
--I

Optimizing Memory Accesses for the
Architecture Exploration System (ARIES)

by

Eric Y. Mul

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2000

© Massachusetts Institute of Technology 2000. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 22, 2000

Certified by
Professor Srinivas Devadas

Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

ENG
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

Optimizing Memory Accesses for the
Architecture Exploration System (ARIES)

by
Eric Mui

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 2000

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The demand for devices with embedded systems is increasing rapidly. Short design
cycles and increasing complexity of the systems dictate that most of the functionality of
the device be implemented in software, and cost/performance/power requirements argue
for processors tuned to the particular application performed. In order to effectively
explore the hardware/software design space, a retargetable compiler is necessary. The
AVIV compiler within the Architecture Exploration System is such a compiler. For
architectures with limited addressing modes and support for auto-increment and auto-
decrement instructions, optimizing the layout in memory of program variables can reduce
the number of generated assembly instructions devoted to address pointer arithmetic or
loading address registers. Reducing the overall size of the generated code has the effect
of reducing the cost of the embedded system. This thesis presents a design for integrating
this optimization with the AVIV retargetable compiler.

Thesis Supervisor: Srinivas Devadas
Title: Professor

2

Acknowledgements

I have had a wonderful time here at MIT, during my undergraduate and graduate

years. I am indebted to both my friends and the faculty who have helped me grow both

personally and intellectually.

I would like to thank my thesis advisor, Professor Srinivas Devadas, for his

patience and guidance during my research. I could always drop in anytime and discuss

problems I encountered, and leave feeling both encouraged and having a renewed sense

of purpose. His friendly, easy-going manner made my first real research experience a

pleasure.

I would also like to thank George Hadjiyiannis for his patience and helpfulness

when I first joined the Computer-Aided Automation group. His careful, detailed

introduction to ISDL and the ARIES project was an immense help to me in understanding

not only the system and its details, but the bigger picture of the purpose behind ARIES as

well. His advice, and sense of humor, also added to the enjoyment of my time in CAA.

I am much in debt to my friend Xiaobo Li who encouraged, cajoled, and

otherwise kept me on the right path to finishing this thesis. I am forever grateful for her

years of friendship, and look forward to many more.

Finally, I wish to thank my family, whose support for me in whatever I did never

faltered. It truly means a great deal to me, and I continue to cherish it.

3

Contents

1. Introduction 7

1.1 Project ARIES 9

1.2 Reducing Code Size by Optimizing Memory Layout 10

1.3 Thesis Roadmap 11

2. Related Work 12

2.1 Optimizing Stack Frame Accesses 12

2.2 Simple Offset Assignment/General Offset Assignment 13

2.3 IALOMA/ALOMA-CCG 16

2.3.1 IALOMA 17

2.3.2 ALOMA-CCG 19

2.4 Optimizing Array Element Access 20

3. Memory Layout Optimization and Code Generation 21

3.1 Roadmap for Memory Layout Optimization and Code Generation 21

3.2 The SUIF Compiler 22

3.3 Generating a Memory Layout Assignment 23

3.3.1 Creating the Access Graph 23

3.3.2 Solving General Offset Assignment 25

3.4 Code Generation 29

4

3.4.1 Overview of Target Architecture 29

3.4.2 Generating Assembly Code 30

4. Results 34

4.1 Code Generation Results 34

4.2 Comparison with Code Generated without Optimization 36

5. Conclusions 39

5.1 Future Work 40

5

List of Figures and Tables

Figure 1.1 Architecture exploration using the Architecture Exploration System 9
(ARIES).

Figure 3.1 Steps in optimizing variable layout and code generation. 22

Figure 3.2 Examples of access sequences. 25

Figure 3.3 Access sequence and the corresponding access graph. 26

Figure 3.4 Disjoint path cover, associated cost of the cover, and resulting 28
memory layout assignment.

Figure 3.5 Partition of variables (with two address registers) leads to reduction 28
in overall cost.

Figure 3.6 Target architecture organization. 30

Table 4.1 Results of optimizing memory layout using GOA. 35

Table 4.2 Results from generating code without memory layout optimization. 35

Figure 4.1 Forced initialization of an unnecessary address register. 38

6

Chapter 1

Introduction

The demand for consumer electronics and telecommunications products has

increased dramatically in the past few years. Cellular phones, portable multimedia

devices, and personal digital assistants are some examples of these complex systems.

Increased functionality, lower cost and power consumption, reduced size, and being first-

to-market often are deciding factors in the success of these products. In order to support

these goals, designers are building entire systems on a single die, with embedded core

processors becoming vitally important to manage the complexity of adding functionality,

reducing product cycle times, and still retaining flexibility in the face of evolving

standards [17].

Embedded systems, specialized for a single application instead of general-purpose

computation, increasingly have both hardware and its controlling software integrated on a

single chip. This allows the design to satisfy requirements of low cost and power

consumption, and reduced size. Time-to-market requirements place greater burdens on

system designers for shorter design cycles, leading to a greater portion of the system

functionality being implemented in software. As the density of transistors increases, the

hardware portion of a system requires less chip area relative to the software, which

7

resides in the program ROM. Reducing the code size leads to a reduction in the area

required by the program ROM, reducing overall chip area and thus IC cost. Real-time

performance requirements of most embedded systems are also a driving force for

producing high-quality, compact code. A hardware-software co-design methodology, in

which both hardware and software are designed together to improve the final

implementation of the system, would afford the most benefit in reducing costs and

increasing performance.

The drive to produce more compact, high performance code for embedded

systems is hampered by current high-level language compilers. Current compilers for

fixed-point DSPs generate code that is unsatisfactory with respect to code size and

performance. Thus most DSP software is handwritten in assembly, a time-consuming

task. Choosing different target architectures would require this handwritten code to be

rewritten. Applications running on embedded systems are also becoming standardized,

calling on an applications program interface (API). Embedded processors need only

implement the functions available through the API, giving designers more freedom to

choose processor architectures. The lack of retargetable compilers hampers efforts to

develop architectures tuned to the specific application.

An ideal solution would allow system designers to compile application code to a

minimal size on a variety of architectures to explore which is the best for the given

application. The compiler in the Architecture Exploration System (ARIES) [1] does this,

using the application source code and a description of the target architecture as inputs.

8

1.1 Project ARIES

|Architecture Synthesis 44Performance Measurements

--- * Generates System

ISDL

AppliationMachine DescriptionApplication
Source Code

C/C++ ---------------- | '-----------------

Compiler SUF Compiler Assembly Assembler Binary Simulation__
Front End Back End Environment

Figure 1.1: Architecture exploration using the Architecture Exploration System (ARIES).
Figure taken from [I].

The Architecture Exploration System, shown in Figure 1, is a framework for

pursuing a hardware-software co-design methodology. ARIES receives as inputs the

application source code in C or C++ and a description of the target architecture, which is

written in ISDL, or Instruction Set Description Language [1]. ARIES parses the ISDL

description file for the architectural details of the target machine, including the amount

and types of memory, the format of the instruction word, the instructions defined on the

architecture, and the constraints on the interaction of different parts of the hardware.

After parsing the ISDL description, tool generators automatically create a compiler back-

end, assembler, disassembler, and an instruction-level simulator. The application code

passes through the compiler front-end, and a machine-independent representation is

created in the Stanford University Intermediate Format (SUIF) [4]. The automatically

generated compiler back-end and assembler convert the SUIF code into binary code. In

9

the simulation environment the performance of the compiled code is measured, and based

on the results the ISDL description can be modified to improve performance. Then the

cycle of compile, test, and modification begins again, until suitable performance is

achieved. The compiler back-end and assembler allows the compiler to be retargetable

without requiring the developer to write a new back-end and assembler for each of the

new architectures evaluated.

1.2 Reducing Code Size by Optimizing Memory Layout

Memory addressing modes in DSPs are inferior to general-purpose processors,

though the lack in functionality is made up for in faster performance in computation [14].

Data is addressed through register pointers to memory, and often there is a set of "address

registers" dedicated to this purpose. DSPs usually support auto-increment or auto-

decrement load and store instructions, which in addition to loading or storing data values

adjust the current pointer by ±k memory locations in the same operation, where k is some

small integer. The usage of the terms "auto-increment" and "auto-decrement" in this

thesis is meant to imply post-modify operation, in which the value of the address pointer

is modified after the load or store operation. When the target address of the next load or

store is greater than distance k from any pointers, then an instruction is needed to set the

value of a pointer to the needed address. Optimizing the arrangement of variables in the

program, so that variables often accessed together were adjacent in memory, would

minimize the number of instructions needed for setting the value of address pointers. This

in turn leads to some reduction in the overall code size of the program ROM, thereby

achieving some reduction in cost.

10

1.3 Thesis Roadmap

This thesis presents a method for adding capability to the ARIES compiler to

support optimizing generated code for architectures that have limited addressing modes,

and specifically architectures with auto-increment/decrement instructions. Chapter 2

discusses previous research related to optimizing memory accesses on architectures with

limited addressing modes. Chapter 3 presents a method for determining the optimized

variable layout and generating code using such a storage layout. Chapter 4 presents a

sample of results from generating code with and without optimization for comparison.

Chapter 5 concludes this thesis and discusses directions for further work.

11

Chapter 2

Related Work

There are a number of papers in the literature that focus on the problem of

optimizing variable layout for fixed-point DSPs with limited addressing modes to reduce

code size. Most of these papers target architectures such as the Texas Instruments

TMS320C25, which has support for auto-increment/decrement implicit memory accesses.

2.1 Optimizing Stack Frame Accesses

Bartley in [5] presented an approach for optimizing the layout of local variables

stored in the stack frame of processors that do not have register-plus-offset addressing.

Especially for architectures with auto-increment/decrement instructions, optimizing the

variable layout had an impact on the size and speed of the generated code.

Without register-plus-offset addressing, variables in the stack frame would have

to be accessed through a register pointing to memory, which Bartley referred to as a

roving pointer (RP). To optimize the variable layout for use with auto-increment/

decrement instructions, Bartley created an undirected weighted graph G(V, E). The

vertices V represented the variables of the program and the edges E were weighted by the

expected benefit of having the pair of variables allocated contiguously in memory. If all

12

pairwise permutations of variables are considered, the graph G must be complete. In this

case an edge E may have zero weight, which indicates there is no benefit from having the

two corresponding variables adjacent in memory, but is allowed nonetheless. Finding an

optimal ordering for the variables is equivalent to finding a Hamiltonian path in G that

maximizes the sum of the weights along the path. Adjacent vertices along the

Hamiltonian path correspond to variables that should be allocated adjacent to each other

in memory.

Determining the Hamiltonian path that maximizes the sum of the weights along

its edges for G is NP-complete [5], so a heuristic solution was proposed. The solution

involves incrementally removing edges until no cycles remain and all vertices have no

more than two neighbors. The edge with the highest weight is considered for removal or

retention in G at each step. Since the weight of each edge is directly related to the number

of times its vertices are accessed sequentially, retaining edges with higher weight is

preferred, unless the edge causes a cycle with other edges that are already in the solution.

Once a vertex has two incident edges to be retained, any remaining incident edges are

removed from G. Determining a layout for the variables simply involved following the

path chosen by the heuristic solution and assigning consecutive vertices to consecutive

stack locations.

2.2 Simple Offset Assignment/General Offset Assignment

Liao, in his Ph.D. thesis [8], presented a formulation of the same problem Bartley

studied, calling it the simple offset assignment problem (SOA). SOA optimizes the layout

of automatic variables of a procedure such that the number of instructions generated to

13

access those variables is minimized. The solution to SOA involves creating a graph

similar to the one Bartley used, called an access graph, though with zero-weight edges

were eliminated. Once this "access" graph is created, then Liao formulates SOA as a

graph-covering problem, which he termed maximum weight path covering (MWPC).

Solving MWPC involved determining a disjoint path cover of the graph that minimized

the sum of uncovered edge weights.

The disjoint path cover was determined by selecting edges in the access graph

with the heaviest weights. A separate, empty graph that represented the disjoint path

cover was created. Sorting the edges in the access graph by weight, the heaviest one was

selected. If the addition of the selected edge caused a cycle in the disjoint path cover

graph, or caused any vertex in the cover graph to have more than two incident edges, the

edge was discarded. Otherwise the selected edge was added to the cover graph. In either

case the edge was removed from the access graph, and the process repeated. Eventually

all the edges in the access graph would be processed. The edges in the disjoint path cover

might not form a single path, hence the disjoint nature of the graph covering. Creating a

variable layout involved following each disjoint path and assigning adjacent memory

locations to adjacent vertices in the path. Address register load instructions would be

needed when an address register jumped from one disjoint path to another.

Liao extended SOA to the general offset assignment problem (GOA) in [8], which

optimized the layout of variables when there was more than one address register

available. The solution to GOA required finding a partition of the variables that allowed

the disjoint path cover to minimize the uncovered edges and also to minimize the setup

costs of using the multiple address registers. The quality of the partition, in terms of

14

choosing the variables that would lead to the minimal cost, greatly influences the quality

of the layout assignment generated by GOA.

Leupers and Marwedel presented a more optimized method of choosing partitions

for GOA in [10]. For solving GOA with k available address registers, 1 partitions were

created, 1 ! k. The edges in the access graph were sorted in decreasing order of weight,

and the 1 heaviest disjoint edges were selected, one edge to initialize each partition

V,... VI with its two vertices. There could be at most k partitions, though there could be

fewer if there were insufficient numbers of disjoint edges. For each of the remaining

vertices in the access graph, the vertex was temporarily added to each partition, and the

cost of adding that vertex for each partition was evaluated. The vertex would be

permanently added to the partition that had the smallest increase in cost. Once all vertices

were assigned, the final variable layout was generated as the concatenation of the variable

layouts of each partition.

In [11] Liao illustrated an extension of SOA and GOA to utilize instructions that

could auto-increment/decrement an address register by ±1, instead of by only unit

increments. Termed the i-simple offset assignment (l-SOA) problem and (l,k)-generalized

offset assignment ((l,k)-GOA) problem, using instructions having increment/decrement

value of I allows edges that could not previously be included in the disjoint path cover,

due to cycle or incident edge constraints, have effectively zero cost. To identify these

costless edges, however, the access graph had to be complete graphs instead of graphs

with only positive weight edges. For a complete graph G(VE) and a cover C of G, a

subgraph of G with (1+1) vertices that was a subpath of C with length I was called an

induced (1+1)-clique. A zero-weight edge in C could allow a positive-weight edge not in

15

C to be in an induced (1+1)-clique. Since the vertices of the positive-weight edge were

within a distance of I of each other, the positive weight-edge effectively has no cost in

terms of extra instructions needed to load an address register with an address. Such an

edge is said to be induced by C. The 1-SOA problem minimized the sum of the weights

for edges not covered by either the cover C or any induced edges, called the induced cost.

(l,k)-GOA finds a partitioning of variables such that the sum of the induced cost for each

partition plus setup cost of address registers used is minimized.

2.3 IALOMAIALOMA-CCG

In work presented in [12], [13], [14], and [15] a different approach for creating

the access graph and determining the layout of variables with auto-increment/decrement

instructions was used. As before, the vertices of the access graph were the variables to be

laid out in memory. However, the weight of each edge (vi,vj) represented the "distance"

between memory accesses for variables vi and vj. The "distance" between memory

accesses is the number of instructions between these accesses inclusive, so loading two

variables from memory one right after another has a distance of 1, and one instruction

between the two loads leads to a distance of 2. There may be more than one edge between

two vertices, and each edge may be of different weight, as each edge represents each

occurrence of the memory access for one vertex following the memory access of the

other vertex of the edge.

Certain aspects of the addressing modes for the architecture assumed by [12],

[13], [14], and [15] bear mentioning. First, the assumption is made that memory is only

indirectly addressed by one or more address registers. Second, during one instruction

16

cycle an address register can be incremented or decremented by ±k (where k is a small

positive integer, typically less than 8) in parallel with an arithmetic operation or data

movement from one memory to another. Third, an address register can be updated by ±k

during any instruction cycle, regardless if the register is used for an actual memory

reference during that cycle. Finally, loading an address register with an address costs one

instruction cycle.

2.3.1 IALOMA

The problem of finding an efficient memory address allocation is called the

"memory allocation problem", and the proposed solution following an algorithm called

IALOMA (Improved Address LOad Minimization Algorithm). The memory allocation

problem assumes that only one address register is available. Since the architecture

supports modifying an address register without requiring an actual memory access,

between two memory accesses there may be some number of instruction cycles available

to modify the address register. Thus there is a possibility to point the address register to

the desired memory address without the need to explicitly load an address into the

register, even if the addresses are further than ±1 apart. In the access graph, if an edge has

a weight greater than the number of vertices in the access graph, then it is always possible

to adjust the address register to point from one vertex to the other without the need for an

explicit load. Thus, any such edge is considered redundant and removed.

From the access graph, a number that represents the benefit of removing an edge

from the graph is assigned to each edge. This "benefit" takes into account the branching

factor of the vertices of the edge, whether the edge is part of a cycle, and the distance

17

between the vertices for this edge. According to [12], the benefit of an edge is an estimate

of how much the access graph is linearized by removing that edge, and at the same time

favoring edges that have a greater distance for removal.

After giving each edge in the access graph a "benefit" number, determining an

assignment for the memory layout of variables is performed by iteratively removing

edges of higher benefit, and recalculating the "benefit" for each edge, until a linear graph

has been derived from the access graph. Since removal of an edge affects the branching

factor for some vertices of the graph, as well as the presence of cycles, the relative benefit

of removing the remaining edges must be recalculated. Once the access graph has been

reduced to a linear graph, start at one end of the linear graph and number sequentially to

derive the memory layout.

IALOMA is in some ways similar to the approach used to solve SOA. Whereas in

IALOMA each edge is given a weight that describes the "benefit" of removing that edge,

in SOA each edge is given a weight that describes the cost of removing that edge. Since

highest weight edges are preferentially removed in IALOMA and preferentially retained

in SOA, then both solution methods attempt to keep high cost edges in the access graph.

Additionally, SOA and IALOMA attempt to find linear paths through an access graph.

The problem of utilizing more than one address register to improve memory

accesses is called the "AR assignment problem". Solving the AR assignment problem

involves determining a partition of the variables into groups, with one address register for

each group. Since the variables have been partitioned, the sequence of accesses for each

group only includes those variables in the partition, so each group has its own access

graph. The distance between members of a group has changed as well, and they need to

18

be determined. After the access graph for a group has been determined, IALOMA is

applied to each group to determine a memory layouts for each. This strategy is very

similar to the one used to solve GOA.

2.3.2 ALOMA-CCG

ALOMA-CCG (Address LOad Minimization Algorithm with CCG-(k+1)) [14] is

a variation on IALOMA that considers DSPs with the ability to update an address register

within the range ±k, rather than being limited to ±1. The ALOMA-CCG approach

extracts cliques of size (k+1) where k is the limit of the update range for the auto-

increment/decrement instructions. A clique of size (k+1) can be covered with an

increment or decrement of k without the need to load an address into an address register.

Such a clique was called a Chained Clique Graph-(k+1), or CCG-(k+1). Within a clique a

relative ordering can be found for the variables without requiring a load to an address

register. When more than one CCG-(k+1) share a common edge, it is possible to connect

them together to form a quasi-CCG-(k+1). As with the CCG-(k+1), the quasi-CCG-(k+1)

can determine an ordering of variables without the need for a load of the address register.

Adding a CCG-(k+1) to a quasi-CCG-(k+1) leads to another quasi-CCG-(k+1), so for a

given access graph, it is desirable to extract the largest quasi-CCG-(k+1) to minimize the

number of address register loads needed.

The architectural assumption that an address register can be modified without

being used in a memory reference becomes important in determining the memory

allocation. Since we can adjust the address of the address register during any instruction

cycle, a distance greater than k between two sequentially accessed variables can be

19

covered by incrementing or decrementing while performing other instructions, provided

there are enough intervening instruction cycles between the two sequential memory

accesses. However, if the two variables were to be addressed in consecutive instruction

cycles and the distance between them is greater than k, then an address register load

would be required.

2.4 Optimizing Array Element Accesses

In the work by Araujo, Sudarsanam, and Malik [6], memory accesses for array

elements in a for-loop were optimized using address registers. First, the array elements

were numbered in the order that they were accessed. These numbered array elements

became the vertices in a directed graph called an indexing graph (IG). There was a

directed edge between two vertices in the IG if the indexing distance between them is at

most the step size of the auto-increment/decrement. The step size is the amount by which

an address register can be incremented or decremented using one instruction. The

indexing distance is a function of the indices of the two array elements, and is used to

determine if an address register can be used for both array accesses. To make the problem

more tractable, edges that reached over multiple iterations were removed from the IG

graph. Assigning address registers for the array accesses involved minimizing the number

of disjoint paths needed to cover the directed graph. This strategy of using disjoint paths

to cover the IG is also similar to the approach used by Liao to solve SOA, though in SOA

the access graph did not have directed edges.

20

Chapter 3

Memory Layout Optimization and Code Generation

3.1 Roadmap for Memory Layout Optimization and Code
Generation

Optimizing the layout of variables in memory and generating assembly code for

an input C program occurs on the procedure level. The approach used to perform memory

layout optimization is based on the method presented in [8] for solving GOA with a given

number of address registers, and limiting updates of the address registers to ±1. The steps

involved in optimizing the memory layout for an input C program, and emitting assembly

code for that program, are as follows:

1. Use SUIF compiler (Section 3.2) to process and create an intermediate form

representation of the C program.

2. Examine the intermediate form of each procedure in the C program to determine

the access sequence of that procedure, and build an access graph (Section 3.3.1)

that also captures information of how access sequence may change due to breaks

in control flow.

3. Solve GOA problem on the graph, and determine the optimized layout for the

variables in the procedure. (Section 3.3.2)

21

4. Using the optimized layout and intermediate form, generate assembly code for

each procedure, inserting load, store, and address register load instructions as

needed. (Section 3.4)

Figure 3.1 illustrates the overall steps involved in optimizing layout and generating

assembly code.

C code SUIF
compiler
front-end

Intermediate

Optimized Assembly
Create Access Variable Assembly Code
Access Solve Cdyout Asse -

Graph GAGeneration

Figure 3.1: Steps in optimizing variable layout and code generation.

3.2 The SUIF Compiler

The Stanford University Intermediate Format (SUIF) compiler [4] forms the

front-end of the AVIV retargetable compiler [3][16]. In order to be able to incorporate

optimizing memory layout into AVIV, the same front end was used.

The SUIF compiler is used to generate an intermediate representation (IR) of the

input C program. One feature of the IR that lent itself for use in optimizing memory

layout was that control flow statements could be kept in a high-level representation that

allows control flow information to be preserved, while converting other types of

instructions to a low-level representation, suitable for generating assembly code. The

22

body of a procedure can be considered a list of instructions, or in the case of branches in

control flow structures that contain separate lists of instructions for each branch of

control.

Mostly there are two types of elements that compose a procedure body in the IR.

The majority of a procedure is composed of simple three-operand instructions found in

most RISC-like architectures, such as arithmetic operations, logical operators, and

comparison operations. There are also branch structures, such as an IF or WHILE

statement. The branch structures maintain separate lists of instructions for the conditional

test and the body of the structure, of which there may be more than one, depending on the

type of branch. An IF structure, for example, has a header section for the condition test, a

then-part, and an else-part. The instructions in the header section evaluate to a Boolean

value, and the instructions within the lists for the then-part and else-part correspond to the

statements in the C program that make up those parts of the if-statement.

3.3 Generating a Memory Layout Assignment

Generating an assignment for layout of program variables in memory involves

deriving the access graph for each procedure under analysis, and solving GOA for the

derived access graph.

3.3.1 Creating the Access Graph

The access graph is derived from the access sequence for a procedure. The access

sequence is determined by recording the order in which variables were accessed to

23

perform an operation. For the operation a = b op c, the access sequence would be b c a.

Figure 3.2a shows a series of simple operations, and the resulting access sequence.

For branch structures like the IF statement, since there is more than one direction

the control flow may follow, the access sequence of the separate directions of flow are

kept separate from each other, and from the access sequence of the previous instructions

or following instructions. However, the access sequence of the conditional test can be

considered part of the access sequence of the previous instructions, since these

instructions must be performed before a branch decision can be made. Figure 3.2b

illustrates how the access sequence is determined for an IF branch structure.

The overall access sequence for a procedure is a concatenation of all the separate

accesses sequences, as shown in Figure 3.2c. Where the control flow may diverge, a new

access sequence is started for each branch. Where divergent flows of control meet, a new

access sequence is also started. The contiguous access sequences correspond to basic

blocks within the procedure. The arrows indicate the directions that control flow can

follow.

The access graph summarizes the pattern in which variables are accessed. As

discussed in [8], each vertex v in access graph G corresponds to a unique variable in the

access sequence. An edge e = (u,v) exists between vertices u and v if they are adjacent to

each other in the access sequence, and has weight w(e) which represents the number of

times u and v are adjacent. There is no difference in the relative ordering of u and v, so

edge (u,v) and edge (v,u) are considered to be the same edge. In creating G for an access

sequence with control flow, an edge is added between the last variable of a contiguous

access sequence and the first variable of any preceding or following contiguous access

24

sequences. Figure 3.3 shows the access graph derived from the access sequence shown in

Figure 3.2c.

(a) e= f +a;
c =d +b; access sequence: f aedbce gbabf c
b = e + g;
c = a + b +f;

(b) if(c < f) access sequence (conditional): c f
a = d + e; access sequence (then-part): d e a

else access sequence (else-part): h j a
a = h +j;

(c) e = f + a; access sequence:
c =d + b;
if(c<f) dea

a = d + e;
else faedbccf egbabfc

a g;
h j ab =e + g; hj 7

c = a + b +f;

Figure 3.2: Examples of access sequences.
(a) The access sequence for a series of simple instructions is straightforward.
(b) The access sequence for an IF branch structure is actually composed of three separate access sequences.
(c) The access sequence for a combination of simple instructions with an IF branch structure.

3.3.2 Solving General Offset Assignment

Once the access graph has been created, the next step in optimizing the variable

memory layout is solving GOA on the access graph. Solving GOA, as presented in [8], is

made up of a number of steps:

1. First solve SOA on the given access graph using one address register.

2. Set n to the number of address registers used plus one, and partition the variables

in a way that would yield the most benefit for using n registers address registers.

3. Determine a new access sequences for each partition of the variables, based on the

original access sequence, and create new access graphs for each new access

sequence.

4. Solve SOA on each new access graph.

25

faedbccf

d e a

hja A
egbabfc

4 2

j9
22

ab d

1

11

h f

Figure 3.3: Access sequence and the corresponding access graph.

5. Sum the costs of covering each new access graph and the cost of initializing n

address registers. Compare this cost to the previous cost of using n-I address

registers. If the cost for n-i address registers is higher, partitioning makes sense so

the new memory layout assignment is chosen, and steps 2-5 are repeated. If the

cost of using n address registers is higher, nothing can be gained from additional

address registers, and the memory layout assignment for n-I address registers is

chosen.

The final memory layout assignment is a concatenation of the separate assignments

generated by SOA for each address register used, since ultimately all the variables will be

allocated in a linear order in memory.

26

As described in [8], the cost associated with finding a disjoint path cover for an

access graph in SOA is the sum of the weights of uncovered edges in the graph and the

cost of initializing an address register. This cost metric reflects the additional instructions

needed to set the address register to the correct address for memory references of

variables not adjacent to each other. Only one address register is used in SOA. Figure 3.4

shows a disjoint path cover, using one address register, of the access graph in Figure 3.3,

and the associated cost of the cover.

Finding a "good" partition of the program variables has a large impact on the

effectiveness of GOA. Figure 3.5 illustrates a partition of the access sequence of Figure

3.3. There is no one method for determining how to separate variables into groups in all

cases such that the cost of covering the derived access graphs is minimized. A method

that works well for one C program might not work well for another, depending on the

access patterns of the variables. The method of partitioning used in this thesis is based on

the observation in [8] that vertices with many incident edges correspond to variables that

are accessed frequently. Having a separate address register pointing to those variables

may provide the most benefit in reducing the number of address register load instructions.

However, deciding how to partition the variables into separate partitions was not clear.

An approach such as the one suggested in [10] seemed unnecessary, so partitions were

decided on whether a given vertex had greater than the average number of incident edges

for the access graph. The average was simply the arithmetic mean of the number of

incident edges to each vertex.

After solving GOA on the access graph of the procedure under analysis, the

resulting assignment is recorded into a table for code generation. There is a separate table

27

e
Cost of disjoint path cover

= I (uncovered edges) +
cost to initialize address register

=8 4 2
g

2
Memory layout assignment ab

g j h f c b a e d

2

h f

Figure 3.4: Disjoint path cover, associated cost of the cover, and resulting memory layout assignment.
Heavier lines indicate edges that are included in the disjoint path cover, and lighter lines indicate edges that are
excluded from the cover. As indicated, the total cost includes the cost to initialize the value of the address register,
in this case assumed to have a cost of 1.

original access sequence

faedbccf
A d e a

egbabfc
Partition 1: f a b

Partition 2: e d c h j g

h j a

access sequence 1

IXa
fabf babf

a

access sequence 2

d e

edcc egc

h j

a

3 5

f b
2

g
1 1

e 2 d 2 c

1 1
jh

Cost of disjoint path cover = 3

Layout assignment

fa b

Cost of disjoint path cover = 3

Layout assignment

g e d c hj

GOA layout assignment: f a b g e d c h j (Cost = 6) [
Figure 3.5: Partition of variables (with two address registers) leads to reduction in overall cost.

28

for each address register in use, since each address register has its own assignment

generated by SOA. The relative position of each variable within the overall GOA

assignment is recorded as well. These relative positions are used during code generation

to determine whether consecutive memory references will require address pointer

arithmetic, an explicit load of an address register, or an auto-increment/decrement

operation.

3.4 Code Generation

With the table of assignments in hand, the final step was generating assembly

code from the IR. The assignments provided the memory locations from which the

variables could be loaded if they were not already in a data register. The AVIV compiler

uses the architecture given by the ISDL description to generate assembly code. However,

for the sake of simplicity the targeted architecture is fixed, with register indirect and auto-

increment/decrement loads and stores available. Since memory layout optimization

would occur as an optimization pass within the AVIV compiler, there is no loss of

generality by assuming the target architecture at this point, since the AVIV compiler

already creates mappings between SUIF operations and the operations available in the

target ISDL architecture [3][16].

3.4.1 Overview of Target Architecture

The target architecture for assembly code generation assumed for this thesis has

the following features:

29

" A separate instruction and data memory. Only the address registers in the AGU

are allowed to address the data memory.

* An address generation unit (AGU). The AGU has a small register file for the

address registers. Only address registers can be loaded with constants from the

instruction stream.

* An arithmetic logic unit (ALU).

* A register file for the data registers. The data registers can store the result of the

ALU, the data memory (for loads and stores), and the instruction memory (for

loading constants).

The following figure illustrates the organization of the target architecture:

Instruction
Memory

AGU
andData Data Adress

Register File Memory Registers

ALU

Figure 3.6: Target architecture organization.

The architecture is similar in nature to common, load-store RISC architectures.

3.4.2 Generating Assembly Code

As mentioned before, the IR supports a low-level representation that allows

relatively straightforward translation into assembly code. The simple three-operand

30

instructions in the IR can often be directly mapped to a matching instruction in the target

architecture. However, the operands of the instructions need to be loaded before they can

be used. Since register allocation is part of code generation, a scheme for allocating

registers is required. A simple solution of rotating the next available register in round-

robin fashion among the data registers was implemented. Using a more sophisticated

register allocation scheme is unnecessary since the purpose of generating assembly code

is to evaluate the number of instructions generated to load address registers or perform

address arithmetic. The results of operations are immediately stored to memory after

calculation, so that the data in a register can be simply overwritten when the register is

needed, whether or not it is already in use. The register to which a result is written is

recorded in a symbol table, so that a subsequent operation which needs the result can

avoid a load operation by first checking the symbol table to see if the value is already in a

register. When a register is overwritten, the symbol table must be appropriately updated

so the next time the overwritten data is needed, a load instruction will be generated.

Generating assembly code for branch structures is only slightly more difficult

than for the three-operand instructions. As mentioned in section 3.2, each part of the

branch structure maintains a separate list of instructions. These lists themselves are com-

posed mainly of three-operand instructions, though nesting of if-statements within the

header portion of the IF structure is allowed. Since generating code for the three-operand

instructions is straightforward, the only difficulty is to generate them in the right order.

For example, in an IF structure, code implementing the header would be generated first,

followed by the then-part, and finally the else-part. Labels are generated to allow

branching around the code not to be executed, such as code for the else-part if the header

31

evaluated to true. Nested IF structures within the header or any other instruction list is

handled as any other branch structure and poses no difficulties.

The final detail in generating assembly code is the handling of address registers at

basic block boundaries. Branch structures provide different paths for the control flow to

follow. The generation of instructions for loads, stores, and address pointer manipulation

depend on the values in the address registers, which may be different depending on which

control flow path was followed. There are two cases that need to be considered:

divergence of control flow from one path, and convergence of control flow from some

number of different paths to one path. For each case, a conservative approach would be to

assume nothing is known about the values in the address registers, and to generate code

that loads each address register with the address of its next memory reference. However,

this leads to an unacceptable number of address register loads.

Some observations can be made regarding control flow divergence or conver-

gence that helps reduce the number of address register manipulation instructions. In the

first case, each divergent path needs to be given the exact same values of the address

registers, since each path starts from the same "state," which encompasses the values of

all address registers, the next available register number, and symbol tables. All paths

would then be able to use existing values of the address registers, as well as the values in

the data registers. In the second case, each control flow path has its own "state," which

needs to be consolidated. The equivalent address registers for each path can be compared,

and if they all have the same value, then we can set the consolidated version of that

address register to that value. If the compared values are not the same, then during code

generation process the next use of the address register will force a load address register

32

instruction to be generated. The symbol tables are more difficult to compare, so the

conservative approach of marking all symbols as not residing in registers is taken here.

Since all registers have been effectively "cleared" the next available register can be safely

set to any data register. The extra effort to duplicate and consolidate "states" for control

flow paths is minimal, and gains extra assembly code compactness.

33

Chapter 4

Results

4.1 Code Generation Results

Assembly code was generated for several C code segments, ranging from small

code segments with a limited number of variables to longer code segments with a greater

number of variables and a number of control flow changes.

This implementation of optimizing memory layout lacks capability to handle

while-loops and for-loops properly, due to a lack of time, though it handles if-statements.

Adding the capability to handle these other types of control flow would be time-

consuming but not difficult, as the basic mechanism for handling changes in control flow

are in place.

Table 4.1 shows the results of running the example programs with varying

numbers of address registers. The figures in columns headed with "non-addr" represent

the number of instructions that are not address register modifying instructions, and the

figures in columns headed with "addr" represent the number of instructions needed for

modifying the address registers. The "ratio" is computed by (non-addr + addr)/addr, and

is an indication of the overhead introduced modifying the address registers. The "*" in

the "addr" column indicate that between n and n+1 address registers available, the

34

1
Number of Address Registers Available

2 3
ratio

rationon-addr

exl 11 2 1.182 2 1.182 2* 1.182
ex2 13 1 1.077 1* 1.077 --- ---
ex3 11 1 1.091 1* 1.091 --- ---
ex4 20 3 1.15 3 1.15 3* 1.15
ex5 26 2 1.077 2* 1.077 --- _---

ex6 38 5 1.132 5* 1.132 --- _---

ex7 35 1 1.028 1* 1.028 --- ---
ex8 25 1 1.04 1* 1.04 --- ---
ex9 24 1 1.042 1* 1.042 ---- _ ---

ex1O 23 1 1.043 1* 1.043 --- ---

exil 26 3 1.038 3* 1.038 --- ---
ex12 34 7 1.206 5 1.147 5* 1.147
ex13 20 6 1.3 3 1.15 3* 1.15
ex14 28 9 1.321 6 1.214 6* 1.214
ex15 32 9 1.281 7 1.054 7* 1.054
ex16 44 14 1.318 9 1.204 9 1.204

Table 4.1: Results of optimizing memory layout using GOA.

I Number of Address Registers Available
1 2 3

addrExample addr ratio addr
exI 11 2 1.182 2 1.182 2 1.182
ex2 13 3 1.231 2 1.154 1 1.077
ex3 11 3 1.273 2 1.182 1 1.091
ex4 20 6 1.3 3 1.15 3 1.15
ex5 26 4 1.154 2 1.077 3 1.115
ex6 38 5 1.132 2 1.053 3 1.079
ex7 35 3 1.086 2 1.057 3 1.086
ex8 25 3 1.12 2 1.08 3 1.12
ex9 24 1 1.042 2 1.083 2 1.083
exlO 23 1 1.043 2 1.087 2 1.087
ex1l 26 5 1.192 2 1.077 3 1.115
ex12 34 6 1.111 9 1.265 4 1.118
ex13 20 6 1.3 5 1.25 4 1.2
ex14 28 7 1.25 9 1.321 6 1.214
ex15 32 9 1.281 6 1.188 7 1.219
ex16 44 12 1.273 10 1.227 10 1.227

ratio ratio

Table 4.2: Results from generating code without memory layout optimization.

35

addr ratio addr
2 3

Example Iaddr ratio ratio

non-addr

additional address register was not used, as the cost of using the additional address

register outweighed the cost of not using it. There are some entries in the table that

indicate that adding an additional address register had the same cost as using one fewer

registers. Overall, most code examples did not show any improvement when using more

than one address register. This could be due to a number of factors, including little reuse

of variables in the code segments, or possibly ineffective partitioning. Of the examples

that did show improvement, the amount improvement was in the range of 5 to 10 percent,

with one example as high as approximately 11 percent.

4.2 Comparison with Code Generated without Optimization

For comparison, Table 4.2 contains the results from code generated without

performing memory layout optimization. In the situation where there was more than one

address register, the program variables were split fairly evenly between the available

address registers. The layout assignment was based on program order.

The data shows erratic behavior in terms of the number of instructions generated

for address register manipulation. In most cases, using only one address register leads to a

greater proportion of the code being address loads or address arithmetic, which is

expected. When two address registers are used, however, the data indicates mixed results.

For some of the examples, there is some improvement in the ratio of total instructions to

non-address register instructions, in the range between 5 and 10 percent as seen before.

However, some of the examples had worse ratios, which may be explained by the

partitioning method. The variables are split as evenly as possible between the two

partitions, with each partition alternately getting the next new variable seen in program

36

order. The cases in which the ratios get worse likely indicate instances where this

partitioning method does not work well with the actual access sequence of the example.

When three address registers were used, there is an indication that in some cases

the number of instructions generated to perform address loads or address arithmetic is no

longer dictated by the program's access sequence, but rather by the forced initialization

of all three address registers because of the partitioning of the program variables. For

example, Figure 4.1 compares generated assembly code without optimization for a code

sequence, using two and three address registers. The SETAR() instructions are used to

load the address of a variable into an address register. The assembly code for two address

registers contains only two SETAR() instructions, one for loading each of the two address

registers, while the assembly code for three address registers contains three SETAR()

instructions, one for loading each of the three address registers. This occurs in code

sequences for which the number of variables is small. For the larger examples where the

number of address instructions remained greater than the number of address registers,

there is generally improvement in the address instruction overhead.

37

Code sequence

int i;
int a,b,c;

a= 1;
b = 1;
c = 7;

c = C - i;
a = a+c;
b = a*b;
i--I .
c = C - 1;
a = a+c;
b = a*b;
1--;

return (b);

assembly code for 2
address registers

LDC(2, RO)
LDC(1, Ri)
LDC(1, R2)
LDC(7, R3)
SUB(R3, RO, R3)
SETAR(2, AR1)
STINC(R3, AR)
ADD(RI, R3, RI)
STDEC(R1, ARi)
MUL(Ri, R2, R2)
SETAR(1, ARO)
STDEC(R2, ARO)
LDC(1, R4)
SUB(RO, R4, RO)
STINC(RO, ARO)
SUB(R3, RO, R3)
STINC(R3, AR)
ADD(Ri, R3, RI)
ST(Ri, ARI)
MUL(R1, R2, R2)
STDEC(R2, ARO)
LDC(1, R5)
SUB(RO, R5, RO)
ST(RO, ARO)
RET(R2)

Figure 4.1: Forced initialization of an unnecessary address register.
When there are two address registers available, only two address register loads are needed. An additional address
register causes a different partitioning of the program variables, and the resulting assembly code is larger than before
due to initialization of the additional address register.

38

assembly code for 3
address registers

LDC(2, RO)
LDC(1, RI)
LDC(1, R2)
LDC(7, R3)
SUB(R3, RO, R3)
SETAR(2, AR1)
STINC(R3, ARi)
ADD(Ri, R3, RI)
SETAR(0, ARO)
ST(Ri, ARO)
MUL(RI, R2, R2)
STDEC(R2, ARi)
LDC(1, R4)
SUB(RO, R4, RO)
SETAR(4, AR2)
ST(RO, AR2)
SUB(R3, RO, R3)
STINC(R3, AR)
ADD(Ri, R3, RI)
ST(Ri, ARO)
MUL(R1, R2, R2)
ST(R2, AR1)
LDC(1, R5)
SUB(RO, R5, RO)
ST(RO, AR2)
RET(R2)

Chapter 5

Conclusions

This thesis shows that the AVIV retargetable compiler can be designed so that it

optimizes the memory layout of program variables, and that such optimization leads to

assembly code that reflects an effective memory addressing strategy. The code generated

by AVIV for architectures that have limited addressing modes, and support for auto-

increment and auto-decrement instructions, will have reduced size if the optimization

presented in this thesis is used, compared to the size of the code without the optimization.

Though this optimization was not directly integrated into AVIV, it works on the same

SUIF IR used by AVIV, and can be performed as an early step before the IR is used by

the SPAM compiler [16]. The generated memory layout assignment can be used during

the covering of the Split-Node DAGs to generate address register load and arithmetic

instructions, which can then be scheduled by AVIV's code scheduling algorithms. For

target architectures that have support for register+offset addressing or lack auto-

increment and auto-decrement instructions, the optimization would be unnecessary as in

the first case variables can be accessed directly using a frame-relative pointer and an

offset, and in the second case address register load and arithmetic instructions would be

needed no matter what the variable layout.

39

The efficacy of the optimization method, based on solving GOA, is clearly shown

by the results from generating assembly code from segments of C code. With one address

register in use, omitting the optimization leads to more instructions devoted solely to

adjusting the address register for most examples. When more address registers are added,

there is still a general trend showing that using the optimization leads to a smaller size for

generated assembly code. With multiple address registers in use, the method of

partitioning the variables among the address registers becomes a determining factor in the

final size of generated assembly code. A good partitioning method will lead to smaller

assembly code size consistently, while a more inferior method will exhibit erratic

performance on different code samples and be much more dependent on the particular

access patterns in the C code for its gains in reducing instruction count.

5.1 Future Work

There remain several areas in which the optimization developed here can be

improved, and thus making the optimization more useful in AVIV:

1. Adding capability to handle while-loops and for-loops. As discussed in Chapter 4,

adding the capability is not difficult with the means of handling control flow

change in place, though the handling of while and for loops is slightly different

from the three-operand instructions and if-statements.

2. Adding capability for increment/decrement sizes larger than 1. Many embedded

processors and DSPs have address generation units capable of modifying

addresses more than ±1. There has already been research into this area, and

several methods proposed in [11] and [14].

40

3. Improving the partitioning scheme. Since the proper partitioning so directly

affects the number of address register instructions, implementing a more optimal

partitioning scheme, such as suggested in [10], may improve things.

4. Improving the selection of edges during SOA. Currently there is no strategy in

selecting among edges with the same weight in SOA when deciding to include or

exclude an edge from the access graph. One strategy that might lead to

consistently better disjoint path covers is during selection of an edge from a group

of edges with equal weight, the edge which has the greatest number of vertices

currently not covered in the cover graph should be selected. If after applying this

criterion there remain multiple eligible edges, then any of the remaining edges

may be selected.

41

Bibliography

[1] G. Hadjiyannis. ISDL: Instruction Set Description Language -- Version 1.0,
MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge,
Massachusetts. November 1998.
(http://www.caa.lcs.mit.edu/~ghi/Postscript/isdl-manual.ps)

[2] G. Hadjiyannis, S. Hanono, and S. Devadas. "ISDL: An Instruction Set
Description Language for Retargetability," Proceedings of the 35' Design
Automation Conference, pp. 299-302, June 1997.

[3] S. Hanono and S. Devadas. "Instruction Selection, Resource Allocation, and
Scheduling in the AVIV Retargetable Code Generator," ACM/IEEE Design
Automation Conference, 1998.

[4] Stanford Compiler Group. The SUIF Library - Version 1.0, 1994.

[5] D. H. Bartley. "Optimizing Stack Frame Accesses for Processors with Restricted
Addressing Modes," Software - Practice and Experience, vol. 22(2), pp. 101-
110, February 1992.

[6] G. Araujo, A. Sudarsanam, and S. Malik. "Instruction Set Design and
Optimizations for Address Computation in DSP Architectures," Proceedings of
International Symposium on System Synthesis, 1996.

[7] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang, G. Araujo, A. Sudarsanam,
S. Malik, V. Zivojnovic and H. Meyr. "Code Generation and Optimization
Techniques for Embedded Digital Signal Processors," Proceedings of the NATO
Advanced Study Institute on Hardware/Software Co-Design, 1995.

[8] S. Liao. "Code Generation and Optimization for Embedded Digital Signal
Processors," Ph.D. Thesis, MIT Department of EECS, January 22, 1996.

[9] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. "Storage Assignment
to Decrease Code Size," ACM Transactions on Programming Languages and
Systems, vol. 18(3), pp. 235-253, May 1996.

[10] R. Leupers and P. Marwedel. "Algorithms for Address Assignment in DSP Code

42

Generation," ACM/IEEE International Conference on Computer-Aided Design,
pp. 109-112, 1996.

[11] A. Sudarsanam, S. Liao, and S. Devadas. "Analysis and Evaluation of Address
Arithmetic Capabilities in Custom DSP Architectures," Proceedings of
ACM/IEEE Design Automation Conference, 1997.

[12] N. Sugino, H. Miyazaki, S. Iimuro, and A. Nishihara. "Improved code
optimization method utilizing memory addressing operation and its application to
DSP compiler," International Symposium on Circuits and Systems, pp. 249-252,
1996.

[13] N. Sugino and A. Nishihara. "Memory allocation methods for a DSP with
indirect addressing modes and their application to compilers," Proceedings of the
IEEE International Symposium on Circuits and Systems, pp. 2585-2588, 1997.

[14] N. Kogure, N. Sugino, and A. Nishihara. "DSP memory allocation method for
indirect addressing with wide range update operation by multiple registers," IEEE
Asia-Pacific Conference on Circuits and Systems, pp. 435-438, 1998.

[15] N. Sugino, H. Funaki, and A. Nishihara. "Memory address allocation method for
a indirect addressing DSP with consideration of modification in local
computational order," Proceedings of the IEEE International Symposium on
Circuits and Systems, pp. 496-499, 1999.

[16] Hanono, S. "Aviv: A Retargetable Code Generator for Embedded Processors,"
Ph.D. Thesis, MIT Department of EECS, June 1999.

[17] Liem, Clifford. Retargetable Compilers for Embedded Core Processors. Kluwer
Academic Publishers, 1997.

43

