
The Free Haven Project: Design and Deployment of an

Anonymous Secure Data Haven

by

Roger R. Dingledine

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

© Roger R. Dingledine, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author
Department of Electrical Engineering andUCompuer Science

May 22, 2000

7) A

Certified by
Ron Rivest

Webster Professor of Computer Science and Engineering
Thesis Supervisor

Z7

Accepted by g. .-.
Arthur C. Smith

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

-1

The Free Haven Project: Design and Deployment of an Anonymous

Secure Data Haven

by

Roger R. Dingledine

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2000, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Free Haven Project aims to deploy a system for distributed data storage which is robust against
attempts by powerful adversaries to find and destroy stored data. Free Haven uses a mixnet for com-
munication, and it emphasizes distributed, reliable, and anonymous storage over efficient retrieval.
We provide an outline of a formal definition of anonymity, to help characterize the protection that
Free Haven provides and to help compare related services. We also provide some background from
case law about anonymous speech and anonymous publication, and examine some of the ethical
and moral implications of an anonymous publishing service. In addition, we describe a variety of
attacks on the system and ways of protecting against these attacks. Some of the problems Free
Haven addresses include providing sufficient accountability without sacrificing anonymity, building
trust between servers based entirely on their observed behavior, and providing user interfaces that
will make the system easy for end-users.

Thesis Supervisor: Ron Rivest
Title: Webster Professor of Computer Science and Engineering

Contents

1 Introduction and Requirements 6

1.1 M otivation .. 6

1.2 Project Summary 7

1.3 Design Requirements . 8

1.4 About this document . 10

2 Defining Anonymity 11

2.1 Defining Privacy . 11

2.2 Agents and Operations . 12

2.3 Linkability: Anonymity vs. Pseudonymity . 14

2.4 Partial Anonymity vs. Full Anonymity . 15

2.5 Characteristics of Communication Channels . 16

2.6 What does it mean to 'break' an anonymous system? 17

2.7 Modeling the Adversary . 18

2.8 Toward a formal definition of anonymity . 19

3 Related and Alternate Works 20

3.1 Anonymous Channels . 20

3.2 Publication Services . 25

3.3 Trust System s . 36

4 Applications, Legalities, and Ethics 38

4.1 Introduction and Assumptions . 38

4.2 Anonymous speech . 39

4.3 Anonymous Publication . 43

4.4 Legal, yes - but Moral? . 46

4.5 Conclusions . 55

4

5 System Design and Overview 57

5.1 System Summary 57

5.2 Supported Operations 60

5.3 Expiration . 63

5.4 Accountability and Redundancy . 65

5.5 Composition of a Share . 68

5.6 Trading . 69

5.7 R eceipts . 72

5.8 Trust Networks . 72

5.9 Directory Services . 78

5.10 U ser Interfaces . 79

6 Communication Module and Protocols 82

6.1 M odule D esign . 82

6.2 Module Implementation . 84

7 Adversaries and Attacks 89

7.1 Attacks on the Communications Channel . 89

7.2 Attacks on the Infrastructure and Documents . 97

7.3 Attacks on the Trust System . 101

8 Future Works 103

8.1 Communications Channels . 103

8.2 Publication Systems . 108

8.3 Trust........... 109

9 Conclusions 111

A Acknowledgements 113

B Anonymous Communications Channels 114

B .1 Proxy Services . 114

B.2 Chaumian Mix-nets . 116

B.3 Remailers: SMTP Mix-nets . 117

B.4 Recent Mix-Net Designs . 120

B.5 Other Anonymous Channels . 124

Bibliography 127

5

Chapter 1

Introduction and Requirements

1.1 Motivation

The internet is moving in the direction of increasing freedom of information. National boundary

lines are growing increasingly blurred. At the same time as a strong sense of global community is

growing, technical advances have provided greatly increased bandwidth and an enormous amount of

computing power and well-connected storage. However, the increases in speed and efficiency have

not brought comparable increases in privacy and anonymity on the internet - indeed, governments

and especially corporations are beginning to realize that they can leverage the internet to provide

detailed information about the interests and behaviors of existing or potential customers. Court

cases, such as the Church of Scientology's lawsuit against Johan Helsingius [42] or the more recent

OpenDVD debate [55] (and subsequent arrest of DeCSS author Jon Lech Johansen), demonstrate

that the internet currently lacks an adequate infrastructure for truly anonymous publication or

distribution of documents or other data.

Indeed, there are a number of other deeper motivations for the deployment of an anonymous

publishing service such as Free Haven. Not only do we hope to assist those like Helsingius and

Johansen, but we have the wider goals of pushing the world a few more steps in the direction of free

and open information and communication. In Germany, Internet Service Providers such as AOL

are liable for the content that passes across their systems [82]. Recent British legislation threatens

to make citizens responsible for the content of encrypted documents that they're holding, even if

they don't possess the ability to read these documents [74]. Such restrictions on the free flow of

information, however, are already being attacked: for example, American hackers are attempting to

break holes in China's "Great Firewall" to allow Chinese citizens access to Western media [11].

In addition to such revolutionary actions, there are a wide range of activist projects which employ

the internet for publicity but focus on helping real people in the real world. Such projects include

6

Pirate Radio [29], a loose confederation of radio operators joined in the belief that ordinary citizens

can regulate the airwaves more efficiently and more responsibly than a government organization;

as well as mutual aid societies such as Food Not Bombs! [45], an organization which "serves free

food in public places to dramatise the plight of the homeless, the callousness of the system and our

capacity to solve social problems through our own actions without government or capitalism."

By providing tools to enable safer and more reliable communication for organizations fighting

for increased rights of individuals rather than nations or corporations, as well as strengthening

the capabilities of political dissidents and other individuals to speak out anonymously about their

situations, the members of the Free Haven Project hope to help pave the way to a modern society

where freedom of speech and freedom of information are integral parts of everyday life.

1.2 Project Summary

The Free Haven Project intends to deploy a system which provides a good infrastructure for anony-

mous publication. Specifically, this means that the publisher of a given document should not be

known; that clients requesting the document should not have to identify themselves to anyone;

and that the current location of the document should not be known. Additionally, it would be

preferable to limit the number of opportunities where an outsider can show that a given document

passed through a given computer. A more thorough examination of our requirements and notions

of anonymity can be found in Chapter 2.

The overall design is based on a community of servers (which as a whole is termed the 'servnet')

where each server hosts data from the other servers in exchange for the opportunity to store data of

its own in the servnet. When an author wishes to publish a document, she breaks the document into

shares, where a subset (any k of n) is sufficient to reconstruct the document. Then for each share, she

negotiates for some server to publish that share on the servnet. The servers then trade shares around

behind the scenes. When a reader wishes to retrieve a document from the servnet, she requests it

from any server, providing a location and key which can be used to deliver the document in a private

manner. This server broadcasts the request to all other servers, and those which are holding shares

for that document encrypt them and deliver them to the reader's location. Also behind the scenes,

the shares employ what is essentially the 'buddy system' to maintain some accountability: servers

which drop shares or are otherwise unreliable get noticed after a while, and are trusted less. A trust

module on each server maintains a database on the behavior of each other server, based on past

direct experience and also what other servers have said. For communication both between servers

and between the servnet and readers, we rely on an existing mixnet infrastructure to provide an

anonymous channel.

The system is designed to store data without concern for its popularity or controversial nature.

7

The Free Haven Project Roger Dingledine

The Free Haven Project

Possible uses include storing source code or binaries for software which is currently under legal

debate, such as the recent DeCSS controversy or other software with patent issues; publishing

political speech in an anonymous fashion for people afraid that tying their speech to their public

persona will damage their reputation; or even storing more normal-looking data like a set of public

records from Kosovo.

Free Haven is designed more for anonymity and persistence of documents than for frequent

querying - we expect that in many cases, interesting material will be retrieved from the system

and published in a more available fashion (such as normal web pages) in a jurisdiction where such

publishing is more reasonable. Then the document in the servnet would only need to be accessed if

the other sources were shut down.

The potential adversaries are many and diverse: governments, corporations, and individuals all

have reason to oppose the system. There will be social attacks from citizens and countries trying to

undermine the trust in the security of the system, as well as attacking the motivation for servnet

node operators to continue running nodes. There will be political attacks, using the influence of a

country's leaders to discourage use of the servnet. There will be government and legal attacks, where

authorities attempt to shut down servnet nodes or arrest operators. Indeed, in many cases ordinary

citizens can recruit the power of the government through lawsuits or subpoenas. Multinational

corporations will hold sway over several countries, influencing them to pass similar laws against

anonymous networks. There will be technical attacks, both from individuals and from corporations

and national intelligence agencies, targeted either at the system as a whole or at particular documents

or node operators, to reduce the quality of service or gain control of part of the network. Clearly

the system needs to be designed with stability, security, and longevity in mind.

1.3 Design Requirements

More formally, requirements beyond anonymity for a stable and useful system fall into two categories:

Required Operations:

- The system must provide a mechanism for anonymously inserting a document into the

servnet.

- The system must provide a mechanism for anonymously retrieving a document from

the servnet, including verifying that the retrieved document is identical to the original

document.

- The system must provide a mechanism for expiring documents: the duration of a docu-

ment should be decided by the publisher when that document is published to the servnet,

and the document should be available (and immutable) until that duration expires.

8

Roger Dingledine

- The system must provide a mechanism for smoothly adding servers to the servnet

without impacting functionality.

- The system must provide a mechanism for recognizing inactive or dead servers; it

should consequently cease to use or query them.

* Guiding Principles:

- The system must be robust: loss of perhaps up to half of the participating servers should

not imply loss of any documents. In addition, the amount of damage that compromised

or otherwise 'evil' servers can perform should be limited. This might be accomplished

by a trust network, where each node actively maintains an opinion of other nodes, and

nodes inform each other when they change an opinion.

- The system must be simple: complex protocols and heuristics invite security weaknesses.

It must be self-contained and based on realistic technological expectations. For instance,

we cannot rely on a stable international electronic cash infrastructure.

- The system must be modular enough that components can be upgraded in-place without

impacting functionality.

- The system must be decentralized: to maintain efficiency, security, and reliability, no

single server or small subset of the servers should be a bottleneck anywhere in the protocol.

- The system must provide flexibility on a per-server level: server operators should be

able to decide how paranoid or trusting they are, how many resources to provide to the

servnet, etc.

- The components upon which the system relies must be free and open source, in the

sense that modification and redistribution is explicitly permitted.

- The system is content-neutral: popularity or popular opinion of a document should not

influence its duration in the servnet.

We assume that there will be some generous individuals out there who believe in the goals of the

system and will donate some services. Notice that efficiency isn't on the list - we can afford to have

more overhead (both in time and in bandwidth) if we get stronger anonymity out of it.

9

The Free Haven Project Roger Dingledine

1.4 About this document

This paper was written as a joint effort by the members of the Free Haven project, a group of

students led by Roger Dingledine (primary author). The other project members contributing to this

document are Michael Freedman (Sections 3.1, 7.1, 8.1, all of Chapter 6, and part of Appendix B),

David Molnar (Section 3.1 and Appendix B), Brian Sniffen (Sections 3.3, part of 5.8, 7.3, and 8.3),

and Todd Kamin (Section 5.10).

10

The Free Haven Project Roger Dingledine

Chapter 2

Defining Anonymity

Many anonymous publication systems claim 'anonymity' without specifying a precise definition.

Indeed, they often fail to specify what protections users and operators receive from their system,

as well as what protections users and operators do not receive. These protections are a function of

both the actual publication system and the communications channel which it utilizes.

While the anonymity requirements of communications channels have been considered previously

in depth [39] [15], this chapter addresses anonymity at a higher level: the publication systems

themselves.

The current Free Haven project design does not achieve all of the attributes of anonymity that

we might want to provide. This chapter is thus not an enumeration of design goals which Free Haven

meets, but rather an enumeration of design goals for the ideal anonymous publication system.

The following sections start out by describing what a speaker might expect to achieve. We then

list some agents in an anonymous publication system, and address anonymity for each of these

agents separately. We present some intuitive notions of types or degrees of anonymity, as well as

some models of adversaries that help in thinking about how anonymous a system as a whole might

be. Finally, we attempt to assess real-world projects in the face of these new definitions and models.

2.1 Defining Privacy

Privacy is the ability to control dissemination of information about yourself. The level of anonymity

you have in a given scenario is a result of the choices you make about your privacy.

In particular, the speaker may have control in several different dimensions over dissemination of

information about his own speech:

1. Linkability: The speaker controls the ability of readers to link his utterances. If there are

distinguishing characteristics that provide this linkability, these characteristics are called a

11

The Free Haven Project

pseudonym.

2. Replies: The speaker controls whether readers can reply to his utterances. Further parameters

include whether the reply is private, and persistence of the ability to reply (perhaps the ability

to reply expires a week after the publication).

3. Content Leaks: The speaker controls how much partial information about himself is leaked

based on the content of his speech. For instance, the speaker may choose to reveal certain

information such as credentials for being authorized to read the New York Times on the web.

4. Channel Leaks: The speaker controls how much partial information is leaked based on the

communications channel he chooses to use. For example, a satellite TV broadcaster may use

an encrypted communications channel in an attempt to allow only paying customers access

to programming. Alternatively, a speaker may intentionally use an imperfectly anonymous

channel for the sake of efficiency or convenience.

5. Persistence: The speaker controls how long his speech persists after the publication.

6. Readers: The speaker controls which other parties will be able to read his speech.

2.2 Agents and Operations

The above list describes some freedoms which a given speaker may have available to him. A number

of these freedoms have analogs when considered in the context of other parties in the communication.

In general, there are several agents in an anonymous publication system: these include the author,

the reader, and the server. There are a number of operations that the system might support, such as

(at a minimum) inserting a document into the system, and retrieving the document from the system.

We address each of these agents and operations separately, to try to build an intuitive notion about

which acts allow dissemination of information.

2.2.1 Author-anonymity

Author-anonymity means that the original author of a given document should not be known. This

characteristic of anonymity is one of the integral parts of almost any anonymous network or service.

Even so-called 'anonymous remailers', which are simply anonymous forwarders and don't support

persistence or storage of the data, provide author-anonymity. Indeed, anonymous remailers can be

combined with public storage and distribution systems such as Usenet to offer a rudimentary but

very easy to construct and deploy publication service that allows persistently available data and

provides author-anonymity.

12

Roger Dingledine

2.2.2 Publisher-anonymity

While author-anonymity addresses the original author of the document itself, publisher-anonymity

addresses the agent that originally introduces the document into the system. In some cases the

author and the publisher may be the same entity, but in the general case the author may make use

of a separate individual, either a third party or a server in the system, to introduce the document.

Separating these two notions of 'origin' makes it clearer what protections the system provides.

2.2.3 Reader-anonymity

Reader-anonymity means that readers requesting a document should not have to identify themselves

to anyone. In particular, this means that when a reader performs a document request at a given

server, this server is unable to determine the identity or location of the reader.

This class of anonymity is crucial for protecting people from disclosing that they are interested

in or accessing certain types of material. For instance, a user of the system might not want it known

whether she is downloading material from the Democrats' web page, or from the Republicans' web

page. Reader-anonymity ensures the privacy of the vast majority of the system's users, a concern

that is often ignored.

2.2.4 Server-anonymity

Server-anonymity means that the location of the document should not be known or knowable.

Specifically, given a document's name or other identifier, an adversary is no closer to knowing which

server or servers on the network currently possess this document (or shares of it). This restriction

implies that the retrieved documents do not provably pass through any given server that receives a

request. This protection is crucial for materials where mere possession is cause for action against the

server. The most obvious example of such materials is child pornography, but in fact any material

which is the subject of an injunction or criminalized by law needs this kind of protection. Depending

upon jurisdiction, this material runs the gamut from Amnesty International pamphlets to DeCSS

to neo-Nazi propaganda to advertisements for alcohol.

Many services rely on sheer volume of servers, each containing the data, to dissuade organizations

from attacking any given server for possessing the data. However, this approach to constructing a

decentralized service also dissuades large corporations from participating in these networks, due to

liability and reputation concerns. Also, there may be some circumstances, such as the OpenDVD

suits[78], where adversaries are willing to expend the energy to track down all servers which offer a

given document. Indeed, making an example out of even a few high profile server operators can go

a long way towards reducing the availability of a document.

13

The Free Haven Project Roger Dingledine

2.2.5 Document-anonymity

Document-anonymity means that the server does not know the contents of the document that it

is storing or helping to store. This is broken down into two scenarios. Isolated-server document-

anonymity means that if the server is allowed to look only at the data that it is storing, it is unable

to figure out the contents of the document. Generally this is achieved via some sort of secret sharing

mechanism, either sharing the document or sharing the key for recreating the document (or both)

across servers. On the other hand, connected-server document-anonymity means that the server is

allowed to communicate and compare data with all other servers in the system, but is still unable to

determine the contents of the document. Since a connected server may well be able to act as a reader

and do a document request itself, it seems that connected-server document-anonymity is difficult

to achieve without some trusted party acting as intermediary and authenticating and authorizing

readers.

Notice that merely encrypting the document before publishing it into the system is not sufficient

to achieve document-anonymity: we are concerned here not with confidentiality of the published

document, but instead with whether the given server can recreate the bits that were inserted into

the system.

2.2.6 Query-anonymity

Query-anonymity refers to the notion that over the course of a given document query or request, the

'identity' of the document itself is not revealed to the server. In short, this means that although a

server may have many different documents stored, which document was served for a given request is

not knowable by the server. This process of private information retrieval (PIR) is typically done by a

computationally intensive (or bandwidth-intensive) process of downloading lots of other documents

at the same time to mask which document is being retrieved, or perhaps by using lots of servers in the

transaction. Alternatively, the use of massive amounts of resources might be solved by particularly

clever mathematics. For an overview of PIR, we suggest Malkin's thesis [60].

2.3 Linkability: Anonymity vs. Pseudonymity

The above classes of anonymity describe the issues regarding each of the agents or operations in the

system. However, there are some other broader characteristics of anonymity to consider.

Anonymity, when compared to pseudonymity, means that the agent performing the operation has

no observable persistent characteristics. For instance, turning on a radio is a nice way of receiving

information anonymously (modulo Tempest attacks - actually, [28] describes a company which

records which radio station cars on the highway are tuned to. So far, they claim to have surveyed

14

The Free Haven Project Roger Dingledine

The Free Haven Project

over 125 million cars.). Reading the advertisements in the New York Times is another good example,

though again it is not perfect, since it seems conceivable that somebody could track who purchases

a given newspaper and somehow extend this to who reads a given newspaper. In general, broadcast

media are good ways to achieve anonymity. A Usenet feed is a bad example here, because if the user

is not the systems administrator of that node, he can be monitored by the systems administrator; if

he is the systems administrator of that node, then in some sense his upstream provider can 'prove'

that he received the information that he read (even though the upstream provider has no idea which

articles he actually physically read).

Pseudonymity, on the other hand, means there is some characteristic associated with the agent

for that transaction, and this characteristic provides some mechanism for recognizing that other

transactions also involved this party.

Both anonymity and pseudonymity in this context retain the notion of privacy of location.

Location describes the actual physical connection to the communications medium: the speaker is in

some sense physically at his location. Anonymity is in some sense 'more private' than pseudonymity,

because there's less to trace, but having a pseudonym does not necessarily imply that location is

public - the pseudonym could well be a reply block on a mixnet, or even simply a keypair which an

author uses to sign all of his documents.

2.4 Partial Anonymity vs. Full Anonymity

The notion of full anonymity is similar to the use of one-time passwords in encryption: fully anony-

mous speech means that hearing the speech gives a listener no more information about the identity

of the speaker than he had beforehand. In reality, though, every set of candidates is limited in

size, and indeed the adversary often has partial information about the suspect - for instance, 'he or

she has a high-bandwidth Internet connection', or 'he or she probably lives in California based on

activity patterns and routing analysis'.

So in this clearer context, the question shifts from 'is it anonymous?' to 'is it anonymous enough?'

If the original set of suspects has n members, then for sufficiently large n a system which leaks no

information that might reduce the set of suspects seems to be 'anonymous enough'. However, we

have to bear in mind that we may well be trying to protect the identities of all the users of a

given service - that is, even evidence implying that a given user is one of n users of the service

may be sufficient to make him suspicious, thus compromising his anonymity. This may discourage

corporations and persons who are particularly concerned about their reputation from participating

in a given anonymous service, and indeed it may put ordinary users at risk as well.

It is not even as simple as whether a user is inside or outside the 'set of suspects'. Often there is

no clearly delineated set, and for each user no boolean value of 'suspected' or not. A given member

15

Roger Dingledine

The Free Haven Project

of this set might be more suspicious than another member; if the adversary has this knowledge

beforehand, then the system can still be fully anonymous if it does not leak any new information to

confirm or deny that adversary's initial guesses.

2.5 Characteristics of Communication Channels

The speaker has control over whether to publish his speech over a given channel, based on the

characteristics of that particular channel. This means that he might tailor his speech, or choose not

to speak at all, based on how much protection the channel provides and how much anonymity he

desires.

2.5.1 Computational vs. Information-Theoretic Anonymity

One issue to consider is the notion of how protected a given address is: does it rely on computational

complexity to protect its anonymity (e.g., a reply block address on a conventional mixnet), or does

it use some other technique to make the address unknowable even in the face of a computationally

powerful adversary?

There are really two alternatives to computational anonymity. The first alternative is that the

adversary has the transcript of the communication, but is still unable to break its anonymity - this

is what we call information-theoretic anonymity. This might be modeled by a trusted third party

(with trusted channels) acting as moderator, or it might perhaps be implemented in some mechanism

similar to a one-time pad.

The second option is that the adversary is simply unable to obtain a transcript of the commu-

nication, or perhaps the usefulness of the transcript 'expires' quickly enough to be equivalent to no

transcript at all. This might happen in the case of some physical medium which is untappable (per-

haps quantum channels give us some starting point for this), or in the case of an improved mixnet

where a given address no longer maps to or is traceable to its destination after the transaction. This

also implies that there is no mechanism for the adversary to take a snapshot of the entire network

at that point - if he could, then he might be able to go offline with that snapshot and break the

anonymity of the channels.

2.5.2 Perfect Forward Anonymity

Perfect forward secrecy means that after a given transaction is done, there is nothing new that the

adversary can 'get' to help him decrypt the transcript. Similarly, perfect forward anonymity is the

notion that after a given transaction is done, there is nothing new that the adversary can get that

can help him identify the location or identity of either of the communicating parties.

16

Roger Dingledine

In effect, this might be achieved by negotiating a 'session location' (the anonymity analog of

a session key) between the parties for the purposes of that transaction. For instance, this session

location might be a double-blinded virtual location in a high-entropy onion-routed network, where

the transaction takes place effectively instantaneously, and then all records of paths to and from the

virtual location are destroyed.

In this case, a snapshot could in fact be taken of the system at that point, but this falls under

the realm of computational anonymity as described above.

2.6 What does it mean to 'break' an anonymous system?

This question also comes up in the context of encryption: what does it mean to break an encryption

system? Goldreich argues [40] that since we do not know which parts of the plaintext might be

useful to a given adversary or in a given situation, we must protect every aspect of the plaintext.

More precisely, we must preserve the amount of partial information that the adversary may have a

priori about the plaintext (due to a non-uniform distribution, for example); that is, we must prevent

the adversary from determining any new information beyond what he starts with.

It is tempting to claim that even this characterization is insufficient for anonymous systems,

as we describe above regarding Partial Anonymity: even knowing that an individual is among the

group of users may be sufficient to make him suspicious, and thus sufficient to break the anonymity

of the system. On the other hand, even an ideal channel could not prevent this disclosure: if there

is a method of enumerating the users of a service, then it seems that there is no means of preventing

some amount of information from leaking. Similarly, if there is no method of enumerating any users

of the service, then it seems that we have achieved ideal anonymity.

There are issues to bear in mind from the social engineering perspective as well. No matter

how powerful or effective your anonymity protection is, if a user signs his name to his document his

anonymity is broken. Also, more subtle attacks such as word choice correlation or writing analysis

might yield clues that allow better than even chances of guessing. All of the above models could

be based on the assumption that a given document is a random distribution of bits. However, we

might instead assume that there is some amount of a priori information that the adversary can

guess or assume about the document, and as long as our communications don't leak more than this

information, our system is anonymous.

We can picture the ideal anonymous system as a trusted third party (TTP) with secure channels

to each party in the system. This TTP would receive confidential messages, strip off the source

information, and confidentially forward the messages to their destination in an unlinkable fashion.

Therefore, our goal is to come up with a decentralized system that is able to simulate this TTP for

each operation. Equivalently, if Alice is communicating through Ted to Bob, a set of protocols which

17

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

allows Alice to communicate directly to Bob without Ted is said to be anonymous if the transcripts

of communication are indistinguishable from those which include Ted. If they are distinguishable,

then that difference is exactly the 'break' that causes the system to leak privacy.

2.7 Modeling the Adversary

Potential adversaries have a variety of capabilities, and similarly they have a variety of goals.

We break down basic capabilities into active attacks versus passive attacks - whether or not the

adversary has the ability to actively modify or prevent communications. However, it is not just a

matter of whether an adversary has full access to some part of the system or no access: it is more

reasonable to model the adversary as controlling some fraction of the edges in the communications

channel ('edge' adversaries), and some other fraction of the servers in the publication system ('server'

adversaries). This would in turn result in the adversary having some probability of achieving his

goal; this probability increases as percentage control over the system increases.

While some adversaries might be able to monitor or alter the link between two servers, another

class of capability includes the ability to observe or even modify the private state of a mixnet node

or Free Haven server - that is, data which is internal to the server and does not get sent over the

network.

Further still, adversaries have capabilities describing their capacity to perform computation - an

adversary is said to be computationally bounded, or unbounded, as per the normal definitions.

We also need some notion of the time interval over which the adversary may collect information

or modify state. If an adversary has the ability to watch or affect edges or servers over a long period

of time, he may have a larger overall impact on the system than if he only had control for a short

amount of time.

Aside from the capabilities that an adversary might show, there is also the matter of building

a taxonomy of goals that an adversary might hope to achieve. In very broad form, an adversary

attacks either to identify a target or to destroy functionality of the system.

Attacks to identify can be further broken down into attacks to determine the identity of the

target, and attacks to provide proof to a third party of the identity of the target. Such potential

targets include publishers, readers, and servers.

Attacks to destroy include attacks to modify or prevent communications, attacks against the

functionality or owners of servers, and attacks against the integrity of documents themselves.

18

Roger DingledineThe Free Haven Project

2.8 Toward a formal definition of anonymity

Attempting to formalize anonymity can be more subtle than attempting to formalize encryption or

secrecy goals. When assessing the security of a given encryption scheme, there are generally two

parties who might have information: the sender and the receiver. The sender generates some bits,

and sends these bits over some channel to the receiver; there are generally measures in place to

ensure that the bits are not modified in the channel, but the exact characteristics of the channel are

not very important. In our case, however, formalizing the notion of anonymity involves identifying

the characteristics of the communications channel that might leak information about the identity of

either of the parties involved in the transaction.

To put it in more concrete terms, if Alice is running a server at her company, what about the

cached data in the corporate-run intrusion detection system down the hall? Do we model that as

part of Alice, such that so-called 'edge' adversaries do not have access to it? What if one of the

packets in Alice's transmission gets sent off course, and 120 seconds later an ICMP destination

unreachable packet returns to her with its data segment an exact copy of one of the packets that

she sent to Bob? Is 120 seconds negligible? What isn't negligible?

The notion of anonymity becomes complex very quickly as we introduce real-world factors and

considerations such as these. We develop a notion of 'publisher indistinguishability' as the beginning

of a mechanism for assessing the anonymity that a system provides. Informally, the adversary knows

that a document b was published by either party P or party P 1. We say that a system provides

publisher indistinguishability if the adversary has negligible advantage over guessing whether P or

P is the real publisher.

We might alternatively have defined this aspect of anonymity in terms of two documents 'o

and 41 and a single user Alice who is known to be a publisher; the system may have achieved

some different level of anonymity if the adversary has only negligible advantage over guessing in

determining which of (o and (b Alice published.

Clearly this topic has ample room for future research.

19

The Free Haven Project Roger Dingledine

Chapter 3

Related and Alternate Works

There are a wide variety of works related to the topics that we address. In particular, these are

broken down into three sections: works that describe or implement communications channels, works

that describe or implement a publishing system itself, and works that relate to our system of weighing

and maintaining trust between servers.

3.1 Anonymous Channels

1 Several approaches have been proposed to achieve anonymity on an Internet communications

channel. This section describes several real-world projects, which we analyze in terms of anonymity

provided and resistance to various types of attack. We include a more in-depth review of anonymous

communications channels in appendix B, truncated here for length and readability.

3.1.1 Proxy Servers: Anonymizer

Proxy services provide one of the most basic forms of anonymity, inserting a third party between

the sender and recipient of a given message. Proxy services are characterized as having only one

centralized layer of separation between message sender and recipient. The proxy serves as a "trusted

third party," responsible for removing distinguishing information from sender requests.

The Anonymizer was one of the first examples of a form-based web proxy [7]. Users point their

browsers at the Anonymizer page at www. anonymizer .com. Once there, they enter their destination

URL into a form displayed on that page. The Anonymizer then acts as an http proxy for these

users, stripping off all identifying information from http requests and forwarding them on to the

destination URL.

'This section was written by Michael Freedman and David Molnar.

20

The functionality is limited. Only http requests are proxied, and the Anonymizer does not

handle cgi scripts. In addition, unless the user chains several proxies together, he or she may be

vulnerable to an adversary which tries to correlate incoming and outgoing http requests. Only the

data stream is anonymized, not the connection itself. Therefore, the proxy does not prevent traffic

analysis attacks like tracking data as it moves through the network.

Proxies only provide unlinkability between sender and receiver, given that the proxy itself remains

uncompromised. This unlinkability does not have the quality of perfect forward anonymity, as

proxy users often connect from the same IP address. Therefore, any future information used to

gain linkability between sender and receiver (i.e., intersection attacks, traffic analysis) can be used

against previously recorded communications.

Sender and receiver anonymity is lost to an adversary that may monitor incoming traffic to the

proxy. While the actual contents of the message might still be computationally secure via encryption,

the adversary can correlate the message to a sender/receiver agent.

This loss of sender/receiver anonymity plagues all systems which include external clients which

interact through a separate communications channel - that is, we can define some distinct edge of

the channel. If an adversary can monitor this edge link or the first-hop node within the channel,

this observer gains agent-message correlation. Obviously, the ability to monitor this link or node

depends on the adversary's resources and the number of links and nodes which exist. In a proxy

system, this number is small. In a globally-distributed mixnet, this number could be very large.

The adversary's ability also depends on her focus: whether she is observing messages and agents at

random, or if she is monitored specific senders/receivers on purpose.

3.1.2 Mixmaster Remailer

The pursuit of anonymity on the Internet was kicked off by David Chaum in 1981 with a paper in

Communications of the ACM describing a system called a "Mix-net" [20]. This system uses a very

simple technique to provide anonymity: a sender and receiver are linked by a chain of servers called

Mixes. Each Mix in the chain strips off the identifying marks on incoming messages and then sends

the message to the next Mix, based on routing instructions which are encrypted with its public

key. Comparatively simple to understand and implement, this Mix-net (or "mix-net" or "mixnet")

design is used in almost all of today's practical anonymous channels.

Until the rise of proxy-based and TCP/IP-based systems, the most popular form of anonymous

communication was the anonymous remailer: a form of mix which works for e-mail sent over SMTP.

We describe the development of remailer systems in greater depth in appendix B; in short, the

evolution of remailers has led to the Mixmaster Type II remailer, designed by Lance Cottrell [35].

Each Mixmaster remailer has an RSA public key and uses a hybrid symmetric-key encryption

21

Roger DingledineThe Free Haven Project

Roger Dingledine

system. Every message is encrypted with a separate 3DES key for each mix node in a chain between

the sender and receiver; these 3DES keys are in turn encrypted with the public keys of each mix

node. All Mixmaster messages are padded to the same length.

When a message reaches a mix node, it decrypts the header, decrypts the body of the message,

and then places the message in a "message pool." Once enough messages have been placed in

the pool, the node picks a random message to forward. As the underlying next-hop header in the

message has been decrypted, the node knows to which destination to send this message. In this way

a chain of remailers can be built, such that the first remailer in the chain knows the sender, the last

remailer knows the recipient, and the middle remailers know neither.

Remailers also allow for reply blocks. These consist of a series of routing instructions for a chain

of remailers which define a route through the remailer net to an address. Reply blocks allow users to

create and maintain pseudonyms which receive e-mail. By prepending the reply block to a message

and sending the two together to the first remailer in the chain, a message can be sent to a party

without knowing his or her real e-mail address.

3.1.3 Rewebber

Goldberg and Wagner applied Mixes to the task of designing an anonymous publishing network

called Rewebber[38]. Rewebber uses URLs which contain the name of a Rewebber server and a

packet of encrypted information. When typed into a web browser, the URL sends the browser

to the Rewebber server, which decrypts the associated packet to find the address of either another

Rewebber server or a legitimate web site. In this way, web sites can publish content without revealing

their location.

Mapping between intelligible names and Rewebber URLs is performed by a name server called

the Temporary Autonomous Zone (TAZ), named after a novel by Hakim Bey. The point of the

"Temporary" in the name of the nameserver (and the novel) is that static structures are vulnerable

to attack. Continually refreshing the Rewebber URL makes it harder for an adversary to gain

information about the server to which it refers.

3.1.4 Onion Routing

The Onion Routing system designed by Syverson, et. al. creates a mix-net for TCP/IP connections

[95, 77]. In the Onion Routing system, a mixnet packet, or "onion", is created by successively

encrypting a packet with the public keys of several mix servers, or "onion routers."

When a user places a message into the system, an "onion proxy" determines a route through the

anonymous network and onion encrypts the message accordingly. Each onion router which receives

the message peels the topmost layer, as normal, then adds some key seed material to be used to

22

The Free Haven Project

The Free Haven Project Roger Dingledine

generate keys for the anonymous communication. As usual, the changing nature of the onion - the

"peeling" process - stops message coding attacks. Onions are numbered and have expire times, to

stop replay attacks. Onion routers maintain network topology by communicating with neighbors,

using this information to initially build routes when messages are funneled into the system. By this

process, routers also establish shared DES keys for link encryption.

The routing is performed on the application layer of onion proxies, the path between proxies

dependent upon the underlying IP network. Therefore, this type of system is comparable to loose

source routing.

Onion Routing is mainly used for sender-anonymous communications with non-anonymous re-

ceivers. Users may wish to Web browse, send email, or use applications such as riogin. In most

of these real-time applications, the user supplies the destination hostname/port or IP address/port.

Therefore, this system only provides receiver-anonymity from a third-party, not from the sender.

Furthermore, Onion Routing makes no attempt to stop timing attacks using traffic analysis at

the network endpoints. They assume that the routing infrastructure is uniformly busy, thus making

passive intra-network timing difficult. However, the network might not be statistically uniformly

busy, and attackers can tell if two parties are communicating via increased traffic at their respective

endpoints. This endpoint-linkable timing attack remains a difficulty for all low-latency networks.

3.1.5 ZKS Freedom

Recently, the Canadian company Zero Knowledge Systems has begun the process of building the

first mix-net operated for profit, known as Freedom [102]. They have deployed two major systems,

one for e-mail and another for TCP/IP. The e-mail system is broadly similar to Mixmaster, and the

TCP/IP system similar to Onion Routing.

ZKS's "Freedom 1.0" application is designed to allow users to use a nym to anonymously access

web pages, use IRC, etc. The anonymity comes from two aspects: first of all, ZKS maintains what

it calls the Freedom Network, which is a series of nodes which route traffic amongst themselves

in order to hide the origin and destination of packets, using the normal layered encryption mixnet

mechanism. All packets are of the same size. The second aspect of anonymity comes from the fact

that clients purchase "tokens" from ZKS, and exchange these token for nyms - supposedly even ZKS

isn't able to correlate identities with their use of their nyms.

The Freedom Network looks like it does a good job of actually demonstrating an anonymous

mixnet that functions in real-time. The system differs from Onion Routing in several ways.

First of all, the system maintains Network Information Query and Status Servers, which are

databases which provide network topology, status, and ratings information. Nodes also query the key

servers every hour to maintain fresh public keys for other nodes, then undergo authenticated Diffie-

23

Hellman key exchange to allow link encryption. This system differs from online inter-node querying

that occurs with Onion Routing. Combined with centralized nym servers, time synchronization, and

key update/query servers, the Freedom Network is not fully decentralized [37].

Second, the system does not assume uniform traffic distribution, but instead uses a basic "heart-

beat" function that limits the amount of inter-node communication. Link padding, cover traffic, and

a more robust traffic-shaping algorithm have been planned and discussed, but are currently disabled

due to engineering difficulty and load on the servers. ZKS recognizes that statistical traffic analysis

is possible [91].

Third, Freedom loses anonymity for the primary reason that it is a commercial network operated

for profit. Users must purchase the nyms used in pseudonymous communications. Purchasing is

performed out-of-band via an online Web store, through credit-card or cash payments. ZKS uses a

protocol of issuing serial numbers, which are reclaimed for nym tokens, which in turn are used to

anonymously purchase nyms. However, this system relies on "trusted third party" security: the user

must trust that ZKS is not logging IP information or recording serial-token exchanges that would

allow them to correlate nyms to users [89].

3.1.6 Web Mixes

Another more recent effort to apply a Mix network to web browsing is due to Federrath et. al.[16]

who call their system, appropriately enough, "Web Mixes." From Chaum's mix model, similar

to other real-time systems, they use: layered public-key encryption, prevention of replay, constant

message length within a certain time period, and reordering outgoing messages.

The Web Mixes system incorporates several new concepts. First, they use an adaptive "chop-

and-slice" algorithm that adjusts the length used for all messages between time periods according

to the amount of network traffic. Second, dummy messages are sent from user clients as long as

the clients are connected to the Mix network. This cover traffic makes it harder for an adversary

to perform traffic analysis and determine when a user sends an anonymous message, although the

adversary can still tell when a client is connected to the mixnet. Third, Web Mixes attempt to

restrict insider and outsider flooding attacks by limited either available bandwidth or the number

of used time slices for each user. To do this, users are issued a set number of blind signature tickets

for each time slice, which are spent to send anonymous messages. Lastly, this effort includes an

attempt to build a statistical model which characterizes the knowledge of an adversary attempting

to perform traffic analysis.

24

The Free Haven Project Roger Dingledine

3.1.7 Crowds

The Crowds system was proposed and implemented by Michael Reiter and Avi Rubin at T&T

Research, and named for collections of users that are used to achieve partial anonymity for Web

browsing [85]. A user initially joins some crowd and her system begins acting as a node, or anonymous

jondo, within that crowd. In order to instantiate communications, the user creates some path

through the crowd by a random-walk of jondos, in which each jondo has some small probability

of sending the actual http request to the end server. A symmetric key is shared amongst these

path jondos to ensure link-encryption within a crowd. Once established, this path remains static

as long as the user remains a member of that crowd. The Crowds system does not use dynamic

path creation so that colluding crowd eavesdroppers are not able to probabilistically determine the

initiator (i.e., the actual sender) of requests, given repeated requests through a crowd. The jondos

in a given path also share a secret path key, such that local listeners, not part of the path, only

see an encrypted end server address until the request is finally sent off. The Crowds system also

includes some optimizations to handle timing attacks against repeated requests, as certain HTML

tags cause browsers to automatically issue re-requests.

Similar to other real-time anonymous communication channels (Onion Routing, the Freedom Net-

work, Web Mixes), Crowds is used for senders to communicate with a known destination. The system

attempts to achieve sender-anonymity from the receiver and a third-party adversary. Receiver-

anonymity is only meant to be protected from adversaries, not from the sender herself.

The Crowds system serves primarily to achieve sender and receiver anonymity from an attacker,

not provide unlinkability between the two agents. Due to high availibility of data - real-time access is

faster that mix-nets as Crowds does not use public key encryption - an adversary can more easily use

traffic analysis or timing attacks. However, Crowds differs from all other systems we have discussed,

as users are members of the communications channel, rather than merely communicating through it.

Sender-anonymity is still lost to a local eavesdropper that can observe all communications to and

from a node. However, other colluding jondos along the sender's path - even the first-hop - cannot

expose the sender as originated the message. Reiter and Rubin show that as the number of crowd

members goes to infinity, the probable innocence of the last-hop being the sender approaches one.

3.2 Publication Services

There are a number of projects and papers which discuss anonymous publication services. We start

this section by providing an overview of some of the related projects and papers. After this overview,

we examine in detail the amount of anonymity and privacy protection that each project offers.

25

The Free Haven Project Roger Dingledine

3.2.1 The Eternity Service

Ross Anderson's paper[cite] on the Eternity Service [5] is the motivation for this entire project. It

includes a wonderful vision of how the world might work in the future, in terms of data havens

and distributed decentralized data storage. The overall goal is to build a system that provides

highly available data: as Anderson phrases, it "[t]he basic idea is to use redundancy and scattering

techniques to replicate data across a large set of machines (such as the Internet), and add anonymity

mechanisms to drive up the cost of selective service denial attacks."

A publisher would upload a document and some digital cash, along with a requested file duration

(cost would be based on document size and desired duration). In the simple design, a publisher would

upload the document to 100 servers, and remember ten of these servers for the purposes of auditing

their performance. Because he does not record most of the servers to whom he submitted the file,

there is no way to identify which of the participating eternity servers are storing his file. Document

queries are done via broadcast, and document delivery is achieved through one-way anonymous

remailers.

On the other hand, it relies on a stable digital cash scheme, which is certainly not available

today. Further, it has a strong correlation between ability to store data into the system and amount

of real-world capital available. While our proposal does have a loose correlation between available

resources and amount of influence over the servnet, the correlation is not nearly as direct.

There are also a number of contradictions and other issues which are not addressed in his brief

paper: for instance, if documents are submitted anonymously but publishers are expected to remem-

ber a random sample of servers so they can audit them, what do they do when they find that some

server is cheating? Since publishers are anonymous, it would seem that they have no power at all.

Anderson passes this responsibility on to the digital cash itself, so servers do not receive payment

if they stop providing the associated service. He does not elaborate on the possible implications of

this increased accountability to the anonymity of the authors.

Another problem is that there is no consideration at all to maintaining a dynamic list of available

servers and allowing servers to smoothly join and leave.

He proposes that a directory of files in the system should itself be a file in the system. However,

without a mechanism for updating or revising files, this would appear very difficult to achieve.

3.2.2 The . cz implementation

A team of students at Charles University in Czechoslovakia decided to implement their version [13]

of Anderson's idea. They use a mixnet and made overall reasonable design decisions. Tonda Bene

wrote his PhD thesis [14] on this design, and provided many more concrete explanations of the

details that Anderson skips over in his original paper. However, there are a number of issues that

26

The Free Haven Project Roger Dingledine

The Free Haven Project

we have with their implementation:

" They implement everything they need by themselves. They do not exist in a vacuum - for

example, the world already has 'good enough' loose time synchronization applications such as

xntpd, so there is no need to implement a new API and designs. This leads to code bloat and

too many layers of abstraction, which makes verifying security very difficult.

" Almost all of their files are binary. It would be easier to examine or modify their configuration

files if they were in a human-readable and human-writable format.

" BSD-limited. Their code is not ported to Linux yet, much less other platforms. First of all,

the port is probably difficult if they have not yet successfully ported it to another platform.

Secondly, a well-designed system (whether in perl, C, or Java) should be extremely portable

already - this does not bode well.

" A centralized (single or few) trusted bank system is assumed.

3.2.3 Eternity Usenet

Adam Back proposed [9] a simpler implementation of the Eternity Service, using the existing Usenet

infrastructure to distribute the posted files all around the world. This is an excellent idea, but on the

other hand this limits the participating servers to systems which already host Usenet news. Further,

news administrators much specifically choose to participate in this variant of the eternity service,

and so they may well choose not to carry the 'alt' groups that comprise the service.

Eternity Usenet uses normal Usenet mechanisms for retrieval, posting, and expiring, so publishers

may not have control over the expiration time or propagation rate of their document.

To achieve anonymity in publishing, Eternity Usenet employs cypherpunks type I and type II

(mixmaster) remailers as gateways from email to newsgroups. Publishers PGP-sign documents which

they wish to publish into the system: these documents are formatted in html, and readers make

http search or query requests to 'Eternity Servers' which map these requests into NNTP commands

either to a remote news server or a local news spool. With the initial implementation, the default list

of newsgroups to read consists only of alt anonymous. messages. The Eternity Server effectively

provides an interface to a virtual web filesystem which posters populate via Usenet posts.

Back treats Usenet as an append-only file system. His system provides support for replacing

files (virtual addresses) because newer posts signed with the same PGP key are assumed to be from

the same publisher. Addresses are claimed on a first-come first-served basis, and PGP signatures

provide linkability between an initial file at a given address and a revision of that file. However, he

does not appear to provide an explanation of conflict resolution that might arise from two addresses

being claimed at the same time - since Usenet posts may arrive out of order, it would seem that

27

Roger Dingledine

there might be some subtle attacks against file coherency if two different Eternity Servers have a

different notion of who owns a file.

Also, while the system is not directly 'censorable' as we usually consider it, the term 'eternity'

is misleading. Usenet posts expire based on age and size. Back does not provide an analysis of how

long a given document will survive in the network. The task of making a feasible distributed store

of Eternity documents is left as a future work.

Four public-access Eternity Servers are listed at the end of the article; none of these servers is

still available. This indicates that active work on Eternity Usenet is not ingoing.

3.2.4 Napster

The Napster service[70] is a company based around connecting people who are offering MP3 files to

people who want to download them. While they provide no real anonymity and disclaim all legal

liability, a very important thing to note about the Napster service is that it is highly successful.

Thousands of people use Napster daily to exchange music; if there were greater security (and com-

parable ease of use), we suspect that many thousands more would participate. The existence of

Napster presents a very clear argument that the Internet community wants a service like this, at

least for music.

3.2.5 Gnutella

Gnutella[33] is a peer-to-peer Napster clone. It was developed by a subsidiary company of AOL, and

once it went public it was immediately shut down by AOL (presumably since AOL has interests in

not disrupting the music and movie industries). Development is proceeding via a widely scattered

group of open-source contributors. Gnutella depends on the "Small Worlds" model to maintain a

connected network; see Subsection 8.1.5 for a more detailed description and analysis of this idea.

According to the new developers' web site:

Gnutella puts a stop to all those shenanigans. When you send a query to the Gnutel-

laNet, there is not much in it that can link that query to you. I'm not saying it's totally

impossible to figure out who's searching for what, but it's pretty unlikely, and each time

your query is passed, the possibility of discovering who originated that query is reduced

exponentially. More on that in the next section.

In short, there is no safer way to search without being watched.

A big however, however. To speed things up, downloads are not anonymous. Well,

we have to make compromises. But again, nobody's keeping logs, and nobody's trying

to profile you.

28

The Free Haven Project Roger Dingledine

There is a strong contradiction between their bold statement about perfection and their warnings

that users concerned about maintaining anonymity really should avoid using the system. Behind

the media hype, it is clear there are a number of aspects of their protocol [51] that help to reveal

identities of users.

The header of a Gnutella packet contains a number of fields. Two of these fields are the 'TTL'

(time to live: the number of additional hops after which the packet should be dropped) and 'Hops

taken' (the number of hops this packet has made since its creation). The TTL is started at some

default value based on the expected size of the network, and the Hops value is effectively an inverse

of the TTL during the travel of the packet. Because the Hops value is 1 when the packet is initially

sent, it is clear when a given server is generating a query (assuming it is playing by the protocol,

which for the vast majority of users is a reasonable assumption). Even if there were no Hops value,

the fact that the TTL itself has a default value for most client programs is sufficient to make a server

originating a request distinguishable from another server in the system, in the mathematical sense

presented in Chapter 2.

Further, the Gnutella network is not so well distributed as they might lead users to believe. While

the protocol is designed for a user to set up connections with his 'friends', there is no infrastructure in

place for easily building such a set of friends. Instead, the Gnutella site offers a 'default' set of friends

with which users can start. Most users will never change this file if the service is functional. This

means that the actual network is built not as a flat network but rather as a hierarchical system,

as shown in their pictures of the Gnutella network topology [92]. There are a small number of

central nodes which would be ideal targets for government agencies or other organizations collecting

information about users.

If the TTL and Hops fields aren't enough to reveal identities, it turns out that only the queries

have any semblance of anonymity protection. The actual downloads are done by point-to-point

connections, meaning that the IP addresses of server and reader are both revealed to each other.

This is done for reasons of efficiency.

Sites such as the Gnutella Wall of Shame[25], which attempts to entrap child pornographers

using the Gnutella service, show that the direct file-transfer portion of the Gnutella service has been

demonstrated to not adequately protect the anonymity of servers or readers.

Gnutella is not designed to be an anonymous communications or publication network. Gnutella is

a network designed to provide availability for data from one user to the next, and it does a relatively

good job of this.

29

The Free Haven Project Roger Dingledine

The Free Haven Project

3.2.6 Freenet

The Freenet project [24] is one of the most popular related works. Like Gnutella, Freenet proposes

an interconnected network of nodes, each acting as both client and server. When a user wishes to

request a document, she hashes the name of that document (where she gets this name is outside

the scope of Freenet) and then queries her own server about the location. If her server does not

have it, it passes the query on to a nearby server which is 'more likely' to have it. Freenet clusters

documents with similar hashes nearby each other, and uses a complex routing protocol to route

queries 'downhill' until they arrive at the desired document.

Freenet is similar to Gnutella in that its main purpose is to provide highly available data to its

users. There are also a number of differences between Freenet and Gnutella. First of all, Freenet

caches data near requestors. Specifically, when a request is answered over a given path, all servers

along that path cache that document. This means that future queries for that document will be

answered very quickly, assuming the copies of that document haven't expired from the nearby caches.

This introduces another important feature: persistence of data. Because nodes cache documents as

they are requested, the documents do not disappear from the system when the server offering those

documents disappears. This is a key improvement over Napster and Gnutella.

Freenet bases document lifetime on the popularity of the document: frequently requested files

get duplicated around the system, whereas infrequently requested files live in only a few places or

die out completely. While this is a valid choice for a system that emphasizes availability, it precludes

certain uses of the system. For instance, I can see circumstances where a file has a 12 month lifetime

but only becomes popular in the last few months of its lifetime. Examples include photos of JFK

Jr. saluting his father, or a (timestamped) Idaho phone book that has those ten extra names that

the FBI might one day be accused of 'erasing'. Indeed, this is already happening - [76] describes a

case where Yugoslav phone books are being collected "to document residency for the close to one

million people forced to evacuate Kosovo."

Freenet takes some steps to increase anonymity. Their goals include both sender and reader

anonymity, as well as plausible deniability for servers - the notion that a server does not know

the contents of documents it is storing. They provide this last, which we clarify as isolated-server

document-anonymity (as opposed to connected-server), by referencing and storing files as H(name)

and having users encrypt the documents themselves with name before inserting them. This means

that anybody who knows the original name string can decrypt the document, but the server storing

the document is unable to invert H(name) to determine name.

However, they have the same flaw with publisher- and reader-anonymity that Gnutella does, due

to the presence of the TTL and Depth (comparable to Hops) fields in the Freenet message headers.

Because the document requests are also sent through the network (rather than peer-to-peer as they

30

Roger Dingledine

The Free Haven Project

are in Gnutella), there's room for a little bit more anonymity than Gnutella provides. However, nodes

nearby a reader still have a greater than even chance of being able to identify that reader. Further,

statistical attacks similar to those described in the Crowds [85] paper might work to pinpoint the

location of a given reader or publisher; however, the caching does provide some protection against

this since the network topology for a given document changes dramatically after each request. This

needs to be analyzed further.

Another attack to consider is that simply doing a request from a strict political environment will

cause a copy of the data to migrate into that jurisdiction, giving law enforcement more reason to

shut those servers down. On the other hand, it may well be that such environments will close down

servers without requiring 'sufficient cause', so the political and legal arguments are meaningless.

It might even be that a less anonymous system is more likely to be accepted in more parts of the

world. This will have to be explored simply by trying it. However, because Freenet provides weaker

anonymity than Free Haven, it is currently unsuitable for use by those who are truly concerned

about maintaining their privacy, such as political dissidents or other whistleblowers. (See Chapter

4 for more details about these issues.)

3.2.7 Graduated Mirroring

The 'Graduated Mirroring' proposal [87] was introduced by Ron Rivest in response to our initial

proposals about a buddy system and other accountability measures that greatly increase the com-

plexity of the system. In short, this idea involves a group of servers, each controlled by a person

called the 'manager', which all sign up to receive documents published to the service. Each published

document arrives at each server; the manager manually peruses the document and decides how im-

portant or valuable he believes it to be. Based on this evaluation, he chooses how many shares of the

document to store. For each share, he basically chooses a random share number and generates that

share via some information dispersal algorithm - this share generation is implemented by evaluating

a polynomial which describes the overall document at a number of random values.

Server managers can modify their support for a given document. If they want to support the

document less, they simply throw out some of their shares. If they want to support the document

more, they retrieve the document and generate some new shares.

When a document no longer has enough support for readers to be able to reconstruct it, that

document has effectively expired; server managers still holding information about that document

may then decide to throw away whatever they have about the document - this effectively replaces

the notion of a publisher-chosen expiration date with a much simpler notion of server-popularity.

This notion of popularity is similar to the notion that Freenet uses, but the duration of a document

is based on how much the servers like the document rather than on how much the readers like the

31

Roger Dingledine

The Free Haven Project

document.

While this system has some excellent features, including simplicity first and foremost, we have a

number of issues with it. The first issue is that it is not what we want to build: the fact that only

popular data would get mirrored is counter to our design goal of content-neutrality. We believe that

it does not capture the essence of what we want from a data haven.

Indeed, it also goes against our basic assumptions about computing: we have a lot of hardware,

and very few people. This trend will get more pronounced as time goes on. Having a person hand-

sort and consider each item really cuts down on the number of people who would be willing to host

a server. Overall, we believe that paving the way for an automated robust data haven based on

privacy of publisher and data is going to have more of an effect in the long run.

3.2.8 Intermemory

The Intermemory Project [36] [22] is an initiative at NEC Research aimed at producing an archival

system which makes use of spare space on the Internet. The goal is high availability and high

persistence of information. Intermemory uses information dispersal to mitigate the consequences of

server failure, and spends much time addressing systems issues such as synchronization of information

between many different servers.

Servers join Intermemory and donate a certain amount of space temporarily in return for the

right to store some small fraction of that space in the system forever. The "economic" viability

of the Intermemory design depends on the assumption that tomorrow's storage will be cheap and

plentiful enough to meet the obligations incurred today.

At present, Intermemory exists as a prototype implementation within NEC. The public papers on

Intermemory do not even address security, much less anonymity, and it is not clear how the system

reacts in the presence of malicious adversaries. We therefore do not formally compare Intermemory

to the other systems listed here. Instead, we mention it as an example of a publication and archival

system which is designed without the severe constraints necessary to ensure anonymity.

3.2.9 Publius

Publius attacks the problem of anonymous publishing from a different angle. Rather than trying

to come up with a routing protocol like Gnutella and Freenet, Publius simply employs some one-

way anonymous channel to transfer documents from publishers to servers. The Publius protocol is

designed to maintain availability of documents on these servers.

In this system, a publisher generates a key K for her document, and encrypts the document

with this key. She performs Shamir's secret-sharing algorithm to build a set of n key shares, any k

of which is sufficient to reconstruct K. From there, she chooses some n of the Publius servers and

32

Roger Dingledine

The Free Haven Project Roger Dingledine

anonymously delivers the encrypted message plus one share to each of these n servers.

In this way, the document is replicated over each server, but the key is split over the n servers.

Document reading is implemented by running a local web proxy on the reader's machine; the n

addresses chosen as servers are concatenated into a URL which is presumably published or otherwise

remembered. (Publius provides no description of how a directory service might be built, or any other

mechanism for remembering URLs after documents are inserted.)

The URL used to retrieve the document specifies all n servers at which the document was stored.

This means that to retrieve a given document, the local proxy fetches each document independently,

reconstructs the original key K, and then decrypts the document.

The Publius system provides strong publisher-anonymity, because a one-way channel is sufficient

for communications to the servers. In addition, because a cryptographically strong secret-sharing

protocol is used and each server only receives one share, Publius provides both computational and

also information-theoretic isolated-server document-anonymity: a given server is not able to deter-

mine anything about a document that it is helping to store.

On the other hand, there are a number of limitations beyond those the authors of the paper

enumerate. For instance, the entire scheme is based on a static, system-wide list of available servers.

Since these servers are permanent, there is no support for adding new servers or purging dead ones.

Perhaps more importantly, however, there is no support for recognizing misbehaving servers and

removing from them the list of available servers.

Another point is that readers cannot determine if a share is corrupt simply by examining it: the

reader must request all of the shares and attempt to reconstruct in order to determine the integrity

of a share. Providing a mechanism for self-evident share integrity checking might provide significant

robustness to the system.

Publius is by far the strongest related work in terms of our notions of anonymity. The paper is

very well-written and goes into considerable detail on various attacks and counters to those attacks.

3.2.10 An analysis of anonymity

Many of these related works offer their own variant of 'anonymity' for some of the agents in the

system. In this section, we analyze this anonymity that each work provides in the context of the

definitions and formalizations proposed in Chapter 2.

This first table provides an overview of the protections for each of the broad categories of

anonymity against computationally-limited adversaries. Informally, for polynomially-bounded ad-

versaries who have passive access to some of the edges between agents, a /on this table indicates

that the adversary has less than a polynomial + . chance of correctly guessing the identity of one2

of the individuals involved in any given transaction.

33

The Free Haven Project Roger Dingledine

The Free Haven Project

Project Publisher Reader Server Document Query
Gnutella
FreeNet

Eternity Usenet
Publius

Free Haven

Table 3.1: Overview: Computational Anonymity

Gnutella fails to provide publisher-anonymity, reader-anonymity, or server-anonymity because of

the peer-to-peer connections for actual file transfer. Because Gnutella servers start out knowing the

intended contents of the document they are offering, they also fail to provide document-anonymity.

Freenet achieves document-anonymity because servers are not unable to reverse the hash of

the document name to determine the key with which to decrypt the document. However server-

anonymity is not provided because given a document, it is very easy to locate a server that is carrying

that document - querying any server at all will result in that server carrying the document! Because

of the TTL and Hops fields for both reading and publishing, Freenet also fails to achieve publisher-

or reader-anonymity.

Eternity Usenet provides publisher anonymity via the use of one-way anonymous remailers.

Reader anonymity is not protected, and it is clear that a Usenet service that offers Eternity files

is carrying the Eternity feed. Because each downstream host gets its only entire copy of the feed,

there is no document-anonymity in Eternity Usenet.

Publius achieves document-anonymity because the key is split between the n servers, and without

sufficient shares of the key a server is unable to decrypt the document that is stores. Because

documents are published to Publius through a one-way anonymous remailer, it provides publisher-

anonymity. However, it provides no support for protecting readers, and the servers containing a

given file are clearly marked in the URL used for retrieving that file.

Free Haven achieves publisher-anonymity via an anonymous remailer channel. Similarly, reader-

anonymity is provided because the responses are directed through a mixnet to a temporary address

that the reader provides. Server anonymity is maintained because document requests are performed

via broadcast, and the results arrive out of a one-way channel. Free Haven achieves document-

anonymity because the document itself is split; assuming a wide enough dispersal of documents, a

given server will never see enough shares of a document to be able to reconstruct it. Certainly a

server that is not actively trying to rebuild a document (for instance, by doing a request for the

other shares) will not have the document available, since it is broken into shares before publication.

This second table provides a more detailed view of the different publishing systems which we

examined. There are a number of interesting points that become clearer once we increase the

resolution of the table.

34

Roger Dingledine

Project Publisher Reader Server Document Query
C I-T P-F C I-T P-F C I-T P-F C I-T C I-T

Gnutella
FreeNet

Eternity Usenet /
Publius / / (/

Free Haven / /
FH + ideal mix / /

Table 3.2: Anonymity Properties of Publishing Systems

First of all, we see that the secret sharing algorithm which Publius uses provides a stronger form

of document-anonymity, since an isolated server really can learn nothing at all about the contents of

a document that it is helping to store. Secondly, we see that those systems which provide publisher

anonymity tend to provide a very strong form of it - namely, computational, information-theoretic,

and also perfect-forward publisher anonymity. This is because the publishers can make use of one-

way communications channels, effectively removing any linkability; removing the need for a reply

pseudonym on the mixnet means that there is 'nothing to crack'. Thirdly, we note that Free Haven

achieves perfect-forward reader anonymity: this is because readers make up a new pseudonym for

every document request, so there is no linkability.

The most important line by far in this table is the last line, though. The fact that it implies that

Free Haven is part of the reason it achieves this much anonymity is slightly misleading: it really is

the ideal mix which is providing the first nine aspects of anonymity. Assuming a robust ideal mix

network like that described in Chapter 2, there would be no linkability between transactions, and

mere computational ability on the part of the adversary would be insufficient to identify the parties

in a transaction.

This would mean that we could in fact relegate most of the anonymity to the communications

channel itself, and provide a simple back-end file system or equivalent service to transfer documents

between agents. Thus the design of the back-end system could be based primarily on addressing

other issues such as availability of documents, protections against flooding and denial of service

attacks, and accountability in the face of this enforced anonymity.

Unfortunately, the design and deployment of such an ideal mix network is a very challenging

task, and one for our future works chapter. Until then, we focus on providing increased anonymity

with a combination of more conventional mix networks and a publication system tailored for the

mixnet.

35

The Free Haven Project Roger Dingledine

The Free Haven Project

3.3 Trust Systems

3.3.1 PGP Key Servers

2 Pretty Good Privacy is a general-use public-key cryptography tool. It provides for encrypted and

signed communication. Users exchange their public keys by means of widely-publicized servers:

Public Key Servers exist for the purpose of making your public key available in a

common database where everybody can have access to it for the purpose of encrypting

messages to you. While a number of key servers exist, it is only necessary to send your

key to one of them. The key server will take care of the job of sending your key to all

other known servers.[81]

Each public key on the key servers is signed by people who can verify, by some means, that the

person whose name is attached to a key actually controls the associated secret key.

Users who download a public key from the servers set two parameters within their own installation

of PGP:

" Confidence that this key represents the user whose name is attached.

* Confidence that this person exercises good judgment in signing other people's keys.

By means of these two values, a network of trust is established. PGP serves as an effective means

of communication, and has established a good infrastructure for safely exchanging keys. It fails due

to user interface problems: most notably, each key to be accepted as an introducer requires informed

attention on the part of the user. As a result, it has not become widespread enough to be generally

useful.

3.3.2 Netscape Certificate Authorities

Many commercial web sites wish to ensure that visitors can communicate with them securely. Some

also want to strongly verify the identities of their visitors. Certificate Authorities (CAs) exist in a

multi-rooted hierarchy. A handful of top-level authorities certify most commercial sites; such sites

are then able to establish session keys with their users. Some such sites issue personal certificates

to their users.

The flaw here is that users are locked into trusting the established CAs. A user can't decide that

he trusts his friends to certify things, but not VeriSign.

36

2 This section was written by Brian Sniffen.

Roger Dingledine

The Free Haven Project

3.3.3 AOL Instant Messenger

AIM[8] is a popular messaging client. In order to avoid harassment, users are allowed to file a

complaint about those who have sent them messages. Users who accumulate a certain number of

complaints per unit time are automatically disconnected from the service. The problem here is that

every AIM user is therefore trusting every other AIM user to act as a censor. AIM has had numerous

problems with this complaint feature being used to deny service to various targets.

3.3.4 Internet Relay Chat

The IRC network establishes trust based on a very simple model: IP addresses. A common technique

among crackers on IRC is to flood the host of a victim, temporarily knocking him off the network.

While the victim is thus distracted, the cracker spoofs packets from the victim to an IRC server,

giving privileges to himself and removing them from the victim. When the victim returns to the

network, he is now unprivileged, and is subject to further attacks by the now-privileged cracker.

Clearly, non-cryptographic trust models are not useful against modern adversaries.

3.3.5 Mobile Agents for Network Trust

MANET[50] is a DARPA project to produce "a compromise-tolerant structure for information gath-

ering." The motivation is to create a system whereby untrusted networks can cooperate to fight

against "mobile adversaries": adversaries who move from one network to another. The MANET

project attempts to avoid the problem of corrupted servers by requiring several servers to weigh in

on a subject with direct evidence before action is taken. This approach is, even in the eyes of the

MANET authors, somewhat naive. MANET relies on correct execution of mobile code

3.3.6 Publius

The Publius system[100] has an implicit trust model entirely divorced from reality: there is a static

set of servers, all of which are widely and publicly known. Documents are staticly stored on several

of these servers, having been split using Shamir's Secret Sharing Algorithm. If one of these servers

is corrupted, it is assumed it will be replaced.

It is possible to turn Publius into an informal but workable system with a very small amount of

work: if the servers are all publicly known, then an informal trust network can be put into place.

Create a discussion forum, called perhaps alt. anonymous. publius. Sites which wish to become

servers advertise here; if users discover that a server has been corrupted, they can denounce it in

that forum. Of course, this system provides no formality or assurances whatsoever.

37

Roger Dingledine

Chapter 4

Applications, Legalities, and Ethics

4.1 Introduction and Assumptions

In the world of academics, it is very common to develop new and interesting technologies without

regard for the moral and ethical implications of these technologies. Indeed, it is very common for

physicists or theoreticians to spend months on a given problem without even considering applications

of their solution - it is their job to solve the problem, and somebody else's job to come up with ways

of making the answer useful in a wider context. In the case of Free Haven, it is vitally important

that we consider its uses and applications before deploying the service. There are a number of

other projects developing networks similar to Free Haven, but these related works do not offer the

same levels of anonymity as Free Haven. It is precisely this lack of accountability that makes Free

Haven so powerful and so useful, but at the same time this lack of accountability makes Free Haven

potentially very dangerous. There will be no way of policing the content on the network, nor will

there be any way of shutting down the service (or even reliably detecting if it's still deployed!). In

this context, we have to consider and compare uses which we consider legitimate, as well as uses

which we consider illegitimate.

Before we start enumerating case studies and examples, however, we must make explicit our

underlying assumption and belief: the rights and liberties of the individual are the fundamental

building blocks of society. As Jefferson described, "governments are instituted among men, deriving

their just powers from the consent of the governed." [49] Indeed, as Kropotkin might argue, freedom

involves both 'freedom from' and 'freedom to'. " 'Freedom from' signifies not being subject to dom-

ination, exploitation, coercive authority, repression, or other forms of degradation and humiliation.

'Freedom to' means being able to develop and express one's abilities, talents, and potentials to the

fullest possible extent compatible with the maximum freedom of others." [44] Supporting and main-

taining freedoms for the individual, including self-management, responsibility, and independence, is

38

one of the most important causes we can hope to undertake.

4.2 Anonymous speech

No long string of citations is necessary to find that the public interest weighs in favor
of having access to a free flow of constitutionally protected speech.

- Reno, 929 F. Supp. at 851.

4.2.1 Overview

Anonymous speech has been a hotly disputed topic in the United States since the very creation

of our government. The Federalist Papers, published during the original constitutional debates,

were published anonymously[75]. Thomas Paine wrote his famous pamphlet[79] entitled "Common

Sense" under a pseudonym. Indeed, "[a]nonymous pamphlets, leaflets, brochures and even books

have played an important role in the progress of mankind.... Persecuted groups and sects from

time to time throughout history have been able to criticize oppressive practices and laws either

anonymously or not at all." [96]

One of the features of the Free Haven project is that it provides a tool that enables individuals

around the world to engage in anonymous speech. By publishing a document on the Free Haven ser-

vice, anyone can offer political or other speech on the internet without providing any accountability

as to source or authorship. The following examples of case law in the United States explore some of

the issues integral to anonymous speech.

4.2.2 A Case Study: ACLU of Georgia v. Miller

On September 24, 1996, the American Civil Liberties Union filed a lawsuit on behalf of 14 plain-

tiffs, including the AIDS Survival Project, the Atlanta Freethought Society, and Atlanta Veterans

Alliance, against the state of Georgia based on Act No. 1029 (Ga. Laws 1996, p. 1505), a law which

effectively outlaws anonymity on the Internet. In particular, one of the aspects of this law made it

illegal "knowingly to transmit any data through a computer network ... for the purpose of setting

up, maintaining, operating, or exchanging data with an electronic mailbox, home page, or any other

electronic information storage bank or point of access to electronic information if such data uses any

individual name ... to falsely identify the person."

The original intent of this act was to prevent online fraud. Decreased fraud would make the

internet and other online resources (such as AOL or local bulletin board systems) safer and more

convenient for individuals and businesses. However, the court found that the law was far too vague

and broad in its scope, covering transmissions which were not deceiving or fraudulent and in fact

had no intention of being either ("intent to defraud" and "intent to deceive" appear nowhere in the

39

The Free Haven Project Roger Dingledine

The Free Haven Project

act). The defendants said that it was also designed against misappropriation of another's identity,

but this too was not specified in the act at all. The above omissions do not occur in other Georgia

legislation meant for purposes of criminalizing fraud1 .

In short, the court found that the wording of the law did not at all match the intent of the law.

"The act prohibits such protected speech as the use of false identification to avoid social ostracism,

to prevent discrimination and harassment, and to protect privacy... it operates unconstitutionally for

a substantial category of the speakers it covers." [4] Indeed, what this act did criminalize was shown

to be ambiguous - criminal statutes must "define the criminal offense with sufficient definiteness

that ordinary people can understand what conduct is prohibited and in a manner that does not

encourage arbitrary and discriminatory enforcement." [54]

The court closed with a number of interesting quotes characterizing the history and importance

of free speech. The US Supreme Court has held that "the loss of First Amendment Freedoms, for

even minimal periods of time, unquestionably constitutes irreparable injury" [31] and the ACLU

was able to demonstrate that this law threatened 'irreparable injury' to citizens and organizations

alike.

The decision was reached in favor of the ACLU on Friday, June 20, 1997: the law was declared

unconstitutional.

4.2.3 Analysis

The example of ACLU v. Miller is not just a case of corrupt or ambiguous laws going awry. It is a

case of the fundamental freedoms of individuals being infringed by the state. Whether the original

intent of the law was to prevent online fraud, the law provided too much flexibility to those who

would actually carry out the law to interpret it in whatever manner was most convenient at the

time.

"The Court recognized that anonymity is the passport for entry into cyberspace for many per-

sons," said Gerald Weber, Legal Director of the ACLU of Georgia. "Without anonymity, victims of

domestic violence, persons in Alcoholics Anonymous, people with AIDS and so many others would

fear using the Internet to seek information and support." [23] Another example specific to this case

was the Atlanta Veterans Alliance, an organization that serves the needs of gay, lesbian and bisexual

military veterans. Not only do members of the AVA employ anonymity and pseudonymity on the

internet to avoid harassment and discrimination, but many of them are currently in active military

duty, and disclosing their real names during their discussions would mean that they might lose their

jobs.

'See, e.g., O.C.G.A. 10-1-453, 16-9-1(a), 16-9-2, and 16-8-3.

40

Roger Dingledine

The Free Haven Project Roger Dingledine

4.2.4 A Case Study: Lamont v. Postmaster General

Indeed, one of the more subtle aspects of the ACLU v. Miller case is that it addresses anonymous

receipt of information as well. By referencing Lamont v. Postmaster General (381 U.S. 301 (1965))

[56], the plaintiffs compare the act to a statute that has been influential in free speech Supreme

Court cases over the past three decades.

The Postal Service and Federal Employees Salary Act of 1962 required the Postmaster General to

monitor mail coming into the United States from certain foreign countries. If the mail was deemed

to be 'communist political propaganda', the Post Office would detain the mail and send a note to

the addressee. This note would describe the mail in question, and indicate that the addressee should

fill out the form and return it if he wanted to receive the communist propaganda. If he didn't fill

out the form and return it within twenty days, then the Post Office would conclude that he was not

interested in that publication or any further similar publications, and destroy them.

The Post Office implemented the statute by maintaining 10 or 11 screening points around the

country, through which all mail from suspicious foreign countries was routed [56]. Customs officials

would examine each item of mail, and determine whether it was communist political propaganda.

In this case, "[t]he term 'political propaganda' includes any oral, visual, graphic, written, pictorial,

or other communication or expression by any person (1) which is reasonably adapted to, or which

the person disseminating the same believes will, or which he intends to, prevail upon, indoctrinate,

convert, induce, or in any other way influence a recipient or any section of the public within the

United States with reference to the political or public interests, policies, or relations of a government

of a foreign country or a foreign political party or with reference to the foreign policies of the United

States or promote in the United States racial, religious, or social dissensions, or (2) which advocates,

advises, instigates, or promotes any racial, social, political, or religious disorder, civil riot, or other

conflict involving the use of force or violence in any other American republic or the overthrow of any

government or political subdivision of any other American republic by any means involving the use of

force or violence." [98] Communist political propaganda is political propaganda which is "issued by

or on behalf of any country with respect to which there is in effect a suspension or withdrawal of tariff

concessions or from which foreign assistance is withheld pursuant to certain specified statutes." [99]

If these Customs officials determined that the mail in question was communist political propaganda,

they would send the note instead.

This law effectively requires citizens receiving material which might be communist political pro-

paganda to actively choose to sign their names onto a list which the federal government keeps. Since

the card has a checkbox for whether the addressee wishes to receive similar mails in the future, this

list is exactly a list of citizens who are interested in reading dissident materials.

Two separate individuals, Dr. Corliss Lamont of New York, and Mr. Heilberg of California, filed

41

The Free Haven Project Roger Dingledine

Roger Dingledine

complaints in 1963 against this law in their respective District Courts when they were sent a note

about material addressed to them. The District Court in New York dismissed the claim as moot,

since Lamont had the opportunity to check the box indicating he wanted all further mails to go

through unhindered - since he had this opportunity, his First Amendment rights were not being

abridged. The California District Court ruled in the opposite direction, claiming that requiring the

addressees to actively request mail infringed on their First Amendment rights.

The case was made stronger on March 15, 1965, when the government terminated its practice of

keeping a list of citizens who wanted to receive communist political propaganda. Because the Post

Office wasn't keeping this list, they required addressees to actively request the delivery of each such

piece of mail. With this new twist, the US Supreme Court found the law to be unconstitutional on

May 24, 1965, on the grounds that requiring addressees to respond separately for each piece of mail

constituted an undue burden on their constitutional right to receive mail. Justice Douglas explains

that "[t]his requirement is almost certain to have a deterrent effect, especially as respects those

who have sensitive positions. Their livelihood may be dependent on a security clearance. Public

officials, like schoolteachers who have no tenure, might think they would invite disaster if they read

what the Federal Government says contains the seeds of treason. Apart from them, any addressee

is likely to feel some inhibition in sending for literature which federal officials have condemned as

'communist political propaganda.' The regime of this Act is at war with the "uninhibited, robust,

and wide-open" [72] debate and discussion that are contemplated by the First Amendment." [56]

Indeed, the Court goes on to address the specific parts of this case that relate to anonymous

access to publications - while they never use the word anonymous, they draw a distinction between

a passive receipt of the material, and an active request for receiving the material. Justice Brennan

argues in the same text: "It is true that the First Amendment contains no specific guarantee of access

to publications. However, the protection of the Bill of Rights goes beyond the specific guarantees

to protect from congressional abridgment those equally fundamental personal rights necessary to

make the express guarantees fully meaningful. ... I think the right to receive publications is such a

fundamental right. The dissemination of ideas can accomplish nothing if otherwise willing addressees

are not free to receive and consider them. It would be a barren marketplace of ideas that had only

sellers and no buyers."

This notion can be extended to the arena of the internet, in terms both of receiving email

and of receiving data from a web page. In the former case - passive receipt of data - it is more

traditionally clear that the right to receive email should be protected under our Constitution. The

latter case, however, presents more confusion: should this 'active' receipt of information receive the

same protections as passive receipt of information? We as members of the Free Haven project believe

the answer is yes.

42

The Free Haven Project

The Free Haven Project Roger Dingledine

4.3 Anonymous Publication

If there is any principle of the Constitution that more imperatively calls for attachment
than any other it is the principle of free thought - not free thought for those who agree
with us but freedom for the thought that we hate.

- Oliver Wendell Holmes, Jr.

The previous two case studies deal in large part with the issue of freedom of speech and anony-

mous speech, both from the perspective of making the speech and also from the perspective of having

the right to receive speech from others in an unhindered and uninhibited fashion.

Our third case study explores the issue specifically of anonymous publication, to show that

freedom of publication, and indeed anonymous publication, is protected by the First Amendment.

4.3.1 A Case Study: McIntyre v. Ohio Elections Commission

On April 27, 1988, Margaret McIntyre distributed leaflets to persons attending a public meeting at

the Blendon Middle School in Westerville, Ohio [63]. The meeting was in part to discuss a proposed

school tax levy, and McIntyre was distributing pamphlets signed 'Concerned Parents and Taxpayers'

in opposition to this proposed levy. While Mrs. McIntyre was distributing her handbills, an official

of the school district warned her that distributing the pamphlets without signing them with her

name was a violation of the Ohio Elections Commission.

Specifically, Ohio Code 3599.09(A) prevented distribution of campaign literature not containing

the name and address of the person issuing such literature. Margaret McIntyre challenged this law

upon being fined $100 for distributing her pamphlets. The fine was reversed by the Common Pleas

court, but upheld by the Ohio Court of Appeals and Ohio Supreme Court, which held that the law

was necessary to prevent "fraud, libel, or false advertising" and that the requirement for producers

of campaign literature to identify themselves "neither impacts the content of their message nor

significantly burdens their ability to have it disseminated. This burden is more than counterbalanced

by the state interest in providing the voters to whom the message is directed with a mechanism by

which they may better evaluate its validity." Ohio did not suggest that all anonymous publications

should or could be outlawed, simply that this was a reasonable electoral regulation.

The U.S. Supreme Court reversed the fine. Justice Stevens delivered the majority opinion: he

claimed "an author's decision to remain anonymous, like other decisions concerning omissions or

additions to the content of a publication, is an aspect of the freedom of speech protected by the

First Amendment. The freedom to publish anonymously extends beyond the literary realm." He

also pointed out that "in the case of a handbill written by a private citizen who is not known to

the recipient, the name and address of the author adds little, if anything, to the reader's ability to

evaluate the document's message."

43

The Free Haven Project Roger Dingledine

Talley v. California (1960) [96] was heavily cited. In this case, Talley violated a Los Angeles

ordinance against distribution of unsigned handbills in distributing leaflets urging boycott of certain

merchants practicing discriminatory employment practices. The ordinance was declared unconsti-

tutional. Stevens held that this could be extended to anonymity in advocacy of any political cause,

up to and including secret ballot. Ohio's regulation "does not control the mechanics of the electoral

process. It is a regulation of pure speech." Political speech was also held to be at the core of the

First Amendment.

Stevens states that "[a]nonymity is a shield from the tyranny of the majority", and goes on to

describe the purpose of the First Amendment: "to protect unpopular individuals from retaliation

- and their ideas from suppression - at the hand of an intolerant society. The right to remain

anonymous may be abused when it shields fraudulent conduct. But political speech by its nature

will sometimes have unpalatable consequences, and in general, our society accords greater weight to

the value of free speech than to the dangers of its misuse." He cites [3], a case in which five plaintiffs

are accused and convicted of distributing during wartime pamphlets that urge American citizens to

cease production of ordnance and ammunition; the Russian-born plaintiffs argue that citizens should

rise up against capitalism, and also that they should realize that the munitions they are building

are being used to kill their families in Russia. Justice Holmes writes a strong dissenting opinion,

declaring that "Only the emergency that makes it immediately dangerous to leave the correction

of evil counsels to time warrants making any exception to the sweeping command, 'Congress shall

make no law abridging the freedom of speech.' "

Justice Thomas asks whether " 'freedom of speech, or of the press' as originally understood, pro-

tected anonymous political leafletting" and concludes it did. "Regardless of whether one designates

the right involved here as one of press or one of speech, however, it makes little difference in terms

of our analysis, which seeks to determine only whether the First Amendment, as originally under-

stood, protects anonymous writing." He cites Zenger; opposition in 1779 to identifying Leonidas,

writer of articles critical of Congress's economic policies; and other cases of liberty of the press being

linked to anonymity. He mentions the Anti-Federalists, who drove the Bill of Rights, and comments

that they often criticized attacks on anonymous publishing. He describes the national outcry (cen-

tered in Philadelphia) against two Boston papers that refused to print anonymous articles: "The

understanding described above, however, when viewed in light of the Framers' universal practice of

publishing anonymous articles and pamphlets, indicates that the Framers shared the belief that such

activity was firmly part of the freedom of the press." He goes on to cite many instances of further

anonymous political speech after the revolutionary period, arguing that anonymous speech is also

suitable and reasonable for conditions other than those extremely unusual circumstances.

While the support for anonymous political speech is clear, and the decision of the Court was

44

Roger DingledineThe Free Haven Project

The Free Haven Project Roger Dingledine

seven to two, there is nonetheless some interesting material in the dissenting opinions.

Justice Scalia disputes Thomas's use of the historical record, stating that anonymous election-

eering was not held to be a violation of freedom of speech or the press, and that regulation of the

electoral process was never an issue until the late 1800s, and lack of regulation before then does not

render later laws unconstitutional. Laws against anonymous political pamphleteering have existed

in most states (including Ohio) since the end of World War I and form a better historical record

than revolutionary essays. He goes on to then examine the right to anonymity. "Several of our

cases have held that in peculiar circumstances the compelled disclosure of a person's identity would

unconstitutionally deter the exercise of First Amendment associational rights. [list of cases] But

those cases did not acknowledge any general right to anonymity ... rather, they recognized a right

to an exemption from otherwise valid disclosure requirements on the part of someone who could

show a 'reasonable probability' that the compelled disclosure would result in 'threats, harassment,

or reprisals from either Government officials or private parties.' ... Anonymity can still be enjoyed

by those who require it."

Scalia argues that the decision in the McIntyre case was unusual and differs significantly from

previous case law: "The existence of a generalized right of anonymity in speech was rejected by this

Court in Lewis Publishing Co. v. Morgan, 229 U. S. 288 (1913), which held that newspapers desiring

the privilege of second class postage could be required to provide to the Postmaster General, and

to publish, a statement of the names and addresses of their editors, publishers, business managers

and owners. We rejected the argument that the First Amendment forbade the requirement of such

disclosure. Id., at 299. The provision that gave rise to that case still exists, see 39 U. S. C. 3685,

and is still enforced by the Postal Service. It is one of several federal laws seemingly invalidated by

today's opinion."

He goes on to cite Ginsburg's concurring opinion, and wonders at the extensions of "the Court's

unprecedented protection of anonymous speech" including parade permits issued to groups who

refuse to provide their identity, anonymous sponsorship of theatre presentations at a city-owned

theatre or of speeches at public universities, anonymous letters to the editor in government publi-

cations, and other "silliness that follows upon a generalized right to anonymous speech." He points

out that a number of foreign democracies, including Australia, Canada, and England, all have pro-

hibitions upon anonymous campaigning.2

In closing, Scalia explains: "I do not know where the Court derives its perception that 'anonymous

pamphleteering is not a pernicious, fraudulent practice, but an honorable tradition of advocacy and

of dissent.' I can imagine no reason why an anonymous leaflet is any more honorable, as a general

matter, than an anonymous phone call or an anonymous letter. It facilitates wrong by eliminating

2 See, e.g., Commonwealth Electoral Act 1918, 328 (Australia); Canada Elections Act, R.S.C., ch. E-2, 261 (1985);
Representation of the People Act, 1983, 110 (England).

45

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

accountability, which is ordinarily the very purpose of the anonymity."

4.3.2 Analysis

Clearly, there are strong arguments on either side of this issue. The overall opinion was that content-

based restrictions on whether a given publication can be distributed anonymously conflict with the

First Amendment. Furthermore, the justification that Ohio provided for needing protection against

anonymous electioneering does not make sense for this particular situation: in this case, knowing

that Mrs. McIntyre was the author of the pamphlet in question would not provide readers with the

ability to "better evaluate its validity".

It is also worthwhile to note that much of the dissenting opinion focused not on the issue of

anonymity of speech itself, but on the issue of whether allowing anonymous political speech was

more valuable or less valuable than protecting the elections process. For instance, while Canada

may prohibit anonymous campaigning, section 14.1 of the Canadian Copyright Act [30] states that

the author has the right "to be associated with the work as its author by name or under a pseudonym

and the right to remain anonymous".

4.4 Legal, yes - but Moral?

It is unfortunate that the efforts of mankind to recover the freedom of which they

have been so long deprived, will be accompanied with violence, with errors, and even with

crimes. But while we weep over the means, we must pray for the end.
- Thomas Jefferson to Francois D'Ivernois, 1795

It is clear both from the United States Constitution, and also from the case law described above

and held by the US Supreme Court, that anonymous publication is a legal and protected right for

US citizens. However, the legal support in the United States - or even in other countries - for

anonymous publication is not the only issue we as developers of Free Haven must consider: even if

we are legally allowed to deploy a Free Haven service, is it morally a good idea? We have the power

to make this choice now, but after we deploy the service we will not have the power to undo our

actions.

First of all, there are a myriad of applications for the system which we consider 'bad uses'. These

can be broken down into several categories, based on the type of use or offense involved.

4.4.1 Problems with Anonymous Speech

These are issues which generally come up in the context of all anonymous speech or communication

systems, rather than specifically in the context of anonymous publication systems. They include:

46

Roger DingledineThe Free Haven Project

" Death threats: users may be able to make death threats without accountability.

" Terrorism communications: users may be able to coordinate and conspire to plan terrorist

activities against the state or other organizations or individuals.

* Kidnapping communications: similarly, users might conspire and coordinate to plan kid-

nappings or other illegal actions.

" Spam: users might make use of the anonymous channel to spain victims with targeted adver-

tisements or other text.

" Harassment: as opposed to targeted spam, stalkers might make directed communications

intended to embarrass, defame, or threaten.

" Blackmail: users might publish material without disclosing the key, and then threaten to

publicize the location of the material.

These issues are addressed in a broader scope by other organizations, such as the ACLU (witty

reference here), the Center for National Security Studies (their papers include "The FBI's Domestic

Counterterrorism Program" [34], a description of the FBI's current capabilities to combat terrorism),

the Cato Institute (their papers include "Nameless in Cyberspace: Anonymity on the Internet" [46],

a briefing paper addressing anonymous speech on the internet), Amnesty International, the EFF,
XXX. Since these issues are argued in the broader context of free and anonymous speech in general

rather than anonymous publication specifically, we consider them outside the scope of this document,

and refer the reader to the literature from these organizations. One useful survey paper is the one

by Rigby [86].

4.4.2 How reputable is anonymous speech anyway?

Seek not to know who said this or that, but take note of what has been said.
- Thomas Kempis, Of the Imitation of Christ

Another topic that is related to free and anonymous speech is the question of whether making

speech anonymous decreases the credibility of its content. On the one hand, cases like the McIntyre

v. Ohio Elections Committee findings show that there are in fact situations where knowing the

author of a statement doesn't seem to add or detract at all from the content. On the other side

of the spectrum, the 'Net Anonymity FAQ' [6] includes a variety of comments pointing out that

anonymous postings often have very little useful content. It includes an insightful comment: "I

think anonymous posts do help in focusing our attention on the content of one's message. Sure lot

of anonymous posts are abusive or frivolous but in most cases these are by users who find the anon

facility novel. Once the novelty wears off they are stopping their pranks."

47

The Free Haven Project Roger Dingledine

Roger Dingledine

4.4.3 Copyright, Patent, and Trade Secrets

Another issue with substantial impact on society and economics is the fact that anonymous com-

munication, and indeed also anonymous publication, can be used to share documents in a manner

that violates copyright or patent laws, or exposes trade secrets. The recent issues with decss and

cphack as examples of trade secrets getting published on the internet, as well as the earlier example

of the distribution of pgp being restricted due to patent issues, show that there are a number of

controversial issues with these laws. On the other hand, more clear-cut cases such as copying a

band's music in violation of the band's copyright and wishes are very prevalent, and becoming even

more common.

This issue is a real problem. Related projects like Napster are beginning to realize the power of es-

tablished organizations such as the Record Industry Association of America (RIAA) and the Motion

Picture Association of America (MPAA) to protect their assets and lobby Congress for protective

laws. The continuing trend towards high-bandwidth internet connections for individual people will

exacerbate this conflict: eventually this empowerment of individuals will force a dramatic change in

the current copyright system, to enable it to handle this new paradigm of global connectedness.

In the case of music, the RIAA is fighting to maintain the status quo based on a principle of

intellectual property and copyrights developed centuries ago[18], which many argue is no longer

applicable to today's information-age society. This system probably cannot last, and bands are

going to have to adapt to other mechanisms for making money, such as live performances.

Such artists as Billy Idol, Public Enemy, and the Beastie Boys have already attempted to give out

MP3s for free to increase their publicity. John Perry Barlow, the lyricist of the Grateful Dead, has

published a detailed essay[10] entitled "The Economy of Ideas", which describes why "everything

we know about intellectual property is wrong" from the point of view of his band.

In late 1997, Clinton signed an act called the No Electronic Theft (NET) Act, which made it a

felony to copy copyrighted materials. It appears that the main change in the law that they had made

was changing the definition of financial gain: "the term 'financial gain' includes receipt of anything

of value, including copyrighted materials." [71] The Act suggested five year jail sentences for those

found distributing more than ten copyrighted works in a given amount of time. Apparently the RIAA

and the rest of the music industry have enough influence to convince the Clinton administration that

it should enact much more severe laws against intellectual property violators.

But the situation is not hopeless. Alternate copyright systems have been proposed, such as

Bruce Schneier and John Kelsey's 'Street Performer Protocol' [90]They describe this protocol as

"an electronic-commerce mechanism to facilitate the private financing of public works. Using this

protocol, people would place donations in escrow, to be released to an author in the event that the

promised work is put in the public domain. This protocol has the potential to fund alternative or

48

The Free Haven Project

'marginal' works."

In other words, this Street Performer Protocol (or more likely, some future variant of it) could

be used to help shift the emphasis away from purchasing information and more towards paying the

designer for the act of creating the information in the first place.

Overall, we consider the fact that Free Haven might be used to further violate copyright and

patents laws to be an unfortunate consequence of deploying the system. We believe this is a strong

argument against developing a system like this.

4.4.4 More Porn on the Net

Another unfortunate consequence of deploying a service like Free Haven is that it may well speed

the proliferation of pornography on the internet. Just as the pornography industry was influential

in accelerating the growth of the technologies behind videotapes, many people have commented

[reference?] that it is now a major driving force behind increase in hard drive capacity and internet

bandwidth. While the pornography industry is in fact of questionable moral usefulness to our society,

there can be no doubt that it is often a major factor in new technologies.

On the other hand, most of the porn industry bases its profits on being able to charge subscribers

and meter distribution. All of this process is legal and already in place on the internet. Precisely

because Free Haven provides such a high level of anonymity, it doesn't provide sufficient account-

ability for companies to conveniently sell their data in a trackable manner. Free Haven is simply

not a very hospitable environment for organizations trying to control or in any way limit access to

information. Thus, the porn industry as a whole will probably largely ignore it.

But the fact that it provides such a high degree of anonymity leads to a few other possibili-

ties: although companies won't be able to make easy money from it, individuals desiring greater

anonymity may make use of the system to distribute illegal media such as child pornography or snuff

films in an untraceable manner.

Just as in the case of copyright and patents, we believe this is an unfortunate consequence of the

system, and believe it is a strong argument against developing a system like Free Haven.

4.4.5 Jurisdiction and Jurisdictional Arbitrage

Eric Hughes, cofounder of the cypherpunks, describes jurisdictional arbitrage as "moving an action

from one country to another country to take advantage of a different law or regulation there." [57]

This is a very broad topic, but one that is well worth addressing, since it provides a very good example

of a situation where the internet can provide decentralized community solutions that entirely avoid

the issue of a given nation's legislation or jurisdiction.

The case of the Teale couple in Canada provides a good example. In this case, a husband and

49

The Free Haven Project Roger Dingledine

The Free Haven Project RgrDnldn

wife pair were suspected of several acts of particularly gruesome manslaughter. The wife pleaded

guilty and provided evidence; the Judge banned all those who were present at the trial, including the

press, from publishing any evidence or details on the murders, "in order to insure that Paul Teale

receives a fair trial" [64]. (Actually, Paul Teale was known as Paul Bernardo before the arrest; many

Canadians know of him by the latter name.) Despite the fact that the Canadian court issued the gag

order, U.S. papers continued to print news concerning the case [94]. Indeed, the Canadian border

officials even went to the point of "stopping trucks carrying U.S. newspapers to keep Canadians

from learning what their neighbors to the south know about the case." [73]

Beyond the fact that the United States press was rabid enough to ignore a Court decision from

Canada, there's another facet to this case: the internet played a very important role in distributing

information about the case. Soon after the court order, a pair of university students in Canada

set up a newsgroup by the ironic name of alt. fan. karla-homolka (Paul's wife's name). When

this newsgroup was banned by a number of Canadian universities, two new newsgroups sprang

into existence: alt.pub-ban and alt.pub-ban.homolka. According to Wired Magazine, "One

Net dweller jokingly proposed the ideal tactic: 'The solution is obvious. Take the discussion to

rec. sport .hockey. You silly Canadians would never ban that group.' " [19] While intended as a

joke, this comment makes a very clear statement: banning the internet just isn't feasible.

Douglas Barnes, a member of the Austin Cypherpunks, provides an excellent overview [12] of

various classes of jurisdiction, including some surprising examples such as 'effects doctrine', wherein

the crime can be prosecuted based on some location that felt the effects of the action. In the case

of United States v. Aluminum Company of America (ALCOA) [97], the US established precedent

for this 'effects doctrine' by successfully bringing an anti-trust action against this foreign company

based on the effects on the US of their restraint of trade.

There are a number of legal issues and tricky points behind the concept of jurisdiction, but once

again the legal aspects are not the entire picture: is it moral to circumvent a court's decision of

information blackout? Who are we to make that decision, or enable others to make that decision?

We believe the short answer to this is 'it depends'. The longer answer is that we feel that it is

crucial for this option to be available: while it may not be the appropriate answer for all situations,

it may well be a reasonable response for some circumstances.

4.4.6 Slander is Forever

Once published in Free Haven, a document will persist at least until it reaches its expiration times-

tamp. Since there is currently no mechanism for revocation or unpublishing, any statements made

at one point will potentially last for a very long time. This permanence of speech can have negative

consequences. For instance, if a document were published in Free Haven claiming that a given person

50

Roger Dingledine

The Free Haven Project Roger Dingledine

is a police informer, then there is no way that the author can unpublish this statement: it lives until

it reaches the expiration date chosen by the publisher. Since the document is anonymous, there

is no entity or organization to attack or sue. Another scenario to consider is one where a radical

extremist posts a flaming attack on the United States government and attaches his name to it, and

then fifteen years down the road is refused from a job at the FBI based on his past life.

The 'right' to force somebody who slanders you to take back their statements is completely

removed in Free Haven. On the other hand, this is precisely what Free Haven is built for. We cannot

be responsible for people who use it without thinking first. The decision to publish a document in

a persistent global forum should be a carefully considered process, weighing the pros of getting the

word out against the corresponding repercussions.

4.4.7 Is content-neutral wise?

One of the features that sets Free Haven apart from related works such as Freenet is the fact that

Free Haven maintains an entirely content-neutral approach to the data stored in the system. In

the implicit contract between servers, each server agrees to store data for the other servers without

regard for the legal or moral issues for that data in any given jurisdiction.

There are a number of arguments against being content-neutral. Freenet pays attention to the

popularity of documents, and provides greater availability and persistence to those documents which

are accessed more frequently. This provides more efficient use and distribution of Freenet resources

around the world.

Another argument, based on morality rather than practicality, is the idea that server adminis-

trators should exercise good moral judgment and decide on a per-document basis which documents

should be stored on their server and which are inappropriate. A system like this would clearly not

be vulnerable to people sneaking immoral or illegal material onto it.

On the other hand, such a system requires a lot of resources on the part of each server admin-

istrator. Indeed, as the trend towards increasing computational capacity and ability continues, we

should be looking for solutions that minimize human involvement. A solution could be found such

that the server administrator automates the content filtering, but examples indicating this hope

might be naive include the recent issue with AOL's 'youth filter' blocking the Democratic website

but allowing the Republican site through [581.

From a legal perspective, server operators who are unaware of the particular content that they're

hosting, and have reasonable cause to expect that the content is legal, are not responsible. On the

other hand, if the operator has the capacity to glance over the data before accepting it, they may

be considered to have affirmatively accepted the data and are therefore responsible for its content.

Until the Communications Decency Act, this state of affairs roughly described case law in the

51

The Free Haven Project Roger Dingledine

United States. In the case of Cubby v. Compuserve,[26] the online service CompuServe was found

not liable for a post on its message boards on the grounds that it merely provided a forum for

expression and had no prior control over the messages posted. By contrast, the online service

Prodigy was found liable in Stratton vs. Prodigy for a libelous posting, because the court found that

by engaging in moderation of postings, the service became a "publisher" of the postings instead of

a mere carrier[93]. The Decency Act changed this by creating statutory protection against liability

for ISPs or online services who wish to moderate content passing through their lines; this part of

the act, unlike the more famous "indecency" provisions, was not invalidated by the Supreme Court

of the United States[69].

Designing a protocol which encourages content-neutrality may well mean that server administra-

tors are less liable for the content on the network. Examples include common carrier law, wherein

phone companies are not responsible for the content that they carry over their systems.

Finally, our strongest argument for maintaining a content-neutral system is that we think this is

the most useful approach to a persistent anonymous data storage service. The Free Haven system

is designed to provide privacy for its users; rather than being a persistent publication system, it is

designed to be a private low-profile storage system. Requiring operators to read through publication

'submissions' runs counter to this goal.

4.4.8 Personal uses

As an anonymous storage service, Free Haven provides a number of functions that are useful to indi-

vidual users. For instance, users or companies might employ the system as the ultimate redundant

backup server, encrypting their data and then spreading it anonymously and robustly across the

world.

More generally, individuals who wish to retain possession of data but not be physically associated

with it for a certain period of time can benefit greatly from Free Haven. Perhaps the next person

targeted by the Church of Scientology could have an available mechanism for removing the data

from their person in a manner that makes it convenient to both offload and later retrieve. Amnesty

International workers might benefit greatly from the ability to generate an address list as they tour

southeast Asia, and have a convenient way to retrieve it once they return to more hospitable areas.

Arming individuals with the ability to defend themselves against larger potentially hostile groups is

an important end in itself.

4.4.9 Is privacy bad?

A common belief is that those who choose to communicate via strong cryptography or other cryp-

tographic protections on privacy have 'something to hide', and that normal upright citizens have no

52

The Free Haven Project Roger Dingledine

The Free Haven Project

need for cryptography. Similarly, some believe that people who speak anonymously are somehow

ashamed of the actions that they take behind the shield of anonymity.

However, this idea that only shame generates a desire for privacy is a very narrow view. Privacy

in our ordinary lives is something that we take for granted - would you be willing to publish your

tax return worldwide? What if your neighbor published the contents of your garbage on the evening

news? Is using cryptography to achieve privacy in online activities really any different? If online

privacy through cryptography is in fact still distinct from offline privacy through more conventional

means, we believe the trend is moving strongly in favor of merging them into a single concept.

Frequently, people respond to these disturbing possibilities by denying that they could happen to

them: after all, safety in numbers should be a sufficient defense against any other individual or orga-

nization wanting to collect information about 'typical' citizens. However, this defense is terrifyingly

naive, considering the explosive growth of storage and data warehousing and retrieval technologies in

the past few years. Companies ranging from Doubleclick to Amazon collect a startlingly wide array

of information about potential customers, in the name of directed advertising. Insurance companies

might cross-reference with Amazon to determine whether their customers have purchased books on

car racing. Divorce attorneys might cross-reference with credit card companies to identify and offer

services to persons who have recently paid for hotel rooms or purchased other paraphernalia associ-

ated with extramarital affairs. Employers might cross-reference with medical histories to determine

HIV status or even genetic predispositions. With the continued rise in electronic commerce and

global internetworking, extensive databases of personal profiles on every person on Earth are visible

on the horizon.

Confining to the police or other intelligence agencies the ability to collect, correlate, or make

use of this information does not help much. Building correlations between disparate data sets is a

tricky task, and the people asking the questions are almost never the ones building the databases

or doing the queries. Because of this, they don't understand the limitations of the data they have

available. Government divisions may well be required to make a certain quota of profiles matching

certain constraints, such as 'pedophile' or 'drug dealer'. If time is short, budgets are tight, and

relaxing some of the query constraints is much easier and cheaper than collecting or verifying more

data, the choice seems clear. The result of this is that ordinary innocent citizens will get targeted

as 'suspicious' for one reason or another. The transition from surveillance state to police state may

well be a very subtle one.

4.4.10 Tool for Political Dissidents

One of the most important goals we could hope to achieve is to aid political dissidents in spreading

their statements. The Rewebber document by Goldberg and Wagner enumerates a wide variety of

53

Roger Dingledine

The Free Haven Project Roger Dingledine

causes through the past few centuries for which publication was a driving force[38]:

" The Protestant Reformation was greatly aided by the invention of the printing press, which

enabled widespread distribution of many copies of the Bible

* the French "Voice of the Resistance" used nightly radio broadcasts from constantly-changing

temporary locations to reach the people during the German occupation

" the USA used high-power radio stations such as Radio Free Europe during the cold war to

combat censorship behind the Iron Curtain

" in past years, banned information was copied through underground channels from person

to person in the Soviet Union, in a process known as samizdat (which is Russian for "self-

publishing")

* when the Serbian government began jamming the Belgrade independent radio station during

the Serb-Croat war, Serbian students used the World Wide Web to mirror broadcasts and

combat the government's censorship

Indeed, we might also include

" Saudi dissidents using fax machines to communicate.

" In addition to the Protestant Reformation making use of the printing press, Luther's critiques

of the church were of similar magnitude.

By providing tools and a mouthpiece to dissidents, we enable them to speak out about the events

that are happening around them. Due to the features of Free Haven, this speech is very difficult to

trace. Providing a safe avenue for publishing this speech is an important step to leveling the playing

field between individuals and governments or corporations.

It is important to recognize that this publishing system must truly be safe. If we provide an

unsafe mechanism for publishing text from political dissidents in dangerous countries, the immediate

consequences could be disastrous. Further, a few such 'mistakes' may well dissuade people from using

similar technologies in the future even if they become more safe.

4.4.11 Whistleblowing - now with documentation!

One of the canonical examples of good applications for anonymous speech is the ability to provide

workers or other individuals a channel for anonymous whistleblowing. That is, if something untoward

or illegal is happening in a factory or other workplace, one of the workers can report the incident in

a manner that doesn't risk disclosing his identity - often such a disclosure could cost the worker his

job.

54

The Free Haven Project Roger Dingledine

In the case of Free Haven, we can do more than provide a simple channel for reporting these

incidents - we provide an actual publication area in which the individual reporting could include

extension documentation about the incident, such as pictures or videos of the sanitation levels in the

chicken factory, pollution concentrations, outflow rates, epidemiological statistics, financial records,

government funding allocations, etc.

4.4.12 Persistent software distribution

A distributed publication system like Free Haven doesn't have to be used solely for political activism

or enabling individuals to speak out about controversial matters. Indeed, such a publication system

may well be an excellent resource for software distribution in a few years. Current software distribu-

tion schemes involve maintaining a single server at a fixed location somewhere in the world; slightly

more robust schemes include separately maintained mirror sites to increase redundancy and thus

robustness. On the other hand, a decentralized publishing system like Free Haven would provide

much smoother redundancy, since the protocol itself divides the document around the world in a

robust fashion.

There are a number of very difficult problems to solve, most notably the persistent naming

issue (providing global and permanent names [27] for each document or object in the world, such

that revision of these documents is seamlessly integrated into a name update), before a global

publishing system can take the place of the web for software distribution. However, some sort of

more decentralized global network which emphasizes separation between data and physical location

seems likely to be its successor. Providing some hints for future designers and developers of what

works and what does not work could be invaluable.

4.5 Conclusions

Free Haven provides a service that is not currently available from any other project or application.

Web pages available from the internet have their source easily evident. Usenet articles do not reliably

reach all readers, and are subject to unpredictable expiration from disapproving administrators or

simply due to space constraints.

Because the Free Haven design requires servers to provide space in proportion to the size of

the documents they store, we expect the amount of 'unwanted' (porn, etc) material to similarly

be proportional to the number of servers attempting to store such material. This means that if

10% of the servers in this system are provided by pornography companies, then roughly 10% of the

material in Free Haven will be their material. Therefore we believe that there is little danger of

the system getting entirely swamped by such data. This is very different from systems like Freenet,

55

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

where popularity of a document causes it to be replicated all around the network, expiring other

less-popular documents in the process.

By providing a stable and distributed service for anonymous publishing and anonymous reading,

we provide dissidents with more powerful tools for both communication and publication. We believe

in - and provide - a stronger notion of free speech than simply the ability to make government-

sanctioned statements. Overall, we believe that providing individuals with the power to speak in a

free, persistent, and untraceable manner is well worth the risk that the system could also be used

for less wholesome activities.

56

The Free Haven Project Roger Dingledine

Chapter 5

System Design and Overview

5.1 System Summary

The overall system consists of the publication system, which is responsible for storing and serving

documents; and the communications channel, which is responsible for providing confidential and

anonymous communications between parties. This chapter focuses on the design of the publication

system as a back-end for the communications channel.

The agents in our publication system are the author, the server, and the reader. These

agents are layered over the communications channel; currently they communicate with one another

via addresses which are implemented as remailer reply blocks. Authors are agents that produce

documents and wish to store them in the service; servers are computers which store data for authors;

and readers are users (inside or outside the servnet) who retrieve documents from the service.

Free Haven is based on a community of servers (which as a whole is termed the 'servnet') where

each server hosts data from the other servers in exchange for the opportunity to store data of its

own in the servnet. The servnet is dynamic: data moves from one server to another every so often,

based partly on chance and partly on each server's trust of the others. Servers transfer data by

trading. This means that the only way to introduce a new file into the system is for a given server

to use (and thus provide) more space on its local system. This new file will migrate to other servers

by the process of trading.

Each server has a public key and one (or perhaps more) remailer reply blocks, which together

can be used to provide secure, authenticated, pseudonymous communication with that server. Every

machine in the servnet remembers information for some of the machines in the servnet (the public

key, a remailer block or address, and some characterization of trust for each machine).

Only machines in the servnet are allowed to insert files into the network. The amount of storage

space a given machine can use is limited by the amount of space it is willing to host - this limitation

57

The Free Haven Project

is loosely enforced by other servers losing trust in a server that 'drops' data.

Authors assign an expiration date to documents when they are published; servers make a promise

to maintain the availability of a given document until its expiration date is reached. The trust system

is used to keep track of which other servers are likely to keep this promise.

Mixnet (Internet)

Comm

Module

Node
DB

Haven

Module

Figure 5-1: Structure of a Free Haven server

The big picture for the structure of a Free Haven server is shown in Figure 5.1. The control center

is located in the 'Haven Module': it includes a number of vital operations such as the trading module

and the trust module. The 'Comm Module' is responsible for communications with other Free Haven

servers; this communication is currently performed via a mixnet, but the system is modular enough

that the communications channel could be replaced simply by replacing part of the Comm Module

(without affecting the rest of the server). Both the Haven Module and the Comm Module speak to

the Node Database, which is a master list of all known servers and all known shares. This Node

Database integrates trust information with incoming information about new shares and new servers,

to provide answers to a wide range of questions. For instance, the Comm Module might ask the

Node Database for the mixnet address associated with a given public key (pseudonym); or the trust

module inside the Haven Module might ask the Node Database for a list of candidate servers who

might be interested in a share with a certain size and expiration date.

These three modules (the Comm Module, the Haven Module, and the Node Database) are

sufficiently distinct that they are designed to run on separate computers within an intranet. This

means that a single Comm Module can service multiple Haven Modules, or a single Node Database

can be used for several different (fully trusted) servers.

The Haven Module controls a number of aspects of operation of the system as a whole:

* Storing documents: When an author wishes to publish a document, she breaks the document

into shares, where a subset (any k of n) is sufficient to reconstruct the document, and then for

58

Roger Dingledine

The Free Haven Project Roger Dingledine

each share, negotiates for some server to publish that share on the servnet. The share module

is responsible for handling the arrival of new documents, and maintaining a list of current

documents on that server's Node Database.

" Supplying documents: When a reader wishes to retrieve a document from the servnet,

she requests it from any server, including a location and key which can be used to deliver

the document in a private manner. This server broadcasts the request to all other servers,

and those which are holding shares for that document encrypt them and deliver them to the

reader's location. The share module within the Haven Module is responsible for receiving

document requests, identifying which shares are located on the server, and supplying these

shares to the reader.

" Expiring documents: The share module within the Haven Module is responsible for rec-

ognizing when shares have expired, as well as maintaining sufficient space on the system for

incoming shares and scratch space for trade requests.

* Handling trade requests: The servers trade shares around behind the scenes. The trade

module within the Haven Module is responsible for recognizing trade requests, asking the trust

module to evaluate the reliability of the server and fairness of the offer, and choosing a new

share to offer in return.

" Initiating trade requests by share: The trade module is also responsible for periodically

identifying shares which have been on the server for a sufficient duration. The trade module

should query the trust module to determine a suitable server to which to offer the share.

* Initiating trade requests by server: The trade module should also periodically query

the trust module to determine if there are any servers which should be 'tested' to increase

confidence in the trust module's measure of trust in that server.

" Handling server introductions: One of the most important parts of the design of Free

Haven is the capacity to seamlessly integrate new servers. The trust system is responsible

for recognizing when requests and broadcasts are arriving from unknown servers, and then

initiating the correct messages to the Comm Module and other servers to arrange to receive

contact information for those new servers.

* Expiring old servers: Unavailable servers need to be flagged in the database such that the

Comm Module does not include them in broadcasts, since continued mail bombardment from

the mixnet to a closed account will eventually slow down the service (as well as anger a lot of

systems administrators). The trade module is responsible for recognizing when requests are

ignored and informing the trust module (which will pass it on to the Node Database). The

59

The Free Haven Project Roger Dingledine

60

Roger DingledineThe Free Haven Project

Comm Module takes care of reactivating a server which has been flagged as expired; it notices

this when a message arrives from that server.

* Initiating trust broadcasts: Periodically, the trust module will select a server from the

Node Database and broadcast its current opinion of that server's reliability. This broadcast

allows other servers to keep informed of actions which do not affect them directly.

" Handling trust broadcasts: When a trust broadcast arrives regarding a given server, the

trust module must integrate this new information into its evaluation of that server. This is

based in part on the current trust of the broadcasting server, the current trust of the subject

of the broadcast, and the actions described in the broadcast, if any.

" Initiating buddy checks: To maintain some level of accountability, shares employ what

is essentially the 'buddy system': servers which drop shares or are otherwise unreliable get

noticed after a while, and are trusted less. The buddy module within the Haven Module is

responsible for keeping track of the location of the buddy of each share the server currently

possesses. Periodically, it should perform a document request for this share, to verify continued

availability of this share.

* Handling buddy checks: Buddy checks are identical to normal document requests, as above.

They must be identical to prevent servers from replying only to buddy checks and thus trick

other servers into believing that they are still supplying the document to readers as well.

" Initiating buddy broadcasts: When the buddy module concludes that the buddy for one

of that server's current shares is lost, it can choose to perform a 'buddy broadcast', which is

essentially a notification to the trust modules of other servers that it believes the share to have

been lost by a given server.

" Handling buddy broadcasts: The trust module is responsible for receiving and interpreting

buddy broadcasts. These should modify the trust of the subject of the broadcast, based again

on current trust of the broadcasting server, the current trust of the subject of the broadcast,

and other relevant factors.

5.2 Supported Operations

There are two operations which any publishing service must provide: adding a document to the

system, and retrieving a document from the system. Free Haven provides these operations, and also

supports a number of behind the scenes operations such as trading, expiration, and rudimentary

support for enforcing accountability without sacrificing anonymity.

5.2.1 Storing

When an author (call her Alice) wishes to publish a new file into Free Haven, she must first identify

a Free Haven node which is willing to store this document for her. The exact method of identifying

and contacting this node is outside the scope of the Free Haven design per se; some possibilities

include:

" Alice is running a node herself. In this case, she would presumably be willing to store her own

file.

* Some of the nodes are publically contactable, via a website or some other public interface.

These nodes are willing to introduce Alice to other private nodes, are willing to store Alice's

file, or are willing to sell Alice some space on their systems.

" Some of these nodes have reply blocks (and their associated key) published on some site

associated with Free Haven, and might be willing to publish files that Alice delivers through

the mixnet.

Alice may choose to deliver her file to the given node (if she herself isn't the node) via an

anonymous remailer or other one-way anonymous communications channel, to provide strong author-

anonymity as described in Chapter 2. Alice may also choose to encrypt the file before transmitting

it - since any reader can retrieve any file if he knows its lookup key (as below), we leave this level of

privacy up to Alice's discretion. Alice may also choose to divide the file into new files if it's too long,

or pad it if it's too short, based on what sort of file sizes the server she finds is willing to accept.

(Prudent choices from the server's perspective are discussed in more depth below under Trading.)

When the publishing server (call him Phil) wants to introduce the new file into the servnet,

he breaks the file into shares using Rabin's information dispersal algorithm [84], and then for each

share, he finds a machine on the servnet which he trusts and which is willing to make the trade for

that share. More precisely, he performs the following steps.

1. Break the file F into shares fi,. . . , f where any k shares are sufficient to recreate the file.

2. Generate a public/private key pair (PK, SK) to be used for signing each of the shares.

3. For each share, build a data segment as described below under 'Composition of a Share' and

sign this segment with SK.

4. Enter the shares into the local server's space.

Really, Alice may perform steps 1 and 2 herself, and thus build the shares herself. A well-behaved

server should be able to handle doing the IDA process itself as well as receive shares that have already

61

The Free Haven Project Roger Dingledine

been split. Note that accepting pre-built shares seems to require more trust of Alice than receiving

her file, examining it, and then building a set of shares from it.

The choice of the robustness parameter k is a crucial part of adding a document to the system. A

large value of k relative to n makes the file more brittle, because it will be unrecoverable after a few

shares are lost. On the other hand, a smaller value of k implies a larger share size, since more data

is stored in each share. This parameter k should probably be chosen based on some compromise

between the importance of the file and the size and available space.

A more considered value for k should be available based on the results of modelling the mixnet

and servnet to determine how many documents are lost in what sort of situations. The brittleness

of documents in the servnet is affected by a variety of factors, including percentage of misbehaving

nodes, reliability of the network itself, trading frequency, and the rate at which new servers join the

servnet and old servers disappear.

5.2.2 Retrieving

In order to retrieve a file, a client must first know the PK which was used to sign the shares. He

learns this from a post to Usenet or some similar external means (or because he was the original

author of the document) - see Section 5.9 on how to integrate Directory Services with Free Haven.

From here, he must locate a servnet server that is willing to do the query for him. The server can

be contacted over its remailer address, but presumably there will be public cgi's available which

automate the process of doing the document query. The reader comes up with a key pair (PK, SK)

for this transaction, as well as a one-time remailer reply block. The servnet server does a broadcast

of "('request', PKfile, PKiient, reply block)" to all servnet nodes that it knows about. These

broadcasts can be queued and then sent out in bulk to conserve bandwidth (since the mixnets are

going to introduce some delay as it is, adding a bit more by sending requests perhaps once an hour

will not significantly affect the latency).

Each server that receives the query will check to see if it has any shares with the requested

PKfile, and if it does it will encrypt each share in the enclosed public key PKiient, and then send

the encrypted share through the remailer to the enclosed address. These shares will magically arrive

out of the ether at their destination; once enough shares arrive, the client recreates the file and is

done. If not enough shares arrive, then the client has failed to obtain the file (most likely, it is lost).

The broadcast request can optionally specify which share index is desired. This allows clients

who only want one share to be able to query them specifically. For instance, a node wanting to

confirm that a given share is still 'alive' might query only for that share. This extension must

be implemented with care, though - if a particular operation (such as buddy checking, below) is

implemented by always querying for a specific share of a document, then nodes may be able to

62

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

differentiate between different classes of queries (e.g., querying to retrieve a document and querying

to determine if a document is still available) and selectively respond. This would allow them to

convince an auditor that the server is obeying its protocol, while at the same time the server does

not answer any document requests from actual readers attempting to retrieve those documents. This

means that in simple implementations, querying by specific share should be disallowed; in more

complex implementations, all operations should support (and have an equal probability distribution

for) querying either by entire document or by specific share.

Additionally, the broadcast document request can optionally be signed by the servnet node

performing the broadcast. This has a number of ramifications. First of all, it introduces more

complexity in the problem described above, namely in trying to ensure that queries cannot be

selectively answered by a server attempting to gain trust without serving documents to readers.

On the other hand, it allows slightly more accountability on the part of servers: this might be

useful in the case of denial of service flooding attacks, wherein an attacker might flood a given node

with document requests with the intent either of spamming some helpless victim, or of saturating

the bandwidth resources of the server. In this circumstance a server might gain some defense by

dropping incoming requests that are not signed by a trusted peer server.

5.3 Expiration

Each share includes an expiration date. This is an absolute (as opposed to relative) timestamp which

indicates the time after which the hosting server may delete the share with no ill consequences. This

means that if an operator wants to cease providing his node as a Free Haven server, the protocol

provides him with a polite way of exiting the system: wait until all the shares he has expire. One

way to hasten this would be to trade away for a very large share that expires soon - see below under

Trading for more details on this.

Expiration dates should be chosen based on how long the introducing server wants the data to

last, compromising based on size of file and likelihood of finding a server willing to make the trade.

Servers should be wary of accepting shares that they will not be able to trade away easily, because

then they might be committed to keeping that file on their system until it expires.

This last point has strong implications for the stability of shares in the system - shares which are

nonstandard either in size or in duration may well be more fragile than shares which are closer to

average. One reason for this is that shares with particularly long durations are simply subjected to

more chances to be destroyed over the course of their lifetime. A more subtle reason for this is that

a very large share may be difficult to successfully trade away; indeed, it may turn out that servers

which accept extraordinarily large shares have a greater tendency to be unreliable. (Perhaps, for

instance, the server accepts such shares due to negligence on the part of the server operator, which

63

Roger DingledineThe Free Haven Project

might be indicative of other stability problems.)

5.3.1 Revocation

The ability to revoke or unpublish shares would provide much greater flexibility to the Free Haven

system. Specifically, this would allow a much more realistic emulation of an actual read-write

filesystem, where published documents could be updated as newer versions became available. Indeed,

it also allows political dissidents who publish under their real name to realize their mistake and

unpublish the documents.

Revocation could be implemented by allowing the author to come up with a random private

value x, and then publishing H(x) inside each share. If the author wanted to unpublish a document,

he would broadcast an unpublish request along with his original value x (and also H(x) for the sake

of convenience and efficiency), and all servers which were currently holding shares of the document

would expire them.

However, there are a number of extra attacks this allows on the system:

" It complicates the buddy system greatly, since we are not sure that the unpublish request would

reach the buddy of a given share. Indeed, an adversary might send unpublishing requests to

some members of the servnet and not others, in an attempt to cause havoc in the trust system,

or even to try to gain insight into the current location of some shares.

" Authors might use the same hash for new shares, and thus 'link' documents. Adversaries

might also use the same H(x) even though they are unaware of the value of x: this would

cause artificial linking, as observers might conclude that the publisher of the original document

also published the later documents.

" The presence of an unpublishing tag H(x) in a share assigns a sort of 'ownership' to a share

that is not present otherwise. This may have subtle implications towards publisher and reader

anonymity - for instance, a publisher who remembers his x has evidence on his computer that

he was associated with that share, thus breaking perfect forward author-anonymity.

In addition, if revocation exists, then a corrupt police force or intelligence agency has an incentive

to track down the original author of the document, because chances are good that he still has the

value x which would allow them to remove the document from Free Haven. Even if the author

immediately destroys his x, the adversary has sufficient reason to suspect that he still has it that it

is worthwhile for them to spend resources tracking him.

This problem can be ameliorated by making the unpublishing tag optional. This means that the

share itself will make it clear whether that share can be unpublished, so if no unpublishing tag is

present, there should be no reason to try to track down the author. If an adversary wishes to create

64

The Free Haven Project Roger Dingledine

a pretext to hunt down the publisher of a document, however, he can still republish the document

with a revocation tag, and use that as 'reasonable cause'.

An alternate solution, given that we are willing to accept some amount of linkability in exchange

for the ability to perform document revocation, is to simply allow the publisher to remember the key

K with which he originally signed each share of the document. Thus instead of generating a separate

value x simply for the sake of revocation, we could allow the publisher to revoke his document by

transmitting dK('revoke'). We can further allow the 'non-revocable' notion on a share by allowing

an explicit tag called <revocable> which if present would indicate that 'revoke' messages should

be honored. Publishers could similarly yield their original key K to some trusted agency. However,

this alternate mechanism for revocation is still susceptible to many of the above attacks.

Because the ability to revoke shares potentially puts the original publisher in increased physical

danger, as well as increasing the set of attacks on the servnet infrastructure, we chose to leave

revocation out of the current design.

5.4 Accountability and Redundancy

Without some sort of server accountability, shares could get swallowed by malicious nodes and

nobody would ever notice. This lack of accountability has two ramifications. First of all, over time

shares will disappear, eventually causing files to be unrecoverable. Secondly, malicious nodes can

continue to be malicious if there are no mechanisms in place for identifying and excising ill-behaved

nodes.

One solution to this would be for the publisher of each share to maintain his own local copy, and

periodically query the servnet for the share. If the share has disappeared, he will simply drop some

of the data currently on his system and insert his backup copy of the share. (At this point, he might

stop trusting the server to which he traded that share.) However, this makes the entire system very

fragile, as well as making it slow to react to malicious nodes.

A better solution would be to somehow keep track of the current location of each share. Thus a

given server would know exactly when a share disappeared and which server was responsible for it

at the time. Broadcasting knowledge of bad nodes would quickly update the servnet on the presence

and behavior of suspected malicious nodes, limiting the amount of damage that can be done. This

solution could be implemented by assigning a fixed and permanent 'shepherd' to each share upon

publication (it would be permanent because the share is signed with the shepherd inside); every time

a share is traded around the servnet, then both servers involved in that trade would send updates

to the shepherd indicating that one of them had relinquished responsibility for the share and the

other had taken responsibility for it. These updates would allow the shepherd to maintain a good

idea of the current location of its associated share.

65

The Free Haven Project Roger Dingledine

However, having a static location for keeping track of location information for each share defeats

the purpose of having them scattered throughout the servnet. Specifically, this provides a centralized

target for anyone wishing to learn more about (or attack) a given share. (One might argue that as

Free Haven scales, some form of directory capability is going to be necessary, and thus maintaining

knowledge of location of shares will be necessary anyway. However, this is not the case: a directory

service can be implemented without any notion of the location of shares. See Section 5.9 below for

more details on Directory Services.)

One possible solution to this is to associate pairs of shares in a given document with each other,

and use the 'buddy system'. In this case, each share would be responsible for maintaining information

about the location of the other share. When a share moves, it should send notification to the other

indicating this move. More correctly, the server sending the share should send notification, and then

after the transfer the server receiving the share should send notification. Each notification includes

a 'receipt' as described below under Receipts.

Periodically, a server holding a given share should query for its buddy, to make sure its buddy

is still alive. Should its buddy stop responding, then the remaining share (or more correctly, the

host currently holding that share) is responsible for announcing which node had responsibility for it

when it disappeared, as described below under Section 5.8.

We considered allowing abandoned shares to optionally spawn a new share if their buddy dis-

appears. This would make the service much more robust, since shares that are destroyed can be

regenerated. But it is also possible that it could cause an exponential population explosion of shares:

if a share is out of touch for a little while but isn't dead, then both shares will end up spawning new

copies of themselves. This is a strong argument for not letting shares replicate.

Another more subtle problem with having both shares with non-fixed locations is that the com-

munications channel we have chosen currently has nontrivial latency. This means that a share might

have already been traded away by the time notification arrives from the other share. We could solve

this by having some sort of locking mechanism on a share, such that they are forced to alternate

trading. However, this solution is prone to attacks which 'stagnate' a share or otherwise attack its

location.

Instead, we solve this problem by maintaining 'forwarder' addresses after a trade has taken place.

Since these forwarder addresses take up very little space, and since servers must retain receipts for the

given share anyway, these forwarder addresses are kept until the share's expiration date. (Actually,

this forwarder address can be parsed out of the receipt, so servers really don't need to keep the

forwarder as a separate value.)

Note that when a buddy notification comes in, the forwarder is checked and the notification is

forwarded if appropriate. This forwarding is not done in the case of a document request (which

66

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

includes a buddy check operation), since this document request has presumably been broadcast to

all nodes in the servnet - this means that the node on the other end of the forwarder will also get

its own copy of the request.

We have attempted to distinguish between the design goals of robustness and accountability. The

fact that a document cannot be lost until a certain threshold of its shares have been lost provides a

simple robustness. Accountability, in turn, is provided by the buddy checking and notification system

among shares, which protects against malicious or otherwise ill-behaving nodes. Designers can

choose the desired levels of robustness and accountability independently of each other. Robustness

can be increased by increasing the number of shares for a document or decreasing the associated k

parameter; accountability can be increased by increasing the number of buddies or the frequency of

checking.

5.4.1 Buddy Numbering

The choice of how to number buddies during share creation is a complex one. Our original approach

was to create two near-identical buddies for each share of the document; these buddies would be the

same except one would be labelled as buddy 0 and the other as buddy 1. However, we soon realized

that this contradicts the above goal of using buddies solely for accountability and using extra shares

solely for robustness. The better alternative is to match pairs of shares during document creation:

0 and 1 are matched, 2 and 3 are matched, etc.

Since shares have information about the location of their buddies, there are a number of attacks

that a server can launch to collect both buddies. Once both buddies are located on the same

malicious server, that server can delete them without fear of any repercussions. Thus once a given

share of a document happens to arrive at a malicious node, that node can do trade requests to try

to obtain the buddy. A more subtle approach would be for a conspiring node or set of nodes to do

the trade requests instead, lest the other server become suspicious.

An alternative approach to buddy numbering would be to build a chain: share i has i + 1 as

its buddy, i + 1 has i + 2 as its buddy, and so on. This might make the system more robust, since

the buddies are connected to each other as more than just pairs. On closer inspection, however,

this approach makes the document much more vulnerable to deletion: once an adversary obtains

even a single share, he can iteratively obtain control over each new share in the 'chain', eventually

controlling a sufficient percentage of the document that he can effectively destroy it. Further, after

he owns some share i and also i + 1, he can delete share i because he controls i 1 - this is the only

share which is watching i.

An attempt to salvage this idea might be to build a doubly-linked chain, wherein a given share

i + 1 watches both i and i + 2. However, this approach greatly increases the complexity of share

67

The Free Haven Project Roger Dingledine

Roger Dingledine

monitoring, and does not give any clear advantage over the simpler schemes - in fact, it may even

make the exploit easier for the adversary since he can attack the chain from both ends.

Building an effective accountability system is a complex and challenging problem. The buddy

system is a good start, but it will require a lot more thought and engineering genius before it can

reliably enforce good behavior for servers.

5.5 Composition of a Share

Using an information dispersal algorithm, documents inserted into Free Haven are split into n pieces,

any k of which are required to reconstruct the document. A share contains one of these n pieces along

with information about the specific share and about the document. Specifically, the share contains

the public key of the document, the share number, the share's buddy number, an expiration date

and time in Greenwich Mean Time (GMT), and a signature.

An example of the share format is:

<share>
<PKdoc>cec41f889d75697304e89edbdddf243662d8c784</PKdoc>
<sharenum>1</sharenum>
<buddynum>O</buddynum>
<totaishares>100</totaishares>
<suff icientshares>60</sufficientshares>
<expiration>2000-06-11-22:25:24</expiration>
<data>Ascii-armored characters here</data>
<signature>cec41f889d75697304e89edbdddf243662d8c784</signature>
</share>

Shares have the following characteristics:

o Share information is completely enclosed inside the outermost < share > and < /share >

tags. Data before the < share > and after the < /share > is ignored.

o The public key of the document is placed inside the < PKdoc > tags.

o Shares are numbered 0 through n - 1. The number of each share is placed inside the

< sharenum > tags. This particular share represents share 1 of the document.

o Each share has a buddy share, which is one of the other shares of this document. The buddy

number is placed inside the < buddynum > tags. In this case, the buddy of this share is share

number 0. Because buddies are pairs, then share O's buddy would symmetrically be share 1.

o Each share also includes the total number of shares that were created for this document when

this share was created, along with a value which indicates how many shares are sufficient for

reconstruction. These values are there for convenience, and may well be superfluous.

68

The Free Haven Project

" The actual piece of the document as produced by the information dispersal algorithm and

represented by the share is placed between the < data > and < /data > tags.

" The string inside of the < expiration > tags represents the GMT time when the share is free

to be deleted. This share, for example, will expire at 10:25:24 pm on June 11, 2000. Shares

are not necessarily deleted at their expiration time. Note that we zero-pad the datestamp

- this provides a fixed-width datestamp which may be convenient for reading or automatic

processing.

" The information up to and including the < /data > tag is signed by the cryptography module,

and that value is placed inside the < signature > tags. Specifically, this signature is done by

taking all the tags, removing whitespace between tags, and signing the resulting string.

During the signature operation, the various tags are ordered alphabetically before the external

whitespace is stripped. We do this because we want to maintain the flexibility of using XML as our

share format. XML specifies that the tags can be in any order, with whitespace between them. On

the other hand, our signature must be a signature of a certain set of deterministically ordered bits.

Thus we compromise by building a string which comprises each of the tags ordered alphabetically,

and then signing that string.

5.6 Trading

Share trading is an integral part of the structure of the Free Haven network. There are a number of

reasons why servers trade:

" Greater anonymity: if trades are common, then there is no reason to assume that somebody

offering a trade is the publisher of a share. Even if the mixnet successfully protects the identity

of a servnet operator, nodes could still start rejecting trades from other nodes based on content

of shares they previously provided in trades.

" More dynamic: frequent trading makes adding and dropping nodes transparent. If shares

were just traded once, servnet nodes would have to support extra protocols for dropping out

of the network politely (negotiating a new keeper for the share, informing the publisher of the

move, etc). This support for a dynamic network is crucial, since many of the participants in

Free Haven will be well-behaved but transient relative to the duration of some of the longer-

lived shares.

" Can handle longer expiration dates: long-lasting shares would be difficult to trade away

and rely on, if trading them involved finding a server that promised to be up and available for

the next several years.

69

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

" Accomodates ethical concerns from servnet operators: if there's a particular piece

of data with which an operator does not wish to be associated and he notices that he is

storing a share of that data, frequent trading makes it easy and unsuspicious to trade it away.

Operators that do not have this flexibility would end up just dropping data they don't like, or

not participating in the servnet.

" Provides a moving target: we rely on the security of the mixnet to protect the identity of

servnet operators. However, if trading doesn't happen, an organization will learn that a given

document lives at the other end of a certain mixnet address, and that it has five years to break

it. Encouraging shares to move from node to node through the mixnet means that there is

never any specific target to attack.

Trades are considered 'fair' based on the two-dimensional currency of 'time*duration', plus a

function of the preferences of the servers involved in the trade. For instance, one server might

consider a 1 megabyte share that expires in 2 months to be roughly equivalent to a 2 megabyte

share that expires in 1 month. However, another server might be biased towards short-lived files,

since it prefers to have the opportunity to leave the servnet at short notice. However, the economics

don't have to work this way: it could well be that a given server requires a trade in its advantage

before it's willing to complete a transaction, because it doesn't have much trust in the server offering

the trade. Alternatively, it could be that a server would be willing to make trades where it ends up

with more megabyte-days; such servers might build up a reputation of being easy to trade with.

When a server A wants to make a trade (frequency of trade should be a parameter set by the

server operator), it chooses another server B from its list of known servers (based on trust and

history), and offers a share 4', along with some set of hints describing the share that it is interested

in receiving in return. If B is interested, it responds with a share A) of its own. The negotiation

is finalized by each server sending an acknowledgement of the trade (including receipt, as described

below) to the other. In the above diagram, there are also two other parties involved: C, which is

holding 4 j, the buddy of 4Di; and D, which is holding A,, the buddy of Ak. The 'buddy system',

plus the accountability which it provides, is described in more detail above, in the Accountability

and Robustness section.

If the offered share 4'i is not acceptable, B can simply not respond, or it can respond with some

description of why it refused the trade. This gives some indication of which trades might be accepted

in the future. If B chooses not to respond, however, he runs the risk of having A conclude that he

is a dead node; see Section 5.8.4 below on Node Expiration.

By providing the receipt on the third round of the trading handshake, A makes a commitment

to store the share Ak. Similarly, the receipt that B generates on the fourth round represents a

commitment to store the share 4'i. B could attack A by failing to continue the protocol after the

70

Roger DingledineThe Free Haven Project

The Free Haven Project

A
(D

C

[<DJ(i

[K i

Xk

[Xk

Figure 5-2: Trade handshake timing diagram

third line: in this case, A has committed to keeping the share from B, but B has not committed to

anything. At this point, A's only recourse is to broadcast a complaint against B and hope that the

Trust system does its job to cause others to recognize that B has misbehaved.

We suggest that when a server A trades a share to a server B, server A should keep a copy of

the share around for a while, just in case B proves untrustworthy. This will increase the amount of

overhead in the system by a factor of two or so, and provide greatly increased robustness. In this

case, when a query is done for a share, the system responding should include a flag for whether it

believes itself to be the 'primary provider' of the data, or just happens to have a copy still lying

around. This flag will help with accountability.

One of the design ideas that we considered and rejected was to produce variable-sized shares, and

distribute these shares proportionally to other servers based on trust, reliability, or response time

[68]. This way we would provide more shares to servers who are fast and likely to keep them safely,

so document requests would be faster and more reliable. On the other hand, due to the expected

frequency of trading, shares will be mixed relatively thoroughly around the servnet - which server

the share was first traded to should not make any difference. Indeed, this process also seems to add

a lot of complexity to the system: micromanaging the behavior of each servnet node is not conducive

to a powerful, flexible, and decentralized network.

71

B
Xk

D

[k

\,~ [x

Roger Dingledine

5.7 Receipts

Note that we really are not treating the receipt as proof of a transaction, but rather as an indication

of a commitment to keep safe a given share. This is because the most a given server can do when

it detects a server misbehaving is to broadcast a complaint about it, and hope the Trust system

handles it correctly.

When server A trades share <Di to server B in exchange for share Ak, then server A will generate

a receipt for Ak with the following entries:

* "I am": A

* "I traded to": B

* "I gave away": H(<4.key), i, <bi.exp, size

" "I received": H(A.key), k, Ak.exp, size

* "Timestamp": T

This entire set of five elements is signed by server A. This signature means that B is not able

to forge this receipt. This means that A really must have created the receipt, so if a broadcast is

performed by B (or any other node) complaining about the behavior of A, then furnishing this receipt

along with the complaint will provide some rudimentary level of 'proof' that B is not fabricating its

complaint.

Note that the expiration date of both shares is included within the receipt, and the signature

makes this value immutable. Thus, other servers observing a receipt can easily tell whether the

receipt is still 'valid'. The size of each share is also included, so other servers can make an informed

decision about how influential this transaction should be on their trust of the two servers involved

in the trade.

5.8 Trust Networks

1 This system is built off some amount of trust in the other nodes of the servnet. In particular, the

protocol supports some enforcement of good practice by the other nodes, but there is still plenty of

opportunity for nodes to obey the rules until they are sufficiently trusted, and then start breaking

the rules in subtle ways. For instance, a node might sometimes fail to provide a receipt to a share's

buddy during a trade, introducing confusion as to whether the other side is trying to trick the buddy

into believing that the share had been traded away. More destructive would be for a node to never

'This section was written in part by Brian Sniffen.

72

The FRee Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

query the buddy shares for any of the shares it possesses, or even wrongly accuse a different node

of losing that share. The list goes on and on. However, with careful trust management, each node

ought to be able to keep track of which nodes it trusts; with the cushioning provided by Rabin's

information dispersal algorithm, only a significant fraction of the nodes turning evil at once will

result in actual loss of files.

5.8.1 Protocols for informing neighbors

Each node needs to keep two values describing each other node it knows about: trust and metatrust.

The first, trust, signifies a belief that the node in question will obey the dictates of the Free Haven

Protocol. The second, metatrust, signifies a belief that the utterances of that node are valuable

information. For each of these two values, each node also needs to maintain a confidence rating.

This serves to represent the "stiffness" of the trust value. For example, a node which has Trust 100

but Confidence 1 will be trusted with a great deal of data, but will lose or gain trust rapidly in

response to the utterances of other nodes. Exactly how these values are used is left entirely up to

each node.

Some nodes may wish to set all meta-trusts to zero, thus ignoring all outside utterances. Other

nodes may wish to set confidence values very high, ignoring not only outside utterances but also

direct evidence of wrongdoing.

Nodes should broadcast referrals in several circumstances:

" When they log the honest completion of a trade.

" When they fail to verify that a buddy of a share they hold is safely held.

" When the trust or metatrust in a node otherwise changes substantially.

5.8.2 Getting information

In addition to referrals, the trust system should gain information from the operation of its own node.

Such information must be treated as having a very high metatrust - as we're talking to ourselves,

why would we lie?

The trust system should log all transactions between its own node and others. It needs this

information to determine both when shares have successfully expired and when shares have been

deleted before their expiration date.

5.8.3 Introducing new nodes

One of the most important parts of the design of Free Haven is the capacity to seamlessly inte-

grate new servers. These servers need to be able to join and participate in the servnet simply by

73

The Free Haven Project

installing some simple packages and making contact with public servnet nodes. Such nodes (e.g.

freehaven. org itself) have the option to configure themselves as introducers. While nodes con-

figured with the default settings should ignore communications from unknown nodes, introducers

respond to such communications by querying the new node for its public key and return address.

(Presumably this is some sort of anonymous communications channel, such as a Mixnet.)

Provided with this data, the introducer adds the new node to its database, then broadcasts a

referral of that node. Other nodes are welcome to do what they like with this information. It

is suggested that the initial trust and metatrust values both be zero, with some small amount of

confidence in each. The introducer may also wish to send to the new node a referral for each node

it knows about, thus assisting in keeping the network as fully connected as possible.

From this point, it is expected that existing nodes will attempt to offer trades to the new node,

and vice versa.

5.8.4 Purging old nodes

Over the course of the operation of Free Haven, many nodes will arrive and many nodes will depart.

However, due to the nature of the communications channel we have chosen, there is no way of

knowing if a message does not arrive at its destination through the mixnet. Because of this lack of

bounces, there is no direct way to determine if a remailer address is no longer in service.

To maintain a set of active servnet nodes, we simply keep track of the number of recent trade

requests to a given node which were not answered. After a certain threshold of unanswered trade

requests, we mark that node in the node database as 'dormant'. This means that the node is

not currently responding to trade requests, and so we should neglect to include that node in our

broadcast messages as well. This modification is implemented in the Communications module by

simply skipping over dormant nodes during a broadcast. In addition, the trust module should skip

over dormant nodes when choosing appropriate nodes for trades.

If a trade request or broadcast arrives from a dormant node, then we can conclude that the node

is not actually dormant and resume sending broadcasts and offering trades to this node.

There may be a number of attacks based on the fact that servers might stop sending broadcasts

to a silent node. However, it seems that the only way to prevent a node from responding is to either

control that node or control an appropriate edge in the mixnet. For an adversary with this level of

power over the system, a more thorough denial of service attack would instead be possible.

5.8.5 When to trade

While individual node administrators should be free to change this as they wish, the default Free

Haven installation should base its unit of trust currency on the product of share size and storage

74

Roger Dingledine

The Free Haven Project

duration: megabyte-months. Each host should also grant a small amount of leeway. This allows

new nodes, for example, to be able to trade small shares despite their 0-trust rating.

A reasonable policy will balance trust-increasing trades with low-confidence nodes against guaranteed-

safe trades with high-trust, high-confidence nodes.

5.8.6 Implementation

The Free Haven Trust Module is a library of code accessed by the Haven Module. Because it

acts as the information repository for the Haven module, it makes sense to offload its logging and

querying needs to a relational database backend. Such a backend can be easily shared with the

Communications Module, ensuring coordination of keys and reply blocks. It also makes sense to

store metadata about shares in the database, while leaving the shares themselves in a traditional

file-system. Appropriate tables for the trust portion can be described in SQL as shown in Figure

5-3.

Of particular note, the trades. receipt data is duplicated in the other fields. The receipt itself

needs to be there for rebroadcast in case of betrayal, and for its signature. The other fields have

been extracted from it for quick and easy access.

Based on user configuration and the above-mentioned database, the trust module supports the

following API:

inform-trustdb (struct tag-t *tag-list) Takes in a parsed XML referral and adds it to the

referrals database. See the "Interpreting Referrals" section below for more information.

trust-f ind-tradelhost (char *target-host, char *desc) This call gives the trust db great free-

dom of action: the result should be to find a host we wish to trade with, then write its key

into target-host and a description of a share it might want into desc. This last is obtained

from the sharedb once we have selected a host. In the initial implementation, the choice of

host is random, but weighted towards those with low confidence.

trust-find-trade-host-by-share(char *targetlhost, const char *share) Given a share de-

scription share, we find all the hosts which we'd trust to hold it, then select randomly among

them, weighted towards those with high confidence.

trust-find.desc-for-host(char *desc, char *targetlhost, char *share) This call writes a

share description into desc which we are willing to receive from target-host. In the initial

implementation, this simply describes the limits of our trust of them.

trust -ac ceptshare-phase-one (struct tag-t *tag-list) In the initial implementation, this call

checks on the trust of the offering node, to see if we're likely to be comfortable trading an

equivalent share to them.

75

Roger Dingledine

The Free Haven Project

create table nodes (
id i
key V
replyblock V
trust i
confidence i
metatrust i
metaconfidence i

)

create table trades (
sourcenode i
dest-node i
receipt v
given-keyhash V
given-sizek i
given-exp d
taken-keyhash v
takensizek i
taken-exp d
timestamp d
expired i

)

nteger unique,
archar(4000),

archar(8000),

nteger,

nteger,

nteger,

nteger

nteger references nodes,
nteger references nodes,
archar(4000),
archar(512) primary key,

nteger,

ate,
archar(512) primary key,

nteger,

ate,

ate,

nteger

create table referrals (
target-id integer references nodes,
referrerid integer references nodes,
trust integer,
confidence integer,
metatrust integer,

metaconfidence integer

)

Figure 5-3: SQL Table Descriptions

76

Roger Dingledine

initialize-trust _module(), close-trustdb() These are simple initializers which deal with open-

ing a connection to the database and reading in the configuration file.

The two functions trustf ind-trade-host and trust-f ind-trade-host-by-share are biased

in different directions with respect to confidence. The assumption is that the haven module will

call trust-f ind-tradelost when it wishes to do trust-building trades and serve the priorities of

the trust system, and call trust-find-trade-host-by-share when it wishes to do safe trades. In

accordance with this assumption, we trade with low-confidence hosts when offered the opportunity

to do so, and high-confidence hosts when told it's important.

Interpreting Referrals

When the Trust Module receives a referral of the form [Trust: T, Confidence: C, Metatrust: M,

Metaconf: F] targeted at a node with characteristics [Trust: t, Confidence: c, Metatrust: m,

Metaconf: f], it first checks to make sure it has no other referrals with the same target and referrer

- if it does, those are backed out of the system and replaced with the new referral.

Then we add ((T - t) x M + c) to t, and move c one notch in the same direction - that is, if

we have increased a positive t or decreased a negative t, we increment c, otherwise we decrement c.

Then we add ((M - m) x M + f) to m, and move f one notch in the same direction, as above.

If we do currently agree with the referral (T = t, M = m), we do not change our trust in the

target node at all, but instead increment our metatrust and metaconfidence in the referrer: if that

node agrees with us, it must be worth listening to.

Referrals with receipts In the case of a referral with a receipt, we proceed somewhat differently.

We ignore metatrust issues, and instead proceed as if we had noticed the lapse ourselves: we decrease

our trust in the node which defaulted by the product of the size and the intended duration of the

trade (that is, the difference between the timestamp on the trade and the expiration date of the

share) and increment our confidence in that trust.

We take no action with regard to the metatrust of the referrer; it was acting based on obvious

information, so we have no reason to believe it is particularly wise in other matters..

Gaining Trust Independently

The trust module periodically scans the database, rebuilding trust information. It is in this way

that expired shares are noticed. When a share expires without any sign of having disappeared early,

we increase our trust in the node we traded it to by the product of the size and the duration of the

trade (that is, the difference between the timestamp on the trade and the expiration date of the

share), increment our confidence in that trust, and mark that trade receipt as expired.

77

The Free Haven Project Roger Dingledine

The Free Haven Project

Losing Trust Independently

When the Haven Module fails to verify that a buddy share still exists, it informs the Trust Module.

The respone is the reverse of a successful trade, above: we decrease our trust in the node which

defaulted by the product of the size and the intended duration of the trade (that is, the difference

between the timestamp on the trade and the expiration date of the share), increment our confidence

in that trust, and "squawk."

This "squawk" takes the form of a broadcast referral about this new trust data, including a

receipt for the trade which landed that share at the apparantly corrupt host.

Disagreement When scanning the database as mentioned above, the trust module notices when

it has referrals for a node which are of the opposite sign from its current trust. Such referrers have

their metatrust decreased, to indicate that they are either unwise or untrustworthy.

5.9 Directory Services

One issue we have not yet addressed is the question of directory services. In particular, how do people

get a directory of what's listed in the Free Haven? How is this directory maintained? Doesn't it

need to be secure, distributed, and anonymous, just like the other documents, so we should put it

inside Free Haven?

A document directory has no business being inside Free Haven, for several reasons:

" The nature of the directory is that it's always changing, whereas the data in Free Haven is

designed to be immutable.

" Free Haven emphasizes storage, not accessibility. A directory is generally intended to be

retrieved frequently. Indeed, if the communications medium we choose has high latency, re-

trieving a directory will be a very slow process anyway.

We expect that a number of independent directory services will pop up, in many different juris-

dictions. These directories can be updated (via remailers) by servers as they put new documents

into the Haven, either truly anonymously or signed by a key that a server uses solely for announcing

new documents. (This might even develop a sort of economy of trust for how easily a directory

service believes a new submission.)

If a given directory service is shut down, then the others will persist.

Servnet operators can build up their own directory services based on what shares pass through

their system. If servnet operators help to synchronize and verify shares listed on an external directory

service (informing the service of new shares or incorrect current shares), this may make the service

more stable and useful.

78

Roger Dingledine

The Free Haven Project Roger Dingledine

Indeed, even if there are no directory services at all the system will continue to perform its basic

function: as a reliable mechanism for anonymously storing data. Even if only the original publisher

of a document knows how to retrieve it, then the Free Haven system is still performing a useful

service.

5.10 User Interfaces

5.10.1 Design

2 Interacting with the core Free Haven process, the user interface has three substantial goals: to

provide users with the ability to anonymously insert documents into the Free Haven system, to

provide users with the ability to anonymously retrieve documents from the Free Haven system, and

to allow internet-literate users to easily perform these two operations.

Upon first inspection, the ability of the user interface to insert and retrieve documents may

appear to be a trivial extension of the core trading protocols of Free Haven. The challenges facing

the insertion and retrieval of files from the user interface perspective are somewhat different from

those facing the designers of the core infrastructure, however. The trading of shares in the servnet

requires a two-way transfer and assurance of success, but the user interface - servnet interaction

is only concerned with the transfer of documents in one direction. The user interface must by

definition, however, provide sufficient anonymity to users of Free Haven.

In the case of retrieving a document from the servnet, a user needs only the ability to make an

adequate request of one of the servnet nodes to find shares of the document: a request is considered

adequate if the user provides a hash of a public key of a document that matches a hash stored in the

system In this request, the user also provides the servnet with a reply address. The servnet nodes

with a share of the document, theoretically, simply make a copy of the share and send it off to the

reply block included. If the user has the public key of the file, then the servnet assumes that the

user's request is valid.

Similarly, in order to insert a document into the network, the user must only find a servnet node

willing to accept his document shares. One option is to have servnet nodes who are always willing

to accept new documents and publish them into the Free Haven system. This option is currently

in use with http: //f reehaven. net being the servnet node willing to accept new documents. Un-

fortunately, this option does not provide the highest level of anonymity. Another option would be

to simply query servnet nodes about their willingness to accept a document. This option would

provide slight more anonymity at the expensive of having to iterate through all of the known nodes.

2 This section was originally drafted by Todd Kamin.

79

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

For the first pass user interface, more consideration was given toward creating an interface that

was easy to use and relatively simple to build than toward providing maximum anonymity.

5.10.2 Implementation

Currently, the Free Haven user interface must reside on a Free Haven node. The user interface

consists of a perl script, called handler .pl, which is invoked through CGI. An HTML document

contains the appropriate form syntax and information necessary to invoke the user interface on a

particular Free Haven node. The remote execution of the user interface perl script is made possible

through a web server that allows CGI execution. The Free Haven node must be running a web server

configured to allow CGI requests in order for users to access Free Haven.

The two necessary user interface operations are the ability to insert a document into the Free

Haven system and the ability to retrieve that document from the system. These two operations

require completely different actions to be taken, and thus are implemented somewhat independently

of each other.

Inserting a Document

In order to insert a document into the Free Haven system, a user first brings up the appropriate

form. An example form can be found at http: //web. mit . edu/www/tkamin/form. html. Using the

bottom of this form, the user selects a document for upload. Note that the current implementation

only allows for insertion of text files into Free Haven. The user also has the option of setting the time

to expiration of the document. (The default time to expiration is 4 weeks.) By choosing the time to

expiration of the document, the user is given a promise that the document will not be deleted for

that amount of time. Pressing the submit button causes the time to expiration and the document

to be delivered to the CGI program. The current version of this CGI program can be found at

http: //f reehaven.net/f reehaven-cgi/handler.pl. This CGI program is a perl script running

on a Free Haven node; it effectively represents the "user interface."

With the information provided in this "insert" request, the user interface perl script produces

shares for insertion into Free Haven. The user interface first proceeds to split the document using

Rabin's Information Dispersal Algorithm [84] into a specified number n pieces with k (k < n) being

required to recreate the document. The values of k and n are specified in the file cgi. conf and can

be easily changed. The user interface then converts the output from the IDA program into shares

according to the "composition of shares" specification. The expiration date is determined by adding

the time to expiration and the current GMT time. Once the share is built up to the < /data >

tag, the user interface uses the Simplified Wrapper and Interface Generator (SWIG) [32] to invoke

a method in the cryptography module that provides a unique signature. The user interface appends

80

Roger DingledineThe Free Haven Project

The Free Haven Project Roger Dingledine

the signature and closes the share. Each share is placed in a separate file.

By making the assumption that handler .pl will reside on a Free Haven node, the user interface

script is able to communicate with the haven module through files placed in a prespecified directory.

The share files built by the user interface contain sufficient information to be uploaded directly into

Free Haven. The user interface moves the files containing shares to the preconfigured directory. The

haven process eventually (more precisely, each time a trade is offered) comes along and uploads these

shares into the servnet. Lastly, the user interface returns to the user an HTML page containing the

public key of the document and the hash of the public key of the document. (For security and

anonymity purposes, we may wish to configure this script later to never notify the user of the actual

public key which was used to create his shares.) The user will need to keep the hash of the public

key of the document in order to retrieve the document.

Retrieving a Document

The functionality for retrieving a document is provided through the same form and perl script that

is used for inserting a file. The form provides input fields for whatever information it may need to

retrieve the shares of a document and deliver them to the user. In particular, the user must provide

the hash of the public key of the document, some remailer reply block, and optionally some public

key with which the shares can be encrypted. This information is then sent using post to the user

interface.

After receiving the public hash of the file and the remailer reply block from the CGI request,

the user interface script builds a message for broadcast to all of the Free Haven servnet nodes. This

message includes the hash of the public key of the document and requests that all shares having

matching hashes be sent to the reply block. The user interface arranges for the message to be sent

to all the nodes through the comm module. The Free Haven nodes that have the requested shares

are encouraged, but not required, to send their shares to the included reply block. Because shares of

the document (instead of the document itself) are sent to the reply block, Free Haven will provide

a script for the user to recombine a document's shares.

81

The Free Haven Project Roger Dingledine

Chapter 6

Communication Module and

Protocols

1 This section details the design and implementation of a communications module for Free Haven,

serving as an interface between the anonymous publication system and its corresponding anonymous

communications channel(s).

6.1 Module Design

An anonymous communications channel is used to carry messages between servnet nodes. In order to

provide an abstraction for the specifics of our communication channel, we provide a communication

module that interfaces with both the outer anonymous channel and "inner" haven module, which

provides the actual document publishing, storage, and retrieval functionality.

There are a number of required operations for the communications module - sending messages,

broadcasting messages, naming nodes for message delivery, adding nodes, and removing nodes -

and desired goals - low latency, delivery- and routing-robust, resistant to attack, and decentralized.

While many of these operations and goals are inherently part of the communications channel, the

module should provide a flexible and robust interface layer between the two subsystems.

6.1.1 Supported Module Operations

Specifically, the comm module must support the following operations or characteristics:

'This chapter was originally written by Michael Freedman.

82

The Free Haven Project

" The comm module should send data to haven when it becomes available from the communi-

cations channel.

" The comm module should send data to the communications channel when it becomes available

from the haven module.

" Messages can arrive simultaneously from the communications channel.

" Messages can arrive from the haven module simultaneously with messages arriving from the

communications channel.

" Messages on a socket can arrive in a delayed manner.

" The haven module can fail unexpectedly, but comm should still continue normal operation and

reconnect to haven when it becomes available again.

6.1.2 Module Data Structures

The communications module has several associated data structures:

" Incoming Feeder Queue: List of {socket, filedesc, filename} tuples that correspond to

feeder programs currently being processed by the communications module.

" Haven Message Queue: List of messages that have arrived from the communications chan-

nel, awaiting transmission to the haven module.

" Node Database: Database of information stored for all known servnet nodes.

Key: Hash of public key

Value:

- Public key

- Waiting message queue: List of filenames queued for each node in the database,

corresponding to outgoing messages from the haven module.

- Length of queue

- Cost: Total "weight" of waiting messages in queue

- Communications channel type: Mixmaster, ZKS, etc.

- Address / routing info: Reply blocks, pseudonyms, etc.

- Statistics: Timeout and availability considerations

83

Roger Dingledine

Roger Dingledine

6.1.3 System Modularity

The Free Haven design stresses modularity between various pieces of the system - The haven mod-

ule, the comm module, the trust module, the crypto module, the ui, and the actual communications

channel - providing a strong separation of function. While the initial proof-of-concept implementa-

tion of Free Haven will assume a 1:1 haven to comm module relation, with both processes running

on the same machine, this relationship is not necessarily fixed. Indeed, with only slight modification

to the actual socket code, our design allows for several haven process to share a single network

comm process interfacing with different communications channels. In order to support this scenario,

we should not assume a secure connection across the comm-haven socket. Instead, all data across

this socket uses both public-key encryption for security and base-64 encoding within data blocks to

ensure proper user-formatting of information.

6.2 Module Implementation

In Chapter 2 we discussed the anonymity offered by various anonymous channels; in Chapter 8 we

will suggest some other possible channel designs. The current implementation, however, utilizes the

Mixmaster remailer [35]. Mixmaster was chosen because of its simple command-line interface, strong

anonymity offered through Chaumian mixing, protection from traffic analysis and other attacks due

to its high latency, message padding, and packet reordering and buffering within nodes. Furthermore,

Mixmaster is freely available, making it quite suitable for an open project such as Free Haven.

The code base allows for the easy incorporation of different mixnets and other anonymous com-

munications channels, by adding simple switching logic to the do-transmit function and specifying

the proper mixnet type and address in the node database. Indeed, the only primitive that we require

is a generalized send function. Therefore, a servnet node can actually specify the communications

channel on which it wishes to communicate.

The comm module implementation also provides database flexibility. We provide an abstraction

layer on top of the Node DB, separating any database-specific operations from the user. The

GPL-released gdbm is currently used in the initial implementation; a relational database of greater

functionality is being considered for further development.

6.2.1 Implementation Pseudocode

The communications module provides an "always-on" module to handle incoming and outgoing

messages from a servnet node. The basic operation of the module is as follows:

* Create a non-blocking listening tcp socket for incoming communications for feeder programs.

These feeders are system processes that will pass messages from the communications channel

84

The Free Haven Project

The Free Haven Project

to the Free Haven communications module.

* Loop on the following control structure:

1. Connect to haven socket. If this socket is not available, continue processing available

information and try again upon next iteration.

2. If data available on haven socket, process the outgoing message.

(a) If message is of type broadcast, enumerate the list of non-dormant servnet nodes

and transmit the message to each node.

(b) If message is of type transmit, enqueue the message within the node's waiting mes-

sage queue for later processing.

(c) If message is of type introduce, add the corresponding information about a new

node to the node database.

3. If new feeder attempts to connect to non-blocking incoming socket, enqueue the new

feeder.

4. For all feeder sockets on which data is available:

(a) Read all the information from the socket into the feeder's corresponding file.

(b) If the feeder has reached EOF, place the file into the haven message queue and close

the feeder.

5.

6.

Send incoming messages to the haven module, extracting from haven message queue.

Transmit waiting messages for a node, concatenating and padding to reach a total packet

size up to a random or statically-assigned length. Any messages that cannot fit within

this buffer remain in the waiting messages queue for later transmission.

85

Roger Dingledine

The Free Haven Project Roger Dingledine

/* Communications Handling Functions */
void handle-ports(int incoming-port, int listen-socket, int haven-port);
void createleeder-entry (int newlfeeder-socket);
void process-feeder-entry(struct feedert *feeder, struct feeder-t *previfeeder);
void enqueue-haven-message (char *filename);
void processifreehaven-message (char *filename);
void process-internal -message (char *filename);
void sendifiletolhaven(char *filename);
void exit-commo;
/* Transaction Functions */
int transmit(struct tagt *tagjlist);
int dotransmit(char *PK);
int broadcast(struct tagt *tag-list);
/* Node Database Functions */
void initializemnodedb(void);
datum constructgdbm-entry(struct nodedb-entry-t *entry);
struct nodedb-entryt reconstruct nodedb-entry (void *noded-value);
int node-changePK(char *hPK, char *newPK);
int node-add-new.node(char *hPK, char *PK, char *address, char *mixnet, int statistics);
struct message-queuet* node-get -message-queue (char *hPK);
char* node-getPK(char *hPK);
char* node-get-mixnet(char *hPK);
char* node-get-address(char *hPK);
char* node-get-busiestPK();
int node-add-waiting-rnsg(char *hPK, char *filename);
int node-get-waiting-msgs(char *hPK);
int node-set-statistics(char *hPK, int statistics);
int node-get-statistics(char *hPK);
void freemnode-msgs(struct nodedb-entry-t nodedb-entry);
void close-nodedbo;

Table 6.1: Communications Module API

86

The Free Haven Project Roger Dingledine

The Free Haven Project

6.2.2 Design Discussion

The communications module itself requires access to the crypto module. Communications between

the haven and comm modules should be ASCII-armored with base-64 encoding, as the messages

use standard XML format with data delimited by begin < tag > and end < Itag >. Using base-

64 encoding stops an user from placing < or > symbols into the internal data block, which might

confuse message parsing. Furthermore, communications between the haven and comm are encrypted,

to provide for the option of distributed module processes and multiple haven processes per comm

process.

The communications module also needs to perform any necessary message encryption or en-

coding necessary, based on the type of communications channel used. For the current Mixmaster

implementation, the comm process performs layered encryption of the message data. This layered

encryption method - or "onion routing" - is the standard Chaumian mix-net technique to ensure

anonymity. First, the sender chooses a route through the mixnet: Source S -+ Node A -+ Node B -+

Node C -+ Destination D pseudonym. Second, the sender signs the message with its private key pks

and possibly encrypts via the destination's public key PKD. Then, the sender encrypts the message

and next-hop information along the mixnet in reverse: encrypt with PKC, then encrypt with PKB,

and finally encrypt with PKA. Therefore, only the proper node in the mixnet can decrypt the top

layer of the message, exposing next-hop information and the proper onion message to relay. In other

words, the encryption layers are unwound (or peeled like an onion) during mixnet transmission,

before the message is relayed to its destination. The destination reply-block or pseudonym specifies

a path to an explicit servnet node. Once the message arrives at the destination servnet node, the

node decrypts the message using pkD and verifies the sender's signature.

6.2.3 Optimizations

The communications module performs several efficiency and anonymity optimizations. First, haven

message queues are built up within the comm process, and iteratively dequeued and sent to haven,

protecting against bursty transfers from the communications channel.

Second, broadcasts can be requested by the haven module by merely calling a broadcast primi-

tive, as opposed to querying for a list of available nodes, extracting each node's route and encrypting

the message according to that route, then performing the transmit operation on each message. A

single broadcast call decreases the quantity of socket-level requests from 0(n) to 0(1), where n is

the number of available nodes.

Third, messages are queued during transmit for each node. One node is chosen at random

(while attempting to ensure semi-fairness among nodes) to transmit its messages along to anonymous

communications channel. Messages are concatenated and padded to a specific or random length to

87

Roger Dingledine

The Free Haven Project Roger Dingledine

protect against message volume attacks. The act of enqueueing and concatenating messages reduces

the number of messages to a specific node, possibly adding some protection against traffic analysis

that seeks sender/receiver linkability. Furthermore, the random choice of a node during that time

iteration adds some latency to haven outgoing messages, especially under high load. This technique

may also protect against some form of traffic analysis, especially in light of multi-step Free Haven

protocols, such as trading or buddy 'squawking'.

88

The Free Haven Project Roger Dingledine

Chapter 7

Adversaries and Attacks

While explaining the motivations behind an anonymous publishing system like Free Haven, we

enumerated a number of possible adversaries, diverse in both goals and resources. Several of the

types of attacks that may be employed cannot be handled merely through technology: these include

social attacks on system security and servnet node operators, political attacks to discourage servnet

use, and government and legal attacks to shut down nodes or arrest operators. The success of

these attacks will often depend upon the political and jurisdictional clime of servnet nodes' physical

location. On the other hand, the success of technical attacks - from individuals, organizations,

corporations, or national security agencies - is contingent upon the system's security and robustness

to attack.

We have defined anonymity in terms of our ideal anonymous publishing system in section 2.

In doing so, we specified a list of protections to provide for system agents and operations. This

section describes the various types of attacks an adversary or group of colluding adversaries might

use against Free Haven, relating the effect of these attacks on the level of anonymity maintained.

There are three primary modes of attack: on the communcations channel, on the Free Haven

servnet, and on individual files. As the security and anonymity of a system are only as strong as its

weakest link, we have considered all three of these, and take appropriate countermeasures for many

of these attacks.

7.1 Attacks on the Communications Channel

1 Adversaries operating on the communications channel may seek to weaken one of the five types of

communication anonymity: sender-anonymity, receiver-anonymity, unlinkability between sender and

'This section was written by Michael Freedman.

89

The Free Haven Project Roger Dingledine

receiver, node-anonymity, and carrier-anonymity. We consider both passive and active adversaries,

attacking nodes within the communications channel, internal links between nodes within the channel,

and endpoint links from the channel to users (i.e., the sender or receiver, which are both servnet

nodes in the case of Free Haven).

7.1.1 Communications Nodes

The following attacks assume an active adversary that controls one or more nodes within the com-

munications channel:

" Denial of Service Attack: An "evil" node within the communications channel can selectively

drop messages/packets that it receives at will.

Prevention: There is basically nothing a system can do to stop a node from behaving in such

a manner; however, users can occasionally "ping" various nodes to determine response time.

If a node drops a sufficient number of packets and cannot differentiate between ping and data

packets, users will come to realize that the node is not reliable and will stop using it.

Many sources maintain statistical information on the reliability of mixnet nodes, especially

Cypherpunk (Type I) and Mixmaster (Type II) remailers [35]. The most common of these

networks use only a small number - a dozen or two - public remailers that are known. Naive

denial of service attacks would be noticed.

" Traceroute Collusion Attack: A corrupt coalition of nodes within the system collude in

order to trace certain messages through the communications channel. An "evil" node receives

a message, knowing the IP address of both the last-hop and next-hop. Given the ability

to collude with a sufficient number of nodes that have received the same message, the path

through the communications channel can be traced, as well as ultimately finding the message

sender or receiver.

Prevention: An ideal anonymous communication system will be distributed, as any corrupted

central system risks the exposure of both sender and receiver. For a distributed system, a

route traversing k nodes preserves anonymity given a maximum of k - 1 adversaries along this

path. This protection also requires that adversaries cannot track a message across one hop,

requiring both that the message changes across every node and adversaries cannot perform

effective traffic analysis.

" Cut-the-Channel Collusion Attack: Similar to the traceroute attack, adversaries need to

control a majority of nodes or bottlenecks within the communications channel. If these evil

nodes drop packets and perform denial of service on a large scale, an adversary can watch which

90

Roger DingledineThe Free Haven Project

connections remain, recognizing more easily the normal communications path used between

two users.

Prevention: Similar to other collusion attacks, a distributed system with many independent

operators reduces the possibility of a large number of colluding node adversaries. System users

can recognize the widespread failure of nodes and stop using the communication channel.

Obviously, this presents a system-wide denial of service attack, affecting the users' overall

trust in the system.

* Traffic Mangling Attack: To perform a traffic mangling attack, an adversary requires

control of nodes at the edges of the communications channel. When an entry node receives a

message from a sender, it mangles the message such that transmission or routing will occur

properly, but an exit node on the other edge of the communications channel can recognize the

mangled message. The colluding nodes can communicate outside of the normal channel, and

establish sender-receiver linkability and IP correlation. Therefore, this attack does not require

a large control over the system, such as the traceroute collusion attack, to link communicating

agents.

Prevention: There are two main defenses against this type of attack. First, message packets

should be encrypted or encoded in such a way that any change by a node - the packet mangling

itself - will be detected by other nodes, and the packet discarded. This defense relies on the

assumption that not all nodes along the message's path are compromised. Many existing

systems (e.g., Onion Routing, Freedom) use symmetric key link-layer encryption to counter a

traffic mangling attack. Second, strong partial anonymity is a defense mechanism against this

attack. Namely, if an "evil" node cannot determine whether it exists at the true edge of the

communications channel (i.e., it cannot tell if the agent from which the message arrives is the

initial sender), the node can only reveal some k-anonymous set of possible senders or receivers.

Form-based proxy systems (Anonymizer, LPWA) cannot really be analyzed in terms of these

various forms of attack. Indeed, these systems basically rely on a single trusted third party: the

proxy itself. If an adversary manages to take control of the proxy, both sender-anonymity and

receiver-anonymity are lost, and linkability between the two is also established. Carrier- and node-

anonymity are only relevant to distributed systems.

7.1.2 Communications Channel Links

This section describes a number of attacks that an adversary may perform on links within the

communications channel. The adversary's goal is to determine a message's sender or receiver, or to

provide linkability between the two agents. Many of these attacks hold the greatest risk to systems

91

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

attempting to achieve full n-anonymity, where n is the number of system users. In the case of systems

that provide partial anonymity, an adversary may gain information from traffic analysis or a similar

attack. Yet, the adversary only reveals a k-anonymous set (k < n), describing an probabilistic

distribution of anonymity, where k identities are below entropy threshold and thus "exposed." Let

us consider the following attacks:

" Computational Attack: An adversary can sniff a link within the communications channel,

and thus be able to read anything that is sent over that link. Presumably, both the data

and transmission path are encrypted. To ensure the anonymity of sender and receiver agents,

an adversary should not be able to easily determine this transmission path. Various levels

of anonymity result from the security of the path's encryption and encoding. Obviously, this

attack can also be performed at nodes within the channel or at its edges.

Prevention: For naming schemes which rely on computationally-secure reply blocks or pseudonyms,

an adversary with sufficient computing power can eventually decrypt the name and determine

agent identity. If the communications channel relies on partial anonymity, successfully de-

crypting the name will only reveal a k-anonymous set of possibilities.

" Message Coding Attack: An adversary can trace or link a message that does not change

its coding during transmission. If links can be passively monitored, the listener can determine

the path that a message takes through the communications channel. Obviously, this attack

can also be performed by colluding nodes within the channel, but this attack does not require

that much penetration into the system.

Prevention: An end-to-end encoding or encryption scheme is used by the sender, such that

the message changes across each link in the communications channel. In a distributed system,

a link-to-link scheme is not sufficient to prevent collusion attacks, as messages need to be

different at the edges of the channel to protect sender/receiver anonymity.

" Message Volume Attack: An adversary can analyze traffic across a link and examine

packet size. If a message of the same or similar length is detected traveling through various

communications links, a global observer can determine the transmission path and ultimate

sender/receiver.

Prevention: All messages in the system should be of the same size or of a random size. Messages

should therefore be padded with random bits, or concatenated with other messages and padded

to the specified size.

" Traceroute Replay Attack: Within an anonymous communications channel, messages are

transmitted to a given reply block or pseudonym of the receiver. An attacker listening on the

92

Roger DingledineThe Free Haven Project

link can record messages that pass by, and then attempt to forward traceroute the channel by

flooding the system with the replayed message. Similarly, if some reply path or nym is given

for the sender, the adversary can try to reverse traceroute the message by flooding the sender.

The attacker can then perform traffic analysis to detect which links within the channel, or

edges of it, see a rise in traffic. This rise in traffic suggests the message's route.

Prevention: To stop forward traceroute replay attacks, a nonce should be included in each

message, and nodes should not resend a message that has already been sent. Nodes would

be required to store a "graveyard" of used nonces to lookup. Also, an attacker must not be

able to change the included nonce. The system can protect against reverse traceroute replay

attacks by only including a way to reach the sender if a reply is necessary, as well as making

this information only available to the receiver.

e Intersection Attack: An adversary may trace user identities by examining usage patterns

over a long period. Similar to distinguishing characteristics of a speaker, users may manifest

distinguishable behavior. For example, they may exhibit typical on-line/off-line periods, utilize

similar resources over time, contact the same destinations or Internet sites regularly, and so on.

If any distinguishing characteristics are transmitted (i.e., pseudonyms, Cookies), an adversary

can link past and future communications to the specific user with greater certainty.

Prevention: We cannot determine any protection against this type of attack. Others have

questioned if this problem is even solvable [17].

* Sniping and Cut-the-Internet-Backbone Attacks: This attack is similar to the cut-the-

channel collusion attack between nodes. An adversary has the ability to snipe specific links

with the system for selective denial of service, or bring down large segments of the Internet to

destroy inter-node links within the communications channel. The attacker can then see which

connections of interest remain and perform traffic analysis.

Prevention: This attack is beyond the resources of many individuals and organizations. A

sniping attack might help an adversary perform traffic analysis to some degree; if the attacker

has the ability to cut any link at will, they can eventually expose senders and receivers.

However, national intelligence agencies are probably the only organizations able and willing to

"Cut-the-Internet-Backbone."

7.1.3 Communications Channel Edges

This section describes a number of attacks that both active or passive adversaries may perform

on edges of the communications channel. The edges of the channel correspond to links between a

93

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

communicating agent (i.e., sender, receiver) and the immediate node within the channel to which it

communicates.

Timing Attack: An adversary can attempt to link a specific message between two parties

by watching endpoint send and receive actions. Given the would-be transmission time of this

message, the attacker can consider the correctness of these two endpoints.

Prevention: A message can only be protected from a timing attack by hiding the message

with others. The linkability between sender and receiver can obviously be established if only

one message is transmitted within a certain time period. This protection is established by

introducing latency, adding dummy messages, or reordering packets.

Unless system load is extremely low, a timing attack is likely to expose linkability only with

real-time services. Many systems - such as the original Chaumian mix - are based on sendmail,

already having quite high and variable transmission time. However, systems designed to allow

telnet, Web browsing, IRC, and other such services risk linkability from timing attack.

Adding a variable delay decreases the ability to perform timing attacks given a reasonable

system load. However, the system has a higher latency than necessary, and the system is still

open to traffic analysis attacks, especially if the number of messages across the channel remains

small.

Dummy messages can be transmitted instead to remove this unnecessary latency, adding load

to the system. If adversaries are given only a possible transmission duration, this solution

increases the difficulty of correlating times to specific messages. Dummy messages are an end-

to-end solution, whereas link-level garbage can be recognized and thereafter ignored by an

adversary that watches the endpoints.

Lastly, communication channel nodes can reorder packets when they are received. Nodes store

n packets. Upon receiving more packets, the node chooses some k packets at random from

this (n + k) pool and sends them out.

* Trickle Attack: An adversary has complete active control of all the edges of the communi-

cations channel. The adversary stops all incoming messages from entering the channel except

one. The next incoming message is not released until the first message is detected along some

edge exiting the channel. As only one message is transmitted through the channel at once, the

global observer can establish linkability between sender and receiver.

Alternatively, an adversary can achieve active control over all the links of some internal node

within the channel. This type of attack is more easily attained than system-wide control, and

allows attacks as described in section 7.1.1.

94

Roger DingledineThe Free Haven Project

Prevention: We cannot determine any protection against this attack for communications chan-

nels which provide an explicit mapping of names to sender/receiver agents. For systems which

provide partial anonymity even after exposure, the "edge" of the communications channel only

reveals a k-anonymous set of possible receivers.

* Identification Flooding Attack: An adversary can flood with the system with identifiable

packets. A message can only remain hidden within the context of other known messages.

During normal operation, each system user would send only one message during each time

interval, thus producing an independent set of anonymous messages. However, if an attacker

floods the system and fills a node's reorder buffer with n packets, it removes the node's defense

against timing attacks and allows a certain message to be more identifiable.

Prevention: A flooding attack is very difficult to defend against for practical Internet systems.

Ideally, the system would be able to establish a unique, anonymous identity for each of the n

users that send messages during one transmission interval. Performing adequate authentication

of message senders while maintaining anonymity is a difficult problem. Possible solutions

include the use of pseudonyms for partial anonymous systems, requiring that adversaries cannot

control a significant number of pseudonyms. Similarly, some form of blind signature scheme

can be used for anonymous authentication.

" Traffic Flooding Attack: Similar to the identification flooding attack, an adversary sends a

large number of messages into the system to greatly increase traffic along certain paths. The

adversary then proceeds to measure a rise in traffic along the communications channel's edges

or along internal links. This form of traffic analysis suggests the route taken to reach a specific

reply block or pseudonym receiver.

Prevention: The system should ensure that an equal number of packets are sent between

each link during some time interval, by either introducing dummy packets or latency. This

protection is similar to that used for timing attacks. However, maintaining steady traffic along

the edges of a communications channel is more difficult, given the possibility of very bursty

traffic. The system can add dummy packets to the endpoint, but would then require client-side

filtering.

" Pseudonymity Marking Attack: An adversary masquerades as a normal user and dis-

tributes unique names to other distinct agents in the system. These unique names correspond

to different reply blocks or pseudonyms, such that the last hop of the transmission path is

different for each name. The adversary can then correlate the last hop of the received message

to a specific sender. Linking a sender agent to an individual user or IP address remains a

separate problem, unless this can be determined during name distribution.

95

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

Prevention: This attack is only viable against a communications channel in which the receiver

has an explicit transmission path, such as with remailer reply blocks, as opposed to multi-cast

or random-walk functionality. Secondly, a sender can defend against this attack by getting

the receiver's name from a third party - such as another trusted agent or some specified

meeting-place for name distribution.

* Persistent Identity Attack: The persistent identity attack is not an attack per se, but rather

an inherent anonymity weakness with any persistent naming infrastructure. If an adversary

manages to disclose user information with any of the attacks we have enumerated, the adversary

can correlate any future use of this name with the exposed individual.

Prevention: System agents - senders and receivers - should use dynamic naming to provide

forward anonymity, or rely on a partial anonymity scheme such that disclosure of agents only

reveals a k-anonymous set of possibilities.

" The Need for "Recipient-Hiding" Public Key Encryption: We call a public key cryp-

tosystem recipient-hiding if it is infeasible to determine, given a ciphertext, the public key used

to create that ciphertext. The recipient-hiding property is not implied by the standard defini-

tion of semantic security (even with respect to adaptive chosen ciphertext attack). Moreover,

it is not even achieved in common practical constructions. This has implications for mixnets

which use reply blocks that are separate from the body of the message.

To see that semantic security and recipient hiding are independent, consider any semantically

secure cryptosystem C. Construct the cryptosystem C' which is just like C in every way, except

that it appends the public key used to encrypt to every ciphertext. All messages produced by

C' with the same public key are indistinguishable from each other if the messages produced

by C are, and so C' is semantically secure - but it is the very opposite of recipient hiding.

In practice, mail programs such as PGP tend to include the recipient's identity in their header

information. Even if headers are stripped, David Hopwood has pointed out in the case of RSA

that because different RSA public keys have different moduli, a stream of ciphertext taken

modulo the "wrong" modulus will tend to have a distribution markedly different from the

same stream taken modulo the "right" modulus. This allows an adversary to search through

a set of possible public keys to find the one which is the best fit for any ciphertext, even if

OAEP or similar padding is used.

In mixnets which provide reply blocks, the reply block is often treated as opaque(for example

Babel [41]) and prepended to the message to be sent. This means that the message is available

for inspection by each intermediate hop with no processing at each hop; for this reason the

message is often encrypted with the public key of the recipient. The point of a reply block is to

96

The Free Haven Project Roger Dingledine

provide a chain of mix nodes between the sender and the recipient, in which intermediate nodes

are supposed to know neither the sender nor the receiver. If the recipient can be identified

by simply inspecting the message, then every single intermediate node knows the destination,

and knows approximately where it is in the reply block. This may leak an undesirable amount

of information about the mixnet.

Prevention: Rivest suggested that randomized cryptosystems (such as the Goldwasser-Micali

cryptosystem) might possess this property. Independently, Lysyanskaya and Wagner proposed

a version of ElGamal in which all parties share the same modulus as a concrete example.

There is a formal definition of recipient-hiding proposed on sci.crypt by Hopwood [43], with

application to showing that a variant of Bellare, Abdalla, and Rogaway's DHAES scheme

[1] achieves the recipient-hiding property, along with a variant of RSA in which moduli are

generated to be close together. It seems that recipient-hiding cryptosystems may not be that

hard to construct, once the requirement is recognized. The problem is that because previous

systems were not designed with anonymity in mind, commonly deployed cryptosystems may

not be recipient-hiding.

7.2 Attacks on the Infrastructure and Documents

7.2.1 Attacks on Documents or the Servnet

" Attack the time-synchronization protocol to make files expire earlier than expected.

Prevention: We rely on the ability of servnet node operators to maintain accurate or near-

accurate time on their systems. Presumably if an adversary has the capacity to successfully

attack a system's time server or the link to the time server, then the adversary can do other

attacks as well. This is something for servnet node operators to bear in mind, though, since

some additional checks to make sure the time cannot be changed by very much delta per time

period could well make Free Haven more robust.

" Go find a physical servnet node, and prosecute the owner based on its contents.

Prevention: Because of the isolated-server document-anonymity property that the Free Haven

design provides, we hope that the servnet operator will be able to claim plausible deniability

over knowledge of the data stored on his computer.

" Physically destroy a servnet node, to attack the integrity of the data in the network.

Prevention: Because we are breaking documents into shares and only k of n shares are re-

quired to reconstruct the document, losing some fraction of the servnet nodes should not

affect availability of documents in the system.

97

The Free Haven Project Roger Dingledine

" Claim that the servnet or mixnet concept is patented or otherwise illegal. Sue the Free Haven

Project and any known node administrators.

Prevention: We rely on the notion of jurisdictional arbitrage to maintain the integrity of the

servnet in the face of loss of some parts of it due to legal or government attacks. Information

illegal in one place is frequently legal in others. Global oppression of a piece of information

is relatively rare. The content-neutral policies mean that there is no reason to expect that

the server operator has looked at the data he holds, which might make it more difficult to

prosecute.

" Attack the generosity of individuals: increase the personal cost of running a servnet or mixnet

node, either by adding a monetary cost to moving large quantities of data around, or by adding

a bad reputation such as "harboring terrorist data and kiddie porn".

Prevention: Owning a node of this service is going to put an administrator in a potentially

tricky situation. We rely on the Hacker ethic and a commitment to free information flow to

provide volunteers who believe these risks are worthwhile.

* Denial of service attack on the servnet: continued flooding of queries for data or requests to

join the servnet may use up all available bandwidth and processing power for a node.

Prevention: In short, we must assume that our communications channel has adequate protec-

tion and buffering against this attack. Most communications channels we are likely to choose

will not protect against this attack. This is a real problem.

STrade unti a sufficiet+ fracticn of an objectionable document is controlled by a group of

collaborating servers, and then destroy this document.

Prevention: We rely on the overall size of the servnet to make it statistically unlikely for

any given server or group of collaborating servers to obtain a sufficient fraction of the shares

of any given document. We really on the accountability from the buddy system to make it

unprofitable to destroy a share without also destroying its buddy. This attack is actually more

complicated than just hoping to possess enough shares of a document at a given instant in

time: adversaries can obtain control over certain shares and then refuse to trade those shares

away. This means that an adversary might over time increase the fraction of the document

that he controls. The timing and frequency of trades must be modelled, based on the expected

size of the servnet, to choose parameters that prevent this attack.

* Conspire to make a cause "unpopular". Convince servnet node administrators that they don't

want to be hosting data for these unpopular causes, and that they should manually prune their

data.

98

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

Prevention: We rely on the judgment of servnet administrators to choose to support any and

all content, if they can get away with it in their jurisdiction. We rely on having enough servnet

nodes in enough different jurisdictions that organizations cannot conspire to bully a sufficient

fraction of servers to make Free Haven unusable.

o Insert false shares of a file into the servnet.

This is not really an attack per se, because there is no such thing as a false share. Any set of

bits at all is an acceptable share, if you can convince another node to accept a trade for it and

provide a receipt. On the other hand, trading away a share implies a contract to store some

other share. Thus the ability to insert shares, whether 'false' or valid, is limited by the ability

of that server to provide space for the share it receives in return.

Altering (or 'spoofing') a share cannot be done, because the share contains a particular public

key, and is signed by that key; without knowledge of the original key which was used to create

a set of shares, an adversary cannot forge new shares for a given document.

7.2.2 Attacks on Anonymity

In addition to the above attacks which focus on reducing availability of documents within Free

Haven, there are also a number of attacks which focus on increasing knowledge of the identity of

one of the agents in Free Haven.

o Attacks to determine the identity of a reader include:

- Spread a Trojan horse, worm, or virus and look for signs that somebody has been infected.

- Develop a customized virus which automatically contacts a given host upon execution.

- Become a server, and provide extra information for document responses. We hope the

mixnet will protect against most attacks of these sort, but the mixnet cannot protect

against end-to-end attacks.

- Become a node on both the servnet and the mixnet, and attempt an end-to-end attack,

such as correlating message timing with document requests.

- Include mime-encoded URLs in a document, and exploit reader software to automatically

load these URLs.

- Offer a large sum of money for information leading to readers of a given document.

- Attack to find people interested in a particular document: claim to have one, and see

who requests it.

- Become a server, and simply monitor queries and record the source of each query.

99

The Free Haven Project Roger Dingledine

100

Roger DingledineThe Free Haven Project

- Correlate readers based on the material they download; try to build statistical profiles

and match them to people (outside Free Haven) based on activity and preferences. This

would develop into a directed marketing campaign similar to Amazon's: "People who have

downloaded this share may also like the following shares." This last attack is perhaps the

most insidious one, since corporations with a lot of resources might want to take advantage

of internet publication services to gain more information about users; we prevent this

attack by using each reply block for only one transaction.

" Attacks to determine the identity of a server include:

- Create unusually large shares, and try to reduce the set of known servers who might have

the capacity to store such shares. This attacks the partial anonymity of these servers.

- Spread a Trojan Horse or worm which looks for Free Haven servers and examines or

reports which shares they are currently storing.

- Become a servnet node, and collect information as other nodes send us mail or lists of

nodes.

- Attempt to map servnet topology, and correlate nodes that are 'close' in the servnet with

nodes that are 'close' geographically.

- Become a node on the mixnet, and attempt to correlate message timing with trade re-

quests or trust broadcasts.

- Offer a large sum of money for information leading to the current location of a given

document or share in the Servnet.

" Attacks to determine the identity of a publisher include:

- Become a server and log publishing acts. Correlate source or timing.

- Look at servers who might recently have published a document, and try to determine

who has been communicating with them recently.

- Offer a large sum of money for information leading to the current location of a given

document or share in the Servnet.

We avoid or reduce the threat of many of these attacks by using a mixnet for our communications.

This prevents most or all adversaries from being able to determine the source or destination of a

given message, or correlate either endpoint of a set of messages. Other attacks, including social

attacks, are much more difficult to anticipate and protect against. Agents and users who follow the

protocol and use basic common sense will be more likely to maintain their anonymity.

The Free Haven Project Roger Dingledine

7.3 Attacks on the Trust System

2 There are a variety of attacks which are possible on the Free Haven system. Many of these attacks

are far outside the scope of the Trust Module: social attacks on system security and servnet node

operators, political attacks to discourage servnet use, government and legal attacks to shut down

nodes or arrest operators, denial of service attacks on the communications anonymous channel, and

attacks on the infrastructure of the server network.

Some of these attacks, such as temporary denials of service, have negative repercussions on the

trust of a node. These repercussions might be qualified as "unfair," but are best considered in the

following light: if a node is vulnerable to these attacks, it is not capable of meeting the specifications

of the Free Haven protocol. Such a node is not worthy of trust to meet those specifications. The

trust system does not judge intent, merely actions.

7.3.1 Simple Betrayal

The simplest attack is this: Become part of the Servnet, earn trust, then betray it by deleting files

before their expiration dates. The trust economy is designed to make this as unprofitable as possible.

The size-time currency means that a corrupt node has to donate at least as much to the Free Haven

as it removes. This 50% useful work ratio is a rather loose lower bound - it requires duping a great

number of high-metatrust nodes into recommending you.

A node which engages in this behavior should be caught by the buddy system when it deletes

each share.

7.3.2 Buddy Coopting

It is possible for a corrupt node to gain control of both a share and its buddy; at this point it can

delete one of them without repercussions. This means that corrupt nodes can defeat the buddy

system by capturing both buddies, then deleting them.

A possible work-around to this attack involved separating the contact addresses for trading and

for buddy checking, preventing corrupt nodes from acquiring the buddies of the shares they already

have. Such an approach adds a great deal of complexity, and opens other attack avenues.

7.3.3 Trading Receipt Games

The receipts used in trading are a complicated mechanism, and we have no formal system for talking

about how they interact. While we believe that the signed timestamp makes it clear who did what

101

2 This section was written by Brian Sniffen.

Roger DingledineThe Free Haven Project

and when, it is possible that some attacks exist, likely involving multi-node adversaries engaging in

coordinated bait-and-switch games with target nodes.

7.3.4 Pollution

An adversary can join the server network, then trade away garbage for valuable data. A sufficiently

wealthy adversary could even purchase a series of very large drives, then trade away enough garbage

to have the majority of the data in the server network on his drives, subject to deletion.

We have no defense against this attack. However, any adversary capable of perpetrating the above

attack against a widely-used Free Haven is equally capable of many cheaper, easier, non-technical

attacks.

7.3.5 False Referrals

An adversary can broadcast false referrals, or direct them to specific hosts. The metaconfidence

system combined with the single-reporting policy provide somewhat of a guard against this. Based

on field tests of Free Haven, we may need to switch to a policy of ignoring referrals which do not

have receipts.

7.3.6 Entrapment

There are several ways in which an adversary can appear to violate the protocols. When someone

points this out, the adversary can present receipts which show him wrong and accuse him of the

There is no defense in the present implementation against this attack; a more thorough system

of attestations and protests is necessary.

102

The Free Haven Project Roger Dingledine

Chapter 8

Future Works

8.1 Communications Channels

1 A "standard" design for an anonymous communications channel is very much an open question.

In section 2, we specified the requirements for an ideal anonymous communications channel, and

considered how current works fulfill these requirements. In general, there are various considerations

when designing an anonymous communications channel:

* Low latency

* Delivery robustness

" Resistance to traffic analysis and similar attacks

* Types of anonymity provided:

- Anonymity vs. pseudonymity

- Full vs. partial anonymity

- Computational vs. information-theoretic anonymity

- Perfect forward anonymity

Some of these goals are conflicting in nature. Systems which provide low latency and strong

delivery robustness are generally more open to traffic analysis and other such attacks, as messages

are routed quickly and sometimes repetitively through the channel. Still, while Free Haven stresses

anonymity over availability, we would prefer a design which provides latency in the realm of seconds

or minutes, as opposed to hours or days. If a high latency were to endure, Free Haven usage would

'This section was written by Michael Freedman.

103

The Free Haven Project

be constrained to publishers and readers which specifically require our strong notions of anonymity.

Similarly, lossyness within the channel degrades system performance. Free Haven can be designed to

handle communications lossyness for file reconstruction by a robust information dispersal algorithm.

Still, this condition has possible effects on the trust network and trading/buddy protocols, when the

loss is not due to server failure, but rather to an unreliable communications channel. In this section,

we present some alternative designs for an anonymous communications channel.

8.1.1 Garlic Routing

The concept behind Garlic Routing is similar to a mix-net. A sender encodes routing information in

a series of layered encryptions, forming an "onion" of encrypted information. Each node along the

route decrypts the outer layer of the onion, exposing the next layer and determining the location

of the next hop. Eventually, the entire onion is peeled, and the message reaches its destination. A

garlic packet looks similar to an onion packet, until it is unwrapped. A node then finds several garlic

bulbs to transmit, instead of the normal single onion. Each bulb is a viable path-to-destination from

that intermediate node, therefore providing several routes. Earlier intermediate nodes would have

no knowledge of the path or existance of these newly exposed routes.

Garlic routing provides a few benefits. Delivery reliability and robustness is therefore increased

through path redundancy. Reply-block encoding can be implemented efficiently in terms of size, as

reply blocks will only grow linearly with the total number of nodes in onion and garlic routes. The

encryption of header information can be performed using a hybrid scheme: all garlic bulbs within a

layer are encrypted with the same symmetric key, which is then encrypted with each garlic node's

public key. Therefore, the size of a garlic packet containing n bulbs is only L + k * n, where L is

the size of the normal onion layer and k is the symmetric key length. A similar hybrid encryption

scheme is used by PGP.

Based on the concept of a Chaumian mix-net, a garlic-routing mix-net provides computational

anonymity based on the strength of encryption used on the garlic. Reply-blocks for the channel

provide a route to an explicit destination; thus disclosure of the information will specify a receiver.

This differs from our definition of partial anonymity schemes, where exposure of information will

only yield a k-anonymous set of possibilities.

8.1.2 Iterative Exposure

The concept of Iterative Exposure is similar to that of a mix-net: each path node only knows the

last hop from where it received the packet and can only expose the next hop to where it should send

the packet. However, we do not use an layered encryption scheme. Header information is a list of

entries, each one encrypted to a specific node, containing a simple message such as "Node A: send

104

Roger Dingledine

The Free Haven Project Roger Dingledine

to node B." As with Garlic Routing, we can help provide delivery robustness through redundancy

with a simple change: "Node A: send to nodes B, C, D." Entries in the routing list are randomly

ordered. A node iterates through the list, and attempts to decrypt each entry and check if the entry

corresponds to itself. Once determining the proper next hop information, the node can reorder the

routing list to protect against message coding attacks. To adequately protect against this type of

attack, some further change to the message itself would be required at each hop.

A destination can either provide a reply-block for a specific source, in which the source node has

an encrypted element in the list, or a generic public reply-block. For the latter, one element needs to

be publically readable so that a source knows where to "pick up" the path: a source can either send

a message to this node as the first hop, or the source can provide its only anonymous path to this

node by adding reply list entries. Admittedly, this node will lose carrier-anonymity to adversaries.

However, such a generic reply block can protect against pseudonymity marking attacks, and it allows

both the sender and receiver to specify paths accordingly to their own anonymity requirements.

8.1.3 Alien Conspiracy Net

The Alien Conspiracy Net seeks to make computational and traffic analysis attacks more difficult by

specifying a naming scheme that does not yield an explicit destination. The advantage of this scheme

is predicated on the benefits of partial anonymity: an adversary can only determine a k-anonymous

set of destination possibilities.

Joining an existing net

A node generates a series of n identical tokens, each of b randomly-chosen bits. This sequence of

tokens is the node's address, and is kept private. To join an existing network, a node connects to a

few existing public nodes and offers to trade one token with each of its neighbors. The node removes

the token traded away from its address and replaces it with the neighbor's token. The node also

adds the token traded away and the one received as its approximation of the neighbor's address.

Node Behavior

Nodes will occasionally receive messages, most likely in the form of encrypted data. Whether or not

the node can read the data, it should always forward it properly to neighboring nodes to protect

against traffic analysis of channel edges.

At the top of the message will be a series of tokens. A node compares these tokens to the

approximation of the address of each neighbor, calculating the number of tokens in common with

each. The node picks, at random, some subset of the nodes with the greater commonality and sends

them the message.

105

The Free Haven Project Roger Dingledine

Partial-Anonymous Naming of Nodes

In order for the protocol to work, tokens need to continue to spread throughout the network. Thus,

each node should offer a trade to each of its neighbors within some user-set delay. The token chosen

to trade is selected at random from the node's address, so it may not be one of the node's own

tokens.

Eventually, the above protocol would lead to a completely homogenous set of tokens. This would

make message delivery problematic. Thus each node has a second user-set delay between mutations.

When that delay has passed, the node replaces portions of its address with its own tokens.

A node publicizes its address by exposing some log n of its address tokens. A sender addresses

a message to this log n address. Therefore, a node's public address yields partial anonymity: many

such combinations result from the node's actual address, and many addresses can yield this set

of log n address tokens. As destinations forward their own messages as well, an adversary cannot

determine the actual destination only given the message's destination address. Obviously, messages

are given a TTL (time-to-live).

Network Topology

This protocol relies on token gradients across the network. The message travels from regions of low

potential to regions of high potential. For this to happen, the network probably requires a properly-

connected graph. If nodes connect to large numbers of other public nodes, or edges between nodes

are randomly distributed, the resulting network may not have clear token gradients. We have not

yet determined what type of network topology is actually required for adequate message delivery,

nor considered protocols to yield a desirable topology via distributed communications and control.

8.1.4 Zones

The Crowds system organizes users into collections of nodes called crowds, achieving partial-anonymity

for non-local adversaries and sender-anonymity within each crowd. Crowds, as proposed by AT&T

Research, focuses on anonymous Web browsing, in which users communicate with specific end

servers. Built onto the Crowds model, the Zones system seeks to achieve anonymous communi-

cations between two users instead.

Communications from a sender are routed through the sender's zone as specified by the Crowds

protocol. When the message is dispatched from a crowd node, however, it is not sent directly to an

end server. Instead, the message is dispatched to another zone. Once within the destination zone,

the message is either multi-casted to all nodes or forwarded around via some random walk. Each

node attempts to decrypt each message received to determine if it is the proper receiver. If random-

walking is used, the proper receiver still wants to forward the message to protect against zone traffic

106

Roger DingledineThe Free Haven Project

analysis. This being so, a message's TTL has to be sufficiently high such that a random-walk will

probabilistically find the proper receiver. This type of distribution strategy provides k-anonymous

receiver-anonymity, where k is the size of the receiver's zone.

8.1.5 Small Worlds Model

Social networks display two characteristics which initially may appear to be contradictory. Firstly,

social connections display clustering, whereby friends are likely to share the same group of friends.

Secondly, they exhibit what has been termed by Stanley Milgram as the "small worlds effect" [65].

Namely, any two people can establish contact by going through only a short chain of intermediate

acquaintances. Milgram proposed that all people in the world are separated by six intermediaries

on average; this effect is better known as "Six Degrees of Separation" or the "Kevin Bacon Game."

Network Construction and Transmission

Mathematicians have begun studying sparse networks to prove the small worlds effect [101]. Using

these models for network topology, we can construct an anonymous communications channel built on

this network routing principle. Crowds or zones mimic small worlds of friends, without the necessary

long-range connections that provide the small worlds effect. Therefore, we can achieve this effect by

constructing zones wherein people also specify a few connections to users in other zones.

A node sends a message to all of its friends, who in turn propagate the message to the rest of

their friends. While friends share many connections due to the clustering effect - explicitly formed

by the creation of zones - the long-range connections allow the propagation of messages through

the network. This model places a large load on the system, especially given the high degree of

connectivity in most networks. We have also considered an alternative "directed" propagation of

messages according to some greedy heuristic, such as a Hamming distance or the protocol we describe

in the Alien Conspiracy Net.

Network Anonymity

The anonymity of this communications channel is based on the presumed innocence of the Crowds

system. An adversary within the network cannot determine whether a message received originated

from its last hop, or was merely forwarded by that node. As the number of nodes that may be

involved in the message's path increases, the innocence of the last hop becomes probabilistically

greater [85]. The system does not protect the anonymity of senders from a global observer.

K-anonymous receiver-anonymity can be achieved if receivers forward the message along. For

simple broadcast networks, k is equal to the number of nodes in the entire network; for directed

multi-cast networks, k is the number of nodes that received the message. With large values of k

107

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

and a high propagation of message transmissions, adversaries have a difficult time performing traffic

analysis.

Messages should be encrypted to the receiver such that only the receiver can tell if the message is

meant for her, such that an adversary cannot simply compare some naming scheme to link messages

to receivers. A small worlds model likely requires a low-latency communications channel, such as

that built directly on TCP/IP, due to the high bandwidth required. Delivery robustness is assured

also by the redundancy of paths to any destination. To protect against message coding and message

volume attacks, messages can be point-to-point encrypted and padded to the same or some random

size. Reordering messages within a given node helps protect against timing attacks similarly to

mix-nets. Like other schemes, we still witness the trade-off between a low latency channel and a

resistance to traffic analysis.

Gnutella uses a similar six-degrees of separation model for network communication. Nodes

broadcast a received messsage to all their friends, and messages include an explicit TTL to stop

infinite looping. Messages are not encrypted or padded.

8.2 Publication Systems

Along with the need for more research on communications channels, there are a number of other

issues we should address more thoroughly. These include:

Formalizing Anonymity The notions that we present in Chapter 2 are an excellent beginning for

talking about the amount of anonymity a publishing system provides. However, we still have

no real formal definitions for these concepts. By thoroughly enumerating the capabilities of

potential adversaries, along with describing what their goals might be and what it means for

them to achieve each goal, we could gain much more insight into the nature of anonymity and

how it relates to other notions such as confidentiality.

Ideal Mixnet Many of the aspects of anonymity that we hope to achieve are going to be very

difficult without a more anonymous communications channel. In order to provide a more

anonymous publication service, we need to solve the mixnet design problem.

Deployed Mixnet Apart from developing the design for a better mixnet, we need to actually get

a functional communications channel out on the internet. Without a large number of nodes

running and available in a free environment, our anonymity requirements cannot be achieved.

It would probably be very effective to distribute binary packages (e.g., in RPM format) to ease

installation.

108

The Free Haven Project Roger Dingledine

Deploying, Testing, and Evaluating Free Haven is only a set of designs for an anonymous pub-

lishing service. We discovered a number of important ideas while implementing our proof of

concept; however, actually finishing and testing the implementation would teach us a lot more

about how stable and reliable Free Haven will be.

The buddy system Free Haven provides a much stronger level of anonymity than related works;

however, this amount of anonymity requires us to include some method of accountability to

ensure that servers are behaving according to protocol. The current buddy system is insufficient

for a number of reasons. We must find a better accountability mechanism.

Flooding protection Because we are using a mixnet which emphasizes anonymity, there are cur-

rently no flooding protection mechanisms in place. We need to devise some intelligent ways of

bandwidth-throttling, to encourage more people to be willing to run mixnet or servnet nodes.

Modelling to determine optimal parameters We should describe some mechanisms for mod-

elling Free Haven based on various parameters of k, n, number of documents, frequency of

trading, percentage of malicious nodes, etc. Building a good model for Free Haven that is

extensible enough to cover other anonymous publishing systems such as Freenet would benefit

the community as well.

Alternate Payment Schemes We currently avoid the requirement for payments - instead, our

'economy of trust' rewards successfully storing data with the offer to store data in return. We

should investigate alternate mechanisms for decentralized currency and payment.

Education and legal awareness Although there are a few papers (e.g. [46]) which succinctly and

accurately summarize case law and current legislative opinion about anonymity on the internet,

most programmers and other enthusiasts are disturbingly ignorant on this topic. Collecting

and coordinating an easily readable archive of such documents would be a great benefit to the

community.

8.3 Trust

2 There are several areas in which this Trust Module falls short. The Free Haven group hopes to

resolve most of them over the next few months, as we work towards our first public release. Others

require advances in the theory of cryptographic anonymity:

Trust Algebra There is no good system for formally and rigorously talking about trust and ap-

proval. We need one in order to be certain that the trust system does anything like what we

109

2 This section was written by Brian Sniffen.

The Free Haven Project Rogyer Dingledine

The Free Haven Project Roger Dingledine

are hoping for.

Entrapment Defense The current belief in referrals is somewhat naive. We need better support

for logging various referrals and integrating their results. The best approach is beginning to

look like some form of linear algebra to deal with the loops of trust and metatrust.

Deployment Many of the questions we have about Free Haven and the Trust Module cannot be

answered with thought experiments. We need to get the system deployed and working in a

test environment to see where it is attacked and where it breaks. This test system needs to be

clearly marked as potentially unsafe.

110

Roger DingledineThe Free Haven Project

Chapter 9

Conclusions

Free Haven provides a service that is not currently available from any other project or application.

Web pages available from the internet have their source easily evident. Usenet articles do not reliably

reach all readers, and are subject to unpredictable expiration from disapproving administrators or

simply due to space constraints.

By providing a stable and distributed service for anonymous publishing and anonymous reading,

we provide dissidents with more powerful tools for both communication and publication. We believe

in - and provide - a stronger notion of free speech than simply the ability to make government-

sanctioned statements. Overall, we believe that providing individuals with the power to speak in a

free, persistent, and untraceable manner is well worth the risk that the system could also be used

for malicious or otherwise immoral activities.

Designing a good system for robust anonymous publication is hard. Providing sufficient ac-

countability without sacrificing this anonymity is hard. Designing a good communications channel

is hard. Designing a good trust system is hard. Modelling and anticipating the capabilities of future

adversaries is hard. Solving all of these problems for a specific situation and then integrating the

solutions into a robust functional implementation is much harder still.

We have provided a good foundation for a solution to each of these problems. By deriving

basic definitions and notions for anonymity in a decentralized publishing system, and enumerating

and addressing the capabilities and attacks that an adversary might employ in trying to break the

system, we pave the road for a more thorough and broad approach to analyzing the success and

protection of various related works, including Gnutella, Freenet, and Publius.

The Free Haven design is an important step toward answering a problem which is not currently

being addressed: namely the creation of a strongly anonymous content-neutral decentralized publi-

cation system. Whereas related projects currently provide at best incrementally better anonymity

relative to services like Napster, Free Haven provides computational anonymity for all three agents

111

Roger Dingledine

of the system: publishers, servers, and readers. We do not expect Free Haven to be as popular or

immediately useful as services like Freenet, where losing anonymity might at worst spark a legal bat-

tle. However, we do believe that a service such as Free Haven is vital for foreign political dissidents

and other activists who do not have the luxury of failure.

112

The Free Haven Project

Appendix A

Acknowledgements

Quite a few people discussed the ideas and designs contained herein. They include:

" Michael Freedman for his brilliant and dedicated work on the communications channels re-
search, as well as his contributions to the Free Haven design discussions.

" David Molnar for his unique ability to always know the paper to look for, or who wrote which
articles about a given topic. David was the voice of theory in this group, which says a lot
for him since I'm a theory grad student. He was also responsible for the enormous appendix
enumerating the timeline of Communications Channels works.

" Brian Sniffen was very helpful in providing different perspectives on a number of the topics
that we covered. He provided the design and background for the trust module and the original
draft of the infrastructure and trust attacks.

" Joseph Sokol-Margolis for volunteering his time to helping keep our design sane. Joseph was
very useful for considering attacks and other 'unintended' uses of the system.

" Todd Kamin took our notion of how to build a user interface for Free Haven, and fleshed it
out into an actual design.

" Nathan Mahn during several different meetings saved the notion of the buddy system from
derailing and completely collapsing. I'm pretty sure this is a good thing.

" Susan Born for her unending work at editing the various documents and subdocuments that
comprise this thesis. Without Susan, we would still be missing a section or two.

" Ross Anderson for providing the initial inspiration for Free Haven, and also for providing some
comments and responses to the overall design.

" Ian Brown (of the cypherspace datahaven design), Ian Clarke (of FreeNet), Ian Goldberg (of
Zero Knowledge), Ian Marsh (of Jetfile), and Ian Hall-Beyer (of Gnutella) for providing the
mystery of the 'Ian Conspiracy': why are the leaders of all these projects named Ian?

" Professor Rivest in his role as my thesis advisor for helping me to chip away many of the extra
layers of confusion over my ideas. Rivest was extremely useful at providing perspective for
why I choose certain design decisions, and which decisions are most important.

113

Appendix B

Anonymous Communications

Channels

1 We earlier described several major implementations of anonymous communications channels. This

appendix serves to give a more detailed survey of research and development in the area of anonymous

communications. Some of these projects are not implemented; some exist more as a proof-of-concept

by their respective designers; and still others repeat design and functionality provided by like systems.

We review three main types of design: proxy-servers, mix-nets, and other anonymous communi-

cations channels.

B.1 Proxy Services

Proxy services provide one of the most basic forms of anonymity, inserting a third party between

the sender and recipient of a given message. Proxy services are characterized as having only one

centralized layer of separation between message sender and recipient. The proxy serves as a "trusted

third party," responsible for sufficiently stripping headers and other distinguishing information from

sender requests.

Proxies only provide unlinkability between sender and receiver, given that the proxy itself remains

uncompromised. This unlinkability does not have the quality of perfect forward anonymity, as

proxy users often connect from the same IP address. Therefore, any future information used to

gain linkability between sender and receiver (i.e., intersection attacks, traffic analysis) can be used

against previously recorded communications.

Sender and receiver anonymity is lost to an adversary that may monitor incoming traffic to the

1This appendix was written by David Molnar and Michael Freedman.

114

The Free Haven Project

proxy. While the actual contents of the message might still be computationally secure via encryption,

the adversary can correlate the message to a sender/receiver agent.

This loss of sender/receiver anonymity plagues all systems which include external clients which

interact through a separate communications channel - that is, we can define some distinct edge of

the channel. If an adversary can monitor this edge link or the first-hop node within the channel,

this observer gains agent-message correlation. Obviously, the ability to monitor this link or node

depends on the adversary's resources and the number of links and nodes which exist. In a proxy

system, this number is small. In a globally-distributed mixnet, this number could be very large.

The adversary's ability also depends on her focus: whether she is observing messages and agents at

random, or if she is monitored specific senders/receivers on purpose.

B.1.1 Anonymizer.com

The Anonymizer was one of the first examples of a form-based web proxy [7]. Users point their

browsers at the Anonymizer page at www. anonymizer. com. Once there, they enter their destination

URL into a form displayed on that page. The Anonymizer then acts as an http proxy for these

users, stripping off all identifying information from http requests and forwarding them on to the

destination URL.

The functionality is limited. Only http requests are proxied, and the Anonymizer does not

handle cgi scripts. In addition, unless the user chains several proxies together, he or she may be

vulnerable to an adversary which tries to correlate incoming and outgoing http requests. Only the

data stream is anonymized, not the connection itself. Therefore, the proxy does not prevent traffic

analysis attacks like tracking data as it moves through the network.

B.1.2 Lucent's Proxymate

Chaining multiple proxies together by hand is a tedious business, requiring many preliminaries before

the first web page is reached. Lucent's Proxymate software automates the process[59]. The software

looks like a proxy sitting on the user's computer. By setting software to use the Proxymate proxy,

the user causes the software's requests and traffic to go to the software, which then automatically

negotiates a chain of proxies for each connection.

B.1.3 Proxomitron

Another piece of software which helps manage many distinct proxies in a transparent manner is

Proxomitron[83]. In addition to basic listing and chaining of proxies, Proxomitron allows users to

write filter scripts. These filters can then be applied to incoming and outgoing traffic to do everything

115

Roger Dingledine

The Free Haven Project

from detecting a request for the user's e-mail address by a web site to automatically changing colors

on incoming web pages.

B.2 Chaumian Mix-nets

The project of anonymity on the Internet was kicked off by David Chaum in 1981 with a paper

in Communications of the ACM describing a system called a "Mix-net." This system uses a very

simple technique to provide anonymity: a sender and receiver are linked by a chain of servers called

Mixes. Each Mix in the chain strips off the identifying marks on incoming messages and then

sends the message to the next Mix, based on routing instructions which encrypted with its public

key. Comparatively simple to understand and implement, this Mix-net (or "mix-net" or "mixnet")

design is used in almost all of today's practical anonymous channels.

B.2.1 Chaum's Digital Mix

Chaum's original paper introduced the basic concept of a Mix as a sort of "permutation box." On the

incoming side is a list of messages representing the messages which have arrived at the Mix server,

each of which is identified with a particular sender. On the outgoing side is a randomly permuted

list of messages, which have lost their identification with the sender. The assumption is that if the

Mix works correctly, no adversary can do better than guessing to link an incoming message with an

outgoing message.

B.2.2 ISDN Mixes

Chaum's original Digital Mix was described in terms of a series of Mix nodes which passed ideal-

ized messages over a network. The first proposal for the practical application of mixes came from

Pfitzmann et. al. [80], who showed how a mix-net could be used with ISDN lines to anonymize a

telephone user's real location. Their motivation was to protect the privacy of the user in the face of

a telephone network owned by a state telephone monopoly.

Their paper introduced a distinction between explicit and implicit addresses. An explicit address

is something about a message which clearly and unambiguously links it to a recipient and can be

read by everyone, such as a To: header. An implicit address is an attribute of a message which links

it to a recipient and can only be determined by that recipient. For example, being encrypted with

the recipient's public key in a recipient-hiding public key is an implicit address.

116

Roger Dingledine

B.3 Remailers: SMTP Mix-nets

Until the rise of proxy-based and TCP/IP-based systems, the most popular form of anonymous

communication was the anonymous remailer: a form of mix which works for e-mail sent over SMTP.

Remailers are informally divided into three categories, called Type 0, Type 1, and Type 2.

B.3.1 Type 0: anon.penet.fi

One of the first and most popular remailers was anon. penet. f i, run by Johan Helsingius. This

remailer was very simple to use. A user simply added an extra header to e-mail indicating the

final destination, which could be either an e-mail address or a Usenet newsgroup. This e-mail was

sent to the anon. penet .f i server, which stripped off the return address and forwarded it along. In

addition, the server provided for return addresses of the form "anXXXXqanon.penet.fi"; mail sent

to such an address would automatically be forwarded to another e-mail address. These pseudonyms

could be set up with a single e-mail to the remailer; the machine simply sent back a reply with the

user's new pseudonym.

The anon. penet . f i remailer is referred to as a Type 0 remailer for two reasons. First, it was

the original "anonymous remailer." More people used anon. penet .f i than are known to have used

any following type of remailer. Exact statistics are hard to come by, but X number of accounts were

registered at penet .f i, and only Y are currently registered at nym. alias . net.

Second, anon. penet . f i did not provide some of the features which motivated the development

of "Type I" and "Type II" remailers. In particular, it provided a single point of failure and the

remailer administrator had access to each user's "real" e-mail address. In general, any remailer

system which consists of a single hop is considered Type 0.

This last feature proved to be the service's undoing. The Church of Scientology, a group founded

by the science fiction writer L. Ron Hubbard, sued a penet. fi pseudonym for distributing mate-

rials reserved for high initiates to a Usenet newsgroup. Scientology claimed that the material was

copyrighted "technology." The poster claimed it was a fraud used to extort money from gullible and

desperate fools. Scientology won a court judgment requiring the anon. penet .f i remailer to give up

the true name of the pseudonymous poster, which the operator eventually did. This incident, plus

several allegations of traffic in child pornography, eventually convinced Johan Helsingius to close the

service in 1995[42].

Services similar to Type 0 remailers now exist in the form of "free e-mail" services such as

Hotmail, Hushmail, and ZipLip, which allow anyone to set up an account via a web form. Hushmail

and ZipLip even keep e-mail in encrypted form on their server. Unfortunately, these services are not

sufficient by themselves, as an eavesdropping adversary can determine which account corresponds

to a user simply by watching him or her login.

117

The Free Haven Project Roger Dingledine

The Free Haven Project

B.3.2 Type 1: Cypherpunks Remailers

The drawbacks of anon.penet.fi spurred the development of "cypherpunks" or "Type 1" remailers, so

named because their design took place on the cypherpunks mailing list. This generation of remailers

addressed the the two major problems with anon. penet. fi: first, the single point of failure, and

second, the vast amount of information about users of the service collected at that point of failure.

Several remailers exist; a current list can be found at the Electronic Frontiers Georgia site [35] or

on the newsgroup alt.privacy. anon-server.

Each cypherpunk remailer has a public key and uses PGP for encryption. Mail can be sent to

each remailer encrypted with its key, preventing an eavesdropper from seeing it in transit. A message

sent to a remailer can consist of a request to remail to another remailer and a message encrypted

with the second remailer's public key. In this way a chain of remailers can be built, such that the

first remailer in the chain knows the sender, the last remailer knows the recipient, and the middle

remailers know neither.

Cypherpunk remailers also allow for reply blocks. These consist of a series of routing instructions

for a chain of remailers which define a route through the remailer net to an address. Reply blocks

allow users to create and maintain pseudonyms which receive e-mail. By prepending the reply block

to a message and sending the two together to the first remailer in the chain, a message can be sent

to a party without knowing his or her real e-mail address.

B.3.3 Type 2: Cottrell's Mixmaster

While Cypherpunk remailers represented a major advance over anon.penet.fi, they fell short of the

anonymity provided by the ideal mix. In 1995, Lance Cottrell outlined some of the problems with

"Type I" remailers [35]:

" Traffic Analysis: Cypherpunk remailers tend to send messages as soon as they arrive, or after

some specified amount of delay. The first option makes it easy for an adversary to correlate

messages across the mix-net. It's not clear how much delay helps protect against this attack.

" Does Not Hide Length: The length of messages is not hidden by the encryption used by

cypherpunk remailers 2. This allows an adversary to track a message as it passes through the

mixnet by looking for messages of approximately the same length.

Cottrell wrote the Mixmaster, or "Type II", remailer to address these problems. Instead of using

PGP, Mixmaster uses its own client software (which is also the server software), which understands

a special Mixmaster packet format. All Mixmaster packets are the same length. Every message is

2 note that the definitions of semantic security and non-malleability do not seem to imply "length-hiding" either

118

Roger Dingledine

The Free Haven Project Roger Dingledine

encrypted with a separate 3DES key for each mix node in a chain between the sender and receiver;

these 3DES keys are in turn encrypted with the RSA public keys of each mix node.

When a message reaches a mix node, it decrypts the header, decrypts the body of the message,

and then places the message in a "message pool." Once enough messages have been placed in the

pool, the node picks a random message to forward.

As of this writing, Mixmaster is in version 2.9b22[67]. Discussion of the project can be found

on the mix-l mailing list[66]. A Mixmaster version 3 is planned in which nodes will communicate

with each other via TCP/IP connections. All traffic will be encrypted with a key derived by a

Diffie-Hellman key exchange and then destroyed immediately after the transaction is ended, thereby

providing perfect forward secrecy. Unfortunately, the prototype specification for this protocol is only

available in German and is not finished.

B.3.4 Nymservers and nym.alias.net

The reply blocks used by cypherpunks remailers are important for providing for return traffic, but

they must be sent to every correspondent individually. In addition, using a reply block requires

that a correspondent be familiar with the use of specialized software. This problem is addressed by

nymservers, which act as holding and processing centers for reply blocks.

To use a nymserver, a user simply registers an e-mail address of the form "nymQnymserver.net"

and associates a reply block with it. This association can be carried out via anonymous e-mail.

Then whenever a message is sent to "nymgnymserver.net," the nymserver automatically prepends

the associated reply block, encrypts the aggregate, and sends it off to the appropriate anonymous

remailer.

The most popular nymserver may be the one run at nym.alias.net, which is hosted at MIT's Lab

for Computer Science. A recent report by Mazieres and Kaashoek details the technical and social

details of running the nymserver, including problems of abuse[62].

B.3.5 Remailer User Interfaces

The major reason for the massive popularity of anon. penet. f i was that it was extremely easy to

use. Anyone who could type "Request-Remailing-To:" at the top of an e-mail message could send

anonymous e-mail. With the advent of remailers which required the use of PGP or the Mixmaster

software, the difficulty of using remailers increased. This difficulty was aggravated by the fact

that for years, both PGP and Mixmaster were only available as command-line applications with a

bewildering array of options.

119

The Free Haven Project

B.4 Recent Mix-Net Designs

B.4.1 TAZ / Rewebber

Goldberg and Wagner applied Mixes to the task of designing an anonymous publishing network

called Rewebber[38]. Rewebber uses URLs which contain the name of a Rewebber server and a

packet of encrypted information. When typed into a web browser, the URL sends the browser to the

Rewebber server, whch decrypts the associated packet to find the address of either another Rewebber

server or a legitimate web site. In this way, web sites can publish content without revealing their

location.

Mapping between intelligible names and Rewebber URLs is performed by a name server called

the Temporary Autonomous Zone(TAZ), named after a novel by Hakim Bey. The point of the

"Temporary" in the name of the nameserver (and the novel) is that static structures are vulnerable

to attack. Continually refreshing the Rewebber URL makes it harder for an adversary to gain

information about the server to which it refers.

B.4.2 Babel

Contemporary with Cotrell's Mixmaster is an effort by Gulcu and Tsudik called "Babel" [41]. Babel

uses a modified version of PGP as its underlying encryption engine. This modified version does not

include normal headers, which would include the identity of the receiver, the PGP version number,

and other identifying information.

The Babel paper defines quantities called the "guess factor" and the "mix factor" which model

the ability of an adversary to match messages passing through the mix with their original senders.

Then several attacks are presented, including the trickle and flooding attack, along with some

countermeasures. The paper is noteworthy in that it attempts to give an analysis of just how much

the practice of batching messages helps the untraceability of a mix-net node.

B.4.3 Stop and Go Mixes

The next step in probabilistic analysis for mixnets comes in the work of Kesdogan, Egner, and

Buschkes [53], who proposed the "Stop and Go Mix." They divide networks into two kinds: "closed"

networks, in which the number of users is small, known in advance, and all users can be made

distinct, and "open" networks like the Internet with extremely large numbers of users. They claim

that perfect anonymity cannot be achieved in these open networks, because there is no guarantee

that every single client of the mix node is not the same person coming under different names.

Instead, they define and consider a notion of probabilistic anonymity: given that the adversary

controls some percentage of the clients, some other set of mix servers, and is watching a Mix, can

120

Roger Dingledine

the probability of correlating messages be quantified in terms of some security parameter? They

consider queueing theory as an inspiration for a statistical model and manage to prove theorems

about the adversary's knowledge in this model.

B.4.4 Variable Implicit Addresses

Later, Kesdogan et. al. applied Mixes to the GSM mobile telephone setting[52]. Here, the point is to

allow for GSM roaming from cell to cell while still protecting the user's real location from discovery

by the phone company or an outside intruder. This is done by the use of variable implicit addresses,

which work as follows : each roaming area has a publically known and static explicit address. When

the client GSM phone comes online or crosses the boundaries of a cell, it queries the surrounding

cells and downloads these addresses. Then it creates a new address for itself which combines the

addresses of its surrounding cells.

Then, instead of sending the entirety of the new address, the phone sends only some characters,

say logn, of the address to the network to identify itself. The network then directs traffic intended for

the phone to any cell which has those logn characters in its address. A refinement process then takes

place in which the phone gives out slightly more information to the system to improve performance

by sending information to fewer cells, but not so much as to allow its location to be restricted to

only one cell.

B.4.5 Jakobsson's Practical Mix

At EUROCRYPT '98, Jakobsson proposed a mixnet which was both practical and could be proved

to mix correctly as long as less than 1/2 of the servers were corrupted[48]. The crucial idea is to

treat the mixing as a secure multiparty computation in which each party is collaborating to make the

collective mix look like a "random enough" permutation on a batch of messages. Then techniques

of zero-knowledge proof are used by which each server can prove to all other servers that they are in

fact conforming to the mix protocol. Deviating servers cannot produce valid proofs, and so can be

caught and excluded from future mixing. Jakobsson's original protocol requires in the neighborhood

of 160 modular exponentiations per message per server.

At PODC '99, Jakobsson showed how the use of precomputation could reduce the cost even

further[47]. This new "flash mix" required only around 160 modular multiplications per message

per server. This level of efficiency makes flash mixing competitive with the encryption used in

anonymous remailers, and a serious candidate for low-latency mixing.

121

The Free Haven Project Roger Dingledine

The Free Haven Project

B.4.6 Universally Verifiable Mix-nets

With Jakobsson's design, the correctness of a mix-net can only be verified by the mix servers them-

selves. When more than a threshold of servers is corrupt, the verification fails. Because a user of

the mix-net may not be aware of the corruption, this failure may be silent and therefore dangerous.

One solution to this problem is a universally verifiable mix-net - a mix-net whose correctness can

be verified by anyone, regardless of their status as server or user.

The concept was introduced by Killian [88], and recently a design of this type was proposed at

EUROCRYPT '98 by Abe [2]. This design works along the similar broad lines as the Jakobsson

design; each mix server uses zero-knowledge proofs to prove that it is acting in accordance with some

protocol to randomly mix messages. The difference here is that these proofs are posted publically by

the mix nodes instead of being multicast only to other mix nodes. The novel feature of Abe's design

is that the work necessary to verify these proofs grows in a fashion independent of the number of

servers. Unfortunately, verifying these proofs requires on the order of 1600 modular exponentiations

per message.

B.4.7 Onion Routing

The Onion Routing system designed by Syverson, et. al. creates a mix-net for TCP/IP connections

[95, 77]. In the Onion Routing system, a mixnet packet, or "onion", is created by successively

encrypting a packet with the public keys of several mix servers, or "onion routers."

When a user places a message into the system, an "onion proxy" determines a route through the

anonymous network and onion encrypts the message accordingly. Each onion router which receives

the message peels the topmost layer, as normal, then adds some key seed material to be used to

generate keys for the anonymous communication. As usual, the changing nature of the onion - the

"peeling" process - stops message coding attacks. Onions are numbered and have expire times, to

stop replay attacks. Onion routers maintain network topology by communicating with neighbors,

using this information to initially build routes when messages are funneled into the system. By this

process, routers also establish shared DES keys for link encryption.

The routing is performed on the application layer of onion proxies, the path between proxies

dependent upon the underlying IP network. Therefore, this type of system is comparable to loose

source routing.

Onion Routing is mainly used for sender-anonymous communications with non-anonymous re-

ceivers. Users may wish to Web browse, send email, or use applications such as riogin. In most

of these real-time applications, the user supplies the destination hostname/port or IP address/port.

Therefore, this system only provides receiver-anonymity from a third-party, not from the sender.

Furthermore, Onion Routing makes no attempt to stop timing attacks using traffic analysis at

122

Roger Dingledine

The Free Haven Project Roger Dingledine

the network endpoints. They assume that the routing infrastructure is uniformly busy, thus making

passive intra-network timing difficult. However, the network might not be statistically uniformly

busy, and attackers can tell if two parties are communicating via increased traffic at their respective

endpoints. This endpoint-linkable timing attack remains a difficulty for all low-latency networks.

B.4.8 Zero Knowledge Systems

Recently, the Canadian company Zero Knowledge Systems has begun the process of building the

first mix-net operated for profit, known as Freedom [102]. They have deployed two major systems,

one for e-mail and another for TCP/IP. The e-mail system is broadly similar to Mixmaster, and the

TCP/IP system similar to Onion Routing.

ZKS's "Freedom 1.0" application is designed to allow users to use a nym to anonymously access

web pages, use IRC, etc. The anonymity comes from two aspects: first of all, ZKS maintains what

it calls the Freedom Network, which is a series of nodes which route traffic amongst themselves

in order to hide the origin and destination of packets, using the normal layered encryption mixnet

mechanism. All packets are of the same size. The second aspect of anonymity comes from the fact

that clients purchase "tokens" from ZKS, and exchange these token for nyms - supposedly even ZKS

isn't able to correlate identities with their use of their nyms.

The Freedom Network looks like it does a good job of actually demonstrating an anonymous

mixnet that functions in real-time. The system differs from Onion Routing in several ways.

First of all, the system maintains Network Information Query and Status Servers, which are

databases which provide network topology, status, and ratings information. Nodes also query the key

servers every hour to maintain fresh public keys for other nodes, then undergo authenticated Diffie-

Hellman key exchange to allow link encryption. This system differs from online inter-node querying

that occurs with Onion Routing. Combined with centralized nym servers, time synchronization, and

key update/query servers, the Freedom Network is not fully decentralized [37].

Second, the system does not assume uniform traffic distribution, but instead uses a basic "heart-

beat" function that limits the amount of inter-node communication. Link padding, cover traffic, and

a more robust traffic-shaping algorithm have been planned and discussed, but are currently disabled

due to engineering difficulty and load on the servers. ZKS recognizes that statistical traffic analysis

is possible [91].

Third, Freedom loses anonymity for the primary reason that it is a commercial network operated

for profit. Users must purchase the nyms used in pseudonymous communications. Purchasing is

performed out-of-band via an online Web store, through credit-card or cash payments. ZKS uses a

protocol of issuing serial numbers, which are reclaimed for nym tokens, which in turn are used to

anonymously purchase nyms. However, this system relies on "trusted third party" security: the user

123

The Free Haven Project Roger Dingledine

The Free Haven Project

must trust that ZKS is not logging IP information or recording serial-token exchanges that would

allow them to correlate nyms to users [89].

B.4.9 Web Mixes

Another more recent effort to apply a Mix network to web browsing is due to Federrath et. al.[16]

who call their system, appropriately enough, "Web Mixes." From Chaum's mix model, similar

to other real-time systems, they use: layered public-key encryption, prevention of replay, constant

message length within a certain time period, and reordering outgoing messages.

The Web Mixes system incorporates several new concepts. First, they use an adaptive "chop-

and-slice" algorithm that adjusts the length used for all messages between time periods according

to the amount of network traffic. Second, dummy messages are sent from user clients as long as

the clients are connected to the Mix network. This cover traffic makes it harder for an adversary

to perform traffic analysis and determine when a user sends an anonymous message, although the

adversary can still tell when a client is connected to the mixnet. Third, Web Mixes attempt to

restrict insider and outsider flooding attacks by limited either available bandwidth or the number

of used time slices for each user. To do this, users are issued a set number of blind signature tickets

for each time slice, which are spent to send anonymous messages. Lastly, this effort includes an

attempt to build a statistical model which characterizes the knowledge of an adversary attempting

to perform traffic analysis.

B.5 Other Anonymous Channels

B.5.1 The Dining Cryptographers

The Dining Cryptographers protocol was introduced by David Chaum[21] and later improved by

Pfitzmann and Waidner[as a means of guaranteeing untraceability for the sender and receiver

of a message, even against a computationally all-powerful adversary. The protocol converts any

broadcast channel into an anonymous broadcast channel. In the context of Free Haven, however, we

have a problem : the participants in the protocol are identified, even though the sender and receiver

of any given message is not. If the only long-term participants in the protocol are likely to be Free

Haven servnet nodes, then we do not achieve the server-anonymity we desire. Less serious, but still

important, problems are the efficiency of the protocol and the difficulty of correct implementation.

Therefore we have not seriously considered using the dining cryptographers protocol to provide

Free Haven's anonymous channel. If we were to do so, we might consider running a dining cryp-

tographer protocol using Mixes to hide the legal identity of each participant. In that case, while a

failure of the Mix would reveal a participant's identity, the anonymous broadcast would prevent him

124

Roger Dingledine

or her from being linked to any particular message.

B.5.2 Crowds

The Crowds system was proposed and implemented by AT&T Research, named for collections of

users that are used to achieve partial anonymity for Web browsing [85]. A user initially joins some

crowd and her system begins acting as a node, or anonymous jondo, within that crowd. In order

to instantiate communications, the user creates some path through the crowd by a random-walk

of jondos, in which each jondo has some small probability of sending the actual http request to

the end server. Once established, this path remains static as long as the user remains a member

of that crowd. The Crowds system does not use dynamic path creation so that colluding crowd

eavesdroppers are not able to probabilistically determine the initiator (i.e., the actual sender) of

requests, given repeated requests through a crowd. The jondos in a given path also share a secret

path key, such that local listeners, not part of the path, only see an encrypted end server address

until the request is finally sent off. The Crowds system also includes some optimizations to handle

timing attacks against repeated requests, as certain HTML tags cause browsers to automatically

issue re-requests.

Similar to other real-time anonymous communication channels (Onion Routing, the Freedom Net-

work, Web Mixes), Crowds is used for senders to communicate with a known destination. The system

attempts to achieve sender-anonymity from the receiver and a third-party adversary. Receiver-

anonymity is only meant to be kept from adversaries, not from the sender herself.

The Crowds system serves primarily to achieve sender and receiver anonymity from an attacker,

not provide unlinkability between the two agents. Due to high availibility of data - real-time access is

faster that mix-nets as Crowds does not use public key encryption - an adversary can more easily use

traffic analysis or timing attacks. However, Crowds differs from all other systems we have discussed,

as users are members of the communications channel, rather than merely communicating through it.

Sender-anonymity is still lost to a local eavesdropper that can observe all communications to and

from a node. However, other colluding jondos along the sender's path - even the first-hop - cannot

expose the sender as originated the message. Reiter and Rubin show that as the number of crowd

members goes to infinity, the probable innocence of the last-hop being the sender approaches one.

B.5.3 Ostrovsky's Anonymous Broadcast via XOR-Trees

In CRYPTO '97, Ostrovsky considered a slightly different model of anonymous broadcasto. In

this model, there are n servers broadcasting into a shared broadcast channel. One of the servers

is a special "Command and Control" server; the rest are broadcasting dummy traffic. Then there

is an adversary who has control of some of the servers and wants to know which server is the

125

The Free Haven Project Roger Dingledine

The Free Haven Project

"Command and Control." Ostrovsky shows how to use correlated pseudo-random number generators

whose output reveals a certain message when XORed together to create a protocol which prevents

the adversary from discovering which server is the correct one, even if he can eavesdrop on all

communications and corrupt up to k servers, where k is a security parameter which affects the

efficiency of the protocol.

126

Roger Dingledine

Bibliography

[1] M. Abdalla, M. Bellare, and P. Rogaway. DHAES. Submission to IEEE P1363.

[2] Masayuki Abe. Universally verifiable mix-net with verification work independent of the number

of servers. In Advances in Cryptology - EUROCRYPT '98, pages 437-447.

[3] Abrams v. U.S. , 250 u.s. 616, 1919.

http://caselaw.findlaw.com/scripts/getcase.pl?navby=search&court=US&case=/us/250/616.html.

[4] ACLU of Georgia v. Miller, 1997. http://www.aclu.org/court/aclugavmiller.html.

[5] Ross Anderson. The Eternity Service.

http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html.

[6] Anonymity on the internet FAQ.

http://www.eff.org/pub/Privacy/Anonymity/netanonymity.faq.

[7] The Anonymizer. http://www.anonymizer.com.

[8] Aol instant messenger. http://www.aol.com/aim.

[9] Adam

Back. The Eternity Service. http://phrack.infonexus.com/search.phtml?view&article=p51-

12.

[10] John Perry Barlow. The Economy of Ideas. http://www-swiss.ai.mit.edu/6805/articles/int-

prop/barlow-economy-of-ideas.html.

[11] Geremie R. Barme and Sang Ye. The Great Firewall of China.

http://www.wired.com/wired/5.06/china.html.

[12] Douglas Barnes. The coming jurisdictional swamp of global internetworking (or, how i learned

to stop worrying and love anonymity. http://www.communities.com/paper/swamp.html.

[13] Tonda Benes. The Eternity Service. http://www.kolej.mff.cuni.cz/~eternity/.

127

[14] Tonda Benes. The Eternity Service.

http://www.kolej.mff.cuni.cz/~eternity/Doc/TondaBenes/Thesis/ps/thesis.ps.

(15] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Project "anonymity and unobserv-

ability in the internet.". In Workshop on Freedom and Privacy by Design / CFP2000.

[16] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Anonymity and unobservability on

the Internet. In Workshop on Freedom and Privacy by Design : CFP 2000, 2000.

[17] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Anonymity and unobservability on

the Internet. In Workshop on Freedom and Privacy by Design : CFP 2000, 2000.

[18] Patricia Brennan. Timeline of copyright law in the United States.

http://arl.cni.org/info/frn/copy/timeline.html.

[19] Anita Susan Brenner and B. Metson. Paul and Karla hit the net.

http://www.cs.indiana.edu/canada/wired.

[20] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM, 4(2), February 1982.

[21] David Chaum. The dining cryptographers problem: Unconditional sender and recipient un-

traceability. Journal of Cryptology, 1:65-75, 1988.

[22] Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter Yiani-

los. A prototype implementation of archival intermemory. In Proceedings of the fourth ACM

Conference on Digital libraries (DL '99), 1999.

[23] American Civil Liberties Union. ACLU wins first-ever challenge to a state internet censorship

law in Georgia. http://www.aclu.org/news/n062097b.html.

[24] Ian Clarke. The Free Network Project. http://freenet.sourceforge.net/.

[25] The Cleaner. Gnutella wall of shame. http://www.zeropaid.com/busted/.

[26] Cubby v. Compuserve, 1991. http://www.loundy.com/CASES/Cubby-v-Compuserve.html.

[27] John Curran and Leslie Daigle. Uniform Resource Names (urn) Charter.

http://www.ietf.org/html.charters/urn-charter.html.

[28] TrakWeb Development. Welcome to MobilTrak. http://www.mobiltrak.com/.

[29] Matt Dietrich. Fcc

ruling won't affect low-power radio pioneer. http://www.infoshop.org/news5/kantako.html,

January 2000.

128

The Free Haven Project Roger Dingledine

The Free Haven Project Roger Dingledine

[30] EFF. Canadian law supporting right to anonymity.

http://www.eff.org/pub/Privacy/Anonymity/can-anonymity.law.

[31] Elrod v. Burns, 427 U.S. 347, 373, 1976.

[32] Dave Beazley et al. Simplified wrapper and interface generator. http://www.swig.org/.

[33] Ian Hall-Beyer et al. Gnutella. http://gnutella.wego.com/.

[34] Center for National Security Studies. The FBI's Domestic Counterterrorism Program.

http://www.cdt.org/policy/terrorism/cnss.FBI.auth.html.

[35] Electronic Frontiers Georgia (EFGA). Anonymous remailer information.

http://anon.efga.org/Remailers/.

[36] Andrew V. Goldberg and Peter N. Yianilos. Towards and archival intermemory. In Proc. IEEE

International Forum on Research and Technology Advances in Digital Libraries (ADL'98),

pages 147-156. IEEE Computer Society, April 1998.

[37] Ian Goldberg and Adam Shostack. Freedom network 1.0 architecture, November 1999.

[38] Ian Goldberg and David Wagner. Rewebber. First Monday.

[39] Ian Goldberg, David Wagner, and Eric Brewer. Privacy-enhancing technologies for the internet.

In Proceedings of IEEE COMPCON '97.

[40] Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudo-Randomness.

Springer-Verlag, 1999.

[41] C. Gulcu and G. Tsudik. Mixing e-mail with Babel. In Proceedings of the ISOC Symposium

on Network and Distributed System Security, pages 2-16, 1996.

[42] Johan Helsingius. press release announcing closure of anon.penet.fi.

http://www.penet.fi/press-english.html.

[43] David Hopwood. Definition of recipient-hiding cryptosystem. sci.crypt usenet post.

[44] Infoshop.org. How does capitalism affect liberty?

http://www.infoshop.org/faq/secB4.html#secb41.

[45] Infoshop.org. Social struggle. http://www.infoshop.org/faq/secJ4.html#secj41.

[46] The Cato Institute. Anonymity on the Internet. http://www.cato.org/pubs/briefs/bp-

054es.html.

129

The Free Haven Project Roger Dingledine

130

Roger DingledineThe Free Haven Project

[47] M. Jakobsson. Flash mixing. In Principles of Distributed Computing PODC '99.

[48] M. Jakobsson. A practical mix. In Advances in Cryptology - EUROCRYPT '98.

[49] Thomas Jefferson. Declaration of Independence, as originally drafted, 1776.

[50] Clifford Kahn, David Black, and Paul Dale. MANET: Mobile agents for network trust.

http://www.darpa.mil/ito/psuml998/F255-0.html, 1998.

[51] Gene Kan. Gnutella protocol. http://capnbry.dyndns.org/gnutella/protocol.html.

[52] D. Kesdogan, A. Trofimov, and D. Trossen. Minimizing the average cost of paging on the air

interface. In Ku VS Springer- Verlag, 1999.

[53] Dogan Kesdogan and ... Stop and go mixes : Providing probabilistic anonymity in an open

system. In 1998 Information Hiding Workshop.

[54] Kolender v. Lawson, 461 U.S. 352, 357, 1983.

[55] Jason Kroll. Crackers and crackdowns.

http://www2.linuxjournal.com/articles/culture/007.html.

[56] Lamont v. Postmaster General, 381 U.S. 301, 1965.

http://caselaw.findlaw.com/scripts/getcase.pl?court=US&vol=381&invol=301.

[57] Jon Lebkowsky. Interview with Eric Hughes in the Electronic Frontiers forum.

http://hotwired.lycos.com/talk/club/special/transcripts/96-07-11.hughes.html.

[58] Brian Livingston. AOL's 'youth filters' protect kids from Democrats.

http://www.news.com/Perspectives/Column/0,176,421,00.html.

[59] Lucent personalised web assistant. http://www.lpwa.com.

[60] Tal Malkin. Private Information Retrieval. PhD thesis, MIT. see

http://www.toc.lcs.mit.edu/ tal/.

[61] David Michael Martin. PhD thesis, Boston University, 2000.

http://www.cs.du.edu/ dm/anon.html.

[62] David Mazieres and M. Frans Kaashoek. The design and operation of an e-mail pseudonym

server. In 5th ACM Conference on Computer and Communications Security, 1998.

[63] Mcintyre v. Ohio Elections commission, 1995. http://cpsr.org/cpsr/free-speech/mcintyre.txt.

[64] Steve Miale. Paul Teale/Karla Homolka information site.

http://www.cs.indiana.edu/canada/karla.html.

[65] Stanley Milgram. The Small World Problem. Psychology Today, 2:60-67, 1967.

[66] Mix-l mixmaster discussion list. mix-l-subscribe4egroups.com.

[67] Ulf M61ler and Company. Mixmaster 2.9b source code. http://mixmaster.anonymizer.com.

[68] David Molnar.

Free Haven: Some possible weaknesses? http://freehaven.net/archives/freehaven/dev/Feb-

2000/msg00001.html.

[69] Andrew Musgrave. Liability of internet service providers for

copyright infringement the impact of the copyright amendment (digital agenda) bill 1999.

http://www.lawnow.com.au/LegalRegArticles/authors/musgrave/musgravetxt.htm.

[70] Napster. http://www.napster.com/.

[71] No Electronic Theft act. ftp://ftp.loc.gov/pub/thomas/c105/h2265.ih.txt.

[72] New York Times Co. v. Sullivan, 376 U.S. 254, 1964.

[73] A bad gag order in Canada. http://www.cs.indiana.edu/canada/n.y.times-editorial.

[74] British House of Commons. Regulation of investigatory powers bill.

http://www.parliament.the-stationery-office.co.uk/pa/cm99900/cmbills/064/2000064.htm.

[75] U.S. Library of Congress. About the Federalist Papers.

http://cweb2.loc.gov/const/fed/abt-fedpapers.html.

[76] University of Michigan News and Information Services. Yugoslav phone books: perhaps the last

record of a people. http://www.umich.edu/~newsinfo/Releases/2000/JanOO/rI2000e.html.

[77] Onion router. http://www.onion-router.net/.

[78] DeCSS lawsuit overview. http://www.lemuria.org/DeCSS/cca.html.

[79] Thomas Paine. Common sense. http://libertyonline.hypermall.com/Paine/CS-Body.html.

[80] A. Pfitzmann, B. Pfitzmann, and M. Waidner. ISDN-Mixes : Untraceable communication with

small bandwidth overhead. In GI/ITG Conference: Communication in Distributed Systems,

pages 451-463. Springer-Verlag, 1991.

[81] PGP FAQ. http://www.faqs.org/faqs/pgp-faq/.

[82] Associated Press. German court: AOL liable for music piracy.

http://www.usatoday.com/life/cyber/tech/review/crh053.htm.

131

The Free Haven Project Roger Dingledine

[83] The proxomitron. http://www.proxomitron.cjb.net/.

[84] Michael 0. Rabin. Efficient dispersal of information for security, load balancing, and fault

tolerance, April 1989.

[85] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. DIMACS

Technical Report, 97(15), April 1997.

[86] Karina Rigby. Anonymity on the internet must be protected. http://www-

swiss.ai.mit.edu/6095/student-papers/faI95-papers/rigby-anonymity.html.

[87] R. Rivest. Graduated mirroring. http://freehaven.net/archives/freehaven/dev/Jan-

2000/msg00001.html.

[88] K. Sako and J. Killian. Receipt-free mix-type voting scheme. In Advances in Cryptology -

EUROCRYPT '95, pages 393-403.

[89] Russell Samuels. Untraceable nym creation on the freedom network, November 1999.

[90] Bruce Schneier and John Kelsey. The street performer protocol.

http://www.counterpane.com/street-performer.html.

[91] Adam Shostack and Ian Goldberg. Freedom 1.0 security issues and analysis, November 1999.

[92] Steve Steinberg. Gnutellanet maps. http://gnutella.wego.com/file-depot/0-10000000/110000-

120000/116705/folder/151713/network3.jpg.

[93] Stratton v. Prodigy, 1995. http://www.epic.org/free-speech/stratton-v-prodigy-1995.txt.

[94] Anne Swardson. Unspeakable crimes: This story can't be told in Canada. and so all Canada

is talking about it... http://www.cs.indiana.edu/canada/WashingtonPost.

[95] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and onion routing.

In Proceedings of the 1997 IEEE Symposium on Security and Privacy, May 1997.

[96] Talley v. California, 362 U.S. 60, 64, 1960.

[97] United States v. Aluminum Company of America. 148 F. 2d 416, 1945.

[98] 22 U.S.C. 611 (j).

[99] 39 U.S.C. 4008 (b).

[100] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A robust, tamper-evident,

censorship-resistant and source-anonymous web publishing system.

132

The Free Haven Project * Roger Dingledine

The Free Haven Project Roger Dingledine

[101] Duncan J. Watts and Steven H Strogatz. Collective dynamics of 'small-world' networks.

Nature, page 393, 1998.

[102] Zero Knowledge Systems. http://www.freedom.net/.

133

The Free Haven Project Roger Dingledine

