
An Online Reservation System

by

Arpan Shah

Submitted to the Department of Electrical
Engineering and Computer Science in

Partial Fulfillment of the Requirements for the
Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology MA

February 2000

@ 2000 Arpan Shah
All rights reserved

ENG
SSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author

/
.. . ..

Department of Electrical Engineering and Computer Science
January 30, 2000

C ertified by
Dr. Amar Gupta

Co-Director, Productivity From Information Technology (PROFIT) Initiative
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

I

AN ONLINE RESERVATION SYSTEM

by

ARPAN SHAH

Submitted to the Department of Electrical of Electrical Engineering
and Computer Science on February 2, 2000 in partial

fulfillment of the requirements for the
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis paper discusses the design and development of an Online Reservation System
(ORS) for restaurants. It begins by examining the needs and objectives of such a system. It then
discusses existing reservation and non-reservation computer systems that are relevant to the
design of the ORS. The design of the system is then presented, analyzing the different software
components that make up the system. It also discusses data structures, protocols, and algorithms
that the system uses. After the design, the implementation of the design is discussed. Following,
is the test analysis section which discusses whether the ORS met its objectives. Performance is
also evaluated near the end of the paper along with possible extensions of the system.

Thesis Supervisor: Dr. Amar Gupta

Title: Co-Director, Productivity From Information Technology (PROFIT) Initiative
Sloan School of Management

2

Acknowledgements

I would like to thank Dr. Gupta for the support and advice he has given me in the last one

year. His encouragement and guidance were extremely helpful in the design and development of

the product.

Also, I would like to thank my family, Ashok, Bharati, and Arpa Shah, for all their

encouragement and support in the last four years.

Lastly, I would like to extend a thank you to Ravindra Sarma who helped me with the

graphical user interface.

3

Table of Contents

1 Introduction ... 5
2 Current Restaurant Reservation System 7
3 O bjectiv es .. 9

3.1 The New with the Old .. 9
3.2 C onnectivity ... 10
3.3 Hard Disk Crash .. 12
3.4 Reservation Algorithm ... 13
3.5 Perform ance ... 14
3.6 Customer and Restaurant Profiling 14

4 Relevant Computer Systems ... 16
4.1 Existing Reservation Systems 16

4.1.1 R eserV ec ... 22
4.1.2 SABRE and Confirm Computer Systems 25
4.1.3 PegaSys and Shangri-La 29
4.1.4 Ticket Master Systems (TMS) 31
4.1.5 .COM Reservation Portals 36

4.2 Other Relevant Systems and Technology 33
4.2.1 Cisco DistributedDirector 33
4.2.2 Server-side Scripting .. 34

4.3 Current Restaurant Reservation Systems 36
5 T h e D esign .. 38

5.1 Central Component .. 38
5.1.1 Web Server and Servlets 40
5.1.2 Central Database (RCDB) 41
5.1.3 Central Server ... 44

5.2 Restaurant Component ... 49
5.2.1 RezzSys Graphical User Interface (RGUI) 49
5.2.2 The Back-End System 52

6 End-To-End System - Putting Everything Together 68
6.1 Scenario 1 ... 68

6.1.1 Jumping to the Day of Interest 68
6.1.2 Quick Enter (QE) ... 69

6.2 Scenario 2 ... 75
7 Implementation .. 71
8 T estin g .. 76
9 P erform ance .. 79

9.1 C aching .. 79
9.2 System Performance ... 79

10 E xtensions .. 82
11 C onclusion .. 84

R eferen ces .. 85

B ibliography ... 86

4

Chapter 1

Introduction

In the last one hundred years, mankind has made incredible technological progress. The

television, the airplane, space travel and of course, the computer have all been innovated this past

century. We live in a society where capitalism leads to innovative ideas, and where innovative

ideas lead to a higher standard of living.

It is the end of the twentieth century, and it is the age of the Internet. Everyone has gone

"dot com" crazy. With so few barriers to entry, anyone can put up a website: a teenager, high-

school teacher, a housewife, or a multi-million dollar company. The Internet is a faceless

medium that everyone can have access to; one that everyone can take part in.

The Internet, besides just being a network of websites, has enabled numerous companies

to do business differently. The brick-and-mortar retail stores are now able to sell their

merchandise to customers over the Internet by creating virtual store-fronts. Barnes and Noble,

for example, sells books to consumers through barnesandnoble.com. The Internet has not only

helped businesses succeed, it has also allowed new companies to emerge. In fact, companies that

do not even exist physically in the "real world" are making money by selling over the Internet.

Companies that do not even have a physical store are competing with brick-and-mortar stores

neck-to-neck in the Internet space. One example of such a company is Amazon.com. Amazon

competes with arch-rival Barnes and Noble, despite its lack of a physical presence in the "real

world."

Companies that have been quick to obtain a web presence without having modified their

business model are likely to lose to their competition who have. With 43% of all Americans

5

online1 , it is important for businesses to channel their products and services directly to the

consumer. A perfect example of such a strategy is e-commerce. E-commerce, electronic

commerce, is simply commerce done over the Internet. Some companies make all of their

revenue using this business model. However, the Internet is not just about making money

through e-commerce; it is also about making businesses grow and improving the lifestyles of

consumers. Many times, it is about advertising to a larger audience; other times it is about

catering to the specific needs of customers.

This thesis document discusses the specification, design, and implementation of a

reservation system that helps restaurants move to the web and build their online presence in the

Internet economy. The online reservation system enables restaurants to expand their customer

base while allowing customers to make reservations in a real-time environment. Before research

and implementation of this product began there were virtually no restaurants that had this

capability and no company that offered this technology. More recently, however, a few

companies have sprung up that offer this as a service to restaurants - savvydiner.com,

foodline.com and opentable.com. The online reservation system described in this paper is

extremely object oriented in nature and is designed keeping issues such as scalability, portability,

connectivity and practicality in mind. The needs of the maitre d'2 and the business model of the

restaurant were also key factors in designing the system. It is implemented using off the shelf

software and hardware, unlike other systems that are customized for each restaurant.

'General Internet usage figures from CyberAtlas, at internet.com, Inc. (July 1999)
2 maitre d' is the acceptable English short form of the French word maitre d'h6te.

6

Chapter 2

Current Restaurant Reservation System

Today, almost all of the restaurants in the United States and in the rest of the world make

reservations by hand. Maitre d's usually have a "reservation book" that they make reservations

in - either blank or dated.

After having spoken to maitre d's of different types of restaurants, it is also clear that

most do not have a particular way of scheduling their customers. For instance, if customer A

calls for a reservation at 9pm, most maitre d's go to the page of the date of interest, check the

time slots around 9pm, and make a "guess" as to whether or not there is going to be availability.

Many times, these "guesses" or "hunches" are wrong. As a result, customers with reservations

often wait for a table, which in turn leads to customer dissatisfaction. Occasionally, the opposite

occurs where maitre d's make poor estimates which lead to loss of business.

In order to make a reservation today, customers have to call the restaurant to make a

reservation. Unfortunately, this practice has many drawbacks, some of which include the

following:

i) Customers can only make reservations during the restaurant's operating hours. This

prevents customers from making reservations outside business hours.

ii) Customers must make reservations over the phone. This requires the customer to know

the telephone number of the particular restaurant. Since the average restaurant only has

one telephone line, it may be difficult for a customer to get through to the restaurant.

Also, the restaurant could be a long distance telephone call for a customer.

7

iii) The customer is unaware of all of his/her dining options. For instance, presently, most

people choose to dine at a particular restaurant either because they have heard of the

restaurant through word of mouth, due to personal experience, or because of advertising.

However, with the large and growing number of restaurants, especially cities like New

York City and San Francisco, the customer may be missing out on a great dining

experience at a restaurant he/she has not heard about.

iv) The customer does not know about the different reservations options that he/she has. For

instance, he/she can not talk with the maitre d' for extended periods of time. He/she does

not have the luxury of knowing the different reservation schedules or the arrangement of

the tables.

v) There is no quick way of knowing what the restaurant serves. Many restaurants do not

have an Internet presence, and consequently users do not have the luxury to browse their

menus and learn about their specials and pricing.

This thesis paper will describe the Online Reservation System (ORS) in great detail. At

first, the objectives and features of the ORS will be discussed, then a general overview will be

presented, and finally the specifics of the ORS will be detailed examining the different

components of the ORS.

8

Chapter 3

Objectives

The Online Reservation System addresses all the problems stated in the previous section.

It is a distributed N-client computer system. The computer system consists of a central

component and N-clients (the N-clients being the N restaurants). Specifics of the design are

discussed later in the paper.

3.1 The New with the Old

The ORS is a system that enhances the current restaurant reservation process. However,

in order to make the restaurant reservation process powerful, restaurants must be willing to make

some changes to their current way of making reservations. Ideally, all customers would make

reservations via the Web. If this were true, the ORS would be easier to design and implement

since there would only be "one point of reservation" - there would only be one place from which

customers could make reservations. Unfortunately, this is not a valid assumption, and

consequently, many intricacies and complications arise. One cannot assume that customers will

stop calling restaurants; so it is impossible to replace the current reservation system with a

completely new system. ORS is designed in such a way that customers still have the option of

calling; in software terms, it is backward compatible.

In order to accommodate this essential feature, it is important to create an application for

the client, which in this case is the restaurant. (For the remainder of the thesis paper, "client" will

refer to a restaurant and "user" will refer to its customer). A client application is needed so that

the maitre d' can enter reservations made over the phone into the system. They must enter the

9

phone reservations into the ORS or the system will not be aware of which tables are reserved and

which ones are available.

3.2 Connectivity

Connectivity is an important issue that must be addressed. As mentioned above, it is

clear that the restaurant has to enter reservations made by phone into the system. However, does

the restaurant have to be connected to the Internet to make reservations? Questions such as,

"what happens if the restaurant disconnects from the Internet?" have to be answered since one

cannot assume that all restaurants are connected at all times. The reason for this is two fold:

connectivity is unreliable with a modem or DSL line and staying connected to the internet twenty

four hours a day can turn out to be quite expensive for small businesses.

If the restaurant is connected to the Internet at all times, then customers can make

reservations over the web and customers can call the restaurant without any problems. This is

clear since the restaurant system (the restaurant system is referred to as RezzSys) knows exactly

what reservations have been made over the web. However, if the connection is broken, then

what happens is not clear. The ORS is no longer able to make reservations via the web since it

does not have a complete view of all the reservations made.

10

Scenario I

Customer Restaurant

Internet

Netscape/ C tal App

(Web Server

ScnaioII Browser) (Web DB

Figure I Component Overview Ineneti

In any implementation, it is necessary for the central server to have access to the

reservations. In the ideal situation the client and the central server should both have complete,

consistent data. Therefore all reservations made via the Internet and all reservations made over

the phone must be recorded somewhere where the central server and client can access them:

some IP address they both can access over the Internet. If the Internet connection at a restaurant

breaks down, the ORS faces a problem: How does the client update the data? How does the

central server know about the new reservations made while the client is disconnected? The ORS

should be able to handle this situation effectively. Clearly, connectivity is an issue that must be

addressed when designing the ORS. There are different approaches that one can take to this

problem. In this paper, the ORS system is designed to allow restaurants to make telephone

reservations while temporarily preventing reservations to be made over the web.

11

3.3 Hard Disk Crash

The chances of an individual hard disk crashing and getting damaged permanently is

small. However, the chances that at least one restaurant's hard disk permanently "crashes" from

a large sample is non-negligible. Assume that the probability of a hard disk permanently

crashing in a given time interval T (say one year) is p, where p is very small (assume it is .00 1).

Also assume that there are a total of N people and that the probability of a permanent hard disk

crash is an independent event.

Pr[1 computer crashes] = p
Pr[1 computer does NOT crash] = 1 - p
Pr[N computers do NOT crash] = (1 - p)N
Pr[At least one computer crashes] = 1 - (1 - p)N

The number of computers that need to be part of the experiment so that the probability of

at least one computer crashing permanently is 2 is:

1 -(1 - p)N = 2

N = -In2/In(1 - p)
-> assuming p = .001, N = 692

Taking all these assumptions into account, if there are at least 692 computers in the

system, that is, if there are 692 restaurants who provide online reservations, at least one of those

restaurants will experience permanent hard disk failure with probability greater than /2. This

concludes that from a business point of view, one must take into account the possibility of a hard

disk failure when designing the system. Thus, it is important for the ORS to have backup data

just in case one copy is corrupted.

12

3.4 Reservation Algorithm

Designing a reservation algorithm does not seem like a complicated problem.

Unfortunately, it is very complex. Restaurant reservation is analogous to many scheduling

problems, which have been proven to be extremely difficult to solve in polynomial time.

However, what makes restaurant reservation particularly difficult are the following factors:

i) The system does not have knowledge of all the reservations. It does not know of what

future reservations will be made and/or requested. This is because the system is real-

time. If the system was not in real time and instead performed batch scheduling, the

problem would be significantly easier since all the information would be available.

ii) Many times, particular tables are reserved for important people: celebrities, for example.

These tables cannot be reserved by a software agent. In other words, only the maitre d'

should be allowed to assign certain tables. Also, even if two tables hold the same number

of people, one may be preferred over the other. For example, table A may still be

preferred over B because A has a better view for instance.

iii) Smoking and non-smoking tables. Though many restaurants in the United States are

becoming non-smoking restaurants, there are still many restaurants that have non-

smoking and smoking sections.

iv) The maitre d' may want to override a reservation made by the system and swap

reservations around. For example, he/she may move customer C's reservation from table

2 to table 8 because of a crack in table 2.

The ORS addresses issues ii - iv. Unfortunately, there is nothing the ORS can do about

the lack of information; it cannot possibly know more about the future. However, the ORS'

13

reservation algorithm takes a greedy approach to come up with a solution that is efficient and

near optimal.

3.5 Performance

It is important for the ORS to be efficient. While including all the necessary features, one

must keep in mind the efficiency of the system. For example, if the client application made a

database transaction for every single operation, the system would be slowed down, especially if

the database did not reside locally (that is, on the client machine). At the same time, the client

cannot afford to cache every single piece of data since that would take an unrealistic amount of

memory. Therefore, there must be some compromise made between the two. Also, the system

should be efficient for the customer who makes a reservation from the Internet. Similarly, the

central server should not query the database lying on the client every time a customer wants to

get information - reservation or otherwise.

3.6 Customer and Restaurant Profiling

In order for a restaurant to offer the best services to their customers, it is essential for it to

know its customers. This is guaranteed to improve business and customer relations. The ORS is

designed to support customer profiling. When customers call the restaurant for reservations, the

ORS checks to see whether a customer profile of the customer exists. If a profile exists, the

maitre d' immediately knows the relevant information of the customer and his/her preferences.

For example, he knows whether the customer prefers a smoking/non-smoking table, his favorite

table, food preferences of the customer, and his first and last name. Similarly, if a customer

makes a reservation via the web, the central server knows all this information and thus is able to

14

make a well-informed reservation for the customer. Needless to say, the ORS will not have the

customer's information the first time he/she uses the system (either calling or via the Internet), so

the customer will have to enter data the first time a customer uses the system.

The ORS not only provides a mechanism for maitre d's to know more about their clients,

but it also provides a way for customers to learn about different restaurants. They can learn about

their different options via the Web. By choosing the type of food they like, their location

preference, and the price range, the ORS can provide the customers with many dining options.

This is possible because the ORS has knowledge of all its different clients. This is an excellent

way for restaurants to expand their business to new customers.

15

Chapter 4

Relevant Computer Systems

This section discusses some of the existing computer systems and technology that have

helped in the design of the Online Reservation System discussed in this paper. At first, existing

reservation systems across different industries are explored. Later in the section, non-reservation

computer systems with desirable characteristics and properties that are relevant to reservation

systems are analyzed.

4.1 Existing Reservation Systems

Many companies across several industries have developed and adopted reservation

systems. These reservation systems have proven to be extremely helpful and have, in many

cases, led to increases in revenues and market share. Corporations that have been quick to adopt

this new technology have benefited tremendously, and over time competitors have been forced to

use a reservation system to stay in business. With the advancement of the Internet, real-time,

online reservation systems are becoming more and more popular. The ability for customers to

make reservations over the web has attracted many client driven large companies.

Most existing reservation systems are large, expensive computer systems that have been

designed and developed for large companies. Until recently, only big corporations needed

reservation systems since most small businesses could operate using a notepad or a preexisting

applications like Excel. Hence, the most common reservation systems are those of major

airlines, rental car companies, and movie theaters. These systems have similarities as well as

significant differences from the ORS that is discussed in this thesis.

16

Points of Entry

A key difference between large existing systems and the ORS is the number of points of

entry (POEs). In a large system, there are potentially thousands of POEs to the same system.

These POEs are usually operators (who work for the company directly). For example, when a

person calls an airline to make a reservation, they speak with an operator who

Points of entry

Central 0

0- System

Figure 4.1 Typical Company Reservation System Layout

is a point of entry into the airline reservation system. More sophisticated reservation systems

have other virtual extensions to their network. An airline company, for example, can offer travel

agencies connectivity into their network from their offices. Now, these agencies also become

POEs. The reason why there are so many POEs in large systems is because of the volume of

transactions and the popularity of the service and network. Consequently, more operators and

extensions are required to handle the customer requests.

With the ORS, a restaurant reservation system, there are exactly N points of entry, where

N is the number of restaurants connected to the network. Even with a web component, the ORS

has N POEs since reservation requests are pushed to the appropriate local system, as is discussed

17

later in the paper. As can be observed in figure 4.2, the ORS is a network of many local

restaurant systems.

Points of Entry
(Local Restaurant
Systems)

Figure 4.2 ORS System Layout

Having a large number of entry points has its advantages and disadvantages. One of the

advantages of having so many, as depicted in figure 4.1, is that if one of them malfunctions (goes

down or gets disconnected from the network), it does not affect the system. People merely go

through another operator. Due to the layout of the system, special attention does not have to be

given to connectivity, whereas, connectivity is a very important issue in the ORS as discussed

later. One of the disadvantages of having many entry points is that concurrency is difficult to

deal with - this is also discussed in detail later in the section.

Centralized vs. Decentralized Systems

As can be seen in figure 4.1, airline reservation systems and other large systems generally

tend to be centralized systems. This does not mean that all the data lies in one location. In this

18

Central
Server

case, centralized means that the system resides in a controlled network environment - typically

an Intranet. By using the latest server technology, nearly 100% reliability can be guaranteed. Of

course, the system itself can be spread across many different machines and servers. In most

cases, systems are spread geographically, as well as processor-wise, across many different

servers. The primary reason to have distributed data and processing is to enhance performance,

which is critical in large reservation systems.

The ORS, as denoted in figure 4.2, is a distributed network. It is comprised of many

different restaurant systems that do not lie in a controlled environment. It cannot be assumed

that a restaurant, for example, is going to be connected to the Internet at all times. This is one of

the complications of the layout of the ORS. However, because of its distributed nature, each

local system is a virtual processor of the system, and consequently, performance requirements

are more easy to meet.

Connectivity

As discussed earlier, connectivity is an issue that must be addressed in the design of the

ORS. In larger, centralized systems, it is unrealistic for a client to be able to function without

being connected to the system. In order for a client (computer terminal in most cases) to operate

when disconnected from the network, it would have to be able to know the most current

information. Since all the clients are making changes to the same data, this makes it impossible

for disconnected terminals to continue to operate. Therefore, even if the data were stored locally

on the client machine, it would not be up-to-date and the terminal would not be able to make a

reservation. As a result, when a computer terminal of a larger system (airport terminal, for

example), goes down or gets disconnected from the central system, the employee operating the

19

terminal simply uses another terminal to make reservations. In this case, it is not a great

complication for a terminal to go down, since there are many other terminals that can continue to

make reservations. However, in a not properly designed restaurant system, if a client is

disconnected, lack of connectivity can potentially prevent all reservations for that restaurant

from being made.

Performance vs. Concurrency

In every computer system, trade-offs must be made between performance and

concurrency issues. In large real-time reservation systems, this trade-off is very important

because performance and consistency of data are both critical for most companies.

Fortunately, the ORS is a network of local restaurant systems. Each restaurant system is

independent from another. Since reservation requests can be "pushed" across the network to the

concerned local restaurant system, the load can be distributed amongst the different restaurant

systems. Also, because of the relatively low number of transactions - on the busiest day, assume

that the average restaurant has 200 reservation requests (this equates to approximately .007

reservations/second assuming an 8 hour period) - concurrency problems can be solved

completely without compromising performance (a detailed discussion of the ORS' performance

can be found in Chapter 9).

In the case of larger reservation systems, where the volume of transactions is thousands

per second, dealing with concurrency and yet maintaining performance standards becomes a

formidable task. Therefore, many systems compromise concurrency for performance and in

some cases this results in inconsistent data.

20

Heterogeneity

Another important difference between the existing systems and the proposed restaurant

reservation system is that the ORS has different restaurants (businesses) as its clients. This

brings about many concerns that are not present in reservation systems designed for a particular

company. Each client, in the case of the restaurant reservation system, has its own reservation

constraints, graphical user interface, and data. In the case of an airline reservation system, for

example, all the clients (terminals) have the same constraints, interface, and data. Also, another

key difference between the ORS and other reservation systems is the complexity of the

reservation algorithm. When tickets are sold, there is a predetermined non-variable time slot for

each event. However, when making a reservation at a restaurant, a system has to be built to

"guess" how long each table will be occupied for.

Budget Restrictions

Large hotels, car rental companies, and airlines can spend hundreds of millions of dollars

to implement and maintain their reservation systems. Unfortunately, since restaurants are small

businesses, they can not afford to spend as much as these large corporations. The ORS is

specifically designed to allow restaurants to have a local reservation system, Internet presence

and allow customers to make reservations via the Internet. Ideally, each restaurant system would

be connected to the Internet with a TI line with 100% connectivity to the Internet; each

restaurant system would run on expensive servers. However, if a costly solution were

implemented for the ORS, practically speaking, the price that would have to be charged for each

restaurant to cover costs would be incredibly high. Consequently, the ORS is restricted and

cannot afford the expensive hardware that large companies can.

21

4.1.1 ReserVec

ReserVec was the name given to the computerized reservation system developed by

Trans-Canada Airlines in the 1960s. It was designed to handle over 60,000 transactions per day.

The development of ReserVec eventually led to Canada's first built transistorized computer: the

Gemini3

Design

The ReserVec system consisted of the central registry, the remote reservations offices,

and the communication systems between the two (the general layout was similar to that depicted

by figure 4.1, where the offices are the points of entry). The central registry of the ReserVec

computer system was located in Toronto. It contained twin computers, their shared memory

systems, computer couplers, paper-tape readers, and teletypewriters .

The Gemini computer consisted of two identical computers that ran on the same software.

They were individually known as the Castor and Pollux. Together, they shared the load of the

reservation system. Each computer had its own arithmetic unit, program control unit, core

memory, and paper-tape reader. They, however, shared drum and magnetic-tape memory. This

shared external memory had the "master inventory" which contained the entire Trans-Canada

Airlines flight schedule for over 350 consecutive days. The drum memory contained the

inventory for approximately the next 10 days' flights and for those that were on the brink of full

capacity. Drum memory served as a form of cache for quick access and lookup.

3 Wings Across Time, The Story ofAir Canada, Griffin House, 1978.
4 The Electronic Reservations System for Trans-Canada Air Lines, Univ. of Toronto Press

22

The ReserVec system effectively dealt with concurrency. If one computer was operating

on a particular drum-memory location, the other computer was locked out of that memory

location until the first was finished. The engineers accomplished this feat through a

communications link between the computers via registers. If Pollux, without loss of generality,

was accessing memory location m, the relevant registers would hold m so that Castor would

5know that Pollux was accessing m .

Pollux

registers

Magnetic drums

Magnetic tapes

Castor

Figure 4.3 Gemini Architecture

On each reservation request, the Gemini computer system would determine whether the

relevant flight's information was stored on drum or magnetic-tape memory (it would check if it

was in cache). If the flight information did not reside in drum memory, the reservation request

was recorded on the "pending store" tape. It was held there until the master inventory was

updated. The reasoning behind this was that chances were very good that the reservation request

5 What is Inventory Updating?, TCAL internal monthly newsletter.

23

could be carried out since the flight was scheduled to depart after ten days. Also, the overhead of

checking the magnetic-tapes for one reservation was too high.

Transactions

Reservation requests were made from remote reservation offices with transactor cards. A

transactor card was a standard 7.5 x 3.5 inches punch-card. Cards were printed in a format such

that it could be used for several kinds of transactions. In the ReserVec system, thirteen different

types of cards that were capable of a total of 47 different operational functions were initially

used. Sales agents made requests by filling in small circles that were needed for the transaction

at hand. On the average, eighteen circles would be marked for a transaction. When the agent

was finished making the appropriate markings, the card was inserted into a transactor terminal,

the information was passed to the central registry, and the computer punched its reply in the

right-hand edge: SOLS, SELL, ACPTD (wait-listing requests), and FCST (forecast of a flight)6.

The central registry received its input from trunk-line data buffers and two paper-tape

readers. The trunk-line data buffers connected the Gemini computer system and the

communication lines that originated from the reservation offices7 .

The ReserVec computer system was a large-scale reservation system that was centralized

(the central registry at the center) with reservation offices as its points of entry. It made a

tremendous impact to Trans-Canada Airlines.

6 How to Make a ReserVec Reservation, TCAL internal monthly newsletter
7 Electronic Seat Reservation System, Process Control and Automation

24

4.1.2 SABRE and Confirm Computer Systems

American Airlines (AA) is a company that has gained immensely from their information

(which includes reservation) system. AA's information system is run from a central system

known as the SABRE (Semi-Automated Business Research Environment) computer reservation

system. American Airlines' Sabre customer reservation systems network company, which was

recently spun-off at a multibillion-dollar valuation, is an excellent example of a reservation

system that transformed an industry. For many years, Sabre generated more profit for AA's

shareholders than the airline itself. Sabre Inc.'s primary goal is to redefine the way business is

done in every travel agency and/or company on and off the Internet.

Development

In the 1930's, American Airlines used the Request and Reply system as their reservation

system. This system was based on centralized control of seat inventories maintained at a flight's

initial point of departure. It required a sales agent to communicate with inventory control before

a seat could be confirmed to a passenger. Since a passenger had to call a sales agent who in turn

had to call inventory control to make a reservation, the passenger was forced to wait for a return

phone call from the agent to confirm a reservation. This system, though it tackles the issue of

concurrency, is by no means scalable.

Later in the same decade, to improve performance of the reservation system, AA's

Boston reservations office determined that up to the point where the flight was almost sold out,

sales agents could sell space freely and only report the sale. This significantly improved

performance since the process of checking was eliminated along with the transmission of a

second phone call. Inventory control would monitor sales, and when the number of available

25

seats decreased to a certain point, it would broadcast a "stop-sale" message to all its agents. This

indicated to the agents that they must go back to the Request and Reply system discussed

earlier.

Availability display boards had been installed in reservation offices to further minimize

message traffic. By simply glancing at the board, agents could figure out seat availability.

However, as passenger volumes grew, these offices became larger and more congested.

In the next couple decades, AA developed the Boston Reservisor, the Magnetronic

Reservisor, and other modified versions of the systems. Even though each system was an

improvement, AA's early reservation systems suffered from problems of processing speed and

data inconsistency.

Near the end of the 1950's, AA began working with IBM to come up with a real-time

computerized reservation system that was capable of handling a high volume of reservation

transactions. This relationship proved to be very useful, and is still one of the main reasons why

the SABRE network is able to handle such a high volume of data (this is discussed a little later).

AA concentrated on the application programs while IBM delivered the necessary hardware and

control program.

The processors at the heart of the early SABRE system were IBM 7090s duplexed for

fail-safe redundancy. Another important hardware component for the system was random-access

disk storage. This resulted in a 1,000 times improvement in performance from sequential

magnetic-tape storing. The initial SABRE system's secondary storage was divided among six

IBM 1998 drum files capable of holding 7.4 million characters and 16 IBM 1301 disk files with

8 The Sabre System: A Presentation, Oct. 1, 1964
9American Airlines Sabre, Boston: HBS, Case No. EA-C78

26

a capacity of 710 million characters. Seat inventories were recorded on the drums while

10
passenger-name records were stored on disks

IBM was responsible for the system time of 3 seconds during peak-volume periods.

However, in April 1963, the response time was 30 seconds due to the addition of the New York

office. In response, IBM doubled the main memory of the 7079s to 64K 36-bit words

Current Hardware

With over 5,000 transactions per second during peak hours and over one billion

transactions weekly, the hardware used by SABRE is crucial to its performance. The SABRE

global distribution system (GDS) is responsible for more than 25% of the world's airline

reservations and eighty million passengers daily.

Today, the SABRE system is composed of clustered S/390 processors and a real-time

operating environment called Transaction Processing Facility. They provide power, scalability,

and reliability and enable SABRE to be available 99.999% of the time. Of course, needless to

say, this solution costs hundreds of millions of dollars - an unimaginable sum of money for a

small business (Source: IBM Release).

New Technology - Porting to Java

The Sabre Group has recently teamed up with Sun Microsystems to port many of their

solutions to Java. Sabre has agreed to resell Sun network computers to its customers and port its

reservation management software to Java. In return, Sun has agreed to provide Java products

and services to Sabre. Sabre currently states that it will adopt the Sun NC as its platform of

10 IBM's Early Computers, MIT Press, 1961
" American Airlines 'Sabre' Electronic Reservations System, Western Joint Computer Conference, 1961

27

choice for its Qik-Access family of products. Qik-Access is almost an airline industry standard,

handling reservations for 40 airlines and 75,000 travel agency desktops. Currently, Sabre and

Sun are writing Qik-Access in Java. Sabre is making this move to Java because Java is a good

12choice of programming language for cross-platform computer network systems

New Frontiers

Currently, the points of entry to the SABRE system are predominantly airline computer

terminals, travel agency desktops, and the Internet. However, the Sabre group plans to add

another new kind of point of entry by partnering with Nokia and IBM - the mobile phone. By

using the Wireless Application Protocol (WAP), a new open industry standard for the mobile

Internet, they plan to allow travelers to make reservations and changes over a mobile phone.

Each of these three companies has a specific strength that enables them to add value to the

project. The Sabre Group is developing the software that sends information and allows changes

to be made; IBM is providing application development tools and specialized hardware which

translates the information from the SABRE system into a condensed form that can be sent to the

mobile phone; Nokia is providing the servers as well as the Nokia phones that will receive this

13information (refer to figure 4.4 for the architecture)

Nokia IBM XSabre The
WAP WML XML Java SABRE

..................................... erver L X L System
............................ S * Server erver

Figure 4.4 SABRE Wireless Architecture

28

12 Informationweek Online, June 3
13 IBM Java News, January 2000

Confirm Computer System

AMRIS (AMR Information Systems), besides successfully designing and developing the

SABRE system, was also active in researching other computer systems. In March 1998, AMR

Information Services and other large hotel and travel companies in the US, decided to create a

computer system whose information and services would be available to all clients. This system

was named Confirm. It was conceptually a distributed heterogeneous system composed of large

homogeneous systems; somewhat similar to the ORS discussed in this paper. It was planned that

Confirm would be a full function system capable of handling cross-reservations (car rentals and

hotel reservations), building customer profiles, and other services. The development team

included 500 people, 200 of which were programmers.

Confirm was going to be launched in 1992, but after completing the beta version of the

system, many major problems were found in the system. Due to these problems and other

reasons, Confirm was cancelled in mid-1992.

4.1.3 Pegasys and Shangri-La

Besides the airline industry, another industry that relies heavily on real-time reservation

systems is the hotel industry. An example of a successful reservation system is the one used by

Asia-based Shangri-La Hotels and Resorts. With the help of THISCOTM (The Hotel Industry

Switch Company) and Dallas-based Pegasus Systems, Inc., Shangri-La has been able to connect

over 35 hotels and resorts in Southeast Asia and China, enabling electronic reservations by travel

agencies all over the world.

The reservation system Shangri-La has in place is different from standard airline

reservation systems. The entire system architecture is different, but each individual node is

29

similar to an airline reservation system. That is to say, each hotel system, though similar to other

hotels, has different data, room types, et cetera. Also, each hotel "looks" at a different data set.

Consequently, the load is distributed amongst the different hotel systems, and performance and

14concurrency are not major concerns

As mentioned earlier, each individual hotel system is similar to the system depicted in

figure 4.1. The different hotel operators and points of entry connect to its central system.

However, because hotel systems are not bombarded with nearly as many transactions as typical

airline reservation systems, performance requirements are much easier to meet. Also, because of

Different Hotel Reservation Systems

Central

System

Figure 4.5 Large Hotel Reservation System

the costly hardware in place at the different hotel reservation systems as well as the numerous

entry points in each individual system, hotel reservation systems do not have to address the issue

of connectivity. Connectivity is something they have control over, unlike in the case in the ORS.

14 Pegasus Systems, Inc. Immediate Release for October 6, 1997.

30

4.1.4 Ticket Master Systems (TMS)

Tickets in the sports and entertainment industries can often be purchased via the Internet

and over the phone. Businesses that offer this service generally charge the customer an extra

surcharge for the service. Tickets are then collected from automatic dispensing units at the

venue or from a person at a special pickup/reservation counter.

An

P Ticket Master Agent

Central Component

Web Either

Browser -Machine or
SPerson gives

_________________ticket

Figure 4.6 A General Ticket Master System Schematic

Figure 4.6 shows the general layout of a Ticket Master System. Like a restaurant

reservation system, there are multiple ways in which a ticket can be booked: over the Internet,

via telephone, and by physically going to an agent. These are different points of entry. Because

there is more than one point of entry, TMS's must be designed so that they can handle

concurrency issues during the reservation process. Two customers should never be assigned to

the same seat. Similarly, in a restaurant, two customers should never be assigned to the same

table in overlapping time intervals.

It can also be observed from the figure, that there are multiple ways in which a ticket

(reservation record) can be retrieved. One must be careful while analyzing the system. Ticket

retrieval is not entirely analogous to a schedule lookup - there is a subtle, yet very important

31

distinction. When retrieving a schedule, handling concurrency is not important. A schedule is a

transitory state of the system at any particular time. However, during ticket retrieval,

concurrency is important. It is possible that a person might attempt to retrieve two tickets with

the same reservation from two different machines at the same time. Due to possible race

conditions, that can occur if concurrency is not handled. This may sound like an unlikely

situation, but race conditions can create havoc from time to time.

4.1.5 .COM Reservation Portals

Sabre and Microsoft have created successful reservation portals www. eravelociov. com

and www. eKpeciia. com respectively. According to Forrester Research, over 24 million US

households research trips and Travelocity and Expedia are well positioned to capture large shares

of this growing market. Expedia and Travelocity allow the user to reserve flights, hotels, cars,

and cruises.

Expedia and Travelocity provide an excellent way of making reservation via the Internet.

This also allows the consumer to view other material before making his/her decision. Expedia

and Travelocity. They serve as an interface to larger reservation systems; for example,

Travelocity connects to the SABRE computer system for airline reservations.

Even though Expedia and Travelocity offer excellent services, they are limited to larger

companies who have reservation systems in place. Customers are not able to make reservations

at smaller businesses such as small motels and local restaurants. The ORS is an affordable

reservation system for restaurant owners that allows customers to make reservations over the

Internet through a similar portal.

32

4.2 Other Relevant Systems and Technology

Besides looking at existing reservation systems, it is important to analyze other computer

systems, solutions and technologies with properties that are desirable in the Online Reservation

System at discussion. Different computer systems exhibit different properties. By observing

specific properties, different design features can be modified and reused in the ORS.

4.2.1 Cisco DistributedDirector

Cisco Systems Inc. specializes in network solutions. They provide many different

products and services, such as routers, switches, telephony, et cetera, to large and small

businesses. They also specialize in load-balancing and distribution solutions.

Cisco Systems DistributedDirector software is a software that provides scalable Internet

traffic load distribution between dispersed servers. The design of this sofware is useful in

developing the restaurant distributed system.

Figure 4.7 below shows how a Cisco DistributedDirector helps balance Internet traffic

load across multiple servers. Suppose A, B, and C are identical websites located at different

geographical location (different IP addresses) that map to www.companyxyz.com. In the

scenario depicted by figure 4.7, the Cisco DistrubedDirector 5 accepts HTTP connections for

www.companyxyz.com. Then, after figuring out which servers map to the domain name (A, B,

C in this case), it finds the "best server" at that particular time for that particular client, in this

case server C. It then sends the HTTP status code "302 Temporarily Moved" with the new URL

for the "best" server to the client. The user is then transparently connected to the web server

specified by this URL.

33

Cisco
Distributed- _ Web

A Director Browser
(Net/IE)

B

C

Figure 4.7 Cisco DistributedDirector - HTTP Redirect Mode

In a distributed N-client restaurant reservation system, a similar component is needed to

"push" the reservation request to the appropriate restaurant system. However, the layout and

functionality of the server is different. In the case of the restaurant reservation system, the

browser does not connect to the central server directly. Instead, a connection object spawned by

the web server, discussed later in the paper, pushes the request to the "central server", which in

turn pushes it to the appropriate client system.

4.2.2 Server-side Scripting

Server-side scripting has become a common practice in Internet application development.

Almost all web developers use some sort of server-side scripting. CGI (Common Gateway

Interface) and Java servlets are examples of server-side scripting. A web browser invokes these

scripts by making an HTTP connection to a particular URL; the web browser is performing a

Remote Procedure Call (RPC). There are several advantages to server-side scripting and RPC.

" A description of the product can be found at http://www.cisco.com

34

WebB

The web server
processes a script WebB

depending on the
URL requested Web

Wserver

Web browsers make a
HTTP request to the web
server.

The web server returns a
response to the respective
web browser usually in the
form of HTML/JScript

Figure 4.8 Many-to-one Server-side Processing

One of the advantages is that any change that needs to be made only needs to be made at

one location. Suppose there was a bug in a program. If the program were located centrally, it

would simply have to be changed in one location. Another advantage of server-side processing

is that the software only has to be tested on one platform and one system. All possible scenarios

do not have to be tested. In the case of client-processing, different software must be created for

different platforms.

The central component
makes a reservation request
to the appropriate restaurant
system.

The reservation system
executes the request locally
and returns a response.

R,

R2

Central
Component

R,

Figure 4.9 One-to-many Server-side Processing (Restaurant System)

35

Along with its advantages, there are disadvantages of server-side execution. By executing

everything on the server-side, one can slow the system down significantly. This may hold true

for a web server, but fortunately, the reverse is true for the restaurant reservation system. As

discussed later in the paper, by pushing the request to another server, the system is less stressed.

This is because a funneling effect takes place. The central component pushes requests (performs

a RPC) to different restaurant systems as can been seen in figure 4.9. Therefore, unlike the

many-to-one scenario in the web server case, it is a one-to-many situation.

4.3 Current Restaurant Reservation Systems

Currently, most restaurants do not have an Internet presence and have no way for

customers to make reservations online. The few restaurants that do allow customers to make

reservations have limitations on their reservation system.

The most common implementation of a restaurant "reservation system" is a form of

email. Customers request a time slot at a particular restaurant and the information is emailed to a

group of centrally located individuals. They then contact the restaurant and attempt to make the

reservation for the customer. This is highly inefficient and does not address many of the

problems in the conventional reservation method. In this business model, the restaurant pays a

monthly fee and/or commission to the company that directs the reservations.

Another new and creative idea has been implemented to create specialized reservation

hardware for restaurants. Unfortunately, the company has been very discreet about their product

to prevent competitors from copying their technology. Hence, not much is known about their

36

system. However, because it is specialized hardware, making modifications and/or additions to

such a system would be a difficult task.

37

Chapter 5

The Design

As mentioned earlier, the ORS is a distributed N-client computer system. The computer

system consists of a central server and N-clients (the N-clients being the N restaurants).

The ORS is designed to fulfill all the objectives stated in the paper. The diagram below is

a high level view of the ORS computer system.

R,

Customer Central R2

--- -- --- A Component

RN R4 R3

Figure 5.1 N-Client Distributed System Rl,...,RN = Restaurants

5.1 Central Component

The central component consists of the web server, central server, and the central

database. It is responsible for handling the reservations made over the Internet.

38

The customer, using a browser such as Netscape or Internet Explorer, connects to the web

server. There, he posts a request to the web server, which in turn invokes a Java servlet. This

Java servlet is then responsible for handling the customer request. There are two main types of

customer requests

i) Simple Query

A RezzSys Simple Query (RSQ) simply queries the central database. This type of

request does not change the state of the data in any way, but merely returns particular

information depending on the query. Some examples of RSQs are querying for restaurant

information (static information on the type of restaurant, location, et cetera) and checking for

seating availability at a particular restaurant and time. These requests do not require any

interaction with the restaurant component, but require interaction with the central database (as

depicted by the dashed lines in Figure 5.2)

ii) Reservation Request

A RezzSys Reservation Request (RRR) is more complicated than a simple query. When

a customer wants to make a reservation over the web, the web server invokes a Java servlet,

which in turn, "talks" to the RezzSys Central Server (RCS). The servlet delegates responsibility

to the RCS which in turn delegates responsibility to the restaurant component.

39

Below is a schematic of the RezzSys Central Component (RCC).

Listens on
Port 80

Customer makes
a web request

JSP

enabled
web

server

Restaurant

Component

RezzSysD
Central
Server

Central
DB

JSP and Serviets

Figure 5.2 RezzSys Central Component (RCC)

5.1.1 Web Server and Serviets

The web server is responsible for making the web site available to the customers. It

allows the customers to access the web site and make reservations. They can also browse through

other information such as reviews, hot spots, et cetera. The actual web server used in the system

is irrelevant as long as it is multi-threaded and supports Java servlets. That is to say, it can

handle multiple requests at the same time.

Servlets serve as the request handlers of the web server. When a customer presses

"Submit" on the HTML form, the servlet is invoked by the web server and the input parameters

are passed to it. The servlet then does one of two things:

i) If the request is a RSQ, the servlet simply queries the central database making a database

connection and carrying out a SQL command.

40

ii) If the request is a RRR, the servlet makes a connection to the central server and asks it to

execute the reservation.

5.1.2 Central Database (RCDB)

The term "central database" is misleading as all the data does not lie on the same

machine. In fact, the central database is a distributed database across different servers, across

different physical machines. The reason for this distribution is to enhance performance; the

more processors each data component has, the faster the retrieval time.

The central database has several properties:

i) It is always connected to the Internet (this assumption is valid since ASPs (application

service providers) guarantee connectivity with a probability greater than 99%).

ii) The central database has general data on all the restaurants in the system. This includes

information such as type, geography, atmosphere, menu, et cetera. This information is

not replicated on the restaurant local databases.

iii) The RCDB contains, besides restaurant general information, reservation information

about each and every restaurant. This is to insure that if a hard disk failure were to occur,

a back-up copy would be available.

iv) The reservation information of each restaurant may or may not be identical to the

reservation information that can be found on the particular restaurant system. The

assumption is that the latest copy of data is on the restaurant side. For example, the local

database residing on restaurant A's system has the most up-to-date reservations and data.

Due to time lags and disconnectivity, it is possible that the restaurant A data on the

41

central database is not equal to the restaurant A data on restaurant A's local database at a

given time T.

The central database is a vital component of the Online Reservation System for a number

of reasons. Firstly, it provides a solution to the "hard disk crash" scenario possibility. Even

though each of the local restaurant systems has a copy of its own specific data, it is important to

have another copy present in case any of the restaurants experience a hard disk crash - something

that is intolerable in a real, business, practical environment. In case of a hard disk failure,

restaurants can call a centralized location for hard copies of their reservations. Eventually, when

the computer system is up and running at the restaurant, the data can be efficiently copied from

the central database to the restaurant local database by executing a program.

Secondly, the RCDB is important because it provides a compromised solution to the issue

of connectivity. Suppose, for instance, restaurant A is not connected to the Internet. That is, the

RCS does not have a record of restaurant A's IP address and port number. In this situation, if

there were not a second copy of the data available, the user would not be allowed to carry out

any requests. RSQ's, for example, would not be able to get carried out. By having the RCDB,

the servlets can simply query the RCDB. The reason why the RCDB is a compromised solution

and not a complete solution is because customers, even with the RCDB, cannot make or delete

reservations when the restaurant system is not connected to the Internet.

Even though there are two copies of data a reservation cannot be made over the web at

restaurant A when restaurant A's reservation system is not connected to the Internet. The reason

is quite clear. System A could have made and deleted reservations to its own local system (local

42

database) when the system was disconnected. Because the central server does not know what

reservations have been made and deleted, it cannot make any assumptions.

Besides data back-up and connectivity, the RCDB improves performance and allows

miscellaneous information to be stored that is not relevant to restaurants. Performance is

improved simply because the data transfer time is reduced. Because the servlets are running on a

machine close to the RCDB, the number of hops to and from the database is very low. If the web

server and the central database, for instance, resided on the same machine, then the number of

hops would be zero since the database call would be local. On the contrary, if RSQ's resulted in

querying specific restaurant databases, this would result, on average, in a greater number of hops

related to, but not entirely based on, the physical distance between the restaurant and the central

server. Also, not only is the mere number of hops a direct contributing factor to performance in

terms of "distance", but the greater the number of hops, the more likely the lower the data

transfer rate.

The central database holds a lot of crucial information. Some of the information it holds

is information specific to the central database and is not stored on the restaurant side. The table

that can only be found in the central database is the restaurants table.

create table restaurants (
rid number(9) not null primary key,
name varchar(50) not null,
contact _name varchar(60) not null,
email varchar(1 00),
address varchar(2000),
food-type varchar(20) check (food-type in ('italian', 'indian', 'chinese',

'thai', 'ethiopian', 'korean', 'american', 'malay', 'singaporean',
'french', 'afghani', 'japanese')),

pricerange varchar(20) check (class-type in ('low', 'middle', 'high')),
city varchar(30),
state varchar(30),

43

zipcode
country
location
size
atmosphere
starttime
endtime
interval
twopages
starttimel
endtimel
starttime2
endtime2
duration1
duration2
smoking
reserve

varchar(1 0),
varchar(30),
varchar(50),
varchar(10) check (size in ('small', 'medium', 'large')),
varchar(50),
varchar(1 0),
varchar(1 0),
varchar(1 0),
char(1) check (twopages in ('y', 'n')),
varchar(1 0),
varchar(1 0),
varchar(1 0),
varchar(1 0),
varchar(1 0),
varchar(1 0),
char(1) check (smoking in ('y', 'n')),
char(1) check (reserve in ('y', 'n'))

SQL Statement to create the "restaurants" table

5.1.3 Central Server

The central server is a multi-threaded server that is a very important component of the

entire online reservation system. It is responsible for load balancing, making remote procedure

calls (RPC) to the different restaurant systems, and making updates to the central database.

The components that the central server must interact with are the servlets. The servlets

forward the reservation web requests to the central server. The RezzSys central server (RCS)

carries out these requests by asking the restaurant system to "make the reservation" and check

whether the restaurant reservation can be made. Once the restaurant reservation system confirms

or rejects the reservation, the RCS returns a commit/rejection to the servlet.

In order for the RCS to make remote procedure calls to the restaurant system, it must be

aware of which restaurant systems are up and which systems are down. It also must be aware of

44

which IP address the system is running on and what port the system is "listening" on. The RCS

stores the restaurant IDs and their corresponding IP address and port in a table in memory.

Figure 5.4 IP Client Hashtable used by Central Server

Processes 1-3 below describe how the RCS keeps the table of restaurant ID's and

connection information up-to-date.

Process I
while (true)

for i = 1 to table.size
Open connection to table[i].IP, table[i].port
if connection cannot be established

Deletefrom table(table[l].restlD)
else

Ask if system is up and running properly
Wait until message received or timeout
If message received != "ok"

Deletefromtable(table[l].restD)
end for loop
sleep(1 00)

end while

Process 2
while (true)

wait for an outside connection
when an outside connection is made spawn Process_3(connection)

end while

45

Rest ID IP, port
10 12.32.13.199

Process 3(connection)
add(connection.id, connection.ip, connection.port) to table
send acknowledgement back to restaurant

"Single Point of Reservation"

As mentioned earlier, the RCS is also responsible for making remote procedure calls to

the restaurant system; it makes reservations by invoking methods on the restaurant side. The

RCS can only return a confirmation back to the servlet when the restaurant system "checks and

adds" the reservation. Processes 4 and 5 below describe how the RCS accomplishes this task.

Process 4
while (true)

wait for a serviet to make a connection
when a servlet makes a connection spawn Process_5(connection)

end while

Process 5(connection)
If table.get_ IP_Port(connection. rid) exists

Open a connection2 to table[connection.rid].IP, table[connection.rid].port
Pass connection.request to connect2
Wait for response from connection2

If con nection2.response = "ok"
Return "ok" to connection (servlet)

Else return "notok" to connection (servlet)
Else return "system not up" to connection (servlet)

Pushing the responsibility of checking and making a reservation to the restaurant side is a

very important design feature. One could have designed the system such that the RCS updated

the central database and then pushed the information to the client side. Another approach would

have been to have the RCS update the restaurant side database directly without having to go

through the restaurant system. However, both those approaches can have bad side effects.

46

The approach taken in the design of the Online Reservation System ensures that there is

only one point of reservation; only the restaurant side makes the decision of reservation. Having

only one point of reservation has numerous advantages. Synchronization becomes significantly

easier and system performance is enhanced.

Local DB

% dates

Central DB

Figure 5.5 More than One "Point of Reservation"

Figure 5.5 shows what problems would arise if there was not a single point of

reservation. The above scenario depicts what would happen if a person A tried to make a

reservation from the web while a person B was calling the restaurant to make a reservation. The

diagram assumes that only person is making a reservation via the Web at any given time.

In order for a reservation to be made, there are two steps that need to be performed:

i) Check whether the reservation can be made

ii) Make the reservation

47

Now, assume person A makes a reservation for a particular table, say 10, from 1pm -

2pm. Now assume that person B is making the same exact reservation except he is physically

calling the restaurant. In the case of person A, the central server checks to see whether the

reservation can be made. Assume that the table is available at that particular time. So, the

central server adds the reservation record to the database. However, before the local database on

the restaurant side is updated, person B's reservation was also checked and updated. Now, there

exist two identical reservations for the same table. This is a constraint violation.

7

/7 /
Local DB

Central DB

Figure 5.6 Single Point of Reservation

In figure 5.6, however, by having one "point of reservation" the problem is eliminated.

When person A makes a reservation over the web, since there is only one point of reservation,

there is no conflict.

48

5.2 Restaurant Component

The restaurant component consists of a restaurant local server, local database, and the

stand-alone application that runs on a computer in the restaurant. In fact, all the software

components reside on a computer in the restaurant. The stand-alone application can be further

broken down to the graphical user interface (GUI) and the "back-end system". The back-end

system is composed of a system driver and other software objects.

RGUI Local rezzSys

Local DB

Central
Component

Server

Figure 5.7 Restaurant Component

5.2.1 RezzSys Graphical User Interface (RGUI)

The graphical user interface is very important. It should be user-friendly and easy to use.

The maitre d' should be able to manually enter reservations. He/she should be able to choose the

actual physical table he wants for a reservation. For instance, if Joe Bloggs calls the restaurants

and asks to be seated at a particular table, say table 10 without loss of generality, then the maitre

d' should be able to choose table 10 and a particular time slot and make a reservation. At the

49

same time, the maitre d' should be able to see what tables are available at a particular time and

date very easily and readily since the time on the phone with a particular customer is limited.

Besides allowing the maitre d' to enter reservations into the system manually, he/she

should be able to do a "Quick Enter". That is to say, enter a reservation without having to look

for an open table and/or finding an open time slot. The quick enter option should simply take in

the customer phone number, date, time, and the table number (optional) to make a reservation.

This makes the work of a maitre d' significantly easy, especially if the reservation that is needed

to be made is on a different day - for example, two weeks in advance. It saves him the time and

trouble of switching days ("jumping" to another date). Other important GUI features include

ease of canceling reservations and changing reservations. Also, it should be easy for the maitre d'

to pull up a customer profile of a customer, and enter customer information in an easy manner.

Even though the restaurant system comes with a standard RGUI, it is simply the skeleton

and can be modified to suit the needs of the particular restaurant. This can be accomplished

because the RGUI is entirely separate from the back-end. Currently, the RGUI adjusts itself to

specific restaurant needs by reading a configuration file on run time. The configuration file has

all the start-up information for the particular client. This allows for a general purpose RGUI to

be built for all the restaurants. The configuration file has the following information:

- The time difference between reservation times.
- The time the restaurant open.
- The time the restaurant closes.
- The approximate time that a table gets occupied for.
- The port the central server (RCS) is running on.
- The host the RCS is at.
- The name of the logfile.
- The local database driver
- Restaurant ID
- Whether or not there are two pages or one page (a split screen)

50

------- --------------............... -... :- - . - -x- -: *f -:- -, - . -,.................... ----- - - : , :
.... - - I XX -- 0............ 1-,.-.-.-.-.-X % % -------- -- -

........... -
......................

... I ---- --------------....................... _7 F j 1- -- .. :.:...
--- ------------------------------ i --- ---- --- ---------------------- ----- -------- -- --%

..................... I % g ..-.......... X :
........

...
....

.

..........

......
..:kw :"

-- -------------

------- ----- -
.;6 , Ne X.-K x, X", -N, ------------- IX OF x ---- --- --- ------ -vF X,.......X,: -------------

.........................%%%%%.%- -". ", % X", %"X * M -------------------------
--- ---- ---- %X j X-%XX XX I -..'M W W I .:. - : ..

. i i
........... xx,.. % % :. :- X. X'..., .. * - -.... -I

M.................... ..

Figure 5.8 RezzSys Graphical User Interface (RGUI)

The rows represent the different reservation records on a particular day (the day is

displayed at the top of the frame). A maitre d' can manually add a reservation record by simply

right clicking on the mouse and choosing the add reservation option. This will add a reservation

to the database (if there is no conflict) and will visually add it to the table.

Conceivably, the RGUI could be more flexible (more configurable) and the RGUI can

itself be customized. The basic RGUI can be seen in figure 5.8

As can be seen in figure 5.8, the RGUI is intuitive and easy to use. In this particular

example, there are two pages: one for the "morning" and one for the "evening". The particular

starting and ending times are specified in the configuration file described earlier.

51

The right hand side displays all the table information for the particular time slot

highlighted. It indicates which tables are open, which are booked, and what time unavailable

tables will free up. This makes it very convenient for the maitre d' to find out what tables are

available and which ones are not while talking on the phone with a customer.

The maitre d' can also add a reservation for a different day by simply clicking on the

"Quick Enter" (QE) button located at the top. By clicking on the QE button, another frame pops

up. The maitre d' can then enter any date, customer information, and the relevant reservation

information. He has the option to specify a table but it is not necessary.

The maitre d' can also jump to any day. He simply has to enter in the day for which he

would like to see reservations for and press on the "Go" button for the Quick Jump. This

changes the view and loads the relevant reservation information for that day.

The RGUI, besides allowing the maitre d' to enter reservations easily, also visually

informs the maitre d' when a reservation has been made over the web. If a person makes a

reservation for the same day that the RGUI is displaying (i.e. if the maitre d' is viewing the

reservations for the 4 th of January, and a person makes a reservation for the 4 th of January), then

a reservation record is added automatically to the RGUI and a small white message pops up in

the top left hand corner that the maitre d' can click away. If someone makes a reservation for a

different date, a record is not visually added to the GUI and only the message pops up.

5.2.2 The Back-End System

The back-end system consists of all the software components on the client system except

for the GUI. It consists of a local server, a local database, a system driver, and other key

software components.

52

The Local Server

The local server is a multi-threaded server that is spawned as a separate process when the

stand-alone application is initialized. It is responsible for listening to requests made by the

central server on the web server side. One of its primary responsibilities is to carry out requests

pushed by the central server. The local server is one of the components that allows for Remote

Procedure Calls (RPC) to be carried out.

The local server simply listens on a particular port (1976 for example) and waits for a

connection to be made by the central server. When a connection is established, it spawns off a

separate thread - a connection object. The connection object then engages in a dialogue with the

RCS, using a predetermined protocol.

carry out request(Connection)
result = makeReservation(Connection.CustomerName, Connection.Time,

Connection.Table(Optional))
if result = true

return to Connection "Success"
else

return to Connection "False"

Local Server listens for a connection and then carries out request.

However, as mentioned earlier, reservations are made through only one point of access -

the restaurant system. This prevents concurrency issues that can arise from having two points of

reservation.

When the local server receives a reservation request, it calls reservations'

makeReservation method. reservations is a an object with static members and methods; all the

methods can be used without creating a reservations object; all the members of reservations are

shared. Because the local server is a process that the RezzSys launches, it runs in the same

53

environment as the entire system. That is to say, when the local server calls the reservations

object, it is in fact calling the same reservations object that exists in the RezzSys system. If a

reservation is successfully made, then the makeReservation method returns "true", otherwise it

returns "false".

Besides carrying out reservation requests, other important but less complicated tasks that

the local server performs is sending an acknowledgement to the central server. As mentioned

earlier, the central server routinely checks to see whether the restaurant system is up and

connected. Consequently, it is the responsibility of the local server to return an

acknowledgement every time the central server checks to see if it is alive.

RCS If 2 = alive?
1 = ack

If 2 = make/delete
reservation

Local Push request to 3
Server__3_Return 1 = 4

Reservations

Figure 5.9 Acknowledgement Process

The Local Database

The local database stores all the reservation information for the restaurant. This

information, besides being present on the local database side, is also present in the central

database. The words in square brackets represent the prefix of the table name on the central

database side.

54

create table [restaurantid]restauranttables (
tablenumber varchar(4) not null primary key,
capacity varchar(4) not null,
fuzzy char(1) check (fuzzy in ('y', 'n')),
fillrank number(2),
reservable char(1) not null,
smoking char(1) not null

SQL Statement to create the "restauranttables" table

Each record in the table restauranttables represents a physical table in the restaurant.

This table is restaurant dependent and is directly related to the physical environment of the

restaurant. The table is set on initial installation of the system on the restaurant side and is

changed only if a new table is added or if a table property changes. Each table (record) has the

following properties:

i) Table Number

Each physical table has a table number. This is true of practically all restaurants. This is the

number of the table on their seating chart, for example.

ii) Capacity

This can simply be described as the number of "predetermined chairs at the table"; the

number of people that can be seated at the table.

iii) Can the table be crowded? (fuzzy)

This is an interesting, not so obvious field. It is a binary field that can either hold the value

yes or no. What this value indicates is whether the table can be "crowded"; whether an extra

chair can be added without discomfort.

iv)The Fill Rank Order (fillrank)

55

This is a field that is used in the reservation algorithm discussed later in the paper. It is a

value set by the owner, manager, or maitre d' of the restaurant to signify the order in which

he/she prefers the tables to be reserved.

v) Reservable? (reservable)

This is another boolean variable that is either "yes" or "no". It indicated whether the system

can reserve the table automatically or not. If the reservable variable equals "yes", then the

system can reserve the table for a customer assuming all the reservation criteria is met (discussed

in depth later in the paper). If the value is "no", however, the table can only be reserved

manually; the maitre d' can only reserve the table on the client side application. This is an

important feature since many times restaurants have VIP tables that should not be assigned by

the system.

vi)Smoking? (smoking)

Another binary variable that indicates whether the table is in the smoking section.

create table [restaurantidj]reservations (
cid number(9) not null references customers,
starttime date not null,
endtime date not null,
people varchar(4),
smoking char(1) check (smoking in ('y', 'n')),
tablenumber varchar(4) references [restaurantid_]restauranttables,
misc varchar(2000)

SQL Statement to create the "reservations" table

Each record in the reservations table represents a reservation of a table; Joe Bloggs

reservation from 1 to 2:30pm on the 31st of December for example. Each record consists of the

following fields:

56

i) Customer ID (cid)

Customer ID holds the "id" of the customer. It is basically a reference to the customer in the

customers table.

ii) Start Time (start-time)

Start time is the time (actually, it is stored as a time and date) the reservation starts from.

iii) End Time (end-time)

End time is the time the reservation ends at.

iv) People (people)

People is the number of people the reservation is made for.

v) Smoking (smoking)

Smoking is a boolean value that can only take on values yes and no. This is important since

many times customers have strong smoking preferences.

vi) Table Number (table-number)

This is the table number that the reservation is for. Most restaurants have physical table

numbers for each table in the restaurant.

vii) Miscellaneous (misc)

This is any information about the particular reservation; for instance, a customer may want a

special wine at dinner or may want flowers at the table.

create table [restaurantid_]customers (
cid number(9) not null primary key,
fname varchar(30) not null,
Iname varchar(30) not null,
email varchar(1 00),
phone varchar(25),
smoking char(1) check (smoking in ('y', 'n')),
misc varchar(2000)

SQL Statement to create the "customers" table

57

Lastly, the local database holds a customer table. This contains the customer information

where each record represents a customer. This table is configurable by the restaurant; a

restaurant can choose to have customized fields. Different restaurants may want to have

different fields; just like different websites have different user registration information that they

profile. The most basic fields that the customer table has, which is common to all restaurants,

are customer id (cid), first name (fname), last name (lname), email address (email), phone

number (phone), smoking (smoking), and miscellaneous information about the customer (misc).

Local Reservation System (RezzSys)

The local reservation system (RezzSys) is the software that runs on the client machine. It

drives the RGUI, communicates with the local database, spawns a local server, and is responsible

for everything from scheduling to updating the data. The RezzSys is also responsible for

connecting with the central server. On startup, RezzSys registers with the central server. It

makes a socket connection to the central server port (specified in the configuration file - central

server IP and port). After making a connection, the RezzSys registers its IP address, the port that

its local server is running on, and its unique restaurant id. For example, if the restaurant machine

IP address is 12.34.202.3, and its local server is running on port 1942, and the central server

resides at server.mit.edu on port 1977, RezzSys would connect to the central server at

server.mit.edu on port 1977 and transmit:

IP :12.34.202.3
Port :1942
RID :77
(or whatever the restaurant id is)

58

RezzSys is also responsible for all the scheduling, "getting" and "putting" of data, and

driving the RGUI. It is an object oriented design that interacts with different "objects". These

"objects" either serve as static interfaces or as actual objects residing in memory.

The RezzSys is a modular computer software system which is composed of many

software components. At the initialization stage, the RezzSys launches two main objects : the

RGUI and the local server. It also instantiates key software components namely the

"reservations" and "tables" objects. The reservations interface basically takes care of all the

reservations. It contains different methods for making reservations, deleting reservations,

changing reservations, et cetera. The reservations and tables modules in turn use the rezzDB

module that handles the physical puts and gets. rezzDB allows updates and retrievals from the

local database. One can think of it as an "interface" that handles the database transactions.

"Tables" Object (TO)

The tables object is a singleton object. This means that only one instance of the object

can exist in memory; two "tables" object can never exist in the same environment. The specifics

of the implementation are discussed later in the paper. The TO is crucial for the RezzSys, and in

fact, is a form of cache: table cache. The information contained in the TO is the latest

information for that day; it is the most up-to-date information. Consequently, it is used

extensively by the reservations object to enhance performance.

The TO stores the information about the state of the tables for a particular day. It uses

the rezzDB interface to get the initial table information from the local database. After it captures

all the table information, it sets each of its state depending on the day and the reservations of that

day; it uses rezzDB to get all the reservations, and sets the state of the table accordingly.

59

In order to improve performance, the table information is stored in a particular way; it is

stored according to the capacity of the table. This allows the system to identify which tables

satisfy the capacity constraint. Not only are the tables stored according to capacity, but the tables

within each capacity group are also sorted according to its fillrank. This facilitates the

reservation algorithm discussed later.
Each "box" here represents a time slot (15
minutes for example) from start time to end time.

FillRank If the slot is taken, it's filled with the customer id.
TableNumber Otherwise it's filled with "0",
Capacity
Smoking
Fuzzy
Reservable
resInfo - - -

Capacity T5 T2 T

Capacity T4

Capacity T6 T3

Figure 5.10 Tables Memory Datastructure

Initialization of data structures

AllTables = getAllTables from rezzDB (getAllTables gets all the tables sorted by
fillRank)
AllReservations = getAllReservations from rezzDB for a particular day
for i = 1 to AllTables.length

60

put AllTables[l] in the "capacity row" = AlITables[l].capacity

for j = 1 to AllReservations.length
table = getTable corresponding to AllReservations[j].tableNumber
for k = AllReservations[j].starttime to AllReservations[j].endtime

table. resi nfo[k] = AllReservations[j].cid

"Reservations" Object (RO)

The reservations object, as mentioned earlier, is a static object that handles all the

reservations. Not only is it important for the functions it permits, but also because it caches

customer and reservation information. It stores, in memory, the customer profile information,

reservation information for a particular day, and "the day".

Memory

The customer profile information is stored in memory as a table where the customer id is

the key, and the customer record is the value. The customer profile information is loaded on

rezzSys initialization. The "reservations" object loads all the relevant information from the

database using the rezzDB interface (which is described later in this paper).

Figure 5.11 Customer Hashtable

61

Customer ID Customer Rec Fname
Lname
Email
Phone
Misc

The above memory object changes when a new customer is added, in which case a new

entry is added to the table in memory, or a customer profile is changed.

The reservations object, besides containing the customer table, also contains all the

reservations on a particular day. The "day" depends on what the state of the system is at; for

example, in the RGUI one can jump to a particular day. That maps directly to the date stored in

the reservations object. The reservations stored in memory are the reservations for this particular

date. It is this data structure that governs the viewable data on the RGUI.

cid
starttime
endtime
smoking
misc
tablenumber

............................p eop le

Figure 5.12 Reservations Datastructure

As mentioned earlier, the RO provides a rich set of static methods that are essential to the

system. It provides a higher-level interface to make reservations, delete reservations, and change

reservations. By calling a reservation method, the memory, as well as the physical data on the

database, are changed. The method that will be discussed in this paper in detail is the

makeReservation method.

62

MakeReservation method

The makeReservation method takes as input a reservationRecord. It then uses the

algorithm described below.

Reservation Algorithm

Here is a simplified description of the algorithm used by the system:

Reservation Algorithm
Take in reservation record r.
get all the tables that satisfy the criteria
sort all these tables according to the fillrank (predetermined by the owner, manager, or
maitre d' - described in the table restauranttables on the local database)
choose the first table in this set, and make the reservation (change the state and update
the data)
if the reservation date is the same as the date the system is on, then make the change
to memory as well.

All tables that satisfy "the criteria" means, all tables that meet the following requirements:

checkCriteria(table, r)
table.smoking = r.smoking
table.capacity = r.people OR (table.capacity = r.people - 1 AND table.fuzzy = true)
table.sched ule[r.starttime] to table.schedule[r.endtime] = false (table is unoccupied

for the time period required for the reservation)

One of the key properties of the makeReservation method of the RO is that it only allows

one thread to execute the method at any given time. This prevents issues of concurrency to

occur. As described earlier, there is only one point of reservation. However, even one point of

reservation can lead to undesirable concurrency issues. In the general case, many threads will be

trying to make reservations at the same time; either through the Internet or the restaurant side. In

both cases, the make reservation method of the RO is called.

63

Consider the following scenario. Suppose rl and r2 have conflicting reservation

information. i.e. rL.tableNumber = r2.tableNumber and the rl's reservation timeslot overlaps

with r2's reservation timeslot.

Thread 1 Thread 2
ti Execute RO.makeReservation(rl)
t2 Execute RO.makeReservation(r2)
t3 Find tables that fit criteria
t4 find tables that fit criteria
t5 Tablel= choose first table
t6 table2 = choose first table
(note that tablel points to the same object that table2 points to)
t7 Change state of tablel
t8 change state of table2
Figure 5.13 Race Conditions Table

Notice how Thread 2 has overridden partially or fully the reservation Thread 1 made.

This is extremely undesirable. This problem is solved by using semaphors. Thread 1 locks the

makeReservation method of RO, thereby preventing Thread 2 to access the method. This

ensures that all necessary complete changes are made to memory before any other process

attempts to make a reservation. At first, this locking may seem like a bottleneck to performance,

but as discussed later, performance is hardly affected by locking the method.

Choice of Algorithm

There does not exist an algorithm that can optimally choose the correct table. This is

because the system does not know all the future reservations. This makes reserving tables a

difficult task.

All the algorithms to make reservations must have the following step in common:

64

Find all tables that fit the reservation criteria.

Call this set of tables set T. Now, the table chosen from this set T is what differentiates

different algorithms. For any algorithm A, and adversary can come up with a set of reservations

R such that R cannot be entirely satisfied using algorithm A, but can be satisfied using another

algorithm A2:

V Ai, -3 R and Aj s.t. A cannot schedule R but Aj can.

[R = {ri, r2, r3, .. , rk} where r, is a reservation and reservation r,.- arrives before r,]

Advantages of the FillRank Algorithm

By using the FillRank algorithm and choosing the tables in a predetermined order, the

maitre d' can try to force all the tables of a particular physical area to get filled up first before

another area is open. Consider a restaurant with two floors - a first floor and second floor where

the kitchen is located on the first floor. It is in the restaurant's best interest to have as little

seatings on the second floor and maximize the number of seatings on the first floor. This makes

service easier and faster. In this case, the restaurant would rank all the tables on the first floor

with high numbers and all the tables on the second floor with lower numbers. Within first and

second floors, the restaurant may rank the seats next to the windows higher so customers get a

better view.

rezzDB

The rezzDB is an object with static methods and no data members. That is to say,

rezzDB does not have to be instantiated to use its methods. The rezzDB's primary responsibility

65

is to put data into the database and get data from the database when needed. The rezzDB also

returns a commit (yes or no) if and only if there exist two copies of the data.

The only objects that use the rezzDB interface are the TO and the RO.

TO RO

GetRes
getTables makeRes

GetCustomers

putCustomer

rezzDB

Figure 5.14 Interaction of rezzDB with TO and RO

Reservation
Record

Local DB

Log File

Figure 5.15 Interaction of rezzDB with Local Database

66

rezzDB.put

In the above diagram it is clear how the rezzDB puts the information to the local database

as well as on a log file. Because the RO makeReservation method is locked and it is the only

method that invokes the rezzDB "put" methods, the rezzDB "put" methods are also locked; only

one process can make changes to the database at any one point in time.

The rezzDB writes to the local database for obvious reasons. However, the question

arises why the rezzDB writes to the log file (please note that even when a deletion is made, this

command is written to the log file). It writes to the log file as a record of what needs to be done

to the central database. In fact, the put methods could write to the central database directly, but

that would slow down the performance; it would have to check whether or not the system is

connected to the Internet, make a connection to the central database or central server, and then

make a transaction. All this would take too long and the thread waiting for the commit (yes or

no) would have to wait an unnecessarily long time. Instead, by writing to the log file, another

process can continuously flush the contents of the log file to the central server in the background.

This improves performance and ensures that the central database is updated.

The process that flushes the log file to the central database is simply:

Log Flushing

Reads entries (commands) from the log file
Opens a connection to the central server
Pushes the commands to the central server to carry out

67

Chapter 6

End-To-End System - Putting Everything Together

This section describes the entire Online Reservation System from end-to-end. As

mentioned earlier, there are two ways a reservation can be made: over the phone and via the

Web.

6.1 Scenario 1 - The Customer makes a reservation over the telephone

When a customer makes a reservation over the telephone, a number of steps take place.

The very first step that the maitre d' takes after receiving the call is either i) jumping to the day

of interest or ii) performing a quick enter (QE)

6.1.1 Jumping to the Day of Interest

If the customer wants to make a reservation on a particular date D, the maitre d' can go to

date D and make the reservation manually. The following events take place when jumping to a

particular date to make a reservation:

i) The reservations and tables object get loaded with all the reservation and table

information for that particular date (the cache gets preloaded into memory). The reason

why the entire cache gets loaded with the information for that particular date is because

the maitre d' is likely to perform several operations on that particular date.

ii) The RGUI is visually updated to show the appropriate information of date D.

iii) The maitre d', after jumping to the day of interest, can either manually enter a reservation

or do a quick enter. In terms of performance and operations, they are virtually the same

68

since the system performs the same set of actions for a reservation made on the system

(RGUI) date.

iv) After the maitre d' enters the relevant reservation information, the system checks its

memory to see whether the reservation can be made - the system does not need to check

the database for availability since there is zero probability that the memory is stale (i.e.

has information that is not necessarily up-to-date). [As mentioned earlier, the method

that checks for availability and makes the reservation is synchronized so that only one

thread can execute that method at any given time.]

v) If the reservation can be made, the memory is updated and then the database is updated.

One could argue that the database does not need to be updated at this time, and the

memory can simply be flushed when the date is changed. If the system never abruptly

shut off, this would be a reasonable course of action. However, if the system did abruptly

shut off, then all the reservation information in memory would be lost.

vi) After the local memory and database are updated, a request is made to the central server

to make an update on the central database. If the central server is down, the transaction is

logged in a local file and is pushed across when a connection can be established with the

central server.

vii) The reservation is visually displayed on the RGUI.

6.1.2 Quick Enter (QE)

Occasionally, a customer will want to make a reservation on an unusual date; for

example, a year from the current date. In these cases, the maitre d' will make a QE reservation

69

since "jumping" to the date will result in an unnecessary overhead (loading the reservations and

tables objects). A QE reservation involves the following steps:

i) The system checks to see whether the reservation can be made, by checking the local

database. (Note: it does not check the memory since the memory does not have the

relevant information.)

ii) If the reservation can be made, the reservation record is added to the local and central

databases. However, there is no visual change.

6.2 Scenario 2 - The Customer makes a reservation over the Internet

When a customer makes a reservation over the web, the steps involved are similar to

those described in Scenario 1. Since the reservation request is pushed to the restaurant system, it

uses the same steps described above.

When a reservation is made over the web, the servlet pushes the reservation request to the

central server. Then, the central server checks to see if the restaurant of interest is online. If it is,

then it simply opens a connection to the restaurant, pushes the request, and waits for a response

to display to the user. If the restaurant is offline, the servlet will not allow the customer to make

a reservation.

70

Chapter 7

Implementation

This section discusses some implementation specifics of the Online Reservation System.

In particular, it discusses the choice of the programming language (Java), synchronization, multi-

threaded programming, singleton objects, and caching.

The implementation of the beta version of the Online Reservation System is in Java. The

client application, the servers, and the GUI are programmed using Java. There are several

reasons for choosing Java as the programming language of implementation:

i) Platform Independence

Platform independence is key in the choice of Java as the programming language. The

client side can choose any platform that they are comfortable with. This is important

from a business point of view; for example customer A might be more comfortable with a

Macintosh, customer B might be more comfortable with Windows 95/NT platform, while

customer C might want a Linux box. By using Java, the platform does not matter and

thus development time is immensely reduced and the client can choose any operating

system they like.

ii) Object Oriented

Java is extremely object oriented in nature. Consequently, this works very well since the

ORS is a very modular design.

iii) Development Time

Java has many predefined libraries that make development quicker and easier. The

71

Java documentation available at http: //www. j ava. sun. com/products/1. 2/docs / IS

also extremely helpful.

The Web Server used is Sun's JSWDK version 1.0.1. This web server is used because it

supports Java Server Page (JSP) technology. JSP technology is an excellent choice of

technology for the implementation of the web server back-end. It allows for the separation of the

GUI development from the logic development. Besides separating the two tasks, it is also a good

choice because of its performance. Java Server Pages, like Active Server Pages, are executed on

the server side. A JSP-enabled web server compiles the .jsp pages into servlets thereby

improving performance dramatically the next time the page is hit. ASP, on the other hand, is

interpreted each and every time. Also, JSP has an advantage over standard CGI scripts because a

process is not necessarily forked on each request. If a servlet is resident in memory, then the

servlet is reused, saving initialization time and memory.

The central database used is Oracle 8.0.5. Ideally, Oracle 8.1.5 should be used since it

allows the distribution of the database, improving performance. Database access is obtained

using JDBC - Java database connectivity. This is a good choice of implementation because if

the "type" of database were to change, only another driver would need to be loaded and

everything else would remain the same. On the client side, the database used is Microsoft

Access.

As mentioned in this paper, concurrency issues are dealt with by locking the appropriate

methods and data objects such that only one thread is allowed to use it at a particular time. Java

facilitates synchronization; an object and/or method can be synchronized by using the Java

72

keyword synchronized. By utilizing this keyword, the Java Virtual Machine locks the

object/method, thereby ensuring that only one process uses it.

Java, because of its object oriented nature, allows the programmer to concentrate on the

design aspects and not worry about implementation details. By taking advantage of inheritance,

many software components can be reused easily and effectively. Multi-threaded objects, for

example, can be created using the Thread class in the java.lang package. Another case where

inheritance is used in the development of the system is in the creation of the rezzDate object.

import java.lang.*;

Class exampleprocess extends Thread
{

}
// extends is a Java keyword

class rezzDate extends rezzCalendar
{

}

In some cases, singleton objects are used in the system. The reservations object, for

example, is a singleton object. A singleton object is an object like any other object except for the

property that one and only one object can ever exist in the same environment; only one object

can be instantiated at any given time; only one object can exist. Singleton objects are powerful

in this respect and can serve as shared objects.

A singleton object is implemented by the use of a private constructor. In Java, all objects

must have at least one constructor. A singleton class, unlike most classes, has a private

73

constructor. This means that only methods of the class can execute the method; in turn, only a

method of the class can create a singleton object. Besides having a private constructor, a

singleton class contains a private pointer to the singleton object within itself. Another object can

retrieve the object by using a static method of the singleton class. This static method,

getInstance for example, first checks to see whether the private member is equal to null. If the

private member (pointer of the singleton type) is equal to null, then a new object is created and

returned to the object calling the method. Otherwise, the object is simply returned.

class reservations

private reservations r;
// other declared members

private reservations()

// private constructor method
}

public static reservations getinstance(

if (r == null)
r = new reservationsO;

return r;
}

}

Since performance is an important consideration of the system, the implementation of the

cache is important. The system's cache is implemented by using Vector and Hashtable objects

that are part of the java.lang package in the Java Development Kit (JDK). The Hashtable object

provides a O(1) method of looking up objects. By using the put and get methods of the

Hashtable object, different objects can be stored in memory. The Vector object is also a very

74

useful object to store different objects with. A Vector object can store different objects and can

be of any variable length. This is useful since using a standard array requires knowing the size

of the array beforehand. For a Vector, the size dynamically changes and does not have to be

specified at creation.

75

Chapter 8

Testing

8.1 Fictional Restaurant

In order to test the Online Reservation System, a fictional restaurant was created. This

hypothetical restaurant, based on a real restaurant, has two floors with a kitchen on the ground

floor. It consists entirely of two, three, and four person tables. The restaurant is open from 11am

- 10pm for lunch and dinner and has 1.5 hour reservation blocks. Also, a reservation can be

made every fifteen-minute block.

DK E WKey:

T
9nL8 Z5 C

H 2 person
table

U-7-

3 person

First Floor table

4 person
table

All tables are reservable and
STAIRS are non-smoking

Second Floor

Figure 8.1 Fictional Restaurant Floor Layout

76

The above floor plans are not drawn to scale and the numbers inside the rectangles denote

the ranking number and physical number of the particular table. The ranking order, as

mentioned earlier, tells the system in which order it should try to reserve the tables. In this case,

the ranking order is based on the distance of the table from the kitchen.

To test the system, software was written to emulate customers using the web to make

reservations. Each software agent ("customer") randomly chose a fifteen-minute time block

between 11am and 8:30pm and a random number between 1 and 5 inclusive. The number and

frequency of customers using the system followed a poisson distribution. A set of reservations

16was made via the Internet as well as manually for the same day . The actual state of the system

was compared to the expected state after each reservation attempt.

8.2 Results

The following are the reservations that were made in order and the results (W means web

request, and M stands for manual entry):

Time Number of People Type of Reservation Result
11:15pm 4 W OK
1:30pm 3 M OK
1:45pm 5 W OK
8:00pm 2 W OK
5:45pm 3 M OK
1:45pm 3 W OK
2:15pm 2 M OK
6:00pm 4 W OK
4:30pm 3 W OK
3:30pm 2 W OK
5:30pm 1 W OK
6:15pm 2 W OK

16 All the reservations were made for the same day so more boundary conditions could be encountered.

77

4:15pm 2 M OK
2:45pm 3 W OK
3:15pm 4 W OK
3:30pn 4 W OK
4:45pm 2 M OK
Local Restaurant disconnected
4:00pm 3 W OK
5:15pm 1 W OK
7:15pm 4 W OK
12:15pm 2 M OK
7:30pm 3 W OK
Figure 8.2 Test Result Table

Aggregate Results
Reservation requests: 185 (only 22 are shown above)
Successful requests: 185
Failed requests: 0
Average time taken for a web request: 3 seconds (not including the very first one)
Average time taken for a manual entry: 1.5 seconds

As can be observed from above, the system handled 185 requests successfully. The

average time taken is rounded to the nearest tenth second and, of course, is variable. In some

cases, the time was extremely short, in others it was slightly longer. The average time taken for

a Web request is also dependent on the location of the different software components. If all the

software components, for example, were scattered across the world, the average request time

would be higher. One can also assume that the average request time would decrease as the

number of processors and/or the speed of the processors increase.

78

Chapter 9

Performance

This section discusses caching and system performance of the ORS.

9.1 Caching

The system is very efficient because it caches data in memory. Upon starting the local

system, RezzSys loads all the data of the present day into memory. If the maitre d' decides to

visually jump to another day, the data of the new day is loaded in memory. This enhances

performance and prevents unnecessary database transactions that can be costly. Fortunately,

even if the maitre d' performs a quick insert - that is, attempts to insert a reservation on day B

when he is on day A - it does not update the memory. So, the maitre d' can continue to add

reservations to day A without having to flush the memory.

9.2 System Performance

The performance of the overall system can be assessed by making the following

assumptions:

" Let the number of restaurants be N.

" Distribution of central database - let P equal the number of machines/processors assigned to

the central database.

" The probability distribution function (pdf) for reservation inter-arrival times is negative

exponential with mean 1/k and the pdf for service times (duration of telephone

conversations) is negative exponential with mean 1 /t. Incoming customer reservation traffic

79

is equally distributed across all restaurants; arrival rate is equal to k= kT/N (total arrival rate

divided by the total number of restaurants)

* The pdf for service times (the time it takes to service a reservation request) is negative

exponential with mean 1/.

* The central server is on a fast enough machine to allow as many concurrent threads as

needed.

0 1 n

Figure 9.1 State Diagram

With the above assumptions, the ORS can be modeled as a M/M/1 type queuing system

with a first come first serve (FCFS) service and an infinite system capacity. In a MI/I type

queuing system, the expected wait time for an entry is equal to W = 1/(p - k)= 1/(p - 4N)

The average service time, 1/p, can be estimated by using the values for P and the speed of the

client processor (S). 1/[t is directly proportional to P and S; the greater the value of P and/or S,

the less the value of pt.

" Formula obtained from Urban Operations Research

80

From Chapter 8, we know that pt is equal to 0.444 and k is equal to .00 17 assuming there

18are an average of 50 reservation requests per day (8 hour booking block) . With these values,

the total time for a request to be executed is approximately equal to 2.26 seconds.

18 1 = /average mean time = 1/2.25 (2.25 is the average of 1.5 and 3)

81

Chapter 10

Extensions

The ORS can be extended in many different ways. Firstly, the reservation algorithm can

be modified so that it can handle more complicated situations. Currently, tables are assigned

only to requests that match the table capacity exactly (except for the tables with the fuzzy option

equal to true). This prevents large reservations from being made over the Internet. Suppose

there is a party of 10 that would like to make a reservation at a restaurant. The party would be

forced to make two or three separate reservations. A possible extension could be to have the

system make more than one reservation at adjacent tables if the number of people is larger than

the capacity of the largest table. This would allow tables to be joined together to accommodate

large groups.

Another possible extension is to put customers on a waiting list. This way, if a table

opens up, a customer is notified either through email or phone. Not only is this a useful feature

when the restaurant is fully booked, but it can also be important in the case where the restaurant

is not connected to the Internet. Currently, a customer can only make a reservation when the

restaurant is connected to the Internet. By incorporating the concept of a waiting list in the

product, a customer can be put on the waiting list if the restaurant is not connected to the

Internet.

Lastly, for this product to become a commercial product, other important, but not so

technical, features are required. A seating chart is one such example. Instead of the seat

information displayed on the right hand side, a graphical representation of the tables should be

available. Also, the maitre d' should also have the option of swapping reservations from one

82

table to another by simply clicking and dragging the mouse. This can prove to be very useful

and time saving to the maitre d' of the restaurant.

83

Chapter 11

Conclusion

The Online Reservation System described in this thesis document is an affordable real-

time reservation system for restaurants to extend their business to the Internet. It solves many of

the problems encountered by the customer and maitre d' during the conventional reservation

process, while accommodating the old reservation process. It is an efficient system that

successfully handles issues of connectivity, concurrency, and hard disk crashes.

The ORS addresses technical challenges and is also designed and implemented keeping

the business aspect in mind. The GUI is designed to assist the maitre d' in his/her daily work;

customer profiling is available so that the restaurant understands the customer's needs before

he/she arrives. Also, because the ORS is developed using off the shelf software and hardware, it

is easy to expand the system, making it an affordable solution for any small restaurant.

The ORS, because of its modularity, can feasibly be extended into a general online

reservation system for small client-driven businesses. With the design and implementation of a

proper grammar and language structure, constraints and algorithms can be created to describe

different businesses that lie on top of the described system architecture: restaurants, hotels,

airlines, boutiques, or any other client-driven business. The possibilities are limitless.

84

References

" Anon. Electronic Seat Reservation System, Process Control and Automation, April 1959

* Anon. How to Make a ReserVec Reservation, Between Ourselves (TCAL internal monthly
newsletter), March 1961

* Anon. What is Inventory Updating?, Between Ourselves (TCAL internal monthly
newsletter), March 1962

" C.J. Bashe et al. IBM's Early Computers, MIT Press, Cambridge, Mass., 1986.

* D.H. Collins. Wings Across Time, The Story of Air Canada, Griffin House, 1978

* Larson, Richard C. and Odoni, Amadeo R. Urban Operations Research, Prentice-Hall, NJ,
1981

* L.E. Richarson. The Electronic Reservations Systemfor Trans-Canada Air Lines, Proc.
Computing and Data Processing Society of Canada, Univ. of Toronto Press, Toronto, 1960

" R.F. Burkhardt. The Sabre System: A Presentation, October 1, 1964

" R.F. Meyer. American Airlines Sabre (A), Boston: Harvard Business School, Case No. EA-
C758, 1967

" W.R. Plugge and M.N. Perry. American Airlines 'Sabre 'Electronic Reservations System,
AFIPS Conf. Proc., Western Joint Computer Conf, 1961

* Cisco DistributedDirector Information from http://www._ 1 cc. coM

* General Internet usage figures from CyberAtlas, at http://www.internet.com, Inc.

* SABRE Information from http: //www. sab re. com

* Reservation systems case study from
http: //www. scit. wlv. ac. uk/cml9r95/cbr/cases/case06/FOUR. HTM

85

Bibliography

1. Anderson, Thomas E., High Speed Switch Scheduling for Local Area Networks, ACM
Transactions on Computer Systems, Computer Science Division, University of California,
Berkeley, 1992

2. Birrell, Andrew. An Introduction to Programming with Threads, Digital Equipment Corp,
Palo Alto, January 1989

3. Birrell, Andrew D., Nelson, Bruce J. Implementing Remote Procedure Calls, ACM
Transactions on Computer Systems, V.2 N. 1, Xerox Palo Alto Research Center, Palo Alto,
February 1984, pg. 39-59 February 1984, pg. 39-59.

4. Gifford, David; Spector, Alfred. The Cirrus Banking Network, Communications of the ACM,
August 1985 v. 28 n. 8

5. Gray, Jim. High Availability Computer Systems, Digital Equipment Corp; Siewiorek, Daniel P.
Carnegie Mellon University. Computer v. 24 n. 9, September 1991, pp. 39-48

6. Lampson, Butler. Hintsfor a Computer System Design, ACM Transactions on Computer
Systems, Xerox Palo Alto Research Center, Palo Alto, 1983, pg. 33-48.

7. Rosenblum, Mendel; Ousterhout, John K. The Design and Implementation of a Log-
Structured File System, ACM Transactions on Computer Systems, V. 10.
N. 1. February 1992. pp. 26-52

8. Saltzer, J.H. Topics in the Engineering of Computer Systems, Chapter 2: Objectives of an
information system, February 1985.

86

