
PLANAR RESISTIVE TOMOGRAPHY:
AN INVERSE PROBLEM

by

Dharmesh M. Mehta

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Science and Engineering
and

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

_May 22, 2000

(2000 Dharmesh M. Mehta
All rights reserved.

The author hereby grants to M. I. T. permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part.

A uthor
Department of Electrical Engineering and Computer Science

June 22, 2000

Approved by ...
ProfessorJohn L. Wyatt, Jr.

Thois Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

ENG

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

I

PLANAR RESISTIVE TOM OGRAPHY:
AN INVERSE PROBLEM

by
Dharmesh M. Mehta

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 2000

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The primary motivation behind this thesis is to develop a more efficient
algorithm for solving inverse resistive problems. Efficiency in this context refers
to using a very coarse grid of measurements to solve backwards for a very fine
grid of values that are both accurate and useful in modeling physical situations.
This problem is modeled, simulated, and solved using MATLAB. Chapters 1 and
2 provide a background on numerical algorithms and the conventions that will be
used in this document. Chapter 3 develops two building blocks for all other
simulations: a "forward solver" and the associated "inverse solver." The solvers
are written so that they can be used on any finite 2-dimensional, rectangular
resistive grid. Given resistor values along the grid, the forward solver determines
voltage values at all nodes for any specified current drive. The inverse problem
does the opposite. Given voltage measurements under a specified current drive,
it solves for the resistive grid that created such values. This paired set of solvers
allows for both the generation of and the solution to any given situation. These
solvers also help analyze the impact of noise, grid size, and quantity of current
drives on efficiency. The next chapter focuses on developing a method that
serves as a "Sparse data In, Dense grid Out" (SIDO) inverse solver. The basic
idea behind such a solver is to use voltage measurements along a coarse grid to
solve for a fine grid of resistances. There are a number of ways in which this can
be accomplished. Chapter 6 will look at using an alternating technique, and
Chapter 7 will focus on an application of Newton's Method. The alternating
technique switches between solving for node voltages and solving for resistor
values. This SIDO solver begins by using the given coarse voltage measurements

2

to infer both a fine grid of voltage values and a fine grid of resistors. This
involves both the aforementioned inverse solver as well as some circuit
approximation techniques. The alternating part of the algorithm involves
switching between the update of the estimates for the voltage values using the
estimate for the resistor values and the update of the estimates for the resistor
values using the estimate for the voltage values. The second SIDO solver applies
Newton's method. It also initializes the system with approximations for both the
fine grid of voltage values and the fine grid of resistors. From there, this SIDO
solver proceeds differently. The next step creates a linear approximation for the
system by means of a Taylor series expansion about the current estimate. Instead
of alternating between solving for voltage and resistor values, this solver
simultaneously solves for the necessary update to both unknowns. The final
chapter of this thesis presents careful analysis of each of these two different
SIDO solvers. Factors to consider include their computation times, the accuracy
of their final results, the coarseness of the original voltage measurements, the
number of current drives used, and the advantages and shortcomings of each
solver. It is also important to look at possible applications for these SIDO
solvers. The focus will be on how to apply a SIDO solver to different situations
as well as the benefits and advantages of using a SIDO solver as opposed to the
original inverse solver.

Thesis Advisor: Professor John L. Wyatt, Jr.
Title: Professor of Electrical Engineering

3

TABLE OF CONTENTS

List of Figures .. 5
A cknow ledgem ents .. 7
Chapter 1: Numerical Algorithms for Solving Overdetermined Systems..........8

Section 1: Linear Least Squares.. 9
Section 2: Singular Value Decomposition .. 10
Section 3: Condition Numbers .. 11

Chapter 2: Two-Dimensional Resistive Circuit Models.......................................14
Section 1: Conventions... 14
Section 2: Kirchoff's Laws... 21
Section 3: Cut-Set Equations and Reference Voltage Node 22

Chapter 3: Discretized Forward and Inverse Problems.......................................24
Section 1: Branch Incidence Matrix .. 24
Section 2: Mathematical Formulation of Solution to Forward Problem..........28
Section 3: Mathematical Formulation of Overdetermined Inverse Problem .. 31
Section 4: Analysis of Forward and Inverse Methods 35

Chapter 4: Sparse data In / Dense data Out (SIDO) Solver 40
Section 1: O verview ... 40
Section 2: Error M etrics ... 43

Chapter 5: Coarse to Fine Interpolation... 46
Section 1: Constitutive Laws .. 46
Section 2: "Twelve to Three" Approximation ... 47
Section 3: Linear Interpolation ... 48
Section 4: Interpolation by Averaging ... 51

Chapter 6: Alternating Method.. 52
Section 1: Mathematical Formulation of SIDO Solver 52
Section 2: Simulation Results and Analysis.. 55

Chapter 7: Newton's Method .. 65
Section 1: Mathematical Formulation of SIDO Solver 65
Section 2: Need for a Regularization Term ... 67
Section 3: Simulation Results and Analysis.. 68
Section 4: A Coarser Set of Measurements ... 85
Section 5: Elimination of Regularization .. 92

Chapter 8: Conclusions and Further Explorations .. 94
Section 1: Successes .. 94
Section 2: Failures..100
Section 3: Physical Applications and Further Work 101
Bibli grap y.. 103.B ibliography .. 103

Appen dix - MATLAB Code ... 104

4

LIST OF FIGURES

Number Page
Figure 1: Numbering system for voltage measurements at each node in the fine grid.......................................15
Figure 2: Numbering system for conductances within the fine grid..16
Figure 3: Locations at which resistor values can be considered centered... 17
Figure 4: Full grid from which a 3-D plot of all resistors can be made. ... 18
Figure 5: Arrows indicate flow for the eight current drives used in simulations... 19
Figure 6: Resistor plots of "bum p" grid...20
Figure 7: Typical node in the center of the grid...21
Figure 8: E xam ple of cut-set line..23
Figure 9: Simple example used to understand branch incidence matrices .. 24
Figure 10: Orientation of current and voltage along each branch... 25
Figure 11: Solutions found by forward solver under different current drives using the uniform grid 29
Figure 12: Solutions found by forward solver under different current drives using the bump grid................30
Figure 13: Inverse solver result from voltage grids calculated by forward solver with flat grid. 33
Figure 14: Inverse solver result from voltage grids calculated by forward solver with bump grid................. 34
Figure 15: Result of solving noisy uniform grid problem with 1% measurement error.................................... 36
Figure 16: Result of solving noisy bump grid problem with 1% measurement error ... 37
Figure 17: Result of solving noisy uniform grid problem with 10% measurement error................................. 38
Figure 18: Result of solving noisy bump grid problem with 10% measurement error...................................... 39
Figure 19: (a) All nodes in the fine grid. (b) Nodes where voltage measurements are made........................... 41
Figure 20: (a) Typical coarse grid block. (b) Same physical area in the fine grid. .. 46
Figure 21: (a) Four resistors in a coarse grid block (b) Same physical area in fine grid.......................................48
Figure 22: (a) Vertical conductances in coarse grid. (b) Vertical conductances in fine grid. 49
Figure 23: Resistor values after 1000 iterations using six drives with no measurement error...........................56
Figure 24: Error metrics for first 1000 iterations using six drives with no measurement error........................57
Figure 25: Resistor values after 1000 iterations using eight drives with no measurement error...................... 58
Figure 26: Error metrics for first 1000 iterations using eight drives with no measurement error....................59
Figure 27: Resistor values after 1000 iterations using eight drives with 1% measurement error. 60
Figure 28: Error metrics for first 1000 iterations using eight drives with 1% measurement error................. 61
Figure 29: Resistor values after 1000 iterations using eight drives with 10% measurement error...................62
Figure 30: Error metrics for first 1000 iterations using eight drives with 10% measurement error................63
Figure 31: Resistor values after 100 iterations of a noiseless system with E = 0.1... 70
Figure 32: Error metrics for 100 iterations of a noiseless system with E = 0.1 .. 71
Figure 33: Resistor values after 100 iterations of a system with 1% measurement error and E = 0.1............ 72
Figure 34: Error metrics for 100 iterations of a system with 1% measurement error and E = 0.1..................73
Figure 35: Resistor values after 100 iterations of a system with 10% measurement error and E = 0.1 74
Figure 36: Error metrics for 100 iterations of a system with 10/6 measurement error and E = 0.1................75
Figure 37: Resistor values after 25 iterations of a noiseless system with E = 104 .. 76
Figure 38: Error metrics for 25 iterations of a noiseless system with E = 104.. 77
Figure 39: Resistor values after 25 iterations of a system with 1% measurement error and E = 104 78
Figure 40- Error metrics for 25 iterations of a system with 1% measurement error and E = 104...................79
Figure 41: Resistor values after 25 iterations of a system with 10% measurement error and E = 104................80
Figure 42 Error metrics for 25 iterations of a system with 10% measurement error and E = 104.................81
Figure 43: Resistor values after 25 iterations of a noiseless system with E = 10-7.. 82
Figure 44: Error metrics for 25 iterations of a noiseless system with E = 10-7... 83
Figure 45: Resistor values after 25 iterations of a noiseless system with E = 104 .. 86
Figure 46: Error metrics for 25 iterations of a noiseless system with e = 104... 87
Figure 47: Resistor values after 25 iterations of a system with 1% measurement error and E = 104 88
Figure 48: Error metrics for 25 iterations of a system with 1% measurement error and e = 104...................89

5

Figure 49: Resistor values after 25 iterations of a noiseless system with E = 10-7 ... 90
Figure 50- Error metrics for 25 iterations of a noiseless system with E = 10-7... 91
Figure 51: Comparison of resistor error for noiseless systems..97
Figure 52: Comparison of resistor error for systems with approximately 1% measurement error 98
Figure 53: Comparison of resistor error for systems with approximately 1 0% measurement error................99

6

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, John L. Wyatt, Jr. for the invaluable
technical support that he provided throughout this project. It was Professor
Wyatt's enthusiasm and interest that encouraged me to pursue this project and to
become engrossed in and excited about the material. Furthermore, I greatly
appreciate that Professor Wyatt did not give up on this thesis in the face of many
very complex obstacles.

I am also deeply indebted to three of my closest friends - Jae Kyoung Ro, Richa
Shyam, and Rodney Eric Huang. Thanks to Rodney for being a great roommate
and providing the space I needed to work on this thesis and for not complaining
when things got a little crazy. I'd like to thank Richa for always caring, for
knowing how to make a person laugh, and for also knowing when I needed to be
left alone to get work done. And I'd like to thank Jae for always being there to
talk, for being comforting in every crisis, and for helping me get through it all.
And thanks to all three for their help in proofreading this thesis.

I would finally like to thank my family. My parents, Madhuker A. and Gita M.
Mehta, have always provided immense amounts of support in every endeavor
that I have undertaken. They have always tried to provide guidance, direction,
and more than anything their love. Thanks to my brother and sister, Rajiv and
Dina, for their wisdom, love, and their senses of humor.

This thesis was prepared at the Massachusetts Institute of Technology Research
Laboratory for Electronics. Publication of this thesis does not constitute
approval by the Massachusetts Institute of Technology of the findings or
conclusions herein. It is published for the exchange and stimulation of ideas.

Permission is hereby granted to the Massachusetts Institute of Technology to
reproduce this thesis.

Dharmesh M. Mehta

7

Chapter 1

NUMERICAL ALGORITHMS FOR SOLVING OVERDETERMINED
SYSTEMS

Scientists and engineers frequently have to solve overdetermined problems.

Physical situations are described by a set of constitutive relations, but more

measurements than required are usually taken to describe the situation. Many of

these equations would be redundant if they were accurate, but because they are

imprecise, these extra measurements become valuable. Systems where there are

more equations than unknowns are known as overdetermined, and because of

imprecise measurements or other external factors', these systems generally do not

have an exact solution.

More precisely, this situation can be described as solving the equation:

Ax = b, (1.1)

for the vector x where A has dimensions m x n with m > n . The residual error r

of this equation is defined as Ax - b . In order to solve an overdetermined

system, it is necessary to find a solution that minimizes some function of the

residual error, f(r) = f(Ax - b). The possibilities for the function f(r) are

endless, but some of the most common include the one-norm,

Other external factors can include noise in the system, varying physical conditions, or any approximation
that is made (e.g. generally when solving an equation using Kirchoff's Voltage Law, current dissipation in
wires connecting circuit elements is ignored and therefore a factor leading to an imprecise equation)

8

f(r)=|1r11, = X|rI, the two-norm f(r)= |r12 = L |r12
, and the c-norm,

f(r)=JrlL =maxjrJ.

Section 1: Linear Least Squares

Linear least squares problems are those that solve the overdetermined system

Ax = b for the vector x by minimizing IlAx - b112 . Since this is the only norm

used in the rest of this document, it will be referred to as simply l|Ax - bil.

Because of the non-negative monotonic nature of this norm, this is equivalent to

minimizing ljAx - b112.

IlAx-b|l2 A X xA Tb-bTAx+bTib (1.2)

Taking the gradient of (1.2), setting it equal to zero, and rearranging terms:

A TAx = AT b => x = (A TAr A T b (1.3)

This could be computed directly, but there are many other algorithms that solve

this problem more efficiently. MATLAB makes use of a QR factorization 2 so

that:

A = QR, where R is upper triangular (1.4)

R TQTQRx = R TQT b (1.5)

2 The choice among different QR factorization methods is dependent on the nature of the matrix A.

9

Rx = QTb (1.6)

Solving the final upper-triangular system in (1.6) is much simpler than the original

system. The longest step is the actual QR factorization. The computation time

23
for this method is on the order of 2mn2 - _n' flops.

3

Section 2: Singular Value Decomposition

The singular value decomposition (SVD) of a system of equations translates the

original A matrix into one that is diagonal by choosing the correct bases for the

domain and range spaces. In order to solve the equation Ax = b, new bases

defined as UT b and VTx are chosen so that A = UVT , where U and V are

square unitary matrices and I e 9"" is diagonal. The original equation then

becomes:

UzVTx = b (1.7)

UTUXVTX = UT b (1.8)

I(VTx)= (UT b) (1.9)

Implementation of this method involves first solving the equation:

Mw = U T b (1.10)

for the vector w. The value for x is then equal to Vw. The diagonal entries aG of

Z are non-negative and in non-increasing order. This format is very convenient

3 Trefethen and Bau prove that such a decomposition for any matrix A is always possible.

10

for numerous calculations, including computing the condition number of the

system'. Another advantage of the SVD is that although it is not the fastest

method, it is one of the best algorithms for rank-deficient matrices. Other

methods that use normal equations or QR factorization have undesirable

instabilities for certain systems. Calculating the SVD has a computation time' on

the order of 4mn2 _4 n -3 -(m -n).
3 3

Section 3: Condition Numbers

The condition of a problem refers to the response of the system function f(x) to

small perturbations. A well-conditioned problem is one in which a small change

in x will result in a small change in f(x), and an ill-conditioned problem is one in

which a small change in x will result in a large change in f(x).

There are several different types of condition numbers. The absolute condition

number is defined as:

|If|Ik = SUP (1.11)

where 8f = f(x + 8x)- f(x). Note that if this is expressed in terms of the

Jacobian of f at x, this simplifies to ^ =IJ(x)|.

Relative condition numbers are concerned with the magnitude of these changes

relative to their current values. So, the relative condition number of a function is

defined as:

4 Conditions numbers are covered in more detail in Section 3.

11

if = X1 11 (1.12)

Putting this in terms of the Jacobian, i = J(X Relative condition
if(x)I/|xI Rltiecndto

numbers are generally far more important than absolute condition numbers

because most errors introduced by computers that use floating point arithmetic

are relative errors, not absolute errors. In terms of relative condition numbers, a

value on the order of 1, 10, or 100 is generally indicative of a well-conditioned

problem while a value on the order of 109 or 1012 is considered ill-conditioned.

The final type of condition number that will be mentioned is the one used for the

rest of this project. It is referred to as the condition number of a matrix. It is

defined as:

x(A) =||JAJJ- IA-11 (1.13)

The norm used is generally the two-norm because then this equation becomes6:

i(A)= (1.14)

This ratio of the largest to smallest singular value is easily obtained when singular

value decomposition is used to solve a linear least squares system. Note that

when a system is singular, the smallest singular value is zero, and the condition

number is infinity. Condition numbers will be very valuable in this project

12

5 This formula is found by Trefethen and Bau as the amount of work for a three-step bidiagonalization.

6 Trefethen and Bau derive this result in their analysis of condition numbers.

because they indicate whether a simulation will produce accurate or erratic results

as a result of being either well-conditioned or ill-conditioned.

13

Chapter 2

TWO-DIMENSIONAL RESISTIVE CIRCUIT MODELS

There are a variety of physical situations that can be modeled using a two-

dimensional grid. From simple situations such as a sheet of metal to something

as complex as the steam pipe system of a power plant, the methods developed

here are very valuable in solving for unknown characteristics in a wide variety of

systems.

Section 1: Conventions

This research project will generally run simulations on a grid that measures 7 units

by 11 units. Each vertex on the grid represents a node at which voltage

measurements will be taken. Under any particular current drive, one node will

serve as the current source, and some other node will serve as the sink. A resistor

connects every pair of vertically and horizontally adjacent nodes. A typical

physical problem involves using voltage measurements under different current

drives to solve for all conductance (or equivalently, resistor) values.

There are N nodes in the grid, M of which will be points at which measurements

are taken7 . D different current drives will be run across the B conductances. For

the sake of clarity, all matrices and vectors will appear in bold. Uppercase letters

will be used for matrices and constants while lowercase letters will be used for

vectors and individual variables.

7 For the initial inverse solver M = N, but in the SIDO solver M << N.

14

Nodes are numbered starting in the upper left corner and proceeding down each

successive column. Conductances are numbered beginning with the vertical

resistors by proceeding downwards and then to the right. The horizontal

resistors are then numbered proceeding to the right and then downward. The

two figures below help clarify this explanation.

Vi V12 V23 v4 V45 V5 V67

V2

V3

V4

V5

V6

V7

V8

V9

VIO

ViI

Figure 1: Numbering system for voltage
measurements at each node in the fine grid.

15

V13a V24 -6-

V21 - _ -, V76Y

V22 V66 V77

g131 g132 g136

g71 g72 g73 g74 g75
gi gii

977 g78

g2 g12

g83

g3

g4

g

gio

Figure 2: Numbering system for conductances
within the fine grid.

In dealing with a coarse grid, only every kth voltage measurement in every k* row

will be used. For the majority of the simulations, k = 2, and so the coarse grid

uses about one out of every four nodes in the fine grid. This results in a grid that

measures 6 nodes by 4 nodes. This grid will then have 24 voltage measurements,

leaving 53 fine grid nodes for which no measurements are provided.

Because of the manner in which the resistors are situated, it is difficult to plot

both the horizontal and vertical resistors on the same graph. To make the

resistor plots both complete and understandable, three different plots will be

made for each set of resistors. The first will show only vertical resistors, the

16

g61

g62

g70

second will show only horizontal resistors, and the third will attempt to combine

the two. Plotting a resistor's conductance value at the center of the physical

resistor results in the data points shown below.

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

Figure 3: Locations at which resistor values can be
considered centered.

The grid above is missing alternate locations in each row and column, which

presents a problem for the plotting routine. To create a full grid of values for the

third plot, it is necessary to approximate values, indicated as 0 in the figure

below, by averaging their nearest neighbors.

17

oooeooeo
ooo0oeo0oo
eoeooeoeoeo
ooeooeooo
eo0oeooo0

oeooeoeoeo0o
eoooeooeo
oeoeoooo
oo0oeoeoeo

0oeo0oeo0oeo
eo0oeoo0o0
oeooeooeoo
eoeooeooeo
0oeo0oeoeo0
eoooooo
oo0o0o0oeo0
oooeooo

o0ooooeoo
oeooo0oe

0oeo0oeooo
o0oeo0oo0

Figure 4: Full grid from which a 3-D plot of all
resistors can be made.

18

Current is injected into one node and drained at any other node. There are many

different ways that the source and sink can be chosen. This research endeavor

will generally use eight different current drives. They are shown below.

(117)(11,7) (11,7)
(11,1))

(1, 1)

Drive 2 Drive 3

(11, 1)

(1,7)

Drive 4

(11,7) (11,7)11

(1, 1) (1, 1)
(1,7) (1,7) (1,7) (1,7) ,

Drive 6 Drive 7

, 1,1

(1, 1)

Drive 8

Figure 5: Arrows indicate flow for the eight current
drives used in simulations.

Given a set of voltage measurements, these simulations try to solve for the

conductances. However, the voltage measurements are generated from resistor

values specified within the forward solver. Two resistive grids will be used. The

first is a uniform grid of resistors with value 0.1 Ohms, while the second grid has

a small "bump" of resistors with value 0.25 Ohms in the center. The resistor

plots for the bump grid are shown in the figure below.

19

Drive 1

Drive 5

(a) Vertical Resistances

...............

* 0.3 . -.-.-.-.

-c--

0.1
Z
C

7
10

Horizontal (b) Horizontal Resistances Vertical

........ ..
0.3-

E

0.1

6

1 2

Horizontal (c) All Resistances Vertical

0 .3 - -.-.-.-.-.-.E-.-

C-

0.1

a :-.-.
7 6

Horizontal Vertical

Figure 6: Resistor plots of "bump" grid.

20

Section 2: Kirchoff's Laws

V1

gi

g4 g2
V4 -\ / -VV A V-2

g3

V3

Figure 7: Typical node in the center of the grid.

Kirchoff's Current Law (KCL) is the fundamental equation for all systems in this

project. In simplest terms, the law states that the sum of the currents entering a

node must be equal to the sum of the currents leaving that node. Given a typical

node that is not the current sink or source (see figure above), the relation

between voltages and conductances can be written as:

g1 (Vi -v0)+g2(V2 -V)+g (V3 -V)+g4 (V4 -Ve)=- (2.1)

If the node happens to be one of the drive nodes, then the right hand side of the

above equation becomes the amount of leaving the node. KCL equations are

written at all but one of the nodes. The last KCL equation is not used because it

can be derived from the other N -1 KCL equations.

To this point, the model has been referred to as a circuit where the primary

components are node voltages, drive currents, and conductances. However, the

21

only requirement for the model is to have components that can be described as

follows. One component must be a flow variable, which has so far been referred

to as "current." The flow element is injected at one node and drained at another.

At all other nodes, the amount of flow inwards must be equal to the amount of

flow outwards. Another component must describe the characteristics of the path

between two adjacent nodes. This variable has been referred to as resistance, but

it could easily be thought of as a velocity along a path, or any other item that

physically describes that connection. The last component is an across variable

that quantifies the product of the flow and the "resistance." Measurements are

taken at each node so that the difference between two node measurements is

equal to a sum of the products of the "resistances" with the "currents" passing

through each resistance or in other words a sum of the across variables along the

path. The situation is generalized to emphasize that this model can be used for a

wide array of situations beyond the obvious circuit model.

Section 3: Cut-Set Equations and Reference Voltage Node

Depending on the physical situation, a KCL equation may or may not be able to

be written at the two drive nodes. The physical device supplying current may not

allow for a connection from which voltage can be measured. However, a node's

voltage is needed to write its KCL equation. If this should happen, the entire

system becomes a set of equations with the right sides set to zero. This has two

implications as seen from (2.1). First of all, there is no way to calculate the value

of a particular conductance because if all the conductances were scaled by a factor

k, the KCL equations would still hold. The second problem is that only voltage

differences and not actual voltages enter the equations. So it becomes impossible

to determine the actual voltage values.

22

Setting one node voltage to zero, and using this node as a reference point

remedies the latter problem. For the sake of this paper, the last node (v..) is

designated as ground (voltage equal to zero) and will also be the one node where

a KCL equation is not written. The former problem is ameliorated by means of a

cut-set equation. The cut-set is a group of resistors through which a line can be

drawn that splits the grid into two not necessarily equal halves. The only

stipulation is that the current source must lie on one side of the line and the

current sink must lie on the other. The figure below shows one example of a

valid cut-set line for drive 4.

Figure 8: Example of cut-set line.

The resistors indicated with bold lines form the cut-set. The total current flow

through the cut-set resistors must be equal to the total amount of current injected

at the current source. This equation actually has a non-zero right side and will

therefore enable the calculation of resistor magnitudes.

23

Chapter 3

DISCRETIZED FORWARD AND INVERSE PROBLEMS

Before working with sparse matrices or considering how solutions may be

affected by noise, it is essential to understand and solve the simplest case of this

problem. Using the equations Gv = i and Vg = i to solve the forward and

inverse problems, respectively, is not as straightforward as it seems. The

complication lies in the calculation of the G and V matrices since both are

complex functions of the actual conductances and voltages. Branch incidence

matrices will be used to create a compact and clear method for solving these

systems.

Section 1: Branch Incidence Matrix

Consider the grid of six nodes and seven conductances below.

g4 g5
Vi va V5

gi g2 g3

g6 g7

V2 V4 V6

Figure 9: Simple example used to understand
branch incidence matrices

24

Each conductance can be thought of as a branch between two nodes. One node

in the grid is set as the reference or datum node and always has a voltage of zero.

In this example, v6 is the reference node: v 6 =0. As stated earlier, this is

necessary because all voltage values in the KCL equations are relative and not

absolute. Across the k' branch, the direction of positive current flow relative to

the orientation of positive voltage is as shown below:

+ ek-

Figure 10: Orientation of current and voltage along
each branch

For all further calculations, vertical resistors are oriented so that the branch

travels downwards, and horizontal resistors are oriented so that the branch travels

to the right. A branch incidence matrix has one row for each non -reference node

and one column for each branch. So in this example, A is a 5x7 matrix. Each

element anb of the matrix is defined as:

+ , if branch b leaves node n

an = -, J)if branch b enters node n (3.1)

0, otherwise

For the given circuit,

1 0 0 1 0 0 0

-1 0 0 0 0 1 0
A= 0 1 0 -1 1 0 0 (3.2)

0 -1 0 0 0 -1 1

0 0 1 0 -1 0 0

25

Let

i =

12
i2

i3

i 4

i5

i6
17-

where i represents the vector of currents through each branch. Also let

(itd))k -i,)

0,

if the kt node in the dt drive is the current source

if the kt node in the dt drive is the current sink

otherwise

where i(d) represents the vector of currents driven into (or out of) each node

under the d" drive. Then, Kirchoff's current law can be written as

Ai = i(d) (3.5)

Let

vi

V
2

V
3

V
4

.V5 _

and e=

el

e
2

e3

e4

e,

e6

_e7-

(3.6)

26

(3.3)

(3.4)

represent the node potentials relative to the reference node and the voltage drops

across each branch. Then

e = A Tv (3.7)

as a result of Kirchoff's Voltage Law, which states that the voltage drop across a

particular branch is equal to the voltage at the start of the branch minus the

voltage at the end of the branch.

The final necessary relationship involves the branch

across each branch. The branch current is equal to

drop across and the conductance along that branch:

i =

ii~

i 2

i3
i 4

i5
i6

i7

01
0

0

0

0

0

0

0

02

0

0

0

0

0

0

0

g3

0

0

0

0

0

0

0

04

0

0

0

0

0

0

0

g5
0

0

0

0

0

0

0

0

currents and voltage drops

the product of the voltage

0

0

0

0

0

0

g97_

el

e2

e3

e4

e,

e 6

-e 7 -

= Ge (3.8)

Combining these equations,

AGATv (d) = i (d)

which is the relationship that will be used in both solvers.

(3.9)

27

Section 2: Mathematical Formulation of Solution to Forward Problem

In the forward problem, all resistor values are given, and the goal of the solver is

to determine the voltage values at all nodes under a specified current drive. This

is equivalent to solving (3.9) for v.

V(d) = (AGA'T)i(d) (3.10)

Since there are as many' unknowns as equations in (3.9), the solution for v is

exact. The forward problem can be solved for each of the eight current drives

using both the uniform and the bump grids as the values for the resistors. While

there is no need for so many current drives at this point, the SIDO solver will

require them, so they are also included. The figures below show the results of

using the forward solver with the two different grids each of which have eight

different current drive plots.

8 This number of is equal to one less than the number of nodes since the voltage at the reference node is
already specified

28

Drivel

* 0.4 -
75 0.2 -
> 0
0) -0.2 -

O-0. * -4 -
-0.6 ---

6 10
4 2 2 4 8

Drive2

6 -10--
4 -8-

2 2 4

0.4
>0.2
a, 0
*z -0.2

6-0.4

vericai
Drive3

-0.5-

.--

6 10
4 -68

2 2 4
Horizontal

Drive5
Vertical

0-

-0.5-

6 -_-_-2.. . 6-10
4 2 2 4 6

0

-CO

0

Cz
0

7)

0)

Zu

vertical

0.2

0

-0.2

Horizontal Vertical

o>
0

CD
CM

0

ver ical
Drive4

0

-l--0.5 - -

664 10

II~I2 2 4 6

Drive6

-6
- - -8 -0

2 - -

vertical

c 0.4
0 0.2

> 0
a) -0.2

-0.6

Horizontal
Drive8

Vertical

0.2 --- -
0

a,-0.2-

c-0.4-
o -0.

o6 10

Horizontal 2 Vertical

Figure 11: Solutions found by forward solver under
different cuirent drives using the uniform grid

29

Drive7

10
2 2 4 6

HrinzontalHorizontL i

Horizonal

Horizontal

Drivel

* 0.4-
0.2 - - -- -

> 0-
a -0.2-

-0.6

68 10
2 2 4

Horizontal
Drive3

Drive2

-- -1

2 2 4 6

0.4

0> 0.2
W .0

5~-0.4

Cl

0

0)

-0.5-

4 .- 8 10
4 2 - 6

2 2 4
vertical

Drive5

-

-0.5-

2 2 4 6

U,
0

CD

0)

CD)

CM
CZ

0

U)

0

as

0

Drive7
Vertical

-0.5-

-l

6 10

4 2 2 4 6
Horizontal

Drive6

. -8

2 2 4

Vertical

c 0.4
5 0.2

> 0
(D -0.2
m -0.4
=-0.6

Drive8

6 - 10
2 2 4

vertical

0.2
0

5 -0.6

0.2-

-0.2 - --

610
2 284

Horizontal 2 Vertical Horizontal

Figure 12: Solutions found by forward solver under
different current drives using the bump grid

30

Vertical Horizontal
Dnve4

Vertical

Horizontal

Vertical

Horizontal

HorizontLU

Section 3: Mathematical Formulation of Overdetermined Inverse Problem

The inverse solver is given voltage measurements under different current drives.

Each current drive provides (N -1) equations," and there are a total of B

unknown conductances. If a grid's dimensions are L nodes by W nodes, then

N = L * W, and B= (2* L * W)-(L + W). If D drives are used, then in order

to have at least as many equations as unknowns, the following inequality must be

satisfied:

D*(L * W -1)> (2* L * W)-(L + W) (3.11)

This means that at least two drives must be used. As mentioned before, eight

drives are used for now because this number is required by the SIDO solver.

The basic equation for the inverse problem is:

Vg = i (3.12)

which is derived from (3.9). V and i incorporate information for all drives so

that:

(1) [(1)

V= 2) andi = (2) (3.13)

(D) L(D)_

To translate AGATV(k) = i(k) into the form V(k)g =(k) the matrix

multiplication is broken down step by step.

9 N-1 equations because no KCL equation is written at the reference node.

31

(AG)i, = XAmGmj =AG i' = Ajg, , because G is diagonal (3.14)

(AGAT = (AG)j' (AT) = AmgmAjm (3.15)
m m

(AGATV(k)) = j A gmA 1 ' (v(k) 1

= jgmAj m Ajm (v(k)
M I (V(3.16)

= gm(A(diag(v)A))),(1

=(A(diag(v TA))

V(k) = A(diag(v()A)) (3.17)

By calculating Vk under each current drive, the full V matrix can be determined.

The solution for the conductance values is then the linear least squares solution

to equation (3.12). This can be accomplished by a variety of methods, but this

thesis will use the singular value decomposition method because of its stability

and ease of use for tracking condition numbers.

Using this method with a sufficient number of drives provides a near exact

solution for g. Imprecision in the final solution for g arises only as a result of

noise in the voltage values used by the solver. The figures below show the

resistor values found by the inverse solver when provided with voltage

measurements from the forward solver under each of the aforementioned eight

drives for the two different resistive grids.

32

(a) Vertical Resistances

.....................
.0 .3 . -..--.E ..-..- -.-.. ..-.

O -

U.;
C

.0 0.1

6 10

Horizontal (b) Horizontal Resistances Vertical

.............................
...........

S0.3 - - --E :.... -..-
a _ - -.. .-.. .

C

150.1

.
3 2 246

Horizontal Vertical

W 0.3 - - ---

U.1e

7

Horizontal Vertical

Figure 13: Inverse solver result from voltage grids
calculated by forward solver with flat grid.

33

(a) Vertical Resistances
...........

.

*0.3 ---

0

0.1
7

6 10
51 8

Horizontal.Vrtc (b) Horizontal Resistances Vertical
............... . .

.........

0 0.3 - - -- -

~0.1
E

0

011

Horizontal . Vertical

0.3 - -.-.-.E ..-- --.. .- -

0.1-

Horizontal Vertical

Figure 14: Inverse solver result from voltage grids
calculated by forward solver with bump grid.

34

Section 4: Analysis of Forward and Inverse Methods

The biggest difference between the above inverse solver and an actual physical

situation is that real measurements are filled with noise. Without noise, both the

forward and inverse solvers would have no problem producing an exact solution.

To analyze the effectiveness of the inverse solver, it is necessary to see how

accurately it determines resistor values under varying levels of noise. The relative

magnitude of the noise is in proportion to the difference in adjacent voltage

measurements since it is this difference that enters KCL equations. Adding in

white noise of standard deviation 10' and 10' alters the voltage values generated

by the forward solver under each of the eight current drives. These standard

deviations correspond to measurement error on the order of 1% and 10%,

respectively. The following figures show the results. As would be expected, an

increase in the magnitude of noise causes the plots to move further away from

the exact solution.

35

(a) Vertical Resistances
......................

0.3 - -.-.-.-
E_ -..-. .-.

C

0.1

7 610

Horizontal (b) Horizontal Resistances Vertical

E ---.--.-

C$
0.1

a:6

2 1 2

Horizontal (c) All Resistances Vertical

S..*.-... *. . .
............

0 0.3 - ----- -- ---
E -.-.-.. .-

-C

C.co0.1

Cr7 6

1 24

Horizontal Vertical

Figure 15: Result of solving noisy uniform grid
problem with 1% measurement error

36

(a) Vertical Resistances
.............................

0.3 - -- -...
E - . --- -

0

We -. -

C

CO 0.1-

6 10
51 2

Horizontal (b) Horizontal Resistances Vertical

. .-
0 .1

E

0......

cc1 2

Horizontal -Vertical

Figure (c) All Resistances b ri

proble with.1.measremen.erro

0.3 -- -.-..

.0.1

Cr7

Horizontal Vertical

Figure 16: Result of solving noisy bump grid
problem with 1% measurement error

37

(a) Vertical Resistances

.............
0.3-E :. .- -. -..-

5 10

Horizontal (b) Horizontal Resistances Vertical

.......-.-.-.-.-.-.-.-
E -......0

U.2- -

C-

CC6

1 2

Horizontal (c) All Resistances Vertical

cn0.3 - ---

.1,0. 1

a:7

Horizontal Vertical

Figure 17: Result of solving noisy uniform grid
problem with 10% measurement error

38

(a) Vertical Resistances

....
*0.3----

C

0.1-

CD

Horizontal . 10(b) Horizontal Resistances Vertical

0.3-

CO

L0.1

cc6

1 2

Horizontal (c) All Resistances Vertical

0.3 --- -. :.-

E...........-

0.1

cc7

Horizontal Vertical

Figure 18: Result of solving noisy bump grid
problem with 10% measurement error

39

Chapter 4

SPARSE DATA IN / DENSE DATA OUT (SIDO) SOLVER

The goal in this project is not only to develop a forward and inverse solver, but

also to create an inverse solver that can determine an accurate grid of

conductances given as little information as possible. "As little information as

possible" refers to developing a solver that is provided with voltage

measurements at a small subset of the nodes. In a physical application, "voltage"

measurements would be determined by means of some physical device tied to

each node. Decreasing the number of such devices would help lower the cost of

implementing the system. It is often more expensive to take a greater number of

node measurements under fewer current drives that it is to take fewer node

measurements under a greater number of current drives. The fundamental

objective behind the SIDO solver is to take measurements under more current

drives but on a coarser grid and still be able to infer an accurate fine grid of

resistances.

Section 1: Overview

The last section of Chapter 7 will look at how the solver is affected by using a

even sparser set of voltage measurements, but everywhere else, the coarse grid

will contain about one out of every four nodes in the fine grid. The figure below

shows where voltage measurements are made in relation to the complete fine

grid.

40

0
0
0

0
0

0
0
0
0

0
0
0
0
0

0
0
0

0

0
0
0
0
0

0

0

0

0000 0 0*0 0
9000
0000 .0 0 *

0000 . 0 0 0
0000
0000 0 0 0 0

0000
0000 0 0 0 0

(a) (b)

Figure 19: (a) All nodes in the fine grid. (b) Nodes
where voltage measurements are made.

If the original grid measures 11 nodes by 7 nodes, then the coarse grid measures

6 nodes by 4 nodes. Voltage measurements are taken at 24 nodes, but only 23

KCL equations '0 can be written for each drive, and so D drives will create 23D

KCL equations. The other 53 node voltages under each drive, as well as the

conductances, are not known. The goal of the solver is to determine the value of

the 136 unknown conductances. To be able to solve the system, there must be at

least as many equations as unknowns. In other words:

23D 136

21
D 25-

23
(4.1)

10 The equation at the datum node is redundant and does not provide useful information

41

Eight drives are used because this more than satisfies the inequality in (4.1). To

distinguish between nodes where voltage measurements are taken and those

where they are not, the voltage vector, originally denoted v, will be broken into:

V = [(4.2)

where e contains the voltage values at the measured coarse nodes, and u contains

the voltage values at the unmeasured nodes.

The SIDO solver begins by making an initial estimate for the fine grid of

conductances. Then, using the information" it has, the solver iterates in order to

improve this approximation.

The initialization of the fine grid of conductances can be accomplished by one of

two ways. One method is to take the coarse voltage measurements, interpolate

fine grids of voltage measurements, and then solve for a fine grid of

conductances. The other method is just the opposite in that it first solves for a

coarse grid of conductances and then interpolates a fine grid of conductances. In

this thesis, the latter method will be used.

The decisions that must now be made include how to interpolate a fine grid of

conductances and how to iterate through fine grids using the information

currently available.

" The "information" is actually the estimate of the conductances and also estimates for the values of the
voltages at nodes not along the coarse grid.

42

Section 2: Error Metrics

In each iteration, the error in the current estimate of the unknowns is recorded to

measure performance. However, the measured voltages along the coarse grid are

the only exact values by which to gauge the present estimate. After each update

of the conductances in the fine resistive grid, the forward solver is run to

determine all voltage values (not just the unmeasured ones). An average absolute

percent difference between the coarse voltage measurements and those that are

calculated in this forward solver is determined. This average percent error is the

first method of quantifying error. The next error metric, RMS current error

IGv -i1|2 , quantifies the residual current errors in each iteration. This includes
n

the errors in all KCL equations at all nodes under every current drive. RMS error

has units of amperes and if the error in every KCL equation is equal, then the

RMS error will be equal to that uniform value. The third error metric calculated

is in the actual resistor values. Since all simulations start from specified resistor

values, it is straightforward to calculate r"tal' -r(k) , where ra,, is the vector of
ractua,

resistors specified, and r) is the current estimate of r. Lastly, the condition

number is tracked throughout the iterations. There is only one condition number

in the inverse part of the algorithm. However, there are D condition numbers in

the forward step since this stem involves solving D sets of equations, one for

each current drive. Only the worst-case (highest) condition number is recorded

in the forward step.

The coarse nodes voltage error gives the average over all the coarse nodes of the

absolute value of the percentage error at the end of the k* iteration. It is

obtained by solving.

43

G(k)v(k) = i (, 1 5 d5 D (4.3)

for the voltages that would result if current drive d were applied to the fine grid

of conductances G k). Only the calculated voltages at the coarse nodes, referred

to as e (), are used in the error metric because exact values are only known at

the coarse nodes. The error metric is:

10D N e(k) -
Coarse nodes voltage error - 1 D N C '(d)n e(d)' (.

ND d=1 n= e(d)fl

where n indexes the N coarse nodes, e(d)n is the measured voltage at coarse

node n resulting from drive d, and eck) is the value predicted for e dyl by

using fine grid estimate GCk).

The RMS current error calculates the square root of the average squared residual

current error over all KCL equations under all drives at the end of the k'

iteration. It is obtained using both the conductance estimate G(k) and the

unmeasured (fine node) voltage estimate u(k . The unmeasured voltages u(k)

are combined with the measured coarse voltages e(d) to obtain the full fine grid

of voltages v) . The error metric is:

RMS current error = =1 " (4.5)
h ND(45

where n indexes the N coarse nodes.

44

The exact resistor values are known 2 . The resistor error calculation creates an

average absolute percent difference between the actual values for the resistors,

r.., , and the present estimate, r k). The error metric is:

(4.6)Resistor error = 1-I r(k) -
N n=, r.C

where n indexes the N coarse nodes.

12 These resistor values are known because they are the ones originally specified in the forward problem

45

Chapter 5

COARSE TO FINE INTERPOLATION

The interpolation of a fine grid of conductances from a coarse grid is much more

complicated than it first seems. Two major complications arise. The first

involves the representation of a coarse square as a set of four fine squares, as

shown below.

(a) (b)

Figure 20: (a) Typical coarse grid block. (b) Same
physical area in the fine grid.

The second complication involves deciding how to connect such blocks and how

properties will change or remain the same at the boundaries.

Section 1: Constitutive Laws

There are a few important issues to consider when interpolating from a coarse to

fine grid. First, the two grids should provide the same voltage measurements at

the coarse nodes under any current drive. Another factor to consider is the

46

degree to which horizontal and vertical resistors should affect each other. There

is also the question of how the proximity of fine resistors to a coarse resistor

affects their values. Other logical requirements are that a uniform coarse grid

should result in a uniform fine grid, and that a ramped coarse grid should result in

a ramped fine grid.

The choice of an interpolation method is quite complex for a number of reasons.

First of all, there are not enough theoretically proven physical equations to exactly

specify the values of the fine resistors. Furthermore, there are a number of facts

that seem like logical attributes, but are not mathematical theorems. A decision

must be made about which properties to turn into equations and which attributes

to ignore. After deciding how a single block in the coarse grid translates into a set

of four blocks in the fine grid, it is also necessary to determine how two adjacent

blocks affect each other. The simplest solution may be to average the two

overlapping values.

Section 2: "Twelve to Three" Approximation

The first method used is referred to as a "12 to 3" interpolation. As shown in the

figure below, twelve resistors in the fine grid replace the four in the coarse grid.

47

R2

Ri R3

R4

(a)

b b

a c a

C C

a c a
b b

(b)

Figure 21: (a) Four resistors in a coarse grid block
(b) Same physical area in fine grid

The twelve resistors are approximated as having one of three values:

R,+R 3 R2+R4 R +R2+R3+R4b= 2 44b=2 =
2 2 4

(5.1)

When two blocks are placed side by side, this creates overlapping resistors. Their

values are calculated by averaging the approximations from each individual block.

This method has a number of shortcomings. If both grids are driven by the same

current drive, then the fine and coarse grids will produce different voltage values

at the coarse nodes. This approximation also arbitrarily decides which resistors

affect current flow in the horizontal and vertical directions. These decisions are

not the result of concrete formulas or theorems.

Section 3: Linear Interpolation

The linear interpolation method chooses some desirable properties and makes

them into constraints seeking just enough constraints to uniquely determine the

method. The first stipulation is that fine horizontal conductances are a linear

48

function of coarse horizontal conductances. Similarly, the fine vertical

conductances are a linear function of the coarse vertical conductances.

Furthermore, the relationship is the same in each case, so by specifying the

relationship in one direction, the entire interpolation method is defined. Looking

at just the vertical direction, the goal is then to turn the situation on the left into

the situation on the right as shown below.

gi g2 gk

000

Si S2 S3 S2k-I

1 z00 S2k-I

(a) (b)

Figure 22: (a) Vertical conductances in coarse grid.
(b) Vertical conductances in fine grid.

In order for the fine conductances to be a linear function of the coarse

conductances, there must exist some matrix L such that:

where

C2 92

[C2k-1_
gkJ

1 1 1

C. S. S.

(5.2)

(5.3)

49

In other words, c is the conductance of the series combination of two resistors,

each with conductance s. The matrix A has 2k-1 rows and k columns. In order

for the sum of all the fine conductances to be equal to the sum of all the coarse

conductances, the sum of each column of A must be equal to 1. Another

restriction imposed in this interpolation is that if the coarse conductances are

uniform, then so are the fine conductances. This implies that the sum of each

row in A is the same.

The sum of all the elements in A is equal to the number of columns times the

sum of each column, which is the same as k times 1, or just k. If the sum of each

row is x, then x times 2k - 1 must equal k. In other words, x must be equal to

k . A narrowness assumption is made stating that the conductance of any
2k -1

particular coarse resistor only affects the values of the fine resistor in its place and

the fine resistors to its immediate left and right. This makes a number of entries

in A equal to 0. Precisely, A can be written as:

a11 0 --- 0 0

a 2 1 a 2,2 0 0 0

0 a 3,2 0 0

0 a4,2 0 0 0

0 a 2 i-2,

A =- a2i-l,i (5.4)
a 2 i 0

0 0 0 a2k-4,k-1

0 0 a2k-3,k-1

0 0 0 a2k-2,k-1 a2k-2,k

0 0 ... 0 a2k-l.k

From the information above, the elements of A are of the form:

50

j -1 ,
2k -1'

k
ai=j 2k-I'

k-j

2k -1
0,

i = 2j-2, j= 2..k

i = 2j-1, j =..k

i = 2j, j =1 ..k -1

otherwise

Section 4: Interpolation by Averaging

The final interpolation method used is simply an averaging function. All coarse

resistor values in the grid are averaged, and this value is assigned to each resistor

in the fine grid. Although crude, it will later be shown that this method is

sufficient in most cases. Furthermore, because of its simplicity, it is the preferred

method.

51

(5.5)

Chapter 6

ALTERNATING METHOD

Once a fine grid of resistor values is initialized, the SIDO solver runs through

iterations that try to improve the initial estimate. Each iteration in the alternating

method has two parts: a forward and inverse step. The forward half solves the

equation Gv = i for v, but not in the usual manner. Since some of the voltage

values are known from the given coarse measurements, the equation is only

solved for the unknown values in the fine grid. The voltage values are

determined such that the solution minimizes IIGv - il2. For the second part of

each iteration, the measured voltage values (coarse grid) are combined with the

values calculated in the forward half of the iteration. This provides a complete

fine grid of voltage values. The inverse solver can now be used to determine a

fine grid of resistors by again minimizing IIGv -i112

Section 1: Mathematical Formulation of SIDO Solver

The forward and inverse methods that are used on this fine grid are for the most

part the same as those that have been used earlier. However, the forward solver

incorporates a few changes since the values of voltages that have been measured

are not updated. In solving Gv = i , an exact solution can normally be found

because there are as many equations (one Kirchoff current equation per non-

reference node) as voltages. Since some values in the v vector are known, it is

necessary to alter the system to move all known information to the right while

leaving unknown values to the left. The columns in the G matrix that correspond

52

to the known voltage values are deleted. The vector i must be adjusted to

compensate for the missing columns of G. For example, if the k* element of the

voltage vector is a known value, then the k column of G is deleted and the

vector i is decreased by the value of this k* column multiplied by the known k

element of the voltage vector. This results in a linear least squares problem

because the matrix G will end up with more rows than columns.

Using the notation mentioned earlier, the equation Gv = i can be rewritten as:

[G, G 2] [= i (6.1)

This is equivalent to:

Gle+G 2 u = i (6.2)

Therefore, the forward solver will solve the equation:

G2 u=i-Gie (6.3)

for the unknown voltage vector u.

An exact mathematical description of the entire SIDO solver may help elucidate

this process. Parenthesized subscripts and superscripts are used to indicate the

current drive and round of iteration, respectively. The procedure is then:

1) Initialize G to G(, some initial estimate of all the conductances using

coarse to fine interpolation.

2) Set k = 0.

53

3) Using the existing estimate G(k) for the conductance matrix, solve each

of these over determined equations in the least squares sense:

U(k+1) ()

G(k)C = i(

(2) (k+1 (2) (6.4)

G(k) e(D)
U(k+1) =(D)

I (D)

for the vectors u (k+) u (k+),. u (k+) of node voltages on the fine grid(1) (2) (D)

using the method shown in (6.3).

4) Increment k.

5) Combine the most recent estimates u(k) U (k) (k) with the measured

voltages e()Ie(2),. e(D) to produce the set v() v() ... V . Solve the

combined set of equations:

F V~) 1_)_11
g2) (k) _ (2> (6.5)

(D) (D) j

for the conductance vector g(k) that minimizes the sum of squared

errors using the formula shown in (3.17).

6) Go to step 3.

54

Section 2: Simulation Results and Analysis

Iterations of this method are performed in several different situations. The solver

is used on both the uniform and the bump grid. The flat grid is relatively

uninteresting compared to the bump grid, and so the simulations run on the flat

grid are not included in this document. Both the 12 to 3 and the averaging

interpolation methods are used to initialize the conductances, and the number of

current drives used is also changed to six13 for some of the simulations. The 12

to 3 approximation takes far more time than the averaging interpolation method,

and this algorithm quickly infers a good estimate for the conductances even if it

begins with a uniform estimate. For these reasons, the 12 to 3 simulations are left

out of this document. The final factor that is altered is the amount of noise

added to the voltage measurements provided at the coarse nodes. The first two

simulations are for a noiseless system with six and eight current drives,

respectively. Eventually the results of the alternating algorithm will be compared

with the results of the Newton algorithm. For this reason, the remaining two

simulations use eight current drives. The first adds in measurement error on the

order of 1% and the second adds error on the order of 10%.

For each set of simulations, two plots are shown. The first plot shows the

resistor estimates after one thousand iterations. The second plot in each set

illustrates the progression of four values over the first one thousand iterations.

The first three values are the coarse voltage error, RMS current error, and resistor

error mentioned earlier. The fourth value is the condition number within both

the forward and inverse steps.

These plots are shown in the following figures.

55

13 Drives 1 through 6 as indicated in Figure 5

(a) Vertical Resistances

0.3 - - -...

0

c-
0.1-

6 10

Horizontal (b) Horizontal Resistances Vertical

0.3-

C

0.1

C

a:6

3 2 1 2

Horizontal c) All Resistances Vertical

0.3 - ----

We -

0.1---

a:7

Horizontal Vertical

Figure 23: Resistor values after 1000 iterations
using six drives with no measurement error.

56

(a) Coarse Nodes Voltage Error

200 400 600
Iteration Number

102

10

10

10

10-2

10~3
800 1000

100

10-2

10

10-
200 400 600

Iteration Number
800 1000

(c) Resistor Error

200 400 600
Iteration Number

100

80

E
z
c
0

*0

800 1000

(d) Progression of Condition Numbers

601

40-

20-

0
200 400 600

Iteration Number
800 1000

Figure 24: Error metrics for first 1000 iterations
using six drives with no measurement error.

57

co

C.
E

I.

I-

40

35

30

25

a 20

15

10

5

0

(b) RMvS Current Error

(a) Vertical Resistances

0.3 - -.. ..

.Z

0.1

7 10

H5 r...... V8tia

Horizontal (b) Horizontal Resistances Vertical

100.3-

E

C

Horizontal (c) All Resistances Vertical

0.2 -

E
0

0. 1

5 -10
2 4

3 2 246

Horizontal Vertical

Figure 25: Resistor values after 1000 iterations
using eight drives with no measurement error.

58

(a) Coarse Nodes Voltage Error
102

10

0

0)
co -
". 10

10 2

10-3

100

10-2

10-4

200 400 600 800 1000
Iteration Number

(c) Resistor Error

10
200 400 600 800 1000

Iteration Number

(d) Progression of Condition Numbers
100

80-

a)E
z
C

0

0

60

40-

20

' '' 0
200 400 600 800 1000

Iteration Number
200 400 600 800 1000

Iteration Number

Figure 26: Error metrics for first 1000 iterations
using eight drives with no measurement error.

59

CD

E

40

35 *

30-

yj25

c) 20

(D 15

10

5

0

(b) RMS Current Error

(a) Vertical Resistances

0.2 - -..-..-.

0

a7 10

..............

C

~0.12
H oiDn a .

V.r...a

Hori l(b) Horizontal Resistances Vertical

......................

0 0.3 - -. :.-.-.-

0

........

10.1

cc 6
10

2 43 2 246

Horizontal . Vertical

Figur 27: Resistaese100irton

0.3 - -.-.-.-.

CD .2 - ---
-

.5 0.1

Z

Horizontal Vertical

Figure 27: Resistor values after 1000 iterations
using eight drives with 1 /measurement error.

60

(a) Coarse Nodes Voltage Error
100102

10

0

10

10

103

,D

E

10

10
400 600 800 1000

Iteration Number

(c) Resistor Error
100

200 400 600 800 1000
Iteration Number

(d) Progression of Condition Numbers

80 [

E
z
c
0

*0

60

0
200 400 600 800 1000

Iteration Number

*..............

200 400 600 800 1000
Iteration Number

Figure 28: Error metrics for first 1000 iterations
using eight drives with 1% measurement error.

61

10-

200

40

35

0

L 25

0-w>20

15

10

I

5

0

(b) RMS Current Error

-

40-

20-

(a) Vertical Resistances

0.3-

E

07 10

1 2

Horizontal (b) Horizontal Resistances Vertical

..

00.3----

.......................
0 ~~.

5~ ---.. 1

02 4

Horizontal -Vertical

2

Horizontal (c) All Resistances Vria

0.3---E :.. - ---.-.

0 ---

0.1-

a:7

41 2

Horizontal Vertical

Figure 29: Resistor values after 1000 iterations
using eight drives with 10% measurement error.

62

(a) Coarse Nodes Voltage Error
102

10

0

W 10

10-

102
1000

(c) Resistor Error

100

102

E

10-4

10

100

80

CD
.M
E=
z
c

0
0

200 400 600 800 1000
Iteration Number

(d) Progression of Condition Numbers

60-

40

20

0
200 400 600 800 1000

Iteration Number
200 400 600 800 1000

Iteration Number

Figure 30: Error metrics for first 1000 iterations
using eight drives with 10% measurement error.

63

200 400 600 800
Iteration Number

40

35

30
0

25

c> 20

3 15

i.

10 [

5

0

(b) RMS Current Error

The error metrics show some very interesting results. The alternating method is

designed so that during both halves of each iteration, a linear least squares

problem is solved. This guarantees that the RMS current error decreases at each

step" since it is a monotonic function of residual current error. The simulations

show that the RMS current error is in fact a decreasing function of iteration

number. Furthermore, the average absolute percentage coarse voltage error also

decreases with each iteration. The coarse voltage and RMS current error plots for

each simulation seem to suggest that the solver is iterating towards the correct

solution. However, the progression of the resistor error shows that this is not

always true. The equation being modeled is highly non-linear and the plots show

that it is possible for the resistor estimates to become progressively worse even

though the RMS current error and the coarse nodes voltage error decrease at each

Se15.
step"

As a general trend, increasing the number of current drives does insure that the

average absolute resistor error decreases. With more drives, the condition

numbers also become smaller. Again, the addition of noise causes the system to

move away from the exact solution, but it does not cause erratic, unpredictable

results.

14 To be completely precise, a linear least squares solution is guaranteed to be non-increasing. So, the solution

must either decrease or at worst, remain constant.

15 The simulation using six current drives with no measurement error is the best example of the simulations

that were run of a situation where the resistor error increases although the RMS current error is decreasing

64

Chapter 7

NEWTON'S METHOD

Newton's method looks at how the value of a function changes as a result of

small changes in the estimate of its solution. The method forms a Taylor series

expansion for the system about the current estimate, removes all non-linear

terms, and then solves this relatively simpler equation. There are several

unknowns in this system. The most important ones are the values of the

resistors. However, the voltage values at all non-coarse nodes are also unknown.

The alternating method solves for the each of these in turn, but the Newton

algorithm is different in that it simultaneously updates all unknowns.

Section 1: Mathematical Formulation of SIDO Solver

The state of the system on the kr iteration is:

AG (k)A = ifk) (7.1
[u~

Newton's method proceeds by replacing each unknown with its updated value.

This results in:

A(GI)(k+8G(k) T ((d) (7.2)
IU + su

65

AG (k)A Ie +AG(k)AT k]

+ASG(k)AT[e+A8GIk)A T =itd)

+ U (k) A(k)]

(7.3)

Three of these terms are linear in delta, but one is quadratic. Because it is

assumed that the delta values are relatively small, the quadratic term is dropped

and the known term is moved to the right, resulting in the following equation that

can be solved for the delta values.

AG(k)AT[, k +ASG(k)AT L e 1 =.(d) -AG(k)A TFes u th u (kt s t(k)

In order to solve this equation, it is simplified to the form:

) W (kg(k) i(d) - AG(k)A T[e)BU ()U (

(7.4)

(7.5)

where P and W are functions of A, Gk, and u®. From

of branch incidence matrices, the precise values are:

the previous explanations

A diag (vk)A

p(k) A (diag((k) TA (7.6)

W (AG(k)A T)_M

W(k) 0

0

L 0

0 0

(AG(k)AT)_ 0

0

0 0

0

0

0
(AG(k)A T L)MJ

66

(7.7)

where the N-M subscript indicates using the N-M columns of AGAT that

correspond to the unmeasured voltages. Solving for the deltas in the unknown

values is now a linear least squares problem.

Newton's method uses the current estimates for g and u to solve for the delta

values. Then it updates the estimates, and finally, the above equation is

reformulated with the new estimates so that the process can be repeated.

Section 2: Need for a Regularization Term

If the conductance and unmeasured voltages are exact, they are linear functions

of each other, and this will make P and W linear functions of each other as well.

This means that [P(k) W(k)] is rank deficient and has more unknowns than

equations. Furthermore, it has been experimentally observed that even if the

conductance and unmeasured voltage values are not exact, as they get closer to

being correct, the system will approach singularity and produce unpredictable

results.

In order to avoid this situation, a regularization term is added. This translates

into solving the equation Ax = b for the vector x by minimizing the value of:

Ax - b1 + E1x112 (7.8)

for some value of E. This is equal to:

xTATAx-xTAb-bTAx + b b + x (7.9)

Taking the derivative of this value and setting it equal to 0, results in:

2ATAx-ATb-ATb+2Ex=0 (7.10)

67

(ATA + EI = A Tb (7.11)

The vector x in (7.11) is now multiplied by a square, positive definite, symmetric

matrix. With an exact solution for x, there is no need to worry about a rank-

deficient system. The only decision left is to choose a value for E. The purpose

of the regularization term is to change A because ATA +El is not singular.

Singularity for A implies that its smallest singular value is equal to zero. Let a,

and a be the largest and smallest singular values of the matrix A. This implies

that the largest and smallest singular values of ATA + C1 are equal to (a,) + E

and (a,)+ F. Therefore, the choice of E is made so that the condition number

of the resulting matrix will represent a well-posed system. In other words, E is

chosen so that:

+ << 1012 (7.12)
(a. + E E

Note that in the (7.11), the values for A, x, and b are actually:

b = i(d) - AG(k)AT[e

A = P(k) W(k)] (7.13)

8(k)]

Section 3: Simulation Results and Analysis

Iterations of this method are performed in several different situations. The

simulation is only applied to the bump grid and always uses the averaging

68

interpolation method with eight current drives. The factors that are altered are

the amount of white noise added to the system and the value of 6 used for

regularization.

For each set of simulations, two plots are shown. The first plot shows the

resistor estimates immediately after the final iteration. The second plot in each

set shows the progression of three values over the first twenty-five iterations.

The three values are the coarse voltage error, RMS current error, and resistor

error mentioned earlier. These plots are shown in the following figures. Note

that the simulations where E = 0.1 are run for one hundred iterations whereas for

other values of E, there are only twenty-five iterations. For the sake of

comparison, it is best to look at the plots that either have the same value for E or

have the same amount of noise.

69

(a) Vertical Resistances

0.1

7 10

Horizont(b) Horizontal Resistances Vertical

0

C

.i;6

Horizonta (c) All Resistances Vertical

* 0.3 : -. . -...

Horizontal Vertical

Figure 31: Resistor values after 100 iterations of a
noiseless system with £ = 0.1

70

10
10 2

2 10

o 10

10

10-2

100

02
(D
CD

E< 0-

10 20 30 40 50 60 70 80 90 100
Iteration Number

Figure 32: Error metrics for 100 iterations of a

noiseless system with E = 0.1

71

(a) Coarse Nodes Voltage Error

10 20 30 40 50 60 70 80 90 100
Iteration Number

(b) RMS Current Error

10 20 30 40 50 60 70 80 90 100
Iteration Number
(c) Resistor Error

10-

40

I-

0)0
CD

eC>

0

30

20

10

(a) Vertical Resistances

0 .3 --... -.-

0

0.1CD

7 10

1 2

Horizontal (b) Horizontal Resistances Vertical

0.3-

C -

.0. 1

a: 6

112

Horizontal c) All Resistances Vertical

0.2 - ---

<n0.

system with %/ measurement error and E = 0.1

72

(a) Coarse Nodes Voltage Error
10

210

a 10

10

10-2

100

10 20 30 40 50 60
Iteration Number
(c) esistor Error

70 80 90

70 80 90

10 20 30 40 50 60 70 80 90
Iteration Number

Figure 34: Error metrics for 100 iterations of a

system with 1% measurement error and E = 0.1

73

10 20 30 40 50 60
Iteration Number

(b) RMS Current Error

a)
L

E

10-2

104

1.0 0

0

I I I I I I I I I

I I I I I I I I I106

40

LU0-

CD.

a)

30

20

10

ic

I I I I I I I I I

I I I I I I I I I0
100

(a) Vertical Resistances

. .e

CD

C

0.1

710

Horizontal (b) Horizontal Resistances Vertical

.........................

0.3-

Ca

0.1

3 .. 1 2468

Horizontal -Vr a(c) All Resistances Vertical

0 0.3 - - - -..-..--
E E.....-.-.....
0 .. - -- - --.-.-

C

0.1
(D

a:7

Horizontal Vertical

Figure 35: Resistor values after 100 iterations of a

system with 10 % measurement error and E = 0.1

74

12

210

o 100
Cu

10

10-2

10 0

102

Q.
E
< 10 -

10 20 30 40 50 60
Iteration Number

(b) RMS Current Error

10 20 30 40 50 60
Iteration Number
(c) Resistor Error

10 20 30 40 50
Iteration Number

70 80 90

30

70 80 90

70 80 90

Figure 36: Error metrics for 100 iterations of a
system with 10% measurement error and E = 0.1

75

(a) Coarse Nodes Voltage Error

- I I I I-

10

40

10

I I I I I I I I

I I I I I I I

0

W10

a,
(
Cu

30

20

10

I I I I I I I I

~ I I I I I I0

ic

100

0

0

(a) Vertical Resistances

0.3 - -

01

U~

0.2 - ------

C
CD.

Horizontal (c-l eitne Vertical
.............

(b)rHzronnal Veerstical

0.10

46

1 2

Horizontal -Vertical

() Aristal R esista nc es

0.3n-os sw- :

*-0.1

Horizontal ()AlRstacs Vertical

Fi...3:.eis.....s..er2..erton o

0.sees syte with.E.=...

76

102

2 10

0 0
C 10

10,

10 15
Iteration Number

20 25

Figure 38: Error metrics for 25 iterations of a

noiseless system with F = 10-4

77

(a) Coarse Nodes Voltage Error

5 10 15 20 25
Iteration Number

(b) RMS Current Error

5 10 15 20 2r
Iteration Number
(c) Resistor Error

10-2

100

10-2

10-

al)

E

10-6

40

230
II0

< 20

10

0
5

(a) Vertical Resistances
.....................

0.3-

0.1Cn

C C 1 0

2 24

Horizontal .Vria
(b) Horizontal Resistances Vertical

..

* 0.3 . - -....E ---..-..-.- -

CO

0.1

a: 6 . ..

1 2

Horizontal (Vertical

Fiue 9 esso al es ftnes5ieatoso

s0.3 --- -s t

.MI 0.1-

Horizontal Vertical

Figure 39: Resistor values after 25 iterations of a
system with 1%/' measurement error and F- = 104

78

102

10 15
Iteration Number

20 25

Figure 40: Error metrics for 25 iterations of a
system with 1% measurement error and c = 1(4

79

a- 1
210

a) 10
0

co

(a) Coarse Nodes Voltage Error

r~

5 10 15 20 25
Iteration Number

(b) RMS Current Error

5 10 15 20 2
Steration Number
c) Resistor Error

-

10-2

100

10-2

10 -

co

E

10 6

40

2 30

N0

D 20

C0

<Z10

0
5

5

(a) Vertical Resistances

00.3-.--

0 -. ..-.

C-
.0. 1-

6 510

Horizontal (b) Horizontal Resistances Vertical

S0.3 --E:-

08

0. 1--

6

Horizontal (c) All Resistances Vertical

0.3 --.-..-.

0.1-

Ir7

Horizontal Vertical

Figure 41: Resistor values after 25 iterations of a

system with 10% measurement error and E = 10-4

80

10 2

1

210
h-w
0

CO 100

><10

10 15
Iteration Number

20

Figure 42: Error metrics for 25 iterations of a
system with 10% measurement error and E = 104

81

(a) Coarse Nodes Voltage Error

5 10 15 20 2
Iteration Number

(b) RMS Current Error

5 10 15 20 2
Iteration Number
(c) Resistor Error

10-2

100

10-2

10-4
E

10

40

> 30

e 20

10

0

5

5 25

(a) Vertical Resistances

00.3-- - -..-
E ---- -----.-

..........................

0
C

Ca

0 1

10

Horizontal (b) Horizontal Resistances Vertical

..---........-

0.23 --
E

Q.e

0.1

Horizontal (c) All Resistances Vertical

....................

0 0.3 -- --..-.-.E :..-.--......-
C)0--.--.

Q.e

.l 0.1 -

0

12

Horizontal Vertical

Figure 43: Resistor values after 25 iterations of a
noiseless system with E = 10-7

82

(a) Coarse Nodes Voltage Error
10

>- 1
210

C10

10-2
5 10 15 20 25

Iteration Number
(b) RMS Current Error

10

10-2

CL
E

10 -

10-6
5 10 15 20 25

Iteration Number
(c) Resistor Error

40

2 30-

(20-
CD

10 -

0
5 10 15 20 25

Iteration Number

Figure 44: Error metrics for 25 iterations of a

noiseless system with E = 10-7

83

For noiseless simulations, very small values of E can be used and the solver will

still produce the correct solution. The plots shown use values as small as

E = i0~, but in fact values as small as 8 = 10~' can be used and the resistor grid

solution will still be obtained accurately and quickly. With such small values, the

condition number of the system gets as high as 10'9, but the system is still

effective as a solver.'" However, with the introduction of noise, large condition

numbers and ill-posed systems quickly become impediments to the solver and its

ability to produce the correct resistor grid. Both noisy systems (1 % and 10%

error) require that the value of 8 not be much smaller than 10 '. This would still

represent a system with a condition number as high as 1010. Also, in the

simulation with 10% measurement error and E equal to 10 4, the solver actually

begins to head off in the wrong direction. This occurrence is not at all surprising

for an equation with such a high condition number. Using a value such as 0.1 for

E will make the solver much more likely to head in the correct direction and

much less likely to take some erratic path as a result of an ill-conditioned system.

Yet larger values of 8 result in a slower progression towards the final solution,

and this is the reason that the simulations with 8 = 0.1 are run for 100 iterations.

The smaller values of E cause the system to move more rapidly, but with large

condition numbers, these movements could be in entirely the wrong direction.

As is expected, there are a number of factors in these simulations that trade off

against each other.

16 The condition number calculation is based on the fact that the largest singular value for the matrix A is on

the order of 1000.

84

Section 4: A Coarser Set of Measurements

To this point, the SIDO solver has only been used on grids where coarse

measurements are provided at about one out of every four nodes. This section

will change that factor to about one out of every nine nodes. The fine grid will

now measure ten nodes by ten nodes and so the coarse grid measures four nodes

by four nodes. The equation for the number of drives needed is:

(4*4 - 1)D (2*10 *10)-(10+10) (7.14)
D 12

To be sufficiently over this bound, sixteen drives are used. Note that the matrix

[P W] will now have 1584 rows and 1524 columns. As will be shown later,

calculating the singular value decomposition of such a large matrix greatly

increases the computation time of the Newton algorithm. There are two plots

for each simulation. The first shows the estimate for the grid of resistors after

the twenty-fifth iteration, and the second plot shows the progression of the RMS

current error and the resistor error. This coarser grid is simulated with and

without noise for E = 104 and without noise for E = 10'. The plots below

show the results.

85

(a) Vertical Resistances

..........................

.0.3 --..

0

2 110

Horizontal .Vria() rzAll Resistances Vria

0 ~~~.

CD
Q

CO

ln 0.1 - -

CD,

10

2 2

ontal (b) H- Vertical

Fiue 5 esso luesftnes5ieatoso

10 0 .3 . - ...- ..-

En s w - - - - -

0 .2 . .-.

0.2 1

8osls sytm1ihE0 0
68

(a) RMS Current Error

5 10 15 20 2
Iteration Number

(b) Resistor Error

10 15
Iteration Number

20

5

25

Figure 46: Error metrics for 25 iterations of a
noiseless system with E = 104

87

100

10-2

CL

E

104

10

80

70

60

i 50

a> 40

Z 30

20

10

0
5

(a) Vertical Resistances

0.3 --.-.-.-.-

0

C:

~0.1

Horizontal .Vria(b) Horizontal Resistances Vertical
.............................

.........................

(00.3 . -.-.-.-E
O ..--.-.

CO

*O 0. 1 -

10

2 2

Horizontal - Vertical

Fiue 7 esso al es ftnes5ieatoso

....... ..---.-..-....

..:.........--..---..-

0 .2 --.-.-...

.n-0. 1-

10
1

2 2

Horizontal Vertical

Figure 47: Resistor values after 25 iterations of a
system with 1% measurement error and E = 104

88

(a) RMS Current Error

15
Iteration Number

(b) Resistor Error

15
Iteration Number

Figure 48: Error metrics for 25 iterations of a

system with 1% measurement error and e = 104

89

100

10-2

CD,

E

10-4

10

80

5 10 20 25

L->
In

-0)

0,

50 -

40 -

30 -

20 F

10

0
5 10 20 25

70-

60-

I

(a) Vertical Resistances

*0.3 -- -.-.-.-

E
CD

C

d:2 102

Horizontal -Vr a(b) Horizontal Resistances Vertical

...
c* 0.3 - -----E -.-.-.--.-...-

Horizontal (c .l essacs Vertical

E. ---

0

Ca

0.11

8 6 10

2 24

Horizontal Vertical

Figure 49: Resistor values after 25 iterations of a

noiseless system with E = I -7

90

100

5 10 15 20 2
Iteration Number

(b) Resistor Error

10 15
Iteration Number

20

5

25

Figure 50: Error metrics for 25 iterations of a
noiseless system with E = 10-7

91

(a) RMS Current Error

L
E

10-2

10-4

10 -

80

70

0
w
-0
OR

(D

60

50

40

30

20

10

0
5

These plots again show that increasing noise in the system will decrease the

accuracy of final results. Also, smaller values of E cause the solution to be found

more quickly but at the risk of increasing the condition number and causing

erratic results for high levels of noise.

Section 5: Elimination of Regularization

A regularization term is used because the matrix [P(k) W(k)] is rank deficient.

Although this matrix has 608 rows 7 and 560 columns'", the rank of the matrix is

539 and therefore cannot be solved using least squares methods. The deficiency

results from the fact that current drives four, five, and six shown in Figure 5 are

mirror images of current drives one, two and three. So the KCL equations that

are written at the non-reference coarse nodes under current drives four, five, and

six provide the same information as the KCL equations from current drives one,

two, and three. There are three times 23 redundant equations.'9 The rank of 539

results from removing these 69 dependent equations from the original 608 KCL

equations.

The solution to the rank deficiency problem is to designate a set of new current

drives that are all linearly independent of each other. In general, nodes close to

the current source and sink are "weighted" more than the others in a particular

drive because a larger amount of current flows through these nodes. So the new

current drives must be selected carefully to attempt to equally weight all nodes in

the fine grid.

17 One KCL equation is written at each non-reference node under each of the eight drives. This creates eight
times 76 equals 608 equations.

18 There are 560 unknowns. These are the 136 unknown resistors and 8 times 53 unknown voltage
measurements.

19 There are 23 coarse node KCL equations per drive because no equation is written at the reference node.

92

The new current drives are used in simulations both with and without

regularization. The simulations with the regularization term result in resistor

estimates more or less equal to those that resulted from simulations with the eight

original current drives. Without the regularization term, the simulations with the

new current drives result in resistor estimates that are erratic and unpredictable.

The reason for such behavior is not yet understood.

93

Chapter 8

CONCLUSIONS AND FURTHER EXPLORATIONS

This project began with using a forward and an inverse solver with a full set of

voltage measurements and then moved to creating an inverse solver that manages

to obtain accurate solutions given minimal information. Many different

variations are tried, ranging from changing the number of current drives used to

altering the method of grid initialization. Some situations resulted in positive

results while others came up short. It is important to not only see where the

solvers work, but also understand the shortcomings and how they may possibly

be improved.

Section 1: Successes

As far as successes are concerned, this project did achieve the goal that it set out

to accomplish. An inverse solver was developed that solved for a fine grid of

resistances when provided with voltage measurements only along a coarse grid.

The solver based on Newton's method not only determines the resistive grid, but

also manages to do so under a fair amount of noise; however, the ability to solve

noisy systems is traded for decreased computational speed. The following table

gives the relative amount of work necessary to use each solver. The units of

computation are flops, which indicates the number of floating point operations

for each calculation. Computation time is measured for the solver initialization,

for each iteration, and for the entire system solution.

94

Flops for Flops for Total # of Flops for Entire
Initialization Each Iteration Iterations Solution

Dense
Forward N/A 7.3 x 107 1 7.3 x 107

Problem

Dense
Inverse N/A 8.4 x 10' 1 8.4 x 108
Problem
Altemating
Algorithm 8.0 x 106 2.9 x 108 1000 2.9 x 10"
(6 drives)
Alternating
Algorithm 9.3 x 106 4.7 x 108 1000 4.7 x 10"
(8 drives)
Newton with
E = 0.1; 1.1 x 10 8 3.0 x 10 9 100 3.0 x 101
(1 to 4 ratio)
Newton for
all other E ; 1.1 x 10 8 3.0 x 10 9 25 7.6 x 10 0

(1 to 4 ratio)
Newton's
Method 6.0 x 10'0 6.3 x 1010 25 1.6 x 1012

(1 to 9 ratio) I I I I _I
Table 1: Computation times for various solvers

developed in this document

Previously, a reason was not stated for choosing the number of iterations for each

solver. The above table shows that one thousand iterations of the alternating

algorithm require approximately the same number of flops as one hundred

iterations of the Newton method. The final solutions of these two algorithms

can then be compared to measure the efficiency of each solver as a function of

time. Each of the following figures shows a comparison between the alternating

algorithm, Newton's method with E = 0.1, and Newton's method with E = 10-.

These comparisons are made for the noiseless system, the system with

95

approximately 1% measurement error, and the system with approximately 10%

measurement error. The plots are shown below.

96

200 300 400 500 600

(a) Alternating Algorithm

i Iterati Numberi

-

Iteration Number
(b) Newton with epsilon = 0.1

I I I I

700 800 900 1000

0 10 20 30 40 50 60 70 80 90 100
Iteration Number

(c) Newton with epsilon = 0.001

5 10 15
Iteration Number

Figure 51: Comparison of resistor error for
noiseless systems

20 25

97

40

0

0)0
CD

(D

30

20

10

0

40

100

0

a)
cm
MU

30

20

10

0

4C

I-

0
I-
-0

OR
0)

3C

2C

ic

c
0

(a) Alternating Algorithm

i Iterati Numberi

-

300
Iteration Number

(b) Newton with epsilon =0.1

400 500 600 700 800 900 1000

10 20

5

30 40 50 60 70 80 90 100
Iteration Number

(c) Newton with epsilon = 0.001

10 15
Iteration Number

Figure 52: Comparison of resistor error for systems
with approximately 1% measurement error

98

40

&30
In

c 20

10

0

40

100 200

I..

00
CD

CD

30*

20

10

0
0

40

30

w 20

CD
. 10

0
0 20 25

(a) Alternating Algorithm
I I I I I I

400 500 600 700 800 900 1000
Iteration Number

(b) Newton with epsilon = 0.1

0 10 20 30 40 50 60 70 80 90 100
Iteration Number

(c) Newton with epsilon = 0.001

10 15
Iteration Number

Figure 53: Comparison of resistor error for systems
with approximately 10% measurement error.

20

99

40

-0ID

Cu

a)

30

20

10

0

A4

100 200 300

LI
0

CD
e

(D

30

20

10

0

40

0

II

a)
0>

Cu

30

20

10

0
0 5 25

The plots above show that for the same amount of computation time, Newton's

method is generally better than the alternating algorithm. The word "better"

refers to having the smallest possible resistor error. The only complication with

Newton's method is choosing the proper value of E so that the system

approaches the correct answer quickly and in a stable progression.

Another success of the solver is that it is very versatile. Parameters such as the

number of current drives, their locations, the amount of regularization, the

variance of noise in a generated system, the coarseness of the grid, and the actual

grid size can all be modified by simply changing the values of certain constants.

It is also very easy to change between different interpolation methods, the

number of iterations performed, and the algorithms used to calculated the actual

linear least squares solution.

Section 2: Failures

Unfortunately, there are also a few shortcomings to the solvers that were

developed. Although not ideal, the averaging method is sufficient for initializing

the fine grid and actually saves a great deal both in terms of computation time

and complexity. For this reason, the linear interpolation method was never used

for initializing a system. It is possible that this or some other interpolation

method may actually improve accuracy so vastly that the method is more valuable

than the complexity and timesavings of the averaging interpolation. Also, some

combination of Newton's method and the alternating algorithm could be optimal

to either method on its own. Such a combination was not experimentally or

theoretically derived.

A few areas exist where simulations fail. One example is the situation where only

six drives are used with the alternating method, resulting in the solution heading

100

in the wrong direction. Also significant is that if the regularization in Newton's

method is too small relative to the amount of noise present in the system, the

problem will be ill-conditioned and the resistor estimates will contain

unpredictable errors.

Although the reason for the rank-deficiency of the matrix [p(k) W(k)] was

found and remedied, the new set of current drives that were used did not create a

solution that provided accurate results. The simulations produced resistor

estimates that were quite erratic and did not seem logically founded. The reason

for such behavior was neither experimentally nor theoretically understood.

Section 3: Physical Applications and Further Work

The SIDO solver has a number of applications, the most obvious of which is the

modeling of the conductance of metal sheets. This area of interest is actually

much larger than it sounds. While goals can be as simple as trying to determine

the properties of a single sheet of metal, they can also be as complicated as

searching for corrosion in a pipe system since corrosion affects the pipe

conductances. The basic premise is that any problem that can be modeled as an

overdetermined current flow problem can makc use of a SIDO solver. The

solver is most beneficial in systems where the cost of implementing more voltage

measurement devices is higher than the cost of simply running different "drives"

or "flows" across a fewer number of "nodes."

There are a number of directions to head from here. Section 2 outlined some of

the simulations that fail. It would be beneficial to investigate the exact threshold

levels at which a system seems to become unstable and proceed in the wrong

direction. An understanding is needed for why the solution to the rank-deficient

matrix problem does not result in simulations with accurate results. Furthermore,

101

a complete understanding of the physical properties of a grid and their relation to

a continuous sheet is important. This could allow for an optimal interpolation

method since the aforementioned instability could be circumvented with a better

initialization method.

Also, it is preferable to construct something other than rectangular grids to better

model most physical situations. Furthermore, the coarse nodes where

measurements are made do not need to follow a grid pattern and could be a

random set of nodes to better model real situations. Real problems have all sorts

of abnormalities and kinks and do not follow square patterns.

This thesis has made the first step in showing some of the benefits of a SIDO

solver. However this thesis has focused primarily on showing that such benefits

do theoretically exist. The next step is to modify the model to better represent

real life situations. Once this system is more user-customizable, the possibilities

for applications of the SIDO solver are endless.

102

BIBLIOGRAPHY

Bau, David and Trefethen, Lloyd N.
Numerical LinearAlgebra, 1st ed.
Philadelphia, PA: Society for
Industrial and Applied
Mathematics, 1997.

Desoer, Charles A. and Kuh, Ernest
S. Basic Circuit Theoy, 1st ed. New
York, NY: McGraw-Hill Book
Company, 1969.

Nahib, S. Hamid, Oppenheim, Alan
V., and Willsky, Alan S. Signals and
Systems, 2d. ed. Upper Saddle
River, NJ: Prentice Hall, 1997.

Strag, Gilbert. Introduction to Linear
Algebra, 2d ed. Wellesley, MA:
Wellesley-Cambridge Press, 1998.

103

APPENDIX A - MATLAB CODE

* *

Section 1 - Utilities
* *

* * * branch_incidence.m * * *

function A = branchjincidence(plotH, plotW)
% Returns branch incidence matrix for a grid with the dimensions given.

nodes = plotH * plotW; % Total number of nodes
branches = (2*plotH*plotW)-(plotH+plotW); % Total number of conductances

A = zeros(nodes, branches);

% Vertical branches
for j = l:plotW,
for i = 1:(plotH-1),
nodeabove = ((j-l)*plotH)+i;
branchcount = ((j-l)*(plotH-1))+i;
A(nodeabove, branch_count) = 1; % Branch begins
A(node-above+l, branchcount) = -1; % Branch ends

end
end

% Horizontal branches
for i = 1:plotH,
for j = 1:(plotW-1),
nodeleft = ((j-l)*plotH)+i;
branchcount = ((plotH-1)*plotW)+((i-l)*(plotW-1))+j;
A(nodejleft, branchcount) = 1; % Branch begins
A(node-left+plotH, branchcount) = -1; % Branch ends
end

end

* * * condense.m * * *

function newA = condense(fineA,oldH,oldW, newH, newW)
% Obtains a coarse grid with the dimensions given from a fine grid with the dimensions
% given.

newA = zeros(oldH*oldW,1);
count = 1;

for j = 1:2:newW,
for i = 1:2:newH,
newA(count) = fineA(((j-l)*newH)+i);
count = count+1;

end
end

104

* * * delcol.m * * *

function newA = delcol(A,k)
% Deletes column k from Matrix A

[m, n] = size(A);
newA(:,l:k-l) = A(:,1:k-1);
newA(:,k:n-1) = A(:,k+l:n);

* * * delrow.m * * *

function newA = delrow(A,k)
% Deletes row k from Matrix A

[m, n) = size(A);
newA(l:k-l,:) = A(l:k-1,:);
newA(k:m-l,:) = A(k+1:m,:);

* * * forward.m * * *

function voltages = forward(resistors, plot-type, plotH, plotW)
% Takes in the type of plot to create, the plot height, the plot width,
% and the values of the resistors in that grid. The plot type specifies
% the current drive locations. The voltages returned are the values
% that solve the equation AGA'v = I

% initialize values in G matrix
A = branchincidence(plotH, plotW);
cutA = delrow(A, plotH*plotW);
branches = (2*plotH*plotW)-(plotH+plotW);
Gdiag = diag(l./resistors);
I = zeros((plotH*plotW-1),1);
cutG = cutA*Gdiag*(cutA');

if (plot-type == 1)
I(plotH) = 4;
I(((plotW-1)*plotH)+l) = -4;

elseif (plottype == 2)
I(1) = 4;
I(((plotW-1)*plotH)+l) = -4;

elseif (plot-type == 3)
% I(plotH*plotW) = 4;
I(((plotW-1)*plotH)+l) = -4;

elseif (plottype == 4)
% I(plotH*plotW) = 4;
I(1) = -4;

elseif (plottype == 5)
% I(plotH*plotW) = 4;
I(plotH) = -4;

elseif (plot-type == 6)
I(plotH) = 4;

I(1) = -4;
elseif (plottype == 7)
I(floor(plotH/2))=4;
I(((plotW-1)*plotH)+floor(plotH/2))=-4;

elseif (plottype == 8)
I(floor(plotW/2)*plotH) = 4;
I(((floor(plotW/2)-l)*plotH)+l) = -4;

end

voltages = [(cutG\I); 0);

105

* * * index_resistor.m * * *

function index = index_resistor(x, y, direction, plotH, plotW)
% Returns the index of the resitor located at (x, y) with the specified
% direction (0 = vertical and 1 = horizontal) for a plot with dimensions
% plotH x plotW

if (direction == 0)
index = ((y-l)*(plotH-1))+x;

else
index = (plotW*(plotH-1))+((x-l)*(plotW-1))+y;

end

* * * initializei.m * * *

function new_i = initialize_i(plotH, plotW)
% Returns the value of I in the equation AGA'v = I

il = zeros(plotH*plotW,1);
i2 = zeros(plotH*plotW,1);
i3 = zeros(plotH*plotW,l);
i4 = zeros(plotH*plotW,1);
i5 = zeros(plotH*plotW,1);
i6 = zeros(plotH*plotW,1);
i7 = zeros(plotH*plotW,1);
i8 = zeros(plotH*plotW,1);

il(plotH) = 4;
il(((plotW-1)*plotH)+l) = -4;

i2(l) = 4;
i2(((plotW-1)*plotH)+l) = -4;

i3(plotH*plotW) = 4;
i3(((plotW-1)*plotH)+) = -4;

i4(plotH*plotW) = 4;
i4(l) = -4;

i5(plotH*plotW) = 4;
i5(plotH) = -4;

i6(plotH) = 4;
i6(l) = -4;

i7(floor(plotH/2))=4;
i7(((plotW-1)*plotH)+floor(plotH/2))=-4;

i8(floor(plotW/2)*plotH) = 4;
i8(((floor(plotW/2)-l)*plotH)+l) = -4;

newi = [il; i2; i3; i4; i5; i6; i7; i8];

106

* * * spaceout.m * * *

function newA = spaceout(coarseA,fineA,oldH,oldW)
% Inserts the fine values into a coarse matrix
% oldH and oldW are the coarse dimensions

newH = (2*oldH)-1;
newW = (2*oldW) -;

newA = zeros(newH*newW,1);
count = 1;

for j = 1:newW,
for i = l:newH,
location = ((j-l)*newH)+i;
if ((mod(i,2) == 1) & (mod(j,2) == 1)),
newA(location) = coarseA(floor((i+l)/2) + (oldH * (floor((j+l)/2)-l)));

else
newA(location) = fineA(count);
count = count + 1;

end
end

end

* * * svydvoltages.m * * *

function [x, sigma_max, sigmamin] = svdvoltages(A, b)
% Performs singular value decomposition for the equation
% Ax=b. Returns the value for the maximum and minimum singular
% values for this equation as well as the solution x

[Q1,Sigma,Q2] = svd(A);

c = Sigma' * Q1' * b;
y = inv(Sigma' * Sigma) * c;
x = Q2 * y;

i = size(Sigma);
i = i(2);
sigmamax = Sigma(l, 1);
sigma-min = Sigma(i, i);

107

* *

Section 2 - Interpolation Methods
* *

* * * 12to3_interpolation.m * * *

function fine_resistors = 12to3_interpolation(coarse-resistors, oldH, oldW, newH, newW)
% Function is given a coarse grid of resistors, its dimensions, and the dimensions
% for a new grid of resistors. Function returns the fine grid of resistors with
% these new dimensions. New grid is obtained using the 12 to 3 interpolation method.

fineresistors = zeros((2*newH*newW)-(newH+newW),1);

index = 1;
midValue = oldW*(oldH-1); % Number of vertical resistors in coarse grid.

% Vertical resistors
for x = 1:newH-1,
fineresistors(indexresistor(x, 1, 0, newH, newW)) =
(coarseresistors(indexresistor(floor((x+l)/2), 1, 0, oldH,
oldW))+coarseresistors(index_resistor(floor((x+l)/2), 2, 0, oldH, oldW)))/2; % Value
of vertical resistor on left edge
for y = 2:newW-1,
if (mod(y,2) == 0)
fineresistors(indexresistor(x, y, 0, newH, newW)) =

(coarse_resistors(indexresistor(floor((x+l)/2), (y/2), 0, oldH,
oldW))+coarseresistors(index-resistor(floor((x+l)/2), ((y/2)+l), 0, oldH, oldW)))/2; %
Value of vertical resistor in center & on coarse grid

else
fineresistors(indexresistor(x, y, 0, newH, newW)) =

(coarseresistors(index-resistor(floor((x+l)/2), floor(y/2), 0, oldH,
oldW))+(2*coarseresistors(index_resistor(floor((x+l)/2), (floor(y/2)+l), 0, oldH,
oldW)))+coarse-resistors(index_resistor(floor((x+l)/2), (floor(y/2)+2), 0, oldH,
oldW)))/4;% Vertical resistor in center & not on coarse grid

end
end
fineresistors(index_resistor(x, newW, 0, newH, newW)) =
(coarseresistors(index-resistor(floor((x+l)/2), oldW-1, 0, oldH,
oldW))+coarseresistors(indexresistor(floor((x+l)/2), oldW, 0, oldH, oldW)))/2; %
Value of vertical resistor on right edge
end

% Horizontal Resistors
for y = 1:newW-1,
fineresistors(index_resistor(l, y, 1, newH, newW)) =
(coarseresistors(indexresistor(l, floor((y+1)/2), 1, oldH,
oldW))+coarseresistors(index_resistor(2, floor((y+l)/2), 1, oldH, oldW)))/2; % Value
of horizontal resistor on top edge
for x = 2:newH-1,
if (mod(x,2) == 0)
fineresistors(indexresistor(x, y, 1, newH, newW)) =

(coarseresistors(indexresistor((x/2), floor((y+l)/2), 1, oldH,
oldW))+coarse-resistors(index_resistor(floor((x+l)/2), ((y/2)+l), 1, oldH, oldW)))/2; %
Horizontal resistor in center & on coarse grid
else
fine-resistors(indexresistor(x, y, 1, newH, newW)) =

(coarse-resistors(index-resistor(floor(x/2), floor((y+l)/
2), 1, oldH,

oldW))+(2*coarse-resistors(indexresistor(floor((x/2)+l), (floor(y+l)/2), 1, oldH,
oldW)))+coarseresistors(indexresistor(floor(x/2)+2, floor((y+l)/2), 1, oldH,
oldW)))/4; % Horizontal resistor in center & not on coarse grid
end

end

108

fineresistors(index_resistor(newH, y, 1, newH, newW)) =
(coarse resistors(index resistor(oldH-1, floor((y+l)/2), 1, oldH,
oldW))+coarseresistors(index_resistor(oldW, floor((y+l)/2), 1, oldH, oldW)))/2; %
Value of horizontal resistor on bottom edge
end

* * * avgjinterpolation.m * * *

function fine-resistors = avginterpolation(coarse_resistors, oldH, oldW, newH, newW)
% Function is given a coarse grid of resistors, its dimensions, and the dimensions
% for a new grid of resistors. Function returns the fine grid of resistors with
% these new dimensions. New grid is obtained by averaging all values in the coarse
% grid and assigning this average value to all the resistors in the fine grid.

avg-value = sum(coarse-resistors) /((2*oldH*oldW)- (oldH+oldW));
fine_resistors = avgvalue.*ones((2*newH*newW)-(newH+newW),1);

109

* *

Section 3 - Error Calculations
* *

* * * error_coarse_voltages.m * * *

function total = error_coarsevoltages(resistors, Vl, V2, V3, V4, V5, V6, V7, V8, oldH,
oldW, newH, newW)
% Function that takes in the current estimate of all the conductances.
% Assuming that these resistor measurements are correct, this function
% solves for the coarse voltage values that would have resulted in
% such resistors. The error metric calculates the value of the average
% absolute value of the percent error between this calculated value
% and the actual given measurement

sum = 0;

% Form AGA' that is used in forward problem
A = branchincidence(newH, newW);
cutA = delrow(A, newH*newW);
G = diag(l./resistors);
cutG = cutA*G*(cutA');

for plotNumber = 1:8,

% Initialize value for I depending on current drive
I = zeros((newH*newW)-1,1);
if (plotNumber == 1)
I(newH) = 4;

I(((newW-1)*newH)+1) = -4;
elseif (plotNumber == 2)
I(1) = 4;
I(((newW-1)*newH)+l) = -4;

elseif (plotNumber == 3)
% I(newH*newW) = 4;
I(((newW-1)*newH)+1) = -4;

elseif (plotNumber == 4)
% I(newH*newW) = 4;
I(1) = -4;

elseif (plotNumber == 5)
% I(newH*newW) = 4;
I(newH) = -4;

elseif (plotNumber == 6)
I(newH) = 4;
I(1) = -4;

elseif (plotNumber == 7)
I(floor(newH/2))=4;
I(((newW-1) *newH)+floor(newH/2))=-4;

elseif (plotNumber == 8)
I(floor(newW/2)*newH) = 4;
I(((floor(newW/2)-l)*newH)+l) = -4;

end

voltages-calculated = [(cutG\I); 0];

voltages_actual = eval(strcat('V',int2str(plotNumber)));

% Iterate through voltage grids and sum up errors only at coarse nodes
for j = 1:newW,
for i = 1:newH,
if ((mod(j,2) == 1) & (mod(i,2) == 1)),
v_calc = voltages-calculated(((j-l)*newH)+i);
v_actual = voltages-actual((j-l)*newH+i);

110

if (v.actual -= 0)
sum = sum + abs((v-calc-vactual)./vactual);

end
end

end
end

end

total=sum/(8*oldH*oldW);

* * * error-lls.m * * *

function total = error-lls(resistors, Vl, V2, V3, V4, V5, V6, V7, V8, oldH, oldW, newH,
newW)
% Function that takes in the current estimates of both the fine resistor
% grid and all fine voltage grids. The residual error in AGA'v-I is
% calculated. The RMS value of this error metric is returned to the user.

A = branchincidence(newH, newW);
Icalc = [];

for count = 1:8,
Icalc = [Icalc; A*diag(l./resistors)*(A')*eval(strcat('V',int2str(count))));

end

actualI = initialize-i(newH, newW);

total = sqrt(sum((abs(Icalc-actualI)).^2)./(8*newH*newW));

* * * errorresistors.m * * *

function total = errorresistors(resistors)
% Function that takes in the current estimate of the fine resistor grid,
% and because all original resistor values are actually known from their
% specification in the forward problem, this function will calculate
% the average absolute value of the percent error in each of these resistor
% estimates.

% Read in bump grid
data = fopen('data/bump.txt','r');
actualres = fscanf(data,'%4f');
fclose(data);

Rdiff = abs((actualres-resistors)./actual-res);

total = sum(Rdiff)/length(Rdiff);

111

** *

Section 4 - Plotting Routines
* *

* * * fullplot.m * * *

function answer fullplot(resistors, newH, newW)
% Function that takes all of the conductance values stored in a column vector
% x and graphs them in a 3-D plot.

% counter for current conductance
currentIndex = 0;

% NOTE: since resistors do not lie on actual nodes, we have to
% use half (.5) values for their locations. The conductances
% at other points will be found by averaging the value of the
% conductances at the nearest resistors.

% Vectors for each dimension
a = 1:0.5:newH;
b = 1:0.5:newW;
C = zeros((2*newH)-l, (2*newW)-l);

% Iterate through vertical resistors
for j=l:newW,
for i=l:newH-1,
currentIndex = currentIndex + 1;
C(2*i, (2*j)-l) = resistors(currentIndex);
end

end

% iterate through horizontal resistors
for i=1:newH,
for j=1:newW-1,
currentIndex = currentIndex + 1;
C((2*i)-1,2*j) = resistors(currentIndex);

end
end

% assign values to non-resistor points by averaging the
% nearest resistor values
for j=1:2:(2*newW)-l,
for i=1:2:(2*newH)-l,
cursum = 0;
divisor = 0;
% add resistor to left if we're not on left edge
if (j~=l)
cursum = cursum + C(i,j-1);
divisor = divisor + 1;

end
% add resistor to right if we're not on right edge
if (j~=(2*newW)-l)
cursum = cursum + C(i,j+1);
divisor = divisor + 1;

end
% add resistor above if we're not on top edge
if (i-=l)
cursum = cursum + C(i-1,j);
divisor = divisor + 1;

end
% add resistor below if we're not on bottom edge
if (i~=(2*newH)-1)
cursum = cursum + C(i+l,j);

112

divisor = divisor + 1;
end

% average the resistors we've added.
C(i,j) = cursum/divisor;

end
end

% assign values to non-resistor points by averaging the
% nearest resistor values
for j = 2:2:2*(newW-1),
for i = 2:2:2*(newH-1),
cursum = 0;
cursum = cursum + C(i,j-l);
cursum = cursum + C(i,j+l);
cursum = cursum + C(i-1,j);
cursum = cursum + C(i+l,j);
C(i,j) = cursum/4;
end

end

C = C';
mesh(a,b,C);
fp = 1;

* * * graphalternate.m * * *

function answer = graphalternate(iterations, type, drives, sigma, oldH, oldW)
% type 0 = 12 to 3 approximation
% type 1 = averaging approximation
% Graphs results of Alternating Algorithm

newH = (2*oldH)-l;
newW = (2*oldW)-l;

errorl = [];
error2 = [];
error3 = [;
g_k =
ek= [;
resistors = [];

if (type == 0)
location = strcat('data/alt_123_',int2str(drives));

else
location = strcat('data/altavg_',int2str(drives));

end
if (sigma ~= 0)
location = strcat(location, '_');
location = strcat(location, int2str(sigma));

end
location = strcat(location, '.txt');

data = fopen(location,'r');
info = fscanf(data, '%19f');
fclose(data);

cycle = (2*newW*newH)-(newW+newH)+5;
for i = 0:(iterations-1),
errorl(i+1) = info((cycle*i)+1);
error2(i+l) = info((cycle*i)+2);
error3(i+l) = info((cycle*i)+3);
g-k(i+1) = info((cycle*i)+4);

113

e-k(i+l) = info((cycle*i)+5);
for j = 1:(2*newW*newH)-(newW+newH),
resistors(i+1, j) = info((cycle*i)+j+5);

end
end

figure;
altresistorPlot(resistors(iterations,:)', newH, newW);

figure;
subplot(3, 2, 1);
semilogy(100*errorl');
axis([l iterations 0.001 100]);
axis on;
xlabel('Iteration Number');
ylabel('Average % Error');
title('(a) Coarse Nodes Voltage Error');

subplot(3, 2, 2);
semilogy(error2');
axis([1 iterations 0.000001 1]);
xlabel('Iteration Number');
ylabel('Amperes');
title('(b) RMS Current Error');

subplot(3, 2, 3);
plot(100*error3');
axis([1 iterations 0 40]);
xlabel('Iteration Number');
ylabel('Average % Error');
title('(c) Resistor Error');

subplot(3, 2, 4);
plot([1:iterations], gk, '-, [1:iterations], ek, ':');
axis([1 iterations 0 100]);
xlabel('Iteration Number');
ylabel('Condition Number');
title('(d) Progression of Condition Numbers');

orient PORTRAIT;

* * * graph-compare.m * * *

function answer = graphcompare(sigma, oldH, oldW)
% Creates plots comparing alternating algorithm to Newton's method

newH = (2*oldH)-l;
newW = (2*oldW)-l;

error03 = [;
error13 = [];
error23 = [];

10 = 'data/alt-avg_8';
11 = 'data/newt_0';
12 = 'data/newt_2';
if (sigma -= 0)
10 = strcat(10, '_');
10 = strcat(10, int2str(sigma));
11 = strcat(ll, '_');
11 = strcat(ll, int2str(sigma));
12 = strcat(12, '_');

114

12 = strcat(12, int2str(sigma));
end
10 = strcat(10, '.txt');
11 = strcat(ll, '.txt');
12 = strcat(12, '.txt');

data0 = fopen(10,'r');
infoO = fscanf(data0, '%19f');
fclose(data0);

datal = fopen(l1,'r');
infol = fscanf(datal, '%19f');
fclose(datal);

data2 = fopen(12,'r');
info2 = fscanf(data2, '%19f');
fclose(data2);

cycle = (2*newW*newH)-(newW+newH)+5;
for i = 0:999,
error03(i+l) = info0((cycle*i)+3);

end

cycle = (2*newW*newH)-(neww+newH)+3;
for i = 0:100,
errorl3(i+l) = infol((cycle*i)+3);
if (i<26)
error23(i+l) = info2((cycle*i)+3);

end
end

figure;
subplot(4, 1, 1);
plot(1:1000,100*error03');
axis([1 1000 0 40));
xlabel('Iteration Number');
ylabel('Average % Error');
title('(a) Alternating Algorithm');

subplot(4, 1, 2);
plot(0:100,l00*errorl3');
axis([0 100 0 40));
xlabel ('Iteration Number');
ylabel('Average % Error');
title('(b) Newton with epsilon = 0.1');

subplot(4, 1, 3);
plot(0:25,100*error23');
axis([0 25 0 40));
xlabel('Iteration Number');
ylabel('Average % Error');
title('(c) Newton with epsilon = 0.001');

orient PORTRAIT;

115

* * * graph_forward.m * * *

function answer = graphforward(plotH, plotW)
% Plots graphs for dense grid forward problem

data = fopen('data/infojforward.txt','r');
info = fscanf(data, '%19f');
fclose(data);

V = zeros(16, plotH*plotW);

for i = 1:16,
for j = 1:(plotH*plotW),
V(i,j) = info(((i-l)*plotH*plotW)+j);

end
end

figure;
for count = 1:8,
subplot(5, 2, count);
voltagePlot(V(count,:),plotH, plotW);
xlabel('Vertical');
ylabel('Horizontal');
zlabel('Voltage (Volts)');
title(strcat('Drive ',int2str(count)));

end
orient PORTRAIT;

figure;
for count = 1:8,
subplot(5, 2, count);
voltagePlot(V(8+count,:),plotH, plotW);
xlabel('Vertical');
ylabel('Horizontal');
zlabel('Voltage (Volts)');
title(strcat('Drive ',int2str(count)));

end
orient PORTRAIT;

* * * graph-inverse.m * * *

function answer = graph-inverse(plotH, plotW)
% Plots graphs for dense grid inverse problem

data = fopen('data/info-inverse.txt','r');
info = fscanf(data, '%19f');
fclose(data);

branches = (2*plotH*plotW)-(plotH+plotW);

figure;
resistorPlot(info(1:branches), plotH, plotW);

figure;
resistorPlot(info(branches+l:(2*branches)), plotH, plotW);

* * * graph.newton.m * * *

function answer = graph-newton(iterations, epsilon, sigma, oldH, oldW)
% Plots graphs for Newton Algorithm

116

newH = (2*oldH)-l;
newW = (2*oldW)-l;

errori = [];
error2 = [];
error3 = f];
resistors = H;

location = strcat('data/newt',int2str(epsilon));
if (sigma 0),
location = strcat(location, '_');

location = strcat(location, int2str(sigma));
end
location = strcat(location, '.txt');

data = fopen(location,'r');
info = fscanf(data, '%19f');
fclose(data);

cycle = (2*newW*newH)-(newW+newH)+3;
for i = 0:iterations,
errorl(i+l) = info((cycle*i)+l);
error2(i+l) = info((cycle*i)+2);
error3(i+l) = info((cycle*i)+3);
for j = 1:(2*newW*newH)-(newW+newH),
resistors(i+l, j) = info((cycle*i)+j+3);

end
end

figure;
resistorPlot(resistors((iterations+l),:)', newH, newW);

figure;
subplot(4, 1, 1);
semilogy(delrow(100*errorl', 1));
axis([l iterations 0.01 100]);
xlabel('Iteration Number');
ylabel('Average % Error');
title('(a) Coarse Nodes Voltage Error');

subplot(4, 1, 2);
semilogy(delrow(error2',1));
axis([l iterations 0.000001 1]);
xlabel('Iteration Number');
ylabel('Amperes');
title('(b) RMS Current Error');

subplot(4, 1, 3);
plot(delrow(100*error3',l));
axis([l iterations 0 40]);
xlabel('Iteration Number');
ylabel('Average % Error');
title('(c) Resistor Error');

orient PORTRAIT;

117

* * * horizResPlot.m * * *

function fp = horizResPlot(x, plotH, plotW)
% Function that takes all of the resistor values in x and graphs only the
% horizontal resistors.

currentIndex = plotW*(plotH-1);

b = l:(plotW-l);
a = l:plotH;

for i=l:plotH,
for j=l:(plotW-1),
currentIndex = currentIndex + 1;
C(j,i) = x(currentIndex);
end

end

mesh(a,b,C);
axis tight;
fp = 1;

* * * resistorPlot.m * * *

function fp = resistorPlot(x, plotH, plotW)
% Function that takes all of the resistor values in x and graphs them
% in three manners: vertical, horizontal, and all

% This first line is inserted in order to prevent there from being a
% graph in the fourth location
subplot(2, 1, 2);

% Vertical Resistors
subplot(4, 1, 1);
vertResPlot(x, plotH, plotW);
axis([1 (plotH-1) 1 plotW 0.05 0.3));
xlabel('Vertical');
ylabel('Horizontal');
zlabel('Resistance (Ohms)');
title('(a) Vertical Resistances');

% Horizontal Resistors
subplot(4, 1, 2);
horizResPlot(x, plotH, plotW);
axis([1 plotH 1 (plotW-1) 0.05 0.3));
xlabel('Vertical');
ylabel('Horizontal');
zlabel('Resistance (Ohms)');
title(' (b) Horizontal Resistances');

% All Resistors
subplot(4, 1, 3);
fullPlot(x, plotH, plotW);
axis([1 plotH 1 plotW 0.05 0.3));
xlabel('Vertical');
ylabel('Horizontal');
zlabel('Resistance (Ohms)');
title('(c) All Resistances');

orient PORTRAIT;

118

* * * show-original.m * * *

function answer = show-original(plotH, plotW)
% Plots the original resistor grids used by the forward solver

data = fopen('data/flat.txt','r');
flat-grid = fscanf(data, '%4f');
fclose(data);

data = fopen('data/bump.txt','r');
bump-grid = fscanf(data, '%4f');
fclose(data);

figure;
resistorPlot(flatgrid, plotH, plotW);

figure;
resistorPlot(bumpgrid, plotH, plotW);

* * * vertResPlot.m * * *

function fp = vertResPlot(x, plotH, plotW)
% Function that takes all of the resistor values in x and graphs only the
% vertical resistors.

currentIndex = 0;
b = (1:plotW)';
a = (1:plotH-1)';

for j=1:plotW,
for i=l:(plotH-1),
currentIndex = currentIndex + 1;
C(j,i) = x(currentIndex);

end
end

mesh (a, b, C)
axis tight;
fp = 1;

* * * voltagePlot.m * * *

function fp = voltagePlot(x,plotH,plotW)
% Function that takes all of the voltages values stored in the
% column vector x and graphs them as a 3-D plot

currentIndex = 0;
a = 1:plotH;
b = 1:plotW;
a = a';
b = b';

for j=l:plotW,
for i=l:plotH,
C(j,i) = x((plotH*(j-1))+i);

end
end

mesh(a,b,C);
axis tight;
fp = 1;

119

* *

Section 5 - Main Functions
* *

* * * fineforward.m * * *

function answer = fineforward(plotH, plotW)
% This function solves for the voltage grids that result
% from applying the forward solver to the bump and flat grids under
% each of the eight current drives. The grid size is specified
% by the paraments sent to this function

writeInfo = fopen('data/infoforward.txt','w');

% Read in Resistor Values from flat file
data = fopen('data/flat.txt','r');
flatresistors = fscanf(data,'%4f');
fclose(data);

% Read in Resistor Values from bump file
data = fopen('data/bump.txt', 'r);
bump-resistors = fscanf(data,'%4f');
fclose(data);

disp('Writing Info');

% Call forward solver for each of the eight current drives
for count = 1:8,

current = forward(flat-resistors, count, plotH, plotW);
for i=l:(plotH*plotW),
fprintf(writeInfo, '%18.16f ', current(i));

end
fprintf(writeInfo, '\n');

end

% Call forward solver for each of the eight current drives
for count = 1:8,

current = forward(bump_resistors, count, plotH, plotW);
for i=1:(plotH*plotW),
fprintf(writeInfo, '%18.16f ', current(i));

end
fprintf(writeInfo, '\n');

end

fclose(writeInfo);

120

* * * fineinverse.m * * *

function answer = fine_inverse(plotH, plotW)
% This function solves for the resistors that would have created the
% voltage plots that were written to the specified data file.
% The grid size is specified by the paraments sent to this function

% Initialize
drives = 8;
count = 0;
noise-level = 0;
nodes = plotH*plotW;
branches = (2*plotW*plotH)-(plotW+plotH);

A = branchincidence(plotH, plotW);
Acut = delrow(A, nodes);
fullVl = zeros(drives*(nodes-1), branches);
fullV2 = zeros(drives*(nodes-1), branches);
voltages = zeros(16, plotH*plotW);

writeInfo = fopen('data/infoinverse.txt','w');

% Read in Voltage Values from file
data = fopen('data/finevoltages.txt','r');
info = fscanf(data,'%19f');
fclose(data);

for i = 1:16,
for j = 1:(plotH*plotW),
voltages(i,j) = info(((i-l)*plotH*plotW)+j) + (noise-level*randn);

end
end

% Initialize Current
currentI = initialize_i(plotH, plotW);

for i = drives:-1:1,
currentI = delrow(currentI, i*nodes);
end

% Calculate Vl and V2 - flat and bump
for drivecount = 1:drives,
currentV1 = voltages(drive-count,:)';
currentVl = delrow(currentV, nodes);
currentV2 = voltages(8+drivecount,:)';
currentV2 = delrow(currentV2, nodes);

for conductance-count = 1:branches,
for nodecount = l:nodes-1,
fullVl(((nodes-l)*(drivecount-1))+node_count, conductance_count) = Acut(nodecount,

conductancecount)*Acut(:,conductance-count)'*currentVl;
fullV2 (((nodes-1) * (drive-count-1)) +node_count, conductancecount) = Acut(nodecount,

conductancecount)*Acut(:,conductancecount)'*currentV2;
end

end
end

% SVD for flat grid
[Gi glsigmamax glsigma-min) = svdvoltages(fullVl, currentI);
Rl = l./Gl;

% SVD for bump grid

121

[G2 gl-sigma-max gl-sigma-min] = svydvoltages(fullV2, currentI);
R2 = 1./G2;

for i=1:branches,
fprintf(writeInfo, %18.16f ', R1(i));

end
fprintf(writeInfo, '\n');

for i=1:branches,
fprintf(writeInfo, %18.16f ', R2(i));

end
fprintf(writeInfo, '\n');

fclose(writeInfo);

122

* * * newton.m * * *

function answer = newton(oldH, oldW)
% Performs Newton's Method

% Initialize
epsilon = 0.0000001;
drives = 8;
newH = (2*oldH)-l;
newW = (2*oldW)-l;
count = 0;
noiselevel = 0.001;
writeR = fopen('data/info-newton.txt', 'w');

% Read in Resistor Values from file
data = fopen('data/bump.txt','r');
bump resistors = fscanf (data, '%4f 1);
fclose(data);

% Determine coarse measurements
coarsel = condense(forward(bumpresistors,
(noise-level*randn((oldH*oldW),1));
coarse2 = condense(forward(bump-resistors,
(noise_level*randn((oldH*oldW),1));
coarse3 = condense(forward(bump-resistors,
(noise-level*randn((oldH*oldW) ,1));
coarse4 = condense(forward(bumpresistors,
(noisejlevel*randn((oldH*oldW),l));
coarse5 = condense(forward(bumpresistors,
(noise-level*randn((oldH*oldW),1));
coarse6 = condense(forward(bump-resistors,
(noisejlevel*randn((oldH*oldW),l));
coarse7 = condense(forward(bump-resistors,
(noisejlevel*randn((oldH*oldW),1));
coarse8 = condense(forward(bumpresistors,
(noise-level*randn((oldH*oldW) ,1));

1,

2,

3,

4,

5,

6,

7,

newH, newW), oldH, oldW, newH, newW) +

newH, newW),

newH, newW),

newH, newW),

newH, newW),

oldH,

oldH,

oldH,

oldH,

oldW, newH,

oldW, newH,

oldW, newH,

oldW, newH,

newH, newW), oldH, oldW, newH,

newH, newW), oldH, oldW, newH,

8, newH, newW), oldH, oldW, newH, newW) +

% Determine Coarse Grid of Conductances
A = branch_incidence(oldH, oldW);
nodes = oldH*oldW;
branches = (2*oldW*oldH)-(oldW+oldH);

% Initialize Coarse current
currentI = initialize-i(oldH, oldW);

for i = drives:-l:1,
currentI = delrow(currentI, i*nodes);

end
Acut = delrow(A, nodes);

fullQ = zeros(drives*(nodes-1), branches);

% Calculate Q which is used to solve for the coarse conductance grid
for drive count = 1:drives,
currentV = eval (strcat('coarse', int2str(drive-count)));
currentV = delrow(currentV, nodes);

for conductancecount = 1:branches,
for nodecount = 1:nodes-1,
fullQ(((nodes-l)*(drive-count-1))+node-count, conductance_count) = Acut(nodecount,

conductancecount) *Acut (:,conductance-count) *currentV;
end

end

123

newW)

newW)

newW)

newW)

newW)

newW)

end

% SVD for Coarse
[coarseg g-sigmamax g-sigma-min) = svd_voltages(fullQ, currentI);
coarser = 1./coarse-g;
currentR = avgjinterpolation(coarser, oldH, oldW, newH, newW);
currentG = 1./currentR;

% Initialize for Fine Grid
A = branch_incidence(newH, newW);
nodes = newH*newW;
branches = (2*newW*newH)-(newW+newH);
missing (newH*newW)-(oldH*oldW);

% Initialize current
totalI = initialize-i(newH, newW);

G = diag(currentG);
fullG = A*G*(A');
totalV = [];

% Fine resistor grid calculuation
for drivecount = drives:-1:1,
loopG = fullG;
loopV = eval(strcat('coarse',int2str(drivecount)));
loopI = total I((nodes* (drive-count-1))+1:nodes *drivecount);
for j = oldW:-1:1,
for i = oldH:-1:1,
newj = 2*j-1;
newi = 2*i-1;
loopI = loopI - (loopV(((j-1)*oldH)+i)*loopG(:, ((newj-1)*newH)+newi));
loopG = delcol(loopG, ((newj-l)*newH)+newi);

end
end

[loopU e_sima_max esigmamin) = svdvoltages(delrow(loopG,nodes), delrow(loopI,
nodes));
newV = space-out(loopV, loopU, oldH, oldW);
totalV = [newV; totalV];

end

loopi = totalV((Q*nodes)+1:l*nodes,:);
loop2 = totalV((1*nodes)+1:2*nodes,:);
loop3 = totalV((2*nodes)+1:3*nodes,:);
loop4 = totalV((3*nodes)+1:4*nodes,:);
loop5 = totalV((4*nodes)+1:5*nodes,:);
locp6 = totalV((5*nodes)+1:6*nodes,:);
loop7 = totalV((6*nodes)+1:7*nodes,:);
loop8 = totalV((7*nodes)+1:8*nodes,:);

% Calculating Errors
errori = error_coarse_voltage(currentR, loopi, loop2, loop3, loop4, loop5, loop6,
loop7, loop8, oldH, oldW, newH, newW);
error2 = errorlls(currentR, loopi, loop2, loop3, loop4, loop5, loop6, loop7, loop8,

oldH, oldW, newH, newW);
error3 = errorresistors(currentR);

% Writing Info
row_val = [errori, error2, error3, currentR'];
for i=1:(3+branches),
fprintf(writeR, '%18.16f ', rowval(i));

end

124

fprintf(writeR, '\n');

count = 0;

while (count < 25),
count = count + 1;
disp(strcat('loop # ',int2str(count)));

A = branch_incidence(newH, newW);
cutA = delrow(A, nodes);
totalI = initialize-i(newH, newW);
cutI = totalI;
for drive-count = drives:-1:1,
cutI = delrow(cutI, nodes*drivecount);

end

G = diag(currentG);
cutG = cutA*G*(cutA');

% Remove AGAt from i
AGAtV = [(cutG*delrow(loopl,nodes)); (cutG*delrow(loop2,nodes));
(cutG*delrow(loop3,nodes)); (cutG*delrow(loop4,nodes)); (cutG*delrow(loop5,nodes));
(cutG*delrow(loop6,nodes)); (cutG*delrow(loop7,nodes)); (cutG*delrow(loop8,nodes))];
loopI = cutI - AGAtV;

for j = newW:-2:1,
for i = newH:-2:1,
cutG = delcol(cutG, ((j-l)*newH)+i);

end
end

% Calculating Delta Matrix for All Voltages

nil = zeros(size(cutG));

M = [cutG nil nil nil nil nil nil nil;
nil cutG nil nil nil nil nil nil;
nil nil cutG nil nil nil nil nil;
nil nil nil cutG nil nil nil nil;
nil nil nil nil cutG nil nil nil;
nil nil nil nil nil cutG nil nil;
nil nil nil nil nil nil cutG nil;
nil nil nil nil nil nil nil cutG];

N = zeros(drives*(nodes-1), branches);

% Calculating Delta Matrix for G
for drivecount = 1:drives,
additionjloop = delrow(eval(strcat('loop*,int2str(drive-count))), nodes);
for conductancecount = 1:branches,
for node-count = 1:nodes-1,
N(((drive-count-l)*(nodes-1))+nodecount, conductancecount) = cutA(node-count,

conductancecount) * cutA(:,conductance-count)' * additionloop;
end

end
end

deltaA = [M N];

% Performing SVD Calculation
[deltaX X_sigmamax Xsigma-min =

svd_voltages((deltaA'*deltaA)+(epsilon*eye(branches+(drives*missing))),
(deltaA'*loopI));

125

% Separating Deltas
deltaVi = spaceout(zeros(oldH*oldW), deltaX((O*missing)+1:1*missing), oldH, oldW);
deltaV2 = spaceout(zeros(oldH*oldW), deltaX((l*missing)+1:2*missing), oldH, oldW);
deltaV3 = spaceout(zeros(oldH*oldW), deltaX((2*missing)+1:3*missing), oldH, oldW);
deltaV4 = space out(zeros(oldH*oldW), deltaX((3*missing)+1:4*missing), oldH, oldW);
deltaV5 = space-out(zeros(oldH*oldW), deltaX((4*missing)+1:5*missing), oldH, oldW);
deltaV6 = spaceout(zeros(oldH*oldW), deltaX((5*missing)+1:6*missing), oldH, oldW);
deltaV7 = spaceout(zeros(oldH*oldW), deltaX((6*missing)+1:7*missing), oldH, oldW);
deltaV8 = spaceout(zeros(oldH*oldW), deltaX((7*missing)+1:8*missing), oldH, oldW);
deltaG = deltaX((drives*missing)+l:(drives*missing)+branches);

% Updating
loop1 = loopi + deltaV;
loop2 = loop2 + deltaV2;
loop3 = loop3 + deltaV3;
loop4 = loop4 + deltaV4;
loop5 = loop5 + deltaV5;
loop6 = loop6 + deltaV6;
loop7 = loop7 + deltaV7;
loop8 = loop8 + deltaV8;
currentG = currentG + deltaG;
currentR = l./currentG;

% Calculating Errors
errori = errorcoarsevoltage(currentR, loopi, loop2, loop3, loop4, loop5, loop6,
loop7, loop8, oldH, oldW, newH, newW);
error2 = errorlls(currentR, loopl, loop2, loop3, loop4, loop5, loop6, loop7, loop8,

oldH, oldW, newH, newW);
error3 = errorresistors(currentR);

% Writing Info
rowval = [errorl, error2, error3, currentR'];
for i=l:(3+branches),
fprintf(writeR, '%18.16f ', row-val(i));

end
fprintf(writeR, '\n');

end

fclose(writeR);

126

