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Abstract

It is possible, using a first-order sigma-delta modulation scheme, to represent an im-
ager's pixel value as an oversampled bit stream. The goal of the project was to demon-
strate the feasibility of computer vision algorithms on such sigma-delta encoded bit
streams. The computational modules used were constrained to fit within the footprint
of a single pixel. This ensures that fully parallel operation could be achieved using a
3D architecture. 3D silicon technology allows multiple wafers to be stacked together
and interconnects to be made between adjacent layers. Bonding wafers together in
this manner would allow computational modules to be placed directly beneath its
associated pixel. This process increases the potential for high parallelism and low
power computation. The activity detection algorithm which was developed incorpo-
rates a frequency-locking analog storage mechanism with a lowpass filter/monitor to
simulate a multimodal adaptive background activity detector. This system has been
simulated in software and has proven itself capable of detecting activity with a fixed
field of view. The simulation was developed for the TI TMS320C40 DSP and later
extended to an x86 architecture for faster performance and real time evaluation. The
GoDSPTM Code Composer IDE was used to develop the DSP software while running
it on a White Mountain DSP Slalom-40 board. The x86 implementation was written
using MVC++-4.0 running on a 450 Mhz Pentium II based Gateway GP6-450.

Thesis Supervisor: Lisa McIlrath
Title: Visiting Professor, MIT Al Laboratory
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Chapter 1

Introduction

Sigma-delta modulators, also known as oversampling A/D converters, generate a low

resolution-typically 1-bit-output by sampling the analog input at many times the

Nyquist rate. A high resolution N-bit output is obtained by filtering and down-

sampling the bit stream to the Nyquist rate. A sigma-delta modulation scheme

has two primary benefits. First, it reduces the number of wires required to extract

the data. A single wire for each pixel is sufficient, as opposed to 8 or more for a

direct A/D conversion. Second, the dynamic range and resolution of the sigma-delta

conversion have the theoretical potential to be orders of magnitude greater than non-

oversampling ADCs.

A new multilayer silicon process has been developed in a collaborative effort be-

tween MIT Lincoln Labs and Northeastern University. Their process enables several

wafers, fabricated using existing technologies, to be bonded together and electrical

contacts to be made between adjacent layers. The addition of a third dimension to

silicon design allows for the introduction of new types of computational architectures.

The two technologies, frequency-encoded pixels and 3D architecture, have been

combined in a CMOS image sensor designed by McIlrath at the MIT Artificial Intel-

ligence Laboratory[i]. The imager is composed of a surface layer of densely packed

photodiodes. Directly beneath each of these diodes is circuitry which encodes the

current outputs into digital bit streams. The purpose of this project was to explore

potential 3D microarchitectures which could be used to manipulate these bit streams.
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The constraints of the problem require that computational modules are either

small to fit within the footprint of a pixel, or modular to be divided amongst several

layers. Basic modules were sought which could perform elementary functions, such

as addition, subtraction, and memorization. Once these modules were designed, they

were combined to emulate the behavior of an activity detection system designed by

Stauffer[4]. This adaptive algorithm is modular enough to be broken up and placed on

several layers, parallel enough for an identical computational module to be assigned

to every pixel, and sufficiently complicated to use several of the basic computing

modules.

For the simulations, an existing 64x64 imager was connected to a PC-based simu-

lation environment. The imager consisted of an array of interleaved photodiodes and

oversampling modulators which generated bit streams for each of the pixels. These

bit streams were then transmitted to the simulation environment using an existing

test system. The activity detection simulation was implemented in a C-based package

running first on a DSP and later on an 0x86 microprocessor.

Chapter Two will discuss the first basic area of research being demonstrated, 3D

silicon systems and sigma-delta modulation of pixel values. It describes the 3D silicon

technology for which these algorithms have been targeted. The new process method

allows for much more freedom than conventional two dimensional integrated circuits.

Some of the major benefits and potential applications are discussed.

Chapter Three introduces the existing sigma-delta modulator and some of the

basic properties of its output. The modulator uses an asynchronous sampling method

rather than a more standard synchronous one. The outputs of these two approaches

are identical, but the asynchronous implementation was found to be smaller. A brief

explanation of potential methods for demodulating the signal are described, and small

modules capable of adding, subtracting, and storing the bit streams are discussed.

Chapter Four describes Stauffer's research into building multimodal activity de-

tection systems. The model he uses is adapted to an architecture which can be imple-

mented efficiently using the 3D silicon process. This adaptive model is discussed in

detail, focusing on its theoretical performance potential. Some of the tradeoffs which
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were made to meet the constraints of the design objectives are discussed.

Chapter Five contains the results of the simulations. The test system was used to

monitor activity over the course of several hours and store the results. These results

are analyzed and evaluated for accuracy and efficiency. The paper concludes with a

discussion of future work for developing these technologies.

Appendix A contains information on the software models used to simulate the

behavior of the physical elements.
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Chapter 2

Architectures for 3D

Computational Imagers

As designers reach the limits of modern process technology, they must search for the

next step in the process evolution. One potential technology to fill this role is three

dimensional integrated circuit fabrication. In this process, fully fabricated SOI wafers

are bonded together to form a multilayer silicon "sandwich". Electrical connections

are then made between adjacent layers.

The immediately apparent benefits of 3D technology is the increase in available

bandwidth between circuit blocks which reduces the necessity for signals to be routed

off-chip. A modern processor has at most hundreds of pins to communicate with the

rest of the computer system. In a multilayer design, it is possible to eliminate this

restriction by moving large sections of the system onto other layers of the same 3D

chip. Figure 2-1 illustrates the potential savings which can be achieved by building a

complete system in a single multilayer IC.

Process yields in modern systems are inversely proportional to the size of the

target circuit. As the size of 2D arrays increase, so does the probability of a flaw

appearing in the circuit . The increased size is necessary in the 2D approach simply

to fit all of the design hcomponents onto a single die. By segmenting that design and

placing each section on a separate layer, the footprint for each section is consequently

smaller, reducing the individual chances for a process flaw to occur. By designing
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Figure 2-1: Comparison of off chip routing for modern multiprocessor system (a) and
for an equivalent multiprocessor, multilayer design(b).

an intelligent parallel architecture rather than conventional serial approaches, it may

even be possible to adapt to such flaws by bypassing non-functional sections of the

circuit.

The high degree of parallelism afforded by this multilayer technology results in

lower power consumption for equal computation. Since power is directly propor-

tional to the clock frequency (P = CV 2f), there is a one-to-one power benefit for

any reduction in frequency. A highly parallel system would be able to compute

the same number of operations as a contemporary serial processor, but at a signif-

icantly lower operational frequency. By replacing high-capacitance inter-chip wires

with low-capacitance interlayer vias, the overall power savings can be dramatic as

both frequency and capacitance may be reduced.

The efficiency of highly parallel 3D systems has been well documented in the field

of biology. Organic brains are massive computational systems capable of performing

billions of operations every second. Not only can our brains outperform any modern

computer, it is also orders of magnitude more power efficient. A human brain can

perform 3 x 10 3operations per Joule - far more than any current microprocessor.

The DEC Alpha21164, which is typical of current microprocessors has an average

efficiency of 6.25 x 106 operations per Joule[3]. With this technology it becomes

possible to more closely mimic, physically, the architecture of an organic brain. Neu-

romorphic engineering is just one of the possible areas of study which can benefit

from the multilayer structure. Computational node-based algorithms can be more

13



easily and compactly implemented with 3D silicon. Kilobyte-word microprocessors,

pixel-parallel computational imagers, high density memories, and systems-on-a-chip

technologies are just a few of the many areas which stand to benefit from this advance

in technology.

2.1 Conventional Silicon

Integrated circuits are currently made by placing and interconnecting transistors in

a planar array. To layout the various regions for doping, the locations of polysilicon,

and the traces of interconnecting metal, the process uses a set of masks for each of the

layers. Here layers refers to the process layers such as the polysilicon, metal 1, metal

2, etc, which are the silicon equivalents of signal planes in a PCB. Through a series of

etching and growing steps, a 2D wafer is constructed using these masks to control the

growth. Recent advances in process technology have increased the realizable size of

a single die, while simultaneously reducing the minimum width of a single transistor.

Both of these improvements have involved a significant cost for the developer. New

fabrication facilities with more sophisticated machinery has been required for every

improvement in transistor size. Increasing the available die size was only made pos-

sible by creating even cleaner environments-reducing the chances for process-based

contamination. The 3D process promises to improve device performance without the

overhead cost of new facilities and equipment. It accomplishes this by using existing

technologies to fabricate the pre-bonded wafers.

Even with larger die sizes and smaller transistors, many heavily parallel systems

could not be easily implemented on a single chip, or even on multiple chips. The main

issue in such systems is the complexity and quantity of the interconnects required to

assure communication between computational modules. Consider a four-dimensional

hypercube arrangement of nodes. While it is possible to project the cube onto a two

dimensional surface, the interconnect complexity increases the size considerably over

the equivalent three dimensional projection. Both can be see in figure 2-2.

If a sufficiently large numbers of nodes is required, the 2D design would exceed the
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Figure 2-2: Layout of a 2x2x2x2 hypercube in (a) two dimensions and (b) three
dimensions.

bounds of the size of a single die. The 3D design could be expanded to virtually an

unlimited number of nodes. Since each of the layers is identical, the mask sets can be

reused, reducing both development time and costs. Other geometric patterns, such as

simple cubic, face-centered cubic, and hexagonal close-packed would be much easier

to realize in 3D than in 2D. In all of these formations, more nodes can be placed in

in the same amount of silicon area because the interconnect cost is much lower.

2.2 Creating 3D Silicon

A process, originally developed in collaboration between Northeastern University and

MIT Lincoln Labs, has been developed to bond two wafers together and connect

them electrically. Circuits are fabricated on SOI wafers, using a standard process.

The wafers are bonded together and the handle substrate of one is removed. Vias are

patterned through the back side of the remaining thin film circuit layer and filled with

metal to make the electrical connection. These vias can be placed in any arrangement

on the circuit. A cross section of possible configurations of a three layer image sensor

can be seen in figure 2-3.

This bonding process can be repeated several times, allowing several circuit layers

to be connected in complex systems. There is no theoretical limit to the number of

layers which can be added. Furthermore, since the process uses standard fabrication

technologies, current manufacturing facilities can still be used to produce the indi-

vidual wafers. The only new equipment that is required are the tools for the final

bonding step of the process.

15
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2.3 Imagers in 3D Silicon

Smart imaging technology can benefit from 3D processing. Contemporary imagers can

be subdivided into three categories; serial output, pixel-parallel output, and column-

parallel output systems. Each of these systems has its own benefits, but also a set of

performance issues which are inherent in their design.

High-Speed Memor Hig Sped

(a) Serial output to high speed off-chip A/D

ModerateSpeed

(c) Pixel-Parallel architecture

Memory Peed

(b) Column-parallel on-chip processing

(d) 3D iwager model

Figure 2-4: Comparison of the three standard imagers and the proposed 3D imager.

A serial output imager generates pixel values in a high-speed raster-based format.
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These values are then digitized using an analog/digital converter. Though the inter-

face to this type of imager is fairly simple, it suffers from a severe data bottleneck. As

imager sizes increase, the system must work proportionally faster to meet the same

frame rate requirements - resulting in higher power consumption. The total size of

the imager is then limited by the speed of the A/D converter and desired frame rate.

The limiting relationship specifies that the [number of pixels] = [maximum conversion

rate]/[required frame rate].

A pixel-parallel design places a single processing element adjacent to every photo-

diode. These small elements are responsible for interpreting the values of the photo-

diode and responding accordingly. There is no limit to the size of such a pixel array,

and the speed is limited only by the speed of the slowest processing element. However,

a pixel-parallel system suffers from a low fill factor - i.e. the relative area in the array

devoted to light sensing by pixels is small due to the area required for the processing

elements adjacent to each pixel. Many image processing algorithms assume that that

the pixels are close to one another. As the distance between physical pixels increases,

the validity of this assumption, and the models based on it, break down. Conversely,

large processing elements are typically required to perform most useful operations.

A column-parallel architecture is a combination of these two designs. It asso-

ciates all of the pixels in a single column with a dedicated A/D converter. Using

this approach, the fill factor is higher than the pixel-parallel system, and the process-

ing speed is lower than for the serial output system. The column-parallel approach

has become the defacto standard for high speed high-resolution imagers because it

provides such a good combination of speed, performance, and power.

A 3D architecture can improve performance and increase parallelism. By moving

all of the wiring and processing elements to lower levels of the design, a 3D pixel

array would have a very high fill factor. Because of the small pixel footprint in high

resolution images the savings in space is dramatic. In the 3D system, the surface

layer would be entirely devoted to light sensing.

The challenge in designing 3D architectures is in developing area-efficient compu-

tational systems. All of the modules which are simulated must fit within the footprint
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of a single pixel. If this is not the case, a fully parallel system would not be possi-

ble. The small size of the pixel forces designers to look beyond conventional digital

systems towards bit stream encoding technologies and analog-digital hybrid circuits.

One of the luxuries afforded by the heavy parallelism is the relatively low frequency

at which each module can operate. Using sigma-delta modulation it is possible to

sacrifice a slight increase in frequency for a reduction in implementation size. This

is only one of many methods for designing area-efficient circuits. The realm of 3D

architectures remains largely unexplored and certainly other clever designs are yet to

be discovered.

18



Chapter 3

Sigma-Delta Modulation

Sigma-delta modulation is widely used in the DSP field to digitize analog signals. It

is an oversampling method which trades sampling speed for system complexity. The

small circuits needed for low-order sigma-delta systems are ideally suited to the space

constraints of the target 3D architecture. Sigma-delta modulation of the photodiode

current accomplishes digitization of the signal, but without the expense of multiple

interconnects. While a typical bit-parallel digitization converts the analog value to 8

or more bits of data, the output of the sigma-delta modulator can be a series of single

bits. The resulting benefit of the modulation scheme over the analog sampling is the

reduction in the number of wires required for transmitting the output to the next

processing layer. The desire for high resolution imagers dictates the need for smaller

pixel sizes. A 1 cm 2 die is considered a large size using modern processes. Reduced

yields make larger designs uneconomical. If a 256x256 array is desired, each pixel will

have a footprint less than 4 0 pm on a side. In a larger 1024x1024 configuration, pixels

are limited to 10pm per side.

The pixel design upon which the proposed 3D architecture is based is an asyn-

chronous sampled oscillator whose frequency is proportional to the incident light in-

tensity. It can be shown that the output of a sampled oscillator is equivalent to that

of a first-order sigma-delta modulator, and hence the input signal can be determined

by analyzing the output bit patterns.
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processing elements

elements
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Figure 3-1: Comparison of processing space for (a) an 8-bit A/D system and (b) an
oversampled modulator.

3.1 Synchronous Modulation

The minimum frequency at which a signal can be sampled without loss of information

is known as the Nyquist sampling frequency. Typically, this sampling rate is twice

the highest frequency component of the continuous signal. At the Nyquist rate, there

is neither any aliasing of high-band signals, nor is any frequency band unused. The

diagram in figure 3-2 depicts a signal with a maximum frequency component of fo

sampled at, below, and above the Nyquist frequency.

(a) (b)

(c) (d)

(e) x(t) CT]-> DT A/D - yn]

sampling
frequency

Figure 3-2: The signal, (a), sampled below the Nyquist rate (b), above the Nyquist
rate(c), and at the Nyquist rate (d). (e) diagram for the sampling circuitry.

A signal which is undersampled is sampled below the Nyquist frequency (c). An
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undersampled signal encounters aliasing problems where the higher frequencies of

the input overlap with themselves. A signal which is sampled above the Nyquist

frequency is called oversampled. As the degree of oversampling increases, measured

as the ratio of the sampling frequency to the Nyquist frequency, the proportion of

the total bandwidth used by the input signal decreases. Oversampling by itself only

offers a modest increase in the signal to noise ratio. The added benefit of using a

sigma-delta modulation is achieved by the noise shaping characteristic of the feedback

loop.

Quantizer
I I

Accumulator e[n]

n] +y[n]

-\ -

threshhold

accumulator

1 2 3 4
sampling
clock

Figure 3-3: Discrete time implementation of a first order E - A modulator.

A diagram for a first-order sigma-delta loop is shown in figure 3-3. The system

is composed of an accumulator and a one-bit quantizer. The quantizer is a threshold

function which returns one if the output of the accumulator is greater than some

threshold, and zero otherwise. If the accumulator were implemented as a digital

unary adder the quantizer would return the value of the most significant bit of the

sum. In figure 3-3, this quantizer is modeled as the addition of an error signal to
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the output of the accumulator. This error is the difference between the accumulator

value and the quantizer output. For an n-bit digital accumulator, the error signal

would be the lowest (n-1) bits of the sum.

Consider a constant input into the system, x[n] = c. Assume that the value

of the accumulator is initially below the threshold of the quantizer, such that s[n]

follows x[n]. At the rising edge (1) of the sampling clock, the accumulator is above

the threshold of the quantizer and sets y[n] = 1. This value is subtracted from the

accumulator output such that T[n + 1] = T[n] + x[n] - 1.

The relationship between the input, output and error signals for the modulator in

figure 3-3 can be shown to be

y[i] =_ x[i - 1] + e[i] - e[i - 1] (3.1)

The transfer function of the input to the output is a simple unit delay with no

magnitude shaping, IHx(e0w)| = 1. The frequency components of the input is precisely

copied in the spectrum of the output. The transfer function between the error and

the output has the magnitude response, IHe(eiw) = 2 -sin("). A plot of this function

can be see in figure 3-4. This shaping serves to reduce the impact of noise around

the baseband, but increases it at higher frequencies. The noise from an 8-bit A/D

converter is at most 1 of the total input range. Therefore, the noise error for such

a system is uniform across all frequency bands.

The key to the success of sigma-delta modulation is the high noise rejection ratio

at the baseband. At these lower frequencies, where the noise is at its lowest, the signal

to noise ratio is maximal, recalling that the magnitude of the signal transfer function

is identically 1 everywhere. By sufficiently oversampling the input, it is possible to

ensure that all of the input's spectrum falls within this low-noise baseband. The

overall SNR performance of the system would be very poor if the noise in the upper

band remained in the output signal. Hence, when demodulating the data, a high

quality low-pass filter is typically used to attenuate the noise in the upper frequencies

and maintain the high SNR achieved by oversampling.

22



1.8 --
signal band

1.6 - :Modulation Noise
1.6-

1.4-

1.2 -

1 Quantization Error

0.6-

0.4-

0.2 --

0 0.5 1 1.5 2 2.5 3 3.5
frequency

Figure 3-4: Magnitude response for quantization noise in first order system.

3.2 Asynchronous Modulation

Rather than using the synchronous model described above, an asynchronous modu-

lator was used for implementation reasons. Functionally, the asynchronous and the

synchronous modular are identical, but the asynchronous circuit is much smaller than

its synchronous counterpart. The target design would not use a digital accumulator

for the sigma-delta system since the input signal is a continuous time (CT) analog

signal rather than a discrete time (DT) digital signal.

When using an analog based integrator, the synchronous modulator must contain

a high precision analog subtraction circuit to perform the subtraction in the feedback

path. Though it is possible to build an analog subtractor, it is a large circuit which

requires several well matched components to function properly. An asynchronous

implementation eliminates the need for the complex subtractor, using instead a one-

bit resetable memory. A block diagram of this asynchronous modulator is shown in

figure 3-5.

Consider a constant input x(t) = c for the diagram in figure 3-5. The output of
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Figure 3-5: Block diagram for an asynchronous modulator

the integrator would slowly rise from the reset value, A, to the quantizer's threshold

value, B. Once the threshold is reached, the quantizer output value is asserted, causing

the S-R latch to be set and return the integrator to its reset value of A. The latter

effect will force the quantizer output back to zero, allowing the integrator to restart

and continue. The first effect will cause the system to remember that a reset has

occurred. Once every sampling period, the value of the S-R latch is polled, and then

reset. If the integrator exceeded the threshold quantity in the period since the last

sampling, the output is a 1; otherwise, it is zero.

Figure 3-6 illustrates the behavior of both modulators. The diagram assumes that

the input signal is a positive constant, x[i] = c > 0, and Z is the output of the system

integrators. The solid line represents the behavior of the synchronous version of the

system and the dashed line represents the asynchronous response. In both models, the

integrator value is reduced by some constant value whenever its output exceeds some

upper bound. In the asynchronous model, this reduction of the accumulator value

occurs immediately after the integrator value exceeds the bound. For synchronous

systems, the integrator resets at the first sampling pulse after the integrator exceeds

the bound.

When the synchronous modulator is reset, the integrator value is changed to the

same value as the asynchronous waveform. (If the synchronous modulator is reset

at t = to then Zync(to) = Z,,,ync(to)). This relationship implies that the output for

the two modulators are equivalent if A and B are the same value for both models.

From the diagram it is evident that there is an upper bound for the input value of

the integrator. xmx = A-B. Once an input exceeds this limit, the slope of the

accumulator output will be large enough that the accumulator will be reset at every

input sampling. All values greater than xmax will also result in the same bit stream
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Figure 3-6: Waveform of a clocked synchronous (solid) and asynchronous modulator
(dashed).

pattern, and thus be indistinguishable from one another.

3.3 Data Recovery

Once the oversampled bit stream is created, the original input signal is almost com-

pletely recoverable. This is done using the system seen in figure 3-7.

x[n] high order decimation yAndigital FIR filter

T

Figure 3-7: Diagram of a typical FIR tap filter.

The high band noise from figure 3-4 can be removed by applying a digital lowpass

filter to the target bit stream. To extract higher resolution values for the input the

serial stream must then be decimated down to a lower frequency - gaining back in

resolution what was lost in bandwidth. Typically, the LPF is implemented as an

FIR tap filter. A tap filter consists of a series of latches, multipliers, and adders.

Figure 3-8 contains the schematic for a 4 element tap filter.

The implementation of a single stage in the tap filter is very complex. The multi-
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Figure 3-8: System used to extract data from the oversampled bit stream

plier circuit alone would require more area than can fit within the constraint of a single

pixel. Since this implementation would be prohibitively expensive for a pixel-parallel

processor, other methods for extracting the data were also explored. A recursive

decoding algorithm based on the bit stream structure is presented.

3.3.1 Standard Filtering Techniques

The SNR of the LPF is related to the frequency response of the digital filter. A high

order LPF would have a better noise rejection characteristic than a lower order filter.

Figure 3-9 shows a few of the many possible filters which can be used.

The ideal lowpass filter is one in which the baseband frequency is unaffected and

the higher frequencies are completely attenuated - as seen in figure 3-9(a). Using an

ideal lowpass filter, the signal band noise is found to be

no = erms -f-(2foT) (3.2)

Where no is the rms value for the total noise power in the signal band and 2fo

is the Nyquist sampling rate for the signal. Since 2foT- 1 is the oversampling ratio,

equation 3.2 states that the maximum achievable resolution is 1.5 bits (9 dB) for

every doubling of the oversampling ratio.

The averaging filter, seen in figure 3-9(c), has significantly poorer performance

than the ideal filter and the near-optimal triangle filter. The SNR for the averaging

filter increases its resolution by only 1-bit for every doubling of the oversampling ratio.
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Figure 3-9: Frequency and temporal response for (a) an ideal low pass filter, (b) a
triangular filter, and (c) a time averaging filter.

Figure 3-10 graphically demonstrates the better noise performance of the triangle filter

over the averaging filter.

It can be shown that the triangular filter seen in figure 3-9(b) has an SNR which

increases by 9dB for every doubling of the oversampling ratio. It is near optimal

since its SNR curve, seen in figure 3-10, has the same slope as the SNR curve for the

ideal filter. However, the SNR curve for the triangle filter is a small offset below the

optimal curve which makes its performance slightly worse than the ideal filter's.

3.3.2 Recursive Decoding

Implementing the lowpass filters as FIR systems is not a viable option for the 31)

design. Tap filters require large complex circuits to implement and thus are not area-

efficient. The many bits of output which would have to be passed between layers

also consumes area which could be dedicated to processing circuitry. Consequently,

another approach had to be devised for reconstructing the original inputs from the bit

streams. This was done by taking advantage of the structure of first-order sigma-delta
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modulator outputs.

It has been shown that these bit streams have a unique structure[2]. They are

composed either of a sequences of ones separated by single zeros, or sequences of zeros

separated by single ones. The length of these sequence is determined by the constant

input to the first-order modulator and can have only two values, differing at most

by 1. This sequences of sequences also has a significant structure. If every instance

of the longer sequence is coded with a '1' and shorter sequences are coded with a

'0', another bit stream can be derived which can be proven to be indistinguishable

from the output of a first-order sigma-delta modulator. By recursively applying this

substitution, all finite length bit streams can be reduced to a base case. From this

base case it is possible to recurse back through the levels of substitution to find the

value of the original modulator input[2].

The resulting recursive decoder model is a near optimal method for approximating

the sigma-delta modulator's input signal. The SNR increases by 9dB per octave, 1.5-

bits for every doubling of the oversampling ratio, and the constant offset is smaller

than that of the triangular filter. Figure 3-10 compares the SNR vs. number of

samples for the three methods.

From the plot, it can be seen that the recursive decoder has a better signal-to-

noise ratio than either of the other two methods. To extract an 8 bit value requires 45

samples for the recursive decoder, 64 for the triangular filter, and 256 samples with

the averaging filter. By eliminating the recursive step of the algorithm and simply

averaging the lengths of the sequences, it is possible to generate a value for the input

which is as accurate as that of the triangular FIR. The implementation of such a

design would be smaller than either a triangular tap filter or a recursive decoder, and

still generate near optimal outputs.

3.4 Bit Stream Computation

One goal of the project was to identify interesting methods of computation using the

bit stream encoded values of the pixels. While it would be easiest to demodulate
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Figure 3-10: SNR for the recursive filter, a triangular filter, and the averaging filter

the signals and perform algorithms on the outputs, it would not be as efficient. The

demodulation hardware was found to be complex and so, not in keeping with the

design philosophy. Even using the small recursive decoder, a high resolution digital

output would be generated. To perform computations using these high resolution

values would require conventional digital systems which are typically large and involve

many interconnects.

It would not be feasible to use standard digital models for computation in a high

density parallel architecture like the proposed imager. A better model to follow is one

in which all processing is performed on the bit streams prior to their demodulation. A

series of components were designed which are able to perform functions on these 1-bit

data streams and generate 1-bit outputs. There are components which can perform

addition, subtraction, and storage.
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3.4.1 Bit Stream Subtraction

Using the knowledge of the bit stream structure described in 3.3.2, it is possible to

build small modules which are capable of performing simple functions on the pixel

bit streams. Modules which can perform rudimentary addition and subtraction of bit

streams have been explored. Though their outputs do not permit simple reconstruc-

tion of the input value, these modules can still be used to perform basic tasks.

ab aba c=a-b
sub 1s21 so s1~

b d=b-a c=0 lb c=ab ib c=ab
d=db d=db d=O

Figure 3-11: Block diagram and state machine for a bit stream subtractor

Consider the system in figure 3-11. This finite state machine is able to compute

a value for a - b and b - a, where a and b are sigma-delta encoded bit streams. The

system is essentially composed of two one-bit half-subtractors which have been joined

such that they share a common state, sO. The FSM works by detecting consecutive

unmatched l's in the bit stream. Consider the two signals, a and b as follows.

a= 11101110111011101110

b=10000100001000010000

The value for a is approximately !xmax while the value for b is approximately

}Xmax. These values are exact to within the quantization error afforded by 20 bits of

data. Given these inputs, the estimate of the outputs would be c = a - b = 1Xmax

and d = b - a = -Xmax. If the subtraction circuit was initially in the neutral, sO

state, the outputs would be

c=00101010110011100110

d=00000000000000000000

The first difference, c = a - b, has a time average of 'Xmax and the second

difference, d = b - a has one of zero. The first differs from the estimated value
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by -Xmax and the second is outside the range of the subtractor, as the module is

unable to represent negative results. The information is not completely lost, since

the magnitude of the difference is always encoded in the non-zero output of the

subtractor. Consequently, by OR-ing the outputs together, it is possible to generate

the absolute value of the difference, Ia - bl. The error in c is caused by the choice

of initial state. Had the the initial state been si, the output would have had no

perceivable error between c and the estimated value. When the signals terminated,

the final state of the system was si, so if the input signals, a and b repeated the same

sequence, the time average of c would approach the estimated value of the difference.

The structure c cannot be modeled as the output signal of a first-order sigma-

delta modulator. Consequently, it can not be used as the input to a subtraction unit

unless the other input has the structure of first-order sigma-delta bit stream. This

feature allows for differences to be thresholded against a reference value. Consider

the arrangement in figure 3-12.

pixel 1

sub sub output
pixel 2 reference

Figure 3-12: Localized edge detection unit.

The circuit above behaves like a local edge detector. By finding the difference

between adjacent pixels, an estimation of an image's intensity gradient field can be

determined. An edge can be roughly modeled as those locations in an image where

the gradient field is above some threshold value. Consequently, by subtracting the

reference-a first-order sigma-delta modulation of the threshold-from the magnitude

of the gradient, edges between pixels can be found where the output from the circuit

is non-zero. Once edges have been identified, it is possible to perform higher level

functions such as connectivity and segmentation. Subtraction circuits can also be used

in several other applications. Template matching, for instance, is a prime example of

an algorithm which requires many subtraction operations to generate error signals.
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3.4.2 Bit Stream Addition

Template matching requires not only the use of subtractors, but the use of adders

as well. Figure 3-13 illustrates one potential design for a bit stream adder. The

module is a half-adder which combines two first-order sigma-delta encoded bit streams

and generates a bit stream whose time average is the sum of the inputs. Like the

subtractor, the adder's output is not characteristic of a sigma-delta modulation.

a ab

c=a+b Os

b c=a+b a c=1

Figure 3-13: Block Diagram and State Machine for a bit stream adder

Consider the two inputs, a and b, such that

a=100100100100

b=010001000100

It is apparent that the value of a is jXmax and that b had a value of 'Xmax.

Again, these are only accurate to within the precision which 12 data samples allow.

The expectation for the sum is fXmax. The actual output is

c=110101100110

which has a time averaged value of j7 Xmax. Similar to the subtractor circuit, the

outputs from two adder circuits can not be fed into a third adder; however, it is

possible to build a more complex module which is capable of adding two such inputs.

Its finite state machine is drawn in figure 3-14.

Both the adder and the subtractor can be implemented in a relatively small area.

A subtractor requires only two bits of state and the adder requires one. Both systems

also use a small amount of control logic to determine the next state and the outputs.

One implementation of a template matcher would require one layer of subtractors
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Figure 3-14: Block Diagram and State Machine for a bit stream adder capable of
adding subtractor outputs

to generate the differences between the pixels and the template, and several layers

of configurable adders to calculate the degree of correspondence by adding up the

generated differences.

3.4.3 Bit Stream Storage

Algorithms more complex than template matching often require a storage mechanism

to store a reference value which can be used for later computation or comparison.

Conventional thought dictates that, to store the bit stream, it would first have to be

converted to a digital value and stored using some type of register. The size of the

demodulation hardware has already been found to be complex add to this the com-

plexity of a single 8-bit register and the resulting circuit would be much larger than

an acceptable pixel footprint. Consequently, another method was devised for storing

a unique value corresponding to a bit stream which required neither demodulating

the stream or implementing large registers.

Storage of the bit stream frequency is accomplished by matching the frequency of

a voltage controlled oscillator (VCO) to the input. Once the two signals are matched,

the reference voltage for the VCO is a representation for that frequency. Storage of

this value can be maintained by breaking the feedback loop. Without this connection,

changes to the input cannot affect the stored analog voltage.

Matching the VCO and pixel input values is accomplished using a frequency de-

tector circuit. This is a modification of a phase-frequency detector (PFD) in that it

only attempts to lock the two oscillators in frequency and not in phase. A frequency

detector can be implemented as the simple finite state machine seen in figure 3-16.
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Figure 3-15: The frequency value can be matched by closing the loop (a), and stored
by opening it (b).
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Figure 3-16: State transition digram for a frequency detector

The design is very similar to the bit stream subtractor circuit. The PFD, like the

subtractor, generates a difference signal. Instead of generating the difference between

the bit stream values, it generates the difference between the number of rising edges

of the bit stream input.

The outputs of the frequency detector indicate whether the VCO frequency is

higher, lower, or equal to the input signal. These signals can be used to govern the

behavior of the charge pump. If the frequency detector finds an unmatched edge on

either input, it generates a correction pulse. An unmatched edge is a rising edge on

either of the inputs which does not have a corresponding edge on the other signal.

The correction pulse is sent to the charge pump to initiate a change in frequency.

Figure 3-17 shows the generation of a corrective pulse resulting from an unmatched

edge in the second frequency signal.

The correction signals generated by the frequency detector are interpreted by

the charge pump as control signals. The charge pump alters the reference voltage,

which results in a change in the VCO output signal. The new signal should more

closely match the input frequency. A bit stream is never precisely stored in the design;
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Figure 3-17: The response of the frequency detector to unequal frequencies

however, the stored frequency can be brought arbitrarily close to the target frequency

within the precision allowed by the circuits by leaving the feedback loop closed. So

long as the input value remains constant, the loop will continue to approach the

correct value - an approximation to the input can be made which is sufficient for

most computational requirements.

The speed at which a bit stream can be stored is a combination of two primary

factors. First, frequencies are matched much faster if the reference voltage of the

storage mechanism prior to the start of the target input is already close to the voltage

corresponding to the target input. A storage mechanism with a VCO operating

at 100Hz would lock into a 90Hz signal faster than a storage system with a VCO

operating at 10kHz. The other governing factor on the speed of storage, is the size

of voltage increments generated by the charge pump. For optimal performance these

AV's must be monotonically related to the frequency difference . If there is a large

difference between the stored frequency and the input frequency, the charge pump

should make large increments in the reference voltage to more quickly approach the

input frequency. Once the VCO frequency is within some neighborhood of the input,

the AV changes to the charge pump should decrease in size, as the charge pump

performs more fine-tuning of the reference voltage. As AV approaches zero, the error

in the stored value will also.

Using these three modules, it is possible to implement a variety of simple pixel-

parallel algorithms. An algorithm had to be chosen which exhibited several key

properties. First, it should have a repeating structure such that every pixel performs

the same computations. Second, each of these computational modules must be easily

dividable into several layers with relatively few interconnects between them for effi-
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cient 3D implementation. Finally, the algorithm should be one which could use the

computational modules described above.
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Chapter 4

Activity Detection

An activity detection system is similar to a motion tracking system, in that they both

identify areas of motion in a sequence of images. While a motion tracker will assign a

velocity to every pixel in the image, an activity detector assigns a scalar value to every

pixel. The magnitude of this value is a measure of how "active" the system believes

that pixel to be. By thresholding these values, it is possible to identify areas of the

image which contain active sites. Activity detection has many potential applications.

As a security device, an activity sensor would be able to monitor important areas

and alert security guards when something has been detected. Activity detection

also has the potential to reduce transmission bandwidth and storage space. By only

transmitting sections of the image where activity is occurring, less data would have to

be sent, freeing bandwidth for additional cameras. Or, by only saving images where

activity is occurring, less storage space would be required.

A good activity detection system should have several properties. First, it should

be able to differentiate between the portion of the image that is background and

those that are not. The sections which are not background correspond to the active

region of the image. An activity detection system should also be able to adapt to slow

variations in the background. As the sun moves during the course of the day, shadows

shift and the incident light on the background changes. These slow variations should

not trigger alerts. The ideal system should also be able to compensate for oscillating

pixels. Pixels whose value oscillate between two or three values - a tree blowing in
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the wind, a fluttering flag, and a traffic light are but a few examples that result in

"coscillating pixels." These signals should also be part of the background and not

affect the activity of the system.

One system which meets all of these functional criteria is the multimode adaptive

sensors developed by Stauffer[4]. The model is presented in 4.1. Using this basic

approach for finding activity, a similar system which could be more easily implemented

in small silicon areas, has been developed. The potential circuit has been simulated

using an existing sigma-delta based imager.

4.1 Multimode Activity Detection Model

Current background subtraction techniques are done by learning the background at

some initialization time. These methods suffer if the background changes over time.

A shadow moving during the course of a day would be sufficient to cause a false

positive. This problem could be avoided if an adaptive system were built which could

dynamically adjust to these changes and learn a new background model. A static

representation of the background - even if updated frequently would not be able to

adapt to oscillations in the image. The canonical example of this behavior is a tree

blowing in the wind. In such a case, pixels would oscillate between the value of the leaf

and the object behind it. Stauffer's work attempts to address both of these issues[4].

The model learns multiple modes for each pixel and is capable of dynamically learning

a background, even if there are local oscillations in pixel values.

The design incorporated in this model is an activity detection system which has

components that can be implemented in conventional silicon. The model was chosen

because it contains elements which can be parallelized on a per pixel basis, lending

itself towards implementation in multilayer silicon design. Some modifications were

made to the design to simplify the final implementation.
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4.1.1 Observed Pixel Behavior

Through observations of pixel values of a fixed imager, it was found that the dis-

tribution typically could be modeled as a sum of Gaussian distributions, or a set of

Gaussian distributions in an intensity-probability plane. Such plots can be seen in

figure 4-1. The mean of these distributions represents the actual value of the pixel

and the small variations are caused by small changes in the light, in the imager, or in

a variety of other factors. An oscillating pixel value, such as described in the previous

subsection, manifests itself as a bimodal distribution - which can be modeled as the

sum of two Gaussians. For a leaf on a tree blowing in the wind, one of these Gaussians

would represent the leaf, and the other, the object behind the leaf.
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Figure 4-1: The variation
as a sum of Gaussians.

in a pixel value has a distribution which can be modeled

A Gaussian can be specified using a mean and a standard deviation. Each of

the pixels in the image can have several Gaussian models associated with it. Let

us consider a pixel which has changed its input value. One of the Gaussian models

associated with that pixel begins to learn this new input by establishing a mean and

standard deviation. While the input value remains within some small deviation of the
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mean, the Gaussian model continues to be built, improving the standard deviation

as the constant pixel value is maintained. This adaptive learning behavior is seen in

figure 4-2.

hhndnnc of first mode

time

Figure 4-2: As a signal oscillates between two values, two tracking modes tighten
their bounds on each of the separate signals.

After some amount of time, let the input value change to small oscillations about

a different constant value. To adjust to this new signal, another of the Gaussian

models associated with the target pixel is assigned to learn the new value. Again, it

begins with a wide standard deviation which is refined as more samples are added. If

the input signal then returns to the original value after some time, the first model will

identify that the new level is sufficiently close to its value to be considered a match.

It will then continue to improve its model for the input.

In the above example, the pixel is only active twice. The first instance occurs

when the first value appears initially. The second active session occurs when the

input value changes to the other value. During subsequent input changes, the new

input signal already satisfies one of the pixel's associated Gaussian models. Using

a set of Gaussian models for each pixel input permits the system to be capable of

learning the background Since the models are constantly updating, a slow change

would not cause the system to signal an alert.
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4.1.2 Identifying the Background

One of the key issues associated with this multiple mode approach to background

detection is determining which of the modes corresponds to the background value.

Upon closer examination of the problem, it becomes no longer a question of which

mode represents the background, but which modes occur sufficiently frequently to be

considered regular values for the input. It becomes necessary to create a metric which

can be used to determine whether a mode is a regular value or a transient one.

The properties of the metric are threefold. First, the metric for a mode should be

large if has been present for a long time. This would be indicative of the case where

the pixel input has been constant with little or no variation in the past. Second,

the metric should be greater for those modes with small standard deviations. Such

signals are the ones which not only have been present for sufficient time for a model

to be built, but which also exhibit very little fluctuation in their value. Finally, as

the time since the last appearance of a value that is part of the mode increases, the

metric should decrease. The following subsection proposes a ranking metric which

satisfies all of these properties.

Ranking the Modes

In the example of the oscillating input, no attention was given to the time between

input changes. It was assumed that the switching was sufficiently fast to ensure that

neither of the two Gaussian models had become expired - or in other words, neither

of the modes were so long unused that they were no longer considered valid values for

the pixel. The determination of the age of a particular mode is done by taking the

ratio of a prior probability (7r) and the model's standard deviation (rankm = -).

The prior probability is a weighting assigned to each mode based on its values and

their frequency of appearance over some amount of time. One formula which exhibits

the desired properties is 7Jm[n] = af(n) + (1 - a) - -m[n - 1] where f (n) is a boolean

function which returns 1 if the pixel value at time n fits within the bounds of mode

m and 0 otherwise. a is an experimentally determined constant which represents the
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learning rate of the system.

This ranking system exhibits all of the properties desired for a ranking metric. The

metric for older signals decays over time through the prior probability function. It also

enables older patterns to have equal or greater rank than a new signal which has not

yet been well learned. Background values, which would be expected to have smaller

standard deviations and larger priors, would be given the highest ranks. Transient

signals such as a car driving along a street, would be given smaller ranks by virtue of

having both a small prior and a larger standard deviation.

Replacement Strategy

For a model with n modes, a replacement strategy must be implemented once the

n+1st input value is encountered. The strategy is responsible for deciding which of

the older modes to replace with this new input. Using the ranking system described in

subsection 4.1.2, the choice is made by choosing the mode with the lowest rank. This

guarantees that neither the more recent signals nor those which are present for long

periods of time are replaced. The ranking system ensures that in typical applications,

the background information will not be lost due to input value changes.

42



4.2 Activity Detection Algorithm

A methodology for implementing a system similar to the one developed by Stauffer is

presented in this section. While designing the system, the key points of concern are to

maintain a small physical footprint, and to maximize modularity. A modular design

would enable the system to be more economically built in 3D silicon, by reusing the

same masksets for different layers.

4.2.1 Overview

The multimode tracking system can be segmented into two components, the Gaussian

models and the control logic. To simulate the Gaussian models, there are a set of

memory modules as seen in figure 4-3. These modules are responsible for learning

and storing pixel values. Controlling these modules is the second component, the

control system. This system is responsible for deciding which of the modules should

be tasked to tracking the current input as well as deciding when the pixel input is a

new value.

PixelMeoy 
-A P

Bitstream d- MIm t=c
atv control

Memory ACTIVE

r ------L ac=ive-
-M mry trac

Figure 4-3: Block Diagram of basic multimode background system

The division of the system in this manner allows for maximum benefit from the

3D process. The control system could reside on one layer of the design, lying just

below a pixel. Each of the identical memory modules could then be contained on

layers stacked below that one. By implementing the design in such a fashion, the

complexity could be reduced if all of the memory layers were identical, as seen in

figure 4-4.

There are two major differences between the proposed physical system and the
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Figure 4-4: The multimode system has a high degree of repetition allowing for many
copies of the same layer

software-based system in section 4.1 . The Gaussians model from the software system

are able to adaptively change their standard deviations, and thus reduce the spread,

Af, of frequencies which are covered by a particular mode. The proposed memory

modules are not capable of dynamically changing their bounds, but rather used a

fixed Af to define acceptable values. In the software model, a complex ranking

system was generated to identify the most probable value for a pixel. The robustness

of that design was traded for a simpler replacement strategy. Both a least recently

used (LRU) and a sequential ordering strategy were examined.

4.2.2 The Control Logic

The main purpose of the control logic is to execute a replacement strategy for the

memory modules. Specifically, during input frequency changes, it must decide which,

if any, of the memory elements should be assigned to track the new signal. Optimally,

the element would be one which represents a transient signal, since storing a new value

would necessitate deleting the older one. The replaced module should never be the

one containing the stored background value. There are many ways to decide which

module should be replaced, and two such possibilities were explored.

In the previous work, the selection was accomplished by assigning a ranking to

every mode based on the ratio of its prior probability and its standard deviation. The

pixel which had the lowest ranking was selected as the target for replacement. Such

a strategy behaved very well, however, it could not be feasibly integrated into the

control system since the required circuitry would be too large.
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Two alternate strategies were examined. The first was a standard least recently

used (LRU) system; and the second, a sequential approach. In the LRU method,

the oldest pixel is chosen to track in to the new signal. This model presumes that

signals which have not been encountered for some time were transient signals and are

not likely to reappear; or if they do, they represent activity of some sort. The LRU

strategy thus presumes that the background will always be one of the most recently

encountered signals. In sequential ordering each of the memory elements are ordered

so that whenever a new signal is detected, the next element in line is assigned to track

it.

The LRU strategy consumes less area than the prior probability calculator, but

remains fairly complex. It requires that each element be able to store its age relative

to the other elements and must contain logic to decide which element is oldest. The

smallest possible method for monitoring age would be to use a small analog counter.

Even with this tiny device, two dedicated signals from the control system would have

to be connected to every mode. This implies that the control logic would have to

have prior knowledge of the total number of memory modes. While that may not be

a large problem, routing all of these connections would be. As is stands, the LRU

system would perform well, but would have a high cost both in terms of area and

design inflexibility.

The sequential ordering approach has the benefit of a small footprint implementa-

tion. It could be implemented as a circular shift register with a single latch on every

layer. Of the many latches, no more than one would contain the active signal. To

activate the next element, the control logic need only shift the registers. The current

memory mode would then receive an inactive signal. The memory module on the

subsequent layer would then begin to track the input. This design limits the per

layer implementation to a single latch and the interconnect requirement to three sig-

nals - the shift value, the shift enable signal, and the return signal from the bottom

layer to the top. A sequentially ordered replacement strategy would allow for the

same control logic to control an arbitrary number of memory modules. The design

complexity is greatly reduced using this model, but only at the cost of performance.
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Figure 4-5: A multilayer circular shift register

Of the two proposed methods, the LRU system has a slightly better performance

overall. Performance of a replacement strategy is a measure of the rate at which the

background is not chosen to be replaced. The LRU system would only replace the

background value during periods of heightened activity. The sequential system would

replace the background value once every n changes in pixel value, where n is the

number of modes in the system. For applications where high activity is expected, or

when false positives from background values are acceptable, the sequential strategy

would be the better choice. LRU should only be chosen when low activity, high-

efficiency is needed.

4.2.3 The Memory Module

The memory module is the core element of the design. It is this system which is

responsible for learning and storing a representation of the current pixel value. The

module also incorporates a monitoring system to determine whether the new input

signal is different from the stored value. The design of the module incorporates

several analog components in place of conventional digital elements because of space

constraints. The tight integration of digital and analog designs results in a compact

system which meets the design criteria of both performance and size.

The diagram in figure 4-6 depicts the basic memory module. The system is com-

posed of a frequency locking loop and an activity monitoring/filtering portion. The

frequency locking mechanism is identical to the one described in 3.4.3 with the ad-

dition of a monitoring system into the feedback loop. The monitor system tracks
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Figure 4-6: Block Diagram of basic multimode background system

the error signals from the PFD and indicates when the input value is different from

the stored value. This information is conveyed to the control logic. If this module is

assigned to track the input, it is the monitor system which generates the correction

pulses to the storage system's charge pump.

Monitoring the Frequency Loop

The purpose of the monitor component is to report changes in the pixel input and

decide if the charge pump should alter the reference frequency. Rather than simply

watch the charge pump correction signal and decide whether the input is changing,

the monitor is placed within the loop to be able to prevent a new signal from altering

the reference voltage too quickly. As a loop filter, the monitor behaves much like a

low-pass system. If the pixel value does not match the VCO value, the monitor signals

the control logic. The correction signal for tracking the new pixel value is only allowed

to pass through if the module's enable signal is activated by the control logic. If the

pixel input is within the specified Af of the VCO frequency, the correction signals are

issued to the charge pump to better match the VCO and the input frequency. This

allows the input signal to slowly drift during the course of a day without triggering

an alert. Such behavior would include the motion of the sun, or a candle burning in

the night.

The monitor is composed of three edge counters, two 2-bit counters, one 5-bit

counter and a simple compare logic unit. Each of the two 2-bit counters are connected
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to the outputs of the frequency detector. The third counter is used to measure either

the number of pixel edges or edges of a fixed reference oscillator. The implications

for this connection choice are discussed later in this subsection. Figure 4-7 illustrates

this circuitry.

loal
osciltor 5-bit edge counter atvSactive

Pixel 2-bit edg counter P --am bl
Pixel l-0gic enable

Bostream Frequency 2-bit edge counter

Figure 4-7: Diagram of a memory module's monitoring subsystem

The implementation of the edge counters would be as analog counters. The use of

analog counters is possible only because their outputs are used for comparisons and

not computation. As illustrated in Figure 4-8, an analog counter represents an im-

mense savings in size over its digital counterpart. The footprint of the analog counter

is small, compared to the size of the many gates and latches needed to implement the

digital counterpart.

digital output

input si7 0 - - . - - - - .- h.L --

input

(a) analog output

Figure 4-8: Implementation of an analog counter (a) and a digital counter (b).

The monitor is able to determine activity by counting the edges on the frequency

detector outputs as well as on the pixel input bit stream or fixed oscillator. Whenever

there are two or more unmatched pulses the compare logic checks the distance between

them. If this distance is less than some threshold (61) - that is to say, if unmatched

pulses are too close together, the new input is considered to be active. Alternatively,

if there have been more than some threshold (62) number of input edges, then the
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VCO is considered to be sufficiently close to the input frequency. Once either of these

criteria have been satisfied, the counters are reset and the process begins again. The

use of two different threshold values creates a buffer region at the edge of activity and

inactivity which behaves much like the hysteresis of a Schmitt-Trigger.

-- pixel value + d 2

pixel value pixel value + d

- pixel value - d2

pixel value - d I

Figure 4-9: By using the correct thresholds, a Schmidt-trigger style hysteresis can be
obtained.

The diagram in figure 4-9 illustrates the boundaries defined by the two thresholds,

Ji and 62. For the VCO signal to be considered adequately matched to the input

frequency, it must be within - of the target frequency. The VCO will remain locked
62

to the input until its frequency difference is greater than . A useful hysteresis is

only accomplished if 62 > 61.

The third edge counter is used to establish the measurement for the time between

unmatched pulses. There are two possibilities for measuring the time. The first is

to use a fixed global oscillator. This method requires an added clock distribution

network across the layers; however, it provides a uniform measure of time for all of

the modes. An alternative is to use the input bit stream edges as the basis for the

counter. Using this input method, the number of interconnecting vias is reduced, but

it imposes a non-uniform frequency matching constraint for the frequency-lock loop.

Measuring the distance between unmatched pulses using the pixel wavelengths

produces a measure of the frequency difference relative to the input frequency. This

measure is not as accurate as an absolute temporal measurement. Higher frequency

signals have larger acceptance bandwidths than for lower frequency signals using

the wavelength measurement while a temporal measurement has a uniform width

acceptance band; however, to enable the time measurement, a global clock would

49



have to be available. Though only one such oscillator would be needed for the entire

chip, it would require additional interconnect between all of the layers to distribute

the clock signal. By altering the frequency of the clock signal, it is possible to reduce

the size of the 5-bit counter to one or two bits of resolution.

acceptance region acceptance region

pixel frequency pixel frequency

(a) (b)

Figure 4-10: A proportional 6f system (a) would have less accuracy at higher fre-
quencies than a fixed 6f system (b).

The distance between unmatched pulses is directly related to the frequency dif-

ference of two oscillators. Consider the two signals shown in figure 4-11. The first

signal has a slightly higher frequency than the second signal. The frequency of the un-

matched pulses, f 3, would be the difference of the two input frequencies, f3 = f 2-f 1.

The larger the difference between the target frequencies, the smaller the distance be-

tween unmatched pulses. A measure of this distance is actually the wavelength of the

f3 signal.

fl n n _ n n n n __j

Q2_n n n n n n n rLJ

Figure 4-11: Two unmatched frequencies (fl and f2) and the resulting sequence of
unmatched edge detections (f3).

The distance between unmatched edges can also be used to generate a better

guess for charge pump behavior than a simple increase/decrease option. When the

distance between the unmatched pulses is low, the difference between the two signals
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is relatively high; if the distance is high, then the difference is small. Using this

knowledge, is it possible to build a faster tracking frequency loop. The improvement

is accomplished by using a graded charge pump. A graded charge pump is a system

which allows the output voltage be incremented by one more than one 6v. If the pixel

bit stream is known to vary greatly from the VCO frequency, the reference voltage can

be incremented by a large step. And when the distance between unmatched pulses is

large, a smaller step size can be used to adjust the reference voltage.
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Chapter 5

Results and Analysis

The activity detection system which has been described in chapter 4 was simulated in

software. The system was designed to run on two separate processors. Initial devel-

opment was targeted for a dual 40Mhz DSP system which was used in a development

environment to simulate and test candidate 3D architectures. The DSPs used were

two TI TMS320C40 processors mounted on a White Mountain Slalom-40TM develop-

ment card. A faster processing system was required to simulate the full array of pixels

in real time. Consequently, the simulation was rewritten for a faster Pentium-based

PC.

Bit stream values were created using a small test imager. A MOSIS test imager

was fabricated containing an array of photodiodes and sigma-delta modulators. The

imager was housed in a camera system which controlled the sampling speed for the

modulators, and the output. Once a predefined buffer is filled, the data is uploaded

to the processing platform. There, the parallel architecture is simulated on a serial

processor while simultaneously decimating the bit streams to generate a displayable

image.

5.1 Experimental Setup

To test the functionality of the physical model, a simple two dimensional version of

the basic imager was implemented in a 0.5 pm MOSIS process. This camera contains
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an array of photodiodes that are each coupled to a current controlled oscillator. The

output from the chip is the bit stream data for every pixel in the array. Test chips

have been fabricated with 48x48 and 64x64 pixel arrays.

The test chip is controlled by a camera system which is responsible for maintaining

the bias voltages, monitoring the power consumption of the device, and controlling

the sampling speed of the pixel oscillators. Data gathered by the test system is sent

to the simulation testbed in one of two methods. The first is a high-speed 32 bit

interface that provides data to the Slalom-40 DSP card housed within a PC. The

second method for uploading data is a standard IEEE 1284 parallel port which is

used to interface to a PC without the DSP card.

test Parr Port 400 MHz
camera Pentium II

system interface boardJ c ....... DSP board Based System

Figure 5-1: Experimental data was gathered using the test system and then collected
in the PC.

A DSP-based development card was used for initial system simulations. It served

as an initial testbed for the simuation. Once the algorithms were working reliably

on that system, they were ported to a C++ Microsoft Windows98 based application

which was independent of the DSP card. With the test system and a portable com-

puter, the simulation could be moved to observe different surroundings and monitor

the behavior of the camera under various lighting conditions and traffic patterns.

To capture an image, the test system first samples each pixel at a uniform rate to

generate the sigma-delta bit stream. The data is temporarily stored in local memory

until a predetermined number of samples has been reached. Once the sampling is

complete, the data is then transmitted to the simulation system. A high-speed custom

parallel port interface was used to provide high bandwidth communication to the

DSP system. This 32-bit wide interface could transfer data at a maximum rate of

20 Mbytes / second. To transfer data to the PC, the test system used the standard

IEEE 1184 ECP parallel port interface. The theoretical maximum throughput of this
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interface is 2 MBytes / second. Due to the interface format, the performance was

slightly less than this maximum.

5.2 Simulation Results

Figure 5-2 contains the reaction of a single pixel to an oscillating input. The pixel has

two memory modules which are shown in the graph. The top row of graphs shows

the input value to the pixel. It oscillates between two constant input values of -7

and -41. Generation of the test patterns is accomplished by integrating this input

using an 8-bit integrator and returning the overflow bit. These constants correspond

to sigma-delta modulator inputs of -Xmax and -j-Xmax, respectively. The second

row of graphs contains the reference voltages of the VCO in each of the two separate

modes. The third row of graphs are the tracking signals from the control logic to the

target modes. A value of '1' indicates that the mode should be tracking the signal, a

value of '0' indicates that the memory value should be held constant.

mode 0 input value
0

-20-

-40

4000

-50

-100

-150
0 1000 2000 3000 4000

mode 0 tracking
1.5

0.5

0

-0.5'
0 1000 2000 3000 4000

mode 1 input value
0

-20

-40-

-601
0 1000 2000 3000 400

mode 1 VCO value

-2

-4

-6

0 1000 2000 3000 400
mode 1 tracking

1.5

0.5

0----

0 1000 2000 3000

Figure 5-2: Behavior of a single pixel's multimode system in response
oscillating input.

to a bimodal

In the figure, there is a clear relationship between the changes in input and the
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changes in the control logic outputs. Mode 0 has "learned" the frequency of the -41

signal and Mode 1 has "learned" the input of the -7 signal. As the input oscillates

between these two values, the control logic is able to identify the mode whose input

is closest to the input value. The control logic is also able to identify when the target

pixel is active. Figure 5-3 displays the initial outputs from the control logic. The

top signal is the active output from the logic, the second and fourth are the VCO

reference values, and the third and fifth are the tracking signals associated with the

two modes.
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Figure 5-3: A closer look at the initial stages of the behavior of a single pixel's
multimode system in response to a bimodal oscillating input.

The plot shows a period of activity only when the simulation was started. A

non-zero value for the activity indicates that the pixel is active. The appearance of

the second input value did not trigger the activity detection system. The difference

between the second mode and the second frequency was sufficiently low for the two

signals to be considered well-matched. As the fourth plot shows, during the duration

of the second input, the value of the VCO was slowly improving its estimate of the

input frequency. This is characteristic of the system's ability to continue tracking

a signal even after it has locked into the initial frequency. This ability would allow
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the system to track, without triggering activity signals, slow varying signals, such as

those caused by the lighting changes during the day.

The behavior of the tracking algorithm after initialization of the first input signal

shows a rapid change in the stored value of the zeroth mode. The change is a result

of the graded charge pump discussed in section 4.2.3. The time required to reach a

locked frequency was much faster than if a non-graded charge pump had been used.

In the latter case, over 500 sample points would have been required to achieve lock.

The graded charge pump was able to lock in 176 samples.

By replicating several copies of the pixel modules simulated above, it was possible

to simulate the behavior of a full system of processing elements. The images in

figure 5-4 taken with the 64x64 imager show the result of such a simulation. The

image on the left represents the systems interpretation of the background. This is

what the simulation expects to be seen by the imager. The central image is the

current view from the imager. The highlighted regions designate the areas of activity

detected by the simulation. Some local grouping has been done in an attempt to

identify regions of activity rather than single pixels. The grouping was done using

a 2-step dilation process followed by a 3-step contraction process. The dilation and

contraction were done using a standard '+' template design. Consequently, the areas

of activity exhibit diagonal edges rather than straight or jagged ones. The third

image is the difference between the intensities of the first two images. The difference

has been thresholded and the output displayed. The regions of white are those areas

where the foreground and the background differ by more than the threshold and the

black sections represent areas where the two intensities are relatively close.

A human figure in the image has been identified as different from the background.

It is a clearly discernible form in the central picture. Once the human entered the

frame, the system detected the change and initiated a storage of the file. The identi-

fication began when fewer than 24 samples from the bit stream had been processed.

Due to the nature of the detection mechanism, activity is not uniformly detected.

The dark portion of the human's jacket was identified first. The frequency represent-

ing that section of the outfit differed greatly from the background. Subsequently, the
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Figure 5-4: The activity detection system at work. (a) the background of the system.
(b) the highlighted areas of activity, and (c) the thresholded difference between the
background and the active regions.

distance between unmatched edges was very small and detection occurred rapidly.

The light color of the target's shirt was not as distinguishable as the jacket. Com-

pared to the light background, the white shirt did not represent a very large frequency

difference. The result was a slower identification of activity in that area.

The activity detection system was also tested over the course of several hours.

From 6pm one evening to 10am the next morning, the simulation ran with the imager

overlooking a section of the lab. During those 16 hours, the simulation saved images

whenever the number of active pixels exceeded a set number. Figure 5-5 contains the

64 images which were taken and the times at which they were taken. If the system

had been configured to automatically store all of the images during the test - much

like a VCR-based security camera, the data set would have contained 7,680 images.

This larger data set would have required 120 times more storage space. The activity

detection system has distilled the data to only those images when there was significant

action.

Images 1-A through 1-E are caused by the appearance of a person in the center

or the image. His presence was sufficient to trigger an activity alert. The number

of pixels remained relatively high after the intruder left because the system had not

gained a very good model for the background before the person appeared. Conse-

quently, a few more frames of data were needed for the simulated pixels to tighten
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Figure 5-5: A series of images taken over a 15 hour interval. These images were
recorded when the system detected a high level of activity in the system.
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their frequency loops and designate all of the pixels as inactive.

Images 1-G through 2-H highlight the movement of a member of the lab's evening

cleaning staff. She, like several others in the images, is very blurry. She can be seen in

image 2-B. The blurriness is due to the speed of the test camera system. The imager

gathers images by integrating the input over time - in this case, about 2 seconds. An

object will appear clearly only if it is stationary for the full integration time.

Images 3-A through 3-F contain the faint trace of a person walking in front of the

camera. Unfortunately, they were walking so quickly that the imager was not able to

get a clear picture of them. At 7:58 pm, a person can be seen looking into the office.

At 8:06 another figure appeared in front of the office door and remained there for two

minutes. No significant activity was logged until 10:06pm. At that time, the far door

was opened - note the black area in image 4-E. In the next image, 4-F, the light

in that office is turned on. This caused a significant lighting change in the image.

Consequently, the next several images were stored while the system adapted to this

new background. No notable activity was detected for several hours after that. The

images in row 7 show the return of the occupant of the office opening the door and

leaving it ajar. Row 8 contains the blurs of people walking in front of the camera.

The majority of the images capture periods of easily recognizable activity. The

remainder either contained blurred images of moving persons, or were caused by

subtle, but sufficiently large, lighting changes. There is no way to determine how

much activity was missed because no log was taken on a constant basis. Notably

absent are any images which correspond to dawn. The slow increase in light from the

rising sun did not cause the system to detect any activity.

5.3 Future Work

This work remains a theoretical possibility until it is actually implemented in silicon

and its functionality tested. An obvious application of this activity detector would

be in the field of security monitoring. A sensor which could identify movements and

alert a security guard would result in more of the guard's attention being focused
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on active regions. Additionally, an activity detector could greatly reduce the storage

cost for recording a scene - needing only to capture frames when there is motion.

This same concept could be beneficial in a situation where bandwidth is limited. A

wireless camera, for instance, may only be able to transmit 1 Mbyte per second on its

wireless connection. The maximum imager size which can transmit 24-bit colors at

30fps along this connection without compression would be 105x105 pixels. For many

applications, this resolution is not sufficient. A much higher resolution imager could

be used if the data transmitted were filtered to contain only sections of important,

active, regions.

Extending the work beyond the base level of identifying active pixels, requires

higher level systems which have a more globalized sense of the overall image. The

software program may be able to identify neighboring active pixels as portions of

the same object and group them together. Similarly, it may be able to reject global

changes in intensity caused by a cloud passing in front of the sun, or a dimming of

lights, etc.

Further research could attempt to simulate higher level features as opposed to just

finding differences relative to the background. One such application would attempt to

learn the standard traffic flow in a scene. Envision a security camera which monitors

a park adjacent to a busy intersection. Over time, a database could be created which

tabulates average activity levels in a region of the image. Using the software to group

together pixels, an understanding of typical sizes of moving objects in any section can

be constructed, as well as an ability to link such movements to times of day, and of the

week. A good database would learn that large objects tend to move along the street

areas in straight lines, human sized objects can be seen moving randomly in the park,

or perpendicularly across the street. By linking these movements to times, the system

could learn that during rush hour there is more traffic in the streets, and more people

in the park on afternoons and weekends and none at night. Such a system would then

be able to not only select out those images when there is activity, but only images

when there is abnormal behavior - a car driving through the park, or several people in

the park at night. This would have to be a larger processor-based operation by virtue
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of its basic requirements for storage and global awareness. The exploration of various

3D architectures will continue to expand and unveil new methods for computation

and new approaches for building circuits.
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Appendix A

Implementation Notes for the

Activity Detection System

The multimode simulation was written using a combination of C and assembly level

code. The software was compiled and run on a TMS320C40 located on a White-

MountainTM DSP Slalom-40 development card. Compilation was done using TI's

v5.1 compiler/linker/assembler for the C40. GoDSP's Code Composer package was

used for development and debug. The main loop of the program has 5 basic steps.

The first step collects a single value of the input bitstream for every pixel. In the

second step, these bitstream values are used to update the frequency detector and

their associated output counters. The VCO's are then polled in the third step to

establish their outputs. A rising edge on the VCO output would cause a state change

in the frequency detector. In the fourth step, the counter for the input edges is

updated. Finally, in the fifth step, the image is extracted from the various modules.

1> while(TRUE) {

2> updateCamerao;

3> for(i=O;i<CAMERA_SAMPLES;i++) {

4> get-one-frameof -data();

5> update.frequency-detectorso;

6> for(j=O;j<VCtRESOLUTION;j++) {
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7> updateVCOvalueso;

8> updateifrequency-detectorso;

9> }

10> update-pixel-edge-counto;

11> display-imageo;

12> }

13> }

Encoding the mode states. For this example, consider a 4x4 imager. Each

pixel will have one memory mode associated with it. Each of these 16 modes requires

2 bits of frequency detector state, 4 bits for the two detector output counters, 2 bits

for the activity flag, 2 bits for a VCO output flag, 2 bits to remember the previous

input value, 2 bits for the current input and two words to represent the VCO state.

To efficiently use the memory of the processor, the states of all 16 modes are packed

into a single 32 bit word, state. Similarly, the up output counters are all packed into

the word, up-sum and the down counter into down-sum. The activity flags are packed

into activity; the VCO flags into VCOf lags; the new input vlaues into newInputs;

and the old input values into oldInputs. Thus, to extract the nth modes status, one

would simply multiply each of these words by 0x3 >> 2n.

Updating the input data The only important event which comes from the input

bitstream is the creation of a rising edge. If such an edge is detected, the frequency

detector state should be updated and, possibly, the up output counter should be

incremented. Detecting these edges is a matter of running this code:

risingEdges = (oldInputs ^ newInputs) & newInputs;

the 32 bit word risingEdges can then be used to update the value for up-sum with

the expression:

up-sum = up-sum & (state & Oxaaaaaaaa) >> 1 & risingEdges I

up-sum & Oxaaaaaaaa I
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up-sum ^ (state & Oxaaaaaaaa) >> 1 & risingEdges I

((up-sum & Oxaaaaaaaa) >> 1 )& up-sum;

This line of code increments a modes's up counter if both the frequency detector

is in the 11 state and there was a rising edge on the pixel bitstream. The two bits

representing the up counter sum of any of a mode will, if incremented, move from 00

-3 01 -+ 10 -+ 11. Once it reaches 11, it will remain there, and will not change until

the pixel is reset.

The frequency detector state can be updated by

state = risingEdges & 0x55555555 I

risingEdges & state & 0x55555555) << 1 1

state

A rising edge on the input will cause the state to move from 00 -+ 01 -4 11. A

rising edge on the pixel input can only cause these state changes. Once the state

reaches 11, further rising edges on the pixel input will not change the state.

Voltage Controlled Oscillator Each mode requires a counter to implement

the VCO. The current implementation uses a 32-bit int, but its full range is never

used. Each mode also has an adjustable reference value. The call to the function

updateiVC0-values() on line 7 increments the counter by one for each mode in the

model. If the counter value exceeds the reference value, the counter is reset and the

associated VCOf lag is toggled. If the flag is to set for the n'h pixel, it would be done

using this code:

if(currMode->VCOcounter ++ > currMode->VCOreferece) {

VCOflags J= Ox3 << 2*n;

}

Once all of the VCOflags have been updated, the frequency detector has its state

updated and, if neccessary, down-sum integrator values are incremented. Both of

these functions are accomplished using this code:
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downsum = downsum & ~state & VCOflags & 0x55555555 << 1 1

downsum & Oxaaaaaaaa I

(~state & VCOflags & 0x55555555) ^ downsum I

((downsum & Oxaaaaaaaa) >> 1) & downsum;

state = ~VCOf lags & state I

VCOflags & ((state & Oxaaaaaaaa) >> 1);

VCOflags = 0; /* reset the flags */

Any two bits in down-sum will, if incremented, move from 00 - 01 -+ 10 -+ 11.

Once the sum reaches 11, it will not increase or decrease until the next pixel reset.

The two bits of state for any mode in the system will move transition from 11 -+ 01

- 00 if the VCOflag was set.

The number of times that the VCO is updated for every bit of the input bitstream

is determined by the variable, VCO-RESOLUTION, which is defined by the user.

The larger VCO-RESOLUTION is , the better the fidelity of the frequency control

available to the VCO. Currently, this variable is set to 10.

updating the pixel edge count Finally, update-pixel-edge-count is called. This

function will count the number of rising edges on the pixel bitstream. Only one

counter is required for each pixel. If the count exceeds a reference value, a series of

pixel updates are called. These updates will update the activity flag for each mode,

determine which mode should be tracking the input, update the reference value of

the tracking mode, and then reset the pixel's counters.

for(i=0;i<NUM_PIXELS;i++) {

if(currPixel->active)

pixMax = ACTIVETHRESH

else

pixMax = INACTIVETHRESH
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if(currPixel->inputEdgeCounter++ > pixMax) {

update-active(currPixel);

update-tracking(currPixel);

updatereference-voltages(currPixel);

reset-pixel(currPixel);

}

currPixel++;

}

Note first that there are two pixelCount threshholds. By having a larger thresh-

hold for active pixels, it guarantees that once a pixel is marked inactive, the frequency

is sufficiently close to the input that the pixel will not be incorrectly become active

again. The current values for these are 16 and 8.

update-active() updates the active flag for every mode of every pixel. Again, the

flags for the 16 modes are stored in a 32 bit word, active. Activity is determined by

this code:

active &=

active I=

~(currPixel->mask); /* clear the old flag */

( (currPixel->mask) &

( (~active &

((down-sum I up-sum) & ALL_5s) &

(((down-sum I up-sum) & ALLAs) >> 1))

( active &

((((down-sum I up-sum ) & ALL.As) >> 1) I

((down-sum I up-sum) & ALL_5s) ) )));

The above code follows the diagram in figure A-1.

updateTracking follows the diagram in figure A-2.

update-reference-voltages() will, for the tracking mode of every pixel, change the

VCO reference value according to the up-sum or down-sum value. The larger the

value of up-sum or down-sum the greater the magnitude of the adjustment. These

magnitudes are chosen by the user. The current values can be seen in table A.
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Active? down > I e

Tyes : no

up =0 yes mark
down = 0 inactive

no

mark
active

Figure A-1: Flow chart for activity detection

TAany inac ve y are any of those nn set a random one

oden yesaki to track

set oldest one done
to track

Figure A-2: Flow chart to update tracking information

up value down value offset magnitude

3 3 2 * VCORESOLUTION

2 2 VCORESOLUTION

1 1 1

0 0 0

Table A: reference value adjustment values

reset-pixel() sets the values of all the integrators of a pixel (the input edge counter,

and the up and down counters for every mode) to zero.
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