
A Web-Based System for Media Sharing and

Collaborative Tools

by

Saksiri M Tanphaichitr

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2000

® Saksiri M Tanphaichitr, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document ENG

in whole or in part. MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIESAuthor
Department of Electrical Engineering and Computer Science

~May 22, 2000

Certified by......... . ..
Gloanna Davenport

Principal Research Scientist
MIT Media Laboratory, Interactive Cinema

-Thesis Supervisor

Accepted by............
Arthur C. Smith

Chairman, Department Committee on Graduate Students

A Web-Based System for Media Sharing and Collaborative

Tools

by

Saksiri M Tanphaichitr

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2000, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

The design and implementation of MediaExchange examines the design and imple-
mentation of server-side software to support media sharing and collaborative tools.
Enterprise Java Beans are used as a transactional, distributed, and object-relational
framework for creating these tools and services. Adaptation of the server-side Model-
View-Controller object-oriented paradigm for EJB is used as a basis for development.
EJB architectures that maximize performance and extensibility are investigated. A
complete suite of browser-based workflows is implemented, along with client libraries
for accessing the system at the application logic level. Examples of application inte-
gration with the system are also given.

Thesis Supervisor: Glorianna Davenport
Title: Principal Research Scientist
MIT Media Laboratory, Interactive Cinema

2

Contents

1 Introduction 8

1.1 Overview . 8

1.2 Motivations for MediaExchange . 9

1.3 Project goals and requirements . 9

1.3.1 Concurrency and Performance 10

1.3.2 Scalability . 10

1.3.3 Extensibility and Maintainability 10

2 Technologies 12

2.1 Application Servers . 13

2.2 The Enterprise Java Beans architecture 13

2.3 J2EE Technologies . 14

2.3.1 Entity Beans . 14

2.3.2 Session Beans . 15

2.3.3 Servlets and JSP . 16

2.4 Underlying technologies . 16

2.4.1 Distributed object technologies 16

2.4.2 Naming . 17

2.4.3 Transactional computing . 18

2.5 Using EJBs . 20

2.5.1 Remote interface . 21

2.5.2 Home interface . 21

2.5.3 Primary key class . 22

3

2.5.4 Tying services together with CORBA

2.6 IBM Websphere Application Server

3 Design Analysis

3.1 Analysis of a typical MVC architecture

3.2 Application of MVC to EJB .

3.3 Common EJB designs applied .

3.3.1 Session bean as a facade to entity beans

3.3.2 Business Interfaces .

3.3.3 State objects .

3.4 Access to MediaExchange .

3.4.1 CORBA/RMI-IIOP access to session beans

3.4.2 HTTP-based communication

4 Design of MediaExchange

4.1 Database primary key/

object identifier uniqueness

4.2 User management

4.3 Media clip management

4.4 Object tags

4.4.1 Keywords and comments .

4.5 Channels

4.6 Search

4.7 Web interface design

4.7.1 Login and portal pages

4.7.2 User registration.....

4.7.3 Uploading media.....

4.8 Client libraries

4.9 Web-based connection library

4.10 Session bean connection library

4

22

22

24

24

26

28

28

29

30

30

30

30

32

. 3 2

. 3 4

. 3 6

. 3 6

. 3 8

. 3 8

. 3 9

. 3 9

. 4 0

. 4 0

. 4 0

. 4 1

. 4 1

. 4 2

5 Using MediaExchange Libraries

5.1 Web-based library connection example

5.2 Session bean connection example .

6 Conclusion

6.1 Future implementation .

A Object Specifications

A .1 User classes

A.1.1 User business interface

A.1.2 UserController session bean

A.2 M edia clip classes

A.2.1 MediaClip business interface

A.2.2 MediaClipTag state class

A.2.3 MediaClipController session bean

A.3 TagController session bean

A.4 Channel classes

A.4.1 Channel business interface

A.4.2 ChannelController session bean

B Library class specifications

B.1 Web-based connection libraries

B.1.1 MXWebUtil SMIL upload library class .

B .1.2 Clip class

B.2 Session bean connection library

B.2.1 MXControllerUtil library class

B.2.2 Sample properties file

C Server Hardware and Development Information

C .1 H ardw are .

C.2 Development Environment .

5

43

43

44

46

46

48

49

49

50

. 51

. 51

. 51

. 52

. 54

. 56

. 56

. 56

58

. 58

. 58

. 59

. 59

. 59

. 60

61

61

61

List of Figures

3-1 EJB architecture used in a three-tier system. 27

4-1 User Business interface/EJB/State object UML diagram. 35

6

List of Tables

2.1 EJB transaction attributes. 19

2.2 Possible error conditions in database reads. 20

2.3 EJB transaction isolation levels. 20

4.1 Tag entry database structure. 37

7

Chapter 1

Introduction

This project was designed as a part of a larger system for on-line media tools called

X- Views, and will provide a framework for future development and applications. Me-

diaExchange is the system of server-side components that provides web-based com-

putation for these tools and applications.

MediaExchange provides a robust, concurrent, scalable system with reasonable

performance that can be used as a base for development of other applications. A major

objective is to provide an object-oriented interface for development of applications of

similar nature.

1.1 Overview

This chapter is an introduction to MediaExchange and the motivation behind it.

Chapter two discusses technologies and choices for development and deployment

of this software.

Chapter three discusses design preliminaries and analysis of design criteria.

Chapter four discusses the design and implementation of the system.

Chapter five provides examples of usage.

Chapter six identifies areas of possible improvement and further development.

8

1.2 Motivations for MediaExchange

MediaExchange is the successor to the server-side portion of the I- Views system,

which formerly provided similar services to a set of browser-based clients for video

manipulation, specifically, video sequencing and presentation. MediaExchange exam-

ines the requirements of I-Views and incorporates them into a more general, more

robust, higher performance, and more extensible framework for its client applications

and other, related applications in its class.

The server-side components have been developed alongside new client-side pieces;

however, care has been taken to avoid gearing the system toward any particular

application. Furthermore, the design of MediaExchange at the software level provides

ease of use for future application developers who will use the platform, as well as

maintainers of the code base.

1.3 Project goals and requirements

The requirements and goals of this project can be subdivided into several categories

of objectives. The main goal of the project is to provide a high-level interface to

a set of services. These services include user and media management, which are

key underlying pieces of systems that deal with online media and media exchange.

MediaExchange will provide these services while adhering to the requirements listed

below.

A note should be made that security was not a primary design goal of MediaEx-

change. This results from the community and open nature of the system, so security

in the sense of not allowing certain media clips to be shared is not implemented. All

clips are visible to other users, and no clips can be removed by a user. However,

access of other objects created by users can be write-restricted.

9

1.3.1 Concurrency and Performance

Concurrency and performance are both important to the effectiveness of an on-line

transaction processing (OLTP) system. Integrity of transactions is vital when dealing

with concurrent access to shared resources, but the use of overly restrictive transac-

tions can lead to starvation between competing server processes and adversely affects

performance. Managing and tuning these variables is a major and ongoing part of

this system's development.

1.3.2 Scalability

In order for the system to be used well into the future, it must be easy to scale

the system to match its usage. Identifying and eliminating or alleviating bottlenecks

at an early stage aided in the overall design of the system, especially with regard

to choices of technologies. For example, system components connecting to a shared

resource simultaneously may not be a problem at smaller scales, but as the size of the

system increases, this shared resource may be overloaded and become a bottleneck.

Choosing which technologies to use, based on their histories in similar applications,

as well as how to use them wisely, was a valuable consideration.

1.3.3 Extensibility and Maintainability

These factors are related more to the amount of engineering put into designing the

code base. Major changes in underlying levels of code in the future will cause increased

disruption as more systems are built upon it. Although more abstract than the

other design criteria and definitely more difficult to test, adhering to good software

engineering practice through close examination of software designs and dependencies

before implementation will hopefully prevent major refactoring of lower-level software

or any part of the existing codebase at a later date.

Furthermore, since the major goal of the system is to provide an application

programming interface (API) for users, designing in an appropriate level of abstraction

while allowing sufficient granularity and control is important. Extensibility, with

10

regard to being able to reuse the software supplied by MediaExchange, is not easy to

measure, but examples of how the system can be used are supplied in Chapter 5.

11

Chapter 2

Technologies

The choice of technologies for implementing a system may have a direct effect on its

performance, scalability, scalability, extensibility, and maintainability. Because Java

has proven to be beneficial to software development productivity, particularly with

regard to object-oriented design, and is mostly portable between operating sytems,

it is a logical starting point for a time-constrained software engineering project. Fur-

thermore, many server-side technologies, standards, and frameworks have recently

been introduced for Java, making it a powerful and well-documented platform for

developing web-based services. Although as an interpreted language it incurs a large

performance disadvantage, some improvements in the system's performance can be

realized through the use of run-time machine code translation (Just-In-Time compi-

lation).

I-Views is built upon three main pieces of software (excluding the Java run-time

interpreter): the Apache HTTP server; the Apache JServ Java servlet engine; and

the MySQL relational database. This can be regarded as a 2-tier design, where the

servlets, which accept HTTP requests and provide responses, communicate directly

to the database.

MediaExchange expands upon this architecture to provide an 3-tier solution,

adding a middle layer that provides data encapsulation, object-relational mapping,

and workflow management, which altogether as the middle tier can be referred to as

the application logic. Adding more levels of indirection and hiding lower-level func-

12

tionality, although in many cases adversely affecting performance, improves extensi-

bility by removing dependencies between data and its usage. By grouping repeated

and common types of access to data and encapsulating this process, applications

and future application developers are shielded from lower-level details that are not

pertinent to the business logic of the application.

2.1 Application Servers

Immediately it became clear that in order to avoid spending development time solv-

ing very difficult problems related to transactional computing, and ensuring scalabil-

ity and performance, the use of a packaged application server was necessary. Not

only would this provide a basis upon which to accomplish the real goals of the

project-to build the system and have it in reliable working order and supporting

other applications-but using a well-defined framework for the system would also

make it less difficult to transfer knowledge to application developers and subsequent

maintainers of the system, given that portion of the system is documented well.

Again, many solutions are available in the Java application server market; however,

a small subclass of Java application servers fit the project needs closely, with regard

to data handling and storage, robustness, concurrency, and scalability-those which

support the Enterprise Java Beans standard.

2.2 The Enterprise Java Beans architecture

The Enterprise Java Beans (EJB) architecture was introduced recently to provide

a transactional, distributed computing framework and engine for OLTP computing.

An application server that implements the EJB standard provides a run-time system

for designing and deploying objects that have several important qualities.

First, the objects are transactional. By transactional it is meant that each object

can operate in the context of a transaction which can propagates to include actions

on other objects, down to the database-access level.

13

Additionally, the objects are distributed, which means for an instance of an EJB

object in the server, for cases where multiple (clustered) servers are in use, the actual

object could reside on a different physical machine, and is used through network

communication. Generally, all EJB communication is done over network connections,

although some application servers have optimizations that revert to regular object

calls when the object is local. A major use of this is for load balancing; since all

objects are accessible remotely, the server can create it where resources are available.

Finally, these objects have the capability of describing an object-relational map-

ping. An object-relational mapping is the translation of an object's state into a

database-storable form, and the process of storing it in the database. For complex

and compound objects that contain information about relationships, encapsulation of

this logic provides modularity such that from an object-oriented perspective there is

little or no knowledge of the inner workings. These mechanisms can also be changed

internally without disrupting the external use of the object.

2.3 J2EE Technologies

The EJB architecture is part of a larger initiative begun by Sun Microsystems to

provide a complete server-side programming framework in Java, called Java 2 Enter-

prise Edition (J2EE). J2EE represents the entire family of Java technologies made

for server-side programming, such as servlets, Java Server Pages (JSP), which is an

extension of servlets, EJB, and underlying protocols and libraries to support these

tools.

The technologies that comprise EJB are described in the following sections, along

with a description of Java servlets:

2.3.1 Entity Beans

Entity beans are Java classes that are directly related to persistence (storage in a

database). As described previously, some EJB objects deal with object-relational

mapping. Entity beans are the objects that provide this functionality. Entity beans

14

provide an object-relational framework for mapping data objects to database rows.

Each entity bean, in simplest form, maps directly to a database row entry, and its

fields map directly to the columns of this entry. The object can be cached and

managed by the application server. The server guarantees that only one instance of

each entity bean (each corresponding to a row) exists and access to it is managed

properly.

Entity beans can use either bean-managed persistence (BMP) or container-managed

persistence (CMP). CMP means that the application server defines the database ac-

cess code to load and store data and can even include generating database tables

corresponding to the object fields. BMP is the lack of automatic (container- or server-

managed) persistence. The entity bean itself provides all code and specific mecha-

nisms for loading and storing data to the database, including all database queries.

This not only provides more flexibility in terms of object-relational mapping, but also

more performance tuning opportunities. A BMP bean is also responsible for design-

ing its transactions, whereas CMP bean transactional code is completely generated

by the server.

2.3.2 Session Beans

Session beans are EJBs not directly related to data storage and have different life-

cyles than entity beans. They can be designed as either stateless or stateful objects.

Stateless session beans do not store any state between uses. Therefore, they are more

suited to handling utility-type workflows where no state needs to be saved. Stateful

session beans are more useful for many, related requests, because they are linked di-

rectly with user sessions, and data stored in the instance of the session bean is kept

as long as the user session is alive.

The application server may create many instances of a session bean and pool these

instances to be able to supply many instances on demand.

15

2.3.3 Servlets and JSP

Java Servlets provide web-based functionality and interfaces to the rest of the system.

They are used to generate HTTP-served pages and to accept dynamic requests from

clients. Although not directly a part of the EJB architecture, servlets are a member

of the J2EE class of technologies. Servlet engines are provided by the application

server in the same runtime system and can access other server objects (e.g. EJBs)

directly.

Servlets are regular Java classes, with methods that perform the service of taking

in request and response objects as arguments, from which and to which the servlet

can read and write data, respectively. These arguments are supplied by the servlet

container that takes the HTTP request and writes it back from and to the client.

JSP is a technology for writing servlets, where dynamic content, written in Java,

can be inserted into an HTML page. The servlet/JSP engine takes this template

and assembles a servlet class, written in Java, compiles the class into Java bytecode,

and allows it to begin handling requests. A change in the JSP code will force a code

regeneration and compilation.

JSP also has unique facilities for J2EE server-side programming, such as tags to

transfer control to another servlet or JSP and directives that provide automatic client

session management.

2.4 Underlying technologies

2.4.1 Distributed object technologies

Much of the scalability of the EJB architecture comes from its ability to cluster server

machines together as one cohesive unit. The application server software is designed

so that such a cluster will act together, sharing resources and avoiding doing the

same work in two places. For this reason, all EJB objects are distributed objects;

that is, they may physically exist in one place, but can be accessed and used as if

they were local objects from any other machine. In order to spread the workload and

16

resource usage, an EJB cluster will typically guarantee that only one instance of an

entity bean object exists in the entire server cluster, and will pool session beans on

any server. Clients will access the distributed EJB objects over the network by using

Java Remote Method Invocation (RMI).

Besides the scalability benefits as described here, using RMI also allows exter-

nal systems to access the server objects in the same manner. A probable use of

MediaExchange in the future will be to build "thinner" systems on top of the lower-

level pieces of MediaExchange that access the system objects access and store data

remotely. This scenario is simplified when the protocol over which the distributed

object communication takes place is standardized, and this step has already been

taken in the J2EE specification.

RMI communication typically uses a proprietary protocol, Java Remote Method

Protocol (JRMP), which is not compatible with other distributed object systems.

Other proprietary protocols also exist; Weblogic, for their application server, uses

their own version of RMI. Many newer application servers and those that conform to

the J2EE standard use RMI-IIOP, which uses the Internet Inter-Orb Protocol (IIOP),

of of the most commonly used protocols for distributed object communication. HOP is

the protocol for the Common Object Request Broker Architecture (CORBA), which

has distributed object applications in numerous languages including C, C++, and

Smalltalk. For this reason, the use of RMI over HOP (RMI-IIOP) was preferred in

designing MediaExchange, such that any application that conforms to HOP standards

can communicate with its objects.1

2.4.2 Naming

When objects are dispersed throughout the system and are to be used transparently,

there must be a way to obtain an object reference for local use. This is done in dis-

tributed object systems through the use of naming services. Specifically, Java provides

libraries for naming through the Java Naming and Directory Interface (JNDI). JNDI

1Although such cross-language integration through the use of CORBA is possible, doing so may
require additional work.

17

is not limited to providing distributed object names, however; database connections

and other resources can be made available through JNDI.

When the instance of a distributed object is created, in order for it to be accessible

to other systems and programs it must be made available to an object request broker

(ORB) and bound to a name. When a request for the object bound to a particular

name is receieved, the ORB can return a reference to the object. In the context of

EJB, naming is used to locate home interfaces, from which actual EJB objects can

be found (using finder methods), created, or removed.

The directory part of JNDI provides organization of and contexts for naming. For

all objects in an EJB server, the names of all objects in the server are bundled in

one directory, the name of which is known such that a remote system can request an

object from that particular directory on the server to obtain object references listed

in that directory.

2.4.3 Transactional computing

Assuring that operations are atomic, consistent, independent, and durable, known as

ACID transactions, is a major responsibility of an OLTP system. This occurs at

the database level with database transactions provided by major database vendors

such as Oracle and IBM. A major improvement over the I-Views system was to use

Oracle, which is a fully transactional, row-level locking database designed for large-

scale OLTP systems. I-Views' MySQL database does not support transactions.

These database-level transactions can be used by any program that connects to

the database; it is the database and database drivers that provides this functional-

ity. However, more complicated transactions may arise, for example involving two-

phase commits. A two-phase commit transaction involves the use of more than one

resource-e.g., two databases-where this interaction needs to be coordinated. In the

event that such a transaction needs to be rolled back, all child transactions need to be

rolled back as well, returning all resources to their original state. EJB systems allow

such complex transactional integrity to be easily incoporated into applications, often

allowing fine-grained control over creation and use of transactions within execution,

18

Transaction Attribute Specifies

TXBEANMANAGED Used for bean-managed entity bean persistence or
if a session bean accesses a database, where the
bean handles creating/using transactions.

TXMANDATORY The bean requires that a transaction has already
been started and will continue within this transac-
tion. If the caller of the EJB tries to use it outside
of a transactional context, an error occurs.

TX-REQUIRED The bean can be called from within a transaction,
or if not, it should start a new transaction.

TX-REQUIRESNEW The bean should begin a new transaction. If the
caller is calling the EJB from within an existing
transaction, it suspends the caller's transaction
until execution returns to the caller.

TX-SUPPORTS The bean will execute within a supplied transac-
tion context, but can also execute outside of one,
if not supplied.

TXNOTSUPPORTED The bean will suspend the caller's transaction con-
text, if one exists, and execute outside a transac-
tion context.

Table 2.1: EJB transaction attributes.

including nesting transactions and suspending the current transaction when control

is transferred to a non-transactional process.

At the EJB level, transactions can be set up in many ways. Each EJB has a

deployment descriptor, which is a file describing the attributes of the EJB, includ-

ing its transactional requirements. In the EJB specification, and EJB can have its

transaction attribute set to one of the values listed in Table 2.1.[11] Additionally, the

isolation level can be set for each EJB.2 These isolation levels are applicable at the

Java Database Connectivity (JDBC) library level, as they provide an interface into

the transactional isolation levels of the database itself.

Three types of undesirable conditions can occur when concurrent access/update

to a database is attempted. They are described in Table 2.2. The isolation levels, as

they become more restrictive, prevent a larger set of errors from occuring. The valid

isolation levels are listed in Table 2.3.[11, 6]

2The isolation level can actually be set separately for each method in a bean. However, this is
not necessary and the bean-wide isolation level setting is used as a default.

3The individual isolation levels are not part of the EJB 1.1 standard, but are used in EJB 1.0.
The EJB server used for MediaExchange, IBM Websphere, adheres to the latter standard.

19

Condition Description

Dirty reads A transaction reads data that has been changed
but not yet committed by another transaction.
The old values are dirty.

Nonrepeatable reads A transaction reads a row twice; between the two
reads another transaction changes the value and
the second read returns a different value.

Phantom reads A transaction reads data matching certain crite-
ria from a table twice; between the two reads new
data is added to the table that also fit those crite-
ria. When the second read occurs, the first trans-
action gets the new data as well.

Table 2.2: Possible error conditions in database reads.

Isolation Level I Prevents
TRANSACTION-SERIALIZABLE All of the above types of errors.
TRANSACTIONREPEATABLE-READ Dirty reads and nonrepeatable reads only.
TRANSACTIONREADCOMMITTED Dirty reads only.
TRANSACTIONREAD_-UNCOMMITTED None of these types of errors.

Table 2.3: EJB transaction isolation levels.

2.5 Using EJBs

All EJB objects also have associated home and remote interfaces, in addition to

the actual EJB class. The EJB class contains the business methods written by the

programmer along with some generic EJB methods that must be contained in every

EJB class.

When writing an object to be used as a distributed object, an instantiation of the

actual class written by the user is not directly handled by the client that uses the

object. Rather, when a client has a reference to a local object, it is actually handling

a stub object that accepts the methods calls made on it, marshals the method call and

its parameters into a format transferable over a network connection, and transmits

this method call over a network connection to skeleton and tie objects located in the

same memory space (in Java, this means the same JVM) as the actual object. These

objects delegate the incoming method calls to the actual object. In the same way,

they marshal return values and transmit them back to the client.

In order for the client to transparently use the stub object as if it were the real

object, the stub and actual objects both conform to the same interface, which is how

20

the object is handled in the client-as an instance of this interface. The programmer

writes this interface and the actual object class that implements this interface, and

from these uses a distributed object compiler to generate the stub and tie classes.4 [10,

1]

In the context of EJB, the home and remote interfaces perform this function for

two different types of distributed object classes.

2.5.1 Remote interface

The remote interface contains all the business methods of the EJB object. The

client, rather than handling an instance of the actual EJB object when using an EJB,

handles a stub object that implements the remote interface. All home interfaces must

be subinterfaces of the EJBObject interface defined by the EJB specification.

2.5.2 Home interface

The home interface contains method signatures for a home object in the server that

handles special methods for its associated EJB. It must be a subinterface of the

EJBHome interface defined by the EJB specification. All home object must contain

create and findByPrimaryKey methods, which both return an object of the remote

interface type. The create method call creates an EJB object and returns it. Its

arguments correspond to those of the ejbCreate method in the EJB object class,

which initializes the EJB object. The findByPrimaryKey method takes a primary key

class object (described below) and locates the EJB by its unique primary key. The

home interface can also define other find... methods, which correspond to specific

database queries to locate particular sets of entity beans conforming to the criteria

4The procedure described here is representative of how Java distributed objects work with
CORBA. Generally, to generate CORBA objects, a programmer writes an interface using the In-
terface Definition Language (IDL), which can be then compiled into stub and tie classes. Since the
actual object class, using this method, is not created first, some IDL compilers generate a template
for the actual object class which the programmer then fills in with appropriate method bodies.
Java RMI-IIOP also performs other CORBA tasks automatically, but these differences are are not
discussed here.

21

specified by the query. The home interface also inherits a remove method from the

EJBHome interface, which also takes a primary key class as an argument.

2.5.3 Primary key class

All entity beans also have an associated primary key class, which defines fields of the

entity bean that together are unique over all entity beans of that type. This is closely

related to the concept of database primary keys, where each database table has a

field or fields that are unique over all table rows. Since each entity bean represents a

database row, one or more of its fields must serve this purpose.

EJB uses this primary key object for locating (home interface find methods) and

removing (remove method) entity beans.

2.5.4 Tying services together with CORBA

As well as using CORBA for distributed object services, CORBA services can be

used to provide naming and transaction services as well. CORBA CosNaming and

OTS, respectively, are the services provided for these uses, and using standardized

architectures, again, allows external systems to not be limited to the use of Java

and/or proprietary protocols.

The importance of this leads directly to the importance of choosing an application

server that uses the most standardized ways of providing its services. IBM, with

a strong commitment to both CORBA and Java, combines both in its Websphere

application server.

2.6 IBM Websphere Application Server

IBM Websphere Application Server, version 3.02, Advanced Edition (IBM WAS/3.02

AE) was selected as the deployment system because it provides support for entity

and session beans according to the EJB 1.0 standard, RMI-IIOP, Servlet 2.1/JSP 1.0

engine, and database connection management implementing Java Database Connec-

22

tivity (JDBC) extensions, among other facilities.

Although the J2EE platform generally uses EJB 1.1 and servlet 2.3/JSP 1.1, such

packages are very new, untested, and poorly documented, whereas IBM's solution is

a commercial server that has been well-tested, documented, and has a large user base

and knowledge base. Also, Websphere uses a native, Apache-based HTTP server, IBM

HTTP server, taking some load away from Java computation for basic file serving,

and is based upon an optimized and stable Java Virtual Machine (IBM JDK 1.1.7B).

The Java Virtual Machine (JVM) included in this release also includes an optimized

Just-In-Time (JIT) compiler that translates Java bytecode into native machine code,

allowing for performance improvement of a factor between approximately two and

ten.

By supporting JDBC standard extensions, Websphere provides database connec-

tion pooling accessible through a standard Java API. IBM supplies a proprietary

implementation of these classes.

23

Chapter 3

Design Analysis

Although EJB is a powerful framework and system for creating robust systems, it

is still a young technology and common design patterns for EJB have not yet been

established. Some object-oriented paradigms can be applied readily to EJB; however,

the relative complexity of EJB specifications and inclusion of distributed object tech-

nologies precludes the application of many patterns. The design of MediaExchange

attempts to generate and document new paradigms within the realm of EJB and dis-

tributed computing in general, particularly to minimize over-the-wire accesses with

distributed objects and maximize efficiency and robustness.

The overall design of the system was well-established from previous specifications

before implementation took place. However, some additional design occured to fully

take advantage of the strengths of EJB and mitigate is weaknesses by applying already

established paradigms for server-side software engineering as well as EJB-specific so-

lutions. The organization of the server software, with extensions and modifications for

EJB, is similar to Model-View-Controller architectures for server-side programming.

3.1 Analysis of a typical MVC architecture

A more traditional example of an MVC architecture is a graphical interface system

for a computer. The parts of the Model-View-Controller were typically defined as in

this example.

24

MVC Example: A file dialog window.

Model. The model component is the representation of data for an

element. In the example, the model may represent the list of files in listed

in that dialog.

View. The view component is what displays the files. In this ex-

ample, it would be the construct of the window, in which the files may

be presented in a list, or with icons, and there may be some additional

information. The view may communicate with the model to retrieve in-

formation.

Controller. The controller component takes input requests and mod-

ifies the model and view accordingly. This may correspond to a button-

handler that waits for mouse clicks on buttons in the dialog. When an

event occurs, the controller makes appropriate changes to the model and

view.

When moving to a web-based system, the MVC model deteriorates a bit with re-

spect to to the traditional viewpoint. The controller and view have very different

connectivity in a server-side, web-based environment. The controller cannot make

immediate changes to the view, since the view is only updated on web-page refresh.

This difference removes part of the functionality of the controller, since the change

in view state occurs in the view. Furthermore, the controller may or may not be

linked directly to control. It might receive input from the view, which will cause it

to perform some action and update some aspect of the model layer.

Rather than create a circular flow of control as in the traditional MVC case,

where each piece interacts with both other pieces, in the server-side case there is a

hierarchical structure. The view is the only exposed part of the system to a client.

However different the traditional and server-side web MVC classifications may be, the

architectural model still provides useful insight into how a system should be organized.

More generally, an MVC architecure could be described as follows:

25

Model Layer. The model layer consists of objects that encapsulate

and group data. Each model object contains methods for mutating its

state. In the EJB case, a model object also encapsulates its persistence.

View Layer. The view layer consists of objects that display state in

the form of web-pages. The view layer also presents the available actions

for what is presented. These actions translate into actions on lower tiers.

Controller Layer. The controller layer consists of objects that en-

capsulate workflow and perform operations on the data through the model

layer. This provides the advantage of packaging complex workflows, for

example, creating an object and then associating it with other objects.

This hierarchical separation of layers provides the benefit of modularizing parts

of the system. The view layer, in this case, provides the presentation of data specific

to this application. The controller layer, by providing a generalized interface for

manipulating data, can be exposed in APIs for programmers using MediaExchange

as the lower-level basis for other systems. Together, the MVC architecture provides

the application logic tier of an three-tier system.

In the EJB framework, if the controller is designed as a distributed object-

specifically, an EJB object-it can be referenced remotely and used by applications

housed by separate machines and systems. See Section 3.4.

3.2 Application of MVC to EJB

Established paradigms for server-side software design, especially the server-side adap-

tations of Model-View-Controller architecture, apply themselves differently to the

EJB architecture, which has its own distinct architecture and roles for its defined

objects. Although an adaptation of the MVC architecture may or may not be ap-

propriate for use with EJB for this reason, the advantages that well-defined MVC

architectures have can be leveraged in the EJB framework as well. The overall design

is described here:

26

Web
Server Application Server Database

Entity
Beans

T Servlet/

TJSP JDBC

T_ _Session
Beans

IBM IBM Websphere 3.02 Oracle 8i
HTTP
Server

(Apache)

Figure 3-1: EJB architecture used in a three-tier system.

Entity beans as model objects. As discussed previously, in the

EJB MVC architecture, model objects not only store data but also en-

capsulate the process of storing this data to a database.

Session beans as controller objects. With the definition of con-

trollers as bundles of workflow, using a session bean as a stateless interface

to workflow comes with many advantages. Again, complex workflows that

appear often can be modularized, and the interface can be exposed as not

only an API, but also to remote systems and applications.

Servlets and JSP as view objects. Servlets (and JSP pages, which

compile into servlets) are used as the interface to web browsers and web-

based clients to generate content and accept browser-type requests and

workflows.

27

3.3 Common EJB designs applied

Beyond the application of MVC to the EJB server-side software as a general method-

ology, improvements can be made as to how EJB objects are handled. These im-

provements provide better object-oriented design, and may improve performance.

3.3.1 Session bean as a facade to entity beans

The entity beans themselves should not be handled directly by clients (here referring

to any system that has code-level access to the EJBs). Rather, a session bean that

defines the workflow appropriate for a particular entity bean or set of entity beans

should be used, which will in turn handle the entity bean finding, creation, removal,

and business methods. Although this level of indirection may, again, decrease perfor-

mance, it allows better modularity and simplified application programming, especially

by those who are not familiar with the underlying workings of the system. The ses-

sion bean interface to the lower levels of the system provides a simpler way to access

entity beans, for example, supplying an object primary key by which to locate the

object for a desired operation, rather than going through the process of finding the

Home object for the entity bean, calling the appropriate finder method, and handling

lower-level exceptions that may be raised for errors. The session bean can handle

this process, and translate the lower-level exceptions into ones more meaningful at

the application level. This type of structural pattern is called a facade.[5]

Also, the session beans can handle more complex workflows. A relationship be-

tween two entity beans can be made transparent to the application developer by

supplying a session bean that acts as a facade to both sets of beans, performing the

desired operations without requiring the application programmer to know explicitly

what is occuring with each entity bean. This type of indirection is also important

given that the relationships or the entity beans themselves may change. Encapsulat-

ing and hiding the inner workings of this workflow is important to assure minimal or

no changes to application-level code if change need to be made at workflow or lower

levels.

28

This specification is consistent with the MVC methodology previously described.

Also, when the session bean is exposed as an API, it also provides all possible work-

flows that can be performed on entity beans such that the client program does not

access the entity beans directly and provides a higher level of abstraction.

3.3.2 Business Interfaces

Although the actual implementation class of the EJB class is required by specifi-

cation to implement all business methods defined in the EJB remote interface, this

requirement is not enforced at source-code compile time, as there is no direct object

relationship between the implementation and interface. This can be solved by using

a business interface, which the remote interface will extend and the implementation

class will implement.[4] This requires that the implementation class at least imple-

ment the methods contained in the business interface, and provides an assurance at

compile-time that the requirements are met for the subsequent compilation into the

objects actually used at run-time by the EJB server.

Business interfaces are also allow for increased flexibility in terms of what objects

can be used by higher levels of the application. For example, when the web layer of

the application accesses a user, it performs a method call on a session bean and asks

for an object that is only required to conform to the business interface. This object

could either be the actual EJB or a state object. The state object will be returned

to the view/client layer, and if any changes need to be made to the actual object, the

client can use a session bean method that modifies the entity bean.

A more advanced use of the business interface may be to use a proxy object that

conforms to the business interface specifications and acts primarily as a holder object,

but can delegate changes down to the lower layers by accessing an appropriate session

bean. This approach, however, is beyond the scope of this thesis and is not explored

further.

29

3.3.3 State objects

A state object is used as a holder object for data. The state object can be used as

a cached data set that holds the record locally, without incurring the cost of many

remote method calls (one large access is better than many smaller accesses) or the

overhead from dealing with an entity bean.

3.4 Access to MediaExchange

Since the main purpose of MediaExchange is to provide a universal repository and

management system for media clips and their users, flexibility in how a client appli-

cation can connect to the server is essential. The methods by which a client interacts

with MediaExchange are described here.

3.4.1 CORBA/RMI-IIOP access to session beans

Since session beans (and all EJB objects) use the CORBA standard for distributed ob-

ject communication, a natural way to access the functionality encapsulated in session

beans is to access them directly as distributed objects. This method has no regard

for whether the client application is hosted on the same server or on a physically

separate machine, as long as the two applications share a network connection.

3.4.2 HTTP-based communication

Servlets and JSPs can be implemented to communicate with HTTP-based clients

through the web. This allows clients to be completely language-independent as long

as they can open and transfer data over HTTP connections to the web server. A set

of Servlets/JSPs can be implemented to perform specific queries and responses to and

from the server. This results in text-based communicaton over HTTP. The text can

be structured in numerous ways, whether over proprietary structures designed per

application or over more general structures such as the extensible markup language

(XML). The advantage of using XML is that XML parsers are available for most

30

languages and any type of hierarchical data can be structured in XML. However, this

incurs the disadvantage of requiring a client to have an XML parser available, and for

applets, which download all data from the server at run-time, this can be expensive.

For this reason, it may be better to depend on Java libraries already available to

the client and use proprietary forms of text messages that can be decoded by such

libraries.

31

Chapter 4

Design of MediaExchange

This chapter provides an overview of the design of MediaExchange. Critical EJB func-

tionality is described in detail. Exposed controller interfaces (session bean interfaces)

are supplied in Appendix A.

4.1 Database primary key/

object identifier uniqueness

Database primary keys, or in object-oriented terms, object identifiers (OIDs) are im-

portant to any relational or object-relational system. Object IDs need to be separate

from business logic and unique across the system. That is, the primary key for any

data object will be an OID, and never any piece of information that is specific to

the data. This allows the software to remain independent of any application-specific

data.[2]

OIDs should also be unique across the entire system. If two tables were to keyed

by the same set of OIDs, and these keys were used as values in a separate table in

the same column, conflict could occur.

Generating a unique key can be accomplished in several ways. One solution would

be to use an auto-numbering scheme supplied by the database, which would gener-

ate IDs that are unique within a database table; however, this does not meet the

32

requirement that object IDs are unique across the entire system. A more appropriate

solution is to use a single object instance (a Singleton object)[5] that remains loaded

and singular for as long as the JVM is running.

This Singleton object could generate unique OlDs by storing in the database the

last generated OID, and reading this value and incrementing it per request. However,

this approach leads to a database query (or two, depending if there are two requests-

one to read the old value; one to write the updated value) for each OID request and

could lead to a variety of transactional problems when a large number of resources

request new OIDs. Completely serializing the OID generation using sychronization

could lead to starvation between threads. A better approach would be to only look

periodically in the database, while still guaranteeing OID uniqueness, and this is

accomplished by splitting the OID into high and low segments, and storing the upper

segment in the database, keeping the low segment in memory and incrementing it

in memory. When the low OID reaches its maximum value, the upper OID value

is incremented. This minimizes the computation necessary to generate each OID,

allowing the process to be sychronized at some level. To guarantee uniqueness, each

time the server is started the high OID is incremented, such that no matter what low

OID it is paired with, that resulting OID has never been used. When the server is

started, the low OID starts at zero. This results in many OLDs being "wasted," but

given that the high OID segment is large enough, the system will never deplete its

OID supply. In MediaExchange, all OLDs are 64-bit numbers, split into two 32-bit

Java ints. The maximum value of an int is 231 - 1, over two billion'. To extend the

number of server restarts possible, the high portion of the OID could be extended into

multiple 32-bit fields, resulting in a 96- or ever 128-bit OID. However, to maximize

performance, in this scheme the OID is kept short. Even still, with over two billion

server restarts and over 4 x 1018 OLDs available, a 64-bit OID is more than sufficient.

The ints are converted to Strings, simplifying the concatentation of the high and

low portions. Also, to shorten the length of each OID string, each sub-string is the

hexadecimal representation of the int.

'The maximum value of a signed two's complement 32-bit integer.

33

This is appropriate for single-virtual-machine environments, but an application

server cluster supports at least one VM per machine. This requires that the single

object instance is reachable and singular across all machines in the cluster. The

solution for this is to create a distributable object that runs on one machine. Any

machine in the cluster can generate a reference to this object and obtain the next

unique OID.

This OID generator is bound in the same naming context as EJBs to simplify

locating it.

4.2 User management

The user management portion of the system defines classes that describe users and

workflows for user creation, validation (upon login), and deletion. A user object has

the following fields:

UserEJB entity bean. This is a container-managed entity bean that contains

oid, username, password, last name, first name, email, country, and age fields. Its

home interface defines the additional finder method findByUsername which locates all

User entity beans with a given username. However, since no registration of users with

duplicate usernames is allowed, this method should always return one user. It is used

for logging users in (the user object is found by username, and the supplied password

is validated against the password stored by the object).

Initially, the password was to be stored in the database as a 128-bit MD5 one-

way hash of the password string for additional security, but incompatibilities with

Websphere's CMP handling of byte arrays (the Java byte[] array type) and the

database storage of byte arrays/octet streams (Oracle RAW data type) precluded

using this solution.

Figure 4-1 shows a UML diagram of the business interface hierarchy for the User

business interface and associated objects.

UserController session bean. This session bean contains methods for creating

users, validating users, and other operations that can be performed on entity beans.

34

BusinessObject
+get id () : String

User
+getUsername () : String
+getEma~i () :String
+setEmail (emaii :St ring): void

UserState UserEJB
+username: String +username: String
+email: String +password: String
+ +ermail: String
+etUsername () String +...:
+qet.Email () String + gettlsernarne () String
+setEmail (email: St ring) : void +setPassword (password: String) : void
+..._(): -+getEmail () : String

+setEmail (email: String) : void
+validate (password: String) : boolean

UserRemote +getBusiness~bject () : User
+edit (user:User) : void

+setPassword (passwrd:String) : void
validat e (pas swrd :S St:ring) bool ean

+getBusinessObject ()Usel
+edit (use r:User) : void

Figure 4-1: User Business interface/EJB/State object UML diagram.

Refer to Appendix A for details.

UserState state object. The UserState object is a holder class that contains all

the user data stored by the UserEJB object. Rather than use the UserEJB object, an

application programmer can retrieve the UserState object instead and avoid using a

network-intensive distributed object to access data.

Note, however, that the state object contains no password field. This was done

for security reasons. The actual entity bean must be accessed to change the password

or validate the user; these methods are not contained in the User business interface

but rather in the EJB remote interface UserRemote.

User business interface. As described in the design analysis, both the state

object and the entity bean for a model object are inherited from a common business

35

interface. The User business interface defines methods that are common to both.

UserRemote entity bean interface. This extends the User interface to provide

all the methods of the actual entity bean. It provides the business methods not

contained in User, as well as a getBusinessObject method to obtain a UserState object.

4.3 Media clip management

Media management is handled by a similar object hierarchy and tier structure. All

different types of media will be handled by a single type of media clip object.

MediaClipEJB entity bean. This is also a CMP entity bean. It contains fields

for the owner OID, the title, description, type, URL, fileSize, and a boolean flag that

is used to mark whether a clip is stored locally.

MediaClipController session bean. Similar to UserController, this EJB provides

business logic. Refer to Appendix A for details.

MediaClip business interface. This interface provides all media clip business

methods, except for getBusinessObject which returns a MediaClipState object.

MediaClipState state object. This class stores metadata for a media clip.

4.4 Object tags

Object tags are used as a way to annotate objects with information. A common

tag attached to objects may group objects together, or contain specific information

about an object. The use of such annotation is directed mainly toward organizing

MediaClip objects, where they hold information not contained in the object itself.

Tags are implemented as a simple relational mapping scheme, where a main tag

table stores all tags for all media clips. Each tag data entry references a media clip

OID, a tag type, the OID of the user who added this tag, if any, and the tag data.

The design of the sytem is such that no data is hidden from simple table queries. An

example of hiding such data is in the case of a one-to-many relationship between an

entity bean other objects. If the entity bean needs to store a list of related OIDs,

36

ClipOID UserOid TagType TagBody

Table 4.1: Tag entry database structure.

for example, it could create a Vector object, insert all the values of the list, serialize

this data into a byte-stream, and store in in the data in this binary form in the

database. However, this relationship is not searchable because the data needs to be

decoded back into its Java object form, and for this reason all relationships are stored

in searchable mapping tables that pair objects that have a relationship in table rows.

The motivation behind this structure is to allow extensibility in how information

about a MediaClip is represented. If a new type of information needs to be added

to a MediaClip, the structure of this information is similar to any other information

that MediaClips are "tagged" with. Thus, the flexible and simple scheme of relating

a clip to possibly many tags is useful and extensible. Currently, the media clips are

tagged with keywords, comments, and channels.

Furthermore, because the tags are closely integrated with the database, advanced

queries can be performed across tables using appropriate SQL queries. This also has

the advantage of improving performance, for in a one-to-many relationship, to explore

such a relationship in the EJB context might mean mapping a Java object for each

child object, when this may not be necessary. This concept of "lazy evaluation" of

object with regard to loading entity beans will improve performance by decreasing

object creation overhead for simple data accesses.

However, the interface to the tag data is not directly through SQL queries. Rather,

stateless session beans are provided for this purpose, performing the query and re-

turning data sets. For searching tags, session beans are used to make queries and

return data without incurring the cost of instantiating entity beans. When the entity

bean object is needed (for modifying bean data, for example), the application can

"drill down" and then find the EJB object for use.

37

4.4.1 Keywords and comments

Keywords are implemented as object tags, where any number of keywords can be

associated with a particular object. Comments are also implemented as object tags.

When a clip receives a keyword or comment, an entry in the tag table will be

created, mapping the keyword or comment string with the OID of the clip. Then, a

database query can be used to retrieve all the keyword and comment data for a clip.

A session bean, TagController, is used to access this specific functionality for key-

words and comments, as well as general tag addition and deletion. Refer to Appendix

A for details.

4.5 Channels

Although channels are similar to keywords and comments in that a tag can be used

to group clips together, channels have more structure and information. For example,

while any registered user can add keywords and comments, a channel has an owner, a

flag to determine if it is public or private (if other users can add clips to the channel),

and other metadata that would not be easily stored only by a set of tags.

Channels are represented by both entity beans and object tags. The entity bean

(CMP) stores the object metadata, and a tag query is used to retrieve metadata of

the clips that are tagged with this channel's OID. When a channel is deleted, these

associations are removed from the tag table as well.

Specifically, the tag type for channels is "CHANNEL", and the user OID specified

by the tag is that of the user who added the clip to the channel.

Channels are also used to implement the concept of a home channel, or where

each user stores his or her own clips. Upon user registration, a home channel is

created for the user and the user has access to this channel upon login. Clips can

be added and removed from this channel, and other users can search all other users'

home channels. Although this open specification carries the implication that nothing

is truly private in the system, extensive security was not a primary goal of the system,

given that MediaExchange and associated applications are designed as community-

38

based systems where users share all their data.

4.6 Search

The search facilities of the system will examine any data held in the system database

tables. Currently, the system provides facilities for searching media clips and their

tags (keywords, channels, comments), if any. Users are comprised of only the data in

their corresponding entity beans; only a findByUsername is supplied in the EJB home

interface. No tag functionality has been implemented for users.

MediaClips can be searched in several ways. First of all, they can be searched

based on basic metadata, such as title, description, and creator. Second, the com-

ments or keywords on a media clip can be searched by any such tags attached to

the media clips. Finally, because clips can be organized into channels, it can be

determined which clips are in a channel.

MediaExchange currently only supplies search capabilities at the application level;

no views for the web interface have been implemented.

4.7 Web interface design

The web interface is mainly for user registration, adding media to the system, and user

media management (adding/removing clips from a channel or creating a channel, for

example). Most applications will reach the system at the tier below the web interface,

accessing the session beans directly.

The only exceptions are applications that require an HTTP interface, notably

applets, where distributed object communication is possible, but large network lag

times may dictate a stateless type of communication where each data request is sep-

arate and requires shorter, more specific connections to the server. In such cases,

Servlets and JSPs can be used to transfer text-based messages to and from the server

as described in section 3.4.2.

39

4.7.1 Login and portal pages

The initial portal page for the MediaExchange web interface is viewable by any user.

However, the priveleged and customized interface for registered users is unavailable

until login has been completed. The header bar of the portal page displays either a

login form (username and password boxes) or a logout button. When a priveleged

operation is accessed without login, the user is directed to a login page.

The first time a user opens a page at MediaExchange, a session is created and a

cookie, a name/value pair, is given to the client, which stores it locally. On every

subsequent request, the client returns the cookie, which contains a session ID. This

session ID maps to the session created previously. Upon successful login, a User object

is stored with the session on the server, and when a priveleged view is accessed, the

page ensures that the User object is present in the session. 2

Sessions are set to time out after 1800 seconds, after which all objects stored with

the session are invalidated and cleaned up. The user must log in again after this

length of inactivity.

4.7.2 User registration

User registration pages accept desired username and password information as well

as other user data. Upon successful registration (all information supplied, unique

username chosen), the user is stored in the database and a home channel is created

for the user.

4.7.3 Uploading media

Media can be added to the system at will by any user. The only requirement is that

the media clip is smaller than a maximum size of ten megabytes (arbitrarily set and

changeable), and that the user is registered and logged into the system.

21f the client does not support cookies, the server can incorporate a session ID into every link the
server writes to the client in each page. This method of session tracking, called URL rewriting, can
be supported by all browsers. However, at this time clients must support cookies.

40

The upload workflow begins with a form for the media clip title and description.

Creating an object for this new clip, it then proceeds to the actual upload page, in

which the user selects the local location of the contents of file. Once submitted, the

browser sends a MIME multipart/mixed message containing the file and its meta-

information, including size and type. Once the clip is uploaded, the type, size, and

URL fields are added to the clip EJB. The URL is dependent on the type of clip.

RealMedia clips (*.ram, *.rm) are streamed by a Real streaming server and have

URLs prefixed with pnm:// and and are located at a different path. Quicktime

(*.mov) and MPEG videos are streamed by the HTTP server. All clip are stored

and referenced by their OID, plus a file extension that allows clients to differentiate

between media types and open an appropriate browser.

Finally, the clip is added to the user's home channel. Users can also choose at

this point to add thumbnails, keywords, or comments to the clip.

4.8 Client libraries

Client libraries have been developed for connecting to the server at either the web

tier or the application tier (at the session bean level). They are described in detail

here, and examples are given in Chapter 5.

4.9 Web-based connection library

Java library classes provides a connection to the server for applets. The library

is initialized with several applet parameters embedded in the applet HTML page,

including the server path and the user OID. The user's home clips are by default also

embedded as a colon-delimited list in an applet parameter. More sophisticated client-

based searches have not been implemented and there are no client library functions

to support them.

Since applets are not expected to support cookies, the web connection library does

not include session tracking functionality. Generally, however, the client application

41

only needs to download clip metadata, which can be done without logging in. In the

case that the client application needs to upload data, such as a SMIL file constructed

on the client, it suffices to submit the user's OID with the request. Again, the goal

of MediaExchange is not to provide high levels of security. User tracking is mainly

for community/collaboration information.

The library currently provides clip metadata downloading and SMIL file uploading

capabilities.

Metadata downloading is provided by the use of a client-side Clip object, which,

upon instantiation with an OID, makes a server request to a dedicated JSP for the

metadata for the clip with this OID. Following successful instantiation, the Clip ob-

ject's fields are populated with the metadata and the client makes local method calls

to get the field data.

For uploading clips, the library opens a connection to the server for a different JSP

using a Java library, uploads the SMIL string, the user OID, and title. In response,

the client receives a URL which can then be used for previewing/viewing the uploaded

file. On the server side, the receiving JSP writes the SMIL string to a file, such that

it can be separately served by the HTTP server.

4.10 Session bean connection library

The MXControllerUtil Java library provides a connection to session beans. A properties

file packaged with the library must be located somewhere on the system, and this path

must be supplied to the library upon initialization.

This utility provides a method for initializing with a properties file, and locating

JNDI-named objects at a server specified by the properties file. The method can be

used to locate an EJBHome object for a specific session bean, which can then be used

to create the appropriate controller (using the create method). Using the exposed

session bean APIs, the client can then perform method calls to operate on data at

this level.

42

Chapter 5

Using MediaExchange Libraries

This section gives insight into how well MediaExchange performs the tasks of provid-

ing its services to client applications, in terms of ease of use.

For usability testing, a case study of an X-Views applet that transfers data over

HTTP is included. Also, a hypothetical example of an application that communicates

with MediaExchange at the session bean level over RMI-IIOP/CORBA using Java

libraries. No applications utilize this functionality at the moment, but some are

planned for the near future.

Libraries are specified in more detail in Appendix B.

5.1 Web-based library connection example

The use of the web-based library is straightforward. The supplied Clip object handles

the population of media clip metadata fields for each object by performing a server

request.

This example takes a string consisting of a colon-delimited list of OIDs from the

applet parameters, creates a Clip object for each OID, and stores each resulting Clip

object in a Vector object for later use.

It also uploads a SMIL string to create a clip on the server. It then updates this

clip with another SMIL string.

43

import edu.mit.media.ic.lib.MXWebUtil;

import edu.mit.media.ic.lib.Clip;

import java.util.*;

public class ... extends Applet {

Vector clips;

public void init() {
clips = new Vectoro;

StringTokenizer st = new StringTokenizer(getParameter("sequence"),

":", false);

while (st.hasMoreTokens() {
/* create a new clip for the next OID in list,

* add it to Vector of clips

clips.addElement(new Clip(st.nextTokeno));

}

String smilString =

String server = getParameter("SERVERURL");
MXWebUtil.init(server);

String smilOid = null;
try {

smilOid = MXWebUtil.uploadSMILFile("my clip", smilString);
Clip smilClip = new Clip(smilOid);
MXWebUtil.updateSMILFile(smilOid, smilString);

} catch (MXWebException e) {
e.printStackTraceo;

}
}

}

5.2 Session bean connection example

The properties file used with the library can be edited by the user to specify the

location of the server. It also contains entries for the JNDI names that it can locate.

The library must be initialized with local location of the properties file, after which

it can be used to locate controller objects.

The following is a code example of how to locate and use a remote controller.

Refer to Appendix A for specifications of available controllers.

import edu.mit.media.ic.lib.MXControllerUtil;

44

public class ... {

// initialize library with properties file location
try {

MXControllerUtil. init("d: \\MediaExchange\\mx.properties");

/* get UserController object by getting home and performing
* create method on home
* must cast to home type and specify <HomeClassName>.class
* as second argument to getHome method

UserControllerHome ucHome =

(UserControllerHome) MXControllerUtil.getHome("UserControllerHome",

UserControllerHome.class);
UserController uc = ucHome.create(;

// log in a user using the userValidate(username, password) method
User user = uc.userValidate("a-user", "thepassword");

// get a MediaClipController
MediaClipControllerHome mcHome =

(MediaClipControllerHome)

MXControllerUtil.getHome ("MediaClipControllerHome",
MediaClipControllerHome.class);

MediaClipController mc = mcHome.create(;

// find a clip with oid 00000004000000A0
String oid = "00000004000000A0";
MediaClip clip = mc.findMediaClipByOid(oid);

/* remove this clip, will throw an AccessFailedException if user is
* not owner

* User calling method is supplied as first argument

mc.mediaClipRemove(user, oid);

} catch (CreateException e) {
// catch creation exceptions from session bean creation
e.printStackTraceo;

} catch (RemoteException e) {
// catch all remotely thrown exceptions that might arise

// from controller operations
e.printStackTraceo;

}

}

45

Chapter 6

Conclusion

MediaExchange provides a rich set of tools for the media sharing application pro-

grammer. The supplied APIs, particularly the TagController interface, provide a high

level of flexibility for designing applications while not concerning the user with too

much low-level detail.

Server testing should be performed on a scaled-up deployment of MediaExchange.

The development machine was computationally overloaded and probably does not

provide performance representative of the design's capabilities. See C for development

machine details.

6.1 Future implementation

This thesis provides a base for implementing a set of user and media clip management

workflows. It provides basic functionality (user, clip creation, association), but more

advanced and user-friendly functionality should be implemented, such as user profile

edit consoles and better clip searching tools. The latter can be created using the

object tag mechanism described in Section 4.4, and appropriate JSP and session

beans should be implemented to support such logic. Since the goal of this thesis was

to develop the underlying systems and libraries for accessing them, only a minimal

level of web-based access for user validation and media management was implemented.

The idea of object tags was only explored for use in keywords and comments,

46

but the use of general annotation of objects in the system could be more extensive.

Rather than force application developers to create new tables and data models to add

annotative information, object tags will allow developers to use the existing object-

oriented code base for future development. Furthermore, when new object tags are

created to construct a new association between media and/or users, new session beans

can be created to expose an API to this functionality at the object, and not data level.

Current session beans can also be improved and geared toward specific applications

by adding new or changing existing workflows defined by session bean methods.

Integration of CORBA objects with other languages could also be explored. While

the system does provide a high level of flexibility for application logic and design, it

could also do so for a range of languages. This would involve creating general IDL

interfaces for the objects and method argument and return types from the existing

Java code, and compiling the IDL into stubs and skeleton classes for other languages.

Overall, the direction of future implementation should be to expand the applica-

tion codebase and web interface.

47

Appendix A

Object Specifications

This appendix contains method specifications for all important classes, which include

the user and media clip management classes. Some specifications are included for

utility classes.

import statements for non-MediaExchange classes are omitted.

48

A.1 User classes

A.1.1 User business interface

package edu.mit.media.ic.mx.principal.business;

import edu.mit.media.ic.mx.principal.Principal;

public interface User extends Principal {

/* provides all getter/setter methods for
* business object fields (all except password)

public String getUsername throws RemoteException;
public String getEmail() throws RemoteException;
public String getNameLast() throws RemoteException;
public String getNameFirst() throws RemoteException;
public String getGender() throws RemoteException;
public String getCountry() throws RemoteException;
public tin getAgeot throws RemoteException;

public void setEmail(String email) throws RemoteException;
public void setlameLast(String naeLast) throws RemoteException;
public void setNameFirst(String nameFirst) throws RemoteException;
public void setGender(String gender) throws RemoteException;
public void setCountry(String country) throws RemoteException;

public void setAge(int age) throws RemoteException;

}

Note: Principal is an empty interface that extends BusinessObject:

package edu.mit.media.ic.mx.businessobject;

public interface BusinessObject {

public String getOid() throws RemoteException;

}

49

A.1.2 UserController session bean

package edu.mit.media.ic.mx.principal.controller;

import edu.mit.media.ic.mx.principal.business.User;

public interface UserController extends EJBObject {
/* Creates a user specified arguments,

* returns a User business object.
*/

public User userCreate(String username, String password,

String email, String nameLast,
String nameFirst, String gender,
String country, int age)

throws RemoteException, CreateException;

/* Removes user with OID <oid> from database.

public void userRemove(String oid) throws RemoveException, RemoteException;

/* Finds user <username>, checks that given password matches,
* and returns User business object if successful.
* throws AccessFailedException if passwords do not match.
* throws PrincipalNotFoundException if no user <username> is found.

public User userValidate(String username, String password)
throws AccessFailedException, RemoteException,

PrincipalNotFoundException;

/* Accepts User business object <user> as argument,
* updates user metadata with metadata stored in <user>, except for password,
* which is not stored in the User business object.
* throws PrincipalNotFoundException if no user <user>.getOid() is found.

public void userEdit(User user)
throws RemoteException, PrincipalNotFoundException;

/* Finds the user object for user with OID <oid> and returns
* User business object if successful.
* throws PrincipalNotFoundException if no user with OID <oid> found.

public User findUserByOid(String oid)
throws PrincipalNotFoundException, RemoteException;

/* Finds the user object for user <username> and returns

* User business object if successful.

* throws PrincipalNotFoundException if no user with OID <oid> found.

public User findUserByUsername(String username)
throws RemoteException, PrincipalNotFoundException;

}

50

A.2 Media clip classes

A.2.1 MediaClip business interface

package edu.mit.media.ic.mx.media.business;

import edu.mit.media.ic.mx.businessobject.BusinessObject;

public interface MediaClip extends BusinessObject {

public String getTitleO throws RemoteException;
public String getDescription() throws RemoteException;
public String getType() throws RemoteException;
public String getOwnero throws RemoteException;
public String getUrl() throws RemoteException;

public int getFileSizeO throws RemoteException;
public boolean isLocal() throws RemoteException;

public void setTitle(String title) throws RemoteException;
public void setDescription(String description) throws RemoteException;
public void setOwner(String owner) throws RemoteException;
public void setUrl(String url) throws RemoteException;
public void setFileSize(int size) throws RemoteException;

}

A.2.2 MediaClipTag state class

MediaClipTag extends MediaClipState, which implements the MediaClip business in-

terface. That is, MediaClipTag also conforms to the MediaClip business interface. It

provides the following additional methods (method bodies, instance variables, con-

structors omitted).

package edu.mit.media.ic.mx.media.business;

public class MediaClipTag extends MediaClipState {

public String getTagType() throws RemoteException;

public String getTagBodyO throws RemoteException;
public String getTagOwner() throws RemoteException;

}

51

A.2.3 MediaClipController session bean

package edu.mit.media.ic.mx.media.controller;

import edu.mit.media.ic.mx.media.business.MediaClip;

import edu.mit.media.ic.mx.principal.business.User;

import edu.mit.media.ic.mx.util.*;

public interface MediaClipController extends EJBObject {

/* creates a media clip with specified arguments.
* only title has to be non-null.

public MediaClip mediaClipCreate(String title, String description,
String type, User caller, String url,
int fileSize, boolean local)

throws RemoteException;

/* removes media clip with OID <oid>
* should only be used for removing temporary SMIL files.
* throws ObjectNotFoundException if media clip not found.
* throws AccessFailedException if owner OID of clip not <caller>.getOid()

public void mediaClipRemove(User caller, String oid)
throws AccessFailedException, ObjectNotFoundException, RemoteException;

/* sets title for media clip with OID <oid> to <title>
* throws ObjectNotFoundException if media clip not found.
* throws AccessFailedException if owner OID of clip not <caller>.getOid()

public void mediaClipSetTitle(User caller, String oid, String title)
throws AccessFailedException, ObjectNotFoundException, RemoteException;

/* sets description for media clip with OID <oid> to <description>
* throws ObjectNotFoundException if media clip not found.
* throws AccessFailedException if owner OID of clip not <caller>.getOid()

public void mediaClipSetDescription(User caller, String oid,

String description)
throws AccessFailedException, ObjectNotFoundException, RemoteException;

52

/* sets new owner OID for media clip with OID <oid> to <ownerOid>

* throws ObjectNotFoundException if media clip not found.

* throws AccessFailedException if orignial

* owner OID of clip not <caller>.getOid()

public void mediaClipSetOwner(User caller, String oid, String ownerOid)

throws AccessFailedException, ObjectNotFoundException, RemoteException;

/* sets URL for media clip with OID <oid> to <url>
* throws ObjectNotFoundException if media clip not found.
* throws AccessFailedException if owner OID of clip not <caller>.getOid()

public void mediaClipSetUrl(User caller, String oid, String url)
throws ObjectNotFoundException, RemoteException;

/* sets file size for media clip with OID <oid> to <size>
* throws ObjectNotFoundException if media clip not found.

public void mediaClipSetFileSize(String oid, int size)

throws ObjectNotFoundException, RemoteException;

/* finds media clip with OID <oid>
* throws ObjectNotFoundException if media clip not found.

* throws AccessFailedException if orignial
* owner OID of clip not <caller>.getOido

public MediaClip findMediaClipByOid(String oid)
throws ObjectNotFoundException, RemoteException;

/* finds media clips with titles like <title>
* returns empty array (length=O) if none found

public MediaClip[] findMediaClipByTitle(String title)
throws RemoteException;

/* finds media clips with descriptions like <description>

* returns empty array (length=O) if none found

public MediaClip[] findMediaClipByDescription(String description)
throws RemoteException;

/* finds media clips of which owner~id is <ownerOid>
* returns empty array (length=O) if none found

*/
public MediaClip[] findMediaClipByOwner(String ownerOid)

throws RemoteException;

}

53

A.3 TagController session bean

package edu.mit.media.ic.mx.media.controller;

import java.rmi.RemoteException;
import javax.ejb.*;

import edu.mit.media.ic.mx.media.business.MediaClipTag;

public interface TagController extends EJBObject {

/* finds all clips with keyword like <keyword>
* returns zero-length array if none found

public MediaClipTag[] findClipsByKeyword(String keyword)
throws RemoteException;

/* finds all clips with comment like <comment>
* returns zero-length array if none found

public MediaClipTag [I findClipsByComment (String comment)
throws RemoteException;

/* finds all clips with any of tag types contained in <tagTypes>
* with tagBody = <tagBody> if <exact>
* or tagBody like <tagBody> if not <exact>
* returns zero-length array if none found

public MediaClipTag[] findClipsByTag(String[] tagTypes, String tagBody,
boolean exact)

throws RemoteException;

/* finds all clips by with ownerOid <ownerOid>
* returns zero-length array if none found

public MediaClipTag[1 findClipsByTagOwner(String ownerOid)
throws RemoteException;

/* adds tag with specified arguments
* if not <allowDup>, does not allow duplicate tags
* does nothing if tag already exists

public void addTag(String clipOid, String ownerOid, String tagType,
String tagBody, boolean allowDup)

throws RemoteException;

54

/* adds keyword <keyword> to clip with OID <clipOid>
* with owner <ownerOid>

public void addKeyword(String clipOid, String ownerOid, String keyword)
throws RemoteException;

/* adds comment <comment> to clip with OID <clipOid>

* with owner <ownerOid>

public void addComment(String clipOid, String ownerOid, String comment)

throws RemoteException;

/* removes all tags for clip with OID <clipOid>

public void removeAllTagsForClip(String clipOid)
throws RemoteException;

/* removes tags matching tagType <tagType> and

* exact tagBody <tagBody> for clip with OID <clipOid>
* should only be used for channels and other object-to-object mappings

public void removeTagsForClip(String clipOid, String tagType, String tagBody)
throws RemoteException;

/* finds clips with ownerOid <ownerOid> if <ownerOid> not null
* and with tagTypes contained in <tagTypes> if specified

* and tagBody = <tagBody> if <exact>
* or tagBody like <tagBody> if not <exact>
* at least one criterion must be specified.

public MediaClipTagE] findClips(String ownerOid, StringE] tagTypes,
String tagBody, boolean exact)

throws RemoteException;

}

55

A.4 Channel classes

A.4.1 Channel business interface

package edu.mit.media.ic.mx.channel.business;

import edu.mit.media.ic.mx.businessobject.BusinessObject;

public interface Channel extends BusinessObject {

public String getOwnerOid() throws RemoteException;
public void setOwnerOid(String ownerOid) throws RemoteException;
public String getName() throws RemoteException;
public void setName(String name) throws RemoteException;
public String getDescriptiono throws RemoteException;
public void setDescription(String description) throws RemoteException;
public boolean isOpeno throws RemoteException;
public void setOpen(boolean bOpen) throws RemoteException;
public boolean isHomeo throws RemoteException;

}

A.4.2 ChannelController session bean

package edu.mit .media. ic.mx. channel.controller;

import edu.mit.media.ic.mx.channel.business.Channel;

import edu.mit.media.ic.mx.principal.business.User;
import edu.mit.media.ic.mx.util.*;

public interface ChannelController extends EJBObject {

/* creates channel for user <owner> with specified
* arguements

public Channel channelCreate(User owner, String name, String description,
boolean open, boolean home)

throws RemoteException;

/* removes channel with OID <oid>
*/

public void channelRemove(String oid)
throws RemoteException;

56

/* adds clip with OID <clipOid> to channel with OID <channelOid>
* throws AccessFailedException if channel is private and <caller> not

* owner

* throws ObjectNotFoundException if channel not found

public void channelAddClip(User caller, String oid, String clipOid)
throws RemoteException, ObjectNotFoundException, AccessFailedException;

/* adds clip with OID <clipOid> to channel with OID <channelOid>
* throws AccessFailedException if channel is private and <caller> not

* owner

* throws ObjectNotFoundException if channel not found

public void channelRemoveClip(User caller, String oid, String clipOid)
throws RemoteException, ObjectNotFoundException, AccessFailedException;

/* finds channel with OID <oid>
* throws ObjectNotFoundException if channel not found

public Channel findChannelBy~id(String oid)
throws RemoteException, ObjectNotFoundException;

/* finds home channel for user <caller>

* throws ObjectNotFoundException if channel not found

public Channel findHomeChannel (User caller)

throws RemoteException, ObjectNotFoundException;

/* finds all channels owned by user <caller>

* returns zero-length array if none found

public ChannelEl findChannelsForUser(User caller)

throws RemoteException;

/* finds all channels owned with name <name>

* returns zero-length array if none found

public Channel [] findChannelsByName (String name)

throws RemoteException;

}

57

Appendix B

Library class specifications

B.1 Web-based connection libraries

B.1.1 MXWebUtil SMIL upload library class

package edu.mit.media.ic.lib;

public class MXWebUtil {

/* initializes the utility class with the server name
* and userOid

public static void init(String userOid, String server)

/* uploads <smilString> and instructs the server to
* create a SMIL file and clip with title <title>.
* returns the OID of the SMIL media clip object,
* which can then be used with the Clip class to
* get clip metadata (URL, etc)
* throws MXWebException in the event of an error.

public static String uploadSMILFile(String title, String smilString)
throws MXWebException;

/* updates the SMIL clip with OID <smilOid>,
* setting its contents to <smilString>.

* throws MXWebException in the event of an error.

public static void updateSMILFile(String smilOid, String smilString)
throws MXWebException;

}

58

B.1.2 Clip class

package edu.mit.media.ic.lib;

public class Clip {

/* creates a Clip object containing metadata
* for media clip with OID <oid>

public Clip(String oid);

/* returns false if clip does not exist

public boolean clipExistso;

public String getuido;
public String getTitleo;
public String getDescriptiono;
public String getTypeo;
public String getOwnero;

public String getUrl();
public int getFileSizeo;

public boolean isLocal();

/* returns a String representation of
* Clip properties

public String toStringo;

/* command line driver
* takes one argument, a clip OID

* creates a Clip object and prints information
* to stdout

public static void main(String[1 args);

B.2 Session bean connection library

B.2.1 MXControllerUtil library class

package edu.mit.media.ic.util;

public class MXControllerUtil {

/* initializes library class with properties filename

public static void init(String filename)

59

throws RemoteException;

/* gets java.lang.Object home object from JNDI name <homeName>
* Class object (className.class) must be specified as second
* argument. Returned object must be case to home type before

* use.

public static Object getHome(String homeName, Class classObj)
throws RemoteException {

Instance().lookup(homename, classObj);

}

B.2.2 Sample properties file

This properties file contains the name of the server and JNDI names of objects. It

can be customized by the client application.

SERVERNAME=miyazaki.media.mit.edu

USERCONTROLLER=mxEJB/UserController

MEDIACLIPCONTROLLER=mxEJB/MediaClipController

TAG-CONTROLLER=mxEJB/TagController
CHANNELCONTROLLER=mxEJB/ChannelController

60

Appendix C

Server Hardware and Development

Information

C.1 Hardware

The MediaExchange server currently supports database, application, web, and stream-

ing media servers. In the future, the computational workload will be split up between

at least two machines, one working as a database server and the other(s) working

as the application server or application server cluster. Also, serving the streaming

media can be offloaded to a dedicated machine for this purpose, with faster I/O and

commercial streaming servers. This scenario is also likely, using the Media Lab's

available servers for this purpose.

Currently the MediaExchange server hardware consists of a Pentium II machine

running at 300 MHz; 384 megabytes of RAM; and 40+ GB of EIDE disk storage

running off an Ultra-ATA/66 controller.

C.2 Development Environment

All the applications were developed using the standard command-line Java tools,

javac, java, and jar. The Websphere jetace tool was used to package the EJBs with

appropriate deployment descriptors, and the Websphere Administration Console was

61

used to monitor, control, and EJB-compile and deploy applications.

Oracle SQL+ was used for database administration.

62

Bibliography

[1] Java language to idl mapping: Object management group document ptc/99-03-

09.

[2] Scott Ambler. Ambysoft white paper: Mapping objects to relational databases.

1999.

[3] J. D. Davidson and D. Coward. Java Servlet 2.2. Spefication. Sun Microsystems,

Palo Alto, CA, 1999.

[4] Ejb!now website: http://www.ejbnow.com.

[5] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. Design Pat-

terns: Elements of Reusable Object- Oriented Software. Addison-Wesley Profes-

sional Computing Series. Addison-Wesley, Reading, Massachusetts, first edition,

1994.

[6] V. Matena and M. Hapner. Enterprise JavaBeans 1.1 Specification. Sun Mi-

crosystems, Palo Alto, CA, 1999.

[7] Richard Monson-Haefel. Enterprise Java Beans. O'Reilly, Cambridge, Mas-

sachusetts, first edition, 1999.

[8] E. Pelegrf-Llopart and L. Cable. Java Server Pages 1.1 Specification. Sun Mi-

crosystems, Palo Alto, CA, 1999.

[9] Bill Venner. Inside the Java Virtual Machine. McGraw-Hill, New York, New

York, first edition, 1998.

63

[10] Andreas Vogel and Keith Duddy. Java Programming with CORBA. John Wiley

and Sons, New York, New York, second edition, 1998.

[11] Websphere applicaton server documentation: Writing enterprise beans in web-

sphere, version 3.0.

64

