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Abstract

The modeling effort documented in this thesis investigates the operation and control
of a two-stroke, free-piston-engine driven linear-alternator for resistive and battery-
charging loads. First-principles models of each of the individual components of the
system were tied together into a dynamic model of the overall system. A constant
step-size, fourth-order Runge-Kutta algorithm was used to numerically simulate the
engine/alternator/load system. The simulation predicts the existence of a range of
resistive and battery loads for which steady-state operation is possible without the aid
of feedback-control. The computer program embodying the model of the two-stroke,
free-piston-engine driven linear-alternator enables the investigation of electromechan-
ical design trade-offs and is intended to serve as the forerunner of a numerical design
tool.
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Chapter 1

Introduction

1.1 Background and motivation

Hybrid-electric vehicles need compact, light weight and efficient auxiliary-power units

to become a commercially viable product. A system in which a linear alternator

extracts energy from a two-stroke free-piston engine claims to address this need. This

design also claims to provide significant savings in frictional losses, reduce weight and

size, and increase durability by eliminating the conversion from linear motion to

rotational motion. In addition, a battery separates the vehicle load from the engine,

which should enable the engine to always run at an optimal operating speed.

The system under consideration was proposed and built by Galileo Research 1

and consists of two identical internal-combustion cylinders and two pistons joined by

a rigid rod, which supports the plunger of a linear alternator. The cylinders fire so

that the expansion in one cylinder drives the compression in the opposite cylinder,

consequently the motion of the piston assembly results from thermodynamic as well

as electro-mechanical forces.

A conventional internal-combustion engine decouples the thermal and electrical

dynamics with a large reservoir of mechanical energy (i.e., a big hefty flywheel). The

most interesting features of the two-stroke engine/linear-alternator derive from the

'Galileo Research, Inc., P.O. Box 25 Torrington, CT 06790-0025
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interaction between the alternator, the engine and the load.

First-principles analytical modeling of the free-piston-engine/linear-alternator sys-

tem is an important step that can greatly facilitate the realization and development

of this technology. The problem is that experience with the behavior of conventional

rotating-systems does not apply very well to this unconventional system. A model

is needed to investigate the conditions for steady-state operation of such a system.

Without a good model, the operation and tuning of the system would depend on

blind trial and error.

Another reason for first-principles modeling is the investigation of electromechan-

ical design-tradeoffs. Numerical simulation makes the study of the effects of various

properties, parameters and configurations a simple, efficient and cheap endeavor.

Furthermore, because the model is based on physical laws and fundamental physical

models, modifications to the system's design can be readily investigated by making

small adjustments to the previous models.

In addition, the model and the simulation are useful tools for gaining an un-

derstanding of the capabilities and shortcomings of this technology. These analytical

tools are needed to evaluate the feasibility and impact of two-stroke free-piston engine

auxiliary-power units in hybrid-electric vehicle applications.

1.2 System overview

The engine is a two-stroke internal combustion engine with a permanent-magnet

plunger mounted on the rod linking the two pistons. Figure 1-1 shows the configura-

tion of the engine and the alternator. The engine consists of two internal-combustion

cylinders that fire in opposition, pushing the reciprocating assembly (pistons, plunger

and link-rod) back and forth between them. Firing is timed so that the expansion

in one cylinder drives the compression in the opposite cylinder. Energy is extracted

from the engine on every stroke, as the reciprocating assembly carries the plunger

into and out of the stator iron. The output of the alternator is full-wave rectified into

a battery, which in turn drives a load.

14



Alternator

Spark plug

Left cylinder head Stator

: pPiston
Left gas pocket

Exhaust port

Winding Permanent magnet plunger
Spark plug cavity

L] z Right cylinder head

Piston
SLink rod

Right gas pocket

Exhaust port

Cross-sectional area A

Figure 1-1: Schematic of the configuration of the engine/alternator/load

1.3 Modeling approach

A model of the two-stroke engine linear-alternator system has been developed and

implemented in C-code to investigate steady-state operation under different loads.

This model combines simple analytical models of the three components of the en-

gine/alternator/load system in a dynamic simulation to investigate the interaction

between the engine thermodynamics, the alternator electromechanics and the power

delivered to the load.

1.4 Preview

Chapter 2 presents a simple model of the linear-alternator's electromechanics. The

alternator is modeled by an equivalent lumped-parameter circuit with an internal

voltage source, winding inductance and winding resistance.

Chapter 3 describes a model for the thermodynamics of the two-stroke free-piston

reciprocating engine. The standard Otto cycle with instantaneous combustion and

exhaust events was chosen to model the engine's cycle. The model computes the force

on the plunger due to the difference in pressure between the two cylinders. The goal

is to capture the role of the engine without resorting to sophisticated modeling.

15



Chapter 4 starts by briefly documenting the models used to investigate the ef-

fects of different electrical loads on the operation of the system. The chapter then

proceeds to describe the framework of the overall system-model. In particular, it doc-

uments how the models for the three components (alternator, engine, load) combine

to form an overall system-model. The chapter also details some of the features of the

implemented numerical simulation.

Chapter 5 discusses the predictions and results of the numerical simulation.

Chapter 6 compares the predictions of the model to some preliminary experimental

data.

Chapter 7 presents conclusions and recommendations for further work.

16



Chapter 2

Modeling the linear alternator

2.1 Geometry of the alternator

Figure 2-1 displays the cross-sectional geometry of the linear alternator under con-

sideration'. Note that the plunger consists of thirty two permanent-magnets with

azimuthal fields that are mounted radially on eight symmetric arms stemming from

a non-magnetic shaft so that the magnets move into and out of the stator iron as the

plunger reciprocates. The magnets on either side of an arm have the same polarity.

A set of magnets of opposite polarity are mounted behind the set of sixteen shown

in Figure 2-1, so that the magnetic-flux through each air gap sums to zero when the

plunger is centered in the stator. Figure 2-2 shows an axial view of the plunger.

The stator has eight wedge-shaped iron pole pieces. Coils are wound around

each pole piece and are connected in series to extract energy from the plunger and

deliver it to the load. The magnets on each arm have the opposite polarity of their

counterparts in the contiguous arms, so that the magnets neighboring a pole piece

are either both pushing flux into the pole piece or both pulling flux out of the pole

piece. Consequently, the magnet arrangement and the symmetry of the alternator's

geometry ensure that the magnetic flux lines never cross the line bisecting a pole

piece.

'The STAR alternator. Clever Fellows Innovation Consortium, Inc. 302 Tenth Street, Troy, New
York, 12180
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45 degrees

Figure 2-1: Alternator geometry in cross-section

Four flexure-springs are mounted on each end of the linear alternator. The flexure-

springs connect the reciprocating shaft to the stator's back-iron. The purpose of

this flexure suspension is to restrain the plunger's torsional-motion, thus preventing

contact between the brittle permanent-magnets and the iron pole-pieces.

2.2 Modeling assumptions

The linear alternator behaves like a single-winding, single-magnet alternator despite

its complicated geometry. Figure 2-3 illustrates a lumped-parameter model of the

18
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Figure 2-2: Axial view of the magnetic arms on the plunger

alternator consisting of a voltage source eaf (t) in series with a resistance R, and

an inductance L,. The internal voltage-source models the conversion of mechanical

motion into an induced voltage, while the inductance and the resistance model energy

storage and dissipation in the stator winding. Although this machine is clearly three-

dimensional in nature, the expressions derived in this chapter rely on a simplified two-

dimensional analysis. The appropriateness of these approximations and assumptions

has been examined with finite-element methods as well as experimentally.

LW RW

eaf + eo

Figure 2-3: Equivalent lumped-parameter model of the alternator
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Figure 2-4: A 450 section of the alternator showing the contour of integration C1

The field analysis relies on magnetic-circuit approximations, which hold when the

permeability of the stator iron is much greater than the permeability of free space,

and when the thickness of the air gap and magnets is small. Furthermore, the model

ignores reluctance effects and assumes that the permeability of the permanent-magnet

material equals the permeabilty of free space. Finally, expressions derived in this

chapter exploit the alternator's symmetry by solving the fields in the 45' arc shown

in Figure 2-4.
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Figure 2-5: Equivalent magnetic circuit
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Figure 2-6: Radial view of the magnets displaced along the axis of reciprocation
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2.3 Internal voltage

The lumped-parameter model illustrated in Figure 2-3 has an open circuit voltage that

equals the internal voltage eaf. Consequently, we set the current through the windings

to zero and solve for the fields due to the magnets. From the field distribution, we

can calculate the winding flux-linkage and hence the induced voltage.

2.3.1 Modeling the internal voltage

The constitutive relation inside the magnet is,

Bm = Br + prHm (2.1)

where Bm and Hm are the magnetic flux-density and field intensity inside the magnet,

M, is the permeability of the magnetic material, and Br is a constant residual flux-

density. We ignore the reluctance of the magnetic material and set,

Pr - Po (2.2)

This assumption holds since the permanent-magnet material used in the alternator

under study has a relative permeability of 1.05. This means that the constitutive

relation inside the magnet can be rewritten as,

Br = Br + PO Hm (2.3)

The constitutive relation in the air gap and in the non-magnetic support is linear,

B9  = oHg (2.4)

BS= poH, (2.5)

where the subscripts g and s denote field variables in the air gap and in the mounting

support. The model ignores the fringing fields in the air gap and mounting support
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and assumes that these fields are uniform.

The permeability of the iron is assumed to be infinite, which confines the flux

lines in the iron and forces the magnetic-field intensity in the iron to zero. These

assumptions reduce the 450 arc in Figure 2-4 to the magnetic circuit in Figure 2-5.

Going around the contour C1 in Figure 2-5 and taking the line integral of H yields,

2tgHg + tsHs + 2tmHm = 0 (2.6)

where t9 is the thickness of the air gap, t, is the thickness of the magnet mounting-

support, and tm is the thickness of the magnet. The section of the contour within

the iron makes no contribution to the line integral because H in the iron is zero by

assumption.

To conserve magnetic flux, the flux density in the air gap poHg must equal the

flux density in the mounting support poHs because the area of the air gap is constant

and the fields are uniform. This results in the equality,

Hg = Hs (2.7)

which when combined with Equation 2.6 gives the expression,

(2tg + ts)Hg + 2tmHm = 0 (2.8)

Conservation of magnetic flux also requires that the flux densities at the interface

between the air-gap and the magnet be equal,

Bg = Bm (2.9)

Using the constitutive relations 2.3 and 2.4 along with Equations 2.8 and 2.9 to solve

the fields in the air-gap and in the magnet results in,

Hg = 2tmBr(2.10)
po (2tm + 2tg + ts)
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Hm = - (2tg + ts)Br (2.11)
HO (2tm + 2 tg + ts)

Figure 2-6 shows a radial view of the section in Figure 2-4 with the magnets

displaced along the axis of reciprocation. The figure shows two pairs of magnets of

opposite polarity between the iron pole-pieces, where each magnet is half the stator

length im. The total magnetic-flux through the air gap depends on the position of

the magnets within the iron as the plunger travels along the axis of reciprocation.

The net flux is zero when the magnet pair is completely centered within the stator

pole-piece.

Neglecting fringing effects, the total flux crossing the air gap in Figure 2-6 can be

calculated as,

4) yo Hg1I + Hg2 ( - Z(t) Wm (2.12)

where Hg1 and H2 are the magnetic-field intensities in the regions of the air gap

shown in Figure 2-6, z(t) is the displacement of the magnets from the center of the

pole pieces, and wm is the width of a magnet pair. Recognizing that,

H 1 = -H 9 2 =Hg (2.13)

and substituting the expression for Hg from Equation 2.10 into Equation 2.12, yields

the net flux through the air gap as,

P9= 2tmBr t"mZ(t) (2.14)
2tm + 2tg +ts

This expression holds until only one of the magnets remains in the gap (i.e, zl < 1).

Since the arc of Figure 2-4 includes only one half of each pole piece, the total flux

through each pole piece 1, must be twice Dg,

P= 4tBr (2.15)
2tm + 2tg + ts
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Table 2.1: Values of the alternator's geometric-parameters

t9 0.50 mm
ts 2.16 mm
Im 25.40 mm
tm 11.25 mm
Wm 27.94 mm
Br 1.25 T
po 47r x 10-7 H

The flux linkage A for an N-turn coil wound around a pole piece is,

4tmBrN
A = 4m, Wmz(t) (2.16)

2tm + 2tg + t(

Taking the time derivative of Equation 2.16 gives the voltage induced across each

N-turn coil,
4NtmwmB, dz (2.17)

2tm + 2tg + ts dt

The alternator armature winding consists of eight such coils connected in series. Hence

the generated voltage is given by,

eaf = 8ec = G (2.18)
dt

where,

G 32NtmwmB (2.19)
2tm + 2 tgq + ts

Table 2.1 lists the dimensions of the alternator used in the prototype. These values

lead to G = 30.87 -g~m

COU=s

2.3.2 Finite-element analysis

The model derived in Section 2.3.1 is based on a simple magnetic-circuit representa-

tion which neglects three-dimensional effects. In particular, the model assumes that

25



Figure 2-7: Developed radial view of the alternator

the fields are confined to the plane of Figure 2-1, thus ignoring any axial leakage

fields. Although it is reasonable to expect the model of Section 2.3.1 to be an ad-

equate representation of the linear alternator, it is necessary to investigate some of

the modeling assumptions in detail.

Therefore, a two-dimensional finite-element analysis program 2 was employed to in-

vestigate axial permanent-magnet leakage-flux. The geometry of Figure 2-7 was cho-

sen to perform this analysis. The geometry corresponds to a cylindrical cut through

the alternator at the mid-point radius of of the magnets which is then laid out flat.

In this figure, the plunger is shown displaced by a distance z from its rest position

when it is centered in the stator pole-pieces.

Note first of all that this developed radial view of the machine is periodic. If one

draws lines of symmetry through the stator pole-pieces as is done in Figure 2-7, the

symmetry of the machine requires that no magnetic flux cross these lines. Hence,

for the purposes of a finite-element analysis it is sufficient to investigate a single

section including one magnet set between two lines of symmetry (referred to as a

solution region in Figure 2-7). This can be readily done in a finite-element program.

Setting a boundary condition of zero vector potential on the two symmetry lines will

2 QuickField. Tera Analysis, 17114 Birchner Street, Granada Hills, CA 91344
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Figure 2-8: Finite-element geometry used to investigate axial leakage fluxes

guarantee that no flux will cross them, consistent with the symmetry imposed by

the conditions of the actual machine. To perform the finite element analysis, the

boundary surrounding the solution region must be closed. The rectangular solution-

region illustrated in Figure 2-8 is formed by adding two boundary segments which

are also set to zero vector potential. This is reasonable since only the fields near the

air gap are of interest.

It is also important to note that the three-dimensional nature of the machine

requires that the geometry of Figure 2-7 be somewhat modified to enable a two-

dimensional solution. The problem is that, although the flux produced by the magnets

is directed predominantly in the plane of the figure, the flux going through the pole

pieces flows out of the plane of the paper and returns through the stator back-iron

which is not included in the two dimensional section under study.

Because the analysis is primarily interested in the leakage flux which flows in the

plane of Figure 2-7, an approximate representation will be investigated in which an

equivalent flux return-path will be included in the plane of the figure. The resultant
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Figure 2-9: Finite element solution of the axial leakage-fields, z = 0 mm

geometry shown in Figure 2-8 provides a flux return-path in the plane of the solution

region. Note the presence of a magnetic short-circuit between the two pole-pieces as

well as the zero potential boundary that surrounds the solution region. Because the

short-circuit is far away from the region where leakage fluxes are expected, it is reason-

able to expect that the presence of short-circuit will not affect the solution (certainly

to the extent that this two-dimensional solution can be considered to approximate

the full three dimensional situation).

Figures 2-9 to 2-11 present the finite element solution for zero displacement, a

displacement of z = 6.7 mm, and a displacement of z = 13.4 mm. With the magnets

centered within the stator iron (Figure 2-9), the finite element solution indicates that

no net flux is going through the flux return-path, which is in agreement with the

magnetic-circuit model of Section 2.3.1. However, note that when a portion of the

permanent-magnet plunger is out (as in Figures 2-10 and 2-11) only some of the

flux lines crossing the air gap return through the equivalent short-circuit and link

the armature coil. This finite element investigation shows that there are significant,

unmodeled axial leakage-fluxes when the plunger is displaced outside the stator iron.

To appreciate the extent to which the model of Section 2.3.1 needs refinement,
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Figure 2-10: Finite element solution of the axial leakage-fields, z = 6.7 mm

Figure 2-11: Finite element solution of the axial leakage fields, z = 13.4 mm
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x 1 o The Flux linking a single turn on a stator pole-piece as a function of displacement
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Figure 2-12: The flux linking an armature coil: analytical-model predictions (solid)
and finite element results (squares)

we examine the effect these leakage phenomena have on the induced internal-voltage.

Figure 2-12 compares the the finite-element results for the flux through a pole piece

with the predictions of Equation 2.15. The symmetry of the alternator was used to

produce the values for negative displacements. Note that the finite-element results

are not linear, in contrast with the predictions of Equation 2.15 from Section 2.3.1.

Because the flux is an odd function of displacement, a cubic best-fit through the

finite-element results shown in Figure 2-12 was chosen to represent the data. The

best fit curve is given by,

<,= qaz3 + qiz (2.20)

where q3 = 152.8, and qi = 0.0118. The lack of qualitative as well as quantitative

agreement between the results of Section 2.3.1 and this finite-element analysis makes

it very hard to justify the assumption that axial leakage fluxes are negligible.

Although it would be interesting to return to analytical considerations of Section

2.3.1 and refine the modeling assumptions in the light of the evidence from the finite-

element analysis, the numerical fit of the finite-element results as given by Equation

2.20 is sufficient for the purposes of this thesis. Incorporating this refinement to
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the model of Section 2.3.1 changes the flux linkage for an N-turn coil A predicted in

Equation 2.16 to,

A = Nq3 z 3 + Nqiz (2.21)

This leads to the induced voltage across each N-turn coil given by the expression,

dz(t) dz(t)ec = 3Nq3 z 2 (t) + Nqdt (2.22)
dt dt

which in turn leads to the winding-voltage expression,

eaf = 2 2 )dz(t) dz(t) (2.23)
e =24Nq3z2 (t) dt+ 8Nqi 2.3

dt dt

which is non-linear in contrast with Equation 2.18 from Section 2.3.1.

2.4 Magnetic axial restoring-forces

The magnetic plunger resists being pulled away from its rest position in the center

of the iron-stator structure. A displacement of the plunger from the center of the

stator results in a force that acts to restore the plunger to the center. This section

uses the field solution of Equations 2.10 and 2.11 and the assumptions associated

with them to derive an expression for the alternator co-energy U' as a function of the

displacement z. The restoring force can then be calculted by taking the derivative of

U' with respect to z.

In this section, the fringing fields in the air and the portion of the magnetic plunger

displaced outside the stator iron are assumed to be negligible. Only the region where

the permanent magnet overlaps with the stator iron is assumed to have a significant

concentration of magnetic flux-lines (see Figure 2-6). In addition, all of the fields of

interest are assumed to be uniform.

These assumptions are consistant with magnetic circuit approximations, which

hold when the permeability of the stator iron is much greater than the permeability

of free space, and the thickness of the air gap and magnet is small. Section 2.4.2
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examines the appropriatness of these assumptions against the predictions of a finite-

element analysis.

2.4.1 Modeling the magnetic axial restoring-forces

Figure 2-6 shows a radial view of the displaced magnets. If the displacement is positive

z > 0, then the co-energy stored in the air gap and magnet support structure U' is

given by the integral of co-energy density over the overlap volume,

U = W (lm ) - Z)(2tg +ts) U (2.24)

where u' is the co-energy density in the air gap and magnet support structure in the

region where the magnets overlap the stator iron in Figure 2-6. Note that the air-gap

fields H 1 and Hg2 shown in Figure 2-6 have the same co-energy density since they

are of equal magnitude and opposite direction.

Hg1 = -Hg2= Hg (2.25)

The co-energy density is given by,

1 H2
U9 = POH (2.26)

This leads to,

U W = (lm - z)(2t + tsI poH2 (2.27)

Substitution of the field solution from Equation 2.10 into Equation 2.27 yields,

B 2t2
U =Wm(im - z)(2tg + ts) r m (2.28)2p(2tg +ts + 2tm) 2
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The co-energy density in the permanent-magnet material3 ,

, 1 1(B.2
M= - H +BrIHml+ 4 ' (2.29)

2 2 po

Since the fields in the magnetic material are of equal magnitude Hm and opposite

direction, the co-energy density in Equation 2.29 holds for the magnetic material in

the region of overlap between the permanent-magnet and the stator iron.

The co-energy stored in the magnetic material is calculated by multiplying the

co-energy density by the volume of permanent magnet in the overlap region,

U' = 2tmwm(im - z)u'm (2.30)

Using the co-energy density from Equation 2.29 to rewrite Equation 2.30 gives,

1 lB 2

Un = 2tmwm(lm - z)(--2oH2 + BrHm+ 1 Br) (2.31)
2 2 O

Substitution of the field solution from Equation 2.11 into Equation 2.31 followed

by some algebraic manipulation yields,

B (2tm) 3

2po(2tg + ts + 2tm) 2

The total co-energy U' is the sum of U' and U' from Equations 2.28 and 2.32,

B (2tm )2

U U 9 + U = Wm(ln - z) ( (2.33)
2pio(2tg + ts + 2tm)

The derivative of U' with respect to z gives the force as,

dU' B2(2tm) 2

fms - - _M _ (2.34)
dz 2pto(2tg +ts + 2tm)

for z > 0.

3 Fitzgerald, A., E., Kingsley, C. Jr., Umans, S., D., Electric Machinery

33



A similar consideration for z < 0 leads to the force,

SB2(2tm) 2

fMS = WM_ (2.35)
2pio(2tg + ts + 2tm)

Because of the eightfold symmetry of the alternator, the net restoring-force fm has

the magnitude,

Jfmj = 81fmsl (2.36)

According to this model the magnetic restoring-force is a non-linear function of po-

sition; whenever the magnetic assembly is displaced to either side, a force of constant

magnitude acts to oppose that displacement. The force on the magnetic assembly is

zero only when the magnets are completely centered in the stator iron. Using the

values in Table 2.1 gives a force fm of magnitude 2738 N.

2.4.2 Finite-element analysis

This section utilizes the finite-element solution of section 2.3.2 to examine the ax-

ial magnetic restoring-force. It is clear that axial fringing-fields and the three-

dimensional nature of the machine are far from negligible. The finite-element so-

lutions in Figures 2-10 and 2-11 show that, contrary to the modeling assumptions, a

considerable amount of co-energy is stored in the fringing fields. This indicates that

the results of the simple two-dimensional consideration of Section 2.4.1 are likely to

be inaccurate.

An experiment in which the restoring force due to the magnet and the mechanical

flexure-springs are measured (see Figure 2-13) confirms that the modeling assump-

tions are inappropriate. Not only is the magnitude of force calculated in the previous

section much higher than the experimental data, the measurements indicate that the

magnet force is a relatively linear function of displacement in contrast to the constant

restoring-force derived in Section 2.4.1. Thus it is clear that the fringing fields in the

air and in the portion of the magnetic plunger displaced outside the stator iron cannot

be ignored.
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Measured force versus displacement
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Figure 2-13: Force-displacement experimental measurements

Magnetic-restoring force as a function of displacement
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Figure 2-14: Force-displacement profile: experimental measurements (diamonds) and
finite element results (squares)
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Presented in Figure 2-14 is a comparison between the experimental measurements

(diamonds) and the finite-element force calculations for five plunger displacements

(squares). The symmetry of the alternator was used to infer the values for negative

displacements. The results of the finite-element analysis are in good agreement with

experimental data; both indicate that over a wide range of displacements the restoring

force is a linear function of the displacement with a proportionality constant K =

9.52 x 104 N. The results suggest that it is reasonable to model the magnetic axial

restoring-force as simple spring,

fm = Kz (2.37)

Note that the finite-element force-displacement results "saturate" at a lower force

than the experimental data. This disagreement in "saturation level" can be at-

tributed to the approximate nature of the chosen finite-element geometry (a developed

cylindrical-cut at the average radius of a magnet). The simple spring-model of the

magnetic restoring-force presented in Equation 2.37 ignores this saturation effect,

which should not have a big impact on the dynamics of the engine/alternator/load

system, because the saturation occurs near the limits of plunger displacement.

Note also that these results imply that the flexure springs do not appear to exert

much force in the axial direction. The flexure springs are mounted on the plunger

to constrain the torsional motion of the plunger and thus prevent the plunger's

permanent-magnets from coming into disastrous contact with the stator's pole-pieces.

2.5 Winding inductance

To calculate the winding inductance, we utilize the principle of superposition by

"turning off" the magnets (i.e., setting B, = 0) and then calculating the flux linkage

due to current flow in the windings.
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Figure 2-15: Developed view of the stator

2.5.1 Modeling the winding inductance

Magnetic-circuit approximations allow us to develop the cross-section of the linear

alternator into the series of identical magnetic-circuits shown in Figure 2-15. Note

that due to the symmetry of the machine, no magnetic flux can cross the symmetry

lines drawn through the stator pole-pieces in Figure 2-15. Hence, it suffices to consider

the fields in only one section including the 2Ni Amp-turns and bounded by two

symmetry-lines as shown in Figure 2-16.

The contour C2 in Figure 2-16 encloses 2Ni Ampere-turns and goes across a

uniform air-gap of thickness 2tm + 2 tg + t,. This leads to the solution,

Bg 2=m4i (2.38)
S2tm +2t + ts

where the magnetic-field intensity in the infinitely-permeable stator iron is assumed

to be zero.

Assuming that the air gap is small enough for the fields to be uniform, the product

of the of flux density B9 and the area of the air gap wmlm yields the total flux through

the air gap,
=2pi 0Ni

<b9 = ~ WmIm (2.39)
2tm + 2 t9 + tW

which gives the flux through only one half of each pole piece. The flux through a pole
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2-16: A section of the developed view of the stator

piece <bp is twice the value of <D,,

P ApoNi
2tm + 2tg + ts

The flux linked to an N-turn coil wound around a pole piece is given by,

4N 2 POWmlm
A=

2tm + 2tg + ts

And since,

A= Li

the inductance of one N-turn coil is given by,

L- 4N 2 LOWmlm
2tm + 2tg + ts

Figure

Depth 1m into the page

(2.40)

(2.41)

(2.42)

(2.43)
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The winding inductance is eight times the expression in Equation 2.43,

32N 2 POWrm (2.44)
2tm + 2 tg + ts

Using the values from Table 2.1 yields Lw = 4.41 mH.

These calculations are based on the assumption that 2tm + 2tg + t, is small and

ignore any flux linked by fringing fields. However the thickness of the air gap and

magnets is not small and a finite-element solution can be used to examine the effect

of fringing fields on the winding inductance.

2.5.2 Finite-element analysis

QuickField finite-element software was used to investigate some of the assumptions

and approximations used to derive the inductance expression of Equation 2.44. In

particular, this investigation focused on the magnetic-circuit approximations (i.e.,

infinitely-permeable iron, and uniform magnetic-fields with negligible fringing) by

solving for the flux distribution in a cross section of the alternator. The analysis

did not include three-dimensional effects like axial leakage-fluxes. It is reasonable to

expect that some flux will leak axially from the ends of the alternator. Since this

implies that some of the fields (and consequently the co-energy) in the alternator will

remain unaccounted for, the inductance of the winding is likely to be slightly higher

than the value calculated in this section.

The finite-element analysis determined the two-dimensional fields excited by a

current i flowing in the stator winding in the geometry of Figure 2-17. To determine

the inductance, the magnets are "turned off" by setting B, = 0 and are assumed

to have a permeability of pr = 1.05po. Because it was not possible to identify the

electrical steel used in the alternator, the constitutive relation for the stator iron is

modeled by a non-linear B-H curve for a generic electrical-steel (see Figure 2-18).

In addition, it is reasonable to expect no flux leakage out of the alternator at its

outer radius. Consequently, the vector potential at the outer circumference of the

alternator was set to zero.
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Figure 2-17: Finite element geometry used to investigate the winding inductance

40



A nonlinear B-H cove for generic electrical-steel
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Figure 2-18: Non-linear B-H curve for generic electrical-steel

An operating point of i = 10 Amps was selected for the purposes of this analysis,

since the alternator is expected to operate near that current level. Figure 2-19 shows

the field distribution resulting from the finite-element solution. The field distribution

reveals a significant amount of leakage flux, indicating that the thickness of the air

gap and magnets is not small enough to justify magnetic circuit approximations.

The software calculates the magnetic field co-energy in the stator, which can then

be used to calculate the inductance of the winding by using the expression,

1L,i2 = U' (2.45)
2

where U' is the total magnetic co-energy stored in the alternator. Solving Equation

2.45 for L, gives the expression,

_W 2U' (2.46)2U

The finite-element solution in Figure 2-19 shows that the total magnetic energy

stored in the system due to a winding current of 10 Amps is 0.359 J. The magnetic co-

energy is also equal to 0.359 J, which indicates that the stator iron has not saturated

and is still in the linear regime. Substitution of i = 10 Amps and U' = 0.395 J

into Equation 2.46 results in L. = 7.19 mH, which is 63% larger than the value
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Figure 2-19: Finite element solution of fields due to 10 Amps of winding current with

the magnets "turned off"
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predicted by the model of section 2.5.1. This excess is due to the unmodeled leakage-

flux generated by the current and linking the coils. The finite-element analysis shows

that 40% of the co-energy of the system is in the fringing fields. Which according to

Equation 2.46 indicates that ignoring the co-energy in the fringing fields leads to a

60% error in the inductance.

The derivation of Section 2.5.1 assumes the permeability of the stator iron is

much higher than that of air (i.e., the reluctance of the iron is small relative to the

reluctance of the air gap). In order to verify that the stator iron is not saturated at

the alternator's operating flux density level, a finite element analysis was conducted

on the geometry of Figure 2-17 with the magnets "turned on" and a winding current

of 10 Amps. Note that this analysis considers only the highest possible flux-density

level corresponding to the displacement where only one magnetic polarity remains

in the stator iron. Furthermore, this analysis does not take into account the axial

leakage-fluxes, which proved to be significant in Section 2.3.2.

The finite-element solution presented in Figure 2-20 shows that the flux density

in the iron ranges from a maximum of 1.8 T to a minimum of 0.8 T which causes

the permeability of the iron to range from 35 to 2000 times the permeability of air.

In addition, the finite-element solution shows that going around a single flux-loop

the magneto-motive force drop in the iron is on average 15% of the drop across the

air gap. This indicates that the reluctance of the iron is 15% of that of the air gap,

which in turn implies a 15% error in the inductance. Keeping in mind that these

findings correspond to the highest flux-density levels possible and that they ignore

axial leakage-flux, there is good evidence that the assumption of infinitely-permeable

iron holds reasonably well at the expected regime of operation.

2.6 Force of electrical origin

The electrical power at the terminals of the alternator model shown in Figure 2-3 can

be written as,

ie, = R - + ( L +i2 + ieaf (2.47)
dt 2
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Figure 2-20: Finite element solution of fields due to 10 Amps of current and the

permanent magnets
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where e0 is the alternator's terminal voltage. We recognize i2R, as the instantaneous

power dissipated in the winding, A (Lwi2) as the rate of change of energy stored in

the winding, and ieaf as the converted mechanical power.

The converted mechanical power can also be expressed as the product of the force

of electrical origin fe and the velocity of the plunger L, which leads to,

dz = ieaf (2.48)
dt

Using the expression for the internal voltage in Equation 2.23, the force fe is given

by the expression,

fe = 24Nq3z2 (t)i + 8Nq1 i (2.49)

2.7 Summary

The lumped parameter model for the alternator illustrated in Figure 2-3 has the

electrical terminal relation,

d i
eo= -Ri - L,- + eaf (2.50)

dt

The winding inductance in mH is,

LW = 7.19 (2.51)

and the internal voltage eaf is,

eaf = 24Nq3z2(t) + 8Nqdz(t) (2.52)
dt dt

as determined by the finite-element analysis. The force of electrical origin is a function

of current and position,

fe = 24Nq3z 2(t)i + 8Nqli (2.53)
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The magnetic restoring force is given by,

fm=Kz

where K = 9.52 x 104 N.m

46

(2.54)



Chapter 3

Modeling the two stroke engine

The engine consists of two identical internal combustion cylinders and two pistons

joined by a rigid rod. The cylinders fire so that the expansion following a combus-

tion event in one cylinder drives the compression of the new charge in the opposite

cylinder. The thermodynamic cycle in each cylinder is modeled as a standard Otto

cycle' with instantaneous combustion and exhaust events (i.e., constant-volume heat

addition/rejection). The difference in pressure between the two cylinders is used to

calculate the force on the reciprocating assembly (the pistons, plunger and link-rod)

as a function of position.

3.1 Engine geometry

Figure 3-1 documents the geometry of a cylinder, and Figure 3-2 shows the geomet-

ric relationship between the displacement z, and the volumes of the left and right

cylinders. The displacement zp is referenced from half the crash-to-crash distance

(the distance the reciprocating assembly moves between the position where the right

piston contacts the right cylinder-head and the position where the left piston contacts

the left cylinder-head). Figure 3-2 shows that the displacement z, is related to the

distance measured from each cylinder head to its corresponding piston's face by the

'Engineering Thermodynamics. Cravalho, E. G., Smith, J. L.
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following expressions,

1
Yi =Ycc + zp (3.1)

1
Yr = 2 Ycc - Zp (3.2)

where y, is the distance from the left cylinder head to the left piston's face, y, is

the distance from the right cylinder head to the right piston's face, and ycc is the

crash-to-crash distance.

These constraints make the volumes of the left and right pockets,

1
V, = A( ycc + zp) + Vdead (3.3)

1
V = A(I yc - zp) + Vdead (3.4)

where A is the cross-sectional area of a cylinder and Vdad is the volume of the spark-

plug cavity. Table 3.1 documents the details of the piston's geometry.

The engine/alternator configuration under consideration is constructed so that,

z = zP (3.5)

where z is the displacement of the magnetic plunger from the center of the stator

iron. This means that when z = 0 the magnets are centered in the stator and the left

and right gas pockets have the same volume V = !Aycc + Vdead.

3.2 Overview of the cycle

Figure 3-3 illustrates the proposed thermodynamic cycle for a gas pocket in one of

the cylinders. The cycle consists of six segments: intake, compression, combustion,

expansion, heat-rejection and exhaust.

Segment So,, designates the intake of a fresh charge of premixed air and fuel. The

exhaust port remains open throughout this segment and consequently the pressure
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Cylinder pressure versus displacement plots
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Table 3.1: Values of the engine's geometric parameters

Unitless property of the gas 1.40

Zir Right cylinder exhaust-port 7.70 mm

Z1 Left cylinder exhaust-port -7.70 mm
max[z2 r] Right cylinder maximum firing position -13.80 mm
max[z21] Left cylinder maximum firing position 13.80 mm

Ycc Crash-to-crash distance 30.60 mm
A Cross-sectional area of a cylinder 9.62 cm 2

Vi Maximum volume of compressed pocket 23.93 cm 3

VC Clearance volume 1.44 cm 3

min[V2] Minimum combustion volume 3.24 cm 3

Vdead Volume of spark-plug cavity 1.80 cm 3

in the cylinder remains atmospheric as the volume of the gas pocket decreases from

Vo to V. When the exhaust port closes, the gas in the cylinder undergoes reversible,

adiabatic compression from an initial volume V to a minimum volume V2 along the

segment labeled S 1- 2.

The combustion event is assumed to take place instantaneously at a certain volume

V = V2 and is represented asS2-3.

Segments S3 , 4 and S4- 3 represent the overshoot following combustion. This

overshoot occurs since the piston usually has some kinetic energy that it must lose

before turning around. The piston reaches zero velocity at a volume Vmin V2 .

The minimum combustion-volume min[V2] for this cylinder is specified at a clearance

volume of V so that the piston can turn around without crashing into the cylinder

head. No net work is done in the overshoot segments.

Segment S3 , 5 represents the reversible, adiabatic expansion of the hot gas pocket

back to a volume V. The exhaust port opens as soon as the volume reaches V, follow-

ing which the pressure is assumed to drop instantaneously to atmospheric pressure.

Exhaust of spent charge occurs along segment S1 o, with the pressure remaining

atmospheric.

An estimate of the heat input to the gas at combustion is required to complete
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the mathematical description of this cycle. Heat transfer to the piston and cylinder

walls is not included in the model and it is assumed that the estimate for the input

heat takes that into account. In addition, the model neglects the change in gas

composition due to combustion and assumes that the mass of the gas in the pocket

remains constant throughout the closed portion of cycle. The exhaust of spent charge

and the intake of fresh charge are modeled by an equivalent constant volume heat

transfer process for a fixed gas pocket. The work done to push the exhaust out and

pull the fresh charge into the chamber and all other losses are lumped into an external

linear damper.

3.3 Cycle model

This section details the derivation of the relationship between the pressure p and

volume V of the gas pocket in terms of the pressure versus cylinder volume diagram

shown in Figure 3-3. The gas pocket is characterized by a boundary, and three state

variables: a temperature T, a volume V, and a pressure p.

3.3.1 Segment So--

Along this segment the gas in the cylinder is open to the environment and the pressure

is given by,

P = Patm (3.6)

3.3.2 Segment S1 -2

The gas pocket closes and undergoes reversible, adiabatic compression when the piston

passes the exhaust valve. For the gas pocket defined, conservation of energy dictates,

dUt = dQ - dW (3.7)

where dUt is the incremental change in the thermal energy stored in the gas pocket,

dQ is the incremental heat transfered from the environment to the gas pocket, and
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dW is the incremental work done by the gas pocket on the environment.

For an adiabatic process the first law reduces to,

dUt + dW = 0 (3.8)

An increment in stored thermal-energy dUt can be expressed as,

dUt = mc dT (3.9)

where m is the mass of the gas in the pocket, c, is the heat capacity of the gas, and

dT is the increment in pocket temperature. An increment in work dW is given by,

dW = pdV (3.10)

where dV is the incremental change in pocket volume. Consequently Equation 3.11

can be rewritten as,

mcodT + pdV = 0 (3.11)

which when solved for dT gives the expression,

1
dT = - pdV

mcV
(3.12)

The ideal gas law is assumed to hold and is given by,

pV = mRT (3.13)

where R is the gas constant. Stating the ideal gas law in incremental form gives the

relation,

pdV + Vdp = mRdT (3.14)

Substitution of Equation 3.12 into Equations 3.14 eliminates dT,

(1+ -- )pdV +Vdp = 0
cV

(3.15)
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This expression can be rearranged so that it is in the form,

dV dp
V + = 0  (3.16)
V p

where -y = 1 + - is a constant property of the gas.cv

Integration of Equation 3.16 places the following constraint on the variables p and

V,

pVU = k (3.17)

where k is a constant of integration. Since the pressure patm is associated with a

volume V at the start of this segment, the pressure p of the gas at any other volume

V between V to V2 must be,

P = Patm (3.18)

which is the well known pressure versus volume relationship for a gas pocket under-

going a reversible, adiabatic process. Thus,

P2 = Patm (3.19)

3.3.3 Segment S2u 3

This section details the derivation of the ratio of pressures before and after combustion

takes place. The combustion process is assumed to occur instantaneously at constant

volume V2, which implies,

AW = pAV = 0 (3.20)

Conservation of energy for the combustion event can be written as,

Aut = AQ - AW (3.21)
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Since AW = 0, all of the heat goes into stored thermal energy, as expressed by,

AUt = AQ 23  (3.22)

where AQ 23 is the heat transfered to the gas by the combustion process. Combining

Equation 3.22 with the definition,

AUt = mcAT (3.23)

leads to the expression,

AT =AQ23  (3.24)
mcV

The ideal gas law written for a change in pressure Ap while holding the volume

constant at V2 yields,

AP =mRT (3.25)
V2

which when combined with Equation 3.24 gives,

Ap = " Q2(3.26)
V2

which can be rewritten in terms of y and the pressures P3 and P2 before and after the

combustion event,

P3 - P2 1)AQ23 (3.27)
V2

It is useful to define the pressure ratio K =-1 where Kc is given by,

Kc = 1+ (7 - 1)AQ23 (3.28)
P2 V2

Substitution of P2 from Equation 3.19 into Equation 3.28 leads to,

Kc = 1 )AQ 23V2  (3.29)
patm V
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The pressure p3 at the end of this segment is given by,

P3 - Kcp 2  (3.30)

3.3.4 Segments S3 , 4 and S4 1 3

The overshoot segment is just an extrapolation of Segment S3- 5 out to a volume

Vmin < V2. The gas in the pocket undergoes reversible, adiabatic compression starting

from a volume V2 at a pressure p3 to a volume Vmin. The pressure-volume relationship

is given by,

V-= (p3 )- (3.31)

After the gas pocket reaches the minimum volume Vmin, it expands back to a volume

V2 at a pressure P3 along the same curve as in Equation 3.31.

The value of the volume Vmin (corresponding to a maximum overshoot zmax),

to which the piston overshoots, depends on the distribution of stored energy in the

system when combustion occurs and hence is determined by solving the dynamics of

the overall system.

3.3.5 Segment S3 , 5

The gas undergoes reversible, adiabatic expansion from an initial volume of V2 at an

initial pressure P3 to volume V. The pressure-volume relationship is,

P = P3 ( (3.32)

which can be written in terms of P2 (see Equation 3.30),

Vp = Kcp2  (3.33)

Substituting P2 from Equation 3.19 gives,

p = KcPatm Y (3.34)
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Equation 3.34 gives the pressure at the end of this segment p5 as,

P5 = Kcpatm (3.35)

3.3.6 Segment S5 , 1

The pressure is assumed to drop instantaneously to atmospheric pressure at a constant

volume V. This means that the pressure drops by,

Ap = (Kc - I)Patm (3.36)

We can reverse the results of the combustion analysis for segment S 2 , 3 to find

the amount of heat the system loses as a result of this pressure drop,

AQ51  1 (Kc - 1)patmV (3.37)
-Y - I

Substituting the expression for K, from Equation 3.29 gives,

AQ5i = -AQ 23 (-) (3.38)
V

3.3.7 Segment S1 0

The pressure remains atmospheric throughout segment S1,o.

3.4 Cycle efficiency

The cycle under consideration is modeled as a closed, equilibrium process. Hence,

going through the cycle cannot alter the energy stored in the gas pocket (otherwise

the temperature of the gas in the pocket would keep increasing every cycle). This

means that for a cycle,

'Aut = 0 (3.39)
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which in turn means that for a cycle,

AW = AQ (3.40)

This right-hand side of Equation 3.40 can be expanded to,

AQoi + AQ12 + AQ 23 + AQ 34 + AQ43 + AQ35 + AQ 51 + AQio (3.41)

The only nonzero quantities in Equations 3.41 are AQ 23 and AQ51 . Thus the net

heat converted to mechanical work per cycle is,

Weye = AW= \AQ23 + AQ51  (3.42)

Note that the fraction of AQ 23 that gets converted to mechanical work is given

by,
by AQ 2 3 + AQ51 _1 2 ) -1)

) = = _ (V (3.43)
,AQ23 V

which is a function of only the compression ratio -. This yields the following

expression for Wc,

Wcyc = 17AQ23 (3.44)

An estimate of AQ 23 is required to complete the description of the cycle. The

estimate for AQ 23 used in the thesis is largely arbitrary, as no empirical data enabling

its more exact determination could be obtained. The value of AQ23 = 28 J was

chosen to match the expected work per-cycle given the size of the cylinder, with the

understanding that this quantity must determined empirically 2.

2 Prof. J. L. Smith Jr., Private communication
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3.5 Left and right cylinder pressures as a function

of displacement

This section combines the results of Sections 3.3 and 3.1 to write expressions for

the left and right cylinder pressures as a function of the displacement z. Figure 3-4

illustrates typical pressure trajectories for both cylinders superimposed on the z axis.

Four critical points on the z axis characterize the curves: the locations of the exhaust

port and firing position for each cylinder (z, and -z 2 for the left cylinder, and -z

and z2 for the right cylinder).

The following set of equations describes the pressure versus position trajectory for

the left cylinder. While the exhaust port is open (i.e., z > zi),

P Patm (3.45)

Along the bottom leg of the trajectory (-z 2 < z < z1 ),

P Patm (, (3.46)
A( k yce + Z) + Vena

At z = -z 2 the trajectory jumps to trace the following curve as the piston overshoots

from z2 to Zmax then slides back to zI,

p KcPatm (( l (3.47)
A('yce + z) + Vead

The system resets when the exhaust port opens again z > zi,

P Patm (3.48)

Similarly, the trajectory of the right cylinder pressure follows the following rela-

tions. When z < -zI the pressure is,

Pr = Patm (3.49)
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Left and right-cylinder pressure versus displacement plots
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Figure 3-4: Left (solid) and Right (dashed) cylinder cycles

Along the bottom leg of the plot and while -zi < z < z2 the right cylinder pressure

is given by,

Pr = Patm
tm(A (Iyce - z) + Vead

(3.50)

At z =z 2 the trajectory jumps to trace the following curve as the piston overshoots

from Z2 to Zmax and as long as z > -zi,

Pr = KePatm
A(!ye-z + Vead

(3.51)

Again, the system resets when the exhaust port opens z < -zi,

Pr = Patm (3.52)

3.6 Force on the reciprocating assembly

The force exerted by the gas on the reciprocating assembly fg is a hystertic function

of z, and is given by the difference of left and right cylinder pressures pt (z) and p, (z)
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x 10 Force exerted by the gas on the reciprocating assembly as a function of z
1.

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
z [m]

Figure 3-5: Force on the reciprocating assembly due to the difference between left
and right cylinder pressures (z2 = 0.0138 m, AQ 23 = 28 J)

as expressed by the equation,

fg = A(p, (z) - Pr(Z)) (3.53)

where A is the cross-sectional

force, which has two values for

upper leg of the force-position

if IzI < zi the force exerted by

area of the cylinder. Figure 3-5 shows a plot of the

each z depending on which cylinder fired last. For the

plot (combustion just took place in the left cylinder),

the gas on the reciprocating assembly is given by,

fg = Apatm (Ke

While if z > zi,

A(! ycc ±z) + Vdead A yce - z) + Vdead

V1fg = Apatm I - A(y- V

A2jc - Z) + Vead

Finally, if z < -zi,

fg = Apatm (Ke ( +z + Ved
A(lyc + z) + Vead
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Likewise, for the lower leg (combustion just took place in the right cylinder), if

IzI < zi the force exerted by the gas on the piston assembly is given by,

fg =_ APatm ( 1 -)'- Kc ( ,(3.57)
ye + z) + V1dea 2 A( c - z) + /dead)

While if z > zI,

fg Apatm - (3.58)
A(lkycc + z) + Vena

Finally, if z < -z,

fg = APatm I - Kc (3.59)
(A(- 2 yce -- ) + Vdena

3.7 Mechanical losses

The engine model developed in the previous sections does not include any loss mecha-

nisms. Some work needs to be done each cycle to push the exhaust out of the cylinder,

pull the fresh charge into the cylinder, overcome friction, and compensate for heat

leaking out of the cylinder walls. These and all other mechanical losses are lumped

into an external linear-damper exerting a force fd given by,

dz
fd = B- (3.60)

where B is the damping coefficient.

The linear damping characteristic given by Equation 3.60 is largely arbitrary. The

damping coefficient B must account for all the non-electrical losses, and needs to be

determined empirically.
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Chapter 4

System model

The numerical simulation developed for this thesis consists of simple component mod-

els that can be combined to predict the complicated dynamic behavior of the overall

system. These include the alternator model, the engine model and the models for the

electrical loads. This section presents the framework for the overall system model.

The alternator model used in this section is summarized in Section 2.7. The expres-

sions for the force exerted by the gas on the reciprocating assembly are summarized in

Section 3.6. Simple models for resistive and battery-charging loads will be presented

in Section 4.1 before proceeding to tie the individual component models together in

Section 4.2. The component models are assembled in a framework based on Newto-

nian rigid-body mechanics, Kirchhoff's electric-circuit laws, and the configuration of

the engine/alternator/load system.

4.1 Modeling the load

The models developed for this thesis were used to investigate the system's dynamic

behavior for two kinds of loads: a resistive load, and a full-bridge-rectifier battery-

charging load. The load models are illustrated in Figure 4-1. The resistive load was

chosen to simplify the analytical and empirical investigation of the system's dynamic

behavior. Battery-charging operation introduces non-linear dynamics that add to to

the complexity of the system. This load was investigated since it is the intended
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Figure 4-1: Models for the
a battery (b)

electrical loads: a resistive load (a), full-wave rectifier and

application for the system under investigation.

4.1.1 Resistive load

A resistive load connected to the alternator terminals imposes the relationship,

eo = RLi (4.1)

on the alternator terminal-voltage and current, where RL is the load resistance.

4.1.2 Battery load

From Figure 4-1(b), the terminals of the battery can be seen to be connected to the

output of the linear alternator through a full-wave rectifier. The battery is modeled

as the series connection of a DC voltage-source V and a small internal resistance

Rb. The voltage drops across the rectifier diodes are neglected, because they are very

small compared to the battery voltage.
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The nonlinearity of the full-wave rectifier complicates the terminal relation for a

battery-charging load. The full-wave rectifier in Figure 4-1 has three reachable states:

state Sa where diodes 1 and 2 are on and diodes 3 and 4 are off, state Sb where diodes

3 and 4 are on and diodes 1 and 2 are off, or state S, where all the diodes are off.

State Sa For state Sa the terminal relation is given by,

eo = Ri + V (4.2)

During this state diodes 1 and 2 are on, while diodes 3 and 4 are off. This state

remains valid for,

e 0 ;> V (4.3)

State Sb The terminal relation for state Sb is given by,

eo = Rbi - V (4.4)

where diodes 3 and 4 are on and diodes 1 and 2 are off. This state remains valid for,

eo0 < -V (4.5)

State S, Finally for state S, the output terminals are open,

i =O0 (4.6)

The bridge may switch from state S, to either state Sa or Sb. Diodes 1 and 2 start

to turn-on and the bridge switches to state S, if,

(4.7)eaf > V

65



Diodes 3 and 4 start to turn-on and the bridge switches to state Sb if,

eaf < -V (4.8)

4.2 Framework for the system model

The system model, assembled from the component models discussed previously, con-

sists of three first-order, non-linear differential equations in three state variables: the

displacement of the reciprocating-assembly z, the reciprocation velocity v and the

winding current i. Figure 4-2 shows the lumped-parameter models for the electrical,

mechanical, and electromechanical components of the engine/alternator/load config-

uration. Using Newton's law and Kirchhoff's voltage law, the information presented

in the figure can be summarized by the following set of differential equations,

dz
dt = v (4.9)dt

d - (fe + f9+ fm + fd) (4.10)dt M

di = -(eaf - Ri - eo) (4.11)dt Lw

where m is the mass of the moving assembly, fe is the force of electrical origin (Equa-

tion 2.53 in Section 2.7), fg is the force due to the difference in cylinder pressures

(Equations 3.54-3.59 from Section 3.6), f m is the axial magnetic spring-force (Equa-

tion 2.54 in Section 2.7), fd is the damping force discussed in Section 3.7, Lw is the

winding inductance (Equation 2.51 in Section 2.7), Rw is the winding-resistance, the

internal voltage eaf is given by Equation 2.52 in Section 2.7, and e, is the terminal

voltage of the load as outlined by Equations 4.1-4.8 in Section 4.1.

4.3 Model implementation in C-code

Section 4.2 concludes the presentation of the modeling and analysis of the free-piston-

driven linear-alternator system. The next chapters present the results and the con-
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Figure 4-2: Lumped parameter model of the system

clusions of a numerical simulation of the model and make recommendations for future

work .

The model components and overall system framework discussed in Section 4.2

have been implemented in a program written in C-code. The Runge-Kutta algorithm

with a fixed step size of 1.5 x 10-7 seconds was used to solve the set of Equations

4.9-4.11. Given the initial conditions z(t = 0), v(t = 0) and i(t = 0) the program

proceeds to record the three state variables z(t), v(t) and i(t) at each time step until

the end of the simulation-interval is reached.

Output from the program is saved as the text of a MATLAB script file. MAT-

LAB's built-in data-processing and graphics tools can then be used to generate graph-

ical results and analyze the data. Appendix A lists the C-code used in the simulation.

1MATLAB, The MathWorks, Inc. 24 Prime Park Way, Natick, Mass. 01760
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Chapter 5

Simulation results

The simulation code developed for this thesis has been used to investigate the dy-

namics of the engine/alternator/load system. The simulations predict the existence

of a range of resistive and battery loads for which the system is self stabilizing. Any

load outside this range causes the reciprocating assembly to either "crash" into the

cylinder head or "stall" (i.e., stop firing).

The results are presented in four sections. Section 5.1 presents a set of simulation

runs which demonstrate typical dynamic behavior for resistive loads. The predicted

steady-state operating characteristics for resistive loads are presented in Section 5.2.

The case of a battery load is treated similarly in Sections 5.3 and 5.4.

Table 5.1 documents the set of fixed parameters for the simulation runs presented

in this chapter. These parameters were chosen to represent the two-stroke, free-

piston-engine driven linear-alternator prototype built by Galileo Research.

A series of preliminary simulation runs demonstrated that the behavior of the

system is very sensitive to three parameters: the heat input at combustion AQ 2 3 ,

the firing position z2 , and, depending on the type of electrical load, either the laod

resistance RL or the battery voltage V. This makes sense since given the parameters

in Table 5.1, AQ 23 and z2 determine the net mechanical-work done by the engine per

cycle, while RL and V determine the power delivered to the load per cycle.

It is possible to adjust firing position z2 in the experimental prototype built by

Galileo Research. The left and right spark-plugs are triggered to fire whenever the
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of fixed parameters for the

Engine fixed parameters

7
z1

Ycc
A
V1

Vdead
m
B

1.40
7.70 mm
30.60 mm
9.62 cm 2

23.93 cm 3

1.80 cm 3

6.4 kg
0.0 kg/s

Alternator fixed parameters
Lw 7.19 mH
Rw 0.211 Ohms
N 63
K 9.52 kg/s 2

qi 0.0118
q3 152.8

Battery fixed parameters
Rb 0.001 Ohms
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piston assembly is displaced by -z 2 and z2, where z2 can be adjusted from a maximum

value of 0.0138 m to a minimum value of 0.0118 m. However the value of AQ 23 is

determined by the details of the combustion process, and hence is not as controllable

as z 2 -

Rather than exhaustively exploring the parameter space for AQ 23 and z2 for both

electrical loads, the simulations presented in this chapter hold AQ 2 3 fixed at 7 J. Note

that this is 25% of the estimated value of 28 J (see Section 3.4). The reason for this

reduction is that preliminary simulation runs show that the configuration summarized

in Table 5.1 is completely unstable for values of AQ23 in excess of 7 J. The estimate

of IAQ23 = 7 J was obtained by fixing z2 at the maximum firing-position and RL

at 9.5 Ohms and then finding the largest AQ23 that resulted in stable steady-state

operation. Clearly this choice is rather arbitrary and is made with the understanding

that AQ23 needs to be based upon experimental results. Preliminary data from the

prototype built by Galileo Research indicate that the combustion process in the engine

is inefficient, and that AQ 23 for the prototype might be even lower than 7 J.

The winding resistance R, for the alternator used in the prototype was measured

to be 0.0211 Ohms. The damping coefficient B is set to zero because no empirical

data enabling its determination was available. However, note that since losses in

general tend to make the system more stable, setting B to zero provides the severest

conditions for assessing the transient dynamics of the system.

The transient simulations in this chapter all commence from the initial state,

z(t = 0) = -Z2 (5.1)

v(t = 0) = 0 (5.2)

i(t = 0) = 0 (5.3)

which corresponds to pulling the reciprocating assembly all the way to the left firing

position and then releasing it from rest. Note that the left cylinder is set to fire at

time t = 0.
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5.1 Typical simulated dynamics for a resistive load

During the course of the investigation into the dynamics of the engine/alternator/load

system for different resistive loads, three distinctive dynamic behaviors correspond-

ing to three load-resistance ranges were observed. This section shows representative

starting-transients for each resistance range where the firing position z2 is set to

0.0138 m, and AQ 23 to 7 J.

5.1.1 Crash transient

Using large load resistances results in transients similar to the plots in Figures 5-1

through 5-3. The value of RL used in the simulation run that produced these figures

is RL = 11 Ohms.

Figure 5-1 shows the trajectory of the reciprocating assembly. Solid lines at z =

+0.0153 m indicate the positions of the left and right cylinder-heads, while the dashed

lines at z = +0.0138 m show the firing positions for this run. The figure shows

that the piston crashes into the cylinder head on the ninth stroke. The collision is

catastrophic for the engine and violates the assumptions of the standard Otto-cycle

of the thermodynamic model. Therefore it is meaningless to continue the simulation

past the time of collision.

Note the presence of a third harmonic component in the current waveform (Figure

5-3). This is due to the cubic flux to displacement relationship of the linear alternator.

The third harmonic content is small compared to the fundamental, and hence the

dominant electrical frequency of the system is the same as its mechanical frequency.

5.1.2 Stall transient

Small load resistances result in transients similar to the plots in Figures 5-4 through

5-6. A load resistance of RL = 4 Ohms was used in the simulation run that generated

these results.

Figure 5-4 shows the trajectory of the reciprocating assembly. Solid lines at z =

+0.0153 m indicate the positions of the left and right cylinder-heads, while the dashed
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A crash displacement-transient for RL = 4 Ohms
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Typical displacement transient for a resistive load of RL = 11 Ohms

("crash"). Solid lines at z = 0.0153 m indicate the positions of the left and right
cylinder-heads, while the dashed lines at z = 0.0138 m show the firing positions z2

for this run
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Figure 5-2: 11 Ohms ("crash")
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A crash current-transient for RL = 4 Ohms

0 0.02 0.04 0.06 0.08
t [sec]

0.1 0.12 0.14 0.16

Figure 5-3: Typical current transient for a resistive load of RL = 11 Ohms ("crash")

lines at z = 0.0138 m show the firing positions for this run. The figure shows that

the piston fails to reach the firing position z2 on the first stroke. As soon as the a

cylinder skips a combustion event the electrical losses dominate the dynamics and

the system eventually comes to rest. Because the simulation does not include any

mechanical losses, the system comes to rest very slowly.

5.1.3 Steady-state operation

The numerical simulation predicts that it is possible for the system under investigation

to operate in the steady state for an intermediate range of load resistances. The load

resistance chosen for this case is 7 Ohms. Figures 5-7 through 5-9 show typical plots

of the state variables for this operating regime.

Figure 5-7 shows the trajectory of the reciprocating assembly. Note that the

system is clearly in the steady state. Solid lines at z = 0.0153 m indicate the

positions of the left and right cylinder-heads, while the dashed lines at z = 0.0138 m

show the firing positions for this run.

It is interesting to note that the position and velocity waveforms in Figures 5-7
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A stall displacement-transient for RL = 11 Ohms

0 0.02 0.04 0.06 0.08 0.1
t [sec]
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Figure 5-4: Typical displacement transient for a resistive load of 4 Ohms ("stall").
Solid lines at z = 0.0153 m indicate the positions of the left and right cylinder-heads,
while the dashed lines at z = 0.0138 m show the firing positions z2 for this run
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Figure 5-5: Typical velocity transient for a resistive load of 4 Ohms ("stall")
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A stall current-transient for RL = 11 Ohms
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Figure 5-6: Typical current transient for a resistive load of 4 Ohms ("stall")

and 5-8 are very sinusoidal considering the non-linearities in the system. However,

the current waveform continues to have third-harmonic content.

5.2 Resistive-load operating characteristics

A series of simulation runs have demonstrated the steady-state behavior shown in

Section 5.1.3 for a range of resistor values. These results were observed to be relatively

insensitive to small changes in the parameters in Table 5.1. Figures 5-10 through 5-

12 characterize the steady-state operation of the system for three firing positions:

Z2= 0.0138 m (up triangles), z2 = 0.0128 m (squares) and z2 = 0.0118 m (down

triangles). The figures display the maximum displacement, the cycle average of the

extracted electric power, and the reciprocation frequency of the system versus the

load resistance RL.

It is important to note that the following relationship must hold in the steady

state,

< Pe >cyc= 2f Weye (5.4)
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A steady state displacement-waveform for RL = 7 Ohms
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Figure 5-7: Typical steady-state displacement waveform for a resistive load of 7 Ohms.
Solid lines at z = 10.0153 m indicate the positions of the left and right cylinder-heads,
while the dashed lines at z = 0.0138 m show the firing positions z2 for this run
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A steady state current-waveform for FL = 7 Ohms
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Figure 5-9: Typical steady-state current waveform for a resistive load of 7 Ohms

where < Pe >cYC is the cycle-average electrical-power dissipated in the alternator

and delivered to the load, f is the steady-state frequency of the system, and Weye =

AQ 23 + AQ 51 is the net heat converted to mechanical work in each cylinder per

cycle. Equation 3.44 gives Wey as a function of the firing position z2 , which, when

substituted into Equation 5.4 yields,

< Pe >cyc A2yAQ23 (1 - (ycc - z 2 ) +Vd) (5.5)

Figure 5-13 shows a plot of the steady-state average electrical-power versus re-

ciprocation frequency for the three firing positions. The figure demonstrates the

linear relationship predicted by Equation 5.4. For z2 = 0.0138 m the figure shows

a slope of 7.64 W-s compared to the slope of 7.71 W-s predicted by Equation 5.5.

For z2 = 0.0128 m and z2 = 0.0118 m the slopes shown on the figure are 7.00 W-s

and 6.39 W-s, which are very close to the predicted slopes of 7.02 and 6.42. These

results are within tolerance considering that they are based on averaging .4 seconds

of simulation time.
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Steady-state maximum-displacement versus load resistance
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Steady-state average electrical-power dissipated per-cycle versus load resistance
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Figure 5-11: Characterization of the steady-state relationship between the cycle-
average electrical-power and load resistance for three firing positions: up triangles for
Z2= 0.0138 m, squares for z2 = 0.0128 rn and down triangles for z2 = 0.0118 m
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Steady-state reciprocation--frequency versus load resistance
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Figure 5-12: Characterization of the steady-state relationship between the frequency
of reciprocation and load resistance for three firing positions: up triangles forz2 =
0.0138 m, squares for z2 = 0.0128 m and down triangles for z2 = 0.0118 m
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Average electrical-power dissipated per-cycle versus frequency in the steady state
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tions: up triangles for z2 = 0.0138
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the steady-state relationship between the cycle-
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5.3 Typical simulated dynamics for a battery load

The battery-charging load simulations were run in a the same manner as the resistive-

load simulations of Section 5.1. The investigation shows that the dynamics for the

initial conditions given in Equations 5.1-5.3 can result in three distinctive behaviors

depending on the value of the battery voltage V. This section presents typical plots

for the observed behavior.

5.3.1 Crash transient

Using large battery voltages causes the piston to crash into the cylinder head (Figure

5-14). Figures 5-14 through 5-16 show typical plots of the state variables demonstrat-

ing this behavior. The value of V used in the simulation run that produced these

plots is 48 Volts.

Figure 5-14 shows the trajectory of the reciprocating assembly. Solid lines at

z = 0.0153 m indicate the positions of the left and right cylinder-heads, while the

dashed lines at z = +0.0138 m show the firing positions for this run.

Note from Figure 5-16 that the rectifier operates in discontinuous conduction

mode, with the terminals of the alternator remaining open for much of the cycle. The

load cannot deliver the power input at each combustion to the battery, and the stroke

continues to grow until the piston crashes into the cylinder head on the fourth stroke.

5.3.2 Stall transient

The engine stalls if the battery voltage is too small as demonstrated by Figures 5-17

through 5-19. The battery voltage was set to V = 24 Volts in the run that produced

these plots.

Figure 5-14 shows the trajectory of the reciprocating assembly. Solid lines at

z = 0.0153 m indicate the positions of the left and right cylinder-heads, while the

dashed lines at z = 0.0138 m show the firing positions z2 for this run. Note from

the figure that the reciprocating assembly never reaches z2 on the first stroke.
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A crash displacement-transient for Vb = 48 Volts
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Figure 5-14: Typical displacement transient for V = 48 Volts ("crash"). Solid lines
at z = 0.0153 m indicate the positions of the left and right cylinder-heads, while the
dashed lines at z = 0.0138 m show the firing positions z2 for this run
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Figure 5-15: Typical velocity transient for V = 48 Volts ("crash")
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A crash current-transient for Vb = 48 Volts
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Figure 5-16: Typical current transient for V = 48 Volts ("crash"

A stall displacement-transient for Vb = 24 Volts
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Figure 5-17: Typical displacement transient for V = 24 Volts ("stall"). Solid lines at
z = 0.0153 m indicate the positions of the left and right cylinder-heads, while the
dashed lines at z = 0.0138 m show the firing positions z2 for this run
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A stall velocity-transient for Vb = 24 Volts
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A steady state displacement-waveform for Vb = 36 Volts
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Figure 5-20: Typical steady-state displacement waveform for V 36 Volts. Solid
lines at z = +0.0153 m indicate the positions of the left and right cylinder-heads,
while the dashed lines at z = +0.0138 m show the firing positions z2 for this run

5.3.3 Steady-state operation

The simulation demonstrates that it is possible for the system to operate in the steady

state for an intermediate range of battery voltages. Figures 5-20 through 5-22 show

typical plots of the state variables for this operating regime. The battery voltage

chosen for this representative run is 36 Volts.

Figure 5-20 shows the trajectory of the reciprocating assembly. Solid lines at

z = +0.0153 m indicate the positions of the left and right cylinder-heads, while the

dashed lines at z = +0.0138 m show the firing positions z2 for this run.

Note from the figure that the position and velocity waveforms in Figures 5-20 and

5-21 are very sinusoidal considering the non-linearities in the system. However, the

current waveform has significant third-harmonic content.
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A steady state velocity-waveform for Vb = 36 Volts
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Figure 5-21: Typical steady-state velocity waveform for V
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5.4 Battery load operating-characteristics

A series of simulation runs show that the steady-state behavior in Section 5.3.3 mani-

fests itself for a range of battery voltages and is relatively insensitive to small changes

in the fixed simulation parameters. Figures 5-24 through 5-25 characterize the steady-

state operation of the system for battery-charging operation.

Note that the linear relationship between the reciprocation frequency and the

cycle-average electrical-power discussed in Section 5.2 still holds (see Figure 5-26).

For z2 = 0.0138 m the figure shows a slope of 7.52 W-s compared to the slope of

7.71 W-s predicted by Equation 5.5. For z2 = 0.0128 m and z2 = 0.0118 m the slopes

shown on the figure are 6.82 W-s and 6.32 W-s, which are close to the predicted slopes

of 7.02 W-s and 6.42 W-s. The errors are within engineering tolerance considering

that the results in Figure 5-26 are based on 0.4 seconds of simulation time.
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Steady-state maximum-displacement versus battery voltage
0.0155

0.015 1 -.-.-.-.-.

0.0145| -

0.014-. -

0.0135[ - -

0.013 k - -.- .---

0.0125 ........

0.012 - -

0.0115'
20

Figure 5-23: Characterization of the steady-state relationship between the maximum
displacement and battery voltage for three firing positions: up triangles for z2 =
0.0138 m, squares for z2 = 0.0128 m and down triangles for z2 = 0.0118 m
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Steady-state average electrical-power dissipated per-cycle versus battery voltage
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Figure 5-24: Characterization of the steady-state relationship between the cycle-
average electrical-power and the battery voltage for three firing positions: up triangles
for z2 = 0.0138 m, squares for z2 = 0.0128 m and down triangles for z2 = 0.0118 m
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Steady-state reciprocation-frequency versus battery voltage
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Figure 5-25: Characterization of the steady-state relationship between the recipro-
cation frequency and the battery voltage for three firing positions: up triangles for

Z2= 0.0138 m, squares for z2 = 0.0128 m and down triangles for z2 = 0.0118 m
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Figure 5-26: Characterization of the steady-state relationship between the cycle-
average electrical-power and reciprocation frequency for three firing positions: up
triangles for z2 = 0.0138 m, squares for z2 = 0.0128 m and down triangles for z2 =
0.0118 m
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Chapter 6

Preliminary experimental data

6.1 Experimental results

One objective of this thesis was to help Galileo Research design a control algorithm

for their experimental free-piston-driven alternator system. The "self-stabilizing" op-

eration discovered during the course of this thesis (see Chapter 5) was reported to

Galileo Research and subsequently confirmed experimentally. This knowledge en-

abled them begin performing steady-state tests on the system. Although the testing

performed to date has been limited, the results of two sets of experiments with a load

resistance of 19 Ohms have been made available and will be discussed in this chapter.

For each of the test runs, the reported firing position was z2 = 0.0128 m. The first

run is reported to have lasted 17 minutes, which clearly demonstrates that the two-

stroke, free-piston-engine driven linear-alternator can operate stably in the steady

state. Unfortunately, only 30 seconds of pressure and position data from this run are

available. The pressure versus position data from the first run presented in Figure

6-1 show that the pressure levels in the cylinders are lower than what one expects for

a cylinder of this size1 . The observed pressures are consistent with values of AQ 23

much lower than 28 J.

Voltage, position and pressure data for a subsequent run were made available by

'Prof. J. L. Smith Jr., Private communication
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Figure 6-1: Pressure data from the first run

Voltage data from second run
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Figure 6-2: Voltage data from the second run
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Displacement data from second run
0.02

0.015

0 .0 1 - .- . . . . -. . . . . . . . . . . . . . . . . . . .

0.005

C

)

E-

-0.005 -

-0.01 -

-0.015 - - 1 -. -. -.-.-0.01'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

Figure 6-3: Displacement data from the second run. Solid lines at z = 0.0153 m
indicate the positions of the left and right cylinder-heads, while the dashed lines at
z = 0.0128 m show the firing positions for this run
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Galileo Research and are presented in Figures 6-2 through 6-4. The figures show that

the reciprocating assembly has a frequency f = 26.7 Hz and an rms velocity (V)rms

1.86 m/s. The area enclosed by the pressure trajectory in Figure 6-4 corresponds to

the fraction of combustion-heat input to the gas that gets converted into work each

cycle, and hence Wcy = rqAQ23 = 2.96 J. From Equation 3.43, the efficiency I for a

firing position of z 2 = 0.0128 is 0.5, which means that IAQ23 must be 5.9 J.

Note that the output voltage in Figure 6-2 has a DC offset of -10.6 Volts. This is

clearly an error in the data acquisition-system since the alternator is an AC machine.

The DC offset was subtracted from the data and the rms output-voltage was found

to be (eo)rms = 51.4 Volts.

Note that the measured voltage waveform does not have as much third-harmonic

content as predicted in Chapter 5. The data indicates that the simple analytical

model of the internal voltage (see Equation 2.19) is more appropriate than the model

based on a two-dimensional finite-element investigation (see Equation 2.52).

Figure 6-3 shows that the stroke of the reciprocating assembly is greater than

the crash-to-crash distance. The figure also shows a slight negative offset in the

displacement waveform. These effects are clearly unphysical since the piston cannot

go through the cylinder head. The effects are probably due to sensor errors or an

error in the shaft geometry supplied by Galileo Research.

The power delivered to the resistive load is given by,

< ~ Y P ->cc R(Lm (6.1)

which for this set of data leads to < P >cyc= 146 Watts. The rms current in the load

(i)rms is given by the ratio of the rms terminal voltage (eo)rms and the load resistance

RL. This enables us to calculate the cycle-average electrical power dissipated in the

winding resistance as,

< Ice >cyc= _(eo)rms Rw (6.2)RL RL

which is 1.6 Watts for Rw = 0.211 Ohms.

The conservation of energy demands that the cycle-average power input from
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the engine must equal the sum of the cycle-average electrical power delivered to the

load, the cycle-average electrical power dissipated in the alternator and the cycle-

average mechanical power dissipated in the engine. Hence we can write the following

expression for the cycle-average power,

2r7AQ 23f < P> >y + <P" >cyc + < P >cc (6.3)

where Pd is the dissipated mechanical power. This means that mechanical losses

must account for 11 Watts in each cycle.

Equation 6.3 can be used to estimate the damping coefficient B (discussed in

Section 3.7). The cycle-average power dissipated in a linear damper is given by,

< Pd >c= - fT = - BV2dt (6.4)MeeT T fo

which results in the following expression for B,

< pd >B = m Y (6.5)
(V)rms

After substitution, we find that B = 6 kg/s.

6.2 Simulation

To compare the predictions of the numerical simulation with the empirical results,

the simulation was run with the following parameters,

" Firing position z 2 = 0.0128 m as reported by Galileo Research

" Load resistance RL = 19 Ohms as reported by Galileo Research

" The internal-voltage model of Equation 2.19 was used (i.e., eaf = (30.9)v Volts)

" The corresponding model for the force of electric origin was used (i.e., fe

(30.9)i Newtons)
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Voltage waveform from the simlation
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Figure 6-5: Voltage waveform from the simulation

" Combustion heat input AQ23 = 5.9 J as derived from the data in Section 6.1

" Damping coefficient B = 6 kg/s as derived from the data in Section 6.1

Note that the results of the two-dimensional finite-element investigation of Section

2.3.2 have been abandoned in favor of the analytical linear-relationship, since the

voltage data indicates that the analytical expression is more appropriate. A three

dimensional analysis as well as additional measurements on the alternator should be

conducted to resolve the discrepancy between the experimental data and the two-

dimensional finite-element investigation.

Figure 6-6 shows the predicted voltage waveform, which has an rms value of

58.1 Volts, which is 13% higher than the measured value of 51.4 Volts. Figure 6-6

shows the trajectory of the reciprocating assembly, where solid lines at z = +0.0153 m

denote the positions of the left and right cylinder-heads, while the dashed lines at

z - +0.0128 m show the firing positions for this run. The frequency of reciprocation

is predicted to be 30.1 Hz which is 13% greater than the measured value of 26.7 Hz.

Figure 6-7 shows the predicted pressure trajectory.
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Displacement waveform from the simulation
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Figure 6-6: Displacement waveform from the simulation. Solid lines at z = '0.0153 m
indicate the positions of the left and right cylinder-heads, while the dashed lines at
z = 0.0128 m show the firing positions for this run
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Comparing the results of the simulation to the preliminary experimental data

provided by Galileo Research verifies the validity of the system model developed

for this thesis. The model clearly captures the essential physics and dynamics of

the two-stroke, free-piston-engine driven linear-alternator. In addition, the model

is reasonably good at predicting the frequency, power, output voltage and cylinder

pressure levels of the experimental prototype. Further model refinement was not

possible during the course of this thesis due to inaccessibility of the prototype system.

Such refinement would most definitely be a logical next step in this work.
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Chapter 7

Conclusions

7.1 Overview

Models for each of the three major components of the system were developed and then

tied together into an overall system-model. The system model was formulated as a

set of non-linear dynamic equations in three state variables. A numerical differential-

equation solver was implemented in C-code to simulate the system dynamics. This

program was subsequently used to conduct a detailed investigation of the dynamic

behavior of the two-stroke, free-piston-engine driven linear-alternator. The results of

the investigation are presented in Chapter 5.

The "self-stabilizing" operation documented in Chapter 5 was reported to Galileo

Research and subsequently confirmed experimentally. The predictions of the numer-

ical simulation have enabled Galileo Research to commence steady-state testing on

their experimental prototype.

Preliminary data from the prototype confirms the validity of the modeling ap-

proach. However, the complete empirical investigation needed to thoroughly validate

and refine the models had not been conducted by Galileo Research at the time of the

writing of this thesis.
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7.2 Findings and conclusions

When viewed as a whole, the simulations discussed in Chapter 5 demonstrate the

existence of a range of resistive and battery-charging loads for which steady-state

operation is possible without the aid of feedback-control. Within this range the

system was observed to converge on a stable operating point through the interaction

of the following mechanisms:

* Variations in the reciprocation frequency. This is the primary effect, since both

the mechanical power input by the engine and the electrical power extracted by

the alternator depend on the reciprocation frequency.

* Variations in the stroke. The terminal voltage depends on the velocity of the

reciprocating assembly, which in turn is determined by both the frequency and

the stroke.

In addition, the results clearly show that the maximum power the system under

consideration is capable of delivering is not determined by the power-rating of the

individual components. The combined dynamics of the engine, alternator and load

determine the power transfered from the engine to the load. This issue manifests itself

in the prototype built by Galileo Research, where both the engine and the alternator

are each separately rated for a 1000 Watt operation. The simulations indicate that it

will not be possible to extract more than 300 Watts of output power from the current

prototype.

7.3 Recommendations for future work

The engine model developed for this thesis is very idealized and ignores many sig-

nificant details of two-stroke-engine thermodynamics. In particular the details of the

combustion process determine the heat transfered to the gas at combustion, which

has been demonstrated to be significant in determining the stability and performance

of the system. In order to confirm that the results and conclusions of this modeling

effort are valid, the engine model needs to be replaced with a more realistic model.
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The alternator model should be further refined. A combination of measurements

and a three-dimensional analysis is necessary to reconcile the experimental data and

the results of a two-dimensional investigation.

The system model has not yet been thoroughly investigated experimentally and

stands to benefit greatly from an empirical investigation. Empirical data is needed

to model the mechanical losses ignored in this modeling effort and refine both the

engine and alternator models.

Once these modification have been incorporated into the system model, the com-

puter program embodying the simulation of the two-stroke, free-piston-engine driven

linear-alternator can serve as design tool for a new prototype capable of delivering

the targeted 1000 Watts of output-power.
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Appendix A

C-code

A.1 sim2nl.c

Numeric simulation of

A Two-Stroke,

Free-Piston-Engine

Driven Linear

Alternator

/* */

Master's Thesis

MIT, EECS

1999-2000

STOP and GO driver */

For constant step size

4th order Runge-Kutta

/* MIT Electromechanical */

Systems Laboratory
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Shihab M. Elborai

/* This code is based in part on the Runge-Kutta algorithm found

/* in the book Numercal Recipes in C

/*

/* 16/09/99 Scavanged pieces from newl.c

/* 24/09/99 Model runs

/* 29/09/99 Modified derived mechanical variables

/* 01/10/99 keeps track of power

/* 19/10/99 keeps track of frequency, and pressure

/* 08/12/99 Fixed up the geometry of the cylinder, added Vdead

/* 07/02/00 Fixed error in stator geometry.. .tm and tg values doubled

/* 21/03/00 Added q3, q2, q1 from finite-element model for the internal voltage

/* Last modified: 21/3/2000

#include <stdio.h>

#include <math.h>

#include <time.h>

#include "nrutil.h"

#define NVAR 6 /*Number of colmns in output matrix*/

#define MAX 1333334 /*Maximum allocated memory*/

#define PI 3.14159

#define MUEo 1.25664e-6 /*The permeability of free space*/

// Run-time memory

double **yy,/*Memory for state variables*/
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*tt; /*and for the coressponding time*/

// Diagnostic variables

double fgas=0.0,/*Force due to Left and right pocket*/

/*Pressure difference*/

t_fire=0.0,/*Time when combustion event occured*/

Lcyl-pressure=0.0,/*The pressure in the left cylinder */

power; /*Instantanous electrical power*/

// Electrical load parameters

// Resistive load

double

Rload;

// Full-wave rectifier and battery

double V-batry,/*The voltage of a battery load*/

R-batry,/*The internal resistance of the battery*/

V_diode; /*Diode drop (not implemented)*/

int BRIDGEstate; /*State of the full-wave bridge*/

int CRASHflag; /*Crashed into cylinder head*/

// Electro-mechanical parameters

double Rw,/*Winding resistance*/

Lw,/*Winding inductance*/

/*Speed-voltage coeffecients*/

ql,//First order

q2,//Second order

q3; //Third order
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// Geometry of the Star-alternator

double wm,/*Width of a magnet*/

tm,/*Thickness of a magnet*/

lm,/*Length of a magnet*/

tg,/*Thickness of the air gap*/

wi; /*Half the width of a pole piece*/

double Ncoils,/*Number of coils*/

Br; /*Residual flux density*/

// Thermodynamic parameters

double KC,/*Ratio of the pressures after and before combustion*/

gama,/*Unitless property of an ideal gas*/

dQ23; /*Esitmate of the heat input to the gas at combustion*/

double D-piston,/*Piston diameter*/

A,/*Cylinder cross-sectional area*/

p1,/*Atmospheric pressure*/

p2; /*Pressure just before combustion*/

double clearance,/*Minimum firing cylinder head to piston distance*/

zl,/*Location of exhaust port*/

z2,/*Firing position*/

ycc; /*Half the crash-to-crash-distance*/

double V1,/*Maximum compressed volume*/

V2min,/*Minimum compressed volume*/

Vdead,/*Dead volume*/

Y1; /*piston-head distance when volume is V1*/
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int UPPERleg; /*Flag to implement hysterisis in the gas force*/

// Mechanical parameters

double M,/*Mass of moving assembly*/

K,/*Spring constant*/

B; /*Lumped mechanical losses*/

/*static memory allocation tricks*/

static double *dym = NULL;

static double *dytemp = NULL;

static double *ytemp = NULL;

/*prepare some static memory for Runge-Kutta*/

void rk4_ini(int n)

{

dym=dvector(1,n);

dytemp=dvector(1,n);

ytemp=dvector(1,n);

}

/*after youre done cleanup that memory*/

void rk4_fini()

{

freedvector(dym,1);

freedvector(dytemp,1);

free_dvector(ytemp, 1);

}

/*************************** Runge Kutta *********************************/
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int rk4(double y[], double dydt[], int n, double t,

double h, double yout[],

void (*derivs) (double, double [], double []))

{

int i;

double th,hh,h6;

hh=h*0.5;

h6=h/6.0;

th=t+hh;

for (i=1;i<=n;i++) ytemp[i]=y[i]+hh*dydt[i];

(*derivs)(th,ytemp,dytemp);

for (i=1;i<=n;i++) ytemp[i]=y[i]+hh*dytemp[i];

(*derivs)(th,ytemp,dym);

for (i=1;i<=n;i++) {

ytemp[i]=y[i]+h*dym[i];

dym[i] += dytemp[i];

}

(*derivs)(t+h,ytemp,dytemp);

for (i=1;i<=n;i++){yout[i]=y[i]+h6*(dydt[i]+dytemp[i]+2.0*dym[i]);}

if(BRIDGEstate == 2){

yout[3] = 0;

}

return 0;

}

I******************************* Stepper *******************************/

void rkdumb(double vstart[],int nvardouble t1, double t2,double h,

void (*derivs)(double, double [1, double []))
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{
int i,k,nstep;

double t;

double *v,*vout,*deriv;

v=dvector(1,nvar);

vout=dvector(1 ,nvar);

deriv=dvector(1,nvar);

for (i=1;i<=nvar;i++) {

v[i]= vstart[i];

yy[i] [1]=v[i]

}

yy[15111=0;

yy[6][1]=0;

tt[1]=t1;

t=tl;

nstep=(int)((t2-tl)/h);

printf("%d\n",nstep);

rk4_ini(nvar);

for (k=1;k<=nstep;k++)

{

(*derivs)(t,v,deriv);

rk4(v,deriv,nvar,t,h,vout,derivs);

if (fabs(v[1]) >= ycc) {

CRASHflag = 1;

printf("\n\nBOOM!CRASH!BANG!\n\n");

exit(0);

}
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if ((double) (t+h) == t) {

nrerror("Step size too small in routine rkdumb");

}

t += h;

tt[(k)+1]=t;

for (i=1;i<=nvar;i++) {

v[i]=vout[i];

yy[i] [(k)+1]=v[i];

}

yy [4] [(k) +1] =power;

yy[5][(k)+1]=Lcylpressure;

yy[ 6 ][(k)+1]=t_fire;

}

rk4_finio;

freedvector(deriv,1);

freedvector(vout,1);

freedvector(v,1);

}

/***************************** Subroutines *******************************/

/******************************* Fgas ***********************************/

double Fgas(double z, double t)

{

double Force;

double res;

res = .00000075

/*determine which leg of the force-position curve to use*/

if (UPPERleg)
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{
if(((z2-z)<=res)&&((z2-z)>=O))

{

UPPERleg = 0;

t_fire=t;

}

}

else

{

if(((z2+z)<=res)&&((z2+z)>=0))

{

UPPERleg = 1;

t_fire=t;

}

}

/*Then calculate the force given the current leg*/

if (UPPERleg)

{

if(fabs(z)<=zl) {

Force = A*pl*(KC*pow((V1/(A*(ycc+z)+Vdead)),gama)

- pow((V1/(A*(ycc-z)+Vdead)),gama));

L-cyl-pressure = pl*KC*pow((V1/(A*(ycc+z)+Vdead)),gama);

}

else if(z > z1) {

Force = A*pl*( 1 - pow((V1/(A*(ycc-z)+Vdead)),gama));

L-cyl-pressure = p1;

}

else {

Force = A*pl*(KC*pow((V1/(A*(ycc+z)+Vdead)),gama) - 1);
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L_cyl-pressure = pl*KC*pow((V1/(A*(ycc+z)+Vdead)),gama);

}

}

else

{

if(fabs(z)<=zl) {

Force A*pl*(pow((V1/(A*(ycc+z)+Vdead)) ,gama)

- KC*pow((V1/(A*(ycc-z)+Vdead)),gama));

L_cyl-pressure = pl*pow((V1/(A*(ycc+z)+Vdead)),gama);

}

else if(z<-zl) {

Force = A*pl*( pow((V1/(A*(ycc+z)+Vdead)),gama) - 1);

L_cyl-pressure = pl*pow((V1/(A*(ycc+z)+Vdead)),gama);

}

else {

Force = A*pl*(1 - KC*pow((V1/(A*(ycc-z)+Vdead)),gama));

L_cyl-pressure = p1;

}

}

return(Force);

}

/**************************** Equations **************************************/

void derivs(double t,double y[],double dydt[])

{

/*figure out the state of the diode bridge*/
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/*On:D1,D2 Off:D3,D4*/

if(BRIDGEstate ==1){

if(y[3]>0) {

BRIDGEstate = 2;

}

}

/*Off: D1,D2,D3,D4*/

if(BRIDGEstate ==2){

if(q3*y[1]*y[1]*y[2]+q2*y[1]*y[2]+ql*y[2]>V-batry){

BRIDGEstate =1;

}

else if(q3*y[1]*y[1]*y[2]+q2*y[1]*y[2]+ql*y[2]<-V-batry){

BRIDGEstate =3;

}

}

/*On:D3,D4 Off:D1,D2*/

if(BRIDGEstate ==3){

if(y[3]<0){

BRIDGEstate =2;

}

}

/*The dynamic equations*/

fgas = Fgas(y[1],t);

dydt[1] = y[2];

dydt[2] = (1/(M)) * (q3*y[1] *y [1] *y[3] +q2*y [1] *y [3] +ql*y [3] +fgas-K*y [1]);
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/*The electrical dynamics depend on the state of the bridge*/

if(BRIDGEstate ==1){

dydt[3]= -(1/Lw)*(q3*y[1]*y[1]*y[2]+q2*y[1]*y[2]+ql*y[2]+(Rw+Rbatry)*y[3]-V-batry)

power = -Vbatry*y[3]+y[3]*y[3]*(Rw+R-batry);

}

if(BRIDGEstate ==2){

dydt[3]= 0.0;

power=0.0;

}

if(BRIDGEstate ==3){

dydt[3]= -(1/Lw)*(q3*y[1]*y[1]*y[2]+q2*y[1]*y[2]+ql*y[2]+(Rw+R-batry)*y[3]+V-batry)

power = Vbatry*y[3]+y[3]*y[3]*(Rw+R-batry);

}

}

/******************************* Main **************************************/

void main()

{

// misc.

FILE *ofpl;

int i;

int kount;

double tl,t2,h,*vstart;
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// Electrical load parameters

V_batry = 0.000; //[V]

R.batry = 19.0; //[Ohm]

V_diode = 0.0; I [V]

Rload = 0.0; // [Ohm]

// Geometry of the STAR-alternator

wm = 0.02794; // magnet width [m]

tm = 0.02250; // magnet thickness [m]

lm = 0.02540; // magnet length [m]

tg = 0.00158; // air-gap thickness [m]

wi = 0.0127 ; // stator-arm width Em]

Ncoils = 63; // number of coils on one stator arm

Br = 1.25; // residual magnetization ET]

// Electro model parameters

Lw = 7.19e-3;

//(1.0)*(8*4*(Ncoils*Ncoils)*MUEo*wm*lm/(tm+(2*tg)));

// Winding inductance [H]

Rw= 0.211; // Winding resistance [Ohm]

q1 = 30.87;//1*8*Ncoils*(0.0118);

/*The linear model for internal voltage is used*/

q2 = 2*8*Ncoils*(0.0);// must be zero! flux-position has odd symmetry!

q3 = (0)*3*8*Ncoils*(152.8);//disabled the cubic fit
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// Thermodynamic model parameters

D_piston = 0.0350; // piston diameter Em]

clearance = 0.0015; // clearance in meters [m]

Y1 = 0.0230; // y coordinate of exhaust port [m]

Vdead = 1.8e-6; // spark plug cavity 2 ml [m^3]

A = (Dpiston*D-piston)*PI/4; // cylinder cross-sectional area [m^2]

p1 = 1.01e5; // atmospheric-pressure [Pa]

gama = 1.4; // property of an ideal gas [-]

V1 = A*Y1+Vdead; // maximum compressed volume [m^3]

V2min = A*clearance+Vdead; // clearanace and cavity [m^3]

dQ23 = 5.92; // pow(V1,gama)*pl*(2.5)/((gama-1)*pow(V2min,(gama-1)));

ycc = 0.0153;

zi = Y1-ycc;

z2 = 0.0128;

/*half of crash-to-crash [m]*/

/*+- exhaust port z-location [m]*/

/*spark fires at +- this positon [m]*/

KC = 1+(gama-1)*dQ23*pow(A*(ycc-z2)+Vdead, (gama-1))/(pl*pow(V1,gama)); /*[-]*/

//Mechanical constraints

M = 6.404; // Reciprocating mass [kg]
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K = 9.516e4; // Flexture spring const [kg/s^2]

B = 6.17; // Linear damper coeffecient [kg/s]

//Runge-Kutta runtime memory

vstart=dvector(1,NVAR);

tt=dvector(1,MAX);

yy=dmatrix(1,NVAR,1,MAX);

//Start simulation from the time

t1=0.0;

//until the time

t2=0.2;

//with step size

h=.00000015;

//this means you take this many steps

kount=(int) ((t2-tl)/h);

/*Initialize flags

UPPERleg = 0; //gas force hysterysis flag

BRIDGEstate = 3; //full-wave bridge topology flag

/* Initial Conditions

vstart[1]= /**/ -1.00*z2; /* displacement from center in m

vstart[2]= /**/ 0.0; /* velocity in m/s */

vstart[3= /**/ 0.0; /* current in the winding in Amps */
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/********************** call runge-kutta *********************************/

printf("Calling Runge-Kutta... \n");

rkdumb(vstart,NVAR,tl,t2,h,derivs);

printf("...Done calling Runge-Kutta\n");

/********************** Output summary ********************************/

/*Display all the info regarding this run*/

printf("\n\nInput parameters:\n");

printf("_------------------__\ ;

printf("V-batry = %5.4g,R-batry = %6.4g,V-diode = 6.4g\n",V-batry,R-batry,V-diode)

printf("R-load = %5.4g \n", R-load);

printf("wm = %5.4g, tm = %6.4g, tg = %6.4g \n", wm,tm,tg);

printf("lm = %5.4g \n", lm);

printf("wi = %5.4g, Ncoils = %6.4g, Br= X6.4g\n", wi, Ncoils, Br);

printf("Lw = %5.4g, q2 = %6.4g, Rw= %6.4g\n", Lw, q2, Rw);

printf("D-piston= %5.4g,clearance=%6.4g,Y1= %6.4g \n", D-piston, clearance, Y1);

printf("Vi = %5.4e, V2min = %6.4e, dQ23 = %6.4g\n", V1, V2min, dQ23);

printf("Vdead = %5.4e \n", Vdead);

printf("A = %5.4e, p1 = %6.4e, gama = %6.4g \n", A, p1, gama);

printf("ycc = %5.4g, zi = %6.4g, z2 = %6.4g\n", ycc, z1, z2);

printf("KC = %5.4g \n", KC);

printf("M = %5.4g, K = %6.4e, B = X6.4g\n", M, K, B);

printf("E/cyc = %5.4g, UPPERleg= %6d, BRIDGEstate= X6d \n",

2*dQ23*(i-pow(((A*(ycc-z2)+Vdead)/V1),.4)) , UPPERleg, BRIDGEstate);

119

I



/********************** Output results *********************************/

ofp1 = fopen("C:/users/El-Borai/matlab/d2.m","w");

/*generate a matlab script*/

fprintf(ofpl,"%% Linear Alternator Simulation Output Data File\n");

fprintf(ofpl,"X%--shihab m. elborai,\n X% MIT ESL\n");

fprintf(ofp,"V-batry = %3.2g;\n R-batry = %3.2g;\n Vdiode = X3.2g;\n",

V_batry ,Rbatry,V-diode);

fprintf(ofpl,"Rjload = %3.2g;\n\n",Rjload);

fprintf(ofpl,"wm=%4.3g; tm=X4.3g; lm=%4.3g; tg=%4.3g;\n",wm,tm,lm,tg);

fprintf(ofpl,"wi=%4.3g; Ncoils=X3g; Br=%4.3g;\n\n",wi,Ncoils,Br);

fprintf(ofpl,"Lw=%4.3g; q2=X4.3g; Rw=%4.3g;\n\n",Lw,q2,Rw);

fprintf(ofpl,

"D-piston=%4.3g; clearance=X4.3g; Y1=X4.3g; Vdead=%5.3e;\n",

D-piston,clearance,Y1,Vdead);

fprintf(ofpl,"V1 = %4.3e; V2min = %4.3e; dQ23 = %4.3g;\n\n",V1,V2min,dQ23);

fprintf(ofpl,"A=%5.3e; pl=%4.3e; gama=%4.3g;\n",A,pl,gama);

fprintf(ofpl,"ycc = %4.3g; zi = %4.3g; z2 = %4.3g; KC = X4.3g;\n\n",ycc,zl,z2,KC)

fprintf(ofpl,"M = %4.3g; K = %4.3e; B = %4.3g;\n\n",M,K,B);

fprintf(ofpl,

"%s %g; UPPERleg= %d; BRIDGEstate = %d;\n\n\n","Epcyc =

2*dQ23*(1-pow(((A*(ycc-z2)+Vdead)/V1),.4)) , UPPERleg, BRIDGEstate );

fprintf(ofpl,"7X The solution to the state equations is in dmatrix p\n");
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fprintf(ofp,"XX dmatrix p has four column dvectors [t

f printf (of pl, "p = [ \n");

for (i=1;i<=kount;i++)

if((i % 256)==0)

fprintf (ofpl,

"%10.4g %10.4g %10.4g %10.4g %10.4g %10.4 %10.4 %10.4g X10.4e\n",

tt[i], yy[1][i],yy[2][i],yy[3][i],yy[4][i],yy[5][i], yy[6][i]);

fprintf(ofpl, "] ; \n") ;

fprintf (ofpl, "t=p (: ,1); \n");

fprintf(ofp1,"z=p(: ,2) ;\n");

fprintf(ofp1,"v=p(:,3);\n");

fprintf(ofp1,"i=p(:,4);\n");

fprintf(ofpl,"power=p(:,5);\n");

fprintf(ofp1,"Fg=p(:,6);\n");

fprintf(ofpl,"t fire=p(: ,7) ;\n");

fprintf(ofpl, "stepsize=Xg;\n",h);

f close (ofpl) ;

/*************** Allways cleanup after you're done! ****************************/

free_dmatrix(yy,1,1);

freedvector(tt,1);

freedvector(vstart,1);

}

A.2 nrutil.h

#include <stdio.h>
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#include <stddef.h>

#include <stdlib.h>

#define NREND 1

#define FREEARG char*

#ifndef _NRUTILS_H_

#define _NRUTILS_H_

static float sqrarg;

#define SQR(a)((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)

static double dsqrarg;

#define DSQR(a) ((dsqrarg=(a)) == 0.0 ? 0.0 : dsqrarg*dsqrarg)

static double dmaxargl, dmaxarg2;

#define DMAX(a,b)

(dmaxargl=(a),dmaxarg2=(b),(dmaxargl)>(dmaxarg2)?(dmaxargl):(dmaxarg2))

static double dminargi, dminarg2;

#define DMIN(a,b)

(dminargl=(a),dminarg2=(b),(dminargl)<(dminarg2)?(dminargl):(dminarg2))

static float maxargi, maxarg2;

#define FMAX(a,b)

(maxargl=(a),maxarg2=(b),(maxargi)>(maxarg2)?(maxargi):(maxarg2))

static float minargi, minarg2;

#define FMIN(a,b)

(minargl=(a),minarg2=(b),(minargi)<(minarg2)?(minargi):(minarg2))
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static long lmaxargi, lmaxarg2;

#define LMAX(a,b)

(lmaxargl=(a),lmaxarg2=(b),(lmaxargi)>(lmaxarg2)?(lmaxargi):(lmaxarg2))

static long iminargi, lminarg2;

#define LMIN(a,b)

(lminargl=(a),lminarg2=(b),(lminargl)<(lminarg2)?(lminargi):(lminarg2))

static int imaxargi, imaxarg2;

#define IMAX(a,b)

(imaxargl=(a),imaxarg2=(b),(imaxargl)>(imaxarg2)?(imaxargi):(imaxarg2))

static int iminargi, iminarg2;

#define IMIN(a,b)

(iminargl=(a),iminarg2=(b),(iminargl)<(iminarg2)?(iminargi):(iminarg2))

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

void nrerror(char errortext[])

/* Error handler*/

{

fprintf(stderr,"Numerical Recipies run-time error...\W)

fprintf(stderr,"%s\n",error-text);

fprintf(stderr,"... now exiting to system...\n");

exit(1);

}

double *dvector(long nl, long nh)
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/* allocate a float vector with subscript range v[nl. .nh] */

double *v;

V = (double *)malloc((size-t) ((nh-nl+1+NREND)*sizeof(double)));

if (!v) nrerror("allocation failure in dvectorO");

return v-nl+NREND;

}

int *ivector(long nl, long nh)

/* allocate a float vector with subscript range v[nl. .nh] */

{

int *v;

V = (nt *)malloc((size-t) ((nh-nl+1+NREND)*sizeof(int)));

if (!v) nrerror("allocation failure in ivectoro");

return v-nl+NREND;

double **dmatrix(long nrl, long nrh, long ncl,long nch)

{

long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;

double **m;

m=(double **) malloc((size.t)((nrow+NREND)*sizeof(double*)));

if (!m) nrerror("allocation failure 1 in dmatrixo");

m += NREND;

m -= nrl;

m[nrl]=(double*) malloc((size-t)((nrow*ncol+NREND)*sizeof (double)));

if (!m[nrl]) nrerror("allocation failure2 in dmatrixo");

m[nrl]+=NREND;
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m[nrl] -=ncl;

for (i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;

return m;

}

void freedvector(double *v, long nl)

/* free a float vector allocated with vector() */

{

free((FREEARG) (v+nl-NREND));

I

void freedmatrix(double **m, long nrl,long ncl)

free((FREEARG) (m[nrl]+ncl-NREND));

free((FREEARG)(m+nrl-NREND));

}

#endif
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