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Abstract

This thesis presents a parallel implementation of recently proposed mathematical
methods [55, 58] which increase the efficiency of standard Magnetic Resonance
Imaging (MRI) signal acquisition and reconstruction by an order of magnitude
over an equivalent standard pulse sequence.

Standard 2D Magnetic Resonance Imaging relies on data acquisition from the
Field Of View (FOV) via sequential repetitive excitations of consecutive single
spatial Fourier components from the entire FOV. In a ground-breaking approach,
based on Maudsley's usage of shaped RF pulses,[25] Weaver and Healy [51] noted
that much more efficient encoding can be achieved using wavelets if specially
shaped Radio Frequency (RF) pulses were used to generate spatial excitation pro-
files. It has since been realized that any orthogonal basis set may be used to encode
an MR image, yielding much more efficient encoding [55, 58]. We have designed
and implemented a system which, for the first time, will produce 2D clinical MR
images in near real-time, at least an order of magnitude higher temporal resolution
improvement over currently possible for an equivalent Spin Echo pulse sequence.
Our spatial encoding methods derive basis sets from linear-algebraic approaches
such as the SVD and Krylov subspace methods, obtaining an optimal encoding ba-
sis set from the current FOV. The large amount of computing required is handled
by a heterogeneous RACEway multi-processing system directly connected to the
MR scanner via a fiber channel interface.

This document is composed of two parts. The first half is of pedagogical nature,
aiming to introduce the reader to MR Imaging from first principles and further-
more explain the recent advances in spatial encoding methods. The second half
aims to explain our contributions, giving a detailed explanation of the implemen-
tation, system integration and near real-time results obtained on a standard clinical
General Electric 1.5T MR scanner. Finally, we present a new, promising approach
of MR image acquisition and reconstruction derived from non-orthogonal vector
sets.
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SECTION 1

Introduction

Magnetic Resonance Imaging (MRI) is based on the nuclear magnetic resonance
principle (NMR), which refers to enhanced energy absorption by atomic nuclei, at
some resonant radio frequency (RF), when they are under the influence of an exter-
nal magnetic field. NMR yields a measurement of the nuclear magnetic moments
of specific nuclei. MR Imaging is a manifestation of NMR, wherein the immediate
chemical surroundings of the nuclei cause a measurable variation in those mea-
sured magnetic moments and the relaxation properties of the nuclei.

By the early 1980s, MR Imaging had become the preferred non-invasive medi-
cal tomographic imaging modality, partially due to its adjustable, tissue contrast,
usage of hazard-free, non-ionizing, radiation, rendering it especially suited for
clinical applications. MR images are thin slices of the body, produced by mea-
suring the nuclear magnetic moments of the hydrogen atoms found in the water
contained in tissues within the slice. NMR possesses great sensitivity in differenti-
ating between normal and damaged tissues or external probes.

Despite its virtues, MR data acquisition is however, very slow, currently requir-
ing between 20 seconds to several minutes per high resolution image, limiting its
usage in dynamic diagnostic imaging, as well as interventional radiology, which
require the generation of images within a few seconds from each other. This tem-
poral limitation is due in part to the spatial encoding employed and the physics of
nuclear spin relaxation.

In this thesis we will present well-known linear-algebraic methods, placed in
the context and framework of MRI, which allow us to circumvent the physical
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constraints of spin relaxation up-to a certain degree, and increase the efficacy of
data acquisition by an order of magnitude. In fact, mathematically, our methods
provide the optimal strategy for MR signal acquisition for a certain image based on
previously acquired images, but only nearly-optimal in the MR framework, since
changes and noise in the FOV can never be exactly anticipated. An implementation
of our techniques on a parallel multicomputer yields two-dimensional images with
minimal temporal overhead apart from the acquisition process itself. Our system
can produce MR images in under one second.

The first step in understanding the well-foundedness of our methodology and
its implementation is to look at the MRI process and the related physics. MRI
is a multi-parametric technique; a number of parameters can be almost arbitrarily
associated, leading to a vast array of different possible pulse sequences.[10]

In general, an MRI pulse sequence is defined as a series of RF pulses in con-
junction with magnetic field gradient pulses that together generate a NMR signal
which can be processed in a well-defined manner to produce an image. It is exactly
the form and timing of the RF and gradient pulses which determines the infor-
mation content of the image, based on relaxation properties of tissues, diffusion,
fluid flow and so on. The magnetic field gradients are used in MRI to modify the
precession frequencies of the atomic spins in a known fashion, allowing a linear
relationship between the position of the nuclei and their frequency of precession,
therefore producing signal modulation along a single arbitrary axis.

In the MRI literature, a spatially dependent complex-valued signal density S(x, y)
function is often used to represent the image information. This is not the directly
measured quantity in MRI, instead, the actual signal observed in an MR experi-
ment is the integrated weighted (e.g., by a Fourier basis function) signal density
over a volume. In order to reconstruct an image from the observed signal, mul-
tiple measurements must be made under different conditions so as to reconstruct
an estimate of S(X). These differing conditions can be a weighting of the signal by
various encoding functions. If these encoding functions form an orthogonal basis
set, the ensemble of the measurements yield enough acquired data to reconstruct
S(X), e.g. representing a function in terms of some chosen basis.

In the standard method of data acquisition, known as Fourier encoding, the
encoding functions are simply Fourier basis functions. Let the n x n complex-
valued matrix S be the discrete representation of the in-plane MR signal intensity

9



function S(x, y). Let the 2D DFT matrix

Wv vo wV ... wo
vv 0W1 Wv2 ... wn-1

W = 1 WO W 2 )/V4 ... 2(n-1)1)

L IV.. p (n -1)2

where W - e-2i/n. In this case, the Fourier-domain matrix F is related to the
image S as

F WSW (1.2)

S W*FW*, (1.3)

where the superscript * signifies the Hermitian conjugate of a matrix. In a Fourier-
encoded MR experiment, the matrix F is acquired, by using a magnetic field gradi-
ent which enforces frequency modulation of the MR signal in one dimension, and
producing successively n lines of echos, wherein a small phase increment has been
enforced on each echo. If the time between two consecutive sample acquisitions
is TR, then in order to acquire the full matrix F to yield an n x n image, a total of
n x TR time is required.

A number of methods have been developed to try and overcome this exorbitant
time limitation. For example, so-called Echo-Planar Imaging (EPI) pulse sequences,
try to minimize acquisition time by using a single excitation to acquire more than
one echos from the atoms, [52, 18] by "blipping" to cause a small amount of phase
shift after each acquisition. The downside of EPI sequences is the requirement of
special hardware, due to the extreme requirements placed on the gradient field
switching times (e.g., gradient slew rates,) as well as inhomogeneous signal inten-
sity across frequencies. Another example is so-called Gradient Recalled Echo in the
Steady State (GRASS) pulse sequences, which acquire an echo shortly after excita-
tion, without first refocusing it [18, 53]. The downside of GRASS-type sequences
is that they are susceptible to magnetic field inhomogeneities caused by tissue etc
(although in some cases, such as BOLD sequences, used in functional MRI, fMRI,
such inhomogeneities are actually exploited).

An alternative to increasing the efficiency of MR signal acquisition stems from
realizing that Fourier encoding is a special case of a change of representation of
a 2D image, first identified by Andrews and Pratt.[2] A matrix S can be mapped
into a differently encoded representation, R by applying a separable linear unitary
transformation (e.g. that is invertible,) [39]

R A*SAR (1.4)
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S Ac RA*. (1.5)

The matrix R is the new image representation, and Ac, A- are unitary (orthog-
onal) matrices, spanning the column and row spaces of S respectively, merely an
alternative definition of the weighting functions. The column-matrix Ac spans the
column space of S: each column of S can be formed exactly by a linear combina-
tion of the column vectors ui, i = 1... n comprising the matrix AC [17]. Similarly
the column-matrix A-R spans the row space of S.

It has been shown [32] that for small flip-angle excitations1 (< 300), the MR
imaging process is linear: if the row-matrix P whose rows define unique RF pulses
to be used for excitation of the volume, and if some time (TE) after each excitation a
set of echo samples is acquired, during which time a frequency encoding gradient
is applied, then the response of the system is

R = PF, (1.6)

where the row-matrix R contains the digitized echo response, each row i corre-
sponding to the i'th RF excitation defined by P.

It is this linearity of the MR imaging process which gives us the freedom to use
optimal encoding basis sets,[58] such as the well-known singular value decompo-
sition (SVD), to acquire an MR image in a fraction of the time that is required to
sample the Fourier domain using other standard methods.

We will first examine the physics behind the formation of an MR image in Sec-
tion 2. We will turn to understanding the linear algebra-derived encoding meth-
ods and introduce encoding by non-orthogonal vector sets methods in Section 3.
In Section 4, we will present results obtained on a standard clinical GE 1.5T scan-
ner for each of the linear-algebraic methods described. Finally we will describe
the hardware and implementation of our near real-time system in Section 5. Our
concluding remarks and future extensions for near real-time, three-dimensional,
very high resolution volume imaging are offered in Section 6.

'As will be explained in the next chapter, the flip angle refers to the angle between the magneti-
zation vector quantity defined by the sum of nuclear moments in the excited volume and the static,
external, magnetic field axis of the MR scanner.
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SECTION 2

MRI Basics

An essential goal of this thesis is to explain the process by which an MR image
is constructed in order to understand how to optimize the associated data acqui-
sition. In this section, we present the well-known physics of NMR and how it is
used to produce a two-dimensional image. Armed with this knowledge, we can
then turn to optimizing the data acquisition process.

With this intent, this entire section is merely a review of the relevant physics,
which can be found in many college-level electromagnetism and quantum me-
chanics books. The reader already comfortable with these concepts may wish to
skip to Section 2.8. On the other hand, readers already familiar with the basics of
MRI may find it useful to skip the entire section and immediately turn to our spa-
tially selective encoding methods in Section 3. Finally, advanced readers already
familiar with spatially-selective pulse sequences, such as wavelet-encoded MRI
and SVD encoding may wish to turn to the last two sections, where we describe
the main contribution of this thesis: the design and implementation of a complete,
highly inhomogeneous, system which achieves an order of magnitude faster MR
imaging over an equivalent Spin Echo pulse sequence.

2.1 Overview of the MRI process

Standard MR images are the end-product of a number of steps, that can be briefly
summarized as follows: [53]

1. First, a strong, uniform, magnetic field is used to align all the randomly
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aligned nuclei in the tissue. This alignment produces an overall "magneti-
zation" in the tissue.

2. This equilibrium magnetization is tipped off-axis by the magnetic component
of an RF pulse at some resonance frequency. In effect, the nuclei respond by
departing from the equilibrium by an amount proportional to the applied RF
power.

3. Once the RF pulse is turned off, the nuclei begin to relax back to the equi-
librium state. Due to their surrounding (sometimes time-varying) chemical
environment, they relax at different rates.

4. The relaxation process produces an RF signal proportional to the amount of
the initial alignment. The different relaxation rates of the nuclei give rise to
tissue contrast.

5. The positions of the nuclei are localized by modulating the signal they pro-
duce, by using spatially varying magnetic fields, called "gradients".

6. The modulated signal is acquired after a freely specified "echo time" (TE)
and its Fourier transformation yields back the originating positions of the
signals, yielding an MR image.

We now turn to a more rigorous description of the basic physical principles
that underlie the above process. We will turn to both the classical and quantum
mechanical descriptions of magnetic resonance, as the first is most convenient in
understanding the dynamic and transient effects, whereas the latter is what give
rise to the resonance phenomena.

2.2 NMR & Physics Essentials

Hydrogen, the most abundant element in the Universe, and also the human body,
is the main focus of clinical MR imaging, and hence the focus of our discussion. It
is composed of a single proton nucleus, positively charged. Classically, it possesses
a magnetic field, causing the nucleus to act as a tiny bar magnet. The proton can
be thought of as spinning about the North-South axis, in analogy to the magnetic
field produced by a moving charge.

The hydrogen nucleus is paramagnetic1 and thus, under the influence of a
strong, uniform, magnetic field tends to align itself with the external field - in

'A paramagnetic molecule is one with an unpaired electron.
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a sense, it becomes "magnetized." Although it is the classical description of the
particles that provides almost all the laws needed to explain the formation of the
MR signal, it is the quantum mechanical description which gives rise to nuclear
magnetic resonance, therefore we explore the two in parallel.

N

S

Figure 2-1: A proton and the magnetic field that can be thought of as emanating from it.

2.2.1 Classical view of orbiting charged particles

Let us consider an electric charge q traveling with speed v in a circular orbit of
radius r. Consider a single point along the trajectory of the charge. Clearly, the
charge passes through that point with a period of T = 27r/v, and is therefore
equivalent to a current I = q/T = qv/27rr.[14] Classical electromagnetism [40] tells

us that a circuit enclosing an area A with a current I flowing through it possesses
an orbital magnetic dipole moment

M = A- x I, (2.1)

where P is a unit vector from the center of rotation to the particle, A = 7rr 2 is the

area traced by the particle motion, and I = - is the vector representation of the

current.

Combining the above two, we have that the orbital magnetic moment is

-. 1
M = -qIrIP x 6. (2.2)

2

Since the particle is moving in a circular orbit, it also possesses an orbital angular

momentum, L, defined as

L = mr x = mr? x 6, (2.3)

where m is the rest mass of the particle.

14



AM

Figure 2-2: The flow of a current in a circular orbit tracing an area A gives rise to a magnetic

dipole moment.

The ratio of the magnetic moment and the angular momentum is known as the

gyromagnetic ratio, y:

y M q (2.4)
L 2m

2.3 Quantized view

In the quantum mechanical description of things, basic units are quantized in mul-

tiples of Planck's constant, the orbital angular momentum and magnetic dipole

moment are not an exception. The orbital angular momentum of atoms is quan-

tized in magnitude[14]
=1(1 + 1)h 2 , (2.5)

where 1 is a non-negative integer, the orbital angular momentum quantum number,

and h is Planck's constant over 27r. It must also be quantized in orientation. The

allowed orientations of the orbital angular momentum relative to a fixed axis, e.g.,
the z axis 2 , is given by[14]

Lz = mjh, (2.6)
2L is a vector and can thus be thought of as being aligned with an axis; choosing the z axis,

arbitrarily defining the particle motion to lie on the x - y plane, the classical angular momentum
lies on the z axis.
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where m1 = 0, ±,.. ., ±l. Note that given some orbital angular momentum quan-
tum number 1, there are 21 + 1 compatible orientations.3

Similar to the orbital angular momentum, elementary particles posses an in-
trinsic spin angular momentum4[14]

As = yS = gyS, (2.7)

where g is the spectroscopic splitting factor and S is the intrinsic spin, with a quan-
tized magnitude

S2 = s(s + 1)h2 , (2.8)

where s, the spin momentum quantum number, can be a half integer (thus explain-
ing the even number of possible atom states5 ) S is also, quantized in direction,[14]

Sz = msh. (2.9)

The electron and the proton have a spin of s = 1/2, and thus S2 = 3/4h2 and
the two allowed orientations are ms = ±1/2.6

Now, we are ready to express the important result the above physics lead us to:
the energy states of particles under the influence of a magnetic field.

Under the influence of an external magnetic field BO, an isolated proton (or elec-
tron) has two possible energy levels corresponding to each of the two possible spin
orientations:

E±= -MsBo

= -ysS|IBO|
1

E2 1hysIBoI. (2.10)

The energetically favorable energy state is always the minimum energy state, which
immediately reveals itself from (2.10) as the one wherein the spin is aligned with
the direction of the imposed magnetic field (E+).

3The number of allowed orientations of f (21 + 1) is exactly the number of compatible eigenval-
ues of Lz.[14]

4When considering individual atoms, this is an essential addition to the quantized angular mo-
mentum, since, experimentally, some atoms exhibit an even number of possible orientations. In
particular, this was the observation in the Stem-Gerlach experiment, wherein a beam of cesium
atoms under the influence of a transverse magnetic field gradient was split into two beams.[44]

5 The quantization of possible z orientations in half-integer multiples of h was first proposed by
Uhlenbeck and Goudsmit.[49]

6For a proton, the spin angular momentum is about 2.793 times as effective as the orbital angular
momentum.
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Lz

+1 h - - -2

Figure 2-3: A spin s 1/2 elementary particle can only be in one of two allowed orienta-

tions with respect to a fixed axis. It can however exist at any angle on the perpendicular

plane (tracing a cone).

The energy equation above, further reveals that MR can be performed using
any nucleus so long as it possesses a spin (having an odd number of protons or
neutrons). For example, sodium with a spin of 3/2 can be imaged, but helium
which has no spin, can not. The reason for imaging spin 1/2 nuclei is that they
are particularly easy to observe.[53] In particular, hydrogen is not only the most
naturally abundant element, but it also has the highest gyromagnetic ratio of any
element. From the moment on that each state has a unique energy associated with
it, we are immediately given the ability to interact with the nuclei.

2.4 Quantum Mechanics & NMR

When an external magnetic field is applied, the random orientations of the particle
spins are in one of the possible spin states, corresponding to the allowed orienta-
tions. The equilibrium of the system favors the least energetic state. Considering
the special case of protons or electrons with s = 1/2, by equation (2.10) the min-
imum energy state is the one wherein the spin is aligned to the field. Therefore

there will be an excess of particles which are aligned with the field. The other ori-
entation, that opposed to the field, will also be present, simply due to the ambient

thermal energy. The reason for this is that the energy difference between the two
states is much smaller than the thermal energy. The energy difference, given by

AE E_ - E+

= hys|B0|

hwL
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= hvL (2.11)

reveals that a photon of frequency VL = YI Bo /27r can force a proton to shift from
the aligned (parallel) state to the opposed (anti-parallel) state. This frequency is
called the Larmor frequency[53] and is about 42.57MHz for a proton in an external
field of strength BoI = 1 T (Tesla). This frequency is in the RF range.

Because of this energy difference, the applied field causes a net excess of pro-
tons aligned with the field. The population difference is then[53]

=_ e-A, s (2.12)
n- kBT

where kB is the Boltzmann constant and T is the absolute temperature in degrees
Kelvin.[53] kBT is the average thermal energy of the system. At 1 Tesla, the pop-
ulation difference is about 3 parts per million. It is this population difference that
gives rise to the signal observed in NMR.

If we consider the overall alignment of protons under the influence of the mag-
netic field, we can associate a classical vector 4, referred to as the net magnetization,
as a representation of this overall alignment.

2.5 Observing '

Once the net magnetization ' has been aligned with the external magnetic field,
and has reached an equilibrium, so long as there is no change, we can not observe
it.

We can however, disrupt the equilibrium magnetization by applying an RF sig-
nal at the Larmor frequency in order to observe it. An RF signal is an oscillating
electro-magnetic field, or alternatively, photons of energy proportional to the fre-
quency. If that frequency matches the Larmor frequency, its effect is to cause the
body's net magnetization to oscillate from the parallel to the anti-parallel orienta-
tion since individual nuclei can absorb a photon and flip from the parallel to the
anti-parallel state. This is the first step of the process by which an MR signal is
generated.

Classically, ' can be thought of as being much like a spinning top which is
momentarily flicked by a force F and begins to wobble from side to side.

This wobbling is called precession. The frequency of the precession is exactly
the Larmor frequency. If the RF pulse is applied at intervals equal to the precession
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Figure 2-4: Under an external magnetic field, proton spins are aligned parallel or anti-
parallel to the field, with a small fraction of extra spins aligned parallel to the field. By
absorbing a photon of energy hYL, a proton can flip from the parallel to the anti-parallel
state, while the reverse causes an emission of a photon.
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F

Figure 2-5: Spin precession is equivalent to a spinning top.

frequency, the precession angle will increase at each interval. The same effect can
be obtained by increasing the strength of the RF pulse. A 900 angle of precession
(in the classical sense, of group behavior of protons) is said to be caused by a 900
pulse.

In the following sections we model the behavior of the magnetic moments, first
at the level of individual nuclei, and then extend this to the group behavior of large
numbers of atoms.

2.5.1 Classical description of precession of a single spin

Suppose that we consider a nucleus to be a large rotating sphere, with a magnetic
dipole moment M. If the charge of the sphere is positive then the magnetic moment
vector is pointing in the same direction as the angular momentum vector. On the
other hand, if the charge is negative, then it is pointing in the opposite direction.
In the presence of a magnetic field Bo, the dipole does not act as a compass needle
which oscillates about the direction of the field until it eventually aligns itself with
it due to friction. Instead, due to its rotational angular momentum, the sphere will
precess, that is, the angle between M1 and Bo will remain constant. Let us see why
this is the case.

We can think of the dipole as two equal and opposite magnetic "poles" ±q,,

separated by some distance 1, so that M lqm. The magnetic field will impose
forces on both poles, and therefore a torque is created which is perpendicular to the
angular momentum vector. So long as the magnetic field is homogeneous, this
condition creates steady precession.[11, 12]

The torque applied to the system is defined as the time rate of change of the
total angular momentum:[11]

d L
d= i, (2.13)
dt
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Figure 2-6: The classical description of a nucleus in terms of a tiny magnetic dipole ex-
plains the steady-state precession of the spins.

where T is the torque. During some short time At, the torque adds to the angular
momentum of the particle a vector increment AL in the direction of the torque vec-
tor. In a uniform magnetic field Bo, the torque tends to rotate the magnetic moment
M into the direction of the field, expressed by the following cross product:[141

T = M x BO. (2.14)

Since M = yE, it follows that for an isolated magnetic moment:

dL dM~
= M x Bo <- = yM x BO. (2.15)

dt dt

This last equation describes the behavior of a single spin in a magnetic field
BO according to the laws of classical physics. In solving the differential equation,
assume without loss of generality, that the magnetic field has only a positive-z
component, i.e.,

BO = IBolk. (2.16)

Under this condition, the solution for the magnetic dipole moment becomes

S= Mtcos(wLt + )i - Mtsin(wLt + (P) + Mzok, (2.17)

wherein the constants Mt, P and Mzo are determined by the initial conditions. The
angular speed WL is the, by now familiar, Larmor frequency yBo/27r. As we will
see later, it is exactly the transverse magnetization (the i, j components) which give
rise to the observable MR signal.
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Figure 2-7: Relationship between the vectors M yL, T = M x BO and the fixed coordi-
nate system for a single nucleus.

That solution describes a magnetic moment M of the nucleus as simply a rotat-
ing vector about the z-axis counterclockwise (that is about the direction of -BO, at
the Larmor frequency.7 Note that by the above solution, we have that

dqp = - WL, (2.18)
dt
dO

=- 0 (2.19)dt

e.g., the precession frequency is the Larmor frequency, regardless of the angle 0
between the magnetization and the field.

This is the classical physics of the precession of a single, isolated, nucleus under
the influence of a homogeneous external magnetic field. The next step towards
understanding MR is to explain the formation of the measured quantity, the MR
signal. We must bear in mind that the MR signal comes from voxels composed of
countless individual nuclei, and not individual nuclei. However, note that under
the laws of classical physics, the net magnetization vector is merely the integral
over the distribution of the individual nuclear magnetic moments.

7 ct is customary to define the angular velocity 'L -yBO, called the Larmor vector.
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2.5.2 Motion of the net magnetization vector T1

The net magnetization M of a voxel in the imaged volume is simply made up out of
all the individual magnetic moments ji. Then, the net magnetization, for n nuclei
in a sample, is simply

n-1

M = P10 + 911 + ... + gln-1 = 9i (2.20)
i=0

The time dependency of the net magnetization vector exposed to an external
magnetic field follows immediately

dt= Y( x O) (2.21)

At equilibrium, this net magnetic moment M will be aligned with BO and will
thus have no measurable components (it is the x - y components that give rise to
the signal as we shall shortly see).

2.5.3 Generation of the MR signal: Induction

We have seen that if the magnetic moment of a nucleus has a component in the
x - y plane, and is under the influence of a homogeneous magnetic field the par-
ticle will experience a torque that is proportional to the strength of the magnetic
field. As a result, it will precess at the Larmor frequency. In this case, if the nu-
cleus is surrounded by a receiver coil, then by Faraday's law[40], an alternating
current will be induced on the coil, the frequency of the current being equal to the
precession frequency of the particle.

If the angle (0) of M to the static magnetic field is 0, in which case the net mag-
netization does not have an x - y component,8 there will be no MR signal, since
the particle will not precess in the absence of torque. Unfortunately, as we have
seen, the equilibrium state, i.e. the minimum energy state, of the net magneti-
zation vector is that aligned with the external magnetic field. Therefore, merely
placing a volume in a very strong magnetic field is alone insufficient to produce
an MR signal.9 Instead, it is essential to force the net magnetization into departing
from the z-axis, by making dO/dt A 0. We already have the necessary physics to
understand this, so we now turn on how to accomplish it.

8Since individual paramagnetic nuclei are always at an angle to the magnetic field, due to their
quantum mechanical states, they are always precessing, each moment Ai possessing an x = y
component. However, these precessions are phase incoherent, and thus cancel each other out.

9The magnetic field of the earth is 0.5Gauss, which produces a very tiny overall alignment, too
small to be measured.
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Figure 2-8: The rotating precession of the magnetic moment of the proton, much like a
bar magnet, induces a current on a receiver coil. In the absence of any dampening, or
relaxation factors, the current detected is sinusoidal at the Larmor frequency.

2.6 pi Under a Pulsed Magnetic Field

In MR imaging, the necessary rotation of the magnetization is accomplished by
the magnetic field of an RF pulse. It is important to note that (2.15) holds for a
time-dependent magnetic field, not only for a static one. This enables us to consider
the effects produced by alternating magnetic fields under the scope of classical
physics.

Assume that we apply a second magnetic flux density B1 such that it is parallel
to the x-axis and varies with time, by rotating about the x - y plane. That is, let

B1 = 2Bicos(wCLt)i. (2.22)

The equation of motion of the dipole moment would then become

dXI
dt= yM x (Bo + B1).dt

(2.23)

As will be demonstrated later, the time dependency of B1 is needed in order
to make d6/dt maximal, since the net magnetization is precessing at the Larmor
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frequency during the application of this field. But first, we explore the caveats of
generating such a field.

To make such a field is apparently not an easy task,[10, 45] instead, a plane
polarized field is applied,10 such that

B1 = {Blcos(wLt)i+ Blsin(wLt)j} +{Bicos(wLt)i - Blsin(wLt)j}

- 2Blcos(wLt)i. (2.24)

This field can be thought of as having two components, one rotating on the x - y
plane clockwise (B') and the other rotating counterclockwise (Bcc):

BC = B1(cos(wt)i+sin(wVLt)j), (2.25)

BCC = B1(cos(wLt)i - sin(wLt)j), (2.26)

CL WL

x

Figure 2-9: The decomposition of a plane-polarized field into two rotating components.

We can solve the equation of motion of the magnetic moment ((2.15)), obtaining[43]

dO
dO = yB1 , (2.27)

10Such a field can be produced by using two identical coils at right angles to each other, and with
alternating currents which are 90 degrees out of phase.
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therefore obtaining the maximal torque on the vector M and subsequent rotation
relative to the static field.

We must now turn into formulating and understanding the equation of motion
for a spin under the effects of both the static and rotating magnetic fields.

2.6.1 Rotating frame of reference

It is now convenient to switch into the frame of reference that rotates along with
BC. The magnetic moments which are precessing about B0, by convention, the
z-axis, at the Larmor frequency, will then maintain the same orientation as the
counterclockwise component of the B1 field, BC. On the other hand, the clockwise
component B' is rotating away from this frame of reference at twice the Larmor
frequency, and thus has no effect on the magnetic moments." However, because
B'c is maintaining the same direction relative to the spins, its effect is maximal.

Z,

xY

Figure 2-10: In a frame of reference rotating along with the net magnetization, the counter-

clockwise component of the B1 field is always aligned with the magnetization, rendering
its effect on the latter maximal.

Note that from the point of view of the magnetic moments, the field B'c is acting
much like Bo if we rotate our viewpoint. This means that the magnetic moments
will also be precessing at some Larmor frequency w, proportional to B1, about

"It can be shown that near resonance the counter-rotating component of the field may be ne-
glected.
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the direction of B"1! The magnetization vector, precesses on the y' - z' plane, in
effect, flipping away from the equilibrium longitudinal magnetization along BO. If
the field Bc is applied for an amount of time, the magnetization vector will rotate
down to the y' axis by a certain amount, the so-called flip angle.

The complete motion of the sum of the magnetic moments, in the fixed frame,
is the superposition of these two precessional motions: starting from the z-axis, it
spirals down to the x - y plane.

Since the effect of the counter-rotating component can be neglected, the new
equation of motion becomes

dM yM x B±c + Bo. (2.28)
dt

By using a rotating frame of reference, which rotates counter-clockwise about
the z axis at the Larmor frequency, we can eliminate the time dependency of B1

and reformulate the equation in a simpler form. Before we embark on this, let us
first understand the transformation by looking at the equation of motion under the
static field BO which is aligned with the z axis.

Given a vector function of time in rectangular coordinates,

F(t) = Fx(t)i + Fy(t)j + Fz(t)k, (2.29)

assume the elementary vectors retain a fixed length, that is we only allow rotations.
Consider the case wherein the frame of reference defined by the elementary unit
vectors is rotating with an angular velocity .l such that

di -

dt= x i. (2.30)

The time derivative of F is then given by:[4, 43]

) lab - Ka) ot x F, (2.31)

where the subscripts "lab" and "rot" signify the laboratory and rotating frames of
reference, respectively.

Given this result, we can rewrite the original equation of motion of the magne-
tization under the BO field (equation (2.15)), as

t+ x M = yM x Bo < (2.32)
mt

at = M x (yBo + Q). (2.33)
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The last equation tells us that under the rotating frame, M acts exactly the same
as in the laboratory frame, provided the actual magnetic field BO is exchanged for
an effective field Beg where

Beff - Bo + . (2.34)

This agrees with our previous analysis: consider the case wherein Beff = 0, that
is, wherein Q = -yBok. This special case describes a frame of reference wherein
the magnetization vector, M, maintains its orientation with the elementary vectors
i, j, k of the reference frame, but the reference frame itself is rotating at the Larmor
frequency with respect to the laboratory!

We are now ready to formulate equation (2.28) in the rotating frame: first, note
that in this frame, Bc' is static, and, since the axis of rotation coincides with the
direction of BO, it will also be static. Then, (2.28) becomes:[43]

dt = M x yBc + Bo (2.35)
kdJlab

at( r = M x [yBcci + (WL + yBo)k]. (2.36)
rot

This equation is equivalent to the original equation of motion (2.15), where we
let[43]

Beff = Bci + ( + Bo)k. (2.37)

Physically, we are simply stating that the moment acts as if it is experiencing a
static magnetic field Beff. The moment precesses in a cone of fixed angle about the
direction of neff at an angular frequency yI Beff

In this rotating frame of reference, we can see from (2.36) that the motion of the
moment lies in a cone around B1 ,, and also, that it is periodic. Furthermore, if it
was initially aligned to z then it will return to it in one period.

Finally, another thing the above equation is telling us in the case where we only
turn B1 on for a short amount of time is the amount by which the magnetization
vector is tilted from the z axis assuming it was initially aligned with it, e.g., the flip
angle.

2.6.2 Flip angle

The forced rotation of the magnetization vector from the z-axis down to the x - y
plane in the classical sense is called the magnetization flipping. In the quantum
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Figure 2-11: The precession of the net magnetization vector about the effective magnetic
field traces out a cone whose tip is the center of the coordinate system and whose base is
perpendicular to the effective field.

mechanical view, this is the equivalent of a forced shift in the ratio of nuclear spin
states via individual spin "flips" after absorption of photons at the resonance fre-
quency. The angle by which the magnetization flips (FA) from the BO axis, is de-
pendent on the B1 field which can itself be dependent on time (e.g., a pulse):

da(t) -+
=i d ) yBcc(t), (2.38)

dt 1

where a(t) is the angle between the magnetization vector and the z-axis, the flip
angle. We thus have that

FA = a(te) - a(ts) = y fs Bc(t)dt, (2.39)

where ts is the starting time of the field application, and te is the end time.
What we have seen so far suggests a way to observe magnetic resonance: we

could simply put the material we wish to study, in a magnetic field Bo, surround it
with a coil whose axis is perpendicular to the Bo field. In the thermal equilibrium
there will be a net excess of protons aligned with Bo. By applying an alternating
current on the coil, thereby generating the B1 field, and applying it for some time
tw, we could force the net magnetization to flip by 90 degrees. The magnetization
would then be perpendicular to Bo and would therefore precess at the Larmor
frequency. This would produce a flux through the receiver coil, alternating as the
spins precess. The induced current can then simply be observed.
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An apparent problem with the above description of our MR experiment re-
lated to the magnetic dipole environment of each nucleus, is that according to the
physics we have seen so far, the induced current on the coil would persist indef-
initely! In reality, by several physical processes, the spins tend to return to the
original equilibrium state as time progresses. The rate by which they "relax" is
dependent on their chemical surroundings.

We finally turn our attention to understanding this relaxation process.

2.7 Relaxation Processes

In the absence of any relaxation or dampening factors, once the magnetization
vector is flipped from the Bo axis, and precesses, the signal induced on a nearby
detector would be sinusoidal and persist indefinitely in time. In dense nuclear en-
vironments (e.g. molecules and assemblies of molecules,) the magnetization vec-
tor decays over time, via "relaxation" processes [41], a descriptive mechanism of
the macroscopic effects of numerous individual nuclear magnetic dipole moments.
There are two types of relaxation: longitudinal (also called T1 or spin-lattice) re-
laxation and transverse (also called T2 or spin-spin) relaxation. Each relaxation
process affects a different attribute of the net magnetization, and each is a manifes-
tation of a different interaction.

Once the net magnetization (M) has been tilted away from its alignment to the
external magnetic field Bo, it will begin to return to it, via an exponential process
of characteristic time T1. This relaxation is a manifestation of the exchange of en-
ergy between the protons and their molecular surroundings, the lattice being the
thermal bath that the particles are in.

Furthermore, some exchange of energy in-between the nuclei also occurs, dipole-
dipole coupling, causing phase decoherence. This is also an exponential process,
with a characteristic time T2. Intrinsically, the two are very different: T1 is related
to spin flips between the allowed quantum states, and hence a return to the equi-
librium state, whereas T2 is a dephasing phenomenon, wherein no spin-flips are
involved, rather the presence of the spins cause local differences in the magnetic
field experienced by other nuclei. The former type of relaxation (T1 ) yields infor-
mation about the chemical surroundings and thus molecular structure, whereas,
the latter (T2) yields information about the mobility of the protons.[53]
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2.7.1 Spin-lattice (T1) relaxation

Protons in the higher energy state can make a transition to the lower energy state,
returning to the equilibrium magnetization, by either a spontaneous or stimulated
emission of a photon. Most longitudinal relaxation transitions are stimulated[5].

This stimulated relaxation is a result of other existing magnetic fields in the
sample, caused by translational and rotational molecular motions in the sample.
Spin-lattice relaxation occurs because these magnetic fields may be oscillating at
the correct Larmor frequency dictated by the main Bo field. The excited proton
spins make a transition by releasing a photon in the form of thermal or kinetic
energy, hence, an exchange of energy between the spin system and the lattice.
One such example of stimulated relaxation is the result of magnetic dipole-dipole
coupling. Consider a water molecule, made of two hydrogen atoms and an oxy-
gen one. These molecules are moving randomly, creating magnetic fields by their
dipole moments, which are fluctuating with time (due to the motion). In Figure 2-
12, we consider the water molecule rotating about one of the hydrogen atoms,
about the Bo axis, precessing at the Larmor frequency, merely a choice of reference
frame, then the other hydrogen atom experiences a sinusoidal magnetic field B
acting on it, caused by the former atom.

Field experienced by darker hydrogen atom

H H

Figure 2-12: Magnetic dipole-dipole coupling in a water molecule.

Returning to the quantum mechanical picture, the protons can only take a spin
state that is parallel or anti-parallel to the external field, as the other fields are much
weaker and can be ignored. Therefore, if magnetic fields due to the lattice cause
protons to flip their spins, the net magnetization vector will be changed along the
external field direction. That is, the net magnetization vector will only change
along the direction of Bo, by convention, the z-axis.

The characteristic time of this process is called T1. If a 900 pulse is applied, then
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the return of the longitudinal magnetization to the equilibrium is

9= 00(1 - e-lTi), (2.40)

where go is the thermal equilibrium magnetization.
A number of things come out of a close examination of the spin-lattice relax-

ation process. First of all, in a sample of molecules, there is a large distribution of
rotations. However, only rotations at the Larmor frequency can influence T1. Since
the Larmor frequency is proportional to the applied field B0, T1 will vary by the
field strength. In general, T1 is inversely proportional to the density of molecular
motions at the Larmor frequency. However, molecular rotation distribution in a
sample is also proportional to the temperature of the sample. Another factor af-
fecting T1 relaxation is the viscosity of the sample. Although the temperature of
the human body does not vary enough to significantly affect T1, the viscosity from
tissue to tissue does vary significantly

T=340K
T=300K -
T=260K Solid

Viscous Liquid

Z N : LiquidZ id

Larmor Frequency o)L=B 0  Larmor Frequency WL = FBo

Figure 2-13: Dependence of the number of molecules rotating at the Larmor frequency in
a sample, as a function of sample temperature or viscosity.

In the case where repeated 90' pulses are used, the effect of the pulse depends
directly on the longitudinal magnetization left in the sample, and thus, tissues with
short T1 relax quickly and produce an intense signal throughout the excitations.
On the other hand, long T1, with slow longitudinal recovery, translates to signal of
lesser magnitude throughout the images or spectra.

2.7.2 Spin-spin (T2) relaxation

The second prevalent form of relaxation and signal loss over time in MRI is an ef-
fect of the tiny nuclear magnetic dipoles on each other, due to their very close prox-
imity. A dipole, produces a small magnetic field, which falls off as 1/r 3 . Therefore,
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Figure 2-14: Expected magnetic field experienced by a proton in a sample, under a com-
pletely homogeneous field Bo, giving rise to phase decoherence, or T2 relaxation.

nearby protons will be experiencing the external field BO with some small varia-
tion because of the other protons in the vicinity. For example, in water, a typical
local magnetic field ranges over ±5 x 10-4Tesla. Even if the external field Bo is
completely homogeneous, an incorrect assumption, different protons in a sample
of water will experience a B' which is variable in that range.

The effect of this variation is of course that the Larmor frequency of protons in
a sample varies by a small amount. Even if two individual protons begin to pre-
cess in phase, after some time, because their precession frequencies will be slightly
different, they will be out of phase. In the rotating frame, this results in ablation of
the x - y component of the magnetization. The characteristic time for this process
is T2 < T1. It is inversely proportional to the number of molecular motions less
than or equal to the Larmor frequency. The net magnetization in the x - y plane
drops to zero due to this dephasing, while the longitudinal magnetization grows
until it reaches so due to spin-lattice relaxation.

lxy = yxyoe-t/T2. (2.41)

In equilibrium szy = 0. As was noted above, we can not assume that the external
field Bo is completely homogeneous. The effect of inhomogeneities in this field is
modeled as part of the spin-spin relaxation time T2*:

1 _1 y~A~oj- = -- + ,JBO (2.42)
T2 T2  2

where ABO captures the inhomogeneity of the external magnetic field and T2* is the
observed or effective spin-spin relaxation time. [53]
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2.8 The Bloch Equations

The above sections fully explain the NMR principle and the generation, detection
and decay of the MR signal. We finally put together all the equations and arrive
at the full equation of motion for the net magnetization vector in the presence
of a static external magnetic field BO, an excitatory pulsed magnetic field B1 and
relaxation due to both dipoles giving up radiation as well as due to the interactions
in-between the dipoles.

Starting from the equation of motion of the magnetization vector, equation
(2.28), we must now add the T1 and T2 dampening terms which leads to the so-
called Bloch equations (2.45):[4]

y( x B - (2.43)
dtA )X T

d = y(' x ) - (2.44)

dt 4 2(2.45)
=4 yg x Z - 4 (2.45)

in the static or laboratory frame of reference.
When properly integrated, the above coupled differential equations will yield

the x, y and z components of the magnetization vector as a function of time. It is
the Bloch equation that describes the MRI physics phenomenon.

2.8.1 The Bloch equations in a rotating frame

Before transferring the Bloch equations to the rotating frame of reference that was
used above, we will add another component to the MRI field configuration. Con-
sider adding a gradient to the field, aligned to the z axis, G(z) = Bg(z) = aBo/az #
0,12 which will be described in further detail at a following section. This gradient
is used to select a slice out of the volume under the influence of Bo. Simply put,
depending on the z position of a sample, the Bo field is modified by the amount
Bg(z), hence modifying the Larmor frequency of the slice at that z position, com-
pared to any other part of the sample. This allows selective excitation based on the
z position. The field configuration is then

Bo Bo+Bc+Bg(z) (2.46)

= Bl(t)cos(wVLt)i - Bl(t)sin(wCLt)j + (Bo + Bg(z))k, (2.47)
12Ideally, we would also have aBo/x = aBo/@y = 0.
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wherein we approximate the B1 filed only by its counter-clockwise component as,
it only, has any significant effect.

Now, in order to obtain the magnetization vector A' in the rotating frame we
again look at the time derivative in the rotating frame

d-y dal'
=_ + WL x', (2.48)

dt dt

where L= -yBO (the negation comes from the fact that the precession and thus
rotation frame is counter-clockwise).

The equation of motion for the magnetization vector then becomes

= yt' x Y' B g o, (2.49)

since the cross product p7 x B is independent of the rotation of the reference frame
- the two vectors maintain their mutual orientation. Clearly, the BO term drops out,
and what we have left is

dt
dt = YA' x (B1 +B') (2.50)

Then, note that in the new rotating frame the B1 field only has an x component, as
it is rotating along. That is,

B' = Bi(t)i, (2.51)

whereas the z gradient field remains unmodified, as the whole frame is rotating
about the z axis.

We can finally rewrite equations (2.43)-(2.45) in the rotating frame, including
the relaxation terms which remain unaffected:[43]

d = ysyBg(t) - X(252)

dt = yxBg(t) + yuzB 1 (t) T231 (2.53)

dtz___ - y fyB(t) - _ _Z - (2.54)
dt T,'D~L

This last set of equations completely describes the nuclear magnetic resonance
principle and its solution yields the MR signal for a certain sample, whose relax-
ation properties are known. The importance of the Bloch equations is that in low
B1 fields, which do not tilt the net magnetization's precession angle by more than

~ 300, the signal produced by the excitation caused by B1 is linear to the input
B1 excitatory field. This fact is central to the success of our non-Fourier encoding
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methods: linearity of the MR process is the reason why spatially selective non-
Fourier encoded MRI works.

Before we depart from the physical principles and turn our attention to our
novel non-Fourier encoding methods for MRI, we must first understand how the
signal acquired in an MR experiment can be made to contain spatial information
and hence can be reconstructed into an image, based on the knowledge provided
by the Bloch equations. The addition of the gradient magnetic field Bg in this sec-
tion was a first step towards localizing the acquired signal: by using the gradient
field during excitation of the sample, we can selectively excite some slice profile of
the sample rather than the whole volume. However, we must now discuss how to
localize the signal in the remaining two in-plane dimensions. In the next sections
we will discuss slice MR imaging, with in-plane Fourier (spin-warp) encoding,
attributed to [22, 9], although other approaches based on "true" 3D Fourier encod-
ing, or 2D projection and reconstruction exist.

2.9 Spatial Localization of the MR Signal

So far, we have seen how each proton possesses an intrinsic spin, the ensemble
of the spins giving rise to a net magnetization vector. Under the influence of an
external magnetic field, if the net magnetization has an x - y component, then it
precesses around the z, field, axis. This precession induces a current on a wire
surrounding the sample, then, that is the observed MR signal. The frequency of
the alternating current is exactly the Larmor frequency.

The problem however, lies in our inability to extract the position of the spins
throughout the sample which gave rise to the signal. If we break up the sample
volume into elementary cubes, called "voxels", and consider each voxel to have
its own net magnetization vector, then the problem is in finding out which voxels
produce what amount of the observed signal. If we can not break up the volume
into voxels, then we can not produce an image.

Clearly, all "voxels" in a sample will be precessing at the same Larmor fre-
quency. As was suggested in the previous section, a gradient in the magnetic field
can be used to modify that frequency as a function of position. Depending on when
this gradient is applied, it is relatively simple to analyze its effect on the signal and
hence find the location of the voxel whose magnetization produced a certain fre-
quency or phase in the signal. The next few sections explain how a gradient can be
used at different times through the MR imaging experiment, first, in conjunction
with an RF excitation, to selectively excite a slice through a volume, and later with-
out an RF excitation, modify the frequency and the phase of the signal produced
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Figure 2-15: After a 90' pulse, the transverse magnetization induces a signal by precessing,
called thefree induction decay. The signal is dampened by the relaxation processes.

by an excited voxel, depending on its in-plane position.

2.9.1 Slice selection gradient

We begin by trying to pick out only a thin slice from the rest of the volume to
be excited. If, when the RF pulse is issued, only the protons in the wanted slice
match the frequency of the pulse (i.e., the Larmor frequency of these protons WL
matches the frequency Wp of the pulse) then only those protons from the entire
sample will be excited and thus only they will afterwards possess a precessing
x - y component and give rise to a signal. As noted above, we can apply a z
dependent magnetic field Bg of much lower strength than the main field Bo in
which case, the Larmor frequency of the protons then becomes

W BL = BI0 + Ng(z)|, (2.55)

and we can simply let Bg(z) = z, that is, there is a linear dependence of the field
and the z position. Fixing either the pulse frequency or the gradient field strength
allows us to select a z position. Then, since the excitation slice will occur where[8]

Wp = WL = YIBO + ZB9g, (2.56)
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we can calculate the position of the slice

_(wp/y) -||Z = . (2.57)

The gradient can also be dependent on time.
In reality, the RF pulse is composed of a number of frequencies covering a cer-

tain bandwidth, so as to allow a slice of finite thickness from the sample to be
excited. As can be seen from the last equation, the ratio of the bandwidth of Wp

frequencies, contained in the pulse, to the strength of the gradient field determine
the thickness of the slice.[8]

Awc
Az- (2.58)

When the strength of the gradient is increased, the same range of frequencies
will excite a thinner slice, and likewise, a weaker gradient increases the slice thick-
ness.

If we want to excite a well-defined slice, assuming that the magnetic fields are
completely homogeneous, we need to apply an RF pulse covering a well-defined
range of frequencies Awc ± wp, with equal power throughout this range.

RF Pulse Bandwidth

-Vp0  Vp

frequency

Figure 2-16: In the frequency domain, the RF pulse used to selectively excite a slice out of
an entire volume, is a boxcar function, with equal coverage over a frequency range which
depends on the slice thickness.

Therefore, the profile of the RF signal which will excite a slice of thickness Az
must have the form of a boxcar function in the frequency domain, covering the
range [- wi,, w,]. However, since the RF pulse will be applied as a time-dependent
magnetic field, the actual time domain waveform to be applied is the Fourier trans-
form of this frequency-space square pulse. The Fourier transform of the boxcar is a

38



sinc(x) wave extending infinitely in time. Of course this will have to be truncated,
as the RF pulse must have a finite temporal existence. This can be modeled as the
convolution of the infinitely-long sinc wave with a square signal, which results in
a ripple-like square-ish signal in frequency-space. For this reason, although rather
accurate, slice selection can never be perfect. There is always a drop-off of magne-
tization at the edges of the excited slice.

Note that the slice-selection gradient is applied simultaneously with the RF pulse.
This gradient is used in order for the pulse itself to excite a specific frequency-
encoded part of the volume, therefore, the gradient must be effective precisely
during the pulse play-out.

Clearly, the excited spins throughout the thickness of the slice, will be precess-
ing at slightly different frequencies since they are experiencing a differing gradi-
ent field depending on their position within the slice. By the time the gradient is
turned off, this will have induced a phase shift along the slice selection direction.
After the gradient is turned off the spins begin to precess at the Larmor frequency
of the external B0 field, as it is the only contributor to the Larmor equation. This
phase shift will be dependent on the position of the spin along the slice-selection
gradient (for simplicity the z axis) and will be[8]

p j = y rgdt = Yj zgdt = YZ|Bg9t, (2.59)

where r is the spin position along the slice selection direction, the z axis in this
example. The limits of the integration are based on the simplifying assumption
that halfway through the pulse, the magnetization is flipped instantaneously by
the entire flip angle. In order to rephase the spins, it is then only necessary to apply
a gradient of opposite sign, containing the same amount of power as the integral in
the last equation.

So far, we have localized the induced signal to a single slice, wherein all spins
are precessing at the same frequency and are in phase. Now, we need to localize
the signal to a specific position on the in-plane tissue.

2.9.2 Frequency-encoding gradient

We can deduce one of the two remaining directions, again, by using a magnetic
field gradient, in the Bo magnetic field, to modify the Larmor frequency of pre-
cession. Arbitrarily, let this direction be the x axis. We again apply a linearly
dependent magnetic field along the x axis, forcing the resonance frequency to be
proportional to the position of the spin:

WL = yLBo+ '2(r)l (2.60)
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= |0 + 'XW xI)

= i0+BX,|, (2.61)

where r is the position of the spin in the frequency encoding direction, r - x.
Note that at the time when the x gradient turns on, both the slice-selection gradi-
ent as well as the excitation pulse have been turned off, otherwise equation (2.61)
would not hold. Since excitation has already occurred, each spin will be precessing
and will be generating an MR signal. The effect of this gradient then, equivalent
to equation (2.57), is that the total signal received (that is, the sum of the signals
from all the spins) will contain a number of different frequencies, wherein each
frequency is generated by all the spins at the same position along the selected axis.
We can now invert the problem, and clearly state that if the signal received contains
a frequency wc, then there must have been spins at the x position

Ws/Y -|o|
I~xI

-
(2.62)

where wo is the resonance frequency corresponding to the contribution of BO only,
and wvs is the precession frequency of some magnetization vector at the specific x
position.

In order for this frequency encoding to be useful, we want the frequency shift,
caused by the application of the gradient, to take effect during the detection of
the signals. That is, we want the detected signal to contain multiple frequencies,
wherein each frequency can be used to deduce the spatial position, along a single
axis, of the spin that gave rise to that signal component. Therefore, this gradient is
applied during the signal-detection period, and usually called the readout-gradient.
Since we are free to choose which direction is frequency encoded, this direction is
called thefrequency-encoded direction.

The signal S(t) experienced at the receiving coil, assuming no relaxation, at
time t after the gradient is switched on is[8]

S(t) = c p(x) ei'yx f Bx(x)dtldx, (2.63)

where p(x) is the spin density. Fourier transformation can of course be used to
convert S(t) to p(x) and vice versa. In the last equation let

k(x) = Yj x(x)dt, (2.64)
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be the wavenumber, k E 1/A where A is the wavelength. Of course in this case the
frequency/wavelength/wavenumber depends on the position of the spin along
the gradient direction, as equation (2.64) clearly shows. The wavenumber is simply
the number of complete wavelengths per unit distance, and is very convenient to
use when a number of different frequency signals are superposed.[13] The notion
of wavenumber will become more convenient later on, when we can describe the
Fourier-domain representation of the sample using the so-called "k-space".[48]

Another important definition is the size of the Field-Of-View. This is the largest
wavelength (smallest wavenumber) present: [8]

1
FOV = , (2.65)

Ak

which, for a constant gradient field diminishes to

1
FOV = , (2.66)

yIBxIAt

where At is time increment in-between sampling points.
We can also define the spatial resolution along the frequency-encoding direc-

tion, Ax, since the smallest wavelength (largest wavenumber) corresponds to the
smallest feature encoded. In the case of n equidistant samples and coverage of
±kmax, the resolution is simply[8]

Ax (2.67)
nAk ny|Bx|At'

where Ak = 2 x knax.

2.9.3 Phase-encoding gradient

In order to localize the third and last orthogonal dimension, we need yet another
gradient, the phase encoding gradient, in this case, the r - y axis. Since, we can
no longer use the frequency of the precession to encode this direction, we instead
use the phase of the precession. This gradient is applied after the slice selection
gradient and RF pulse, but before the frequency-encoding gradient (signal readout
time). It is very similar to the frequency-encoding gradient, except that in this case,
it is only the phase of the precessions that matters, after the end of the application
of the gradient.

The idea is that by the end of the application of this gradient the phase of pre-
cession will be linearly related to the y location of the transverse magnetization.
Consider some spins immediately after the application of a 90' RF pulse. That is,
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Figure 2-17: Looking down the z-axis, before applying a frequency-encoding gradient, all
spins are precessing at the same frequency. However, when the gradient is applied along
the x-axis, the spins precess at different frequencies. If the signal is read out at the time
when the gradient is applied, it will be composed of a number of frequencies, allowing
localization of the signal amplitude along the x-axis. Note that since the signal is sampled,
we need to obtain twice the samples as we want to have resolution along the x-axis, as
dictated by the Nyquist limit Awmnax = 1/2T. Typical read-out, or, sampling time is 5-
30ms.
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local magnetization vectors have been rotated down to the x axis. Now, consider
what happens if we apply a gradient in the same direction as the main Bo field as
always, but whose strength is dependent along the y direction. Each magnetiza-
tion vector will precess about the main magnetic field, at a frequency given by the
usual resonance equation

W(L = IB'o+B p(r)i (2.68)

= rL~o+Ny(y)I
- yIo+y Al, (2.69)

and the y position of a spin precessing at an angular velocity of w is given as usual
by

y s - o (2.70)

While the phase-encoding gradient is on, each magnetization vector at a specific
position along the y direction is precessing at a unique, different frequency, de-
pending on its y position. So far, this is exactly the same as the frequency-encoding
scheme described in the previous section.

Now, consider what happens if the gradient is turned off. Then, the field cur-
rently experienced by each spin is the same, and the magnetization vectors at each
voxel will now speed up or slow down and will be precessing at the same fre-
quency wo. The phase 0, however, of each vector will be different if we do not
apply a rephaser gradient as after applying the slice selection gradient. The phase
shift at the end of the phase-encoding gradient pulse will then be given by

E(r y) = y B(r)dt (2.71)

y1 Y(y)It
= By$ylt (2.72)

where N(y) is the linear y-axis magnetic field gradient, and t is the total time the
gradient was applied for, assuming that the gradient is kept constant over time.

The question then arises as to how we can use this phase of the precessions
to differentiate among the positions. The difference between frequency and phase
encoding is that a phase-modulated signal resolves to one spatial frequency in the
phase-encoding direction. That is, in order to resolve n spatial frequencies, a total
of n different phase encodings need to be acquired.

This last part needs further clarification, which we now explain in detail. Let's
consider two spins in different positions along the y axis, after we have applied
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Figure 2-18: The phase encoding gradient after applied for some time t causes magne-
tization vectors to acquire some distinct phase <P depending on their position along the
phase-encoding direction. During the application of the gradient the vectors are precess-
ing at different frequencies. After the gradient application, the vectors precess at the same
frequency, but are out of phase. Note that, as is the case for all magnetic field gradients,
the gradient is parallel to the BO field, in order to have the desired effect. The arrow in the
image labeled By shows the direction if increasing gradient strength (as is hinted at by the
arrowheads shown underneath it).
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a phase encoding gradient. Assume the two spins are the only ones present and
they are situated at the same position along the x axis, that is during the read-
out gradient they are precessing at the same Larmor frequency. For simplicity,
also assume that there is no relaxation. Then, each of the two spins will induce a
sinusoidal current in the receiver, but each of the two signals will have a different
phase. However, the induced signal in the receiver coil will be the superposition
of the two signals. The sum of two sinusoidal waves of different phase but same
frequency, is still a single sinusoidal wave, as can be seen by adding the complex
exponential form of their rotating-vector oscillation description[13]

zi A1e(wt+P1)

Z2 =A 2 ei(wt+IP2)

zI + z 2 = (A1 + A 2 e 402-01)) ei(wtt+1),

where the term e'( 02--1) is just a rotation through the angle p2 - <P1, and A1 , A 2 are
the amplitudes.

A A2 2 -1)

A

Figure 2-19: The sum of two oscillations of the same frequency but different phase is still
an oscillation of a single frequency and hence a single phase.

It is therefore not possible to deduce the position along the phase-encoding
direction of the two spins after the application of a phase gradient, as it gives rise to
a single sinusoidal wave with a single phase shift. In effect, we need one equation
for each unknown. The solution in this example is to apply two different values of
the phase-encoding gradient, in turn. Then, we acquire two signals, which are now
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made up of two sinusoidal waves, with two different phase shifts, corresponding
to the two different spin locations.

This is the idea behind phase-encoding. At each application of the phase-
encoding gradient, the signal received from all the spins in the same frequency-
encoding direction location, is made of a single frequency and is phase-shifted by
the average contribution of all the phase-encoding direction spin locations.

By successively iterating the phase-encoding gradient strength I BP(r) I by a
fixed amount A B4, and measure the signal after each iteration, The phase cor-
responding to each phase-encoding direction location r will in effect periodically
change as a function of the gradient. This periodic change can of course be Fourier
transformed to yield the position r. This is more clearly expressed in terms of the
wavenumber k(rp). Multiplied by time, it gives a phase. By iteration over some in-
crement Ak(rp), the subsequent measurement, of the phase at some position rP un-
dergoes periodic change as a function of k(rp) much like thinking of frequency in
terms of the phase at a certain time, is what happens along the frequency-encoding
direction at some position r, as a function of k(r,).

The number of equal increments Ak(rp) that are used in iterating k(rp) from its
minimum value -kax(rp) to its maximum value +kmax(rp) is the resolution along
the phase encoding direction rp. The time between each iteration of k(r , ) is the
repetition or recycle time TR, since for each phase iteration, excitation and readout
must be repeated - for single echo Spin-Echo imaging, other types of sequence
acquire more samples per single repetition time. In the next section we examine
how to acquire the data and produce an image, by using all the gradients and RF
excitations examined so far.

2.10 Tomographic Image Generation & Fourier Trans-
forms

By assembling the pulse the gradients, RF excitations and readout into a "pulse
sequence," we have everything we need to create tomographic MR images. First,
the slice selection gradient is turned on, while the sinc-shaped RF pulse is issued.
A slice of hydrogen atoms is excited. The phase-encoding gradient is then applied
causing a phase shift, followed by the readout (frequency) gradient and signal
sampling during the gradient. As mentioned in the previous sections, rephasing
gradients must be applied to avoid the dephasing caused by the gradients in the
slice selection and frequency encoding directions.

At a certain time called TE after the issue of the center of the RF pulse, the
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coherent signal from the spins is sampled. As in the case of the readout gradient,
the rephasing gradient is rather a dephasing one applied before the readout, which
in effect causes rephasing of the spins.

The signal sampled at each readout consists of a single line of the k-space image
matrix. The frequency encoding gradient is applied during readout, which causes

krnax,,P - Ak4 ,

k, +k,

Figure 2-20: At each TR a single line of the Fourier-domain of the image is sampled, each
line containing all the frequency-encoded direction points, but only a single point along
the phase-encoding direction.

the sampling to proceed from -k, to +k,, left to right in the previous image. Each
subsequent phase encoding step employs a decreased-amplitude phase-encoding
gradient allowing to span the kp axis, the first step starting at +kmax. A 2D discrete
Fourier transform along the rows and then columns produces the final output MR
image.

Figure 2-21 shows the (simplified") pulse timing diagram with the application
of the gradients and RF pulses of a so-called Gradient Recalled Echo pulse sequence.

One problem with the above timing diagram is the inability of the gradient
power supplies to produce sharp square pulses. In fact all the square pulses in the
above diagram will be trapezoidal, due to the finite gradient rise time14 . This in
turn means that TE and TR are increased.15

"The slice-select rephasing gradient and pre-frequency encoding dephaser lobes are not shown.
14This is referred to as the gradient "slew rate" and is the gradient strength over the rise time, in

units of Tesla/m/sec.
15 0ne way around this problem is so-called spiral sampling through k-space, instead of raster-like

(line) sampling. Spiral sampling uses sinusoidal-like gradients of increasing amplitude, a much
more natural use of the underlying electronics. Spiral sampling holds promise for faster imaging
and is the focus of our continuing research.
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Timing diagram for slice imaging

07

time

Figure 2-21: Gradient Recalled Echo pulse sequence timing, showing the applications of
the gradients, the RF pulse play-out and sampling time. With the addition of the rephasing
lobe for the slice-selection and dephaser lobe for the frequency-encoding gradient, the
above pulse sequence when used on an MR scanner will produce a matrix containing the
Fourier-domain representation of the 2D image.

2.11 Spin-Echo Pulse Sequence

Soon after the first NMR experiments, it was observed that if in-between the 900
excitatory pulse and the signal acquisition, a 180~ excitatory RF pulse is used, then
some time after it, a "spin echo" signal was acquired.[19] The reason for this in-
creased signal is easily explained via the physics of spin-i1/2 nuclei and is a man-
ifestation of the T2* relaxation introduced above, wherein the interference of the

magnetization vectors becomes constructive.
Consider the first RF pulse issued in this experiment, a ir/2 radian pulse. Al-

most immediately after this excitation, at time to, the longitudinal magnetization
is rotated down to the x axis. This magnetization is a coherent sum of all the spins
and induces a detectable signal. However, according to T2 effects, the spins will

be precessing at slightly different Larmor frequencies due to local field inhomo-

geneities. Some spins will be precessing faster than others. Let us consider only
two spins, a fast one (F) and a slow one (S).
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The result of this difference in precession frequency is that some time later, at
ti = T + to, the two spins F & S will have acquired different phases, C and 1 re-
spectively. Now, let us issue a 7r radian RF pulse. This refocusing pulse has the
effect of "mirroring" the two spins about the x axis, since it represents a 180' rota-
tion about the y axis.16 In effect, after the refocusing pulse, the two spins have the
same angular relation to the -y axis as the originally had to the +y axis. During
the next r seconds after the refocusing pulse, F and S will acquire another a and
( phase respectively, and will thus become aligned along the -y axis, at time 2r
after initial excitation by the r/2 RF pulse. [38]

7r/2

TE/2

damped echo due to de hasin rephasing

Figure 2-22: The RF pulses used in a Spin Echo sequence. The second 7r-radian pulse
has the effect of refocusing the rapidly dephasing spins, at time 2-r = TE after the initial
excitation.

Since the above holds for all phases the spins may have acquired before the
refocusing pulse, all the spins will align at the -y axis at that time, the strong

16The i pulse is exactly like the r/2 pulse; the latter represents a rotation about the y axis bring-
ing the magnetization from the z to the x axis. The former represents rotation about the y axis
forcing the x component of the spins to end up in the -x axis.[10, 38]
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transverse magnetization from the alignment will cause an "echo" induced on the
receiver at that time. The Spin Echo sequence results in the refocusing of the de-
phasing effect of field inhomogeneities that are constant throughout the sequence
time, but does not refocus fluctuating inhomogeneities. The clinical usefulness of
the Spin-Echo sequence stems from its ability to produce very high signal-to-noise
ratio images, and remove inhomogeneities due to the construction of the imperfect
magnets used.

In our non-Fourier encoding methods, we will use a Spin-Echo sequence. Apart
from the above two reasons, a Spin-Echo is desirable, as we will use the initial
excitatory pulse to do spatial selection, and not slice-selection. In this case, we can
still use the 7r pulse to perform slice-selection in our sequences. 17 It is now time to
turn to the theory of spatially-selective non-Fourier basis RF encoding.

17Note however that other methods can be used to perform slice selection, however, we chose
Spin-Echo as it is a well established sequence in the clinical world.
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SECTION 3

Advanced Non-Fourier MR Imaging

The last section, covered standard MR imaging, as it is commonly used in every-
day clinical settings. We have seen examples of both Fourier encoding, which was
used to in-plane encode precessing spins, as well as spatially-selective encoding,
which was used for slice-selection. It is the case that slice-selection is just one of
an infinite space of spatially-selective excitations. This degree of freedom can be
used as an advantage to encode much more than just a slice, in particular, it may be
used to encode any arbitrary spatial profile. [21, 25, 36, 51, 55, 32, 34, 58] In this sec-
tion we will follow the aforementioned references and describe spatially-selective
excitations based on the linearity of the MR imaging process. We will then turn
our attention to efficient encoding methods such as encoding by the Singular Value
Decomposition (a special case of Rank-Revealing Orthogonal Decompositions) [55] and
finally, introduce the usage of non-orthogonal vector sets such as a small num-
ber of overlapping, shifted, Gaussian distributions that can be used to acquire and
reconstruct an MR image.[28, 58] Experimental results from the RROD methods
described in this Section will be provided in Section 4.
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3.1 Slice Selection in Light of Spatially-Selective Exci-
tation

In the case of slice selection, with in-plane Fourier encoding and slice-selection
along the z axis, the acquired signal equation (2.63) becomes in the time domain: [34]

S(kX, ky, zo) = ff s(x, y, z)P(z - zo)e-i(kx+ky)dxdydz, (3.1)

where kX = yGx, ky = yGy, and where the spatial excitation profile P(z - zo) is ide-
ally zero everywhere but a thin slab of thickness ±Az, centered about zo, captured
by the function P. The 2D Fourier transformation of (3.1) with respect to kx and
ky yields an image after integration along the z-axis, this last step representing the
projection of the contents of the slice onto the imaging plane:

simg(x, y) J s(x, y, z)P(z - zo)dz, (3.2)

where s(x, y, z) is the Fourier-transformed acquired signal, hence in the spatial
domain, and simg(x, y) represents the reconstructed image.[34]

Roughly speaking, the result of the application of the RF pulse without any
gradients playing out at the same time, is simply an excitation of all spins in the
FOV volume, iff the Larmor frequency of the spins matches that of the applied RF.
Once gradients are used, the form of the RF pulses can be manipulated to selec-
tively excite spins in the volume, as the operator P acted in the last few equations.
Intuitively, using a gradient along any one direction, in theory, any profile can be
excited, along that direction, so long as the Fourier transform of the desired profile
is used as the RF excitation pulse. This is equivalent to the sinc RF that was applied
to select a slice profile. The desired profile was covering a certain frequency band-
width, while the gradient applied was in the z direction. The axis of the gradient
gave rise to encoding along that axis, where the sinc RF pulse used was the Fourier
transform of the boxcar: the desired profile.

An important twist of (3.1) is that if a number of acquisitions are made, each
with a different profile Pi along the spatially-selective dimension, it is possible to
fully "encode" that dimension, if for example a full, orthogonal, set of profiles is
used. Then, that entire dimension can be reconstructed upto a maximum reso-
lution equal to the number of profiles used, simply by applying an appropriate
inverse transform for the set. To this end we will shortly introduce a discretized
matrix representation of this process which will clarify this.

As an example, let us assume that we wish to excite an arbitrary profile given
by p(t), along some arbitrary axis d. In our experiment we will use a gradient field
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such that at position d, along d, the magnetic field will have strength I Bo + Gd2I
(this is called a gradient offset of G and is usually of the order of Gauss in units of
Gauss/cm). The excitation will be performed using P(w), the Fourier transform of
p(t). Under some assumptions we will shortly turn to, the resulting profile of this
experiment will be P(d) where d = w/yG.[34]

The above-mentioned results hold only when the response of the magnetization
vector is linear with respect to the input RF field. It is well known in MR that this is
the case[21, 20] in the low flip-angle regime, that is, when (2.39) leads to FA < 300.1

In the next section we will give a short version of the well-known, low flip-
angle, linearity principle [21, 43, 36]. Furthermore, we will follow [34, 32] in using
a matrix representation to describe the spatially-selective encoding process, ren-
dering it amenable in a generalized framework for non-Fourier encoding, the basis
for the work presented in this thesis.

3.2 Linearity of the MR Process in the Low Flip-Angle
Regime

Let us reconsider the Bloch equations, in the absence of relaxation, 2 and low values
of B1 .3 Then, in the rotating frame, equation (2.36) can be written as:[21]

d~x 0 YG -B1,y MX
d = y -G 0 -B 1 ,x x Y (3.3)

dMB,y -B 1 ,x 0 Mzdt/

where we let the Bg gradient filed be linear, equal to some amplitude G times the
position X.,4 and where the B1 field is composed of the B1,, and B1,y components.

In the small flip-angle regime, the longitudinal magnetization is assumed to be
constant,[21] e.g.

MZ ~ Mo = constant. (3.4)

'Note that methods are known to surpass this limitation; for example, an entire class of inher-
ently refocused pulses exists, which may be concatenated to produce large flip angle excitations [37],
or, alternatively, an iterative, error back-projection method, based on a numerical solution to the
Bloch equations, may be used to "massage" arbitrary RF pulses so that they produce the expected
excitation profile, only at a much higher flip angle.[23]

2This leads to the simple requirement that the RF pulse width be shorter than T1 and T2 .
3Low enough to avoid saturation.
4Recall that these equations are for the rotating frame of reference, wherein the magnetization

vector is aligned to the x axis.
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In order for this to be the case, we must have that sin(FA) r FA, FA in radians.
Given this, the last component of (3.3) can be decoupled from the others. First,

define the transverse magnetization as a vector on the complex plane,

MXY MX + iMy, (3.5)

and similarly, the applied RF field as

B1 = B1,x + iB1,y. (3.6)

Now, assume that the magnetic field gradient is constant along x during the RF
excitation pulse and the transverse magnetization is governed by[36]

dtx - iyGxMxy + iyB 1 Mo. (3.7)

The solution of this differential equation assuming an initial condition of M =
MY = 0, M, = Moat time T is

MXY(x) = iyMo B1(t)e-ixk(t)dt, (3.8)

where k(t) defines a path through frequency space. This last equation, (3.8), ap-
pears like a familiar Fourier transform of B1 (t) with respect to time. Further anal-
ysis [36] shows that if we define a parametric path through space p(k) then the
transverse magnetization becomes the Fourier transform of the k-space trajectory,
weighted by B,(t)/IyG(t)1.

Since the transverse magnetization is linearly related to the input RF field, and
since the induced MR signal is a manifestation of the transverse magnetization, it
follows that the MR signal is also linearly related to the RF field.

Given the linearity of the MR signal in the low flip-angle regime, we will now
explore a matrix representation of the MR imaging process,[34, 32] as this repre-
sentation lends itself to the linear-algebraic manipulations which lie at the heart of
efficient encoding methods.

3.3 Matrix Representation of RF Encoding

Based on the linear response of MR Imaging in the low flip-angle regime, we can
reformulate the excitation and acquisition of MR as a simple matrix equation, as
was shown by Panych et al. [34, 35] The value in this change of representation
is that it allows us to ask whether any of the well-known linear-algebraic meth-
ods have any meaning in MRI, and most importantly, whether they are useful,
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which translates to increased efficiency in the MR imaging process over the stan-
dard methods employed.

In reality, RF pulses, as used on typical MR scanner waveform generators, are
not continuous as the last few sections may have mislead one to believe, since the
waveform generators produce digital waveforms, e.g. digital approximations. We
will claim that discretization does not pose any problems to the above analyses,
if the RF pulse is approximated using a train of hard pulses.[46] A hard pulse is a
discrete approximation to p(t) wherein the power enveloped by p(t) in-between
time t and t + At is delivered by a delta function (impulse) at time t. Such a hard
pulse tips the magnetization off of the magnetic field axis at time t, instantaneously.
With this approximation, the usual superposition principle of linear systems holds.
That is, the result of some excitation profile p(t) approximated by a hard pulse
train pH(t) such that [34]

pH(t) - pn 5(t - nAt), (3.9)

wherein 5 is the Kronecker delta, will be the sum of the linear responses to each of
the elements composing pn, so long as the excitation remains in the low flip-angle
regime.

The RF pulse is not the only continuous component of the system that must
be approximated by a discretized digital signal. Once the magnetization has been
flipped and is precessing, the induced signal on the receiver will also be contin-
uous. The receiver electronics must digitize the signal so that it can be later pro-
cessed to produce an image. Once the continuous signal is sampled, we have in-
troduced a sampling or point-spread function (PSF). Imaging systems tend to have
a Gaussian point-spread profile. However, as was pointed out by Panych [29, 30]
due to the finite-length FOV of the MR imaging system, the effective PSF is best
approximated by a sinc function.

Now, consider an ordered sequence of complex numbers (magnitude and phase)

[c1 , ... , ck] being applied as hard pulses during a gradient offset. The ith magnitude
and phase will be applied at time ti as a hard pulse, which assuming that the length
of the RF pulse is t, would be iAt, where At, = t,/k. We can formulate this se-
quence as a function exactly as in equation (3.9), wherein the 5 function becomes
an elementary unit hard pulse (of course any linear combination of the ci will pro-
duce a predictable effect as well). This is merely a reformulation of Pn (t) as a row
vector Pn describing the RF pulse.

This RF excitation will produce some nuclear induction signal, f(t), on the re-
ceiver which will have to be sampled during some frequency encoding gradient.
This sampling can be modeled [34] as a function, in the temporal domain, that in-
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Figure 3-1: An arbitrary spatially-selective bipolar RF pulse is approximated by impulses
delivering the RF power while a gradient along the desired direction is activated. The
spatial profile excited by pH(t) along the direction of the gradient will be approximately
the Fourier transform of p(t).
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tegrates the signal on the receiver coil in-between increments At. That is, fi, the
integral of the induced signal over a window of length At beginning at some time
ti becomes the ith MR sampled signal. more accurately [34]

fi= - iAtf)dt (3.10)

J f(t)Oi(t)dt. (3.11)

The function 'Ji serves the purpose of first being a window of length Atf in-
between time iAtf and (i + 1)Atf and absorbing the characteristics of the receiving
coil and other such details.

Suppose then, that the MR signal density, that is, the representation of the spin
precessions,5 in the temporal (Fourier) domain, is captured by some discretized
matrix F(,,,). Each row of this matrix is the response of the MR system to a ci =
(ej); 1 < i < n, where ej is the ith row of the identity matrix I. Then, the response
to some arbitrary RF pulse p' was shown by Panych et al [34, 32] to be simply

fi = (p')F(ji). (3.12)

Call the train of m samples acquired the an ordered sequence [fi,..., fin]. Then,
equation (3.12) can be written as a vector-matrix multiplication leading to a row
vector response f:

f = pnF. (3.13)

The final MR image is the 2D discrete Fourier transform of F. To summarize, in
the last equation, if pn is a train of RF hard pulses played out during a magnetic
field gradient, then the acquired signal during readout the response f. Obviously,
it is F that we need in order to produce the MR image, by applying a 2D discrete
Fourier transform:

S W*FW*, (3.14)

where W is the 2D DFT matrix and the superscript * signifies Hermitian conjuga-
tion.

In order to produce the image, it is then necessary to first obtain enough sam-
ples fk each from a different RF pulse pk that is orthogonal to all other pulses, so

'Or more accurately, the free induction decay, since the signal decays by relaxation as was ex-
plained in Section 2.
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that equation (3.13) can be inverted and yield F. The number of excitations and
acquisitions becomes the resolution of the image along this spatially-selective di-
rection:

F PkxnFx (3.15)

So long as P is invertible, and thus k - n, the acquired signal from the scanner
F' can be used to yield the Fourier domain image.[32, 34] Multiplying both sides
by the inverse of P:

P-1F' =P-WP 4:: (3.16)

F P-F'. (3.17)

In fact, orthogonality and squareness of P (so that it is invertible,) is not even a
necessary condition; the least stringent condition is that P has a left-side inverse,
known as the Moore-Penrose pseudo-inverse Pt. Of course, different RF matrices
P will produce images with different desirable qualities, such as Signal-to-Noise
Ratios, but we are not currently concerned with this.6

From equation (3.13) we can see that there is a vast space of RF pulse sequences
that can can be used to obtain enough information to yield an MR image, in fact,
an infinite number of them. As a first step into the following sections, where we
describe some of the most efficient ways to acquire the MR images as described by
Zientara et al [58], let us first try and gain some insight by performing an alterna-
tive MR experiment which will yield a 2D Fourier-encoded image, but which uses
spatially-selective RF excitations to do so. As most readers will have realized, this
is accomplished by using the rows of the identity matrix I as RF pulses, as was first
explained in [34].

3.3.1 Fourier-encoded MRI by spatially-selective RF pulses

According to equation (3.13), if we use the rows of the n x n identity matrix as RF
hard pulses, each row being one square pulse, and each pulse played out at TR
time after the previous one, with the signal acquired at TE < TR time after the
pulse play-out, then the resulting matrix we will get should be the Fourier domain
representation of the volume. This is the case since the square RF impulses that the
identity matrix would represent as a waveform is the "best" approximation to the
6 functions in equation (3.9).

6An in-depth theoretical approach to SNR for spatially-selective RF pulses can be found in [29].
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We can use a Spin-Echo sequence so that the 7r pulse performs the slice selec-
tion, in which case the matrix acquired should be the Fourier domain representa-
tion of the selected slice. The pulse sequence which achieves this result is shown
in Figure 3-2.

Let us consider the effect of the ith excitatory pulse, ej, which will be played
out at time i x TR from the starting time. Assume that the net magnetization is
fully relaxed after one TR. The length of the excitatory RF pulse, t, is partitioned
in n equal-length segments, At,, and the ith excitation involves a single hard pulse
at i x TR + i x At,. A spatially-selective gradient along the y axis (Gy) is turned
on during the entire RF pulse width, that is, starting at time i x TR and until time
i x TR + n x At,. A rephase gradient equal to one half the area of the encoding
gradient is applied immediately afterwards. Define the time to = i x TR.

Then, consider what happens during the ith repetition interval: the gradient is
turned on at to, but the magnetization is not flipped until ti = to + i x At,. There-
fore, the gradient has no effect until t1 . At this time, the single hard pulse for this
repetition interval is issued. The net magnetization immediately flips down to the
x - y plane and begins to precess. Since the y gradient remains turned on until
the end of the RF pulse width, at time t2 =to + n x At,, the precessing magneti-
zation obtains a phase increment proportional to (n - i) x At, and, of course, also
proportional to its position along the y axis. The phase shift incurred by a spin at
position ys after the ith excitation, will be

t0 + n At1,

bi (y) =Y Gyydt (3.18)
tot+ i At

- y(n - i)AtGyy. (3.19)

Since the rephasing gradient is always applied for half the time, after the ap-
plication of the rephasing gradient, the spin will have attained a total phase shift
of

qp'(y) y(n - i - )AtGyy. (3.20)

Since the last equation is dependent on the variation of i only, from i = 0, ..., n -
1, the result will be a periodic change of the phase over a fixed increment, start-
ing at some maximum value +kmax(y) to some minimum value, -kmax(y) with
increments Ak(y) = yAtGyy. This is exactly equivalent to phase-encoding via
a gradient after excitation. Starting from the top of the Fourier domain, each RF
pulse ej will produce the ith line:

Clearly, the matrix acquired after all n excitations will be S which can be directly
Fourier-transformed to yield the final MR image. Note that in the absence of the
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Figure 3-2: A spatially-selective pulse sequence which produces a Fourier-encoded image.
Each excitatory RF pulse is a row of the identity matrix, subsequent slice selection accom-
plished by a 7r-degree RF refocuser and slice selective gradient. The signal from that slice
is then sampled. In this sequence, the x axis is frequency encoded, the y axis is phase
encoded, and the z axis is slice-selection.
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Figure 3-3: By using the rows of the identity matrix as spatially-selective RF pulses, a

standard Fourier-encoded image can be acquired. In this case however, it is intrinsically

the RF pulse which encodes the amount of phase offset for each line of k-space during

excitation, and not a gradient applied after excitation, as is normally done.

?r refocusing pulse, we would not have been able to perform slice selection. We
can only use the excitatory RF pulse in order to encode one dimension, albeit an
arbitrary one, at a time.

One last bit of intuition comes from considering an RF pulse that is a linear
combination of ei, i = 0,..., n - 1, when played out during a spatially-selective

gradient in one of the two standard directions. First of all, any spatially selective
RF pulse is such a linear combination. The effect of such a pulse, is to excite each
line of k-space by a varying amount, in the direction of the gradient and hence
during readout in the other direction, the equivalent linear combination of all the
lines is frequency-encoded and obtained. This is readily incorporated in arbitrary
orthogonal directions: k-space is no longer excited in the vertical and acquired in

the horizontal direction, instead, if a linear combination of the gradients is used,

the excitation happens along some direction in both Cartesian dimensions.

In that respect, a spatially-selective RF hard-pulse train is nothing more than

merely a weighting function (w). In the spatial domain, one can think of this as a

weighted projection of the contents of the FOV (Q):

Sample = w(y)S(x,y,z)dydz. (3.21)

In the MRI experiment described above with the identity matrix as RF pulses,

we simply used Fourier basis functions as the weighting functions.
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3.4 Dynamic Adaptive MRI

Based on the above intuition, it was first proposed in [51] that spatially selective
RF pulses can be used to obtain an incomplete image matrix Sa~ S, by using
Wavelet-shaped RF pulses. With some loss of information, the number of wavelet
functions used could be tailored depending on the use of the images. For example,
in a interventional MR surgical or therapy procedure setting, it is important that
images be produced with very high temporal resolution, and even though spatial
resolution can not be sacrificed, at least not inside the region of interest, some level
of detail can be sacrificed. Spatial resolution is of importance in the context of MRI
since most current imaging is already performed at extremely low resolution. For
example, brain imaging is performed over a 24 2cm 2 FOV, at a resolution of 2562,
and a slice thickness of 5mm, yielding a voxel size of approximately 0.94 x 0.94 x
5mm3 . Wavelet MRI encoding was first implemented by Panych et al.[31]

The importance of the above is that in many cases it is more useful to produce
images faster, rather than detailed ones capturing exactly all the information of the
underlying sample. Note however, that there is no error-free MR image since usual
SNR in MR images is between 20 and 80 due to thermal noise.

An alternative motivation is that in fact, MR images, like most images, disre-
garding noise, tend to be rank-deficient. The rank of a matrix is the dimension of
its column or row space, that is, the dimensionality of the space spanned by the
vectors that compose the columns or rows of the matrix.

Figure 3-4 shows the average of the 256 singular values7 computed from 84 im-
ages, each 256 x 256, that were randomly selected from the Brigham And Women's
Hospital digital MR Image database. The images ranged in contents from torso
and spine to brain, in both axial and sagittal planes, and from different pulse se-
quences and different (unknown) human subjects.

Note that for an SNR of 20 which is typical of MR images in the low flip-angle
regime (SNR of 15 - -20), on the average, the 17th singular vector (out of 256) falls
below the SNR significance level of 5%! What this effectively means is that any
more of the 239 remaining rank-one images are insignificant compared to thermal
noise in the system, and hence can not encode useful information.

What we have tried to convey thus far is that in some cases very high spatial
resolution and fine detail is required (e.g. diagnostic imaging prior to surgical
planning), which can currently be achieved, although at an exorbitant cost, time-
wise. However, in many cases, very high temporal resolution is required, rather

7The singular values of a matrix F are the square roots of the eigenvalues of FTF or equivalently
FFT. The next section introduces the Singular Value Decomposition in some detail.
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Figure 3-4: Eighty four 2562 images were randomly chosen from the Brigham And
Women's hospital MR Image database, their singular values computed, and the average of
those is plotted against their relative order.
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Figure 3-5: Four of the images used to generate the graph in Figure 3-4.
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than detail, but spatial resolution should not be sacrificed. Currently, this can not
be achieved for some of the better MR modalities such as Spin-Echo imaging.

It is in this setting that linear-algebraic techniques, rank-revealing orthogonal
decompositions in particular, can be successfully applied to compute more efficient
encoding basis than Fourier basis functions. We wish to produce a series of MR
images of possibly time-varying FOV contents, as fast as possible, without reducing
the spatial resolution, but possibly dropping some detailed information.

In the following discussion we will assume that the MR signal intensity func-
tion S(x, y, z) when in-plane localized and discretized is represented by S a square,
n x n matrix. We must manipulate some non-square complex-valued RF matrix P
of size k x n, k < n, composed of row-vector, spatially-selective, RF hard pulses
in order to be able reconstruct a good estimate of S. Each row of P will be played
out during one repetition time TR and during a gradient Gd along some direction
j. Readout will occur during a gradient G, along a direction i orthogonal to j. We
will assume a Spin-Echo sequence wherein the 7r pulse is used to perform slice
selection along the third orthogonal direction k. The result of the application of P,
Sacq will be the data acquired from the MR scanner. The total time for the excita-
tion and acquisition of Sacq will clearly be k x TR < n x TR. An explanatory block
diagram of this method appears in Figure 3-6

Alternate representations of a matrix S based on invertible transformations have
been very successfully used in the image processing field since first introduced by
Andrews and Pratt [2]. Such transforms are useful in e.g., bandwidth and dimen-
sionality reductions, which can significantly reduce the cost of processing. The
transformations we are mostly interested in are dimensionality reductions.

3.4.1 Invertible separable unitary transforms

A unitary matrix A c- C" is unitary if its inverse is its hermitian conjugate: [47]

A-' = A*. (3.22)

Note that by definition, the columns of A form an orthonormal basis for C". This
follows from the fact that A*A = I.

Given two such unitary matrices, AC and A-, we can define an invertible trans-
form for a matrix F:[2]

Y = AcFA* (3.23)
F = Ai-lF(A 7)* (3.24)

F = AcFAz (3.25)
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The above transformation can be written as a sum of rank-one matrices, result-
ing from the outer product of columns and rows of Ac and A-. Let ac (i) be the ith
column of Ac and aiz(j) be the jth column of A-. Then, the forward transform in
equation (3.23) can be rewritten as:[2]

n n

=T F(ji, ac (i)a* (j). (3.26)
i=1 j=1

In the above equation, if F is rank-deficient, e.g., rank(F) = m < n, then the
transformation need only range over a basis for the m-dimensional space, since
only m rank-one matrices are need be summed to exactly produce F. The first
obvious condition on the transform then is that it must be rank-revealing. Without
this condition we would not be able to truncate the basis set during MR excitation
and acquisition.

Now, consider the case wherein F is not rank-deficient. When this is the case,
equation (3.26) by itself is not useful in reducing the dimensionality of F. If how-
ever the transform also reveals, apart from the rank, some ordering of the rank-one
matrices, in the composition of the sum, so that some criterion may be used to
limit the dimensionality by dropping the dimensions which are least important,
then the usefulness of the transform becomes immediately apparent.

Importance is a very general notion here. In many computational fields, such
as machine learning, the dimensions least important are those which exhibit the
least amount of variance, one of the reasons Principal Components Analysis (PCA)
has been so successfully employed. [3] In MRI, one such measure is the mean spa-
tial frequency distribution of the ac (i) and aR (j) vectors which provides a useful
ordering.[56]

In the field of MRI, based on the work of Panych et al [31] it was first realized
by Zientara et al [55] that such alternate representations of the MRI signal matrix
S, may be used to increase the efficiency of MR signal acquisition.

3.5 Optimal Spatially-Selective Excitation by SVD

The full Singular Value Decomposition of a complex matrix S E C"X" is defined as
the decomposition:

S = UFV*. (3.27)

This decomposition is a unique (upto a magnitude +1 complex vector permuta-
tion) rank-revealing orthogonal decomposition wherein Z is a diagonal matrix of
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non-negative real values, the singular values, arranged in decreasing order, and
U, V contain the left and right singular vectors, orthonormal basis sets spanning
the column and row space of S respectively. The SVD is related to the Eigen-
decomposition since: [47]

S= A 1'/ 2, (3.28)

where A is the diagonal matrix containing the eigenvalues of S. The number of
non-zero singular values in Z is the rank m of S.

Since Z is diagonal, equation (3.27) can be rewritten as a sum of rank-one ma-
trices, in the spirit of (3.26)

?n

S = O-iuiv, (3.29)
l=1

where o, =

The most important property of the SVD in the MRI setting is that given some
k < m < n, the rank k reconstruction of the matrix S produced by the first k sin-
gular vectors is the optimal, in a least-square error sense, reconstruction of S. That
is, the k-rank reconstruction captures as much of the energy of S as possible, in a
F-norm (Frobenius-norm8 , but also holds for the 2-norm) definition of energy:[47]
let the rank-k reconstruction of Sk = 1 iuiv*. Then, we have that

IjS - SkI IF < ||S - B|F., VB E C""" s.t. rank(B) < k. (3.30)

Given the SVD of an initial estimate of the contents of the FOV, S and based on
equation (3.29) we can see how to use the column space to acquire an image from
the MR system [55]: if the row vectors u*, 1 < k < m are used as RF pulses, the
response to the i'th pulse will be

yi u7S (3.31)
n

=U (3.32)
j=1

= Oivi, (3.33)

since ugui = 1, and uguj = 0,Vj / i, by the orthonormality of the left singular
vectors. The process can be reversed by multiplication with ui on the left to obtain
the rank one image after the acquisition of yi.

8The Frobenius norm of a n x m matrix A is defined as IIA I IF x 1 1 ) 1/2
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Clearly, at the beginning of an MR experiment, the estimate S of the contents of
the FOV is not available to compute the encoding basis set, however, in a fast dy-
namic MR imaging setting, the last acquired image can be used to near-optimally
encode the next acquisition,[57] since changes in the FOV are expected to be very
small.

Let us now walk through a dynamic MR experiment, in order to clarify the
encoding method presented in this section.

1. The experiment begins by acquiring an n x n Fourier-encoded MR image in
the time domain, FO, e.g., by using the identity matrix as pulses in a spatially-
selective Spin-Echo pulse sequence. This set-up acquisition step requires n x
TR scanning time.

2. The time-domain image matrix FO is then decomposed using the SVD, and
its column-space U is computed. The MR technician running the experiment
selects an appropriate for the situation, number of singular vectors k. The
k x n matrix U* is composed by taking the hermitian conjugate of the first k
columns of the column-space matrix U.

3. The rows of U* are then used to excite the sample, and acquire the k x n new
response matrix Facq = UXcFo. This acquisition step requires k x TR scanning
time.

4. The new, time domain, representation of the new n x n MR image is then
reconstructed as:

F1 = U*xcFacq. (3.34)

5. Given the new time-domain image matrix F1, the process is repeated by go-
ing back to step 2.

The above process also explains the presence of the word "adaptive" at the
heading of the previous section: the basis set used for acquiring an image at imag-
ing step ti is computed from the contents (or alternatively some processed con-
tents) of the image at step ti_1.

Quite literally, what will be acquired in the future is merely a projection onto
the basis of the Fourier Transform of the current image estimate. A possible caveat
here is that in a changing FOV it is possible for something to occur in the near
future which has a zero projection onto the current encoding basis (e.g., is orthog-
onal to all the k basis vectors used). In a dynamic series, this is avoided by a
two-tier method. First, the encoding basis is computed from the contents of the
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current FOV, which are, unfortunately, noisy. Due to partially encoding the noise,
it is very unlikely that changes in the FOV will have an exactly zero projection
onto any of the k basis vectors, or that k-dimensional space. The second level of
resistance to this occurrence is that, again, in a dynamic MR experiment, we can
always re-acquire a full Fourier-encoded image every few minutes (usually every
one hundred images in our near real-time system.)

Although using the SVD as above produces the optimal low-rank reconstruc-
tion, it is unattractive in a real-time setting due to its high computational complex-
ity. Moreover, no efficient parallel algorithms for the SVD are currently known
(i.e. higher operation counts than the serial algorithm are required in the paral-
lelized algorithms). One way to avoid this problem is to use the same set of basis
vectors for more than one acquisitions. Alternatively other near-optimal encoding
methods such as fast Krylov subspace methods can be employed.

3.6 Excitation by Krylov Subspace Methods

One class of numerically stable Krylov subspace iterative techniques determines
an approximation of the symmetric decomposition:

SSY, = UZU* (3.35)

The i-dimensional Krylov subspace K (Ssy m, q, 1) of a symmetric matrix Ss,m is
spanned by vectors formed by repeated multiplication of an initial random basis
vector q by the matrix:

K=(SSY, q, 1) span(q, Ssymq, S2 -q S8- 1)q) (3.36)

- {qo, ql,..., q1} (3.37)

where q must have a finite projection onto the column space of Ssym.
The orthonormal basis vectors qi do not reveal the rank of Ssym and moreover

there is no immediately apparent ordering that may be used to limit the dimen-
sionality of Ssym. There is however a relation in-between the so-called Ritz values
and vectors, that is, the eigenvalues and eigenvectors of the projection of Ssym onto
K(Ssym, q, 1), and the extremal eigenvalues and eigenvectors of Ssym respectively.
The Krylov subspace approximately spans the column space of Ssym.

As far as an ordering is concerned, it has been realized [56, 58] that the mean
spatial frequency of the vectors can be used, since phenomenologically, the eigen-
values in the spatial and Fourier domains are also related by the Fourier transform. [58]

The last interesting points to note about Krylov subspace methods is that first,
the MR image matrix S is not symmetric, however SS* is. Using this matrix, the
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vectors will approximately span the desired column space by using the decompo-
sition

Ssyn= SS* = UTtriU*, (3.38)

where Ttri is a tridiagonal matrix.[17]
Computing the Krylov subspace is a numerically unstable problem, for exam-

ple, due to the large values involved in exponentiating a matrix. This is overcome
by iterative procedures, e.g., the Lanczos iteration, [17, 47] wherein the recurrence
for the ith basis vector becomes:

Ssy/qi = O-iq-i + aiqi + 1iqj+1, (3.39)

where the scalars ac, (i are the diagonal and off-diagonal elements of the tridiago-
nal matrix Ttri, e.g.,[17, 47]

a1  1

/3 1 t2 02

Ttri = - . (3.40)

On-1

1n-1 an

Excitation and reconstruction are defined similar to that of the SVD encoding
method. The advantage of this method is the intrinsic parallelizability of the algo-
rithm, rendering an excellent candidate for real-time processing. The disadvantage
is that it is not a rank revealing decomposition, and hence only an approximate or-
dering and truncation can be postulated.

3.6.1 Aside: Excitation by row-space encoding

So far it has been convenient to use the column spaces as the spatially-selective
excitations to be input in the MR system. There is nothing intrinsically necessary
that this be the case, except for the fact that it is most convenient since the rows
of the acquired matrix line up with the x axis of standard scanners, and the phase
encoding direction is then usually the y axis, with the z axis defined as the direction
of the BO magnetic field. So-called "vertical" encoding, e.g., using the column space
of the FOV contents is the easiest, since the direction of the frequency encoding
remains the x axis, and the spatially-selective RF excitation is played out during
a gradient in the y axis, as would normally be done for a non spatially-selective
pulse sequence.
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In the two methods we have described above, the row space is equally useful
in reconstructing a good approximation. In the case of the SVD, the row space is
spanned by the columns of V and thus the basis row vectors v7 would be used to
excite the sample. In the Krylov subspace, equivalent to equation (3.38), we would
compute the decomposition of SSn = S*S.

The only significant difference is that these basis vectors now describe a linear
combination of the rows of the MR image matrix, not the columns. Therefore, even
though the starting matrix for computing the decompositions would be acquired
with x axis frequency encoding and y axis spatially-selective excitations, the sub-
sequent excitations by the row space basis vectors would be acquired with a pulse
sequence that simply swaps the order of the gradients, such that y axis becomes
the frequency encoding direction and similarly, the x axis becomes the spatially-
selective direction.

Although we have in few occasions demonstrated results from row-space ex-
citations, the complication is that unfortunately, a number of "tricks" take place
inside the MR scanners' systems in order to boost performance. For example, each
excitation on the scanner uses an alternating RF magnitude. The effect of this is
that the "d.c." component (e.g., a line of average brightness) after Fourier transfor-
mation appears at the edges of the image, rather than the center of the image. We
have resolved most of these issues and have successfully acquired "horizontally"
(row-space) encoded images, but for the shake of simplicity, we will present results
from "vertical" (column-space) encoding.

3.7 Excitation by Non-Orthogonal Vector Sets

In some cases, a non-orthogonal set of encodes might be able to yield both efficient
encoding, as well as some desirable properties. In such cases, when excitation
is performed along the spatially-selective direction with non-orthogonal sets, an
inverse operation must be performed in order to obtain the time-domain represen-
tation of the excited FOV. The linear systems description,[34]

Y = PF, (3.41)

where Y is the MR system response, and F is the time domain representation of
the FOV contents, holds for any encoding matrix P, regardless of orthogonality.
Clearly, an RF matrix does not have to be orthogonal in order for us to be able to
use its rows to just excite a sample with it. If however P is not orthogonal, then the
question is how to obtain the system response F, the sought-after quantity in the
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Figure 3-7: The standard Cartesian coordinate system orientation for many MR magnets.

MR experiment, given the result of the excitation Y. The "obvious" solution is a a
Moore-Penrose pseudo-inverse, e.g. the left-side inverse based on the SVD:

Pt = V3+U* (3.42)

where Y+ = diag(1/-o, 1/o1,..., 1/-n). The first problem stems from the fact that
since the rows of P are not orthogonal, the matrix is not of full rank, and thus
some of its singular values will be 0, rendering the inversion of the diagonal ma-
trix T problematic. In fact, even if the smallest singular values are non-zero, but
extremely closed to it, the matrix is said to be ill-conditioned, and reconstruction
can yield severe numerical instabilities, rendering the result unusable.

This is because ill-conditioned matrices tend to greatly amplify noise. Unfortu-
nately, noise is exactly one feature of MRI that we exploited above, in the SVD and
Krylov subspace methods, in order to reduce the amount of data that needs to be
gathered in order to accurately reconstruct F. In effect, noise can be modeled in the
linear system equation as an extra term:

Y = PF+n. (3.43)

Our early experiments with non-orthogonal vector excitations showed that the
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presence of this noise term in MR imaging renders such inversion processes use-
less.

One solution to this, using the SVD pseudo-inverse, is to simply not include
the contributions of the rank-one matrices whose corresponding singular values
are below some tolerance level. In the context of MR excitation and reconstruction,
this is inadequate, since the dimensionality of the reconstructed spatial domain
is reduced even further than the rank of P. Even if the RF matrix is of full rank
(e.g. orthogonal) reconstruction via a matrix inversion is still hampered if the ma-
trix has some very small singular values. Instead, an alternative method must be
employed.

Equation (3.43), has been at the center of digital signal and image processing,
and efficient methods are known to invert it. [2, 24]

We are currently focusing our research on two methods. The first, is an iterative
error back-projection technique, in which the current estimate of F(k) is considered
a "blurred" version of F. When F(k) is used to simulate the MR signal acquisition
process, the difference between the simulated and acquired samples can be used to
modify the subsequent estimate. The problem with this method is that in a naive
approach, an inverse operation must be performed to obtain the first estimate. Ill-
conditioning of the matrix to be inversed is a major source of error in this inversion.
Furthermore, another inversion must be performed in each step of the algorithm
in order to project the error samples onto the Fourier domain in which the system
response is described. A possible solution to ill-conditioning is to can treat singular
values less than the SNR level as zero, in all pseudo-inverses.

Finally, it should be noted that although the above method might be adequate
for the general non-orthogonal set case, in some cases better solutions can be formed.
In particular, consider a case which we find interesting: a set of Gaussians in the
spatial domain, equally spaced about the FOV. In this case, a dual basis can be con-
structed and an inverse metric computed, allowing an inverse tranform onto a
basis composed of Dirac basis vectors on a Cartesian grid.[54]
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SECTION 4

Pulse Sequence Design And Results

A commercial MRI scanner is composed of a number of complex proprietary parts,
with little allowed user interaction and modification, as its primary purpose is to
abide by FDA directives for clinical usage. In this section we will look at a spe-
cific scanner, manufactured by General Electric Medical Systems Corporation1 .
The GE Horizon LX scanner used in this study, installed at the Brigham And
Women's Hospital', employs a 1.5 Tesla magnetic field (achieved through a super-
conducting magnet), has a 60cm wide and 148cm long, cylindrical, horizontal con-
figuration, magnet bore, with gradient coils capable of producing a magnetic field
differential of 4Gauss/cm, with a slew rate of 200 mTesla/m/ms. The software
suite loaded on the scanner is the GE Signa Horizon LX 8.2.5 suite. The main parts
of this MRI scanner are:

" The main magnet, gradient, RF receiver and transmitter coils and all sup-
porting hardware structure, placed in an RF-shielded "scan" room.

" The Transceiver Processing And Storage chassis (TPS), a VME backplane which
contains all the necessary computer and electronics hardware to produce the
RF excitation pulses and gradient events, acquire the resulting signals and
reconstruct the images.

" The host computer, an SGI Octane computer, used to control the scanning
sessions.

1GE Medical Systems, Milwaukee, WI 53201.
2Brigham And Women's Hospital, 75 Francis Street, Boston, MA 02115
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Figure 4-1: A typical GE Signa LX MRI scanner setup.

A high-level overview of the system is shown in Figure 4-1.
The Octane workstation, operating on IRIX 6.5, acts as a front end to the MRI

scanner. Its main functions are to set up the imaging parameters, load the pulse
sequence program to be executed onto the TPS, and transmit the imaging param-
eters to it, and finally display the resulting reconstructed images after receiving
them from the TPS. It also provides disk services in a global database of clinical
exams as well as concurrent, FDA-required, magneto-optical storage archiving.

Once a pulse sequence has been loaded on the MR scanner host and all param-
eters have been set, the object code of the pulse sequence that arranges the RF and
gradient pulses as well as sets up the acquisition loop, is dynamically loaded into
the TPS chassis. The TPS is a VME backplane containing various systems to gener-
ate the actual RF signals, transfer them in analog form to the transmitter, operate
the RF transmitter/receiver and gradient coils, and perform image reconstruction.
The TPS CPU board is operating on vxWorks 5, a flavor of real-time Unix, which
allows one to dynamically load and link object code into running programs. If the
object code provides some predefined "entry-point" symbols, then the pre-running
programs can jump into those symbols and execute code from the object file.
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In the next section we will describe the computer hardware/software interac-
tion in some small amount of detail and then discuss the implementation issues
for a spatially-selective pulse sequence, including some of the caveats involved. In
the remaining latter sections we will give results and make comparisons between
the methods already described.

4.1 PSD for GE 1.5T Signa LX 8.2.5 Scanner

An overview of the TPS system is shown in Figure 4-2. The TPS chassis contains
the Integrated Pulse Generator (IPG),[16] a system capable of transforming digital
waveforms into analog RF pulse signals. The input to the IPG is a sequence of short
(2-byte signed) integer pairs, a magnitude and a phase. The IPG provides 256K of
SRAM wherein the RF pulse can be stored before the transformation takes place.
This limitation is one of the barriers in our studies, since we found that 512 points
of resolution for a 5.12ms RF pulse width provides optimal results. However, at
this resolution, there is not enough SRAM to hold 256 RF pulses, which would be
required for acquiring a "baseline" Fourier-encoded image at the beginning of a
scan session. In the next section we will see how this may be overcome by directly
tapping onto the VME bus, while knowing the VME base address of this SRAM,
and continually updating it - a necessity for the Real-Time system.

The IPG itself is a set of sequencers, which multiply an "instruction" memory
with a "waveform" (amplitude) memory to produce the actual outputs.[16] There
are separate sequencers for each of the x, y and z gradients, the magnitude Pi and
the phase 0.

The instruction memory is simply a "table" composed of entries that are a tuple
consisting of:

" a waveform memory pointer (providing the amplitude for the entry),

* a period which when multiplied by the minimum resolution of the IPG (2ssec
for the Signal Horizon LX system) gives the total time to play out the ampli-
tude for,

" an "EOS" (End Of Sequence) bit, designating the end of the sequencer loop.

The waveform memory is a set of 16-bit words wherein the LSB bit is also an
EOS bit, in particular used to halt the sequencer until the instruction memory is
incremented, after the period has expired. If the EOS bit in a waveform entry is
not set, then the waveform memory pointer is incremented and the same instruc-
tion from the instruction memory is re-executed using the new amplitude in the
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MR Signals

Figure 4-2: The Transceiver, Processing And Storage System is a diverse set of VME boards

that produce the RF signals, control the gradient coils, digitize the MR signal and recon-

struct the images.

incremented waveform pointer entry. Figure 4-3 shows an example of the steps

performed by any one of the sequencers given a certain instruction and waveform

memory.[16]

Then, our strategy for forcing the sequencers to execute a series of hard pulse

amplitudes for an equal amount of time per impulse, as needed for a spatially-

selective RF pulse is clear: we form the waveform memory by the values of the

magnitude and phase of the RF pulse we wish to play out (one for each of the p
and 0 sequencers), sampled at as many resolution points as we want. Then, we fill

the instruction memory with only two entries, the first instruction tuple contains

the period for each RF resolution point, which for our purposes is simply At,, the

width of a single hard-pulse. 3 The waveform pointer in the first instruction tuple

points to the first 16-bit entry of the waveform memory that holds our RF pulse

amplitudes. We must take care to make the LSB bit of each waveform amplitude

0, except the last one! Finally, the second instruction memory tuple is useful only

in the EOS bit to end the entire sequence.

In this section we will assume a single-image experiment, e.g. a non-dynamic
3E.g., for an RF pulse width of 5.12ms and minimum period of 2Msec and 512 RF resolution

points, we have At, 5.121 - 5, also called the "dwell-time".
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Waveform Memory

Amplitude EOS
0 0
9000 0
0 0
500 1
800 0
10000 0
-1500 0
32766 0
-32766 0
2600 0
0 1

200(X

10000

-100(X)

-20000

-30000

Instruction Memory
aveform
pointer Period Amplitude EOS

0 50 32767 0
1 100 -32767 1

esulting Digital Waveform
..........-..

0 100200 300400 600 800 1000 1200 1400 1600 1800

Figure 4-3: An example of a sequencer instruction and waveform memory. In this ex-
ample, the first four entries of the waveform memory would be played out, each for a
length of time equal to 50 x 2ssec, and the next seven entries would be played out each
for 100 x 2ssec. The sequence would be played out on the magnetic field designated by
the sequencer that runs the instruction, e.g. the RF magnitude.
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MRI setting. This is done to avoid unnecessary complications while trying to un-
derstand the MR scanner part of the system. We will treat the issues for the dy-
namic MRI case in Section 5.

The waveforms can be generated however we wish, e.g., using MATLAB( g4 on
a workstation in the same network as the SGI host workstation. The only particular
points to pay attention to is that the byte-endian order must be the same as that
of the SGI workstation (which, like most RISC processors, is big-endian), and also
that an appropriate checksum is appended and the file is prefixed with a vxWorks
file descriptor. Then, the waveform file can be transferred via the network to the
SGI workstation.

4.1.1 Host and TPS processes

GE Medical systems provides an environment for writing programs that can be
compiled into a host and a TPS program. This environment, called EPIC, is a
superset of the C programming language. The EPIC pre-processor converts the
C source files with intermixed EPIC compiler directives and macros into a set of
ANSI C source files that can be compiled into an IRIX "Host PSD Process" and
another set that can be compiled into a vxWorks "IPG PSD Process". A number
of runtime shared and static libraries are linked into the object files resulting from
compilation of the C sources, in order to produce the executables.

The EPIC pre-processor provides two different types of variable declarations
useful to us: Control Variable Definitions, or CVs, which are initialized in the host
process, and later on are transmitted to the IPG process. It is such variables which
allow the MR technician running the MRI experiment to set the TE and TR, res-
olutions along the Fourier-encoded axes, the position and orientation of the slice
and so on. These variables are extremely useful in that they allow the user to in-
teractively set them via the Graphical User Interface on the host, and can later on
be used to control all the aspects of the generation of the pulse sequence that will
be executed on the scanner.

The second set of variable declarations we need is the RSP variables. These
may also be initialized in the host process, but their usefulness lies in the fact that
they can be updated in real-time while the IPG process is executing, during the
actual play-out of the pulse sequence. These will be necessary in the later section,
when we will need real-time hooks into the TPS to modify and extract its memory
contents in real-time.

4MATLAB is a registered trademark of The MathWorks Inc., 24 Prime Park Way, Natick, MA
01760.
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The EPIC source file needs to define a number of function entry-points that
must perform a specific task in order for the experiment to occur. These functions
are summarized below.

" CV Initialization, cvinitO function. This function is RCP-called by the host
system, and can initialize any static variables, or set default values, such as
pulse-widths, amplitudes, RF resolutions etc.

" CV evaluation, cveval() function. This function is called by the host system,
every time a GUI event occurs on the host which changes the value of some
CV. For example, when the TR or TE is modified, this function will get called,
and the effect of it should be a re-definition of the appropriate sections of the
pulse sequence.

" Predownload, predownloadO function. This function is again called by the
host system after the operator has completed the definition of the CVs. Its
purpose is to perform the final preparations for the pulse sequence, such as
amplitude scaling.

" Pulse Generation, pulsegen() function. This is the most important function
for us. It is called on the IPG after all the control variables have been down-
loaded to it. Its purpose is to make the necessary EPIC macro calls to down-
load the pulse definitions into the sequencer memory so that the pulse can
be played-out by the sequencers by starting them. Effectively, for each se-
quencer the PSD needs to use, such as the RF magnitude and phase as well
as gradients, this function must set up the instruction and waveform memo-
ries for each one, as was explained above. Note that this is the only function
on the TPS side that can still read files. After this function, the ability to read
and write files is lost. In our single-image PSD we use this function to read
the waveforms from files on the host, whereas for the real-time system we
have built and will explain in Section 5, we set up the sequencer memory
with some default pulses.

" Real-time entry points, e.g., scanO function. The programmer is allowed a
total of 20 real-time entry point functions, that will be executed on the IPG
computer. The primary purpose of these entry points is to star the pulse se-
quence on the sequencers, and to modify the sequence as it is running, e.g., in
a Fourier-encoded MR experiment, at each TR, the magnitude of the phase-
encoding gradient must be modified by a small incremental amount. In order
to implement spatially-selective pulses, we use the scanO function to change

81



the pointer to the instruction memory that will be played out by the RF mag-
nitude and phase sequencers. An instruction memory and waveform table
is set up in pulsegenO for each of the RF excitations, and in this entry-point
we just shuffle through them, equivalently to modifying the phase encoding
gradient.

Figure 4-4 presents the result of executing a spatially-selective Spin-Echo se-
quence, that the author implemented in EPIC, on the GE Horizon LX 8.2.5 system.
All the results appearing in the next section where acquired with this pulse se-
quence. For each result below, in the single-image setting, the waveforms were
generated using MATLAB, and transferred to the host, previous to starting the
pulse sequence. As explained above, the pulsegenO section reads the waveform
files and generates the instruction and waveform memories for the magnitude and
phase RF sequencers. The instruction and waveform memories for each of the gra-
dients are generated with standard EPIC macros. The amplitude of the gradients
in this sequence will produce a square FOV. The resolution of the RF files can be set
by a user CV so as to ensure enough waveform memory is available for both 1282
and 2562 imaging.

We are now ready to present and compare the results from various spatially-
selective encoding methods. The experiment begins by acquiring a Fourier-encoded
image in the low flip-angle regime, using the identity matrix method, as explained
in Section 3.3.1. Given this image, we either use SVD or Krylov subspace decom-
position, and use the resulting basis set to acquire the raw data, which are then
used to reconstruct the image, with a varying number of encodes. In the non-
orthogonal set cases, we would of course not need an initial estimate of the FOV
contents. Since this last method is work in progress, we do not provide results
herein.

The results in the following sections are from a human brain (attached to a per-
son of course...) and a GE provided phantom, composed of plastic and NiCl-doped
water. Results from the brain image are only available for some of the methods5 .
We will use two different approaches to comparing the encoding methods. The
first, is geared towards the mathematician, and as such should be interpreted with
care. This is the percent-difference between the full image, e.g. the image com-
puted from an entire basis set, and the image resulting from fewer encodes. The
reason why this should be carefully interpreted is because first of all, it does not
address any of the important attributes of the image, as far as a medical doctor

'The author does not have permission to experiment with human subjects. Human cases were
acquired by Dr. G.P. Zientara with full, informed consent of volunteer subjects (normal, healthy,
adults).

82



27000

13010

a

1000

-15038

-3275?

32767

22000

-3276 I I '

-32767

-32757

2241 4473 6705 8937 11159

Figure 4-4: The above diagrams show an actual spatially-selective Spin-Echo pulse se-
quence implemented in EPIC, as it executes on the scanner with a 25msec TE and 400msec
TR (only one TR shown in the top, and a zoom onto the RF pulse is shown on the bottom).
The x-axis is time in jisec, and the y-axis is short integers.
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is concerned: Signal-to-Noise-Ratio, Contrast-to-Noise-Ratio, and the size of the
minimal structures that can be resolved in the image.

SNR and CNR computations and comparisons are not addressed herein, (those
were addressed to a limited extent in [28], the interested reader is referred to [29]
for a unified approach,) since our current methods are low flip-angle. Suffice it to
say that the SNR is higher for fewer encodes rather than more encodes used. The
difference in-between Fourier-encoded and SVD-Encoded MRI in terms of SNR is
minimal (and at least for the brain results, both Fourier-encoded and SVD-Encoded
have an SNR of about 20.)

The second method of comparison is based on the GE phantom. We will look at
the number of encodes required by each method to adequately resolve a structure
on the phantom (which is the purpose of the existence of the structure!)

Without further ado, we turn to the results.

4.2 Spatially-Selective Fourier Encoding

The results in this section are obtained using the method presented in Section 3.3.1,
using the identity matrix to obtain the full Fourier-encoded response matrix. It
has been recently suggested [50] that it is not necessary to fully acquire the entire
Fourier domain, instead, we can drop some amount of detail in order to produce
an image faster. Such keyhole methods only acquire the few center lines of k-space
and add high frequency lines acquired once from an earlier "baseline" image. This
method is based on the empirical observation that typical MR images tend to have
most power in the largest spatial frequencies, and drop off radially from the center
frequencies. However, such keyhole methods are much less efficient in capturing
information, compared to SVD or Krylov subspace methods.

Figures 4-5 and 4-6 show the reconstructed brain and phantom images for a
varying number of phase-encoding acquisitions respectively. The number im-
printed on the top left corner of each image thus represents the number of lines
starting from the center of the Fourier -domain matrix and extending to both top
and bottom, that were acquired. Table 4.2 presents the percent-error for the brain
image reconstructions, and Table 4.1 similarly for the phantom.

As can be seen from Figure 4-7, with 64 lines, half the Fourier-encoded matrix, it
is not possible to resolve the comb-like feature of the GE phantom. At 80 encodes,
the spatial resolution is adequate. At 128 encodes, the maximal spatial resolution is
obtained. The importance of this small test is that even though 64 encodes capture
89% of the image data, they are still not enough to resolve what looking at those
images, one would be interested in.

84



120 120 120

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

20 20 20

40 40 40

60 40 20

100 100 100

120 120 120

20 40 60 60 100 120 20 40 60 80 100 12 20 40 60 80 100 120

40 40 4

60 SD OD

80 OD so

100 100 100

120 120 120

20 40 60 60 100 120 20 40 60 60 100 120 20 40 60 60 100 120

40 40 40

660 W 60

100 100 100

120 120 12D

2D 40 W0 so 100 120 20 40 60 W0 100 120 20 40 60 so 100 120

Figure 4-5: Fourier-encoded acquisitions for a GE phantom composed of plastic, and NiCl-
doped water. A varying number of phase encodes was acquired from the center of k-space
and extending outward to the top and bottom.
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Figure 4-6: Fourier-encoded acquisitions lead to the above reconstructed images of a hu-
man brain, for a varying number of phase encodes acquired from the center of k-space and
extending outward to the top and bottom.
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Figure 4-7: Detail from the images presented in Figure 4-5, showing the resolving capabil-
ity of reduced basis sets. In Fourier imaging, at at least 80 encodes are needed to resolve
this standard "comb" feature of the GE phantom.

Number of Encodes Used Percent Error
4 74%
8 62%

12 55%
20 45%
24 40%
28 37%
32 35%
40 30%
48 27%
64 21%
80 15%
128 0%

Table 4.1: Fourier-Encoded GE Phantom Percent Error (I IS - SkIIF/I S IF)-
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Number of Encodes Used Percent Error
4 40%
8 25%

12 24%
20 21%
24 20%
28 19%
32 18%
40 16%
48 14%
64 12%
80 10%

128 0%

Table 4.2: Fourier-Encoded Human Brain Percent Error (I S - Sk I F/I S IF)-

4.3 Random Orthogonalized Basis Encoding

In order to better understand the implications of the linearity result presented
above, consider taking a random matrix A. Then, we orthogonalize the matrix,
via, e.g., Gram-Schmidt, and use the resulting basis set, to acquire an MR image.
This basis set is completely random, and has no connection whatsoever with the
contents of the FOV. Figure 4-8 shows the reconstructed image, simply the 2D DFT
of the acquired data after being left-multiplied with the inverse of the random ma-
trix.

4.4 SVD Encoding

We have seen how we can acquire a "baseline" image using either a fixed Fourier
basis for encoding, or a random orthogonalized matrix as a basis set. Given the
baseline image, we can use the matrix decomposition methods discussed in Sec-
tion 3, and produce a truncated basis set, which when used to encode an image,
theoretically should yield an image which contains more useful information. In
this section we present results obtained by the SVD decomposition.

Figures 4-10 and 4-11 show the image reconstructions from the basis sets com-
puted by the SVD of either the brain or the phantom images. The number in the
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Figure 4-8: A random matrix was orthogonalized and used to acquire this image. Since the
rows of the orthogonal matrix forms a basis set for C128 , the image is fully reconstructed.

top left corner of each image represents the number of columns of U starting from
the first column that were used. Clearly, the results are rather pleasing, with be-
tween 16 and 20 encodes capturing most salient image information. In particular,
Figure 4-9 shows that the comb structure in the GE phantom is fairly clear already
with just 16 encodes. Compared to the 80 that the Fourier-encoded image required,
this is a significant improvement. This was already alluded at in Section 3.4; since
low flip-angle MR images have an SNR of about 20-25 (which is the case in the
brain images presented herein,) only few of the first singular values encode infor-
mation significant compared to the noise in the image. This method then presents
a potential of > 50% reduction in image acquisition time during dynamic imaging.

Table 4.3 summarizes the percent difference in-between the truncated and full
images for both cases. Compared to the Fourier-encoded images, the errors are
approximately 30% lower. This does not quite scale with the increased spatial
frequency resolution ability, which as was mentioned, based on Figure 4-9, SVD
appears to require 80% fewer acquired data to produce an equivalent resolving
capability. One reason behind this can in fact be seen from the images in Figures
4-11 and 4-10: starting at about 32 encodes and increasing, it is mostly extra noise
which gets encoded. In particular, note how there is minimal noise outside the
left and right of the image content region (in these images, the spatially-selective
excitation direction is left to right, since the x and y axes are flipped in the scanner).

We can furthermore claim 6 that it is possible to analyze the frequency distribu-
tion of the acquired samples as they are being acquired and use this information
to determine whether more encodes would be acquiring mostly noise. In effect,
an adaptive rank-reduction algorithm geared towards MRI appears well within

6Although we have no preliminary results on this yet.
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Figure 4-9: Detail from the images presented in Figure 4-10, showing the resolving capa-
bility of reduced SVD basis sets; 20 encodes appear enough to resolve the standard "comb"
feature of the GE phantom.

reach.
There are a couple more elements that need to be quantified, in convincing our

audience as to the usefulness of SVD encoding in MRI.
First, since the RF waveforms are spatially-selective, composed of very short

hard-pulses, it is important that the RF penetration of a sample in the FOV leads to
uniform RF power deposition. Clearly, this is the case as can be seen in Figure 4-
11, since the signal is consistent across the FOV. Secondly, both SVD encoding and
Krylov subspace encoding are adaptive techniques: the current image is being en-
coded with a basis computed from a previous image. This is orthogonal to the fact
that FOV contents are rarely static. Even in the next section, were we present our
near real-time system which has the ability to produce one SVD-encoded image in
under one second, movement in the FOV is to be expected in that time scale. What
we must show is that encoding an MR image with SVD is robust. The experiment
we performed involved using the same encoding basis as was used for Figure 4-
10, but acquiring the image after first rotating and translating the phantom in the
scanner by approximately 25 degrees counterclockwise and about one cm to the
left. The results of this experiment are displayed in Figure 4-12. As expected, the
result is not nearly as pleasing. The importance of these results however, is that
even with 32 encodes, and such an unusually large change in the FOV, the image
is still recognizable.

The obvious argument of robustness is that as

lim Atimage acq - 0, (4.1)
AtFOV motion

adaptive encoding becomes more efficient. Zientara et al [57] used the distribu-
tion of principle angles between the subspaces spanned by an MR images' column
space and white noise column space, as a limiting worst case. It was then shown
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Figure 4-10: SVD-encoded acquisitions for the GE phantom. Same as for brain experiment.
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Figure 4-11: SVD-encoded acquisitions for a human brain. A varying number of column-
space singular vectors starting from the first column vector, corresponding to the largest
singular value, were used to acquire the echo responses. Reconstruction by multiplication
with those singular vectors yielded the image, after 2D DFT.
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Brain
Encodes Used Percent Error

4 23%
8 19%
12 17%
20 15%
24 14%
28 14%
32 13%
40 12%
48 11%
64 10%
80 8%

128 0%

Phantom
Encodes Used Percent Error

4 50%
8 41%

12 36%
20 28%
24 25%
28 23%
32 22%
40 20%
48 18%
64 16%
80 13%
128 0%

Table 4.3: SVD-Encoded Percent Error

GE phantom on the right.

(computed as IIS - Sk IF/IISI IF). Brain on the left,

that in any case, the subspace spanned by an earlier MR image in a dynamic se-
quence, had a better projection onto the current FOV contents than did the worst
limiting case of the subspace spanned by the columns of white noise.

4.5 Krylov Subspace Encoding

The second adaptive encoding method presented in Section 3, was based on Krylov
subspaces, in particular the Lanczos method. Apart from Krylov and SVD, a num-
ber of RROD methods were proposed and simulated results produced for MR im-
ages, by Zientara et al, [58] e.g. SVD, Krylov, rank-revealing QR decompositions
and ULV decompositions. Although sub-optimal (since the SVD decomposition
is the optimal,) Lanczos encoding produces rather good results, as can be seen in
Figure 4-14. Note that for Lanczos encoding, we currently only have phantom
data. From Figure 4-13, we can see that approximately 24 to 28 acquisitions are
required to differentiate the detail in the phantom. This is expected, over the 16 to
20 acquisitions that were needed by the SVD, since the SVD in the absence of FOV
movement is optimal.

Again, RF power deposition is uniform across the FOV. Similarly, changes within
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Figure 4-13: Detail from the images presented in Figure 4-14, showing the resolving ca-
pability of reduced Krylov-subspace basis sets; 28 encodes appear enough to resolve the
standard "comb" feature of the GE phantom.

64 0%

Table 4.4: Lanczos-Encoded GE Phantom Percent Error (11S64 - SkIIF IISIIF)-

the FOV, although having an effect on the performance proportional to the amount
of change, as in the SVD case, can still produce useful images.
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Number of Encodes Used Percent Error
4 54%
8 43%

12 37%
20 27%
24 23%
28 20%
32 17%
40 12%
48 9%
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Figure 4-14: Krylov-subspace encoding for the GE phantom.
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SECTION 5

Real-Time System Design and
Implementation Issues

Our group has recently acquired, on loan, from Mercury Computer Systems1 a
VME-bus card cage, with two MCH6 cards, each containing four PowerPC 603
Compute Elements (CEs) with 16MB of local memory per CE, and a FORCE CPU-
5V host Board with a microSparc processor and an accompanying SBUS daughter-
card. Each PowerPC CE operates at 100MHz whereas the host processor, which
has 32MB of physical RAM, operates at 110MHz, and acts as the bus-master. Extra
VME cards can be added in each of two free VME bus slots, ranging in functionality
from extra RAM to i860 DSPs, more PowerPCs, or other VME bus adapters such
as RINTs. Each of the PowerPC CEs is operating on a proprietary embedded OS
(MC/OS), whereas the FORCE board is operating on Sun's Solaris 2.5.

This multi-processor system is a distributed memory system which can appear
to the programmer as an SMP.[26] The preferred mode of operation is through
high-speed low-latency programmed burst transfers, using the facilities of the em-
bedded OS, and utilizing the special DMA controllers attached to each CE. Broad-
casting capabilities are also available. The interconnecting fabric of the system has
a peak throughput of 840MB/s.

The implementation of our near real-time MRI system will utilize the MCH6
in order to perform the non-Fourier encoding computations, transferring the RF
pulses to the waveform generators on the TPS, performing raw Fourier-domain

'Mercury Computer Systems, Inc., 199 Riverneck Road, Chelmsford, MA 01824-2820
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reconstructions, subsequent image reconstructions and finally communicating the
appropriate results to the display subsystems.

First, let us explore some of the problems that must be overcome in order for
such a real-time system to operate.

" As was mentioned in Section 4.1.1, there is no provided way of communicat-
ing with the TPS after the pulse sequence object code has been downloaded
to the TPS sequencers. The TPS begins execution of the scanO entry-point,
and will not return control until scanning is completed, and the PSD IPG
process has exited. Clearly, in a dynamic adaptive MR experiment we must
have the ability to modify the RF waveforms and possibly gradient events
after the initial download of the sequence to the TPS, and while the TPS is ex-
ecuting the real-time scanO entry-point. We clearly also need to know where
the sequencers' memory is, in order to, in real-time, modify it, in-between
iterations of the scan() loop.

" Once the scan() section has finished acquiring an image, we need some way to
extract it from the TPS, in order to perform the reconstruction and displaying,
as well as computing the next set of spatially-selective RF waveforms. We
need to both know where to find the raw acquired data in the TPS, as well as
when it is ready for us to extract.

* Synchronization in-between the external computing system and the TPS is
necessary. As was just mentioned, we need to know when the acquired dig-
itized data resulting from the adaptive RF waveforms is ready for us to ex-
tract. However, we also need to be able to halt the TPS once an iteration of the
scan() loop is finished, until we have updated the sequencer memory with the
new waveforms that were computed from the result of the last acquisition.

Unfortunately, exact answers to most of these problems were not available to
us, and as a result we had to reverse-engineer a fair part of the system. In the
following section we will provide exact answers to all these problems, in hope that
future researchers will be able to quickly progress in such situations.2

Once the technical details are clear we will turn towards the general system
design we have implemented in order to achieve minimal latency in-between ac-
quisitions and reconstructions.

2Present-day MR scanners represent a decade of iterative improvements held together by
chewing-gum and duct-tape. Due to the complexity of these systems, they are rarely, if ever, com-
pletely re-engineered. As a result, even the GE Medical Systems chief engineer gave us some very
inaccurate information at times, as to what goes on in the TPS.
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5.1 How to Tap Into the MRI Scanner Internals

We first note that the SGI host performs most, although not all, of the functions
we need to perform from the add-on Mercury system: it can upload variables and
waveforms to the TPS, which the pulsegen( section can use to built the sequencer
memories; it also gets a copy of the standard Fourier-reconstructed image from the
TPS once the scanO section is finished executing, and displays it.

The SGI host is connected via a Bit33 Fiber Channel adapter directly onto the
VME bus backplane in the TPS. Since all the boards are VME cards in the TPS, this
leads us to believe that most of the components and memories we need to access
on the TPS, have a dedicated window on the VME bus. This does turn out to be
the case.

Therefore, our communication means is via a fiber channel, in our case a VME
to VME,[42] adapter. This adapter is capable of abstracting communications be-
tween two VME busses, in a transparent fashion: once control registers are set up
on the local and remote cards, an address reference on the local VME bus in a spe-
cial VME window, becomes a reference on the remote VME bus. The result of the
reference is transferred by the adapter on an as-needed basis. The peak sustained
transfer rate of a Bit3 adapter is 26MB/s, rendering it a perfect approach to our
add-on real-time system.

This method provides us with direct access to the memory of the TPS, by map-
ping it into a fixed address space window on the VME bus of our client system,
the MCH6. Of course extreme care must be taken in order to not disturb the VME
bus on the TPS side, as our card is an add-on and absolutely no components of the
TPS expect it to be there. The next problem to be resolved is how to obtain the ad-
dresses we need in the remote VME bus, in order to be able transfer the waveforms
into the TPS IPG, and to be able to extract the acquired data from the Reflex Recon
board.

First, we will return to the RSPs that were mentioned in Section 4.1.1. Suppose
we set up an array of raw memory bytes in the RSP section of the PSD. These real-
time variables are globally updated whenever they are changed by the PSD. If we
have a pointer we want to communicate to the Mercury system from the TPS, we
can place it in this RSP buffer, and transfer it over the Bit3 (since the address of
the RSPs is a raw VME address, in order for them to be globally visible). Unfortu-
nately, we still need to communicate the base address of this buffer to the Mercury,
manually. This is the approach we take in order to perform two-way communica-
tions and synchronization variables from the Mercury system to the TPS: a buffer

3 SBS Technologies, Inc., 1284 Corporate Center Drive, St. Paul, MN 55121-1245
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is set up in pulsegenO on the TPS by our PSD. The buffer is declared in the EPIC
RSP section. A pointer to the base of the buffer is also set up as an unsigned integer
RSP. Once the user downloads the sequence onto the TPS, and just before begin-
ning the scanning loop, the user can query the RSP pointer by name (from the RSP
window on the SGI host GUI). The user then enters the decimal address onto the
R/T system we have implemented on the Mercury.

From that point on, all communication is handled automatically via the RSP
buffer. The R/T system executing on the Mercury system can halt the scanning
loop, obtain pointers to IPG RAM, be informed of the scanning loops' progress (by
having the scan-loop update a synchronization variable) etc.

Now that we have established a channel of communication in-between the TPS
and the Mercury system, the last step is to obtain pointers to the right memory
banks on the right boards of the TPS VME, to transfer waveforms to and extract
acquired data from. Although apparently simple, this is a slightly more involved
task.

The IPG computer, as was already mentioned, has 256KB of RAM. We need
a pointer to a block of it in into which to transfer the waveforms. The pulsegen()
section of the single-image acquisition PSD, described in the last section, already
allocates some memory in order to read in waveforms from binary files from the
host. Instead of deallocating this memory once we have produced the instruction
memory and transferred it over to the exciter boards, as was done in that PSD,
we instead retain the pointer to this block of RAM. The Mercury can request it
from the RSP buffer and the pulsegen() section provides this pointer. The necessary
condition is that the address visible in pulsegen() is a raw VME address. This is
indeed the case; necessarily so, because the pulsegen() function is executing on the
TPS 68040 processor, and this RAM is on the IPG embedded computer. Therefore,
it must be that the vxWorks operating system can only handle this address as a
VME address. We take immediate advantage of this situation.

Whenever the Mercury system computes new adaptive spatially-selective RF
waveforms, and the scanning for the last acquisition has completed on the TPS,
one of the Mercury CEs is designated to transfer the waveforms via the Bit3 to the
address communicated to it from the pulsegenO function. The only unnecessary
complication on this, is the fact that the proprietary MC/OS on which the Mercury
CEs are operating on, does not provide a driver for the Bit3 adapter. While im-
plementing a driver from scratch based on the respective manufacturer's manuals
([42, 27],) we found out through much labor that the MC/OS can not map a VME
window smaller than its minimum virtual memory page size of 4KB. Unfortunately,
the Bit3 adapter provides exactly 256 bytes worth of control registers (which need

100



to be set up individually for each transfer). Of course, as is the case with most soft-
ware systems, failure to comply with the undocumented "features" results in no
warnings and subsequent non-deterministic system crashes. Thanks to Mercury
support' we were able to resolve this issue and implemented a (almost) functional
device driver for the adapter.5

Given synchronization and the ability to reset the waveform memory during
the scanning session, the final missing element is the ability to read the acquired
data from the TPS memory. This is considerably more convoluted. During the
scanO entry point, the TPS computer which is executing the function does not have
access to the acquired data. Instead, a global variable is provided (called "view").
The scan loop is supposed to increment this variable every time it plays-out a read-
out. The receiver board uses that variable to insert the acquired digitized data into
the Balk Access Memory (BAM) on the Reflex board. Once the data has been in-
serted into the BAM by the receiver, the Reflex (which is a Mercury board as well)
takes over and performs the reconstruction (which is limited to standard Fourier-
encoded imaging). The image is then transfered to the SGI host.

The problem arising in this system is that the TPS computer executing the PSD
code never has access to the BAM, which contains the acquired data resulting from
our spatially-selective RF waveforms. In fact, it appears there are only two ways
to get the VME address of the BAM and the offset wherein the acquired data is
placed. One is to remotely login to the vxWorks OS on the TPS and execute a
special C function call' which yields the address. Note that, also unfortunately,
the address into the 256MB BAM where the acquired data is placed does vary with
time. The other alternative to getting the desired address is by telnet'ing to the TPS
computer at port 1071! The daemon running on the TPS returns a character string
containing the hex address of the next BAM acquisition. Again, the unfortunate
fact here is that the TPS computer is only connected to the SGI host via a reserved
IP address.

The solution we chose, was to write a second daemon, on the SGI host which is
connected to the Brigham And Women's Hospital subnet. The Mercury computer,
apart from the Sun fast Ethernet 10/100Mbps HME card, which is dedicated for
imaging in our system, has a 10Mbps LE card which is connected to the hospital's
network. The R/T system on the Mercury connects via TCP to the daemon on the
SGI which in turn connects via TCP to the TPS, and the desired address automat-
ically is passed to the Mercury, by following the inverse path. Given that address,

4 supportfmc. com
5Some issues still remain unresolved, although we are making progress towards solutions.
6The call is ed-show-all-passes (.
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the system executing on the Mercury can access the acquired data on the BAM via
the Bit3 adapter! The final piece of information is the arrangement of the real and
imaginary parts of the image in the BAM. Unfortunately, this is not equivalent to
the separate raw data files the SGI host can be made to write out to disk. We have
found experimentally that the contents of the BAM are organized as follows:

" Starting at the base BAM address, the first 1024 bytes are never used.

" After that, the real and imaginary parts are interleaved. That is, the signal at
each point on the sampling grid is saved as a tuple < real, imaginary >.

" The BAM always contains a 2562 grid, in row-major order. When 128 points
of resolution are selected in the frequency-encoding direction, each row con-
tains useful information only in the first 512 bytes, whereas the remaining
512 bytes are noise. Regardless of the spatially-selective encoding direction,
the first row of the acquired data begins at the 1024-byte offset.

" The real and imaginary values of each odd row (0-based) are negated. This is
actually an effect of inverting the magnitude of every second RF waveform
played out, in order to avoid the DC offset.

" The real and imaginary values of each odd column (again, 0-based) are negated.
This is beyond our understanding.

For comparison, the data written out to disk by the SGI host, when requested, are
two separate files, real and imaginary respectively, always 2562, where the values
of each odd row are inverted. Unlike the BAM, in 2652 imaging, the first line of
the file does contain useful data, and also, unlike the BAM, when 128 points of
frequency-encoding resolution and < 128 points of spatially-selective encoding
are requested, the first useful row appears at the 65th line of the 2562 matrix.

Having resolved these issues, we will shortly turn to the software system de-
sign for the Mercury multicomputer. First, a high-level overview of the entire sys-
tem is in order. Figure 5-1 depicts the entire system once fully deployed.

As can be seen, the dedicated 100Mbps Ethernet connection on the Sun SBUS
is used to transfer the reconstructed image sequence, as it is being generated, to a
fast laptop that can display the image, and accept user input that is returned and is
used to modify the actions of the MCH6, e.g. the type of decomposition to be used,
the number of encodes, or the imaging plane. This networking choice was made
as the MCH6 cage needs to be very close (< 20ft) to the TPS, in a machine room,
unless repeaters are used for the fiber cables. Moreover, the former was chosen
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also because it allows extra post processing (such as interpolation and scaling,) to
be performed effectively at the client, specifically for each client.

The possible extensions which we are currently implementing, include a wire-
less network both inside the RF-shielded scan room' as well as in its vicinities.8

Furthermore, provided a fast modem, it is possible to transfer images to clients in
remote areas, via a modem dial-up server attached to the system, providing some
non-interactive type of tele-medicine.

5.2 Computation Timeline

Given the above-mentioned hardware elements and interconnections, we now turn
to the task of defining an adequate model of computation. We modeled the system
after a simple repetitive pipeline which closely follows the inherently repetitive
MR imaging process: as data is acquired, a new encoding basis must be computed
which can then be used to excite and acquire the new set of data. The notion of a
pipeline also naturally lends itself to stalling the computation while the encoding
basis is being computed (although if so desired, the user can define the encoding
as an asynchronous operation, limited by a user-controllable maximum number of
acquisitions per encoding).

The first image acquired by the system is a full n x n baseline image, either
Fourier-encoded or resulting from excitation by a full basis set for C" e.g., an or-
thogonalized random matrix.

Given this initial image estimate, we perform the following steps:

1. First, the Fourier-domain data must be reconstructed as defined by the en-
coding method. For example, if SVD encoding was used to acquire the re-
sults (call this k x n matrix F') just transferred from the BAM to the Mercury,
then the reconstruction would be performed as in equation (3.34):

F= UkF', (5.1)

where the first k columns of U where used for excitation, and Uk is the n x k
matrix containing those columns.

7Since wireless LANs operate at 900MHz or 2.4GHz, and since most clinical MR imaging is
based on hydrogen which at 1.5T has a resonance frequency of ~ 62.5MHz, there is not expected
to be any destructive interference.

8This is useful since in MR-guided therapy, such as interventional surgery, a number of people
need access to the images. The currently implemented solution is piling in-front of the SGI host
computer.
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Once this has been completed, we can both begin the computation of the
next encoding basis, as well as begin the 2D FFT operation on the Fourier-
domain F data to yield the spatial domain image. These two processes are
independent and proceed without any further synchronization.

2. We allow the possibility to begin the next acquisition immediately, even be-
fore the raw reconstruction F is completed, if some efficiency in the encod-
ing may be sacrificed for higher temporal resolution: the scanner is advised
to complete a next acquisition using the currently available encoding basis.
That is, the same waveforms used in the previous iteration are transferred
to the TPS and the scanner begins acquisition. In this case, encoding and
acquisition are asynchronous.

It is however guaranteed by our system, that the acquisition following the
completion of the encoding basis computation will use the most recent basis.
Of course, the encoding basis in the asynchronous model has been computed
from an estimate preceding the last acquisition, unless, of course, the rate of
the encoding computation is greater than or equal to the image acquisition
time (#encodes x TR).

Finally, in order to guarantee robustness of the encoding basis set, as was
defined in Section 4.4, we allow a user-controllable limit on the number of
images to be generated before a full basis set for C" is used to acquire a new
baseline image. The basis set may be the full SVD (since it forms a full ba-
sis) or a Fourier basis. We also allow this interleaved baseline image to be
acquired with a reduced non-orthogonal set, e.g. Gaussians. Since our goal
is to ensure that some finite projection of the salient image information of the
FOV is acquired, so long as the standard deviation of the Gaussians is large
enough, some weighted amount of every column vector of the k-space will
be acquired. Although the reconstructed image may not be of maximal rank
for the number of encodes, the fixed basis can be chosen such that it produces
both high and low frequency information.

3. Regardless of how the encoding RF waveforms were generated, (either by a
new decomposition or using encodes computed for the last acquisition,) the
waveforms are transferred by one of the CEs via the Bit3 to the TPS mem-
ory and from there, the PSD we have implemented builds the instruction
and waveform memories for the sequencers. Some care needs to be taken
since vxWorks employs a watchdog in order to avoid processes going into an
infinite loop. If the turnaround time from the moment the PSD has finished
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acquiring a data set to the moment when the instruction and waveform mem-
ories are ready for the next scanning loop, is more than one TR, the watchdog
will kill the PSD. A solution to this is to acquire a nonsense line of data every
one TR while the instruction and waveform memories are being built, or the
system is idle (of course, this is not an easy task either, since there are not
timing functions available on the TPS computer, and as a result, depending
on the size of the RF matrix, we have "hand-tuned" an idle loop).

4. Once the scanner has begun the next scan loop, the CE that transferred the
waveforms goes into a spinning loop, waking up every 1/2TR, and request-
ing via the Bit3 the progress of the PSD. If the scanning loop has completed
all k line acquisitions, the CE transfers the data from the BAM onto local
memory, and forwards it to the reconstruction unit, jumping back to step 1.

5. Whenever during steps 1-4 the 2D FFT of F has been computed, the image is
transfered, by the CE that performed the reconstruction, to the FORCE host
board on the Mercury cage, and from the host processor there, via Solaris
networking, it is transferred to the display clients via the Ethernet TCP con-
nection.

Figure 5-2 provides a schematic of the R/T processes occurring through time
as has been implemented.

Synchronization between the CEs is achieved using the only defined primitive
on the MC/OS architecture, a semaphore, although we have implemented more
complex synchronization primitives (such as readers-writers locks and producer
consumer locks) on-top of the semaphore abstraction. Transfers in-between the
CEs take place with as few lock acquisitions as possible. We feel that some systems
are more critical than others, and is therefore more appropriate to guarantee co-
herency only between these. As an example of this, if one client display is too slow,
new image data will keep getting transfered to it, even if it is possibly dropping
frames, rather than stalling the acquisition process until the client has consumed
all of the data.

The few cases when locks are needed are, for example, the ability to asyn-
chronously compute new encoding bases. We must retain consistency between
which basis was used to acquire which resulting data. Furthermore, if the RF
transfer is occurring from the CE to the TPS, it must not be overwritten by the
new encoding basis that could have possibly just finished being computed.

In other cases, however, such as reconstructing the images via the 2D FFT, we
do not want to stall transferring data from the raw reconstruction unit to the 2D
FFT unit, if the latter is running too slow. If we were to stall, the entire pipeline
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Figure 5-2: The "pipeline" stages of the R/T computation.
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would stall, as Figure 5-2 clearly shows. Instead, we immediately make the trans-
fer to the 2D FFT unit. In the worst case scenario, the 2D FFT is occurring at the
same time as the new transfer into its local memory is taking place. In order to
severely limit this from occurring, in each iteration of the 2D FFT unit, the input
buffer is copied in a single memcopy operation.

This in fact is our approach to limiting inconsistencies in the cases where it
would be harmful to stall while waiting for a lock: in each iteration of each func-
tional unit, the first instruction sequence is performing a memory copy from the
input buffer to a temporary buffer.

5.3 Functional Units and Interconnections

Some further explanation of this transferring and temporary storing of data is in
order. Each of the PowerPC CEs on the Mercury boards is connected to the in-
terconnecting fabric via a DMA controller. The controller provides efficient block-
transfers in the fully interconnected fabric (ILK) on each board. Clearly, in order
to take full advantage of the underlying system, we chose to arrange processes
that need to communicate often, on CEs on the same MCH6 board. Each process
is given two buffers: an input and an output one. Once woken up, a thread in
each process will read the data in its input buffer, process it and write the result
in the output buffer. Then, the thread sets up a DMA transfer (broadcasting ca-
pabilities are included and used in the ILK fabrics) from its output buffer to the
input buffers on all the consumer processes. Once the transfer is started and com-
pleted, the thread simply wakes up the consumers and then goes back to sleep on
a semaphore (or other synchronization variable) until it is notified that it has to
more data to consume, process and pass on. Of course, the advantage of arranging
the in/out buffers in such a manner comes only when the buffers are physically
located on the local RAM of the CE (although the ILK is intelligent enough to find
a good path if the buffers are located on an adjacent CE - e.g., on the same board).

Figure 5-3 depicts the mapping of the processing tasks onto CEs, as well as the
DMA block transfer paths of the data. The example of Krylov subspace encoding
was used to label the computations. Perhaps this was not a good choice, since our
implementation of the SVD algorithm based on [6].' only takes advantage of one
of the four encoding processors. It appears that, at least for now, an exact SVD is
somewhat slow for real-time MRI. Instead, newer methods, based on Monte-Carlo
like averages of randomly sampled sub-matrices [15, 7] hold promise both in terms

9 We modified the version of the Singular Value Decomposition code found in CLAPACK.[1]
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of speed, as well as the fact that by not being exact basis sets for the underlying MR
image, there is less of a chance of getting "trapped" into some lower dimensional
vector space wherein changes in the FOV may have zero projections onto the sub-
space. In exact SVD calculations, always in the context of MR, it is the noise which
allows this robustness. The current system, as was mentioned above, allows the
user to control a limit of the number of adaptive acquisitions before a full baseline
image is re-acquired, therefore guaranteeing robustness.

As can be seen from Figure 5-3, each of the steps in Section 5.2 has a direct map-
ping onto one process. We retained a one-to-one process to processor mapping
since multi-threading using POSIX compliant threads was sufficient and more eas-
ily maintainable.

5.4 Near Real-Time System Performance

The following table summarizes the performance of the functional units under 8,
32 and 128 encodes, for 1282 SVD imaging. Note that 2D FFT as well as networking
and displaying is always 1282, thus the times are independent of the number of
encodes. The time needed for SVD encoding weakly depends on the rank of the
matrix, and is thus dependent on the number of encodes. Values are approximate
averages. As of the writing of this thesis, the GE scanner used in this study was
upgraded to LX 8.3, for which the EPIC environment and compiler has not been
yet made available to us. Unfortunately, even minor revisions of the LX suite are
not binary compatible. As a result, we are unable to provide more accurate results,
since the PSD we have developed no longer executes on the TPS side.

SVD Encoding
# Encodes Raw Recon. Encoding 2D FFT Networking & Displaying

10 <25ms ~3s < looms < 50ms
32 <50ms ~3s
128 < 200ms ~3.7s

Given the performance of the units, we have been able to produce and display
a sustained train of 1282 Spin-Echo MR images, with a TE = 25ms, TR = 70ms
and 10-12 SVD encodes, in under one second (- .83-.96sec), at a frame rate of 1.2

to 1 frames per second.
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SECTION 6

Conclusions

MRI systems have profoundly impacted medical diagnosis and therapy in the last
twenty years with the application of Fourier-encoded imaging in commercial MR
scanners in hospitals and imaging center sites. Nevertheless, this thesis proves that
further improvements are possible, without radical redesign of complex legacy
code or machinery. Non-Fourier based approaches can, in a number of circum-
stances, naturally and easily replace Fourier encoding, not only on paper, but in
practice, particularly for dynamic imaging.

In this thesis we have described the theory and implementation of a near real-
time system for 2D MR imaging. An order of magnitude speedup is obtained
through increased MR signal acquisition efficiency, stemming from our use of non-
Fourier spatial encoding based on linear-algebraic techniques. Our fully functional
system is currently part of a commercial clinical GE MR scanner installed at the
Brigham And Women's Hospital.

Our near real-time system provides proof-of-concept for our methods. In the pro-
cess of this implementation we have reverse-engineered certain undocumented
features of the MR scanner. Furthermore, the system we have built is composed of
an inhomogeneous ensemble of over 20 general-purpose as well as embedded pro-
cessors, split among 4 physically separated machines, and executing on 5 different
operating systems.

We have shown that the linear-algebraic techniques we used are effective for
the following reasons:

* Rank-deficiency of typical MR images. Since typical MR images tend to be rank
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deficient, the amount of data that needs to be gathered during acquisition
can be minimized without loss of image information.

" Average to low SNR. Since typical MR images are 1.3%-5% noise, (SNR of
20-80), and since the singular values of typical MR images drop off nearly
exponentially, data acquisition reduction can also be achieved by not acquir-
ing data that is below the noise-level significance.

" Temporal rather than spatial frequency resolution. In MRI-guided therapy, e.g.
surgery, laser and focused ultrasound interventions, it is more important to
obtain images faster rather than images with high quality. As a result, further
truncation of the basis set may be possible.

Some MR systems have evolved in such a flexible manner that non-Fourier
based approaches can become a natural extension to the normal mode of opera-
tion. Our add-on system merely requires some software addition to the scanner,
and a second Bit3 fiber-channel to be installed in the TPS VME backplane. Our en-
tire system can potentially be deployed with minor modifications on any GE MR
scanner, by the purchase of the external Mercury system and a laptop, adding only
a small fraction of the total cost of these scanners. These additions can represent an
upgrade that a MR site's engineer can perform. Thus, we feel that we have reached
our goal of providing a useful, general, real-time system for 2D MRI.

6.1 Further Research

Pulse Sequences. Although our system uses a Spin-Echo pulse sequence, which re-
quires a large TR, of the order of the relaxation time of the sample, any other pulse
sequence can be hot-swapped into the system, so long as it is adapted for spatially-
selective excitation.[32, 33] Combining the shorter imaging times of faster pulse
sequences such as Echo-Planar sequences, and the near 10-fold reduction of the
required number of repetition intervals to acquire enough data, sub-100ms high
resolution non-Fourier encoded MR imaging is for the first time possible. It is no-
table that the Mercury multi-processor system which was used for this study, has
become outdated, therefore a newer system should provide a significant boost in
processing power. Newer advanced hardware undoubtedly will sustain imaging
at higher temporal resolution, given the limits of tissue relaxation properties. We
expect to have such a system deployed in the very near future.

3D Imaging. 2D imaging does not in fact take full advantage of spatially-selective
RF excitations. Our methods can be extended to 3D imaging, if instead of a 1D
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spatially-selective excitation, a 2D spatial excitation is applied, and the third di-
mension is fully encoded via frequency-encoding. In this case, reconstruction en-
tails not a sum of rank-one matrices, but a sum of rank-one tensors, and excitation
is no longer a linear combination of lines of k-space along the single encoding di-
mension, but instead a linear combination of two-dimensional planes. Over phase
encoded 3D imaging, RROD encoding efficiency scales quadratically, and may po-
tentially lead to approximately two orders of magnitude increased efficiency! Al-
though considerably more complicated, a 3D real-time system based on our cur-
rent 2D system is feasible.

Higher spatial resolution. Higher temporal resolution is not the only desired goal,
instead, our research is also geared towards extremely high spatial resolution. To-
day, it is standard practice to image a 24cm 2 FOV with a surprisingly low spatial
resolution of - 1 x 1 x 5mm 3 . Imaging time constrained by the relaxation proper-
ties of the tissue is not the only constraint on the spatial resolution. Also SNR drop-
off becomes dramatic at higher resolutions (inverse-square), since the observable
nuclei per voxel decreases as the inverse square of the in-plane voxel dimension.

One approach to obtaining higher spatial resolution at no loss of SNR is to
employ error-backprojection techniques, related to what was described in the non-
orthogonal vector set reconstruction in Section 3.7. Based on our ability to pro-
duce a train of images very fast, it is possible to dynamically sample each voxel at
varying, sub-pixel scale, alignments, e.g. by slightly translating and rotating the
coordinate system used to acquire each image. It is possible then to reproduce the
underlying contents at a much denser grid, based on the voxel information con-
tained in all the sub-pixel shifted images in the dynamic series. Our preliminary
experiments, have yielded 2K x 2K images (as opposed to the maximum possible
5122 in clinical scanners) over the same FOV, with higher SNR! The most impor-
tant feature is that since thermal noise is white, the "time-integration" of a train of
images as described herein, naturally reduces noise as /# images.

Present-day Fourier-based MRI technology can be metaphorically described as
analogous to a wave of light: it only knows how to travel on a straight line. What a
photon perceives as a straight line, can, however, be bent by gravity. What we have
presented, is in turn the analogous of a system which allows one to manipulate the
geodesics.
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