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Abstract

The Internet Domain Name System (DNS) is a distributed, hierarchical and flexible system
for the mapping of names to matching resource records. Caching was designed into the
DNS to improve response time and reduce wide-area network traffic. This thesis describes
a study of a series of traces taken of DNS-related traffic at MIT's Laboratory of Computer
Science. A macroscopic overview of the traffic types is presented as well as a more in-depth
look at the actual performance of caching in the system.

We find that an DNS traffic is a very small percentage of the local network traffic.
Caching appears to be 90% effective in answering queries out of cache. We examine the
effects of aggregation and DNS time-to-lives on cache performance. Trace-based simulations
allow us to conclude that the current levels of client aggregation and time-to-live values on
DNS records work well for cache performance; increasing either would only give limited
improvement. This work additionally provides a basis for future research in this area.
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Chapter 1

Introduction

The Internet Domain Name System (DNS) is a distributed, hierarchical and flexible naming

system which provides for the mapping of names to resource records. In particular, this

system is used to map familiar hostnames to their corresponding Internet Protocol (IP)

addresses [18]. Such a naming system provides two distinct benefits. First, a level of

indirection allows administrators to assign specific physical resources to logical names. For

example, when people refer to a name such as www.mit .edu, the naming system can be

configured to refer to any machine that is a web server for mit . edu. This mapping could

even be dynamically adjusted to provide a form of load balancing. Second, logical names are

preferred by humans since they are much easier to remember than numeric addresses such

as 18. 181.0.31. Because of these two features, the DNS plays a role in the establishment

of almost every network connection across the Internet. A large number of different records

are managed under this system and it must therefore be highly scalable in order to be

successful.

Scalability of the DNS is handled in several ways. First, management is hierarchical

and distributed. Second, replication and caching help reduce load on any single server. The

architecture of DNS is such that no single organization is responsible for storing the entirety

of the mapping between names and resource records. Rather, the namespace is broken up

hierarchically and sub-trees are recursively delegated into manageable portions. In the

end, a client asking for the value of a name must ask a server that has been appropriately

designated as authoritative for the portion of the namespace (or domain) to which the name

belongs. The process of searching the namespace for a particular mapping is called name
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resolution.

It is possible, and indeed likely, that the particular server responsible for a name's

binding may be located far from the client performing the query. Because users often

make network connections to hosts far from their local domains, there is necessarily some

latency prior to the establishment of any network connection causeed by the name resolution

process. Therefore, clients generally cache the results of past queries for use in future

resolutions. Caches hold these results for an amount of time that is set by each authoritative

server for each record. This time-out is called a time-to-live (or TTL). Since caching also

obviates the need to contact servers, it also reduces the load on those servers that might

otherwise be involved in the resolution.

A key research question is whether DNS caching is necessary and effective given today's

workload. The actual effects of caching in reducing resolution latency and network traffic

has not yet been extensively studied. While caches on processors often benefit from locality

of reference, the workload of a DNS cache may be highly variable and not able to benefit

from temporal locality at all. The goal of this thesis was to estimate the actual useful-

ness of caching as currently deployed in the Domain Name System under today's complex

workloads. In particular, this thesis investigated the actual hit rate of DNS caches under a

real workload and simulated the effects of different levels of client aggregation and different

default TTL distributions.

We found that the apparent hit rate of DNS caches is high, at somewhere between 80-

95%. Under simulation, we found that aggregation of clients using a single server tends

to increase overall cache effectiveness but the usefulness falls off quickly beyond clusters of

twenty to twenty-five clients. Finally, short TTLs negatively affect cache performance as

might be expected, but again the improvement from increasing the TTL of a record is not

useful beyond a certain point.

The rest of this chapter will present a more detailed introduction to the Domain Name

System and then give the overall goals of the thesis. The chapter concludes with a survey

of the related work in this field. Chapter 2 presents the methodology used in this study.

The results of the analysis are then presented in chapter 3. Finally, our conclusions and

suggestions for future work are summarized in chapter 4.
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1.1 Overview of DNS

An excellent repository of information about the DNS is maintained online at the DNS

Resources Directory [19]. This section describes the parts of the DNS relevant to this

thesis. We begin with an overall view of the system's architecture. Within the context

of this architecture, a detailed description of the resolution mechanism is given. We close

with a discussion of caching. Figure 1-1 summarizes the various points described in these

sections.

App Root
server

Stub Resolver
.com

e dserver

Local Network Itre N
4 server I

1. Host asks local server for address of www.cnn.com
Local 2. Local DNS server doesn't know, asks root.
Recursiv Root refers to a .com server
DNS ser er 3. The .com server refers to a CNN server

4. The CNN responds with an address

Local cae 5. The local server caches response

Figure 1-1: DNS Architecture

1.1.1 Overall design

The abstract model of the DNS is that of a database that maps human-readable names

to records. Broadly, the namespace is divided into classes and then further into record

types. Some allowed record types include addresses, aliases, nameserver pointers, inverse

pointers. Several application specific types exist as well. For each record type, a given name

may have multiple simultaneous mappings. This provides a very general purpose naming

system that can be used for many purposes. However, for all practical purposes, all records

fall into a single class, namely class IN, or the Internet class. This thesis considers mostly

name-to-address mappings (known as A records).

The DNS implements this abstract model by storing the name bindings in a distributed

fashion. Names take the form e.d.c.b.a. and responsibility for the namespace is divided
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hierarchically into domains and sub-domains. Segments of the name that are further to

the right are higher in the hierarchy. Servers are then designated as authoritative for a

sub-domain of the root. These servers can then choose to delegate further sub-portions of

their domain to other servers. Any of these servers may be replicated to improve reliability.

The set of names controlled by any particular server is called a zone.

For example, the root is nominally responsible for the name wind. ics .mit . edu. How-

ever, since the root cannot maintain a list of all names, it delegates authority for that name

to a server responsible for all edu names. This server in turn delegates control of mit . edu

names to some servers controlled by MIT. Since LCS is a separate sub-domain, MIT has

delegated control of it to an LCS internal server. That server is the authoritative source for

information regarding the name wind. ics .mit . edu.

1.1.2 Queries

Client software called a resolvers are used to query the DNS namespace. A resolver typically

contains some amount of glue which allows it to find a server authoritative for the root of the

namespace. When presented with a name to resolve, the resolver can ask a root server which

will then refer the resolver to the appropriate server which has been delegated authority for

the particular name in the query. The resolver is then responsible for following the referrals

until the answer to the query has been found.

For example, suppose a resolver wishes to look up wind. ics .mit .edu. Knowing nothing

at all about the delegation, the resolver must ask the root server. The root will not know

the answer, but it will know the authoritative server for edu (and possibly even mit .edu).

The resolver must then ask the mit . edu name server, which returns the addresses of the

authoritative servers for 1cs .mit .edu. It is an LCS server that will return the actual answer

to the resolver.

This style of resolution is known as an iterative lookup: the resolver iterates by repeating

its request until it reaches a server that knows the answer. Client hosts, however, typically

do not implement this full functionality. Instead, they only implement what is called a stub

resolver. These resolvers know about a small fixed set of local servers to which it forwards

all of its queries. By setting a recursion desired bit in its request, the stub resolver asks the

local server to resolve the name on its behalf. Upon receiving such a query, these shared

servers then either forward the query on to another server, or perform the iterative look up
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themselves. The stub resolver therefore performs a recursive lookup.

Figure 1-1 illustrates these two resolution mechanisms. The client application uses a

stub resolver and queries a local nearby server for a name (say www. cnn. com). If this server

knows absolutely nothing else, it will follow the steps in the figure to arrive at the addresses

for www. cnn. com. Many machines use shared servers to offload the work of implementing

and operating a full resolver.

1.1.3 Caching

The system described above would suffer from extreme load at the central server and long

latencies at the clients who would have to incur multiple network round-trips before getting

an answer. The standard solution to reduce such problems is to employ caching. In fact,

caching has been an integral part of the DNS since its description in RFCs 1034 and 1035

[13, 14]. In general, caches exploit the idea of locality - since it is often the case that the

set of items recently accessed will be accessed again in the near future, we can benefit by

storing these items where we can get at them faster. Like caches in other systems, DNS

caches also hope to exploit this locality of reference and relieve the problems of load and

latency. This would benefit both servers and clients of the system.

Consistency. In any distributed data system, maintaining cache consistency is a difficult

problem. The design of the Domain Name System sacrifices consistency in favor of improved

access time. However, the source of any given record is allowed to control the amount of

consistency sacrificed by trading off with latency. This is handled by allowing a zone

administrator to specfiy a time-to-live (TTL) for each record. A record can then only be

cached for the duration of the TTL. Upon expiration of this TTL (measured in real time),

a cache must expunge the record. Thus, if a binding with TTL 1 is changed, the old value

should remain active in the network until 1 seconds after the change took effect on the

authoritative server. Implementations must be careful to correctly manage the TTL so as

not to violate these semantics. For example, when a forwarder answers a query out of cache,

it must set the TTL on the response to the current decremented value so that an answer is

not valid beyond the time specified by the authoritative server when it was originally sent.

Ideally, the TTL would be very long for names with fairly static bindings and shorter for

names which might change often. When a change is known to be pending, the ideal strategy
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would be for the source to lower the TTL of the name in advance of the actual change. After

the change, the TTL could be restored to some reasonably large value. This would allow

continued service and caching but restrict the amount of time in which stale data is kept in

caches. However, very few people handle DNS name changes this way. Instead, names are

generally just changed, while the TTL is held unchanged. Also, these values are generally

fairly short and much less than the rate of change of the actual binding.

Replacement policy. Time-to-live values also function to keep caches from growing un-

boundedly, thus obviating the need for any specific replacement policy. In general, DNS

caches do not limit the cache size (as recommended by RFC 1536 [11]). Also, caching is

usually a manageable prospect since DNS records are reasonably small and memory is fairly

cheap.

Multi-level caching. Caching of DNS records is permitted at multiple levels. First, any

machine running a full resolver typically has a cache. This may be a local workstation or

a shared server. Shared servers may also be chained to provide increasingly larger client

sets. This idea of a cache hierarchy is similar to those deployed for web proxy caching.

Because there is no real limit on the size of these caches, increased sharing improves cache

performance when the machines sharing the cache also have overlap in the sets of names

accessed.

In addition to resolver caching, there are also occasional application level caches. For

example, web browsers like Internet Explorer and Netscape both do application level caching

of names. However, since the library calls that do name resolution do not provide actual

TTL information, these applications typically cache the results of all lookups for some fixed

period of time. For example, most versions of Netscape use a strict timeout of fifteen (15)

minutes, regardless of the actual TTL set by the server.

Cache misses. We can categorize the cache misses experienced by a collection of machines

using the DNS into three types:

" Compulsory or cold misses - the very first time a name is accessed at a resolver,

there is no way for the name to be in the cache. Thus, these misses are unavoidable.

" Expiration misses - records are removed from caches when their lease (time-to-live)
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expires. Thus, many non-compulsory misses occur because the TTL on a record has

expired.

* Sharing misses - as discussed above, aggregation hopes to increase the effective

locality of records that are resolved. In some cases, machines were not sufficiently

aggregated and thus a request results in a cache miss that could have been answered

by another cache.

1.1.4 Resolver context

One important problem of naming is determing the correct context in which to resolve a

name. In most cases there is a search path which provides a series of default contexts to

try. RFC 1535 [9] discusses a potential security flaw and a proposed correction in the search

paths used by DNS resolvers. Prior to this proposal, resolvers would typically attempt to

resolve names that are not fully qualified by tacking on the decreasing sub-names of the

domain name of the host doing the query.

For example, at some company (say, in the domain example . com, one might type the

name www and expect that the search path would provide www. example. com. An unfor-

tunate side effect of this is that resolving the name www.mit.edu would first result in

checking for www .mit . edu. example .com. When this fails, the resolver would then check

www.mit .edu.com. A malicious person could exploit this behavior by registering the do-

main edu. com and placing appropriate names in that domain to point to his own machines.

To solve this problem, RFC 1535 recommended that if a resolver implements an implicit

search list, the scope of the list should be limited to local sub-domains. Any additional

search lists outside of the local sub-domain must be explicitly specified by the user, and no

default explicit search lists should be specified by the resolver software.

One interest effect of having a search path is that the resolution of a name provided

by the user may require serveral searches before the correct context is found. These search

path misses can result in excess network traffic. As a result, it will also increase the latency

experienced by clients due to the increased number of network round-trips needed to resolve

the name.

This effect is partially mitigated by a heuristic that causes resolvers to attempt to resolve

a name with no additional context if it is presented with a dot in it. In other words, a query
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for www will result in the explicit behavior described above. However, a search for www. us

will check for the presence of the name "www. us." before using the search path to consider

www. us .example . com. It is unknown what fraction of resolvers implement this behavior.

1.2 Project Goals

The primary goal for this project was to establish an understanding of the how well DNS

caching performs in the real world. This goal is interesting for at least two reasons. First,

very few studies have focused explicitly on this important part of the Internet's architecture.

Second, the Internet has grown tremendously since the DNS was designed and its needs have

changed since then. No longer are all the old assumptions about the namespace true -

instead, there are mobile hosts, dynamically load-balanced bindings, and new extensions

introduce larger and more complicated records.

Fundamentally, the DNS performance is affected by caching. A baseline system just like

DNS but without caching would almost definitely incur noticeable network delays. In order

to precisely assess the performance of the DNS, we focus on three hypotheses:

" The hit rate on DNS caches is very high.

" Aggregation of queries allows for improved cache hit rate.

" Longer TTLs would improve cache hit rate.

We now discuss each of these in turn.

1.2.1 Cache hit rate

Hit rate is generally the fundamental measure of the success of a cache. We would like to

know that the implementation of the DNS today is giving us a good hit rate on caches.

We will discuss several metrics for measuring this. Based on empirical metrics, we estimate

that the actual hit rate is approximately 95%.

In addition to the actual hit rate, we would like to understand more specifically how

and why we achieve certain hit rates. This can be done by examining the causes of misses.
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1.2.2 Cache aggregation

The utility of aggregating clients has been well-studied in the area of web proxy caches

(see discussion in section 1.3). One might reasonably suspect that similar results could be

obtained for DNS workloads - however, it is unknown whether the DNS workload would

lead to similar results. DNS also has a much better defined caching policy since all records

are cachable and explicit cache timeouts exist on all records. Thus, we wanted to study

how much aggregation currently exists between DNS clients and how much aggregation

affects the overall hit rate. Many DNS clients also employ application level caching and

this caching may actually have more impact than large aggregated caches.

Based on simulations of cache behavior driven by trace data taken at LCS, we believe

that aggregation mostly has the effect of equalizing the cache hit rates between different

caches. Cache hit rates quickly converge to roughly 80% as aggregation increases.

1.2.3 Impact of TTL settings

The performance of a cache is driven both by its workload and the elements that are present

in the cache. In DNS caches, the contents of the cache are affected both by the workload

and the lease times given for different records. Due to the desire for flexible DNS mappings,

zone administrators have been using relatively short TTLs. However, many people believe

that low TTLs would drastically decrease DNS cache performance and recommend setting

TTLs on the order of one day.

We find that most TTLs are set near one day in length, but many are also shorter.

Based on simulation results, we find that variation in the length of TTLs does not have a

significant impact until it falls below two hours. However, this fall-off is fairly gentle until

they fall below two minutes.

1.3 Related Work

1.3.1 Known statistics

The impetus for this thesis stemmed partially from a study of the DNS done in 1988 by

Danzig et al [7]. Their analysis concluded that over 8% of packets and 4% of bytes on

the NSFnet were due to DNS traffic. However, much of this was wasteful - during a 24
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hour trace, DNS consumed roughly twenty times the amount of bandwidth than optimally

necessary. The paper suggests a couple of problems with DNS but the most noticeable ones

were a result of implementation errors in resolvers. These included:

o Incorrect handling of referrals in recursive queries. When a server can not answer

a query, it will often return a referral to a server which it think can authoritatively

answer the question. Sometimes, however, the follow-up server would issue a referral

to the first. This would create loops, causing traffic without any useful result.

o Broken retransmission timing. Determining good back-off parameters is somewhat

tricky and many resolvers were observed sending more packets than necessary because

they did not wait long enough for a reply. A query would sometimes be retransmitted

too quickly or to too many servers.

o No detection of server failure. Many resolvers would not correctly detect that a server

had gone down; as a result, it would continue to retransmit its query to the server

indefinitely.

Other factors contributing to DNS traffic include leaky caches and lack of negative caching.

The paper concluded that as new versions of resolvers which correct many of the above

implementation errors get deployed, some of these problems will disappear. However, since

it is unlikely that a bug-free Internet will ever arise, they argued that DNS servers should

be implemented to detect and correct the known resolver flaws.

Work by Thompson et al [21] provide additional affirmation on the significance of DNS

related traffic in a wide area network. Their paper takes a very close look at the traffic on

two of MCI's trunks over a one-week period in May 1997. They observed that DNS load

tended to follow the link utilization, but traffic comprised 2-5% of packets and 1-2% of

bytes but as much as 15-20% of flows on the links studied. The source of the traffic was

mostly server-to-server, with only 10% of the traffic being between clients and servers. This

last statistic makes sense since most clients are configured to send requests to local servers

which then make wide-area queries.

This thesis hopes in part to extend on some of these results.
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1.3.2 Aggregation and web caches

One area of extremely active research has been in assessing the performance of web caches.

Two representative papers are [8, 22]. We make the hypothesis that DNS cache behavior

will probably be somewhat similar to the observed behavior of web caches; this is plausible

since the web is a major portion of TCP connections and DNS queries are largely driven

by the need to find an IP address with which to make a TCP connection.

In general, cooperating web caches (i.e. increased aggregation) does improve the hit rate,

but not beyond a certain point. In detailed comparisons, [22] concludes that aggregation is

very useful when group sizes are still relatively small but it soon levels off so that increased

size only leads to very small improvements in overall hit rate.

Our results show that DNS caches exhibit similar behavior.

1.3.3 Selecting good TTLs

The TTLs in the DNS system are very similar to the concept of leases. Leases were in-

troduced in [10] where they are presented in the context of filesystems. While the paper

deals largely with the problem of maintaining consistency in the face of writes, the model

and arguments presented is of some relevance in deciding on TTLs for DNS hostnames. In

particular, it makes the simple argument that files that are written often should have lower

leases, whereas more static files can have longer leases.

In the specific context of the Domain Name System, RFC 1537 [6] makes the argument

that timers in the DNS are generally set "(far) too low" and that "this causes unnecessary

traffic over international and intercontinental links." Obviously, the choice of time-to-live

is a problem but like [10], the RFC only offers rough guidelines. In this thesis, the effects

of specific TTL settings is made clear.
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Chapter 2

Methodology

In this chapter, we first describe and explore the details of the data collection process.

Second, we outline the techniques used in our analysis.

2.1 Data Collection

To answer the questions proposed in section 1.2, it is necessary to observe DNS behavior at

a very fine grained level. Ideally, one would observe queries as they orginated from clients

and follow them as they got resolved. This would present a complete view of the system,

from the contents of all messages to the latencies involved in at each level. This basic

methodology was used by Barford et al. in a study of web traffic at Boston University [4].

Unfortunately, it would be very difficult to implement this sort of instrumentation in a

broad study of the DNS for two key reasons:

" A larger number of hosts would need to be studied. Servers would need to be instru-

mented to record this data as well.

" At the time of the BU study, the only viable web browser was Mosiac. Since Mosaic

was open source, this made making changes easy. Now, there are a large number of

proprietary operating systems and web browser combinations deployed.

These factors make instrumentation essentially unfeasible for collecting any significant cor-

pus of data.

We can avoid this problem by collecting network traces. By placing traffic collectors

at certain well-chosen locations, one can capture a broad spectrum of client behavior. Of
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course, this is necessarily less precise than any data that could be obtained through instru-

mentation. Nonetheless, trace collection is the only data acquisition method used in this

thesis.

2.1.1 Trace criteria

The architecture and protocols of the Internet DNS are independent of the network trans-

port that it is deployed upon. However, most DNS traffic uses the User Datagram Protocol

(UDP) [17], a connectionless protocol built on top of IP. This is because queries and replies

generally fit into single packets. By using UDP, DNS avoids the overhead of a stream-

ing, connection-oriented protocol such as TCP. For large transfers, DNS implementations

fall-back to using TCP.

This study focuses exclusively on UDP DNS traffic. On the assumption that most

packets are fairly short, we chose to collect the first 128-bytes of all UDP DNS traffic. This

assumption later turned out to be incorrect.

To fully understand the behavior of the DNS, it is necessary to have an understanding

of the workload that drives it. Since TCP is the primary transport for much Internet traffic

(such as web browsing or file transfer), packets related to TCP connection maintenance

were also collected. In particular, TCP packets indicating the start and end of connections

were captured. Of course, these are not the sole driver of DNS traffic - many applications

use different transports. However, bulk non-TCP transports are uncommon, non-standard

and undocumented. The exact load of these transports is not known or considered.

2.1.2 Privacy

In the ideal case, traces would collect raw packets as they appeared over the wire to provide

maximum flexibility in later analysis. However, user privacy is a critical issue to consider.

On the basis of DNS lookups alone, it is possible to construct very good guesses about the

behavior of users. For example, if Ben Bitdiddle was surfing over to www. playboy. com, he

would first need to discover the IP address of Playboy's web server. A DNS trace would

indicate that a DNS request for www.playboy.com is originating from a specific address.

Since today it is often the case that computers have only one regular user, reasonable

guesses can be made as to who is browsing what web pages (and when). TCP connection

information is even more explicit since they signal intent to transfer data.
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Thus, it was very important to ensure that the privacy of users on the network we were

monitoring. To protect against the kinds of analysis described above, we rewrote the IP

headers to hide the source and destination addresses. This allows the sending and receiving

hosts can be partially anonymized easily and uniquely. Each address was replaced with the

low-order bytes of its MD5 hash. This hash was salted with a random 8-byte string to make

brute force guessing of the original address more difficult. Since, only the low-order bytes

of the MD5 hash are used, the probability of collision is increased, roughly from 1 in 2128

to 1 in 23.

An additional goal was to be able to determine whether an address belonged to MIT,

even after rewriting. This was motivated by the fact that internal traffic is presumably lower

cost than traffic which goes off-net. In particular, DNS queries that stay within MITnet

are not quite as bad as those which must contact root and other authoritative servers. The

above address rewriting scheme was also augmented to optionally map all MIT network

addresses from 18.0.0.0/8 into 10.0.0.0/8. This further increases the probability of

collision slightly. In hindsight, this scheme could have been further adapted to preserve

additional topology (e.g. subnetting) information to allow for reasoning about machines as

groups easier.

2.1.3 Collection software and hardware

The simplest way to collect this data was to hook up a machine to a connection and collect

both the raw DNS queries and TCP connection initiation packets. In large-scale network

traffic collection endeavors, special software and hardware are occasionally needed - one

example might be the CoralReef project at CAIDA [2], which was used in [21]. For this

project, it turned out that the links we could monitor were much lower bandwidth (less

than 100Mbps).

A tool developed to anonymize tcpdump traces called tcpdpriv [12] was used to actual

dump network packets from the interface card. This tool makes use of the libpcap packet

capture library [3] to collect and store packets. It was necessary to extend tcpdpriv to

support the anonymization scheme described above.

The collection machine was an Intel PPro200 with 128 MB RAM running Linux 2.2.10.

The network card was a 100 Mbit Tulip Ethernet card. Data was dumped onto a 27GB

IBM UltraIDE disk.
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Time period 5 days
Distinct DNS clients 1,281
Distinct DNS servers 50,275
Query packets seen 5,486,669
Response packets seen 5,094,351
Distinct TCP clients 1,700
Distinct TCP servers 45,938
TCP connections 2,345,783

Table 2.1: High-level Statistics for the LCS weeki trace.

2.1.4 Trace description

Our data was collected on the border router of the MIT Laboratory for Computer Science

(LCS). The LCS network is large subnetwork of the main MIT network. The overall net-

work infrastructure at LCS is controlled by the LCS Computer Resource Services (CRS)

group; many research groups use the network, each of which has a different networking

configuration. The CR.S group set up a read-only feed of all incoming and outgoing traffic

to LCS to the data collection system described above. The attachment point is shown in

figure 2-1.

Traces were collected from 7 December 1999 to 9 January 2000. Despite the large

amount of data collected, most of the analysis in this thesis is done on the 5 days of DNS

traces taken from 3 January 2000 to 7 January 2000 (inclusive). This is the first week where

we might expect regular behavior from the network since the rest of the data was collected

either during vacation time or finals week at MIT. Limiting the data set size also made it

easier to process. For the rest of this thesis, this trace will be referred to as the LCS weeki

trace. High-level aggregate statistics for this sub-trace are presented in table 2.1.

Because this attachment point had access to all outgoing LCS traffic, it provided the

ability to gain a very clear picture of the client behavior that drives DNS queries. To take

that picture, the following information was recorded:

" Complete outgoing DNS requests and their responses.

" TCP connection maintenance packets.

Note that this trace contains only a subset of the total traffic sent over the link. As a

result, any conclusions drawn based on the traffic counts are only a lower-bound estimate
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Figure 2-1: LCS Trace Collection setup

- incoming queries (and their outgoing replies) have an unknown impact on the overall

distribution.

All IP addresses that originated from LCS were remapped as described in section 2.1.2,

other IP addresses were left alone. Only packets related to outgoing DNS requests and

outgoing TCP connections were collected. This gives a good picture of client behavior while

still preserving the privacy of users. To further assure privacy, all packets from anyone who

wished to opt-out of the collection were ignored. Finally, people who wanted to completely

obfuscate the origins of their requests were suggest to use caching DNS servers and the LCS

WWW caching proxy server.

2.2 Analysis Methodology

The collected data was analyzed in two ways. The first type of analysis involved direct

analysis of the collected data. The second type used the collected data as a basis for

simulation. In this section we describe the methods used for both of these analyses.

2.2.1 Direct analysis

Statistics were generated by post-processing the libpcap-format trace files. While there

exist programs that already do some analysis of these trace files (e.g. tcptrace [16]), these

programs are very general and do not perform very well on the multi-hundred megabyte

trace files collected. Thus, custom C programs were written to summarize the various
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statistics presented in this thesis. The specific algorithms used vary and are described in

chapter 3. Implementing the algorithms and appropriate data structures was one of the

more time consuming (and educational) parts of this thesis. Performance was a major goal

and to that end, a few general points are worth noting here:

" State is expensive and should be minimized - in general, aggregate handling of many

trace files was difficult any time per query state was kept, due to the large number of

different queries seen over time. This would lead to thrashing in the virtual memory

system (even on machines with 256 MB of RAM) and extremely poor performance.

" Custom post-processed file formats can greatly speed repeated processing by essen-

tially eliminating parsing costs. This greatly reduces the size of the data and also

allows it be held in the buffer cache in Linux, which saves even more time by avoiding

disk seek overhead.

" Designing data structures to be page-aligned allows for both more efficient and more

effective use of memory.

2.2.2 Simulation

In several cases, it was useful to have an idea of the performance of the DNS under conditions

different from those in which data was collected. We used trace-driven simulations to

understand these conditions. The exact simulation algorithms are described in the relevant

sections of chapter 3.

For some simulations, a database of TTLs for different records was useful. To avoid hav-

ing to write a separate database system, the freely available SleepyCat Berkeley Database

[15] was used. The SleepyCat system is easy to use and provides easy persistent storage of

the database which allows re-use.
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Chapter 3

Analysis

In this chapter, we present the technical analysis needed to determine the answers to the

questions posed in section 1.2.

Fundamentally, we are concerned with the overall performance of the various DNS caches

deployed on the Internet. Thus our analysis is focused on measuring this.

3.1 A Macroscopic View

Very few recent statistics are available about DNS traffic. This section describes some

overall patterns of the traffic we see. We will find some of these numbers useful in our

estimations later on.

3.1.1 General statistics

The amount of DNS traffic in LCS traces generally follows the standard diurnal patterns.

For the weeki trace, we can see this in figure 3-1. Though the actual levels vary widely,

there are rough peaks in the middle of each day.

The basic statistics about DNS traffic is summarized in table 3.1. The total packet

rate is for all packets (both incoming and outgoing) but all the other rates reflect only the

outgoing subset of the total traffic transiting the LCS border. Nonetheless, we can see that

egress DNS-related packets make up less than one percent of the total packets.

The query packet sizes are fairly consistent, with only a very small standard deviation.

This result is reasonable since the variation in query packet sizes is primarily due to variation

in the length of the name being looked up - names, therefore, do not vary significantly
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Figure 3-1: DNS Packet Rates for weeki trace. Dates indicate midnight.

Average total packets/sec 9000
Average new TCP connections/sec 10.14
Average DNS packets/sec 25.94 (~ 0.2%)
Average query packet size (bytes) 39.9 ±6.2
Average response packet size (bytes) 160.8 ±66.5
Internal to root+com queries 531,614 (10.4%)
Authoritative responses 1,815,123 (35.6%)
Referrals 3,005,402 (59.0%)

Table 3.1: Traffic statistics over the LCS weeki trace
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in length. On the other hand, response packets vary widely in size. In contrast to queries,

responses tend to have widely varying contents - some packets merely contain a single

record in answer to the query, but other packets may contain multiple records including

references to name server and other additional information which were relevant to the query

made. As a result we see a large standard deviation in the response packet size.

This information can also be useful in estimating the best packet capture size. Factoring

in overhead for link, network and transport level headers, a packet capture size of 256 bytes

should be used if capturing entire packets is desired. On the other hand, the ordering of

data in the DNS packet is such that the answer section is in first so shorter capture lengths

will still contain useful information.

On average, there are roughly two to three times as many DNS packets per second than

new outgoing TCP connections. We will attempt to explain this in the next section. One

possibile explanation is that the averages have been skewed by abnormal hosts.

3.1.2 Understanding the client population

As soon as some statistics were calculated, it become clear that there were certain hosts on

the network which behaved in extremely non-average ways. In fact, in many cases where we

were testing for particular conditions or actions, we found that a single host would generate

between a third and a half of the total number of matches would be generated by one or

two hosts. For the purposes of the statistics in this paper, we will be ignoring these hosts.

3.1.3 TTL distribution

In this chapter, we will often be using address records obtained from the traces themselves

for simulation purposes. This gives a more accurate view of the state of the DNS than

doing lookups at the time of simulation. It is also much more efficient. Figure 3-2 shows

the distribution of TTLs associated with address records in the weeki trace. These TTLs

were collected by examining all DNS response packets in the trace and extracting the highest

TTL for any particular IP address. This will likely be the TTL when the record is obtained

from the authoritative server. Most TTLs are somewhere between six hours and one day

in length, which is fairly reasonable [6].
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Figure 3-2: Distribution of address record TTLs

3.2 Measuring the Hit Rate

The most basic question to ask about a cache is how many of its accesses it can handle

without having to request an answer from its backing store. In this section we try and

estimate the actual hit rates experienced by caches in our study.

3.2.1 Hit rates from TCP connections

In some sense, every DNS query represents a cache miss. In the traces collected, each

outbound query represents a query that could not be satisfied purely by the internal caching

hierarchy used by a particular client. However, this does not give us an idea of how often

DNS caches succeed in satisfying questions purely internally. In order to estimate this,

we use the idea that TCP connections are the workload that drive DNS queries. In the

Protocol Hit Rate

SMTP (Mail) 97.52%
Web 91.34%
Ident 93.15%
Login (ssh/telnet) 80.62%
Overall 95.68%

Table 3.2: Hit rates based on DNS responses that are correlated with TCP connections.

Outlying hosts are ignored.
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worst case, one would have a new DNS query for each time an outbound TCP conection is

made. To estimate the hit rate, we count the number of TCP sessions whose start is closely

preceded by a DNS response packet containing the destination of the TCP connection in its

answer section. A four second sliding window was used to match DNS responses to TCP

connections. Looking at the ratio of connections for which this is false to those which it is

true gives us an estimate of the hit rate. Using this metric, we obtain the results shown in

table 3.2 from looking at the weeki trace.

For each of those misses we want some estimate of many DNS packets are involved.

To estimate this, we look at the number of referral packets that we see over the network.

Referrals happen when a server does not know the answer to a question, but does know where

the answer can be found - in that case, it sends a response packet with this information in

it. The typical case for this is a name that is delegated but for which none of the delegation

information has been cached.

Approximately two-thirds of the DNS responses in a typical trace are referrals. This

roughly implies that a typical DNS query takes three requests to resolve a typical name.

However, the number of referrals is not necessarily equally distributed across queries as

show in figure 3-3. The graph shows the ratio of referrals to queries sent on a log-log scale.
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Figure 3-3: Distribution of referral ratios for LCS weeki trace.

There are two main peaks - those that require one referral to resolve and those that require

zero. This indicates that for the most part, queries require very few referrals to look up

hosts. However, there are some names which receive more referrals than queries. These are
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likely to be error cases where servers are either down or misconfigured.

3.2.2 Evaluating hit rates

The LCS hit rates appear to tell us that on average, one in ten TCP connections to web

servers requires a DNS resolution. In order to understand whether or not these results are

actually good, we compare these results to known results for web proxy caches. As argued

in section 1.3.2, it is plausible to believe that DNS cache behavior should be correlated in

some way with web cache behavior.

It is generally accepted that web object popularity obeys a power law relationship such

that the n-th most popular page has a frequency proportional to n- 1 [5]. The absolute best

case web cache performance seems to give approximately 70-80% hit rates [22]. Thus our

observed hit rate of 91.34% seems to be much better. Most likely, DNS caches achieve hits

when web caches would not since different web objects may be requested from the same

host.

3.3 Cache Aggregation

One might hypothesize that cache hit rates could be improved by aggregating hosts. By

aggregating hosts to use a single cache, one client might get a hit on an entry loaded into

the cache by another client. This section discusses this concept and attempts to measure

its actual usefulness.

3.3.1 Current levels

The first step in understanding our hit rates and the effects of aggregation is to examine

the actual patterns of aggregation at LCS. This can be determined from the LCS trace data

via an extension of the method used to estimate actual hit rate. In particular, a client is

presumed to use a particular server s if a TCP connection originates from the client to some

IP i "soon" after a DNS response containing an address record pointing to i is sent to s.

By iterating over traces, an approximation of the actual clustering used by clients over the

trace period.

The results of running this on the weeki trace gives the numbers shown in figure 3-4.

The graph displays first the number of servers that each distinct client uses. It also shows
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Figure 3-4: Client and Server aggregation at LCS

the number of clients that each distinct server appears to have. For clarity, these exact

numbers are binned.

The vast majority of clients use a small number of servers - usually they use three or

fewer different servers. This is shown in the tall (truncated) thin bar in the graph. On the

other hand, there are some clients that appear to use more than twenty servers over the

course of the week. These are probably dialup machines and laptops using DHCP - by

using IPs as identifiers, we collapse different physical machines which may be resuing the

same IP address. However, this has not been directly verified because of the IP masking

used to anonymize the data.

Most servers have small groups of approximately 20 clients, though there are three

servers that have a very large number of clients (reaching up to 400 each). This effect is

likely due to the fact that each research group within LCS has a caching name server in

addition to using a set of central servers which are available to the entire lab.

3.3.2 Simulated behavior for various aggregation levels

To estimate the effects of aggregation, a driver was written to take a TCP connection work-

load and simulate cache behavior given different parameters. We discuss how aggregation

levels affected the results.

To begin, the DNS results from traces were combined to form a database of stock TTLs

to be used for particular address records. This allows the simulator to provide realistic TTLs

for the different addresses being contacted. The clients involved in the TCP workload were

then divided into groups randomly and each group was assigned a single cache.
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The TCP workload was then processed in the following manner. For each outgoing

connection, let c be the client and i be the destination IP address.

1. Identify what group c is in and access the cache for that group.

2. If i is in the cache...

. . .. and has not expired due to the time-to-live, then this is a hit. There would

have been no external DNS lookup caused by this TCP connection.

S... and has expired, this is an expiration miss. Record the cache miss and refresh

the lifetime of the record.

3. If it is not in the cache then we have compulsory miss. Look it up in the TTL database

and store it in the cache until the TTL expires.

At the end of the trace, we have a record of the number of total accesses for the group and

the number of hits in the cache. Additionally, we have classified the misses seen.

This simulation methodology has a few weaknesses. First, it assumes that each host

belongs only to a single group. While obviously not the case, this assumption may be

acceptable in the sense that clients often query DNS servers in order, only trying other

known servers when the primary server fails. While we do not have hard evidence to

support this, the aggregation study above shows that most of the TCP clients actually

appear to use only one server.

Second, this algorithm does caching based solely on destination IP address. Typically,

TCP connections are driven by a request for a name and not an address. Thus, this

algorithm makes the implicit assumption that the name to IP address mapping is essentially

1-1. In reality, a host may have two completely different names with the same IP and have

different TTLs on them. There is also no guarantee that client would have contacted this

exact IP (in the case of a record set where any of the entries would have sufficed). However,

since TTLs for a binding are typically the same if they have the same label and type, the

use of the IP address in place of the name probably has very little impact on the actual

results.

This simulation was run through the gamut of different aggregation levels. At the lowest

extreme, each host does solely local caching and there is no sharing done at all between

caches. This case is of interest since it may be the case that the cost of deploying shared
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caching does not outweigh the benefits gained from improved hit rate. Above this level, we

simulated groups of different sizes up to the case where all hosts were sharing a single large

cache.

For each aggregation size, the 965 hosts involved in the trace were divided into random

groups and cache performance based on the (static) workload were simulated. This process

was repeated four times and the results averaged. The results of this are shown in figure 3-5

The ranges marked indicate the minimum and maximum hit rates seen over the four trial
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Figure 3-5: Cache hit rates under simulation. Verticial bars indicate range of hit rates.

runs. As can be seen, aggregation does give an improved hit rate over no aggregation, but

this quickly peaks at approximately 80%. Worst-case cache performance definitely improves

as well, though at a slightly slower rate, leveling out after approximately twenty hosts are

in a group. This is almost exactly the level of aggregation that observed in the system. Of

course, overall performance does increase slightly as we continue to aggregate. Though not

shown on the graph, we can achieve a maximum hit rate of 84.9% if all hosts share a single

cache. On the other hand, the average hit rate for the no-aggregation case is 60.5%.

3.3.3 Application caching: hit or miss?

To get an understanding of where cache hits actually occur, the simulator described above

was extended to estimate the amount of hits that could have been handled by application-

level caching. Application caches are simply a higher-level optimization; in reference to

figure 1-1 the client would have its own local cache that would use the local network cache
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as essentially an L2 cache. Because there is no guarantee that the local host resolver

does any caching, applications wishing to avoid the cost of even local network messages

will do caching at the application-level. Popular examples of applications that do this are

web-browsers such as Netscape and Internet Explorer. Thus, a cache hit could occur at

many levels - the application, host resolver, a local recursive DNS server or even perhaps

further down in a query chain. We would like to know how many of the hits occur at the

application (or host) level as opposed to the number that occur at local recursive servers or

other forwarders.

Unfortunately, this effect is somewhat difficult to quantify exactly since we do not actu-

ally have access to client applications and caches. We can only make deductions based on

queries that leave the network and the TCP connections that are made in the meantime.

One trick that we can take advantage of is that we know how long browsers cache records.

We simulated the cache behavior of a two-level cache hierarchy against the weeki trace.

Under simulation, each TCP connection first attempts to see if there is a record for the

host in the local cache - this cache attempts to simulate an application cache that holds

all entries for fixed period (e.g. fifteen minutes). If the host is not in this cache, we look at a

group cache; these groups have been randomly assigned, just as in the simulation. described

above. This cache operates as normal and stores entries for the actual duration of the TTL

specified by the server.

1.0-

0.8-

S0.6-

0.4-

0.2-

0.0
0 500 1000

Application cache TTL (seconds)

Figure 3-6: Average hit-rate for application caches with fixed DNS TTLs. Vertical bars
indicate one standard deviation.
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Figure 3-6 shows the average hit rate at each host's application cache as a function of

fixed TTL used in the application cache. Each group contained (roughly) twenty-five hosts.

Note that here the vertical bars here indicate the standard deviation instead of the range

- in all cases, the range varied roughly from zero to one.

It is clear that increasing the fixed TTL does improve the local hit rate (as might be

expected) but the average rate is very low, at around 60%. The standard deviation remains

fairly constant, giving a large variation of about 30% in the performance of individual

caches. Note in particular that for a fixed TTL of 900 seconds (fifteen minutes, the Netscape

default), we have a hit rate of 61.4%. Thus, browser caching alone does not give very good

performance, with easily one out of two TCP connections (on average) requiring a DNS

lookup. On the other hand, this is not worse than using the correct TTLs - the hit rate

in both cases is roughly 60%. This is likely to be true because most TTLs are sufficiently

long so that the fixed TTL is usually smaller than the actual TTL. It is only the case of

names that use very short TTLs that may result in stale data being stored and used from

the cache.

In other words, even though fixed TTL application is technically a violation of the DNS

caching policy, it does not significantly affect the actual performance of the cache so long

as the fixed TTL is not too short.

3.3.4 Evaluating aggregation

Based on these simulation results, we can conclude that aggregation is a useful technique

for improving performance of our DNS caches. By having a relatively small number of

workstations together use a single cache, we can achieve much better hit rates than single

host caching. However, by doing additional caching at the local host, we can satisfy many

of the requests at an even lower cost, with only a small fraction of local accesses requiring

a query to the local caching proxy.

3.4 Caching and Time-to-Live Settings

Naturally, caching is deeply intertwined with the choice of time-to-live settings. In this

section, we explore the relation between TTL settings and cache behavior. The following

results are based on different simulation results.
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3.4.1 Expiration misses

Ideally, we would know exactly how many actual queries were the result of expired TTLs

in a local cache within LCS. However, this is extremely difficult to measure.

In simulation of caches under aggregation, we know exactly which requests could be

answered out of cache correctly, which requests were for previously seen hosts that have

expired from the cache and which hosts are completely new to the cache. On average, it

appears that 58.7% of the misses are for previously seen hosts whose TTLs have expired.

This suggests that longer TTLs may be useful.

Running this against the TTL simulations (below) makes this very clear - shorter

TTL cap means that a higher percentage of misses are caused by TTLs. This is not very

surprising.

3.4.2 Varying TTL limits in simulation

In this section we explore some theoretical cases of how well caching would perform with

different TTLs, given the current work-load of TCP connections.

Many records from popular domains have low TTLs. This may be for any number of

reasons. One simple but likely common reason is that the domain administrator might not

have thought to set a long TTL [6]. In modern systems requiring high availability and

performance, short TTLs can be used to balance load between servers (by changing the

mapping to point to the least loaded server) or for fast fail-over in the case of a server

failure. For example, Akamai [1], a company which manages content-delivery, uses very

short TTLs (on the order of 30 seconds) to accomplish very-fine grain load balancing and

react quickly to changes in demand and network performance. In even more extreme cases,

people have proposed using zero second TTLs for highly volatile name bindings [20].

We ran several simulations to estimate the effects of low TTLs on the cache hit rate.

As in the browser cache case, all simulations were run with a group size of twenty-five.

This simulation ran as normal using a group server (with no browser caching) except that

all TTL values were capped at some fixed short value. The resulting hit rates are shown

in figure 3-7 as a function of this capping TTL.The results are somewhat as one might

expect. Obviously if the TTL is zero, the hit rate will be zero. However, caching for merely

one minute greatly increases the overall hit rate. When caching for 120 seconds we see an
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Figure 3-7: Average hit-rate when cache TTL is capped.

average hit rate of 63.4% which is comparable to browser-only caching. As we increase the

capping TTL, the hit rate continues to rise, as we would expect. At a cap of two hours,

we have an average hit rate of 76.2%. This trend continues until we begin to approach the

normal 80% hit rate.
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Chapter 4

Conclusions and Future Work

4.1 Summary of Results

We have presented an overview of DNS traffic and performance based on a traces collected at

MIT's Laboratory for Computer Science. At this local level, we examined the characteristics

of DNS traffic. We found that the network traffic load due to DNS is rather small relative

to the total network traffic. Despite an overall packet rate of nine-thousand packets per

second, we still only see an average of about thirty DNS packets per second (related to

outgoing queries). This level of local traffic is quite mangeable, even if caches were not

performing at their best.

On the other hand, we do find that approximately 95% of TCP connections did not

require new DNS lookups. For the connections that do cause cache misses, we find that the

majority of DNS queries can be resolved with one to two referrals, at most. Thus, caches

in the real world generally have cached information about the most commonly used parts

of the hierarchy down to the individual domains.

Certain specific factors affecting cache performance were tested via simulation. Like

in web proxy caching, we found that increased aggregation is useful to a point, but not

significantly useful beyond that limit. The ideal cache aggregation size appears to be around

twenty hosts, beyond which there is only a very small gain in hit rate.

We found that longer TTLs improve the hit rate, as might be expected. However, this

hit-rate does not significantly improve when varied above two minutes. This is of interest

to those who may want to change their address bindings frequently. Use of TTLs below two

minutes will give rise to a dramatically higher query rate to servers. Thus we recommend
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based on our simulation results a minimum TTL of 120 seconds. For more stable bindings,

a minimum of at least four hours should be used.

4.2 Future Work

There are a number of ways in which this work could be extended. First, the traces analyzed

in this study were limited to a single location over a relatively short time-period. It would

be extremely useful to repeat some of these analyses on traces collected from different

locations. By performing these tests on other traces, we could have stronger confidence in

the validity of the results. Ideally, we could collect finer grain detail by taking traces at the

attachment points of smaller client networks, especially those without local caching name

servers. Such additional data would be useful in confirming or clarifying our results.

The simulation work was trace-driven, which is a fairly common method for handling

simulation. However, there do exist realistic traffic generators which would allow for more

flexibility in the kinds of traffic studied. For example, the SURGE system developed at

Boston University [5] produces traffic patterns that closely match the characteristics of

measured traces.

In addition to directly extending the work performed here, there are several other related

areas that are of interest:

" DNS request latency - understanding the distribution of latencies involved in an-

swering queries would give a more concrete notion of the actual cost of a cache miss.

" Negative caching - by doing negative caching, the DNS could conceivably reduce

wide-area traffic for repeated questions with negative answers. However, the im-

portance of this is somewhat unclear. An interesting research problem would be to

determine just how useful negative caching would be.

" Name server load - caching also serves to reduce load on servers. A more complete

study might try and estimate the load imposed on various servers under different

caching conditions.
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4.3 Conclusion

Overall, we see that DNS caching is actually performing reasonably well. While there are

still some pathological hosts, for the most part hosts are well-behaved and can complete

resolutions quickly. We have presented some concrete analysis of real trace data and simula-

tion results that allowed us to make specific recommendations on how to improve cache hit

rate. Finally, we have developed the tools and basic understanding necessary to continue

in this direction.
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