype in ('user','team')),
minbody-count integer,
maxbody-count integer,
-- we want to be able to "delete" project instances so we have active-p
activep char(l) default 't' check(active-p in ('t','f))

-- we want to be able to assign students and teams to projects

create table eduproject-user-map (
projectinstance id integer not null references eduprojectinstances,
team_id integer references user-groups,
student id integer references users,
constraint edu-project-user-mapcheck check ((team-id is null

and studentid is not null) or (teamid is not null and studentid is null))

-- lets make it easy on Oracle to access this table
create index eduprojectmapjdx on eduprojectjuser-map(projectinstanceid,
teamid, student id);

-- we want to allow classes to rename their roles. That is,
-- some people want to be called Professor where others want
-- to be called Instructor and still others want to be called
-- Lecturer. We don't want to just use the 'role' column
-- in user-group-roles because then we would not have a way

121

-- to "spain all professors and TAs" because we would not know
-- which role was a prof and which was a TA. Also, we want to
-- have a sort-key so that we know which order to display these
-- items when they are shown to the user. Thus, we have the following
-- table

-- so, for the case where a class wants to call the prof a Lecturer,
-- we would have role = Professor and pretty-jole = Lecturer

create table eduroleprettyjrole-map (
groupid not null references usergroups,
-- role should reference usergroupjroles(role)
role varchar(200),
-- what the class wants to call the role
pretty~jole varchar(200),
prettyjoleplural varchar(300),
-- sort key for display of columns.
sort-key integer not null,
-- this is to capture info about the hierarchy of role permissions

priority integer,
primary key (groupid, role)

-- begin the portal tables

-- the portal mini-tables

create sequence weatheridsequence;

create table portal-weather (
weatherid integer not null primary key,
userid not null references users,
city varchar(00),
usps-abbrev references states,
zipcode varchar(1 0),
-- the type can be: next day forecast, 5 day forecast, current conditions
five_dayp char(1) default 'f check (fivejay-p in ('t','f)),
next-day-p char(l) default 'f check (next-day-p in ('t','f)),
currenLp char(1) default 'f check (current-p in ('t','f))

122

create table portalstocks (
userid
symbol
default-p

not null references users,
varchar(1 0) not null,
char(l) default 'f check(default-p in ('t','f))

create table educalendarscategories (
category varchar(100) primary key,
enabledp char(1) default 't' check(enabledp in ('t','f))

create sequence educalendaridsequence;

-- the viewable column that specifies whether the calendar
-- entry is viewable by the public and if so, whether we should show the
-- title or something in place of the title (e.g. Busy, Free, Tentative --
-- MS Outlook options). Also, the owner column identifies who
-- the entry is for: so we can display calendars with respect to individual
-- users or groups of users (like in a team)

create table educalendar (
calendarid integer primary key,
category not null references calendar-categories,
-- the way we connect calendar entries to users
owner not null references users,
title varchar(100) not null,
body varchar(4000) not null,
-- is the body in HTML or plain text (the default)
htmlp char(1) default 'f check(html-p in ('t','f)),
-- first day of the event
startdate date not null,
-- last day of the event (same as startdate for single-day events)
enddate date not null,
- - day to stop including the event in calendars, typically enddate
expirationdate date not null,
-- viewable as public means the title will be displayed. private
-- means the entry will be invisible unless viewed by the
-- owner. busy, free, or tentative will be displayed instead of title
-- to viewers other than owner
viewable varchar(100) default 'public' check(viewable in

('public', 'busy', 'free', 'tentative', 'private')),
eventurl varchar(200), -- URL to the event

123

eventemail varchar(100), -- email address for the event
-- for events that have a geographical location
country code references countryscodes(iso),
-- within the US we want the state code
uspsabbrev references states,
-- we only want five digits
zip-code varchar(10),
approvedp char(l) default 'f check(approvedp in ('t','f)),
creationdate date not null,
creationuser not null references users(user id),
creationip-address varchar(50) not null

-- BEGIN PL/SQL

-- we need a trigger to populate the edurole pretty role_map
-- this is included in case people want to add new roles to
-- the class all they have to do insert into user-groupjroles
-- and this will take care of the rest

CREATE OR REPLACE TRIGGER educlassrole-updatetr
AFTER UPDATE OF role ON user-group-roles
BEGIN

-- we want to update the existing row
update edurole-prettyrole map
set role = :new.role
where groupid = :old.groupid
and role =:old.role;

END;

show errors

-- for every row that is inserted into the user-group_roles, if
-- the group is of type educlass then we want to insert a corresponding
-- role into eduroleprettyjrole-map

124

CREATE OR REPLACE TRIGGER educlassroleinserttr
AFTER INSERT ON user-group-roles
FOR EACH ROW
DECLARE

v_classp integer;
BEGIN

select count(groupid) into vsclass-p
from user-groups
where group-type ='educlass'
and groupid = :new.groupid;

IF vclassp > 0 THEN

insert into edujrole prettyjrole-map (
groupid,
role,
pretty-role,
pretty roleplural,
sort-key,
priority)

select
:new.groupid,
:new.role,
:new.role,
:new.role 11's',
nvl(max(sort key),O) + 1,
nvl(max(priority),O) + 1

from edurolepretty~jole map
where groupid = -new.groupid;

END IF;
END;

show errors

-- if a role is delete from user-group-roles and the group
-- is of type educlass then we also want to delete it from
-- edu-role pretty-role-map

CREATE OR REPLACE TRIGGER educlassroledeletetr
BEFORE DELETE ON user-group-roles
FOR EACH ROW
BEGIN

delete from edurolepretty-rolemap
where groupid =:old.groupid
and role = :old.role;

125

END;

show errors

-- create default tables for each portal
-- start a personal category so the user can enter personal events of
-- "user scope
create or replace trigger portal-pagejuponnewuser
after insert on users

for each row
begin

insert into portaLpages
(page-id, userid, page-number)
values
(portaLpagejidsequence.nextval, :new.userid, 1);
insert into calendar-categories (categoryid, scope, userjid, category,

enabled-p)
values
(calendar-categoryidsequence.nextval, 'user', :new.userid,

'Personal', 't');
end;

show errors

- - the opposite of the above trigger -- for deleting users
create or replace trigger portal removeupon-userdelete
before delete on users

for each row
begin
delete from portaLpages
where userid=:old.userid;

end;

show errors

create or replace trigger portal setupupon_pageinsert
after insert on portaLpages

for each row
declare

stocktableid portaltables.tableidTYPE;
weathertableid portaltables.tableidTYPE;
classestableid portaltables.tableidTYPE;
announcementstableid portal tables.tableidTYPE;
calendartable id portaltables.tableidTYPE;

begin
select tableid into stocktableid from portaltables where

126

tablename='Stock Quotes';
select tableid into weathertableid from portal-tables where

tablename='Current Weather';
select tableid into classestableid from portal-tables where

tablename='Classes';
select tableid into announcementstableid from portal-tables where

tablename='Announcements';
select tableid into calendartableid from portal-tables where

tablename='Calendar';
insert into portal-tablepage-map
(pagelid, tableid, sort-key, page-side)
values
(:new.pageid, stocktableid, 1, '1');
insert into portal-tablepagemap
(page-id, tableid, sort-key, page-side)
values
(:new.pageid, weathertableid, 2, '1');
insert into portal-tablepagemap
(pagelid, tableid, sort-key, page-side)
values
(:new.pageid, classestableid, 1, 'r');
insert into portal-tablepage-map
(page-id, tableid, sort-key, page-side)
values
(:new.pageid, announcementstableid, 3, 'T');
insert into portal-tablepagemap
(page-id, tableid, sort-key, page-side)
values
(:new.pageid, calendartableid, 2, 'r');

end;

show errors

-- the opposite of the trigger above -- upon deleting a page for portal
-- table we also want to delete the entries from portal-table page map
create or replace trigger portal-update-uponpage delete
before delete on portal-pages

for each row
begin

delete from portal-table-page-map where pagejd=:old.pagejid;
end;

show errors

127

Bibliography
[Aca95] Academic Resources for the E-Generation. July, 1995.

<http://www.studyfree.com/>

[Ame95] America OnLine. AOLserver. America OnLine, http://www.aolserver.com,
1995.

[ArsOO] ArsDigita Corporation. The Arsdigita Community System. 2000.
<http://software.arsdigita.com>

[Bar94] Barron, Ivers, Sherry. Exploring the Internet. The Computing Teacher, 22(2),
14-19. 1994.

[Bla0Oa] Blackboard CourseInfo 4.0 Technical White Paper, UNIX Edition, February
2000, Washington, DC <http://company.blackboard.com/CourseInfo/index.html>

[BlaGOb] Blackboard.com Home Page <http://www.blackboard.com/>

[Cli90] Clifford, R. Foreign languages and distance education: The next best thing to
being there. (ERIC Document Reproduction Service No. ED 327 066). 1990.

[ComOG] Comparison of Online Course Delivery Software Products, Marshall
University, April 2000.
<http://multimedia.marshall.edu/cit/webct/compare/comparison.html>

[Cou98] Course Management and Delivery. Massachusetts Institute of Technology,
August 1998. <http://command.mit.edu/>

[EcoOO] Ecollege.com Homepage, Denver, Colorado, 2000. <http://www.ecollege.com/>

[Edu99] Eduprise, Inc. Homepage, 1999 <http://www.eduprise.com/>

[Ehr96] Ehrmann, S. Looking Backward: U.S. efforts to use technology to transform
undergraduate education. University of California. 1996.
<http://eee.uci.edu/programs/auctlt/LookingBack.html>

[E1197] Ellis, B. Virtual Classroom Technologies for Distance Education: The case for
On-line Synchronous Delivery. In Proceedings of North American Web
Developers Conference, Alberta, Canada. October 1997.
<http://www.detac.com/solution/naweb97.htm>

[Goo96] Goodwin-Jones, Polyson, Saltzberg. "A Practical Guide to Teaching
with the World Wide Web." Syllabus Magazine, September 1996.
<http://www.umuc.edu/iuc/cmc96/papers/poly-p2.html>

128

[Gre99] Greenspun, P. Philip and Alex's Guide to Web Publishing. Morgan Kaufmiann
Publishers. April, 1999

[Hil90] Hiltz. Evaluating the virtual classroom. In Online Education: Perspectives on a
New Environment, ed. L. M. Harasim, 133-184. New York: Praeger. 1990.

[IcuOO] Icubed, LLC Homepage, 2000. Demonstratino site for SerfSoft.
<http://www.icubed.org/>

[IMSOO] IMS Global Learning Consortium, Inc. Homepage, April 7,2000.
<http://imsproject.org/>

[Mor95] Morten, Flate, Paulsen. The Online Report on Pedagogical Techniques for
Computer-Mediated Communication. NKI, Oslo, Norway, August 1995.

[Mur96] Murray W. Goldberg, Sasan Salari and Paul Swoboda, "World Wide Web
Course Tool: An Environment for Building WWW-Based Courses", Computer
Networks and ISDN Systems, 28 (1996)

[On00] Online Computer Library Center. Permanent uniform resource locators.
<http://purl.org, 2000>

[OraOO] Oracle 8i Homepage, Oracle Corporation. 2000
<http://oracle.com/database/oracle8i/>

[Pau90] Paulsen. Organizing an electronic college. In Proceedings of the Third Guelph
Symposium on Computer Conferencing, 87-97. Guelph, Ontario: University of
Guelph. 1990.

[Pau92a] Paulsen, M. A goal-oriented method for establishing an electronic college. In
Impact of Informatics on the Organization of Education, eds B. Samways and T.J.
van Weert, 113-118. Amsterdam: Elsevier. 1992.

[Pau92b] Paulsen, M. F. From Bulletin Boards to Electronic Universities: Distance
Education, Computer- mediated Communication, and Online Education. 1992.
University Park, Pennsylvania: The American Center for the Study of Distance
Education. Pages: 67. 1992.

[Sca84] Scardamalia, Bereiter. Computer support for knowledge-building communities.
Journal of the Learning Sciences, 3(3), 265-283. 1984.

[Sch96] Schutte, J. Virtual Teaching in Higher Education: The New Intellectual
Superhighway or Just Another Traffic Jam? 1996.
<http://www.csun.edu/sociology/virexp.htm>

129

[SerOO] SerfSoft Corporation Homepage, Fred T. Hofstetter, 2000 <http://serfsoft.com/>

[She96] Sherry, L. Issues in Distance Learning. International Journal of Educational
Telecommunications, 337-365. 1996

[VirOO] Virtual Learning Environments, Inc. Hompage, 2000. <http://www.vlei.com/>

[WebOG] WebCT Homepage, 2000. <http://www.webct.com/>

[Woo97] Woodruff, Brett, Macdonald, Nason. Participation in knowledge- building
communities to promote teaching competency in mathematics. Paper submitted to
The Canadian Society for the Study of Education. 1997
http://www.oise.utoronto.ca/%7Eewoodruff/cp.htm

130

