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Abstract

With mobile computing devices and services becoming more prevalent, the need
is growing for mechanisms in a network that allow higher-level service interaction.
Network-layer connectivity is not sufficient for devices to discover and understand
relevant services in their vicinity; for example, simply being connected to the net-
work does not allow a device to find the least-loaded printer or locate the nearest
web camera. Several projects and systems related to the problem of service discov-
ery are underway, including Sun's Jini, Berkeley's Service Discovery System, and the
Intentional Naming System (INS) being developed at MIT LCS.

In the Intentional Naming System, scalability limitations arise when trying to
scale beyond the scope of a single local organization. This comes mainly from the
assumption, also made by its counterparts, that a server is able to know about all
services in the world, and it is furthermore necessitated by the lack of scalability-
related structure in its names. To alleviate this problem, we present changes to the
Intentional Naming System, specifically the notion of partitioning the namespace
to group services into autonomous virtual space communities. These virtual spaces
facilitate the use of INS both in the context of larger organizations and across multiple
administrative domains by reducing name advertisement costs and eliminating inter-
domain cooperation requirements. They also preserve the characteristics that make
INS work well in the local area. We look at the design issues beneath the changes
and evaluate the suitability of the additions to the Intentional Naming System.

Thesis Supervisor: Hari Balakrishnan
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Motivation

As the cost of computing power and bandwidth drop and portable computers and

hand-held devices become more pervasive in everyday life, one of the key challenges

is connecting them to interact intelligently. It is rapidly becoming possible to embed

computers in every sort of appliance and device. But when that happens, will the

resulting pieces be able to communicate with each other? As networks become more

dynamic and contain increasingly many mobile or wireless components, the hope is

that these devices and services will seamlessly interact with each other, which will

ultimately benefit the end-users.

Simply placing a wire or radio between two components, or even implementing a

traditional network stack is not enough to enable this functionality. Although network

protocols such as TCP/IP [19, 26] and DNS [16] allow different entities to transfer

data streams and to look up low-level network addresses, they do not provide higher-

level functionality to allow users and applications to understand the capabilities of

networked devices and services and interact with them.

The traditional solution to this problem is to require manual configuration to

place the additional necessary knowledge in the system. A user needs to install a

printer driver on his personal computer; a "universal" remote control needs to be

told what type of television the person owns. As long as nothing changes and there
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are only a few devices to configure, this manual approach, although inconvenient,

accomplishes the task. Adding many more devices to the system or making frequent

changes, however, increases the administrative burden of the system to the point that

it rapidly becomes unmanageable.

This is particularly an issue in mobile computing systems, where the available

resources change frequently. Someone with a Personal Digital Assistant (PDA) may

want to use the printer and scanner at the office and the stereo and television at home.

As the "networked toaster" becomes economically feasible, the person may wish to

control that from the PDA as well. Other devices may be added to the environment,

while some may be unusable or already used by somebody else. Clearly, simply

being able to exchange network packets will not provide this level of connectivity.

How can the service providers and consumers be matched, particularly when both

may frequently change? Ideally, there should be a higher-level abstraction that helps

discover and use these resources effectively.

Many have recently approached this general problem of service discovery in a

network. The realization is that adding a level of indirection for service discovery can

greatly enhance the ability of different services to find and interact with each other.

Various systems have been built to this end. By providing mechanisms for devices

to describe themselves and their communication streams, tasks such as "printing to

the least-loaded color printer" or "finding all the web cameras on the fifth floor" can

enabled and made much more tractable.

While this layer of functionality can be powerful, every system represents various

fundamental tradeoffs. For example, flexibility of a system is often at odds with speed

or scalability. Faster device updates and reduction in manual configuration consumes

more bandwidth. The key in any system is to match these tradeoff choices with the

requirements of the underlying project.
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1.2 The Intentional Naming System

One particular service discovery solution is the Intentional Naming System [1], which

allows services to describe and refer to each other using name which are intentional.

These names describe a set of properties that the services should have rather than

specify a low-level network location. The idea is to allow applications to refer to what

service they want rather than where in the network topology the service resides [24].

As an example, one may want to send a message to a web camera in room 504 of

the LCS building. Without a service discovery layer, the application would have to

know the DNS address of the camera, which might reflect the location somehow, but

very well might not. Here are some examples of DNS names:

camera504. ics .mit . edu

504. cameras. ics .mit . edu

camera.504.floor5 .lcs .mit .edu

randomname . ics .mit . edu

18.31.0.51

These DNS names are difficult to guess at best, and this hard-coding makes it dif-

ficult to add and remove names from the system. DNS update times are not intended

to be rapid [16], which makes this difficult for frequently changing environments. Fur-

thermore, multiple cameras could be added to the room, and it might be desirable

use all of them, or perhaps route a message to all the cameras of the given floor. DNS

names carry little semantic information; they only denote a set of IP addresses.

Intentional names, and specifically name-specifiers, the designation for names in

the INS language, provide a more flexible, more general approach to do this. Name-

specifiers use hierarchical attribute-value pairs to describe a service. For example, a

message intended for all the color cameras on the fifth floor could be addressed to the

following name-specifier:

[service=camera] [location=f loor5 [room=*]] [type=color]
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Any attribute in this name may be left unspecified or set as a wild-card, if, for

example, the user does not care about the camera's resolution or exact room number.

The name schema is completely controlled by the applications rather than being

rigidly defined in advance, which allows an application with any set of attributes to

join the system. Furthermore, application-specific metrics may be supplied to convey

additional information, such as which printer is the least loaded or which camera's

view is "best."

INS uses the principle of soft-state[5, 20], whereby periodic messages with ex-

piration times and event-driven triggered updates are used to keep the information

up-to-date. Individual services include themselves in the system by periodically ad-

vertising their descriptions. Applications using the system are able to learn about

and use the cameras that happen to be operating at any time. This soft-state model,

which is radically different from the transactional guarantees of a traditional database,

works well in a distributed service discovery system that may have many unreliable

components. Soft-state relaxes the requirement to do rigid locking or guaranteed re-

liable replication between different portions of the network, since the information will

shortly either be refreshed or expire. We take this soft-state service model, which is

normative in Internet routing, and adapt it for service discovery. The main advan-

tages are that it treats failure as a normal case and allows robust healing from losses

or outages that might be encountered in an unreliable network.

The Intentional Naming System itself consists of three main components: clients

using the system, such as services and applications; Intentional Name Resolvers

(INRs), which resolve all the requests for the clients; and Domain Space Resolvers

(DSRs), which are a boot-strapping mechanism for finding Intention Name Resolvers.

The core of INS is a network of Intentional Name Resolvers, which interpret

the name-specifiers. Figure 1-1 illustrates this architecture. The INRs collect the

advertisements from services and create a database from this to provide the necessary

functionality to applications. They are deployed as Java-implemented middleware

over regular networks and designed to be easily usable by a Client API. They organize

themselves into a spanning tree, which is used to disseminate name advertisements
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Discovery

User INR
A pps IN R

Early-binding

Figure 1-1: INS makes it possible for applications to discover and use services through
its INR network. There are three main functions provided by the INRs: (a) discov-
ery, where the application asks an INR for names of matching services (b) late
binding, where messages may be passed through the INRs to the best or all the
matching services (c) early binding, where the application requests the address of
a described service and then communicates directly with it.

and forward multicast announcements efficiently [2]. To enable applications, the

relevant functions include:

" Discovery, to allow applications to view and browse the available services, fil-

tered by an Intentional Name query.

" Late binding, which allows messages to be forwarded to a service or set of

services using an name-specifier as the address. Late-binding messages may

be sent via anycast, to the "best" matching service, or via multicast, to every

applicable service. This feature integrates name resolution and routing, which

are traditionally separate network functions, to provide a more rapidly updated

message-passing function.

" Early binding, which is much like a traditional lookup service. It allows appli-

cations to find the address for a service described by an Intentional Name and

to contact the service directly.

The late-binding feature is particularly powerful, since it allows a message to be

forwarded to a service or set of services, including arbitrary multicast groups, on the

basis of a high-level description. In dynamic systems where the set of services may
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change over the course of minutes, it prevents the stale information problem-no

address information needs to be cached and the correct set of recipients always gets

the message.

The Intentional Naming System provides a number of operations that allow ser-

vices to describe themselves and to find services which they need. The network of

Intentional Name Resolvers provide the described discovery, late-binding, and early-

binding functionality to services and end applications of the system. The discovery

operation provides the ability to search and find the names of services based on a

filter. The late-binding feature, which passes messages to destinations as described

by an intentional name, consists of two modes, anycast and multicast. Anycast mode

causes the message to be sent to the service matching the intentional name that is

ranked as "best." Multicast mode causes the message to be sent to every service

matching an intentional name query. Early binding allows applications to connect

directly with a specific instantiation of a service once it is found. Overall, INS pro-

vides an integrated mechanism that saves application writers from needing to reinvent

approaches to the distributed service discovery problem.

Furthermore, evidence of the vitality of this problem domain can be found in

looking at the diversity of systems trying to solve similar problems-Sun's Jini [14],

the IETF Service Location Protocol [18, 12], Microsoft's Universal Plug and Play [27],

and Berkeley's Service Discovery System [7] are a few. Clearly, there are a number

of significant issues and tradeoffs to encounter in engineering any such system. The

existence of tradeoffs and active problems brings us to reevaluate some aspects of the

Intentional Naming System more closely.

1.3 Contributions

From the experience of developing and using the Intentional Naming System, we

encountered various limits to the original version. The major area for study was

scalability to enable INS to work better with greater numbers of devices. The contri-

butions of this thesis can be divided primarily into local-area scalability and scalability

13



in the wide area.

1.3.1 Scalability

Scalability in INS becomes an issue as large numbers of services enter the system.

INS assumes that the Intentional Name Resolvers know all the services they should

ever need to route to. In other words, some type of "global knowledge" is assumed.

While this is not a bad assumption in a system designed for a single local organization

and other service discovery projects also make this assumption, it cannot be made in

a system that will span many organizations.

This global knowledge assumption is necessitated by other areas of INS that make

the system difficult to distribute. Namely, applications can define their own schemas,

and INS allows partial matches based on any arbitrary subset of attributes. The idea

of global knowledge is fairly widespread in other service discovery systems [14, 18, 27,

7] as well.

Certain factors make the global knowledge assumption expensive. The most signif-

icant problem is advertising costs; services need to advertise themselves periodically

to an INR server, and all the INRs need to share their knowledge of existing services

periodically. Propagating names among INRs uses a significant amount of bandwidth

and processing power, and is especially wasteful for services that are seldom needed

in a given area. As an example, if people in the Laboratory for Computer Science

and Artificial Intelligence Lab need to use each other's services only occasionally, it

is a waste of bandwidth to synchronize all the service information between both sites

continuously.

In addition, the resolver's internal data structure, the name-tree, which is used to

store and retrieve the name-specifiers, works well with thousands of names, but its

ability to operate efficiently starts to diminish with tens of thousands of names. The

former scale is more than enough for a typical organization, but it would be inefficient

to store names for every service on the Internet.

We address this scalability concern is to partition the namespace of the system

into many virtual spaces, or vspaces. A virtual space is an autonomous community
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of services that have characteristics in common and may frequently interact with

each other. The vspaces are intended to correspond to "natural" divisions of the

world that might not otherwise be captured by a system that indexes everything in

the world by location or service type. For example, there may be a virtual space

for a given lab or floor of a building, or for all the printers in an area. Intentional

Name Resolvers still need to know all the services in a virtual space which they

host, but requests for another virtual space can be forwarded to another INR, thus

relaxing the "global knowledge" assumption and in effect creating application-defined

partitioning. The usability cost of this mechanism is requiring a vspace entry in the

names for communication between virtual spaces, but there are discovery mechanisms

to locate the proper virtual space.

This thesis discusses the design and implementation of the virtual space mech-

anism, and it evaluates the result. This approach is also compared with other ap-

proaches, taking into account scalability, functionality, and usability.

1.3.2 Wide-area operation

Another problem is allowing the system to work across administrative domains well.

The Intentional Naming System allows sets of INRs to form in various domains,

producing many self-contained INS enclaves. However, the original implementation

does not allow these communities to be loosely linked, that is, to connect without

keeping all their data synchronized. This is difficult to require when the domains are

managed by entirely different parties with potentially conflicting goals.

This thesis presents a way to use virtual spaces for operating in the wide area and

spanning administrative domains. The idea is to create a component called a Domain

Space Resolver (DSR), which is responsible for tracking which virtual spaces exist in

its domain and which INRs contain hosting information about these vspaces. This

information is kept updated by listening to periodic messages from each of the local

INRs. The idea is to use the DSR component to help enable communication between

virtual spaces in different administrative domains in a manner nearly as simple as

within the same domain.

15



Other Administrative
Domains

Figure 1-2: The Intentional Naming System consists of INRs to respond to services
and applications as well as Domain Space Resolvers (DSR), which track all the INRs
and the virtual spaces in a domain. DSRs are key for inter-domain operation.

The DSR, as illustrated with the INS architecture in Figure 1-2, helps with both

inter-domain connectivity local-area bootstrapping. For working between domains, it

allows wide-area applications to query for an INR which supports vspaces in another

domain. In the local area, it provides the ability for applications to find an appropriate

INR without resorting to a broadcast-style approach.

Furthermore, in a mobile environment which might contain services from different

domains, we present a means which allows clients to see a coherent picture of what

is available. One of the issues in this area is trying to solve too many or too few

problems-this thesis presents a workable solution that is evaluated and may also be

augmented in the future.

1.4 Outline

The focus of this thesis is on scaling the Intentional Naming System. This includes

both improving the scalability inside an administrative domain and being able to

operate between administrative domains. While we have developed and implemented

thesis ideas in the Intentional Naming System, they are generally applicable to other

systems as well.

In the next chapter, we discuss the design of the virtual space mechanism and

of the architecture for the supporting system. This includes a look at the goals and

tradeoffs, as well as how it solves many of the problems.
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In Chapter 3, we discuss operation in the wide area in more detail. This includes

looking at the different criteria for inter-domain operation and prescribing a manner

for dealing with it in INS.

In Chapter 4, we examine the implementation of the changes to the system. In

Chapter 5, we give a quantitative and qualitative evaluation of the virtual space

mechanism's effectiveness in the Intentional Naming System. Finally, in Chapter 6,

we proceed to a conclusion of the work.
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Chapter 2

Virtual Spaces

Observing the limits of the Intentional Naming System as the number of services,

users, and administrative domains increase, we present the design goals and architec-

ture for a scalability mechanism. The result is a partitioning mechanism, known as

the virtual space, or vspace. This chapter presents the basic design for virtual spaces

within a single administrative domain; Chapter 3 presents additional goals and design

for using virtual spaces in the wide area.

Virtual spaces are introduced to solve a number of problems discussed in Chap-

ter 1. We strive to reduce the volume of periodic advertisements needed to maintain

state in the system, since this becomes excessive as the system grows to encompass

greater areas. Similarly, we want to reduce the amount of state that needs to be

kept in any part of the system by better distributing it, which reduces memory re-

quirements and increase performance. In addition, it would be helpful to be able

to isolate disjoint parts of the namespace, partly to avoid namespace pollution but

also to provide a unit of granularity for load balancing and distributing sets of names

among servers, preferably in an application-defined manner.

2.1 Design Criteria

There are a number of relevant goals for creating a scalability mechanism for a service

discovery system like the Intentional Naming System.

18



Figure 2-1: INRs in the system need to keep the sum of their state synchronized and
replicated by periodically advertisements. The amount of state in the system and
the number of places where all this state is stored both grow as as increasingly many
services and INRs enter the system. This O(n 2 ) total stored-state growth needs to
be addressed in scaling INS.

1. Scalability

(a) Minimize advertisement traffic: A big factor in the cost of INS as

more services are added to the system is the overhead from periodic adver-

tisements. Each service must advertise itself to an INR server, and each

INR must advertise the services it knows about to its neighboring INRs.

These messages are mandated by the soft-state [5, 20] service model which

allows the system to recover from losses and outages robustly. Any way to

minimize these advertisement costs without compromising the soft-state

service model is a large gain. This growth in advertised state is illustrated

in Figure 2-1.

(b) Scale the data structures: The name-tree data structure used in the

INR servers is quite suitable in intra-domain deployment when even thou-

sands of services exist. But, like any other data structure, as the require-

ments for the number of names to store goes beyond the intended scale,

its performance diminishes. There are two possible directions for moving

the structure to inter-domain and large intra-domain work: making the

existing name-tree more scalable or using more, but smaller, name-trees.

2. Functionality
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(a) Usability: INS should not become much more difficult to use, particularly

with the small-sized deployments that are currently common, because of

the addition of the scalability mechanism. The overall quality of service

should not be compromised.

(b) Enable load-balancing: The system should be robust as more servers are

added to handle increased load. It should use this scalability mechanism to

help distribute requests and advertisements. In addition, resources should

be intelligently managed.

3. Simplicity

(a) Minimal changes to system concepts, applications: In scaling the

Intentional Naming System, care needs to be taken to avoid compromising

concepts and assumptions which are fundamental to its operation. INS

is an existing project that meets its local-area design goals well; it would

be a mistake to compromise those original goals in a newer version of the

system.

(b) Low overhead: The implemented mechanism should not consume exces-

sive resources, whether that is bandwidth, processing power, or memory.

There should not be a significant "scalability penalty" or other obstacle to

deter people from using a version of INS with the scalability mechanism.

4. Robustness

(a) Enhance fault-tolerance: One of the features of the Intentional Nam-

ing System and its soft-state advertisement model is that portions of the

system can fail or become disabled without the whole being drastically

affected. Routinely, INRs and services can be stopped and restarted with-

out worry for the stability of the system. This fault-tolerance should be

maintained as the scalability is improved.

(b) Minimize configuration: From the start, INS has held the goal of near-

zero configuration; for example, devices should be able to enter and exit

20



All 7

[service=printer][vspace=floor5], Floor 5 Floor 8 Printers [service=camera]

[service=printer] [vspace=alIprinters] [vspace=floor8]

Different Virtual Spaces

Figure 2-2: Services in virtual spaces. Rather than all services existing in a single
"global" realm, they are part of smaller, more autonomous realms, or virtual spaces.
Services may be in any number of these vspaces.

a room and use the local services without having to enter configuration

information. This configuration should be minimized whenever possible,

particularly in end-applications.

2.2 Design of Virtual Spaces

The idea behind the design is to partition the names of the system into autonomous

virtual spaces. In their representation, the new name-specifiers have have an addi-

tional vspace attribute and matching value, designating which virtual space the name

is in. Since the INS name-specifier language already consists of matching attributes

and values, this fits cleanly into the existing syntax. When there is no vspace tag in

a query, there are rules in the client API for sending to the default for the local area.

Thus, a sample name-specifier query for a printer on the floor that is written with

or without the accompanying vspace tag:

[service=printer][location=floor5[room=*]]

[service=printer][location=floor5[room=*]][vspace=lcsl

Inside the scope of the lcs virtual space, both name-specifiers are the same. Out-

side the locality, such as to a device in the AILab vspace, the service may still be

available, but the name needs the proper vspace tag.

Furthermore, there is no restriction to how many virtual spaces a single service

may advertise itself to, and thus join. In the simplest case, each service is only a
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AI

Figure 2-3: Virtual space INS architecture. Each INR "hosts" a set of vspaces and
periodically keeps its contents updated with other INRs that host the same vspaces.
The vspaces are A, B, and C. The arrows represent the spanning tree network that
each virtual space maintains.

member of one vspace. But, with overlapping vspaces, there is no artificial restriction

against that, as shown in Figure 2-2. An example of this could be the printer service

advertising itself both to a floor5 vspace and an allprinters virtual space.

Inside the system, each Intentional Name Resolver may "host" any number of

these virtual spaces, and a given vspace may be hosted by any number of INRs.

By "hosting a virtual space," an INR joins the vspace's advertisement network and

keeps updated information about all the services in the virtual space (Figure 2-3).

An Intentional Name Resolver assumes it has authoritative information about all the

services in the vspaces which it hosts. This is the equivalent to taking a large database

and splitting it into a number of smaller databases that are replicated on different

machines. The key here is that the partitions are application-defined and make sense

to the applications. Any requests for a service in a locally-hosted virtual space can

then be processed by the INR and returned.

If an INR receives a request for a service in a virtual space it does not host, the

request is forwarded to an INR in the proper vspace. This forwarding information

is provided by a unit known as the Domain Space Resolver, which manages all the

virtual spaces in an administrative domain, and this information is cached. Since

every INR does not need to know about every virtual space, advertising bandwidth

between INR nodes can be made much lower.

The robustness of the soft-state service advertisement model is still present but

22



... S D Service looking

for an INR
"A,,"BC" hosting vspace D

ABCC,

Figure 2-4: DSR interaction: INRs periodically announce the virtual spaces they host,
with an expiration time. Services and INRs may look up and cache that information.

contained within the virtual space mechanism. Since the INR can host an arbitrary

number of virtual spaces, the amount of authoritative knowledge that is assumed, and

thus the local name advertisement costs and lookup load, can be suitably adjusted

to help scale the system.

All the virtual space information in an area, with a list of known virtual spaces

and INRs which host them, is maintained by the Domain Space Resolver. In the

local area, the DSR primarily solves the bootstrapping problem of finding which

INRs host a specific virtual space. While one could use a broadcast mechanism to get

this information, that approach assumes the existence of a broadcast medium and is

not particularly bandwidth efficient. The DSR is a server that employs a soft-state

mechanism to maintain vspace-to-INR mappings; it gets this information from INRs

that periodically announce to the DSR which virtual spaces they host. Clients may

cache the data they request from the DSR, for the duration of their expiration time.

The cost of this mechanism is low, and it allows INRs and services to find out which

INRs host a given vspace.

This revives another connectivity issue-since no periodic name advertisement

messages are sent between different virtual spaces, there are no major periodic costs

for allowing their connectivity. This bridges connectivity where it may not have been

practical due to advertising bandwidth with the original INS system. If, for example,

two neighboring labs have services which they do not mind sharing, but they do not

want to waste bandwidth keeping all their information synchronized, the virtual space

mechanism allows them to do this.
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2.2.1 Unions of virtual spaces

Emphasis so far has been mostly on reducing name advertisement costs by partitioning

the namespace to enhance performance. From the standpoint of usability, however,

it can be convenient to create larger virtual spaces that act as unions of other virtual

spaces. This is similar, in the situation of email lists, to having mailing lists for each

floor of an building and then also having an encompassing mailing list consists of all

the floors of the building.

There are two ways to approach this type of problem in INS, where there might

be different "floor" vspaces and an entire "building" vspace:

1. Each service advertises itself to both the floor and the building virtual spaces.

2. Services advertise themselves to the floor virtual space, and the floors advertise

themselves as being part of the master building virtual space.

Approach 1 effectively doubles the advertisement overhead required for the service

and might require extra administrative effort to get the services to advertise to both.

This is an inelegant means of aggregation, but it is more efficient if there are many

accesses to the entire building virtual space. It is similar to creating an index in a

database-there is additional overhead to maintain it, but it may be beneficial if it is

frequently used. It is straightforward to do this in INS with the virtual space design

thus far.

It then becomes interesting to add a provision in the virtual space mechanism

design that follows Approach 2, which might better match the situations of some

applications. There may be some larger virtual spaces that are not heavily used

but are convenient to have. Or, a virtual space may grow so large that it would be

helpful to divide it into sub-virtual spaces to reduce advertisement messages but to

also make it viewable as a single unit. To accomplish this, we extend the virtual

space mechanism to include the notion of aggregate virtual spaces, which are unions

of a number of child vspaces.

The design goals for these aggregate vspaces should be similar to the model for

standard vspaces:
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Figure 2-5: An illustration of aggregate virtual spaces. The top-level ics vspace is
an aggregate vspace, defined as the union of all the names in child vspaces floor5
and floor6. Likewise, floor5 and floor6 are both aggregate vspaces with a set of
child vspaces. A service that advertises itself in the 504 vspace is then automatically
recognized as also being in floor5 and ics without any additional advertisements, but
at a cost of extra query time.

* Their names should not be any different from those of standard virtual spaces,

since INS ordinarily imposes no rigid restrictions in naming vspaces. Thus,

aggregate vspaces should be able to look exactly like regular vspaces to the end

user.

* In every area of application functionality, aggregate virtual spaces should work

just as if all the contained services had been manually added into the larger vs-

pace. Queries should be done on the basis of the services in the whole aggregate

set, particularly with operations like anycast that single out one element-they

should use the single best match of all the child vspaces, rather than the best

match in every child vspace.

e The mechanism in which INRs periodically advertise their virtual spaces with

the DSR should be largely unaltered with the advent of aggregate vspaces.

We now examine a design for implementing the concept of aggregate virtual spaces.

The idea is illustrated in Figure 2-5, whereby top-level vspaces can be defined as the

union of all the names in several child vspaces. To describe this design, we first look at

the additional state that must be kept in an INR to support aggregate vspaces. Then,

we examine how this state must be interpreted to support the different operations in

an INR properly for aggregate vspaces. Also, we make arrangements in the design
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for the system to work with remotely-hosted vspaces across the network.

Fortunately, the design can be made simpler by leveraging on existing features of

INS to do some of the book-keeping. The two extra pieces of information that an

INR needs is whether a given virtual space is an aggregate vspace, and, if it is, what

the names of the child vspaces are. This child vspace data must be kept consistent

across the network, since many INRs can host the same virtual space.

To keep an aggregate vspace's children consistent across the network, we take

advantage of the fact that INS's namespace is designed to stay roughly consistent

across a network. Thus, we can store an aggregate vspace's child vspace names as

"pseudo-services" in its name-tree.

To illustrate how the names of the aggregate vspace's children are stored, we

present an example. Suppose there is an ics virtual space which is in fact an aggregate

vspace made up of floor5, floor6, floor7, and so on. Under this design, all the virtual

spaces listed, including ics and the individual floors, would first be constructed as

normal, but applications only join their respective floor virtual spaces. That is,

the fifth floor services join floor5 (or perhaps the room vspaces, such as 504), the

sixth floor services join floor6, and so on. The aggregate ics vspace is then built to

represent the services on all these floors. As far as the data structures go, this means

tagging the vspace as type aggregate and then adding the child vspace names as as

specially-interpreted "services" in lcs's name-tree:

[child=floorl] [service=vspace] [vspace=lcs]

[child=floor2] [service=vspace] [vspace=lcs]

[child=floor9] [service=vspace] [vspace=lcs]

The rest of the design requires changes in the code to properly interpret the ag-

gregate virtual spaces. The main functions that need to be modified are late binding,

including anycast and multicast forwarding; early binding; and discovery.

Multicast forwarding is straightforward-a request sent to the aggregate vspace

just needs to be forwarded to each of the children. Anycast forwarding requires doing
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the match among all the child vspaces and then looking at which, over the entire

aggregate set, has the best application metric. Discovery and early binding both take

an approach where a query is sent to each child virtual space's name-tree, and then

the results are accumulated and returned.

Aggregate virtual spaces also work when an INR does not locally host all the child

virtual spaces. In this case, the INR hosting the aggregate vspace must generate a

request to send to the INRs hosting the non-local child vspaces. Once the children's

results come back, the total may be returned to the original caller. Unfortunately,

aggregating non-local virtual spaces incurs a performance penalty, which is quanti-

fied in Chapter 5. However, it may be a reasonable choice when a larger vspace is

not heavily used, at least compared to the advertisement bandwidth that would be

required to maintain it.

2.2.2 Usability Features

Besides the aggregate virtual space mechanism which helps view sets of smaller vs-

paces as a single coherent unit, other virtual space usability features are needed in

the design. This includes the ideas of default virtual spaces, a discovery mechanism,

and location beacons.

For the most part, messages are intended to be generally sent inside a single virtual

space. For example, within the Laboratory of Computer Science, it is likely that most

service requests will be for services in the building. This is particularly true in small

and ad-hoc environments, where there may not be a large number of relevant vspaces.

To address this situation, we develop the the notion of a default virtual space. This

helps follow the reasonable assumption that applications only dealing with a single

local region should not need to deal with more complicated machinery.

A means for discovering the available virtual spaces is present in the design for

an application to discover the names of local vspaces. The Domain Space Resolver,

which "owns" all an area's virtual spaces, may be queried for which vspaces it knows

about. This allows applications to view the virtual spaces which are available and

even to browse them, particularly with the aggregate vspace hierarchy.
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Additionally, a location beacon system [4] is being developed for use in INS which

will be able to broadcast the name of a virtual space containing local services. This

is type of approach is useful for mobile devices-the vspace information is in effect

beamed to them and they may then join the virtual space and interact with services

that are available.

2.3 Suitability of the Design

For this design, we proceed to investigate the use of virtual spaces in certain situations

and to show how the mechanism meets the required criteria. The focus is on how

vspaces scale the existing INS system better inside an administrative domain, since

Chapter 3 looks in detail about specifically wide-area operation. In addition, we con-

sider load balancing, and we finally look at why the virtual space mechanism is better

than its possible alternatives. Actual experimental results of an implementation of

this design are in Chapter 5.

2.3.1 Scalability in an administrative domain

The virtual space scheme delivers on the goal of minimizing advertisement traffic

(Goal 1a) by partitioning the namespace into manageable subsets. Given a monolithic

namespace of size N in a system of M INRs that could be divided into k roughly evenly

divided namespaces of approximately size ak, many possibilities arise for reducing the

required update bandwidth.

As a first-order indicator, we look at the amount of maintained knowledge in the

system. If all M INRs continue to host all k vspaces, there can be no reduction

in advertisement bandwidth, since there is the same amount of knowledge to be

maintained by the system. If, however, the INRs are perfectly divided between the

virtual spaces such that ! INRs each host one of k vspaces, the knowledge maintainedk

by the system decreases by a factor of k2 from M - N to *. This maintained

knowledge can be compared with the actual non-redundant knowledge in the system,

which is N, but the multiplier drops as more vspaces are introduced.
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Mesh Topology Minimum Spanning Tree Topology

Figure 2-6: The maximally and minimally possible topologies for a connected adver-
tisement network among a set of INRs. When not all of the INRs need to host all
vspaces, the necessary advertisement bandwidth drops.

The effect of reducing this maintained knowledge depends on how the topology is

structured. Each INR advertises all its names to all its neighbors at the beginning

of each refresh period, so a less efficient network topology with a greater number of

neighbors for its relative size will benefit more from the knowledge reduction. To

illustrate this, we look at a full mesh topology, where every node in the network is

considered a neighbor, and a minimum spanning tree topology [6], where a network of

M nodes has M - 1 connections. These topologies, shown in Figure 2-6, represent the

maximal and minimal ways to connect the INRs, and between them is some tradeoff

between bandwidth consumption and fault-tolerance.

A mesh topology with M nodes each having M -1 neighbors has (M-1)m two-way

links, which translates into (M - l)M one-way communications of the set of names.

If there are N names in the system, this becomes N -(M - 1)M names sent per refresh

cycle. Perfectly dividing these names among k vspaces and the INRs into k separate

networks of M nodes yields a total of (:H - 1): connections each transmitting }

names. This is a total of k - ( . (m - 1) {) names per refresh cycle. When reduced

to N(M-k)M, this indeed is an O(k 2 ) improvement on average.

With a more efficient spanning tree topology, which newer portions of the INS

code approximate [2], the bandwidth use still improves. Such a system has only

2(M - 1) unidirectional links. In the undivided monolithic case, there are 2N(M - 1)

names transmitted per refresh cycle, which is an order improvement over the mesh2 mrvmn vrtems
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architecture, leaving less inefficiency to optimize away with the vspaces. But, if the

namespace is perfectly divided into k vspaces and the INRs are similarly divided into

k networks of M nodes, each of the k subnetworks will send 2N(! - 1) names per

refresh cycle, or 2N(M -1) total names per refresh cycle. The namespace partitioning

thus produces an O(k) factor improvement in name advertisement traffic.

Partitioning also helps scale the name-tree structures, Goal 1b. Since each virtual

space hosted on an INR has its own name-tree, they can be kept smaller, on the order

of N rather than N names with k vspaces, regardless of how many name-trees areK

hosted on an INR.

The key to doing this partitioning while maintaining the usability and functional-

ity of the system (Goal 2a) is that the partitions are designed to be along "natural"

high-level divisions which exist in larger organizations, such as departments or floors

or lab groups. In smaller scale and with ad-hoc use of the system, the virtual spaces

can be ignored altogether in favor of a single default virtual space. As the system

grows larger, this mechanism provides a way to shape the namespace along the natural

boundaries of the organization, while improving the scalability.

This virtual space mechanism, along the same lines, makes minimal changes to

the existing system (Goal 3a). The new name-specifiers look the same and simply

leverage one optional vspace attribute to go outside of the default scope. The routing

infrastructure and the main internal data structures, such as the name-tree, remain

very similar with some changes to support many lightweight virtual spaces on the

same INR.

The cost of maintaining these virtual spaces is low as well, satisfying Goal 3b.

Periodic announcements to the DSR of the list of virtual spaces that an INR sup-

ports are lightweight and less frequent than the name announcements. The DSR

announcements are particularly compact realizing that they in some sense represent

all the names in their partition. Also related to virtual space overhead is the cost of

maintaining an separate self-organizing overlay network for each virtual space, but

the specifics of this are within the scope of another thesis [2]. As implementation

optimizations inside the INR, there are no additional threads per virtual space, and
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the memory footprint of adding many virtual spaces is small.

We also observe that the system with virtual spaces satisfies the Goal 4, robust-

ness. Rather than being one large network of Intentional Name Resolvers and one

large namespace, it has been replaced with a greater number of smaller, more ag-

ile, more decoupled components. This can improve fault-tolerance (Goal 4a), since

this modularity shields vspaces from each other and makes it harder for one wildly

misbehaving component to have catastrophic effects on the entire system. It also

requires less responsibility for each component of the system, reducing the chance for

error. But, one concern about partitioning is that there may be fewer INRs servicing

a given set of names. This may be alleviated by not under-replicating the system and

ensuring that enough servers cover each vspace to maintain good fault tolerance.

In addition, the configuration complexity in the virtual space mechanism are kept

small to satisfy Goal 4b. The use of a default local virtual space is used to prevent

needing any other configuration information in a small environment. In addition,

virtual spaces in a specific administrative domain can be completely discovered and

in effect browsed, minimizing the amount of "hard state" configuration information

in the system. The servers need to be configured with the virtual spaces which they

host, but this information can be dynamically adjusted to move the system toward

the optimum.

2.3.2 Load balancing

Since services are organized into similar, self-interacting collections, this makes an

ideal unit for load balancing. This level of granularity is large enough to be managed

individually by the INS system yet not excessively large that the addition of one

will throw the unit off. We present this section as a design rather than a completed

implementation, since core areas such as local scalability and wide-area support took

precedence over other factors like vspace-level load-balancing and security.

Typically, the system may be out of tune for two reasons:

* Excessive lookups: The lookup load on the server is too high. Adding servers
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with the replicated information fixes this situation.

* Excessive advertisements: The servers are overly replicated, and the soft-

state advertisement bandwidth required to maintain this replication is too great.

Removing a server would aid this problem.

Both the advertisement bandwidth and the number of lookups to the server are

easy metrics to obtain. When an exponentially weighted moving average (EWMA)

of the lookup traffic passes a determined threshold, the INR can know that it is

being over-utilized. Likewise, when the advertisement bandwidth is consistently low

in relation to the lookup traffic, it has a good idea that its presence may be not

needed.

When this information is known at the INRs, messages can be sent to the DSR

to request activity. The DSR policy manager can then analyze the request. If the

INR sends a dropout-req message stating that it is under-utilized for its advertising

bandwidth, the DSR responds stating whether it should drop out or not. In the same

manner, when an INR sends a replicate-req message stating that it is over-utilized,

the DSR can have a better idea whether or not the additional INR is necessary. With

this information, the virtual space may be hosted on another INR with its permission,

or another INR may be spawned.

The advantage of the virtual space design is that it allows virtual spaces to be

moved around without losing data in the process. If an INR used to support a

virtual space but does so no longer, the inter-vspace mechanism simply routes it to

an INR, returned from the DSR, which really does host the virtual space. Likewise,

the presence of new INRs supporting a virtual space in time is propagated to through

the system, more evenly balancing the load.

2.3.3 Alternatives Approaches

The benefits of this basic vspace approach are clear in that it provides the ability to

reduce name advertisement bandwidth by partitioning overly large namespaces and

the ability to bridge previously unconnected sets of services. There is a question,

32



though, about whether the choice in mechanism is appropriate and how it compares

to other alternatives.

The main drawback of our approach is that the namespace is in fact partitioned.

Some of the original elegance is gone when there is another unit in the system to

discover and specify. In some respects, it would be ideal to have a globally scalable

version of the original INS system where matches are done using any number of

properties against all the accessible INS services in the world.

Compression

Some have proposed systems that do try to keep a global namespace using compres-

sion. In general, compression will give some amount improvement, but only to a

point which is generally not far enough. In addition, it has the potential to make the

system more fragile or more brittle.

One design that uses compression is the Service Discovery Service (SDS) from

U.C. Berkeley [7]. Their optimizing technique is to use Bloom filters [3] to produce

a lossy aggregation of data. In this lossy aggregation, there may be a false positive,

but not a false negative. First, they run a message digest or hash function on the

name. To enable partial matches, they take many snapshots of the same name, and

they employ some tricks to greatly reduce the combinatoric explosion involved when

partial-matching among many attributes. Then, they use a Bloom filter to take the

hash values of all the names in the system and collapse them into a large fixed-length

field, by using the hash values to set specific combinations of bits. One can later

tell from that field if a given name could have been in the system by checking if the

appropriate combination of bits is set. Here, there is a fundamental tradeoff between

this fixed-field length and the portion of false positives. Names in the form of these

Bloom fixed-length fields are propagated and aggregated along a global tree structure,

which reduces the amount of advertisement bandwidth required to maintain the global

service namespace.

While this is an interesting approach and its design calls for a globally search-

able namespace, it has many important limitations. First, though the Bloom filters
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do reduce the magnitude of bandwidth and storage required for the system, they

only allow the system to scale to some point. This may in fact be sufficient for the

local-area scaling and optimization problem, but it becomes inadequate for wide area

mechanisms, as discussed in the next chapter. Once the gain of 10-100 is used up,

such that ten or a hundred organizations can all share services, the process of scaling

the system again stalls.

Similarly, the false hit rate, though it can be decreased by allocating more repre-

sentation space, in such a system is generally on the order of 1-2% [9],which is not

insignificant. Just a few services with name collisions, particularly when they are

opposite branches of the global tree, are enough to require a significant amount of

unnecessary traversal every time a service lookup is needed.

Furthermore, the service model under such a system is not as robust as that in

INS. While the system state gets periodically refreshed, names cannot be prematurely

unregistered from the system before the next refresh time. The application metric,

an important component in INS, is normally propagated among INRs in addition to

the names; it is not possible to get this without possibly traversing the entire global

server tree in this architecture.

In general, there are many problems in approaches that do not use any part of the

name for scalability. The part that makes this difficult is the need to make partial-

matches-if one wanted a system for which the problem was reduced to matching a

full string, one could take a hash function of the string, have an arbitrary number

N servers, and send the request to the (hash mod N)"h computer. But with the

requirement to match on any partial number of attributes, there can be little to

deduce from the query to help route it, at least without additional constraints.

Otherwise, when the problem grows to an increasingly larger area, one would

have to store data and generate some potentially very long results for queries such as

[country=us [state=ma]] (all the resources in Massachusetts), [service=printer]

(all the printers in the world), or simply [service=*] (every service in the world). It

is absurd that a general discovery system should be required to generate a response

for those queries, and perhaps more so that the user would have wanted such a broad
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response. For the most part, when [service=printer] is requested, one only cares

about looking in the local scope. Generally, when something of wider scope is desired,

the user will have some extra higher-level knowledge to help locate it.

Adding structure

To proceed, then, some structure needs to be added to the name in order for a naming

system like INS to scale. The idea of taking INS's relatively free-form model of com-

pletely application-defined names and expecting to use them for a global namespace

without any tweaking is clearly untenable.

Observing some scalable naming systems, such as the Domain Name System [16]

and X.500 [21], it becomes apparent that their namespaces are carefully structured.

DNS names are completely hierarchical, where each part of the name is a step closer

to finding the response in what is a large distributed database. The X.500 directory

system provides a namespace for attribute lookup, but it is scalable by making the

schema more rigid. Portions of the namespace are then delegated along the lines of

this rigid schema. For example, country and organization are attributes used to get

through most of the namespace.

It might then be easy to require that every intentional name have the organization,

location, or perhaps a DNS name. However, there are many potential boundary cases

which may not necessarily fit a rigid, predefined model of the world. The Intentional

Naming System team wished to avoid unnecessarily forcing a global hierarchy on the

namespace in advance.

2.4 Summary

Instead of partitioning on the basis of any predetermined attributes, our design calls

for application-defined partitioning of the namespace. An attribute in name-specifiers,

now known as the vspace, is used to specify that partition. It can be keyed off any

convenient unit, whether that is in fact a location or organization, or if it might be a

building floor or set of lab groups who frequently interact. It is more workable than

35



any "global INS" solution could be, yet the changes are minimal and flexible enough

that the system can be both scalable and usable.

Looking at the original problems, we find that the virtual space approach provides

a feasible solution. Virtual spaces provide a means for reducing periodic advertise-

ment bandwidth by allowing the namespace to be partitioned into manageable pieces.

By the same token, the amount of state needed to be kept in the system can be re-

duced, both by putting the names into different virtual spaces and by optimizing the

number of INRs that need to replicate each of these sets of names. Furthermore, this

mechanism provides isolation for portions of the namespace when desired, to avoid

namespace pollution and to aid in server load balancing.
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Chapter 3

Virtual Spaces for the Wide Area

By wide-area operation, we refer to working in situations that involve multiple admin-

istrative domains, or sets of devices under common administrative control. Since we

operate in the context of the Internet, we treat administrative domains as nearly syn-

onymous with domains in DNS; for example, mit. edu, cnn. com, and cs .berkeley. edu

are domains.

As the problem of service discovery grows to encompass multiple administrative

domains, more complexities arise. There can be no central location that knows about

or controls every vspace, since there may be large numbers of vspaces that may be

owned by different entities with potentially conflicting goals. The delegation must be

completed: the basic virtual space scheme in Chapter 2 transforms the problem of

"global knowledge of services" in the INRs to "global knowledge of virtual spaces"

in the DSRs; the global knowledge requirements need to be removed altogether and

the virtual space system needs to be fully distributed. We endeavor to ensure that

the virtual space scheme can work in the wide area, to ensure that services and

applications from many independent administrative domains are able to interact.

3.1 Criteria for Wide-Area Operation

In setting goals for wide-area operation in INS, we first look at the problems. The

main problem is being able to describe and find every object in the world in a way
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that is concise, meaningful, and scalable. It may be possible to give an exhaustive

list of all the properties of an entity, yet such an approach is not concise and it may

be intractable to build a scalable system that uses this approach. This scalability is

particularly difficult if partial matches are allowed and there is no attribute that is

a priori designated as a "primary key" (which is impossible to choose perfectly in a

global system). Every entity in the world could be tagged with a large number, which

may be concise and perhaps scalable. But, these descriptions are not meaningful

semantically, as it would likely be difficult to "find the printer next to entity 1234567"

in such a system.

Thus, it is important to note that we cannot attempt to solve every wide-area

problem. The focus of our design and goals is to allow INS communities to be bridged,

rather than to provide a one-stop solution by which every service in the world may

be discovered by a partial set of attributes alone. The original goal in INS of having

completely free-form, application-defined schemas and allowing partial matches on

any set of attributes, simply cannot scale from the local to the wide area without

extra assumptions.

So, just as the previous chapter scales the system with the assumption that the

vspace attribute has a special meaning, it should be acceptable to further interpret

the virtual space name. In areas where the design does not solve every problem, it

should be acceptable that some extra information may be embedded in the name, or

perhaps come from an external search engine, for expediency.

Thus, the goals for working among various administrative domains are as follows:

1. Connectivity anywhere: A major goal of our work is to enable increasingly

larger groups to communicate. The overarching goal of wide-area operation

should be to enable connectivity and some type of discovery with any publicly

available service in the world.

2. Minimize need for explicit cooperation: Members of administrative do-

mains should not need to agree in advance to be able to exchange packets. A

requirement like this is the equivalent of needing to reinvent the IP routing
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layer, where ISPs need to make individual peering agreements with each other,

for service discovery. Explicit cooperation requirements between administrative

domains should be avoided whenever possible.

3. Minimal changes to local-area operation: Services should not need to be

fundamentally altered in order to be used in another administrative domain.

In many ways, operation in the wide area should be transparent to services,

though the underlying discovery process will be different.

4. Implementable solution: Categorizing everything in the whole world is a diffi-

cult problem that seems intractable. Something lightweight and implementable

that works across administrative domains, particularly if it can be incrementally

improved, is much preferable to a grand solution that is too slow to be usable.

5. Integrate with location-dependent mobile devices: Location-dependent

applications are among the most important ones being enabled by INS. It is

important to ensure that mobile device using geographically local services is

able to operate effectively in an environment consisting of services from many

administrative domains.

3.2 Wide-Area Virtual Spaces

The assumption thus far is that virtual space names are arbitrary tokens; the names

themselves consist of no explicit hierarchy. Furthermore, the Domain Space Resolver

unit for an area is supposed to know about every vspace that might be encountered.

Our model for wide-area operation relaxes both these properties.

The idea behind the wide-area extensions is to allow virtual space names to consist

of an optional domain qualifier. To illustrate this, there may be a cameras virtual

space inside the lcs.mit.edu administrative domain. While the vspace can be referred

to as cameras inside its home domain, it becomes possible with the extensions to

refer to it outside the scope of LCS as cameras:lcs.mit.edu.
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cs.berkeley.edu I DNI cs.mnit.edu

Find Ics DSR

\ Use services

[vspace=cameras:ics. mit.edu] [service=camera]

Figure 3-1: Inter-domain operation: services in vspaces hosted in another adminis-
trative domain can be used by using the wide-area version of the virtual space name.
The request for an INR knowing about the cameras vspace is sent to the lcs.mit.edu
domain's DSR, as located by the Domain Name System, rather than the local DSR.
The response, the address of the INR, enables services in the remote vspace to be
used as normal.

In this system, the DSRs become explicitly in charge of all the virtual spaces in

their respective administrative domains. Each virtual space is owned by exactly one

DSR, but nothing precludes services and INRs from one administrative domain from

joining another domain's virtual space. Given that the proper DSR can be found to

process the vspace request, most of the wide-area connectivity problems can then be

reduced to the standard INS model. We solve this problem of finding the DSR by

leveraging the Domain Name System.

To find the appropriate DSR for a vspace, the domain qualifier needs to be ex-

amined. If there is no domain qualifier or if it is local, the message is a standard

intra-domain request that can be routed to the local DSR as described in Section 2.2.

If it is a remote request, such as the cameras:lcs.mit.edu vspace being referred to

from berkeley.edu, lcs.mit.edu must be used to find the appropriate DSR. The cur-

rent convention involves using DNS to look for a DSR host named domainname,

and then dsr.domainname. Thus, the request for cameras:lcs.mit.edu is routed to

dsr.lcs.mit.edu.

There are other possible approaches to find the correct DSR for a virtual space.

The alternate solution that we most carefully considered was using the SRV Resource
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Record in DNS [11] rather than relying on the dsr prefix. The SRV record, which is a

recent' addition to DNS, is intended for applications such as INS that wish to embed

specialized information in DNS without requiring a new Resource Record type. But,

due to the newness of the SRV Resource Record, the lack of support for the type

in legacy DNS installations, and the fact that "dsr" prefix is a workable solution,

we decided use the prefix in the current implementation. That, however, does not

preclude the SRV entry from being used as well in the future.

This DNS approach also allows a single DSR to serve multiple DNS domains,

so that administrative and DNS domains can be distinct if desired. Since DNS en-

tries normally just return IP addresses, multiple DNS domains can point to the same

DSR. For example, at MIT there are various labs which have their own DNS do-

mains. Should they be considered part of the same administrative domain or not?

By pointing DNS entries to the proper DSRs, it becomes possible for LCS and the

Al Lab to share a single set of vspaces while the Media Lab has its own independent

set. Furthermore, the EECS department can point the DNS entry in its eecs.mit.edu

domain to MIT's DSR if it wishes to consider itself inside MIT's main administrative

domain. Thus the problem of deciding "when asking for all the printers at MIT, do

I normally count the ones at Sloan?" does not need to be solved in general but can

be customized for any given environment by proper DNS delegation.

With this basic framework in place, there are only a few remaining areas in the

architecture where modifications need to be made to integrate with the design de-

scribed in Chapter 2. One common operation in INS, particularly in service provides,

is taking the source and destination name-specifiers from a received packet, swap-

ping them, and expecting that address to deliver the packet back to the source. It

is plausible, however, that somebody sending a packet to such a system may not

use their fully-qualified wide-area source address, which would cause problems when

returning a response, since the domain to return to was not specified. To prevent this

problem, which relates to the general problem of context in name resolution, pack-

ets sent outside the local domain automatically get their source address converted

'The Request For Comment for SRV, RFC 2782, is dated February, 2000.
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to a fully-qualified wide-area address. Likewise, when packets are received by the

final destination, the destination address is truncated to the local version of the vir-

tual space to avoid confusion of the larger name in the application. The discovery

mechanism similarly needs translation checks so that the names that are returned

are fully-qualified if the discovery spanned administrative domains. Similar ideas are

used in Internet email-a sender in the mit.edu domain who specifies his address as

johndoe needs the address to be expanded to johndoe~mit.edu so that it may be

interpreted in the right context when it leaves mit.edu. Along those lines, an email

sent to johndoe~mit.edu also needs to be recognized when received by the mit.edu

server as being local so that it might be routed to the proper internal mailbox.

And, while not the focus of the current work on INS, adding security to the de-

sign would be possible as well. The virtual space mechanism provides an ideal level

of granularity for setting security access permissions. The DSRs could implement a

security policy that prohibits various hosts from discovering, finding INRs for, and

joining a virtual space. The DSRs messages are compact and infrequent enough that

cryptographically signing them would not be prohibitive. INRs could also be set to

drop packets from unauthorized hosts. This is not a part of our current implemen-

tation due to a focus on basic functionality; nevertheless the architecture allows the

enhancements to be made.

3.2.1 Communication With Barriers

In the real world, communication between networks is often hindered by security

mechanisms that may be deployed. Specifically, firewalls may filter out the UDP

traffic and block incoming TCP connections necessary for operating INS. Since we

experienced this inter-domain issue while developing INS, the design should allow

some type of operation in these cases.

There are many types of firewalls and security mechanisms; we are not going to

attempt to design specific solutions to all of them. However, an illustration of one

case should highlight the idea of communicating by proxy in those situations.

For example, with one particular firewall in use, shown in Figure 3-2, it was
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Internet UDP Intranet

MIT Firewall IBM

Figure 3-2: When security barriers such as firewalls are in place, the UDP packets
that INS uses may not get through. These messages can be tunnelled through the
firewall using a TCP/IP connection initiated from inside the protected network.

possible to make TCP connections from inside the firewall, provided specific libraries

are loaded to interface with the SOCKS v4 [25] filtering protocol. Outgoing HTTP

connections were also permitted, as well as incoming multicast UDP. The problem is

enabling regular UDP connection with the nodes behind the firewall.

While there are many possible solutions to this connectivity problem, including

the idea of using multicast UDP to receive data packets and HTTP to tunnel UDP

packets from inside the firewall, the model which we wish to employ in general is

proxying. A proxy node outside the firewall is set up to handle the connections

for the INR outside the firewall. Outside applications can connect to this proxy, as

directed by the DSR, and use all the services without worrying about the network

connection.

The basic part of this solution involves no implementation changes in the regular

Java INS code, since it can be enabled by the architecture of Java, which allows its

underlying runtime network libraries to be changed. Whenever a network socket is

created or packets are sent and received by the INR on the isolated side of the firewall,

the action is done on the proxy which can communicate with the rest of the world.

Additionally, the DSR should be set to return the appropriate INR depending on

where the request comes from. Combined with an INR and a proxy on the outside of

a firewall, this provides a means with even a minimal amount of outside connectivity,

for INS to use and communicate with services in the outside world.
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3.3 Suitability of the Design

We believe that although our design is simple and efficient, integrating well with the

framework of INS, it certainly does not solve every facet of the wide-area service

discovery problem. We discuss below the strengths and weaknesses of the system,

investigating the functionality provided by the mechanism.

Connectivity between sets of virtual spaces in the wide area is effectively enabled

by our design. The optional vspace domain qualifiers address the problem of bridging

virtual spaces belonging to different DSRs and domains, and they make accessible

the complete functionality of the domain. For instance, the virtual spaces in another

domain may be browsed, and the services in them discovered. This does require the

domain name to be known; thus it serves intentionally as a bridging mechanism rather

than as a general wide-area discovery solution.

Furthermore, little cooperation is needed to bridge domains. As long as a DSR

wishes to make a virtual space publicly available outside its domain, there are no per-

domain costs to the connectivity because the existing Internet infrastructure is used.

This is contrasted with Sun's Jini [8], which needs to be explicitly "federated" with

outside lookup services and requires IP multicast support. While the comparison is

incomplete, since federation in Jini is only intended to glue a small number of com-

munities together, it does show the burden that per-domain cooperation agreements

can be.

In addition, the changes in the INS system to enable the domain qualifiers are

minimal. The qualifiers need to be recognized and interpreted, and requests for INRs

on remote DSRs need to be sent to the proper domain's DSR. But, besides some

provisions for making name-specifiers canonical for the wide area in inter-domain

conversations, the infrastructure is almost entirely untouched.

By the same token, the design is implementable in its full specification, as doc-

umented in Chapter 4 and evaluated in Chapter 5. An alternate approach could

have required an extra level of indirection in the virtual spaces-rather than using

DNS, an entirely high-level layer of wide-area abstraction could have been invented.
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Location: 0504 SR
Vspace: floor5:lcs.mit.edu .sitdu

..............

Services from potentially many domains

Figure 3-3: Location-dependent computing in an inter-domain setting: upon enter-
ing an area, the mobile device learns of a virtual space containing a collection of
local services. Given a fully-qualified vspace name, the appropriate services may be
discovered. Additionally, using services from another "home territory" or domain is
possible due to connectivity provided by inter-domain vspaces.

Rather than specifying cameras:lcs. mit. edu, the requirement could have been to re-

solve cameras:cameras-of-the-world. The design does not preclude this extra layer

from being added in a future revision of INS; it may be welcome as an incremen-

tal improvement once known to be beneficial. Rather, we present a basic, easily

implementable design for bridging communities of services.

The last design goal, of explicitly being able to work well with location-dependent

mobile devices across administrative domains is best illustrated using some examples.

The general picture is of a mobile device brought into a new environment consisting

of many services. This device receives location information from a location beaconing

system [4], and it maintains some type of wireless network connectivity, whether from

a local or wide-area provider. The test is how effectively the local services can be

discovered, browsed, and used, particularly when they are owned or controlled by

different administrative domains.

In this situation, we conceive of a location as being represented by a virtual

space and some extra information. For instance, the room 504 might be identified as

location "0504" in the floor5 virtual space. The location beaconing system can be

then configured to send out this appropriate location information. The vspace should

be completely wide-area qualified; if the device is connected by a wide-area network

ISP, rather than via a local-area connection such as Bluetooth [15] or 802.11 [13], the

domain qualifier is necessary to know the correct domain.
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This location virtual space should contain the collection of available local services.

That does not mean, however, that they are all necessarily owned or controlled in the

same domain. Since a service may be a member of many virtual spaces, the service

simply needs to advertise itself to an additional appropriate virtual space to be visible.

This works for wide-area addresses; a camera may join both the cameras:mit.edu

vspace and the services:lcs.mit.edu virtual space. In the case this is difficult, a

"proxy" for a non-local service may be established, which joins the local vspace and

routes the requests to the proper wide-area service.

Other mechanisms aid inter-domain service availability. The aggregate vspaces

mechanism (Section 2.2.1) may be used to establish collections of virtual spaces with-

out requiring the services to explicitly advertise for the extra virtual spaces. The

virtual space union mechanism may also be used to establish a "default set of ser-

vices" which are available using aggregation in many virtual spaces.

The key to this situation is that a location beacon is able to broadcast the name

of a virtual space that offers a coherent view of an area. The local vspace's job can

be reduced to collecting services from relevant areas. Some of this requires human

intervention in the same way that the development of any other collection requires

human effort. But, it is not hindered or complicated by the services being from many

domains, since inter-domain vspaces can be treated the same as any other vspaces-

services are not a priori prohibited from joining another domain's vspace, INR's are

not necessarily prohibited from hosting another domain's vspace, and services are not

prevented to using other domain's services. Location-dependent services with global

connectivity are thus enabled.

3.3.1 Alternatives and tradeoffs

With this design, different virtual space communities may be bridged and inter-

domain connectivity enabled. However, the approach does not solve the completely

general wide-area service discovery problem of being able to find any service in the

world by doing a partial match on any subset of relevant attributes.

With this said, it is not clear that the type of discovery, even if feasible, is neces-
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sary, at least as part of the base architecture. For example, in the regular Internet,

TCP/IP and DNS may be used to communicate between hosts and discover host

addresses, but search engines are higher-level units with specialized algorithms. The

Internet provides some discovery and communication services, but they are supple-

mented by indexing units beyond the original design. While a service discovery system

should surely provide greater discovery functionality with services than the regular

Internet with hosts, there is a line between functionality that should be implemented

in the base system and functionality that should be left to higher-level units.

This is a classic end-to-end argument for the simplicity of the system [23]. A

mechanism and infrastructure for providing the extra indirection can be devised as

an addition. But, this may not be necessary or urgent if there arises a popular site

with commonly used services, say services:yahoo.com.

Some have observed the differences in character between the local-area and wide-

area discovery problem. According to the committee on the Wide Area Service Lo-

cation Protocol [22], location does not typically matter with wide-area queries, so it

should not be considered in the queries. A statement like this seems acceptable in

a system such as SLP [18, 28], which is designed from the beginning to hard-code

special meaning into its attributes. However, WASLP's assumptions about how the

wide area is divided makes the system ineffective to use in the local area. Perhaps

the local and wide area problems are so distinct that they should be addressed in

separate systems; however, our goal is to try to do otherwise. A glance at the many

differences between a precise local service discovery system such as INS or Jini and

a broad, general Internet search engine such as Google [10] or Northern Light [17] is

enough to point out how the wide-area problem is more complex and more difficult

to define. Particularly, in such a model, it is virtually impossible to return an answer

that is nearly "complete" or accurate-something that is very much a part of the INS

local-area service model.

So, the functionality of a search engine or the power of an inter-domain abstrac-

tion could have been included in the design. This might involve a master record

which indexes the services in many many domains or a global advertisement tree like
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Berkeley SDS [7] which attempts to attain some type of global service knowledge.

This would avoid the need of explicit DNS addresses in the names and make a more

uniform global service discovery system. However, these schemes are complex, are

not significantly better for inter-domain location-dependent applications, and they

fall short of the regular INS service model specifications.

Our wide-area domain qualifier design suffers from none of these complexity draw-

backs and it provides an implementable scheme by which INS virtual space commu-

nities may be bridged. Furthermore, provisions are included to enable services to be

integrated regardless of administrative domain.
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Chapter 4

Implementation

To evaluate the effectiveness of our virtual space design, we implemented the mecha-

nism in Chapter 2 and 3 in the MIT Intentional Naming System (INS). We describe

the changes in the INS architecture, particularly in the Intentional Name Resolver

and Domain Space Resolver components.

The three main code components of INS are the Intentional Name Resolvers

(INRs), which are the servers that connect INS services and applications; the Do-

main Space Resolvers (DSRs), which serve as a boot-strapping mechanism for finding

INRs; and the Client Library, which is an API for services and applications to ac-

cess the system. Architectural and implementation changes were needed in all these

components to enable the virtual space scheme. Nevertheless, the bulk of the effort

focuses on the INRs and DSRs and is best described in these two contexts.

4.1 INR Implementation

The Intentional Name Resolvers form the core of the INS system by aggregating

advertisements from services, providing a discovery and lookup mechanism, and en-

abling routing based on intentional names. The method by which messages are routed

and forwarded in the system, as well as the way the INRs are organized into a net-

work are the basis of other work [1, 2]. Here, we look at partitioning the namespace,

which involves making changes to many aspects of the INR, including its name stor-
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VSNameTree structure - a NameTree per vspace

Virtual Spaces floor5 floor6 printers
N am eTree _ame0rees

NameTrees

Neighbors, advertisements homogenous Neighbors host different vspaces,
advertisements selective

Figure 4-1: Architectural differences in adding virtual spaces. In the virtual-space
enabled INR code, the names are stored in separate name-trees by virtual space.
Likewise, since INRs each host a certain subset of vspaces, this neighbor vspace
information must be known and the advertisements be properly directed.

age structures, advertisement routines, and neighboring mechanisms. This section

discusses the provisions that were made to reduce the INR's assumption of knowing

everything about the world to knowing only about certain well-defined portions of

the world.

4.1.1 Basic Structural Changes

The goals for the virtual space mechanism include reducing the advertisement band-

width and reducing the strain on the internal data structures. To accomplish this,

changes were made in the name-tree structure, the advertisement mechanism, and

the way other INR nodes are referenced in the system. An illustration of this is in

Figure 4-1.

Names in the INRs are stored in the name-tree data structure [24]. This is designed

to scale to a moderate number of names that might be found in a local area. Since

names either contain a virtual space or otherwise find a default vspace, they can be

separated into different name-trees by vspace. Rather than the INR containing a
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Figure 4-2: ADVERTISE-NAMES Pseudo-Code: the data from each hosted virtual

space gets shared with its neighbors who also host that virtual space.

single name-tree object, it contains a collection of name-trees for each hosted virtual

space, called the VSNameTree. This maps virtual space names to name-trees using

a hash table, and provides appropriate accessor functions. It furthermore serves

as the authoritative list in the INR for which virtual spaces it hosts. And, in this

structure, each virtual space's corresponding name-tree represents the INR's complete

knowledge for that vspace. This isolates each virtual space as a separate, contained

unit in the INR.

The main benefit comes from going a step beyond separating how names are

stored to separating how names are advertised. Name advertisements for a given

virtual space should only be sent to other INRs hosting the same vspace, rather

than to every local INR. Otherwise, it is just a waste of bandwidth. This then

requires knowing which virtual spaces each neighboring INR supports, which requires

augmenting neighbor data structures to store this. One this is known, the name
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ADVERTISE- NAMES()

1 for V +- each hosted vspace in VSNameTree
2 updateBuf fer +- empty update buffer
3 nt +- VSNameTree.GETNAMETREE(V)
4
5 for n +- each name in nt
6 U +- name-update created from n
7 updateBuf f er.ADD(U)
8
9 if updateBuf fer.FULL or
10 U.sourcePath different from last
11 updateBufffer.FLUSH(V)
12
13 updateBuffer.FLUSH(V)
14 return

UPDATEB UFFER. FLUSH (vspace)
1 for n <- each neighbor in vspace
2 if (n not the source path)
3 SEND(buffer.contents, n)

4 return



advertisements can be sent to only the neighbors hosting the specific vspace, by

an algorithm such as in Figure 4-2. In effect, this creates distinct advertisement

networks for each virtual space. A key in the implementation is avoiding per-virtual

space threads in the code, which would make vspaces too heavyweight to put large

numbers of them on a single server.

Beyond the use of multiple name-trees, augmented neighbor information, and a

pruned advertisement method, other details are required to enable the basic mecha-

nism. The Client Library typically ensures that requests sent to the system contain

the default virtual space, but when that otherwise does not happen, names are tagged

with the appropriate Resolver default virtual space. The starting set of virtual spaces

that an INR hosts is loaded at initialization, but this may be changed at runtime.

System-use names are also appropriately tagged with virtual space names to ensure

they are properly routed inside the INRs.

Communication within a single virtual space, or when a vspace is hosted by the

INR, is straightforward. The necessary name queries to discover names, to route a

packet by late-binding, or to look up an address for early-binding can be obtained

from a local name-tree for the appropriate virtual space. After this name-tree is

retrieved from the VSNameTree structure, the query can occur and the appropriate

actions taken. Variations on this process such as that for inter-vspace communication,

unions of virtual spaces, or inter-domain operation require addition steps.

4.1.2 Inter-Vspace Communication

An INR may need to forward a packet to an intentional name address by late binding

and not have the virtual space hosted locally. In this case, the packet needs to be

forwarded to an Intentional Name Resolver that does host the appropriate virtual

space.

In the code, a list of INR servers which host a specific vspace can be obtained

by the mechanism in Section 4.2.3. These are cached in the VSResolvers list in the

INR. Given a vspace name, the packet can be forwarded to an INR entry picked from

the correct list. The implementation does all this inter-domain forwarding by UDP
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FORWARD- PACKET (packet, params)
1 Vspace +- packet.destination. GETVSPACE()
2
3 if (Vspace in VSNameTree) // hosted locally
4 nt +- VSNameTree. GETNAMETREE(Vspace)

5 RouteSet +- nt.LOOKUP(packet.destination)

6 FORWARDUSINGROUTESET(packet,params,RouteSet)

7
8 else // hosted remotely
9 if (Vspace not in VSResolvers)
10 VSResolvers.RETRIEVEINFOFORVSPACE(Vspace)

11
12 inr +- VSResolvers.GETINRFORVSPACE(Vspace)

13
14 if (inr not null)
15 FORWARDTOANOTHERINR(packet,params,inr)

16 else
17 Drop Packet
18 return

Figure 4-3: FORWARD-PACKET Pseudo-code: An illustration of how a packet may be
processed locally if the necessary virtual space is hosted on the local INR, or it may
be forwarded to an appropriate INR otherwise. It is also possible that the virtual
space name may be malformed or not exist, in which case the packet is dropped. The

params field represents characteristics such as anycast vs. multicast.

to avoid setting up short-lived TCP connections. A feature of this scheme is that it

does not need to trust the correctness of the local cache-if an INR originally hosted

a virtual space v and then stopped hosting v for some reason, it can still forward the

data on to an INR which does support v. Figure 4-3 contains pseudo-code for this

process.

With the inter-vspace late-binding code in place, the INR's other functions, namely

discovery and early-binding, are nearly automatically working between virtual spaces.

This is because discovery and early-binding are both implemented between the Client

API and the INR by exchanging regular INS late-binding packets. Thus, if a client

wishes to make a discovery request but sends the request to an INR which does not

host the relevant virtual space, the system will forward the request to a proper INR

like any other packet.
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"discover [service=camera] [location=floor5 [room=*]] [vspace=lcs]"

--- Desired Destination

Figure 4-4: Inter-vspace discovery problem. Late binding solves the problem of get-
ting discovery and early-binding messages to the right INR, but it may not get the
response back in the inter-vspace multi-hop case. Extra data is added to the request
packet to ensure the correct return client is known.

There is one obstacle, however. The original model for returning discovery and

early-binding messages was simply to respond to the host which sent the message.

This scheme is good because does not need the client's name to be propagated through

the system to work and is efficient. In the inter-vspace case, though, the discovery

message is sent from the client c to an INR ai and then forwarded to an appropriate

INR ics. Here, the return address from the standpoint of the Ics INR is not the

client c but the first INR ai. This is illustrated in Figure 4-4. To alleviate this, the

discovery and early-binding request formats have been changed to include the return

address so that the response may go back to the proper host.

Along the lines of the discovery and early-binding messages, one further addition

to the implementation of the system was adding sequence numbers that are unique

for a requesting host. This addition allows the Intentional Naming System to behave

more smoothly with potential concurrency.

4.1.3 Unions of Virtual Spaces

Unions of virtual spaces are implemented, as described in the the design in Sec-

tion 2.2.1, by tagging a virtual space with an aggregate flag and using its namespace

to track which virtual spaces are its children. This mechanism is ideal to use in the

case where the advertisements required to maintain an aggregate vspace are more

significant than the volume of requests that will be issued to it. A virtual space can

be represented as a union of smaller virtual spaces and also have services of its own.
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16
17
18
19
20 re

RECURSIVE-LOOKUP(name, maxSteps, f oundNames, remoteVspaces)

1 vspace <- name.G ETVSPACE()
2 if (vspace not in VSNameTree) // hosted remotely
3 remoteV spaces. ADD(v space)
4 return
5

if (vspace is aggregate and maxSteps > 0) // unions of vspaces
children +- GETCHILDVSPACES(vspace)
for v +- each vspace in children

subname <- name

subname. SETVSPACE(v)
RECURSIVE-LOOKUP(subname, maxSteps - 1,

f oundNames, remoteVspaces)
return

RouteSet +- VSNameTree. LOOKUP (name) // hosted locally
for r +- each element in RouteSet

discoveredName = EXTRACTNAME(r)
f oundNames. ADD (discoveredName)

turn

Figure 4-5: RECURSIVE-LOOKUP Pseudo-code: the lookup routine for the discover
mechanism modified to handle unions of vspaces. Two lists are recursively built,
foundNames of discovered names and remoteVspaces of remotely hosted vspaces
which need to be contacted.

Besides adding the aggregate flag and putting names representing the child vspaces

such as [child=f loorl] [service=vspace] [vspace=lcsbuilding] in the name-tree,

the main thrust of the implementation is modifying the different functions of the INR

to interpret these names properly. The four functions to modify are discovery, early-

binding, anycast late-binding, and multicast late-binding. The multicast case is the

most straightforward, since the packet just needs to be forwarded to all the child

vspaces. In the other cases, a query and response of all the child virtual spaces is

required.

With discovery, a client asks for a list of names which fits a filter. This requires

discovering the names in each of the child vspaces and then merging the results. If the

children are aggregate vspaces, the routine should be recursive and search its child

vspaces. But, there should be a limit to avoid the possibility of looping infinitely. It is
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important to note that the names are returned with the canonical, service-described

vspace. This is helpful as an optimization to avoid unnecessarily going through this

aggregate vspace mechanism when connecting back to a returned name.

The requirements become more complex, however, when there may be unions of

virtual spaces which are not hosted locally. To deal with this, the lookup routine

is modified, as in Figure 4-5, to recursively build two lists. One, foundNames,

consists of all the names discovered in locally hosted virtual spaces. The other list,

remoteVspaces, catalogs all the remote child virtual spaces which need to be queried.

Once these lists are known, the idea is to send discovery request messages to each

vspace in remoteVspaces. As the responses come back, the names can be added

to the foundNames list and the vspace removed from the remoteVspaces list until

the discovery is complete. Once the remoteVspaces list is empty, all the names are

discovered and the response can be sent to back to the original host.

If a child virtual space goes down or ceases to exist, the discovery mechanism

bypasses it and returns the result from all the other child vspaces. The current

implementation uses no time-outs maximums in the INRs, so the discovery response

time is the greatest of the existing child response times. The Client Library's API,

however, does provide a time-out value in the discover function to avoid indefinitely

waiting due to a lost packet or similar situation. And, the library is implemented to

facilitate a number of concurrent requests because the messages all contain sequence

numbers.

This process of looking at all the child vspaces is nearly the same in the case of

early-binding requests. In fact, the same RECURSIVE-LOOKUP routine as in Figure 4-

5 is used in the implementation with the addition of a flag to differentiate between

discovery and early-binding for the base case.

For late binding, multicast and anycast operations need to be treated separately.

This is due to the underlying semantics of the operations. A multicast message is

intended for all the services who match a given query, whereas an anycast message is

only intended for the service which matches the query and has the highest application-

advertised metric. The unions of virtual spaces mechanism needs to retain these se-
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Multicast Late-binding Anycast Late-binding

Figure 4-6: Late binding with Unions of Vspaces: for multicast, the packet can be
multicast to every child virtual space. In the anycast case, however, the message must
be sent to the "best" overall service. This requires asking each child vspace for its
"best" entry and sending the packet to the highest ranked of those entries.

mantics, which in the anycast case requires querying all the child virtual spaces for

their "best" entry and then finally sending the message to the highest ranked of those

entries. This is shown in Figure 4-6. When child virtual spaces are hosted on different

INRs, this is accomplished with a message similar to the early-binding request mes-

sage. A caching mechanism could be invented to reduce the messages across different

INR servers, but that would compromise many of the dynamic properties of INS.

4.1.4 Inter-Domain Operation

Inter-domain virtual spaces provide a extra scoping information for which DSR to

query about the virtual space. For example, the mp3players:lcs.mit.edu vspace has a

domain qualifier for the lcs.mit.edu domain. The INR needs to be able to process this

addition information, which from an implementation standpoint can be accomplished

mostly inside a single DSRManager module.

For the most part, the inter-domain implementation is in the INR, since it is

essentially a DSR selection mechanism for the INR. All the DSR needs to do is

normalize the requests and operate as before.

The three main operations necessary in the INR to support inter-domain vspaces

are as follows:

* GetDSRForVspace: Given a domain-qualified vspace, this returns the ad-

dress of a DSR in the appropriate domain which should know about that vs-

pace.
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* AdjustlncomingVspace: If the virtual space of a packet entering the INR

has a domain-qualifier that represents the local area, this removes the domain-

qualifier so that the system may recognize it as a normal local vspace.

* AdjustOutgoingVspace: Used on packets being sent outside the local ad-

ministrative domain, this fully qualifies a virtual space to include the correct

local domain name.

When a packet or request needs to be sent to another virtual space, the regular

procedure is to check if it is hosted locally. If not, the INR checks its VSResolvers

list to see the address of an INR which hosts it is cached. Otherwise, DSR is gets

queried for an INR that hosts the virtual space. It is this last step that needs to be

modified to support domain-qualified vspaces. Rather than sending the request to

the local DSR, the implementation uses the domain-qualifier, such as lcs.mit.edu to

find an alternate DSR to send the request to. Once this is done, much of the basic

work is accomplished in the INR.

The GETDSRFORVSPACE routine abstracts away the process of finding a DSR

for a domain. The current process, as described in the design in Section 3.2, in-

volves checking two addresses: dsr.domainname and domainname. The former is an

obvious prefix, whereas the latter is implemented so that one could specify a com-

plete machine name in the domain-qualifier. For example, it one wanted to make

the machine fenway.lcs.mit.edu a DSR in charge of a small, experimental "subdo-

main" within ics, the latter check makes it possible. The well-known port currently

assumed for a DSR is 5678. Since this functionality is abstracted to a single proce-

dure, the lookup process could be straightforwardly extended to include additional

means such as the DNS SRV Resource Record [11], which is intended for putting

application-specific data such as this in DNS.

After this, it is important for the INR to know which incoming virtual spaces are

local and to maintain its internal structures consistently. If an incoming packet is

addressed to the cameras:localdomain virtual space, the INR should realize that the

address is the same as its local cameras vspace and process it accordingly. There-
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fore, all the domain-qualified name-specifiers on incoming packets are truncated to

their local versions if they are in fact local. This keeps a single version of all the

local vspace names in the data structures. The ADJUSTINCOMINGVSPACE routine

performs this function of truncating local vspaces. The test of whether a virtual

space is local involves checking whether the domain qualifier can be mapped using

GETDSRFORVSPACE to the same address as any of the local DSRs-this is a more

accurate comparison than naively checking if the domain strings are equal. Once

this truncation occurs, the INR can process incoming packets with domain-qualified

vspaces in the same way it did before.

Otherwise, as a usability feature for services and applications, responses to packets

sent in the wide area should have their return addresses qualified to the wide area. In

other words, if a packet is sent from services:cs.berkeley.edu to cameras:lcs.mit.edu,

the sender at Berkeley may potentially use the local version of the vspace name,

services. The INR takes care, with the ADJUSTOUTGOINGVSPACE routine, to ensure

that packets going to virtual spaces outside the cs.berkeley.edu scope have their return

addresses qualified with the full cs.berkeley.edu domain. Otherwise, the receiver at

cameras:lcs.mit.edu would not only know that the packet came from the services

vspace, which would be insufficient to send a response. The implementation of this

ADJUSTOUTGOINGVSPACE routine is straightforward-the string representation of

the DSR address, with the "dsr." prefix removed if present, is appended as the domain

for the vspace name. This is also done on names found with the discovery mechanism

so that the client may know the fully-qualified versions of names it discovers.

Beyond this, there are a few boundary cases to enable. INRs from one domain

should be able to host virtual spaces from another administrative domain. Appro-

priate implementation is made in the INR to check the names and to ensure the

messages for an INR joining a virtual space go to the proper DSR. In addition, ser-

vices should be able to join virtual spaces from other administrative domains. This

requires sending the name announcements for the service to the INR in the proper

domain, which is accomplished for the most part by the inter-domain changes to the

late-binding mechanism.
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4.2 DSR Implementation

The Domain Space Resolver, which serves as a bootstrapping mechanism to find

Intentional Name Resolvers for a given virtual space, was adapted to support virtual

spaces. With the DSR in this section, we look mostly at its communication mechanism

with the INRs and Client Library. The necessary changes include making provisions

to store each INR's vspaces, incorporating vspace information in its communication

messages, and moving its messaging architecture to soft-state [20] to be more robust.

At the most basic level, some of the functionality of a DSR could be performed

by a alternate approaches such as a flooding protocol or a set of DNS entries. The

first approach would involve broadcasting a message to the network to request a

response from INRs supporting a given vspace. However, it is bandwidth inefficient,

cannot scale beyond the scope of a local area network, and does not readily provision

for external access. The latter approach could be accomplished by setting up DNS

entries, such as cameras.vspaces.lcs.mit.edu for the cameras vspace in LCS, to point

to the proper INRs. This DNS approach is more adaptable to the wide area, but it

is somewhat less dynamic; it requires a well-deployed mechanism for modifying DNS

entries, perhaps outside the administrative domain; and it is difficult to refine the

security model if necessary. The DSR's implementation, as described in the coming

text, gets around the limitations of these other approaches to provide an efficient,

dynamic, and accessible means to store virtual space information.

4.2.1 DSR Messages

The motivating feature of the DSR is for INRs and clients to be able to interact with

it. For this reason, the best way to view the DSR architecture and implementation

is to look at the messages which are exchanged. In order to simplify the DSR, INR,

and Client Library implementation, the DSR messages are encapsulated with two

classes: DSRRequest, for requests going from the INR or Client Library to the DSR;

and DSRResponse, for responses from the DSR. These classes provide constructors

and interface methods to the different messages and abstract away the details of
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DSRRequest Messages
ADVERTISEVSPACES (INRaddress, vspacelist, ttl,

thisComplete, wantVspaceData,
sequenceNumber)

GETVSPACERESOLVERS (vspacename, sequenceNumber)
VSPACESRESOLVERS (vspacelist, sequenceNumber)
DISCOVERVSPACES (sequenceNumber)
PING (sequenceNumber)

DSRResponse Messages
ACKADVERTISEVSPACES (sequenceNumber)
GETVSPACERESOLVERS (INRlist, sequenceNumber)
VSPACESRESOLVERS (vspacelist with INRlists,

sequenceNumber)
DISCOVERVSPACES (vspacelist, sequenceNumber)
PING (sequenceNumber)

Figure 4-7: DSR Messages, both the requests from the INR or Client Library to the
DSR as well as the DSR's responses.

converting to and from a wire-form representation.

The basic set of DSR messages is listed in Figure 4-7. Each DSRRequest message

returns a counterpart DSRResponse message, with the name sequence number to

identify the message. The transport protocol for these messages is UDP, but the

DSR could support TCP/IP as a protocol layer as well, particularly to handle long

messages with large numbers of virtual spaces. Besides the PING message, which is

a simple mechanism for testing the presence of the DSR, the rest of the messages

are described in the context of either INR Periodic Advertisements or Requesting

Information in the coming sections.

4.2.2 INR Periodic Advertisements

In the same way that services periodically advertise themselves to INRs with an

expiration time so that they may be purged from the system when they go down, the

robustness and self-healing properties of soft-state are also beneficial to virtual spaces.

The DSR implementation is thus changed from the original where INRs registered

themselves to the system indefinitely with the assumption of hosting all names into
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a periodic system that includes information on which virtual spaces are hosted.

To accomplish this, INRs send the ADVERTISEVSPACES message periodically to

the DSR with the list of virtual spaces they support. The default advertisement pe-

riod is longer than that of services, on the order of a half-hour, with the assumption

the INRs change or go down less frequently than the services. This message may be

sent at any time, which besides the periodic case includes whenever a vspace is added

or removed from the server. A thisComplete flag is used to signal that the message

completely lists all the virtual spaces hosted on the INR, which allows since-removed

vspaces in the DSR's list for that INR to be purged. The INRAddress includes the

INR's IP address and port information, and virtual space names are sent as a list of

regular strings. There is a single ttl time to live field for the entire INR entry rather

than for each virtual space on the INR since the INR is a coherent unit that is either

entirely up with all the vspaces it last advertised or entirely down. Otherwise, a last

wantVspaceData flag specifies whether an simple ADVERTISEVSPACESACK acknowl-

edgement is returned or if a full VSPACESRESOLVERS message containing names of

all the INRs supporting each vspace it hosts should be returned. Usually, the flag is

set such that the full VSPACESRESOLVERS message is returned to help keep the INR's

local neighboring data up to date, but in startup and when the VSPACESRESOLVERS

was just otherwise returned, this flag is set off to save unnecessary DSR processing.

By aggregating the information from the periodic advertisements, the DSR can

maintain a list of the unexpired INR nodes along with their hosted virtual spaces.

An index of the existing virtual spaces, along with the INRs which support them, is

also maintained for quicker access to some of the queries. This data is used to answer

the requests that the DSR gets from both the INRs and clients.

4.2.3 Requesting Information

When asking which Intentional Name Resolvers support a virtual space, two messages

may be used. The first, GETVSPACERESOLVERS only requests a list of INRs for a

single virtual space, whereas VSPACESRESOVLERS requests a list of INRs for each of

a list of virtual spaces. The former is mostly intended for use in the Client Library
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and other lighter-weight situations, while the latter is used in the INR, which needs

to keep better track of potentially many more virtual spaces. The received responses

are used to keep the INR and Client Library INR lists updated, and the sequence

number mechanism allows this to be done with a minimal amount of blocking or use

of threads.

The other major request message is DISCOVERVSPACES, which returns a list of

all the known virtual spaces on the DSR. This is just a list of strings, though it is

plausible that additional information could be included or that a security mechanism

on the DSR could eventually filter the names passed back to the application.

Beyond this, the messages are sent using UDP, so if there is no response within

a small timeout, the INR and Client Library code resend the request. The class

encapsulating the returned set of INRs has a PICKNODE method to return a single

node from the list either for the Client Library to peer with or for the INR to forward

an inter-vspace packet. This method currently selects the INR randomly, but it is

possible to extend to choose the closest or otherwise better entry.

4.2.4 Information Expiration Mechanism

Keeping the data roughly consistent is a need which spans the DSR, INR, and Client

Library. Since a periodic advertisement mechanism is used to disseminate this infor-

mation, the other important half of this is ensuring that the information expires at

the proper time. Since we have looked at the advertisement mechanism, we focus at-

tention on the expiration mechanism, particularly on the boundary cases which need

extra consideration.

As we see from Figure 4-8, there are a number of assumptions about what the

different components of INS know about the virtual spaces. The DSR is the boot-

strapping mechanism which is intended to contain all the vspace and INR information,

but it may not have heard from all the INRs if it was recently restarted. Since there

is an invariant that the ADVERTISEVSPACES message contains all the virtual spaces

that an INR hosts, the DSR can assume to know about every vspace from a known

INR, but that it may not know of every INR. Adding the latter part of the assumption

63



Virtual space knowledge and expiration assumptions

o DSR

- If it knows about an INR n, it knows about all the vspaces that n hosts.

- It may not immediately know about all INRs if it crashes and is restarted.

o INR

- Knows all the vspaces it hosts.

- In hosted vspaces: has a connection with all neighbor INRs, but not with
every INR in the vspace. These neighbor INRs should not expire since
they have direct contact, but other in-vspace INRs should.

- Non-hosted vspaces are less critical, but attention needs to be paid to make
sure they expire when the INR also has a hosted vspace.

o Client Library

- Emphasis on simplicity and low overhead, thus less cached information.

- Knowledge of which INRs host a vspace is entirely derived from the DSR.
This info may be freely purged and re-requested.

Figure 4-8: Who knows what about which INRs host a virtual space? These assump-
tions shape the expiration mechanism.

allows the system to be more resilient to DSRs going up and down.

The Intentional Name Resolvers need to use the DSRs both to know INRs which

host non locally-hosted vspaces and other INRs which host the same vspaces. The

former is necessary to enable inter-vspace communication, whereas the latter is to

help choose neighbors to form an overlay network. In the latter, a few of the resolvers

are neighbors which form the advertisement network, and the balance are ordinary.

The neighbors should not be pruned, except by the overlay network code, since the

INR has a direct connection with them and will itself know if they have died. The

other resolvers may be pruned from the list using two mechanisms: by a response

from the DSR excluding them or by an expiration time.

The circumstances by which a response from the DSR may be used to prune

resolvers from the list for virtual space v are as follows:

o The INR asked for virtual space v
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Figure 4-9: Example topology for neighbors and expirations: there are two virtual
spaces, A and B, and four INR nodes. The arrows depict the INR neighboring.

" The DSR response's list for virtual space v did not contain INR r

" INR r is found on some other vspace's list in the DSR response

The DSR response method is fairly restrictive and applies mostly to INRs which

stop hosting one of their virtual spaces. Otherwise, there is a time expiration mecha-

nism. There is a single expiration timer for simplicity, and this timer applies only to

non-neighbors since, again, the overlay network has additional information about

neighbors. Whenever a list of INRs for a vspace is requested from the internal

VSResolvers structure, a expiration-checking method is called to ensure that all

the resolvers to be returned are still valid. Otherwise, they are pruned from the

returned result.

As an example of this shown in Figure 4-9, there may be two virtual spaces, A

and B. At first, INR 1 hosts A, INR 2 hosts B, and both INR 3 and 4 host vspaces

A and B. There are separate advertisement networks for virtual spaces A and B.

In these, INR 1 might be a neighbor in vspace A with 3, but not with 4, whereas

3 would have to be a neighbor in vspace A of both 1 and 4 in order to connect the

virtual space. Since the DSR may be restarted and have incomplete information, a

DSR response to 1 without its connected neighbor 3 should not case the neighbor to

be pruned because 1 empirically knows that 3 exists.

As a complication to the situation, an INR may dynamically rebalance its load, so

INR 3 may drop its support for vspace B. Our goal is to make sure INR 1 eventually

finds out that 3 no longer supports B, if it has the pointer to that vspace cached.

This requires the ability to do selective purging of an INR's virtual spaces, and we

want to do this without inelegant and bulky per-vspace expiration timers. To do this,
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PROCESSVSPACESRESOLVERS(DSRResponse)

1 for vspace <- each virtual space in the DSRResponse
2 nodes +- DSRResponse. GETINRSFORVSPACE(vspace)
3
4 for node +- each INR in nodes
5 if node y self
7 ADDToALLINRsL IST(vspace, node, node.TTL)
8
9 toRemove -- 0
10 for node <- INRs hosting vspace that we know about
11 if ISNEIGHBOR(node) continue
12
13 if DSRMessage.CONTAINSINRANYWHERE(node)
14 toRemove.ADD(node)
15
16 for node +- INRs on toRemove list
17 REMOVEFROMALLINRSLIST(node, vspace)
18 return

Figure 4-10: PROCESSVSPACERESOLVERS Pseudo-code: code on the INR to process
the hosting information returned by the DSR about a set of virtual spaces. This both
adds new INRs and prunes INRs which the DSR implies no longer exist.

INR I's vspace request must include vspaces A and B. Upon receiving the response,

INR 1 will note that B does not have 3 as a host and that 3 is included elsewhere in

the message. This information satisfies the constraints listed for knowing that 3 no

longer supports vspace B and thus l's view of the world will converge to correctness.

The pseudo-code for receiving a DSR response and doing this type of pruning is in

Figure 4-10.

The second expiration method is more applicable to entire INRs going down or

simply to the information being unnecessary to request again. For a neighbor, such

as INR 4 relative to 3, the overlay network code [2] will detect and deal with the

problem. For a non-neighbor, such as INR 4 relative to INR 1, an expiration check

in the internal VSResolvers data structure will purge the expired data.

The Client Library's expiration mechanism is simpler because there is less infor-

mation to keep consistent. In its simplest form, the client only needs to contact a

DSR once and peer with a single INR for life. This will work since the INR can
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forward non-local vspace requests to other INRs but is not optimally efficient or ro-

bust. Otherwise, the Client Library keeps around a single "picked" node from each

virtual space that it is interested in and may renew that data once it expires. The

simplifying factors are not needing to keep extra data for neighbor formation and

self-organization, not needing to keep around many INRs for a given virtual space,

and not needing to maintain extra data indexes that are useful in the INR.
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Chapter 5

Evaluation

In this chapter, we evaluate the effectiveness of the virtual space implementation in

the Intentional Naming System. There are two main areas by which to examine such

an addition: quantitatively by performance, and qualitively by usability. In the first

section, we look at performance numbers indicating the cost and quantifiable benefits

of the mechanism. The second section delves into a more qualitative evaluation of the

system; we examine applications for INS which were implemented to be vspace-aware

to show the system is in fact usable.

5.1 Performance

To evaluate the performance of the virtual space system, a number of experiments

were run on the Java implementation of INS. The goals were to determine and better

understand the overhead of the mechanism. Thus, we first observe at the routing

performance and the reduction in advertisement bandwidth. The latter also gives

indications about the overhead of the vspace mechanism. Then, we look at the

performance of specifically aggregate vspaces. This both indicates how well the unions

of vspaces feature works and gives performance information about INS in general.

Finally, we look at the performance of the DSR and see how scalable this part of the

system is to thousands of INR nodes.

The tests were performed on Pentium II computers running the Blackdown port of
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Figure 5-1: Processing and routing time for a 100-packet burst in the intra-INR,
inter-INR, and inter-virtual space cases.

Sun's JDK version 1.1.7 with the Redhat 5.2 Linux distribution. When host-to-host

tests occurred, they were connected with a 100 Mbps Ethernet.

5.1.1 Routing Performance

First, we look at the relative performance of routing with these virtual spaces. We

sent a burst of one hundred 586-byte messages with different numbers of names in the

virtual spaces. The name-specifier source and destination addresses were randomly

generated, on average 82 bytes long. The results are shown in Figure 5-1.

The most important case is intra-virtual space communication, since it reflects

the most common communication. There are two cases to consider here, which are

reflected in the two sloping lines. In the first, the message may be delivered within

the same INR node. The processing and routing time here vary somewhat with the

virtual space's name-tree size, from 3.1 ms per packet with 250 names to 19 ms per
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packet with 5000 names. This figure is heavily influenced by the speed of the name-

tree lookups, and it also counts in some of the end-delivery overhead. This extra

overhead varies somewhat linearly with the number of name-tree entries. The other

case is without this end-delivery overhead, which is more typical with the Client

library in place. Here, we observe a flatter line, where the scalability bottleneck in

routing comes mostly from the lookup speed of the name-tree. For the most part,

this processing time is about 9.8 ms per packet during the burst.

The other major case is inter-virtual space communication, where the virtual

space is not hosted locally. Here, we find a flat line at 381 ms, which does not vary

at all with the number of names in the destination vspace. The remote vspace's INR

information is cached from the DSR in this case. This type of result is to be expected;

the INR is simply forwarding the packet to the proper vspace. The performance of

this portion of the trip is not affected by the number of names on other INRs or

performance in future hops.

5.1.2 Advertisement Reduction and Overhead

Otherwise, we observe the periodic advertisement bandwidth and how it is reduced

by the system. In Figure 5-2, we see the size of the periodic messages required to

maintain the state for a given number of names. There are three relevant lines.

The solid line gives the basic case where a given number of names are placed in a

single virtual space on a single host. This gives an idea of the "normal" requirements

of the system. When the names are evenly divided into two distinct vspaces but kept

on the same machine, some virtual space-related overhead is encountered. We see

this in the difference between the top two lines, but we note that it is a minor level of

overhead. More importantly, when the partitioned vspaces are placed on separated

machines, we find that the required time does indeed drop in half.
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Figure 5-2: Periodic advertisement times when the names are divided into two equally-
sized virtual spaces.

5.1.3 Aggregate Vspace Performance

We can get a better idea of the overhead of searching separate nametrees by looking

at the performance of aggregate vspaces. These aggregate vspaces, as introduced in

Section 2.2.1, are defined as the union of several child virtual spaces. When a request

is performed on an aggregate vspace, work typically needs to be performed on each

of the child vspaces.

As we vary the number of these child virtual spaces, we note the performance

associated with a given number of simultaneous virtual spaces. Testing how this

performance changes as more child virtual spaces enter the picture can give insights

not only into how well the aggregate vspace mechanism works but also into the

overhead of virtual spaces in general.

The metric we used for examining aggregate vspace performance is the round-

trip anycast latency. This is simply the total time required for a given service A to

anycast a message to a service B and for B then to return the response to A. Anycast
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Figure 5-3: Aggregate vspaces must search all their child vspaces for many routing
functions, including anycasting, to maintain proper application-level semantics. This

graph shows how the anycast latency increases as the number of locally-hosted child

vspaces grows.

in INS typically requires searching the proper virtual space's nametree for matching

name records. However, in the aggregate case, it involves checking every child virtual

space's nametree so that the message may be sent to the "best" service out of the

entire aggregate set. This type of aggregate child searching also needs to be done for

discovery and early-binding requests, so data collected for anycast provides a good

picture for how aggregate vspaces scale in general.

In Figure 5-3, we observe the effects of increasing the number of child vspaces

in an aggregate virtual space. In this case, a sender anycasted 128-byte packets

every 100 ms to a receiver, which in turn anycasted the message back. The data

points represent the average round-trip latency across 500 samples, and the tests

were conducted on a single machine by sending to the loopback interface. For each

aggregate vspace, all the child virtual spaces are hosted locally on the same INR. Thus,
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Aggregate Vspace Processing Latency
Remote vs. Local Hosting Comparison
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Figure 5-4: When the child vspaces of an aggregate virtual space are hosted on
separate machines, requests to each child vspace need to be sent over the network.
The latency grows much faster for the remote than for the local case. (The local-
hosted line on the bottom is the scaled version of the Figure 5-3 graph.)

the increased time represents only the extra overhead of checking another nametree.

These child nametrees are minimal in size, so that essentially all that is counted is

the overhead of cycling through the different children.

We note both the starting point and the slope of the line in the graph. The fig-

ure starts at 25.0 ms with a slope of approximately 2.1 milliseconds per additional

child vspace. From the standpoint of aggregate vspaces, we see there is a cost to the

convenience of vspace unions, since in this case adding 12 minimal child vspaces dou-

bles the routing cost. But, if using such a aggregate vspace could cut advertisement

bandwidth by the same factor of 12 and at least -I = I of the traffic consisted of ad12 6

data, this could provide a net gain performance-wise.

This also gives an idea of the overhead of virtual spaces. Searching an extra

child virtual space's locally-hosted nametree adds 2.1 ms per round trip, or about
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1.1 ms per single lookup. This shows the relative magnitude of the time it takes to

go through the INR's internal vspace table and minimal nametree compared with the

rest of the routing process.

In Figure 5-4, we look at the results from a similar experiment, except that the

child vspaces are hosted remotely on different INRs. Here, in order to send an anycast

message, all of the child vspaces must be queried over the network, rather than locally.

The latencies are much greater for the remote case than the local case, which is

amplified by observing the locally-hosted line on the botton which was scaled from

Figure 5-3.

The graph's slope for the remotely-hosted case is approximately 35.6 ms per extra

virtual space, which dwarfs the previous 2.1 ms local figure. The ad traffic relative to

usage needs to be comparatively much more significant than with the locally-hosted

case to make a strict performance justification. But, the extra functionality of being

able to view a number of vspaces as a coherent set, particularly when the set grows

very large, may very well be worth it in some situations.

This slope number of 35.6 ms also gives an idea of how long the remote early-

binding or discovery message takes, since anycast uses a standard early-binding mes-

sage to figure out the best entry in a child vspace. When this 35.6 ms number is

compared to the base 25.0 ms number of an anycast round trip, the difference, about

10.6 ms, indicates that a fair amount of the early-binding processing time is spent

doing name lookups as well as packing and unpacking data.

5.1.4 DSR Performance

As with the INR, we examine the DSR's performance quantitatively. The Domain

Space Resolver has the advantage that it is much simpler than the INR, updates

less frequently, and does not require expensive partial matches or an especially rich

naming syntax. We looked at two areas: the time required to integrate an INR's

advertisement into the system and the response latency for a query.

These tests were performed with different numbers of virtual spaces and INRs.

For example, the system might have 200 virtual spaces, 5 vspaces hosted on each
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Figure 5-5: The amount of time the DSR takes to integrate a periodic vspace adver-
tisement message from an INR, given various load characteristics.

INR, and 5 times as many INRs as vspaces. The last two figures, vspaces-per-INR

and INRs-per-vspace, were parameterized with the same number to simplify graphing

the problem, though this tends to produce a greater than normal DSR load.

First, a number of ADVERTISEVSPACES advertisement messages were sent to the

DSR to build up usable state. The metric to evaluate here is the advertisement

integration time-how much of the DSR's time is occupied processing each INR an-

nouncement? These tests were conducted on a single machine using the loopback

interface so that the figure would primarily indicate server load rather than network-

induced latency. The advertisement messages are generated to simulate INRs, so if

the parameters were 200 virtual spaces and 5 vspaces per INR, each advertisement

would consist of 5 randomly chosen vspaces out of the 200. Since INRs-per-vspace is

parameterized the same as vspaces-per-INR, there would be 200 x 5 = 1000 simulated

INRs giving these messages to the DSR.

We observe the performance of this advertisement test in Figure 5-5. The parame-
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ters included up to 1000 virtual spaces and values of 2, 5, and 10 INRs-per-vspace and

vspaces-per-INR, with drastically outlying results discarded. From the first glance,

it appears that the number of virtual spaces drives the growth in query time, from

under 5 ms for 100 vspaces to 50 ms for 1000 virtual spaces in the 10 INRs-per-vspace

case. However, we find that the number of INRs is a more accurate predictor for the

query time than the number of vspaces. For instance, at the 1,000 vspaces mark, we

find that the performance is something like a 2:5:10 ratio, but we also note that there

are in fact 2,000, 5,000, and 10,000 INRs being simulated in the system that the time.

And, looking across the three data sets, the times are nearly equivalent for the same

number of effective INRs; when the 5 and 10 INRs-per-vspace lines are at he points

which yield them 5,000 INRs, their times are 27 ms and 26 ms, respectively.

This performance limit, which is linear with the number of INRs, could probably

be improved upon by adding more associative data structures to the DSR. However,

the current times, particularly when the tests go to the scope of 10,000 INRs, are

reasonable for any forseeable deployment of INS.

Additionally, we examined the actual lookup times once this advertise information

had been built up in the DSR. Here, we find that the number of virtual spaces does

matter, but not as much as the amount of the information being returned. In Figure 5-

6, we plotted the time for a VSPACESRESOLVERS request to return the INRs that

host a randomly-chosen vspace. The slopes of the lines are very small-on the order

of 1.6 pus per additional vspace. The time is instead dominated by the amount of

information in the virtual space. In other words, the query performance follows the

2:5:10 ratio that we would expect from having 2, 5, or 10 times as many INR entries

in a given virtual space.

Having the latency vary linearly with the amount of information in the virtual

space is a good sign for the scalability of the DSR unit, especially when it is not overly

affect by increasing numbers of virtual spaces. These times, as with the advertisement

analysis, are more than sufficient for any single administrative domain's forseeable INS

deployment.
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Figure 5-6: Measurements of how long the DSR takes to return a vspace hosting query,
given the number of vspaces in the system and the number of INRs per vspace/vspaces
per INR. Queries and INR-vspace assignments were randomly generated.

5.2 Applications

The qualitative side of evaluating the virtual space mechanism is determining its

whether it is usable and whether applications can be written to take advantage of it.

To this end, a number of the applications from the original INS implementation [24]

were ported to take better advantage of vspaces.

The main task of integrating vspaces into applications is to add enough flexibility

so that the applications can join and use multiple virtual spaces. Since only the default

vspace can be accessed if the application has no knowledge of vspaces, applications

will still work without modifications, but the scope of the services which they can use

is limited.

Telling applications which virtual spaces they should join is accomplished in two

ways: manually and automatically using the LocationManager.
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On the manual side, many INS service providers, such as the printer gateway or

the camera transmitters, already have a configuration file to store information they

need. This includes data such as which printers should be monitored or how often

to transmit video images. For them, the configuration files were extended so that

whoever sets up the system is able to specify which vspaces the service should join.

An example of an extended printer configuration file is in Figure 5-7. For a certain

class of applications, particularly system-level ones, this type of approach makes sense.

# name location hierarchy vspace name
printer turkey location/lcs/floor/5/room/517 lcsprinters
printer turkey location/floor5/room/517 lcsfloor5
printer turkey location/mit/building/ne43/room/517 mitprinters:mit.edu
printer gi location/lcs/floor/5/room/517 lcsprinters
printer gi location/floor5/room/517 lcsfloor5
printer gi location/mit/building/ne43/room/517 mitprinters:mit.edu

Figure 5-7: Some applications, such as the printer gateway, require some manual con-
figuration, such as which printers to monitor. These configurations can be extended
so that services may manually join the applicable vspaces.

The LocationManager is a more automatic means for telling the application which

virtual space it should join. If the manager is running on the local machine, it can be

queried for a name-specifier that describes the host's location. This includes a branch

starting with the location attribute and the local virtual space. For instance, a query

could find the following location:

[location=lcs[floor=5[room=517]]][vspace=lcs]

From this location, the application can tell that the local virtual space is ics, join

the vspace, and look for nearby services. Even if no physical location-finding infras-

tructure [4] is in place, the LocationManager on a machine can be told the current

location and vspace to avoid the need for per-application configuration. Changes in

the Client Library allow easily getting this location information.

With these means of obtaining vspace configuration information, the Floorplan

application suite [24] was ported to take advantage of the virtual spaces and to use

the Client Library. A screenshot of the Floorplan application viewing and using some
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Figure 5-8: The Floorplan application, including mobile camera and printer services,
implemented in the virtual space architecture.

of the nearby services is in Figure 5-8. This graphical floorplan browser depicts local

services, including the mobile camera application and printer application that are

shown. Different floors and vspaces may be hyperlinked as well.

Like the previous version, this floorplan application must be started in some initial

location. This information can, however, be obtained from the LocationManager.

Unlike the previous version, instead of assuming the location is defined by a single,

global name-specifier branch starting with [organizat ion=mit [ .. ]], the location

is a combination a virtual space and a location within that vspace. This adds more

scalable indirection to the location concept, yet avoids too tightly coupling location

and vspaces. Once part of the floorplan is loaded, nearby regions can be in effect

"hyperlinked" and browsed, allowing the user to experience all the elements of a

connected web of services.

5.2.1 Summary

In the process of working virtual spaces, we find that they are a useable mechanism for

writing applications, including the Floorplan browser and some related applications.

For the purposes of Floorplan, the idea of vspaces integrated well with location and
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the automatic LocationManager could be written to take advantage of that, but this

does not need always be true. With an application-defined partitioning mechanism

like vspaces, the partitioning lines can be set up in a way that does not unduly

interfere with how application writers build the system. Because of this, we observe

that an application-defined partitioning scheme like the vspace mechanism is a usable

way to scale a system.
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Chapter 6

Conclusions

Service discovery systems are becoming increasingly necessary and important as mo-

bile services and devices continue to be deployed at a frantic rate and as resource sets

become more dynamic. They allow services to be efficiently discovered and used even

as the available services frequently change.

However, most existing systems are only designed to work well in the local area

with a small to medium number of services. As more sets of services and larger

regions are encompassed by the system, it eventually starts to break. Name adver-

tisement bandwidth to maintain state across large numbers of nodes and internal

data structures become limiting factors, and the schema may become too large and

unstructured to be manageable.

We explored different approaches for scaling such a system in and between do-

mains, including building a master global namespace, keying off rigid factors such as

location or service type, and using compression algorithms for transferring the data

more efficiently. However, we found a scaling scheme based on application-defined

namespace partitioning is best adapted to the specifics of this situation. In this case,

it involves treating the vspace attribute as special and partitioning the namespace

into autonomous virtual space communities. Given that these virtual spaces follow

"natural boundaries" of the world, they function as a usable building block in a sys-

tem of services. In doing this, they can cut total advertisement bandwidth by an order

of O(k) to 0(k2 ), depending on topology, and they have a minimal overhead. Us-
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ability features such as virtual space hierarchy, default vspaces, and different vspace

discovery mechanisms provide a greater level of flexibility in the INS system.

In addition, with domain-qualified vspaces, it is possible to use INS services in

the wide area. Administrative domains may be bridged with a minimum of coopera-

tion and may each have independent namespaces. Future work in this area includes

potentially adding further layers of abstraction to reference services outside the local

scope.

This virtual space mechanism provides a simple and elegant solution to many

of the scalability problems in INS. It improves intra-domain scalability by reducing

advertisement bandwidth and enables wide-area operation, with a low overhead, by

partitioning the namespace. We believe this type of approach shows promise in other

service discovery and naming systems.
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