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Abstract

Wireless communications systems of the future will experience more dynamic channel
conditions and a wider range of application requirements than systems of today. Such
systems will require flexible signal processing algorithms that can exploit wireless
channel conditions and knowledge of end-to-end user requirements to provide efficient
communications services.

In this thesis, we investigate wireless communications systems in which the sig-
nal processing algorithms are specifically designed to provide efficient and flexible
end-to-end functionality. We describe a design approach for flexible algorithms that
begins with the identification of specific modes of flexibility that enable efficient over-
all system operation. The approach then uses explicit knowledge of the relationships
between the input and output samples to develop efficient algorithms that provide the
desired flexible behavior. Using this approach, we have designed a suite of novel algo-
rithms for essential physical layer functions. These algorithms provide both dynamic
functionality and efficient computational performance.

We present a new technique that directly synthesizes digital waveforms from pre-
computed samples, a matched filter detector that uses multiple threshold tests to
provide efficient and controlled performance under variable noise conditions, and a
novel approach to narrowband channel filtering. The computational complexity of the
filtering algorithm depends only on the output sample rate and the level of interference
present in the wideband input signal. This is contrast to conventional approaches,
where the complexity depends upon the input sample rate. This is achieved using
a composite digital filter that performs efficient frequency translation and a tech-
nique to control the channel filter output quality while reducing its computational
requirements through random sub-sampling.

Finally, we describe an implementation of these algorithms in a software radio
system as part of the SpectrumWare Project at MIT.

Thesis Supervisor: John V. Guttag
Title: Professor and Department Head, Electrical Engineering and Computer Science
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Chapter 1

Introduction

Communications- anytime, anywhere. This mantra is often repeated as designers and
producers of communications networks advertise new capabilities and services avail-
able because of recent technological developments. Indeed, with the proper equip-
ment, we can communicate voice, data and images anywhere in the world (or out
of it). An important part of this universal communications network will, of course,
be the portions that provide mobility and access to the global infrastructure with-
out wires. Today, it is this wireless portion of the system that seems to lag behind
expectations.

To be sure, wireless communications systems have changed significantly in the past
ten years. Most notable, of course, is the sheer number of people that use wireless
communications services today. This trend of increased usage is expected to continue
and has generated considerable activity in the area of communications system design.
Another clear trend has been the type of information that these wireless systems
convey: virtually all new wireless systems are digital communications systems; unlike
earlier broadcast and cellular systems, newer systems communicate using digital data
encoded into radio waves. Even analog source information such as voice and images
are digitized and then transmitted using digital formats.

The reasons for this shift to digital wireless systems are several. Initially, the shift
was made in cellular telephone systems to improve system capacity through more
efficient usage of the limited radio frequency (RF) spectrum. This shift has also
made available more advanced features, better performance, and more security for
users. Another reason for the shift in future systems, however, will be the fact that
almost all information communicated through such systems will already be digital,
both between individual users and between computers.

This shift toward digitizing all information for transmission does not mean that
all data should be treated as equivalent. Another trend in future wireless communi-
cations should be differentiated support for heterogeneous traffic, such as voice, data
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CHAPTER 1. INTRODUCTION

and video. Different types of data traffic will have varying requirements for transmis-
sion through the communications system, including different requirements for latency,
error performance and overall data rate.

At the same time that usage becomes more widespread, users will also desire bet-
ter performance: not only higher data rates for future applications, but also better
reliability and coverage. In fact, users will want these systems to work as well as
conventional wire-line systems, just without the wires. The desire for wireless con-
nectivity will include not only increased total area of coverage, but also the ability
to transparently move within zones, maintaining reliable connectivity using light-
weight, low-power communication devices. This will lead to a wider range of oper-
ating conditions within the wireless channel due to mobility and the requirement for
communications services in diverse environments.

In order to meets these demands and fulfill the vision of universal connectivity,
wireless systems of the future will have to provide a level of flexible and efficient service
not seen in current systems. These systems will have to carefully manage limited
resources such as spectrum and power as they provide services and performance far
superior to any available today. Furthermore, this increased flexibility will have to
extend to those layers of the system that interface with the wireless channel: the
physical layer.

The algorithms that perform the processing in this layer are directly impacted by
the dynamic conditions and increased demands for efficiency and performance implied
by the trends above. These algorithms will have to provide flexibility in the way that
they accomplish their work under changing conditions in the wireless channel, yet
they will have to do this in a way that provides efficient use of power exceeding the
best systems of today. In this work, we demonstrate that it is possible to design
algorithms that provide both flexibility and efficiency to meet the challenges that lie
ahead.

Summary and Interpretation of Contributions

In today's wireless communications systems, the physical layer processing is typically
implemented as a static design, providing an abstract interface to the upper layers
of the system as simply a bit transmission medium with some level of uncertainty at
the destination. Fixed hardware implementations reinforce this view of the physical
layer as immutable.

In this work, we consider the implication of recent technological advances that
make it possible for large portions of the physical layer processing to be implemented
in software [Mitola, 19951. This shift leads us to consider designing communications
systems in which the physical layer implementation can be significantly modified in
response to changes in the operating environment or the needs of the end applica-
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tions and users. A major conclusion of this thesis is that through careful design, we
can produce flexible signal processing algorithms that enable the overall system to
efficiently respond to such changes.

An important part of this work has been the implementation of many of the
resulting algorithms in a prototype wireless system. These implementations have
helped not only to validate the results, but have also helped to shape and guide
the research itself by providing a sense of the important problems and opportunities
for further investigation. Together, these goals of understanding how to best design
and implement a wireless communication system in which the physical layer can be
controlled in response to dynamic conditions and requirements has led to a number
of significant results. The original contributions can be classified into two separate
categories:

1. Novel signal processing algorithms that provide both flexibility and improved
efficiency relative to conventional techniques.

2. A new approach to designing flexible signal processing algorithms.

We describe these two areas of contribution in more detail in the sections that follow.

Specific flexible signal processing algorithms

Novel algorithms developed in this work perform functions that are required in several
different parts of a wireless communications system. The first algorithm described
below is applicable to a digital wireless transmitter; the rest perform several of the
primary functions required in a digital wireless receiver:

Digital Modulation: We have developed a new approach for digital modula-
tion called direct waveform synthesis. This is a technique for mapping discrete
data for transmission into corresponding segments of a digitally modulated
waveform using a pre-computed table of samples. This approach is useful in
hardware and software implementations, providing computational advantages
of 20x relative to conventional techniques for modulation.

In the receiver, we divide our examination into two different areas: the functions of
channel separation (isolating the desired signal) and detection, the process of recov-
ering the original transmitted data from the channel waveform.

Channel Separation: In this stage of processing, the receiver has to isolate
the desired narrow-band signal from a wideband input signal. This processing
typically has a computational complexity that is proportional to the bandwidth
of the input signal. We demonstrate new techniques that remove this depen-
dence, allowing the wideband receiver to be scaled to wider input bandwidths.
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- The frequency shifting filter provides flexible and efficient frequency trans-
lation with a computational complexity proportional to the output sample
rate of the channel filter. The computation relative to conventional tech-
niques is reduced by a factor equal to the ratio between input and output
bandwidths of the channel separator, which can be several hundred or more
in modern wideband receivers.

- The channel separation process is computed using random sub-sampling of
discrete waveforms to enable efficient filtering. This new new approach uses
only a subset of the available input samples while maintaining controlled
signal-to-noise levels at the output. The computational complexity is again
decoupled from the input sample rate, and depends instead on the required
output signal quality.

Detection: To complete the process of recovering data, we present a multi-
threshold matched filter detector that can provide a more effective balance be-
tween computation and the output confidence levels needed for efficient overall
system performance. Computational reductions of five or ten fold are demon-
strated relative to a full matched filter detector, depending on the required
output quality and input noise levels.

Designing flexible signal processing algorithms

In the design of a signal processing algorithm, a typical goal is to produce an algorithm
that can compute a specific result using some minimum amount of computation. From
a systems perspective, however, it is appropriate to design algorithms that can help
provide efficiency in the context of the entire communications system. This approach
is especially important in the case of systems that will be expected to provide different
services in a wide range of operating conditions.

Several common themes emerged from this work that have proven useful in produc-
ing efficient, flexible algorithms. These themes can be viewed as a general approach to
the development of effective signal processing algorithms in a larger communications
system. The steps of this approach are:

(1) Identify specific modes of flexibility that are useful in providing overall system
efficiency.

(2) Identify explicit relationships between input and output data samples for each
processing function, and

(3) Efficiently develop algorithms using the results of (1) and (2) through the re-
moval of unnecessary intermediate processing steps and the use of other tech-
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niques borrowed from other disciplines, e.g. approximate and randomized algo-
rithms.

We must identify specific modes of flexibility needed for the overall communications
system to adapt to changing conditions. We can also typically improve performance
by eliminating types of flexibility that are unnecessary for efficient global adaptation.
An example of this is the matched filter detector described above. Because of mobility
and dynamic channel conditions, the receiver often experiences varying levels of signal-
to-noise ratio (SNR). In the context of the entire system it is desirable for the detector
to produce constant quality output (measured as bit-error rate) in the presence of
variable input signal quality. In Chapter 6, we demonstrate a detector that can do
this efficiently by reducing its computation under favorable SNR conditions.

We need a more explicit understanding of the input to output data relationships
for specific functions. To achieve the goal of flexibility with efficiency, it is important
to understand which specific input samples are relevant to the computation of a
particular output value, as well as their relative importance. In the channel separation
process discussed in Chapter 5, this understanding leads us to decouple the length of
a filter response from the number of samples that are used to compute the output
value. In the case of the detector from Chapter 6, this knowledge enables us identify
the set of samples that contain information about specific bits to be estimated, and to
to preferentially process those input samples that contribute most to a useful result.

The final development step combines the understanding of the data relationships
and the targeted modes of flexibility. In some cases, the role of a particular processing
function within the overall system enables a designer to specify a minimum level of
quality that is suitable for efficient global operation under current conditions. An ap-
proach that provides the ability to simply approximate a more optimal computation
in a flexible way might then lead to more efficient algorithm. Because of the inherent
statistical properties of noisy signals, we found that it is useful in such cases to apply
techniques that provide statistical, rather than deterministic, performance guarantees
as a way to achieve more efficient resource usage for desired levels of output qual-
ity. This is true for the detector described above and for the random sub-sampling
scheme that approximates the output of the channel separation filter using statistical
techniques.

In other cases, where approximations to ideal output values are not appropriate,
it is often possible to use the explicit data relationships to provide improved effi-
ciency. In Chapters 4 and 5, we describe digital modulation and frequency transla-
tion approaches that produce results identical to conventional approaches while using
significantly less computation. In these cases, understanding data relationships en-
abled the removal of unnecessary computation steps and the creation of more efficient
algorithms without sacrificing any useful modes of flexibility.
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Structure of this Thesis

Future wireless system designs will need to provide flexible and efficient service in
the face of more dynamic channel conditions and varying performance demands due to
heterogeneous traffic. We claim that an approach that provides dynamic specification
of physical layer signal processing functionality can satisfy these demands and meet
the end-to-end needs of the users. Because this thesis focuses on the processing
required in the physical layer of the communications system, Chapter 2 provides a
review of the relevant characteristics of the wireless channel and their implications in
light of the trends for future systems.

We present a discussion of a general design approach for flexible and efficient sig-
nal processing algorithms in Chapter 3, highlighting some of the common themes that
run throughout this work. The approach we describe begins with an understanding of
the specific modes of flexibility that will be required in each stage of processing. We
also describe how a clear understanding of the relationships between the input and
output samples of a signal processing function is essential to the design of flexible,
efficient algorithms. The design approach then concludes by using the flexibility goals
and data relationships to produce efficient algorithms using a number of techniques
from the field of computer science. In this work, these techniques include the use
of random sub-sampling, functional composition for efficient computation and condi-
tional termination of processing to reduce computation. In addition, the flexible use
of look-up table based mapping enables a trade-off between memory and computa-
tion. These design techniques are used in conjunction with the abstract processing
specifications and analysis tools of signal processing to produce flexible algorithms.

In Chapter 4 we begin to describe the specific algorithms developed for signal
processing functions, starting with the transmitter. The processing required to encode
digital information into waveforms can be viewed as a direct mapping of data bits
into sequences of output samples. This understanding leads us to a flexible look-up
table based approach that provides a wide choice of trade-offs between memory and
computation in an efficient digital modulator implementation, and we demonstrate
the significant performance gains of this approach relative to conventional modulation
techniques.

We also describe the implementation of our digital modulation techniques in a
software radio system that was designed and built as part of the SpectrumWare
Project. This project has resulted in a number of applications that demonstrate the
utility of flexible physical layer processing. Some of these applications are described
in both Chapters 4 and 5.

In Chapter 5, we begin discussion of the digital receiver with the problem of sep-
arating a narrowband channel from a wideband digital sample stream. This channel
separation task consists of two distinct steps: frequency translation and bandwidth
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reduction. The first algorithm presented is a composite digital filter that performs
part of the frequency translation step as the channel filter output is computed. This
results in a significant reduction in the computation required for the frequency trans-
lation step of channel separation.

We then present an approach to the bandwidth reduction step that is designed to
balance the output precision needs of the overall system with the desire to minimize
computational complexity. The key idea is to compute the output of the channel
filter using only a subset of the available input samples. We describe algorithms
for choosing this subset of input samples in a non-deterministic manner to prevent
narrowband aliasing while carefully controlling the signal-to-noise ratio at the output
of the channel filter.

One of the significant results of Chapter 5 is that the computational complexity of
the channel separation function need not depend on the input sample rate. Instead,
we demonstrate that the channel separation function can be implemented with a
complexity that depends on the output sample rate and the level of interfering signals
are present in the wideband input signal at the time the algorithm is run.

Another essential function of a digital receiver is detection, where an estimate is
made of the original transmitted data based on the samples of the received signal.
In Chapter 6, we describe a new approach to detection, where the goal will be to
produce estimates with a bounded probability of error using minimum computation.
We present an algorithm that can produce such estimates with significantly reduced
computation relative to conventional detection techniques. These performance gains
result from two distinct improvements, both of which involve the evaluation of only
a subset of the relevant samples for each data symbol estimate. For typical pulse
shapes used to transmit data, there is an uneven distribution of signal energy over
the duration of the pulse. We demonstrate that a significant reduction in computa-
tion is possible with little effect on error probability by preferentially analyzing only
those samples that contain the most signal energy. Further performance gains are
then achieved through the introduction of a conditional test that enables the detec-
tion process to terminate early under favorable conditions, resulting is a detection
algorithm that has a statistical running time.

Finally, Chapter 7 summarizes the main contributions and themes of this work
and indicates some directions for future work. A review and discussion of related
work is presented in various places throughout the thesis.
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Chapter 2

Flexible Design of Wireless

Systems

Communication is the transfer of information from the source to the destination. In
this process, resources are consumed: electrical power, RF spectrum, computational
resources or elapsed time. In this chapter, we review how future trends will make
it more challenging for mobile wireless systems to accomplish their communications
objectives while efficiently using their limited resources.

We begin with a review of some of the functions to be performed in the physi-
cal layer processing for a wireless communications system and some of the relevant
characteristics of the RF wireless channel. We then describe how decisions about
the allocation of system resources impact the ability of the system to be flexible and
efficient. In particular, we will show that a static allocation of system resources to
individual users and a static design of the individual wireless links will result in un-
acceptable levels of inefficiency. It is this need for an adaptive, flexible physical layer
implementation that motivates the work in this thesis.

2.1 Signal processing in the Physical Layer

The physical layer provides the interface between the higher layers of the system
and the underlying physical communications medium, the analog wireless channel.
Processing steps required in the physical layer are shown in Figure 2-1.

Processing in this layer has long been referred to as signal processing because
it has involved continuous signals instead of discrete data. In the transmitter, the
modulation process transforms digital information into continuous signals appropriate
for the wireless channel. Because the wireless channel is a shared medium, the receiver
performs functions that provide for signal isolation in addition to demodulation. After
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Figure 2-1: A wireless communications system.

isolating the signal components corresponding to the desired transmitted signal, the
demodulator recovers the digital data from these received waveforms. In the figure

we see that the higher layer functions, such as source and error correction coding and
decoding are separated from the signal processing functions.

In the earliest analog wireless communications systems, these signal processing

functions encoded analog source signals directly into RF signals, so the source and

error coding stages were not present. As systems were developed to communicate

digital information, signal processing was still performed on continuous signals in the

analog domain. In modern systems, however, significant portions of the physical layer
processing are now performed using digital signal processing (DSP) techniques.

Digital signal processing still involves signals, but they are now sampled and
quantized representations of continuous waveforms. The processing of these discrete-
time signals is performed as numerical operations on sequences of samples. Signal
processing has now become a computational problem and systems are designed with
ever greater portions of the "physical layer" implemented in the digital domain due
to its relative advantages in cost, performance and flexibility [Frerking, 1994].

When we consider the different layers of the wireless communications system in

Figure 2-1, we see that the physical layer is typically the largest consumer of resources

in the system. For example, several studies have found that wireless network adapters
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for personal digital assistants often consume about as much power as the host device
itself [Lorch and Smith, 1998, Stemm and Katz, 1997. Within the wireless network
adapter, almost all of this power will be consumed in the physical layer implementa-
tion. This becomes clear when we consider that the upper layers of the protocol stack
might require only a few operations per bit in an efficient implementation. In the phys-
ical layer, however, the signal processing might require tens of thousands of arithmetic
operations to communicate a single bit from source to destination [Mitola, 1995].

Software Signal Processing

Moving the physical layer processing into software allows it to be treated as one
part of the total processing required in the data communications process. The signal
processing functions are computationally intensive and need to be well-matched to
the properties of the wireless channel, but they are still only part of the processing
chain whose overall goal is efficient and reliable communication. Although there has
traditionally been a hard partition between the signal processing functionality and
the higher layers of the system, that line in beginning to blur as more functionality
is moved in to software. This allows signal processing functions to be more tightly
integrated with the higher layers of the communication system, and also allows us to
consider the design of the system as a whole, instead of separate parts.

In the chapters ahead, we demonstrate how to build the components of the physical
layer in a way that provides not only the flexibility required for future systems,
but also improved computational efficiency relative to existing techniques. As we
have investigated this area, we have tried to incorporate and apply techniques and
principles that have been used successfully to design efficient computer algorithms
and software systems in the past. As a result, we have been able to identify new
directions and new techniques that we believe will have significant impact on the
design of future wireless communication systems.

2.2 Effects of Mobility on the Wireless Channel

In this section, we review some basic properties of the wireless RF channel and at-
tempt to show how the desire for greater mobility and wider coverage leads to a more
dynamic and challenging operating environments for wireless systems.

2.2.1 Propagation characteristics and capacity

The physical channel only conveys continuous-valued, analog signals. The design of
an efficient communications system will therefore require an understanding of how

25



CHAPTER 2. FLEXIBLE DESIGN OF WIRELESS SYSTEMS

such signals behave in the wireless channel, not just the abstract view of digital
communications as seen at the higher layers of a communications protocol stack. At
a fundamental level, the wireless channel is not binary: data are not simply either
"received" or "lost". Rather, the relevant phenomena are often smoothly varying and
communications is often a matter of degree, of varying levels of confidence. There is a
qualitative difference between the traditional interface presented to the upper layers
of the system and the actual limitations due to the properties of the channel.

One important effect seen in the wireless channel is the attenuation of the signal
as it moves from transmitter to receiver. The strength of the received signal relative
to a fixed level of uncertainty present, called noise, is important because it determines
the capacity of the channel to convey information. Shannon's equation for channel
capacity shows that the ability of a system to reliably communicate information
through a fixed-bandwidth (W Hz) channel depends on the ratio of the power of
the received signal (P) to the power (N) of the noise (which is treated as a random
signal) [Cover and Thomas, 1990]:

C = W log 2 1 + bits/second (2.1)
N

From this we see that the theoretical limit on the capacity (C) of such communications
is not fixed, but rather changes with the received signal strength.

In free space, the signal attenuation is between transmitter and receiver is pro-
portional to 1/d 2 , where d is the distance between transmitter and receiver. In
a terrestrial system, the attenuation can be much more severe; because of effect
of the ground, signal attenuation is often assumed to be proportional to 1/d 4 , al-
though measurements show that the exponent ranges from 2 to 6 in different envi-
ronments [Rappaport, 1996]. In a wireless system the strength of the signal sensed
by the receiver can vary significantly with range, often by many orders of magnitude.

Another effect of propagation is the attenuation due to objects in the environment.
In an indoor environment, the signal passes through walls and floors, causing signifi-
cant reduction in signal strength, often by several orders of magnitude. In an outdoor
environment, foliage, rain, contours of the landscape, etc. can cause attenuation of
signals traveling from transmitter to receive [Rappaport, 1991].

The wireless channel is also a shared medium in which signals are combined, lead-
ing to several types of interference. In one case, signals reflect off objects like build-
ings, walls, trucks, etc., producing multi-path reception. In this situation, multiple
copies of the signal combine additively at the receiver. The separate copies of the sig-
nal experience different propagation delay and attenuation and cause self-interference.
The effect is particularly severe when the time differential between successive arrivals
equals or exceeds the time interval at which successive data symbols are encoded in

26



2.2. EFFECTS OF MOBILITY ON THE WIRELESS CHANNEL

the RF signal [Lee and Messerschmitt, 1994].
Co-channel interference often results from the geographical re-use of the same RF

band in multiple locations (e.g. cellular telephone systems). This scheme is used
to increase system capacity and relies on careful allocations of different frequency
bands to limit interference. It is difficult or impossible for a receiver to separate
co-channel signals without some additional techniques such as "smart" antennas or
spread-spectrum approaches [J. C. Liberti and Rappaport, 1999].

Since techniques to isolate signals are imperfect, other transmitters in close prox-
imity can also cause adjacent channel interference. Transmitters that share a channel
are typically required to use different frequency bands or different time periods. How-
ever, the ability of a receiver to remove interfering signals is limited by unintentional
emissions of transmitters using adjacent frequency bands and the desire to minimize
the complexity of the processing at the receiver. All real receiver implementations
suffer from imperfect signal separation techniques that are a compromise to reduce
processing complexity.

All of these propagation effects must be taken into account in the design of a
wireless communications system. It is generally the case that operating closer to
theoretical limits on capacity in (2.1) requires an implementation with significantly
more complex processing. Thus, as conditions change the theoretical capacity of a
wireless link changes, or conversely, the complexity required to provide a fixed rate
changes; if attenuation or interference conditions improve, a flexible system could
provide better service with the same complexity or could provide the same service
using a less complex processing solution. Similarly, when a particular system is
designed to operate at a fixed rate under different conditions, its fixed capacity is
an artifact of the implementation, not of the underlying theoretical limits.

2.2.2 Dynamic conditions

The environmental factors described above can seriously affect the performance of
a communications system, even in a relatively static situation. More significant,
however, are the effects of dynamically changing conditions. This is one of the primary
differences between a fixed wireless system and a mobile wireless system.

The motion of one or both ends of a transmission link during a communications
session can change the propagation range and cause variations in signal levels at
the receiver. Relative motion between the transmitter and receiver also causes dy-
namic multi-path interference conditions that depend on the frequencies of the signals,
ranges, relative speed of motion, etc. In large systems, motion during communica-
tions can also result in hand-off between different areas of coverage. This technique is
used to manage capacity and provide increased coverage, but can also result in rapid
changes in the attenuation and interference that mobile users experience as they move
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between coverage areas.
Mobility during operation makes the dynamic nature of the wireless channel more

severe. Dynamic propagation characteristics affect the strength and properties of the
signal sensed by the receiver, and this has a direct effect on the theoretical capacity
of a wireless communications system, as well as implications for the complexity of the
processing required in the receiver.

2.3 Effects of Diverse Communications Services

We have seen that the trends toward increasing mobility and more widespread cov-
erage in future wireless systems can have a significant impact on the performance
of a wireless systems. Another such trend is the diversification of available services,
which results in increased heterogeneous traffic. Different types of traffic have signif-
icantly different demands on the communications system. In the case of voice and
data services, the different requirements for error rates, latency and jitter can lead to
completely different system designs. These differences can be seen in many different
parts of the system design, such as source coding schemes for compression, error cod-
ing techniques, medium access control (MAC) protocols, etc. In the case of the MAC
protocol, constant-bit-rate data, such as voice, is best handled using a reservation-
based access scheme, whereas bursty data traffic leads to a contention-based access
control scheme [Stallings, 1990]. There are certainly hybrid approaches that try to
provide better performance in the case of mixed traffic, but any static solution will
be a compromise that either inefficiently uses resources or limits service flexibility.

The wider variety of channel conditions and desired services seen by the system
will impact the design at the same time as capacity demands will require increased
efficiency. The diversity of conditions and services may lead to different, even con-
flicting, demands on the system and will limit the ability of the system design to be
optimized to improve efficiency and performance.

2.4 Design of Wireless Communications Systems

To identify aspects of the design process that might be profitably changed to meet the
demands of designing the flexible and efficient systems of tomorrow, we begin with
the end-to-end principle for system design. This principle provides guidance as to the
best way to implement functionality in a communication system. In the classic paper
on the subject by Saltzer, Reed and Clark [Saltzer et al., 1981], the authors state:

The function in question can completely and correctly be implemented only
with the knowledge and help of the application standing at the endpoints
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of the communication system.

In particular, we are interested in those functions of the communications system such
as medium access control, error control, etc. that have a direct impact on the physical
layer signal processing.

One of the first steps in the design of a system is to identify the types of end-to-
end services that will be provided, including types of traffic, access patterns, length of
sessions, continuous or intermittent connectivity. The cost of providing these services
will depend heavily on the anticipated range of channel conditions and the available
resources, such as RF spectrum.

In the past, large scale wireless systems were designed to carry homogeneous traf-
fic, offering uniform service to all users; channel conditions could be treated as static
by designing to "worst-care" conditions. This approach enabled a static allocation of
shared system resources to users and allowed the system to be optimized for a single
type of functionality. The complexity of the system was reduced since there was no
provision to re-allocate shared resources after the initial design.

Future systems will need to support a dynamic mix of heterogenous traffic. There
will be no "common case" for which the resource allocation can be optimized and
hence any static allocation scheme will involve accepting inherent inefficiencies. The
end-to-end principle indicates that resource allocations can best occur when the re-
quirements of an individual user are known, which will be at the time that service
is requested. Even in current proposals for future systems, there is an acknowledge-
ment that dynamic allocation of bandwidth to users based on requested services can
improve efficiency and should be used [Grant et al., 20001.

Dynamic allocation of system resources will have a significant impact on physical
layer processing, providing the potential to take advantage of the specific channel
conditions and service requirements of individual users in order to more efficiently
allocate resources to each. We have seen that dynamic channel conditions can result
in "unused capacity" when conditions are better than those for which a static design
was made. Recovering this capacity though the use of flexible physical layer designs
will provide a much-needed improvement in overall system efficiency.

On a smaller scale, each mobile device within a larger wireless communications
network needs to use its own resources efficiently. The end user in a wireless system
has the most information about desired types of service, available resources, and local
channel conditions. In future systems, the unpredictable needs of users and changing
conditions will make it impossible to optimize for a single type of service.

In order to support diverse services, systems of the future will need some scheme
to efficiently support dynamic types of traffic and conditions. This must extend to the
physical layer, which contains most of the processing that depends on channel con-
ditions and medium access control methods. In the remaining chapters of this thesis
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we describe a general approach for flexible signal processing algorithm development,
as well as a number of specific algorithms that will enable more efficient use of both
systems resources (such as RF spectrum) and local resources (such as computation
and power).



Chapter 3

Balancing Flexibility and
Performance

From the preceding chapter we see that there is a mismatch between the highly
dynamic nature of the wireless channel and the use of static design techniques for
the physical layer processing of the associated signals. While this mismatch has been
tolerable in the past, growing demand for mobile wireless connectivity will make
it necessary that the wireless systems of the future use their resources efficiently
to support heterogeneous traffic over a wide range of channel conditions and user
constraints.

In particular, wireless communications system will require the ability to:

e Adapt to significant changes in the operating environment or in the desired
end-to-end functionality,

e Provide this dynamic functionality using, in some appropriate sense, a "mini-
mal" amount of resources, thereby allowing the system to recover or conserve
its limited resources, and

e Gracefully degrade performance in situations where desired performance is be-
yond the capabilities of the system for current conditions.

In this work, we make some initial steps in the direction of designing a more
flexible communications system. We begin this process at a fundamental level: the
level of the algorithms that perform the signal processing required for the wireless
channel. These signal processing algorithms are the workhorses that couple the digital
user to the physical RF channel. If low-level algorithms cannot operate effectively in
changing conditions, then there is little hope of building from them a more complex
system that can.
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In this chapter, we present some of the major themes that have been significant in
the algorithm development work that comprises this thesis. These themes can viewed
as general approach to DSP algorithm design that has resulted in number of useful
algorithms for flexible wireless systems. They also highlight some approaches to al-
gorithm design that are relatively uncommon in the design of DSP algorithms. These
kinds of approaches are more common in the field of computer science, particularly
in the areas of computer system and computer algorithm design.

3.1 Key Elements for Flexible Algorithm Design

In this chapter, we present some of the common themes that have emerged in the
development of the different algorithms we present in this thesis. These themes are:

1. the identification of specific modes of flexibility that are useful in providing over-
all system efficiency under changing conditions and performance requirements,

2. the identification of explicit relationships between input and output data sam-
ples for each processing function, and

3. the use of the results of (1) and (2) to develop efficient algorithms through the
removal of unnecessary intermediate processing steps and the use of techniques
with statistical performance characteristics.

3.1.1 Flexibility to support function and performance

Up to this point, we have simply stated we want to design algorithms that are flexible.
Here we attempt to provide a clear picture of what this flexibility looks like and how
we decide which types of flexibility are appropriate.

What are the specific types of flexibility that are desirable and what kinds of
flexibility are unnecessary? Before answering this question, we first note there are
two general ways that flexibility can be manifested. In some cases, flexibility might
provide a smooth change in an algorithm's behavior as conditions change, for example,
an algorithm needs to compensate as signal strength slowly fades as a mobile recedes
from the wireless base station. In other cases, flexibility might provide a different
choice in a set of discrete operating modes. A step change may be triggered by
some gradual change that reaches a threshold value, or it may be due to a sudden
change in conditions or desired functionality, for example, a mobile might hand-off to
a different base station because of motion or to a different operating mode in response
to a change in type of traffic (e.g., voice to data).
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It is also helpful to understand more precisely how providing flexibility within an
algorithm can force us to give up efficiency in processing. One way to understand
this is to realize that efficiency is often gained when multiple abstract processing
steps can be combined for implementation. The principle is widely used in different
areas of computer science, from computer algorithm design to compiler and computer
language design.

Providing flexible operation affects performance because it introduces partitions
that limit our ability to combine processing steps. To see this, consider a hypothetical
processing system that consists of a series of abstract stages. Many factors influence
where we place partitions in an actual implementation; we note a few that are relevant
to our work. We might need to place partitions in the actual implementation at points
where:

" we need to expose an intermediate result between two stages, or

* subsequent processing depends on information not known at design time (late
binding or re-binding), or

" there is a need to reduce excessive complexity that would occur with a larger
composition of processing.

We will see examples of each of these partition decisions as we examine the different
DSP functions in our wireless communications system.

This common step of determining specific desired modes of flexibility is an impor-
tant first step of the algorithm design process. As we examine each function in our
system, we try to compose functions where possible, but retain modularity to provide
desired modes of flexibility. We do not have any general rules, other than to say that
we determine the desired modes of flexibility in each stage by considering the basic
functions of each stage in light of the flexibility desired of the overall system.

3.1.2 Understanding explicit data dependencies

A second common theme in our work has been the importance of understanding
the relationship between a particular output sample of a processing function and
the input samples that are required to compute it. It is important to identify this
explicit relationship for several reasons: it allows us to compose processing functions,
as described in the previous section, and it also allows us to develop techniques to
compute approximate results in appropriate situations.

It seems rather obvious that we would need to understand how each output de-
pends on individual input samples as we design signal processing algorithms, but this
relationship is not always clear at the outset. DSP algorithms are often developed
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using analytical techniques based on frequency domain representations of the signals
and processing systems, and these often require the assumption that the signals are
of infinite duration. These design techniques tend to lead to a "stream-based" view
of processing. In this view, the input-output relationship for a particular processing
stage is characterized under the assumption that input and output will be infinite
sequences of samples that represent continuous signals.

This stream-based view tends to blur the relationship between individual elements
of the output sequence and the specific elements in the input sequence on which each
output value depends. This viewpoint of data processing is adequate in situations
where processing is repetitive and no conditional behavior is required. It does not pro-
vide much insight, however, in situations where it might be useful to specify different
types of processing under different situations. This is precisely the type of processing
that we would like to consider in our search for flexible algorithms. "One size fits all"
processing might be well matched to an approach where static conditions exist or are
assumed, but makes it difficult to exploit opportunities to reduce computation when
favorable conditions allow.

3.1.3 Techniques for efficiency with flexibility

The final step of our approach uses the results of the first two steps to design algo-
rithms that can efficiently provide the flexibility we desire. This step has taken two
general forms in our work.

In some cases, a clear understanding of input-to-output data relationships has led
to the conclusion that current approaches using multiple processing steps can be mod-
ified to use fewer steps, yielding improved efficiency. In Chapter 4 we describe direct
waveform synthesis, a technique for synthesizing digital modulation waveforms using
a single mapping step implemented with a look-up table. This technique provides
significant computational advantages over conventional approaches as it removes un-
necessary intermediate steps that provide no useful flexibility to the overall system.
The new approach provides a useful form of flexibility in its use of resources through
the ability to use memory to reduce computational requirements.

In Chapter 5 we demonstrate a similar improvement for the frequency translation
step of a wideband receiver. In this case, two steps of frequency translation and digital
filtering are combined to reduce computational complexity. The resulting algorithm
retains the ability to provide fine control of frequency translation necessary in a digital
receiver system.

In other signal processing functions, we demonstrate that improved efficiency can
be achieved by designing algorithms that produce approximate results with reduced
computation when possible. In the random sub-sampling scheme for channel filtering
in Chapter 5 and in the novel detection algorithm presented in Chapter 6 we are able

34



3.2. RELATED WORK

to improve efficiency by exploiting techniques that provide only statistical guarantees
of required computation.

Many signal processing functions have inherent statistical behavior because they
involve random signals. In real-time DSP systems, however, the algorithms them-
selves are usually deterministic: they perform pre-determined processing on signals
with some assumed statistical properties. This processing will produce a result that
will have some statistical guarantee of performance, not because of the algorithm
itself, but because of the random properties of the input signals. Deterministic al-
gorithms are used because they ensure zero computational variance, allowing imple-
mentations to provide performance guarantees in real-time systems so that processing
will always be completed by a processing deadline [Winograd et al., 1996].

Unlike DSP, computer algorithms often have conditional behavior that depends
on the actual input data. This leads to algorithms that, unlike traditional DSP
algorithms, have statistical running-time performance guarantees. We have identified
a number of such cases where these techniques can provide improved performance.
The matched filter detector we present in Chapter 6 reduces computation by providing
a possibility of early termination and therefore does not have a deterministic running
time. In Chapter 5, our sub-sampling scheme that uses randomness in processing to
break up patterns and allow reduced computation. The use of randomness means
that we will only know the expected amount of computation required to provide some
desired level of output quality.

3.2 Related Work

In the previous sections we have described some approaches that have been impor-
tant as we have designed algorithms that use flexible behavior to provide good per-
formance. In this section we summarize work by other researchers that is related
to some of theses goals: producing signal processing algorithms and systems with
flexible behavior.

Approximate Processing

Work by Zilberstein [Zilberstein, 1993] and Zilberstein and Russell [Zilberstein, 1996]
addresses the problem of a system operating in a real-time environment where the
system is required to perform some type of deliberation prior to performing an action.
In particular, their work addresses the case where the time required to select an
optimal action degrades the system's overall utility, requiring the trade-off of decision
quality for deliberation cost. This work focuses on the use of anytime algorithms that
allow a variable execution time to be specified to provide a time/quality trade-off.
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Resource Usage Resource Usage

(a) (b)

Figure 3-1: Performance profiles for (a) a conventional algorithm and (b) anytime
algorithm (adapted from [Zilberstein, 1996]).

The difference between these algorithms and conventional algorithms is clearly seen
in a performance profile that quantify the specific time/quality tradeoff for each. In
figure 3-1, for example, we see a conventional algorithm in (a) where the output
quality remains zero until the algorithm finishes computing the complete result. In

(b), however, we see an algorithm for which the output quality gradually increases
from zero to maximum as more computation time is expended. While performance

profiles can be found for any algorithm, only algorithms with profiles that facilitate the
trade-off of output quality for computational resource usage are useful for approximate
processing.

Work by Nawab et. al. [Nawab et al., 1997] brings the concepts of approximate
processing to the area of digital signal processing. They note that DSP seems to be
a good application of the concepts of approximate processing because there exists

a rich set of tools for quantifying the performance of DSP algorithms. These tools
distinguish DSP from some other types of computational problems in that there are
very precise ways to quantify and compare the output of DSP algorithms. Addition-
ally, there has been a great deal of analysis on resource requirements for DSP systems
such as arithmetic complexity and memory usage.

Their work presents several specific DSP algorithms developed with an eye to-
ward application in approximate processing systems. They show, for example, that

the fast-Fourier transform (FFT) has a natural incremental refinement structure that

allows the algorithm output quality (in terms of probability of signal detection) to
be improved by evaluating additional stages of the FFT computation. This concept
of incremental refinement is seen as a key idea, since refinement of the quality of a

DSP algorithm output thorough additional computation fits quite well with approxi-
mate processing ideas and many traditional DSP algorithms already display a natural

incremental refinement property.
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A general approach for developing ASP algorithms is found in work by Winograd
[Winograd, 1997]. The approach is based on the idea of a decomposition of either the
input signal or the processing system into multiple components. In one case, a partial
result can then be computed by using only a subset of the decomposed signal elements
passed through the processing system, alternatively, the original input signal can be
passed through selected portions of the decomposed system to develop an output
signal with the desired degree of accuracy or precision.

Our work in thesis this examines the use of some of these techniques in the context
of the physical layer processing in a wireless system. Some of the results that we
present in later chapters began with the idea of decomposing the input signal to
produce an approximation of the output for a specific function. We also provide
some analytical tools that are helpful in understanding the quantitative effects of
some of these decompositions, as well as some ideas about which of the decompositions
techniques proposed in [Winograd, 1997] might be most useful.

Other relevant results by Ludwig [Ludwig, 1997] demonstrate a technique to im-
plement a digital filter that uses a filter structure with variable order to reduce com-
putation in a frequency selective filter. This work demonstrates reduced computation
relative to a fixed-order filter while maintaining a minimum ratio between passband
and stop-band power at the filter output. In this work we also develop a technique
to approximate the output of an frequency selective filter, but treat it as an approx-
imation of the input samples stream through sub-sampling instead of approximating
the filter itself.

FFTW: the Fastest Fourier Transform in the West

Another approach at using flexibility to achieve improved performance is seen in
the FFTW project [Frigo and Johnson, 1997]. This work focuses on a single signal
processing function: the fast Fourier transform (FFT). The goal of the project was to
develop a flexible implementation that would provide good performance in different
computational environments.

FFTW uses a library of FFT algorithms and automatic code generation to produce
a number of alternative implementations for computing an FFT with a given size and
dimension. FFTW then measures which piece of code results in the fastest-running
program. This allows FFTW to produce a dynamic design for an FFT algorithm that
can adapt to different size or dimension for data sets, or even different environmental
factors of the host computer, such as size of memory, number of register, etc. FFTW
is able to use this flexibility to produce FFT implementations that outperform many
other implementations, including a number of implementations that were optimized
for a specific processor platforms.

In order to optimize its performance, FFTW measures the execution time of differ-
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ent algorithms to determine which is fastest. This is an example of a system that can
improve its global performance in different computational environments by adapting
to changing conditions. In our work, the goal it to enable this type of system design
on a larger scale in a wireless communications system where adapting signal process-
ing algorithms to different conditions or resource constraints would help to improve
overall system efficiency.



Chapter 4

Flexible Processing in a Digital
Transmitter

In this chapter, we begin our examination of specific signal processing functions in
wireless communications systems. In particular, we start with the signal processing
functions required in a wireless transmitter.

In chapter 2, we described a transmitter as being composed of two different func-
tions: the source encoder and the channel encoder. We now further decompose
the channel encoder into smaller components, as shown in Figure 4-1. This figure
shows two distinct processing steps: error correction coding and digital modulation.
The input to the channel coder is a bit-stream that has typically been processed
to remove redundancy, thereby achieving an efficient representation. The error cor-
rection coding is a step that intentionally re-introduces limited redundancy in order
to protect the data as it is transmitted over an unreliable channel. Sufficient re-
dundancy is introduced to enable the receiver either to correct errors incurred in
transmission, or to detect such errors and recover through other means such as re-
transmission. Error coders have been extensively studied elsewhere, see for exam-

------------------------------------- I W ireless
Sorc ,Source Error DigitalChne

Encoder Coder Modulator

Channel Encoder

Figure 4-1: Stages of processing within the Channel Encoder
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ple [Wicker, 1995, Berlecamp et al., 1987J, and will not be further discussed here.
Instead, we focus on the second processing step of the channel encoder: the digital

modulator. The modulator performs the processing required to transform the data
into a form appropriate for transmission through a particular physical medium or
channel. After examining the specific functions required in this modulation step, we
review some of the conventional approaches used to perform the required processing
in the transmitter.

The remainder of the chapter will then be devoted to a presentation of a novel
technique for digital modulation that extends some of the ideas of DDS to more
complex digital modulation waveforms. We describe how this technique, which we
term direct waveform synthesis (DWS), enables the creation of an efficient digital
modulator appropriate for many different types of wireless systems.

4.1 Overview: The Digital Modulator

In this work we concentrate on modulation techniques for encoding digital data into
signals. Hence we are concerned here only with systems that transmit digital infor-
mation. Many wireless communications systems are designed to communicate analog
waveforms (often representing voice or images) directly using techniques such as am-
plitude modulation (AM) or frequency modulation (FM), but the current trend in
wireless systems is to transform such waveforms into some digital representation for
transmission.

Another important characteristic of the techniques we examine is that they are
used to generate waveforms in the digital domain. We do not generate continuous
waveforms (which can be used to represent digital data, e.g. a square-wave volt-
age signal) that can be coupled directly to an antenna for transmission, but rather
sequences of discrete samples that represent continuous waveforms. This approach
requires conversion, at some point, of this digital representation into an analog wave-
form for transmission, but there are many significant advantages to separating the
functions, as we shall see.

In Chapter 2 we described some distinguishing characteristics of the wireless chan-
nel. Understanding these characteristics is crucial as we consider the choice of wave-
forms to transmit digital information through these channels. One important charac-
teristic is that a wireless RF channel is a passband channel, requiring the translation
of generated signals to a higher frequency for transmission. This is precisely what
happens in AM radio: the relatively low-frequency components of audible sound
waveforms are translated to a much higher frequency band for transmission. The AM
receiver then translates the signal back down to baseband to reproduce the original
sounds.
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Figure 4-2: Typical modulation techniques for encoding bits into a continuous wave-
form: (a) amplitude modulation, (b) frequency modulation, and (c) phase modula-
tion.

In a digital wireless system, it is useful to think of the modulation process as
encoding the digital data into a high frequency signal. In Figure 4-2 we show sev-
eral common techniques for encoding digital information into a continuous waveform.
These various techniques modify, or modulate, a high frequency carrier signal ac-
cording to the two possible values of the bits of the original data; in Figure 4-2, the
modification is made to either the amplitude, the frequency, or the phase of the si-
nusoidal carrier signal, respectively. There are also modulation techniques that can
modify the carrier waveform to produce more than two distinct patterns. These
techniques might use multiple values for amplitude or combine modifications to both
amplitude and phase to create a larger set of distinct patterns to encode data. These
approaches can then encode larger alphabets than just zero or one. Instead, they can
encode B bits as a single symbol into a section of the carrier waveform by using 2B

distinguishable modifications of the carrier sinusoid. In such a system, the task of the
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receiver is to distinguish among the 2B different possible forms of the signal in order
to determine which symbol was transmitted in each specific time interval.

Another point to note regarding Figure 4-2 is that, in each case, the encoding of
successive symbols is separated into disjoint time intervals. This is not true in general,
and there are very good reasons why the sections of the encoded carrier waveform
corresponding to continuous symbols often overlap significantly. We examine the
implications of these overlapping segments more in the sections to come.

Many different modulation techniques have been devised for encoding a sequence
of input data symbols into a waveform that can be transmitted through a wireless RF
channel. Phase shift keying (PSK), frequency shift keying (FSK) and quadrature am-
plitude modulation (QAM) are just few of the more common techniques. The wireless
environment can vary significantly for different systems, and modulation techniques
are designed to provide different sets of trade-offs between system performance and
resource consumption. Some modulation formats can be optimized for high data-
rate, power-constrained applications, while others might enable relatively simple and
inexpensive receivers [Lee and Messerschmitt, 1994, Proakis, 1995].

A flexible technique that can support many different modulation techniques is
clearly useful. If we desire a system that can provide efficient operation in a wide
range of environments while supporting different applications, it is evident that we
may need to change between different modulation techniques as we encode data for
wireless transmission.

4.2 Conventional Digital Waveform Generation

In this section we present some conventional approaches to waveform generation for
communications signals. The first subsection presents a typical technique for encoding
digital information into waveforms using pulse-amplitude modulation (PAM), which
can be generalized to include a broad class of linear modulation techniques that
are useful in different environments and applications. Following this, we review a
technique known as direct digital synthesis (DDS) that has been used to efficiently
generate simple discrete waveforms, such as sinusoidal carrier waveforms.

Following this review, we show how to extend some of the key ideas of DDS to
the synthesis of more complicated waveforms, and we describe a new technique for
digital waveform synthesis that provides many of the advantages of DDS in a more
flexible and efficient digital modulator.
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4.2.1 Conventional techniques for digital modulation

Digital modulation can be viewed as modifying a sinusoidal carrier waveform to en-
code a sequence of data symbols for transmission. We can also view modulation as
mapping individual data symbols to distinct continuous waveforms known as pulses.
A composite waveform is formed by combining multiple, time-shifted pulses, which
are sent sequentially through the channel as a single continuous waveform, as in Fig-
ure 4-2. Particular sets of pulses for encoding the symbols are chosen for their spectral
properties and to enhance the receiver's ability to distinguish among different possible
waveforms as it recovers the original data.

One widely used technique for constructing a set of pulses is to use scaled versions
of a single prototype pulse. In pulse-amplitude modulation, the final transmitted
waveform is a sum of time-shifted pulses, each weighted by an appropriate scaling
value that corresponds to the bit it represents. Although the input data are typically
binary, it is often useful to use more than two pulses, as we noted before. We often
map blocks of bits into data symbols, each of which encodes multiple input data
bits. For example, we may map blocks of two bits each into a set of four symbol
values, A = {ai, a2, a3 , a4}, which correspond to four different scaling values, say
{-3, -1, +1, +3}. In a PAM system, this would result in a set of four pulses that
have similar shape, but different amplitudes. In this particular example, the set of
scaling constants are real-valued: they lie on a one-dimensional line.

In some modulation schemes, the scaling constants do not lie on a line, but rather
form a two dimensional pattern. In general, then, scaling constants corresponding to
different symbols in the alphabet can be complex-valued. It is helpful to visualize
the set using a plot of the different values in a symbol constellation. Figure 4-3 shows
two different constellations, each with 16 different (complex) values. The 16 symbols
in each of these constellations represent different sequences of four bits of the input
data. To create the corresponding waveform, we use consecutive symbols values to
modulate versions of a prototype pulse, p(t), that are uniformly shifted in time:

00

s(t) = akp(t - kT) (4.1)
k=-oo

Here s(t) is the resulting continuous waveform as a function of time, t. The summing
index k indexes the elements in the sequence of symbols, ak, that encode the original
data bits. The constant T (another term for symbol is baud) is the time interval
between consecutive shifts of the pulse as it encodes the data symbols. The sum
in (4.1) is over multiple shifted and scaled pulses because the duration of the pulse
can, in general, exceed the shift interval. This situation often occurs in systems that
are designed to be efficient in their use of RF spectrum; a pulse that has a compact
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Figure 4-3: Two symbol constellations used to map blocks of four bits
symbols for PAM, commonly known as (a) 16-QAM and (b) 16-PSK.

into complex

frequency-domain representation will tend to have a long time-domain representation.
It is helpful to note here that using a set of complex-valued symbols will result in

a complex-valued s(t). Of course, a wireless channel can only convey one-dimensional
signals: the voltage signal coupled to the antenna for transmission is a real-valued
function of time. The complex-valued signals are therefore converted to real-valued
signals during the translation to higher frequencies prior to transmission.

Because we are specifically interested in generating discrete sequences, we also
define a discrete form of (4.1) in which s, is a sequence of uniformly spaced samples
of s(t): s, = s(nT), where T, is the time interval between samples:

00

Sn = ap[n - kN]
k=-oo

(4.2)

The discrete pulse p[n] is a discrete version of the pulse p(t) and the time shift has
now become a simple shift in the time index by kN, where N, is the (integer) number
of samples in the output sequence occurring in each symbol interval, T = NT,.

In (4.2) weighted and shifted pulses are combined by simple addition to form
the output sequence that will eventually be converted to an analog waveform and
transmitted through the channel. The limits on the summation in (4.2) indicate that
each output sample may, in theory, depend on an infinite number of symbols. In
practice, though, pulse shapes are used that have a finite duration and often simply
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Figure 4-4: Conventional QAM modulator

correspond to truncated versions of much longer pulses that are attractive for other
reasons (such as spectral properties) [Frerking, 1994, Lee and Messerschmitt, 1994].
It is normal, however, for pulses to overlap even after truncation because they are
often still longer in duration than the symbol interval.

A typical algorithm for digital modulation is illustrated in Figure 4-4. Here we
see that there are several steps in the production of the final output sequence. The
first step is to map the input bits to a sequence of complex-valued symbols. Next,
this symbol sequence is passed through a set of digital filters called pulse-shaping
filters which multiply the real and imaginary components of the input symbol values
by the sequence p[n] representing the desired pulse shape and summing the result as
in (4.2). A final step is often included: the discrete waveform is translated to a higher
frequency before conversion to an analog signal. This translation to an intermediate
frequency (IF) allows the complex-valued sequence to be transformed to a real-valued
sequence prior to conversion to the analog domain [Lee and Messerschmitt, 1994].
This operation is equivalent to multiplication of the real and imaginary components
by a cosine and sine waveforms with frequency fe (the carrier frequency), as shown
in Figure 4-4:

00
SIF[nl Real ej2,fcnTs 1 akp[n - kN]j (4.3)

k=-oo
00 

00
cos(2,fenT,) E ak,rp[n - kN,] - sin(2,rfnT,) 1 ak,ip[n - kNj]

k=-o k=-o

We assume that p[n] is a real-valued pulse and that ak = ak,, + jak,j are the real and
imaginary components of the symbol values.
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So we see that the conventional approach is characterized by a series of mapping
steps: bit to symbols, symbols to discrete waveforms, and baseband waveforms to
IF waveforms. We will refer back to this series of mappings as we examine new
techniques to generate digital waveforms that provide both more flexibility and more
computational efficiency.

4.2.2 Direct digital synthesis of a sinusoidal carrier signal

To understand how we can develop new techniques to produce channel waveforms, it is
helpful to examine a waveform generation technique known as direct digital synthesis
(DDS), which has become increasingly popular in recent years.

This technique is well understood and widely used in the design of digital com-
munications systems. In this technique, a sinusoidal signal is synthesized from pre-
computed values instead of by computing the values of the samples as they are needed.
This technique can take several different forms, depending on the amount of flexibility
needed in the waveform to be synthesized.

Because a sinusoid is periodic, the single-frequency form of this technique effi-
ciently generates a sinusoid of fixed frequency: we simply pre-compute the samples
for a single period of the desired sinusoid and then cycle through and continuously
output these values to produce a continuous sinusoidal sequence. One requirement for
this technique is that we use an integral number of samples per cycle of the sinusoid.
In this case, T, = kU', the period of the carrier signal is a integral multiple of the
sample interval, T. This scheme provides no flexibility as to the frequency of the
sinusoid generated, but it is computationally very efficient.

A more powerful scheme, the phase-accumulator technique, uses a table of pre-
computed values and a phase accumulator to generate sinusoidal sequences of different
frequencies. This approach uses a circular buffer containing a large number of samples,
say 2N, of a single period of a sinusoid. A sinusoidal sequence with period of the form
T, = 2 NT/k can be generated by outputting every kth sample in the circular buffer.
The phase accumulator refers to an accumulator that stores the index value of the
current sample. This value corresponds to the phase value of the sinusoid that is
being generated.

This technique allows a system to avoid computing (and re-computing) in real-
time the values of the sinusoidal sequence, s =_ cos(27rfcnT), where fc is the desired
carrier frequency, by using the buffer of pre-computed samples. These samples of a
transcendental function are particularly difficult to generate in digital logic, and other
alternatives to this look-up table approach include approximation with Taylor series
or use of the cordic algorithm [Frerking, 1994.

The phase accumulator technique is more flexible than the single-frequency tech-
nique because it can generate sinusoids with different frequencies. This additional
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flexibility, however, comes at the cost of reduced performance: we must compute
a new index value for each output sample. Although DDS techniques are relatively
straight forward, they can provide significant computational savings in a digital trans-
mitter relative to a direct-computation approach. Relative to using a high-precision
analog oscillator, DDS has the advantage of using simple hardware components; it
can even be implemented in software.

4.3 Direct Waveform Synthesis for Modulation

In the previous section, we discussed two conventional techniques for generating dis-
crete waveforms for communications systems. We first discussed a typical imple-
mentation of a digital modulator, which computes each output sample using the
summation representation shown in (4.2). We also discussed DDS: a technique for
synthesizing relatively simple waveforms, such as sinusoids, using a look-up table of
pre-computed output samples. This technique required only a simple computation to
find the correct index in a table for each output sample to be produced.

In this section we apply some of the ideas from DDS to produce a new simple and
efficient digital modulation technique. Our goal here is to produce a digital modulator
that can easily synthesize a discrete waveform using a table of pre-computed output
samples, thereby greatly reducing the computation required in a digital transmitter.

There are two challenges that must be overcome to produce a practical digital
modulation technique that uses less computation. First, the technique requires a
mapping from input bits to output samples that works in the general case of overlap-
ping transmit pulses. Equation (4.2) showed that each output sample might depend
on a large number of input bits; we will show that this condition does not preclude
look-up table technique similar to DDS, but that it can lead to prohibitively large
look-up tables in some situations.

This is the second challenge: many DDS implementations use table with tens to
hundreds of entries, and many tricks have been developed to reduce even these modest
tables to smaller sizes [Frerking, 1994, Reed, 1998]. The most straight forward look-
up tables for a digital modulator can contain thousands or millions of entries. Such
a modulator may not be feasible, even though 256 megabits of memory may soon be
available on a single chip.

We overcome this second challenge by decomposing a large look-up table into
smaller tables, whose total size is also much smaller than the single original. Different
decompositions provide a wide range of operating points that enable a flexible trade-
off between computation and memory requirements.

In the next sections, we describe the direct waveform synthesis (DWS) technique
for directly synthesizing a baseband digital waveform. We also extend the basic DWS
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Figure 4-5: Typical sin(x)/x pulse shape for a bandwidth-efficient system, where
x = rt/T and T is the symbol interval.

technique to allow the synthesis of digital waveforms at passband, thereby removing
the need to translate the baseband waveform to IF, and also to allow the mapping
of multiple symbols at a time, thereby providing more flexibility in the computation-
memory trade-off.

4.3.1 A new approach to modulation: Direct mapping

It is useful here to look at a typical pulse shape used in digital communications
systems. Figure 4-5 shows such a pulse, which has the characteristic sin(x)/x shape
that is typical of pulses used in systems where it is important to use the available
RF spectrum efficiently. Pulses with this shape maximize the rate at which data
symbols can be transmitted minimizing the width of the frequency band used for the
transmission. We discuss further properties of these pulses in Chapter 6, where we
discuss reception.

A true sin(x)/x pulse shape has an infinite duration in time, so modulators approx-
imate it by symmetrically truncating the pulse to K symbol periods. This truncation
tends to spread the energy of the pulse into adjacent frequency bands, and the degree
of truncation must be chosen to balance this spreading with the computational sav-
ings of truncation. The choice of the specific value of K used to approximate a longer
pulse is not the focus of this work, but specific effects of truncation are described
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Figure 4-6: Proposed QAM modulator

in [Welborn, 19991. In this work our results will be derived in terms of an arbitrary
K.

In any case, the pulses used to transmit consecutive symbols will overlap in time
because truncation to a single symbol period spreads too much energy. From (4.2)
we see that we need sum only over the symbols for which the shifted version of p[n]
is non-zero:

Sn akp[n - kN] (4.4)
k: p~n-kNs] 0

From this result we begin to see how we can pre-compute the output samples
sn. Each output sample depends on K input symbols, or BK bits when we use a
constellation of 2B symbols. During a single symbol interval, N, output samples all
depend on the same K input symbols, that is, the output waveform in that interval
is completely determined by K input symbols.

To produce our direct mapping, it is now clear that we can map a sequence of BK
input bits to N, output samples. In this way, we can produce a look-up table that
contains all possible symbol-length sequences of output samples by computing these
sequences for all possible 2 BK sequences of input bits. Once we have produced this
table, we can use it to efficiently synthesize a continuous sequence that corresponds
to the discrete-time digital waveform. This technique is shown in Figure 4-6. The
steps of this direct waveform synthesis technique in its simplest form are summarized

here:
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Figure 4-7: Section of a synthesized 4-PAM waveform with N, = 8 samples per
symbol interval. Individual table entries are indicated by boxes.

Step 0: Compute entries of look-up table for all 2BK possible input bit
sequences. Prepend bit sequence to be transmitted with B(K- 1)
dummy bits to initialize modulator. Set k = 0.

Step 1: Compute index for table entry using bits Bk+1 through B(k+K).
Output N, samples of the discrete output waveform, s,.

Step 2: Set k = k + 1, goto Step 1.

Figure 4-7 shows a typical section of a synthesized waveform where each table entry
(indicated by boxes) contains eight samples of a discrete waveform. It is important
to note that this algorithm does not produce an approximation to the waveform pro-
duced using the conventional technique shown in Figure 4-4. Both schemes produce
exactly the same output sequence when they use the same pulse shape and associ-
ated parameters. Even the conventional technique must use an approximation to any
infinite-length pulse in order to implement the digital pulse shaping filter. Although
they are separate table entries, the segments of output samples produced using the
DWS technique will always "fit together" to form a smooth, continuous sequence
because of the process of using a sliding window of BK input bits.

T ____T -2T

------------ 
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4.3.2 Decomposing tables to reduce memory

The size of the look-up table is 2BK x N, x W bytes when an output sample is
W byte. For example, a 4-PAM system (B = 2) with a 6 symbol-length pulse-
shaping transmit filter (K = 6) generating 10 samples per symbol (N, = 10) and 2
bytes/sample requires a table size of 80 Kbytes, which is quite reasonable and would
actually fit in the cache on most modern processors. For larger constellations or longer
pulses the table size grows rapidly (exponentially in the length of the pulse or number
of bits/symbol). For example, a 16-QAM system (B = 4) using an 8 symbol-length
pulse-shaping transmit filter generating 10 samples per symbol and 2 bytes/sample
would require 80 gigabytes to store the look-up table.

One way to reduce this growth in table size is to decompose the large table into
several smaller tables in which we perform multiple look-ups of partial waveforms and
then add the pre-computed values to produce the final waveform. To use this tech-
nique we must find an appropriate way to decompose the required sample sequences.
This decomposition must satisfy two requirements. First, it must be "linear" in the
sense that we can sum values obtained from decomposed tables to produce the same
final output value as would be produced by the original table. Second, each compo-
nent table must depend on a smaller number of input bits so that total size of the
smaller tables is less than the size of the original table.

One solution that satisfies both requirements is to decompose the original table
into D separate tables by having the index of each table depend only on a- consecutive
symbols (or B consecutive bits) instead of the full K symbols (or BK bits), as shown
in Figure 4-8. It other words, each table contains partial sums of only K/D terms
from (4.4) instead of full sums of K terms, as in the original table. In the extreme
case of D = K, each table has 2 B entries that correspond to scaled versions of the
pulse p[n] for each symbol in the constellation.

BK

Now the total table space using the decomposition is D x 2T- x N, x W bytes,
and the cost of using this decomposition is that we perform D look-ups in each
symbol interval and D - 1 additions for every output sample produced. (The actual
cost is less: we can use the same index computation result in each of the D tables
in consecutive steps. This way we still only perform one index computation per
symbol.) The previous example of a 16-QAM system with an 8 symbol-length pulse-
shaping filter would now require 4 x 2' x N, x W = 20 kilobytes (with D = 4)
or 2 x 216 x N, x W ~ 2.5 megabytes (with D = 2) when N, = 10 and W = 2
bytes/sample.
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Figure 4-8: QAM modulator using parallel look-ups to reduce table size.

4.3.3 Extensions of direct waveform synthesis

Direct synthesis of passband waveforms

In our discussion of the conventional approaches to digital modulation, we noted that
a digital modulator often produces the baseband digital waveform and then translates
it to a higher frequency prior to conversion to the analog domain.

This DWS technique can be modified to directly produce a digital waveform that
has already been translated to IF. This approach is useful when we need to produce
an output waveform that contains multiple signals combined using frequency mul-
tiplexing, as might be done in a wideband cellular or PCS transmitter. For such a
system, each of the individual signals can be generated at passband with the correct
center frequency and then simply added to produce the desired composite waveform.
We can see how DWS can be used to produce a digital waveform at passband by
rewriting (4.4) from above:

SIF[] - Real ej21rfnT, E akp[n - kNs]
k=-xo
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= Z mk cos(2 fenT, + Ok)p[n - kN,] (4.5)
k: p[n-kNs]#0

where ak - mkei Ok is the magnitude-phase form of the complex symbol value. We
will assume that the pulse shape p[n] is real-valued in (4.5), although we can still
use this technique for a complex-valued p[n] if we modify the equations properly.
In order to synthesize the digital waveform at passband as above, we combine the
cosine term and the pulse sequence p[n] in (4.5). If we restrict ourselves to using an
IF carrier frequency that has an integral number of periods in one symbol interval,
f, = m/(NsT,) for some integer m, then we can combine the frequency translation
into the pulse shape by defining pIF(t) = cos(2rfct)p(t). The time-shifted versions of
the discrete form of this pulse now become:

PIF[fn - kN] = [cos(2rfet)p(t)]1l,_kNT, = cos(27fcnTs - 2kmr)p[n - kN] (4.6)

This shows that the composite pulse PIF[n] can be shifted in time by any number of
symbol periods without affecting the frequency translating component because of the
27r-periodicity of the cosine term. We can now rewrite the equation for the passband
signal using the composite pulse:

SIF[n] m k cos(2rfcnTs + Ok)p[n - kN] = ( mkpIF,k n - kN ]
k: p[n-kN,]#0 k: p[n-kN,]O0

(4.7)
To synthesize a waveform at passband, we simply use the same technique as before,
but we compute the entries in the look-up table using the composite pulse sequence
PIF,k ln = cos(2fniTs ± Ok )p[n].

Storing multiple symbols per table entry

In an earlier section we discussed how the DWS technique can result in an extremely
large table in some situations and how this table growth can be alleviated through
table decomposition. The technique allowed us to select from several different de-
compositions (i.e., D = 1, 2, ...) for a waveform in order to trade-off between memory
requirements and computational complexity. It is also possible to generalize the DWS
technique to produce sample sequences for multiple symbols with each table look-up.
Instead of mapping K input symbols to a segment of output samples representing a
single symbol interval, we could map (K + M - 1) input symbols to an M-symbol
interval. This technique could allow us to only marginally increase the number of
input symbols (especially if K is relatively large) and yet produce two or three times
as many output samples with each look-up. The point of this generalization is not
to replace the special case of M = 1, but simply to provide the system designer with
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more options to trade-off between memory and computation in a digital waveform
synthesizer.

Using this generalization, each table entry now contains M x N, samples and there
are 2 Bx(K+M--1) entries if we use a single table. The total memory space required for

Bx(K+M-1)
the general case using a decomposition is now: D x 2 D x M x N, x W bytes
and the cost of using the table decomposition to reduce memory is still the same: we
perform D - 1 additions for each output sample.

One case in which this technique of storing multiple symbol intervals in each table
entry is useful is in w/4-differential-quadrature PSK (7r/4-DQPSK), which is used in
digital cellular radio systems [Wiesler and Jondral, 1998]. In this modulation format,
two different sets of four symbols (with a 450 rotational offset) are used to alternately
encode the data. In this situation, the modulator needs to maintain some state to
determine which constellation should be used for encoding, and to use two tables for
the different cases. If the DWS technique is used to produce the waveform, blocks
of four bits could be mapped directly to segments that are two symbol-periods in
length, and there would be no need to maintain any state or multiple tables.

4.4 Performance and Resource Trade-offs

4.4.1 Performance comparison

To compare our proposed architecture with the conventional architecture, we have
tabulated the operation counts required to produce a single output sample for each
scheme.

The operations required to produce a single output sample of a digital waveform
at IF using the conventional architecture (as in Figure 4-4) are summarized in Table
4.1. In this table we assume that the local oscillator that generates the IF carrier
is implemented using direct digital synthesis techniques. For the proposed DWS
architecture, Table 4.2 summarizes the operations required to produce a single output
sample. In this case, the operations required to compute the table index are performed
only once for each sequence of MN, samples, which are stored in a contiguous region
of the look-up table.

An example of the total operations required for a typical modulator is helpful to
understand the difference in operations required for these two approaches. For the
case of a 1 M-baud (1 million symbols/second) modulator with N, - 8 and K = 4,
the total operation count is summarized for each function below.
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Function Required Operations per Output Sample

Pulse Shaping 2 x K x N, multiply-accumulate ops

IF Carrier Genera- 2 array-fetches + increment DDS phase accumu-
tion lator

Translation to IF 2 multiplies + 1 addition

Table 4.1: Required operations for conventional QAM modulator

Function Required Operations per Output Sample

B - bit shift
Index Computation 1 x modulo operation

add symbol value

Table Look-up array-fetch + increment sample index

Table 4.2: Required operations for proposed DWS modulator
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Conventional approach:

" Pulse Shaping: 2 x 4 x 8 MACs x 8 million samples/second= 512 millions
MACs/second

" IF Carrier Generation: 16 million array-fetches/second + 8 million increments
per second

" Translate to IF: 16 million multiplies/second + 8 million adds/second

Direct waveform synthesis approach:

" Index computation: 1 million x ( bit-shift + power-of-two modulo operation +
addition) per second

" Table Look-up: 8 million array-fetches/second + 8 million increments/second

Clearly the DWS technique required much fewer operations. Although there are
several different types of operations involved, there is about a factor of 25 difference
between the total counts for the two: about 20 million operations per second compared
to 500+ million operations per second for the conventional approach. Even this
higher number seems modest by today's standards, but when we consider scaling to
a system that modulates billions of symbols per second, the differences become more
substantial.

4.4.2 Memory versus computation

The trade-offs provided between use of memory and computation through the use of
DWS are fairly straightforward. In the most general case, the total amount of memory

Bx (K+M-1)
required is D x 2 D x M x N x W bytes and the computation is essentially D - 1
addition operations per output sample. Because of the many parameters in the above
equation, we have included a few plots that illustrate the different trade-offs available
for a typical set of parameters. In Figure 4-9 we show the total memory requirements
for both a 8-PAM system and a 16-QAM system. These plots show the trade-off
between memory usage and computation using the table decomposition described
above to generate sample sequences for multiple (M) symbols. The computation
required in each case shown in the plots is determined by the value of D used to
decompose the table (the computation is D - 1 additions per output sample). In each
of these two plots, the most important point is that there are a variety of operating
points (indicated by the points where D divides K + M - 1 on the various lines),
allowing the system to choose between the use of memory and computation according
to other constraints that might exist in the system.
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Figure 4-9: Plots showing memory requirements versus number of symbol periods per
table entry for (a) 8-PAM and (b) 16-QAM waveform synthesis with K = 6, N, = 10.
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Modulation Algorithm Transmit Rate

BPSK (K=16) Table Look-up 18.9 Mbit/sec
(512 Kbytes, D==1)
Direct Computation 0.3 Mbit/sec

16-QAM (K=16) Table Look-up 28.3 Mbit/sec

(2048 Kbytes, D=4)
Direct Computation 1.2 Mbit/sec

16-QAM (K=10) Table Look-up 36.8 Mbit/sec
(16384 Kbytes, D=2)
Direct Computation 1.9 Mbit/sec

16-QAM (K=4) Table Look-up 72.2 Mbit/sec

(512 Kbytes, D=1)
Direct Computation 4.6 Mbit/sec

64-QAM (K=8) Table Look-up 38.7 Mbit/sec

(128 Kbytes, D=4)
Direct Computation 3.6 Mbit/sec

Table 4.3: Results of
DWS modulator.

software implementations of conventional QAM modulator and

4.5 Empirical Performance Evaluation

To provide a further comparison of the DWS technique, we have implemented both
DWS and a conventional modulator (represented by Figure 4-4 and Table 4.1) in
software. To determine the relative performance of each, we measured the time
required for each technique to modulate a large number of data symbols. The results
of this test are presented as maximum transmission rates indicated by measure run-
times and are summarized in Table 4.5 for a number of different cases. These different
cases include three constellation sizes and different lengths for the pulse-shaping filter.
For the DWS implementation, the table also shows the amount of memory that was
required for the look-up table. The tests were performed using a laptop with a 366
kHz Celeron processor with a 256 kByte cache.

In most cases, DWS was able to support a transmission about 20 x higher than
the conventional approach. This improvement is even seen when the required look-
up table was far too large to fit in the cache of the processor. In the last case
shown, 64-QAM, only a 10x performance improvement was indicated. In this case,
the relatively poor performance of DWS is probably due to the decomposition into
four smaller tables to obtain a reasonable total memory size (using D=2 would have
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required 256 Mbytes of memory).

4.6 Implementation of a DWS Modulator

An implementation of the DWS modulation algorithm was done as part of the Spec-
trumWare Project at the MIT Laboratory for Computer Science. In this project,
we have developed hardware and software components that enable the implemen-
tation of wireless communications systems in which all of the physical layer pro-
cessing is performed in software on a general purpose computer. Details of both
the RF interface hardware and the software programming environment are available
in [Bose et al., 1999, Ismert, 1998, Bose, 1999].

The DWS algorithm was implemented in this software radio environment to study
the usefulness of a flexible wireless transmitter architecture. Figure 4.6 shows the
graphical user interface for the DWS modulator, a time-domain trace of the synthe-
sized digital waveform, and a constellation diagram detected by looping the digital
signal back to the receive portion of the system. The user interface provides software
control of a number of feature of the system, including modulation format, receiver
filter size and symbol timing and phase recovery controls.

This DWS implementation was used in an investigation of an adaptive voice com-
pression and modulation scheme presented in [Rao, 2000]. This work demonstrates
a system that uses a number of different voice compression algorithms and the flex-
ible DWS modulator to provide efficient voice communications under a wide range
of different SNR conditions. Under favorable conditions, the system provides higher
quality voice using a high data rate compression and large constellation. Under
worsening SNR conditions, better voice quality is attained by switching to voice com-
pression algorithms that require lower bit-rates and using successively smaller signal
constellations to improve the bit-error rate.

An example of this concept is illustrated in Figure 4.6. Here we see an 8-PSK
constellation under two different levels of SNR. At the lower level, excessive bit-error
rate can be prevented by switching to a 4-PSK constellation that provides a lower
bit-rate with a lower BER.

4.7 Summary

Direct waveform synthesis provides a significant performance improvement over con-
ventional approaches to digital modulation. This gain comes from its ability to di-
rectly synthesize waveforms using a simple table look-up based on the input bits to
the modulator. We have also presented a technique that provides a flexible trade-off
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Figure 4-10: Graphical user interface for an implementation of a direct waveform
synthesis digital modulator.
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Figure 4-11: Received signal constellation diagrams for (a) 8-PSK under relatively
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between computation and memory usage for DWS by allowing the mapping to be
implemented using a number of smaller tables instead of a single large table.

In the context of a wireless communications system, the digital modulator does
not need to provide much flexibility during operation. Any change to the modulation
format will require coordination between receiver and transmitter, and such changes
will therefore tend to be infrequent. DWS provides a good balance of efficient perfor-
mance, flexible implementation properties and the ability to be reconfigured if channel
conditions or system requirements so dictate.



Chapter 5

Flexible Processing in a Digital
Receiver

We have characterized the channel coder function in a wireless transmitter as a one-
to-one mapping from a sequence of data bits into a sequence of distinctive pulses for
transmission. At the receiver, the primary task is to reverse this mapping, thereby
recovering the original data bit-stream. After this channel decoding, source decoding
reproduces the original source information.

In Figure 5-1 we see a representation of the processing steps performed in the
receiver. Also shown in this figure is a further decomposition of the channel decoder
into several specific functions. The first two of these functions are channel separation
and symbol detection. The combined task of these two functions is to reproduce
the error-encoded bit stream passed to the digital modulator in the transmitter. Of
course, the sequence of bits produced at the output of the detector may contain
errors. Because the original encoded sequence contained some controlled amount
of redundancy, the error decoder can detect the presence of many errors and either
correct them or take other appropriate actions to handle the corrupted data.

In this work, we examine the processing required for the functions of channel

Wireless
Channel User

Channel Symbol Error Source

Separation Detection Decoder Decoder

Channel Decoder

Figure 5-1: Required processing steps in a digital receiver.
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separation and symbol detection. Our first goal is to develop a more fundamental
understanding of the functionality required by these two processing steps in the digital
domain. We then use this understanding to develop algorithms that provide both
flexibility and improved efficiency over conventional techniques in a wide range of
situations.

The channel decoder is traditionally divided into the specific steps of channel
separation and detection because the wireless channel is a shared medium that com-
bines many signals. The distortion caused by the channel takes on several forms:
additive interfering signals, random noise, delayed versions of the same signal, etc.
We therefore model the input to a digital receiver as a sum of an indexed sequence,
s,, representing the signal of interest, with I interfering signals from other nearby
transmitters and a random noise component, n,:

I

r = sn + Esi,n + nn (5.1)
i=1

The overall process of channel decoding requires the recovery of the transmitted
data from this received signal. Algorithms for this type of analysis are sensitive
to interference in the input signal, but often perform well in the presence of only
additive random noise. We therefore divide the processing of the received wideband
signal into two stages: first, the channel separation stage removes interfering signals,
transforming the input sequence into another sequence that is simply a noisy version
of the original signal, from which the detector produces an estimate of the original
data encoded by the digital modulator.

In the next few sections we discuss the problems of channel separation in more
detail and describe current techniques used to solve these problems. We then present
several new techniques that enable us to perform the functions required in a chan-
nel separator in manner that provides both flexibility and greater efficiency than
conventional approaches. We discuss the problem of detection, the second stage of
processing, in the next chapter.

5.1 Overview: Channel Separation

We have seen that the discrete sequence of samples at the input to a wideband receiver
is the sum of the desired signal and undesired interfering signals. We also assume that
the signal contains additive random noise. This noise includes several effects, such
as low level random signals picked up by the antenna and thermal noise generated
inside the analog circuitry of the receiver.

The goal of channel separation is to prepare the received sequence, enabling the
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detector to recover the original data sequence from the received signal. Stated another
way, the channel separator should produce a sequence containing components in the
received signal corresponding to the signal of interest, while removing the interference.

To facilitate separation, it is common to restrict, through regulation, the emis-
sions of potential interfering transmitters, so that any interfering signals will occur
in disjoint frequency bands in the RF spectrum. This technique for providing multi-
ple access to the physical medium is known as frequency division multiple access or
FDMA. Other techniques such as time division multiple access (TDMA) and code
division multiple access (CDMA) can also be used to allow multiple transmitters to
share the same band of frequencies, but are not addressed here. In FDMA, sepa-
rating the desired signal from potential adjacent channel interferers is equivalent to
extracting from the received sequence only those components that occur within the
band of frequencies corresponding to the signal of interest.

This separation is accomplished through the use of digital filters that pass sig-
nal components in the desired band of frequencies, the passband, and attenuate sig-
nal components outside of this band, in the region known as the stopband. In a
wideband receiver the use of digital filters to perform channel separation can lead
to an implementation with very high computational complexity. For a receiver
in which the channel separation is performed in the digital domain, the work re-
quired to extract individual channels from the input of a wideband receiver pro-
vides a first-order estimate of the computational resources required for the entire
receiver [Mitola, 1995, Wepman, 1995].

The reasons for this high computational burden are several. First, a wideband dig-
ital receiver will necessarily have a high input sample rate to adequately represent the
wideband input signal. In addition, to cleanly extract a narrow band of frequencies,
the receiver must accurately resolve those frequencies at the boundary of the band of
interest. These two conditions combine to produce a situation that can require large
amounts of processing to perform channel separation using conventional techniques.
Before addressing this problem, however, we examine the basic steps that are widely
used to perform the entire channel separation procedure using digital filters.

In Figure 5-2 we see the conceptual steps that are often used to perform channel
separation. The results of these same steps on a hypothetical wideband signal (repre-
sented in the frequency domain) are shown in Figure 5-3. First, there is a frequency
translation step. Here the wideband signal is shifted in frequency to bring the band of
interest into the passband of a digital filter and the interfering signals into the stop-
band. This translation is represented in Figure 5-2 by a multiplication of the received
sequence and a complex sinusoidal sequence. The magnitude of the frequency shift
is determined by the frequency of the complex sinusoidal sequence.

The second step in this process is bandwidth reduction. Here the filter produces
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Complex
Sinusoid

Wideband Filter D - Narrowband
Input Output

Frequency Bandwidth Sample Rate
Translation Reduction Reduction

Figure 5-2: Typical processing for narrowband channel selection.

an output sequence in which the components at different frequencies are attenuated

or amplified according to the frequency response of the filter. Because this output
sequence does not contain any significant components outside the band of interest,
it is now possible to represent the desired signal using a lower sample rate with-
out significantly distorting those components within the band of interest. If there
were significant signal components present outside the band of interest, reducing

the sample rate would cause aliasing of those components into the band of inter-

est [Oppenheim and Schafer, 1989]. Hence a final step of sample-rate reduction, or
decimation, reduces the rate of samples in the sequence by a constant factor D, the
decimation rate. This rate reduction is also important because it reduces the pro-

cessing load in subsequent stages.

Much of the work in this chapter was initially motivated by the desire to develop
efficient techniques to perform the steps of the channel separation process in a wide-
band digital receiver implemented in software as part of the SpectrumWare project.
One of the early goals of this project was to implement such a receiver that could
extract a 30 kHz channel from a 25 mega-sample per second input sample stream. It
soon became clear that conventional approaches to frequency translation and filtering

would result in a design that would require too much computation to run in real-time

on the 200 Mhz personal computers used in the implementation. Many of the results
presented in the remainder of this chapter have helped produce an efficient software

implementation of a wideband receiver, which will be described in more detail in a
later section. In the next section, however, we first examine the specific steps of the

channel separation process in more detail and then review some of the techniques

that have been developed to perform them.
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Figure 5-3: Conceptual steps used for conventional approach to narrowband channel
selection: (a) frequency translation, (b) bandwidth reduction, and (c) sample rate
reduction.
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Figure 5-4: Block diagram showing frequency translation of desired signal before
filtering and decimation.

5.2 Conventional Approaches to Channel Separa-
tion

To understand the level of computation required to separate a narrowband chan-
nel in a wideband digital receiver, it is helpful to look at the specific operations
that are required. We assume that the filtering is performed using a digital FIR
filter, which can be advantageous whenever there is a relatively large decimation
factor [Oppenheim and Schafer, 1989.

In a direct implementation, as shown in Figure 5-4, both the frequency transla-
tion and filtering steps require computation proportional to R2j, which is itself at
least twice the bandwidth of the wideband input measured in Hertz. This minimum
sample rate requirement is a consequence of the Nyquist Sampling Theorem which
describes the lowest sample rate needed to represent a band-limited continuous signal
using discrete samples without inducing distortion [Lee and Messerschmitt, 1994]. In
Figure 5-4, r,, is the received wideband sample sequence, h. is the order-M chan-
nel filter (with M + 1 coefficients), y, is the filter output and ya, is the decimated
filter output. To perform the translation, we multiply r, by a complex exponential
sequence to get Xn, with the desired signal at complex baseband. The output of the
cascaded translation and filtering steps is:

M M

y= hmXn-m = hmrn-meJ22fcn--T (5.2)
mz~O m~O

where s, = e-j2fcnTs is a complex sinusoidal sequence with frequency f, (the original
carrier frequency) and T, is the interval between samples.

Cascaded frequency translation and filtering is a very common approach and is
seen in many digital receiver implementations [Frerking, 1994, Mitola, 1995]. It pro-
vides the flexibility of modifying the amount of frequency translation without re-
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designing the entire digital filter. In particular, the technique of DDS is often used to
provide precise and flexible frequency translation. One drawback of this approach is
that the frequency translation stage requires a complex multiplication be performed
for every input sample prior to filtering (in addition to generating the complex se-
quence sn). This computational load can become quite high, especially as we consider
the design of receivers with wider input bandwidths: the wider input bandwidth
requires proportionally higher sample rates and higher computation for frequency
translation.

For filtering, M + 1 multiply-accumulate operations are required for each output
sample, where the output rate is Rst = Rin/D. An example of a wideband digital
receiver with typical values for these parameters helps to make these relationships
more concrete:

A wideband receiver for a cellular telephone base station needs to access
12.5 MHz of spectrum, so we will use Rin = 30 M samples/second. We
assume that a narrowband voice channel of 30 kHz would require a filter
with about 1800 coefficients [Zangi and Koilpillai, 1999] and we will use
a decimation factor of D = 600 to produce a complex-valued output
sequence with R,t = 50 k samples/second. Using these numbers, the
computation required each second to generate the output sequence for a
single narrowband voice channel is 50, 000 x 1800 = 90 million complex x
real multiply-accumulate operations (for filtering), plus at least 30 million
complex x real multiplications for frequency translation.

Many techniques have been used to make this computationally-intensive filtering task
more manageable. We now examine a few of these techniques and how each improves
efficiency over the conventional approach.

One common technique is to use a cascade of multiple FIR filters that per-
form the bandwidth reduction and sample-rate reduction in several stages. Using
this approach, a lower average number of operations per output sample can be
achieved [Frerking, 1994, Orfanidis, 1996]. The basis for this improvement is that
the each of the multiple stages (except the last) computes an intermediate result that
is used in computing multiple output samples in order to amortize the computational
costs.

Another approach, the filter bank, is appropriate when multiple independent nar-
rowband channels are to be extracted from the same wideband input sequence simul-
taneously. If each of the desired output channels has identical bandwidth and response
(just different center frequencies) then techniques exist that can exploit the special
relationship between the multiple sets of filter coefficients. These techniques can com-
pute the multiple output sequences at a lower average cost than multiple, independent
single channel filters [Crochiere and Rabiner, 1981, Zangi and Koilpillai, 1999]. This
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approach is similar to the recursive decomposition approach used by the fast Fourier
transform, which can be viewed as a bank of uniformly-spaced frequency-selective
filters.

A third approach, often used in dedicated digital filtering hardware, is a spe-
cial filter structure known as a cascade integrator-comb (CIC) filter or Hogenauer
filter [Baines, 1995, Hogenauer, 1981]. This technique uses a special filter structure
with cascaded stages of accumulators and combs that can implement a bandpass filter
using no multiplication operations. This approach is effective where multiple addition
operations are more economical than a single multiplication.

All of these approaches have several characteristics in common:

" Each approach statically specifies the filter passband and stopband.

" In each approach, filter complexity is proportional to input sample rate; as
receivers are designed with wider input bandwidths, the cost of extracting a
constant-width channel increases as well.

" Finally, each approach needs a larger number of input samples, relative to the
direct approach of (5.2), to compute a particular output sample. In a sense,
they are less efficient in their use of each input sample relative to the single high-
order filter whose coefficients are optimized to provide a desired filter response.
This increased input-output dependence is ameliorated by the fact that each
input sample is used in the computation of multiple output samples.

In the remainder of this chapter, we develop an alternative approach to channel
separation that scales more efficiently with the input bandwidth (or Ri,) of a receiver.
This requires that we decouple the some of effects that unnecessarily lead to this
computational dependence on Rin.

In the next section, we present an new algorithm that performs frequency transla-
tion with computational complexity proportional to the output sample rate. Following
this, we describe how to separate the bandwidth reduction step into two independent
dimensions: interference rejection and SNR improvement. Decoupling can reduce the
computational complexity of the bandwidth reduction step, permitting less work to
achieve the desired result. We present a technique that uses random sub-sampling of
the input sequence to achieve such a reduction. We also present experimental results
that demonstrate the algorithm's effectiveness in performing channel separation in a
wideband digital receiver.
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Figure 5-5: Block diagram showing (a) frequency translation of desired signal before
filtering and decimation, and (b) new approach that uses a composite filter to reduce
computation.

5.3 A New Approach to Frequency Translation

In this section, we present a technique for reducing the cost of the frequency transla-
tion step in the channel separator. To understand this change, we look again at the
right-hand side of (5.2). The frequency translation component can be partially fac-
tored from the summation. Combining steps by defining a new set of filter coefficients
yields:

M M

yn = e -j2yfcnT 1 hmrn-mej 2ffcmrT. _ -j27rfcT, E Cmrn-m (5.3)
m~zO m~O

where cm = hmej27fcmT are new composite filter coefficients. Figure 5-5 shows that
the steps of frequency translation and filtering have effectively been reversed between
part (a) (the conventional approach) and part (b) where the multiplication required
for the translation now occurs at the lower output rate. What is actually happen-
ing here is that we have transformed the (typically) real-valued lowpass filter into a
complex-valued bandpass filter that passes only the positive frequency component of
the desired passband signal. This decimating filter is applied directly to the received
sample sequence and then there is a frequency translation of the decimated filter out-
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put sequence (at the lower output sample rate) to place the desired output signal at
a center frequency of zero at complex baseband. Although the idea of combining fre-
quency translation with an FIR filter is not new, previous approached required the use
of multiple sets of filter coefficients, thereby restricting it usefulness [Frerking, 1994].
Our approach combines only the time-invariant part of the translation with the filter
coefficients and factors the time-varying portion to accomplish arbitrary frequency
translation using a single set of compound coefficients.

This technique has several advantages over the multi-stage technique. The most
obvious is that we can dramatically reduce the amount of computation required for
frequency translation. The generation of the complex exponential sequence and the
frequency translation take place at the lower sample rate, R, and we have therefore
reduced this portion of the computation by a factor of D. We are required to pre-
compute the compound filter coefficients cn one time, but this is trivial when we
consider the potential savings as the filter might be used to generate thousand or
millions of output samples. We still retain the ability to fine-tune the channel filter
to the desired signal because we can vary the frequency after the filter to track any
small changes in carrier frequency. The largest part of the frequency translation, the
part that we combined with the filter coefficients in (5.3), does not typically need
to be changed rapidly, so the increased efficiency of the frequency translating filter
comes at the price of a mode of flexibility that was unnecessary.

Another advantage of this technique has to with the type of multiplication op-
erations that are performed at each point in the processing. In the conventional
approach, the received samples are real-valued and when we multiply by the complex
sinusoidal sequence, Sn, we have a complex-valued output sequence. (This is indi-
cated by the double line connecting the two processing blocks in figure 5-5(a).) The
filter coefficients in the conventional approach are real-valued, which is reasonable
since this is typically a low-pass filter with a response that has even symmetry. The
multiplications in the filter in figure 5-5(a) are thus complex x real. If we were to
use complex-valued coefficients for the filter h, we would need to perform complex x
complex multiplications and this would more than double the computation required.

In the new approach shown in part (b), the filter coefficients are already complex-
valued, so that we must perform real x complex multiplications, as before. If we
choose to design the filter cm = hnewfcmTs using a complex-valued hn filter, however,
we could conceivably reduce the length of the filter by a factor of two while still sat-
isfying the same passband and stopband specifications [Ochi and Kambayashi, 1988,
Komodromos et al., 1995]. This complex-valued design would not result in any addi-
tional run-time computation (we would still perform real x complex multiplications
to evaluate the filter output), but we would get up to a 2x reduction in computation
due to the reduced length of the filter sequence, cn.
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In the case of the example wideband base station receiver described in Section 5.2,
this new technique allows the complexity of the frequency translation to be reduced
by a factor of 600, from 30 million to only 50 thousand complex x real multiplies. In
addition, the use of a complex-valued design for the initial filter h, might reduce the
complexity of the filtering by as much as a factor of two, from 90 million to 45 million
multiplies. The overall reduction in computation is thus over 60% in this particular
application.

The disadvantage of this algorithm relative the conventional approach is that it
requires that the composite filter coefficients be computed before filtering, or re-
computed to tune the filter to a significantly different carrier frequency. In a system
with sufficient memory to store multiple filter definitions, selecting a different carrier
frequency for the filter would simply require using a different set of pre-computed
filter coefficients.

5.3.1 Implementation of a narrowband filtering system

The frequency translation techniques described above were implemented in a num-
ber of wireless applications developed in the SpectrumWare Project. One such ap-
plication was a narrowband demodulator for the analog AMPS cellular telephone
system [Bose et al., 1999]. The composite filter technique was essential in this imple-
mentation, enabling it to perform real-time separation of a 30 kHz channel from a 10
MHz wideband input, in addition to FM demodulation and audio processing. The
same technique was used in a number of other applications, including a study of effec-
tive ways to scale the channel separation applications to a multi-processor platform
demonstrated linear performance improvements in a multi-processor system through
the use of an architecture that separated data management and control functions
from the signal processing functions [Vasconcellos, 1999]. This work demonstrated
that a 4-processor Pentium III personal computer could perform channel separation
for up to 32 narrowband AMPS channels simultaneously.

5.4 A New Approach to Bandwidth Reduction

Although it is relatively easy to understand the modification of the frequency transla-
tion step in the previous section, it is more difficult to see how to modify the bandwidth
reduction step to remove the dependence of the computational complexity of the fil-
tering on the input sample rate. To understand why the dependency arises, it is
useful to look more closely at two specific effects of filtering: interference rejection
and SNR improvement. Separating these two effects will allow us to design a filter
sufficient to reject adjacent channel interference while performing the minimum work
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required to improve or maintain the output SNR.
In a receiver where we extract a narrowband signal from a wideband sample

stream, it is often necessary to specify a sharp transition between passband and
stopband to reject adjacent channel interference. This requirement often leads to
a large number of coefficients in the resulting FIR filter, a direct implementation
of which will have a computational complexity proportional to the input sample
rate [Jackson, 1989]. A second consequence of using a high-order FIR filter is that
we can get a significant improvement in the SNR of the output signal relative to
the input signal. In fact, for every factor of two by which the narrowband signal is
initially over-sampled, we can improve the SNR by 3 dB if appropriate filtering is
performed to remove out-of-band noise [Wepman, 1995].

This means that the ability to reject adjacent channels is related to the length (in
time) of the impulse response of the channel filter, while the improvement in SNR
due to oversampling and filtering (as well as the amount of computation required)
depends on the number of input samples used to compute each output sample. In
practice it is the first effect, the rejection of potential interferers, that dominates the
filter design; the choice of filter length then determines the number of input samples
used, not the requirement for some minimum output SNR. In order to decouple these
two effects, we present an approach in which a narrowband filter is designed with an
impulse response that satisfies the filtering requirements, but then we compute the
filter output values using only a subset of the available input samples.

In particular, we will use a filter with a sufficiently long time response to provide
the sharp transition we desire, using only as many samples within that response
interval as are necessary to produce or maintain the required output SNR. These
ideas are shown more clearly in Figure 5-6(a)-(c). In part (a) of this figure we see a
case where the number of samples in the input region of the filter is determined by
the length of this region (the length of the filter response). In (b), we see where an
increase in the length of the filter response will lead to a larger number of samples
used when evaluating the filter output. Alternatively, in part (c), we see that we can
decouple the number of samples used from the length of the response by using only a
subset of the samples in the region corresponding to the filter input region.

In the following sections we analyze the usefulness of this approach and present
several techniques that can be used to determine how such a subset of samples can
be determined for a channel selection system.

5.4.1 Decoupling filter length and SNR

Almost all filter design strategies are based on the assumption that a digital filter will
use a contiguous block of samples as input, as shown in Figure 5-6 parts (a) and (b).
Algorithms to design optimal filters for channel selection applications are no excep-
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Figure 5-6: Illustration of how we decouple the length of the filter input region from
the number of samples that it contains.
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tion, and often the optimal design is viewed as the lowest-order filter (smallest number
of multiplications) that will provide a desired level of stopband attenuation and pass-
band ripple, regardless of SNR considerations [Steiglitz et al., 1992, Jackson, 1989].
We will approach the design of such a filter by using a conventional filter design, and
then discard some of the terms in the summation in order to reduce computation
while maintaining an acceptable output signal quality. We will treat this discarding
of terms as a removal of some of the samples in the input sample stream and we will
try to determine which samples and how many samples can be safely discarded.

Any time that we simply discard some of the samples in a sample stream we will
cause distortion to the signal represented by the sequence. The object of the work
presented in this section is to determine whether we can minimize this distortion effect
within the narrow band of frequencies that will be passed through the channel filter.
The approach presented here is based on ideas from the area of randomized signal
processing presented in [Bilinskis and Mikelsons, 1992]. However, in this work we use
random choice in a different way. We introduce the randomness while processing a
stream of uniformly spaced samples, as opposed to introducing the randomness while
performing quantization or sampling of the original analog signals.

5.4.2 Random sub-sampling

The goal of the channel filter is to remove adjacent channels from the wideband signal
so that sample rate can be reduced without causing the aliasing of other interfering
signals into band of interest. This is accomplished by designing the filter to reject
all potential interfering signals, and only then reducing the sample rate in order
to reduce the computational load in subsequent stages. For the remainder of this
chapter, we assume that the input to the channel filter is a sequence of uniformly-
spaced real-valued samples of a signal with bandwidth Wo. We wish to generate an
output sequence that contains only those components of this signal that lie within a
certain narrow frequency band WN << Wo.

This is often accomplished using a decimating FIR filter that passes only the
band of frequencies we desire. In such a filter, the values of the output sequence are
computed from the input using discrete-time convolution:

M

Yn hmrn-m (5.4)
m=O

Here hm is the length-(M + 1) sequence whose elements are the coefficients of the
order-M FIR filter. The input sequence rn is assumed to be infinite and n is the time
index for the sample rn. The order, M, of the filter has been chosen to sufficiently
attenuate all out-of-band signal components so that, after filtering, we can compress
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our representation of the output signal by the decimation factor of D. This need
to resolve and remove out-of-band components is the primary factor that drives the
determination of the minimum length of the filter response. The compression of the
output representation of the decimating FIR filter is accomplished as we compute the
output samples only for times n = kD. Each of these output samples will, of course,
require M + 1 multiplications and M additions to compute.

Note that the filter order M is not chosen specifically to provide some required
level of output SNR in the channel filter. Our idea is to produce output samples y'
that only approximate the yn to the extent that they still provide the desired level
of SNR at the output while requiring fewer operations to compute. We will compute
these approximate samples by only partially evaluating the summation shown in (5.4)
for each sample:

y hmrnm (5.5)

where the selection set Sn C {0, 1, ... , M} is the subset of the indices of the filter
coefficients used to compute Yn. We would like to find a way to choose this subset that
will adequately approximate the original output sequence yn while using the smallest
amount of computation, that is, using the smallest expected number of terms in each
sum, E{jSnj}.

Our investigation of this problem will begin with the development of some tools
to provide a quantitative understanding of the effect of discarding input samples. We

first introduce a new model that allows us to analyze the effect of discarding different
sets of input samples. We also present an expression that represents the distortion

caused by this operation of discarding samples. Using these tools, we then evaluate an
algorithm that allows us to discard samples while bounding the distortion measured at

the filter output. This is equivalent to reducing the computation required in channel
separation while maintaining some minimum level of SNR at the filter output.

The technique that we present has two forms. The first makes no assumptions

about the input signal: it simply discard samples randomly to reduce computation.
The other form demonstrates that we can use knowledge about the input signal (not

actual samples, but rather in terms of the expected distribution of energy at different

frequencies) to further reduce computation for the same level of output distortion.

This approach to reducing computation can be generalized in a number of ways, but

in this work we restrict our consideration to a scheme that induces distortion that has

a flat spectrum, that is, a type of distortion in which the error at each point in the

sequence is uncorrelated with the error at other sample points. This white distortion

is often easier to deal with in subsequent processing stages, such as a detector.
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Figure 5-7: Diagram showing conventional FIR filter and model for approximating
output samples.

5.4.3 Model for analysis

We will use the model shown in Figure 5-7 to analyze the effect of approximating the
output samples through the use of random sub-sampling of the input.

In this figure we see the original filtering operation, shown in part (a), as well
as the model that produces the approximate output samples in part (b). In part
(b) the block labeled "Sample Selector" controls which samples will be used in the
computation of the approximate output, y'. This selection process is modeled as
multiplication by the sequence z,: when a particular z, = 0, the corresponding rn
will not contribute to the computation. The non-zero zn can, in general, take on any
value that will help us reduce the approximation error; we discuss how the values of
the non-zero zn are chosen later. We can now rewrite the expression for the y' as

M M

y = hmrn-mZn-m hmrn-mzn-m (5.6)
m=0 m=O, Zn-m #O

Before we proceed with a complete analysis of this model for sub-sampling and

its effects on the filter output, it is helpful to present a short example of one simple

random sub-sampling scheme. We perform a simple analysis of this example case

to build some intuition for sub-sampling before analyzing a more general rule for

discarding samples in the sections that follow.
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Discarding samples using biased coin flips

One simple way to pick the values of z, in Figure 5-7 is to use a biased coin that
gives probability p of retaining a sample:

1 with probability p
Z" 0 otherwise(57

Here the samples that are retained are multiplied by the constant 1/p. To understand
the effect on the filter output of this discarding of samples, we use standard results
from signal processing that describe the effect of passing a random signal through a
linear filter like the one in Figure 5-7. Before showing these results, however, we need
a few definitions.

We define the autocorrelation sequence (ACS) of a real-valued random sequence
sn as the expectation:

R,[n, m] = E{snsm} (5.8)

A random sequence sn is wide-sense stationary (WSS) if:

1. the expected value, E{Sn} is independent of time, and

2. the ACS can be written as a function only of the difference, k = m - n, between
the samples in the expectation: R,[n, m] = R,[k] = E{snSn+k}-

When a sequence is WSS, we can also define the power spectrum density (PSD) as
the discrete time Fourier transform (DTFT) of the ACS:

00

Ss(Q) = DTFT{Rs[k]} = E Rs[k]e-ik (5.9)
k=-oo

The subscript s in both R,[k and S,(Q) refer to the original sequence sn. We also
note that whereas Rs[k is a discrete sequence, S,(Q) is a continuous function in the
frequency domain. We use Q as the frequency domain parameter (as opposed to w)
to indicate that this is the transform of a discrete sequence and is therefore periodic
in the frequency domain with period 27r.

The sequence of filter coefficients hn is a finite-length deterministic sequence, and
we will write its DTFT as:

H(Q) = DTFT{hn} =S hke-jQk (5.10)
k=-oo

When a WSS random sequence is passed through a digital filter such as hn, its output
is also a WSS random sequence, and we can write the PSD of the output sequence
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in terms of in the input PSD and the filter. For the filter shown in Figure 5-7(a), the
output PSD is [Oppenheim and Schafer, 1989]:

Sy(Q) = DTFT{Ry[k]} = JH(Q)1 2 Sr(Q) (5.11)

For the case of our simple coin-flipping sample selector, we can now analyze the
effect of discarding samples. The ACS and PSD of the selection sequence z" defined
in (5.7) are:

Rz[k] = E{zzn+k} = k' 0(5.12)
1, k # 0

Sz(Q) =A Rz[k]eink = - - 1 + 27rZ6(Q - 2il) (5.13)
k=-xo 1=-00

The PSD of the input to the filter in Figure 5-7(b) is the PSD of the product rnzn,
which is the periodic convolution of Sr(Q) and Sz(Q) [Oppenheim and Schafer, 1989]:

S{rz}(Q) = 1f Sr(0)Sz(Q - 0)dO (5.14)

If we substitute from (5.13) and carry out the convolution we get:

1 -+roof

S{rz} (Q) = Sr(0)d + ] Sr (0)6(Q - 0 + 27lF)dO (5.15)

The second term in the right-hand side of this result reduces to simply Sr(Q) because
of the sifting property of the integration with the impulses and the periodic spectrum
of the PSD. This PSD at the filter output can now be written as simply the original
filter output from (5.11) plus a second additive term:

Sy,(Q) =|H(Q) 2 Sr(Q) + H(Q) 2 1-P jSr(0)dO) (5.16)
(27rp 2r

This result in (5.16) helps us to understand the effect of discarding samples according
to simple biased coin flips. The first term in (5.16) is equal to the PSD of the original
output signal when no samples were discarded. The second term is additive and
represents the distortion caused by discarding some samples. Note that when p = 1
(all samples are used) the distortion is zero and the distortion increases as p decreases.
In Figure 5-8, the distortion is plotted as a function of the probability p of retaining
each sample for typical values of hn and Sr(Q). The results shown in this figure are
developed more fully in the next few sections, but we can see that as p decreases
from one to near zero the level of distortion increases to levels that exceed the signal
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Figure 5-8: Distortion due to discarding input samples according to random coin flips.

of interest (at 0 dB in the plot, the power of the distortion equals the power of the
signal itself).

Analysis of the error sequence

The example of choosing the values of z using a biased coin helped us to gain some
intuition about the effect of discarding input samples as we compute the output of
a narrowband channel filter. Discarding samples led to additive distortion in (5.16)
whose PSD increased in magnitude as samples were discarded. In order to understand
how to choose the selection sequence z3, in a manner that will allow us to more carefully
control the induced distortion, we now provide a more general analysis the effect of
discarding samples.

We first define the error between the approximate filter output y' and the original
output sequence:

en= yn - yn (5.17)

We would like this error sequence, en, to have zero mean (to provide an unbiased
approximation) and, for a given choice of the sequence zn, we would like to compute
its variance, i.e., the mean-squared error (MSE) of the distorted output sequence
relative to the original output:

var(en) = E{e} 
(5

. ... .. .......... ...........

.................... .......... -

............. ......... .... ........... ............. ....

.................. ............... - - ---------------------------------- - ......

............. .......................... -

1

(5.18)
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Z n

n

Figure 5-9: Model for analysis of error variance due to random sub-sampling.

In Figure 5-9, we have combined the two schemes from Figure 5-7 to produce
the error sequence for the purpose of analysis. Before using this combined model to
derive the relationship between the input sequences and the output variance, we need
to state a few assumptions that will simplify the derivation.

We again assume that the input sequence r, is wide-sense stationary. We also
assume that the zn are chosen independently of the values of r". This allows us
to fully realize the computational savings of discarding some input samples without
examination, as well as allowing us to pre-compute zn. It is important that the
sequence zn have a non-zero mean; we will see later that this determines the amplitude
of the desired signal in the output sequence. Without loss of generality, we assume
that E{zn} = 1. This specific choice prevents problems with scaling factors later but
does not limit our choice of sequences, as long as we scale them appropriately. We
also will define vn = Zn - 1 to simplify the notation in our analysis (so E{vn} = 0).
We can now write the ACS for the filter input sequence, dn = rnzn -rn (the distortion
sequence), as:

Rd[k] = E{dndn+k} = E{rnrn+kvnvn+k} = Rr[k]Rv[k] (5.19)

Our model for approximating the filtering operation has several desirable char-
acteristics. First, if the length of the filter (M + 1 coefficients) is greater than the
decimation factor, then some input sample will be required in the computation of
multiple output values. When this is the case, our model will ensure that these sam-

ples are used in every such computation or in none of them. This is useful in a real

implementation where much of the cost of the computation is retrieving a sample

from memory, not in performing the actual arithmetic operation (hmrn-m).

In a sense, we are approximating the input sequence as opposed to approximating

the filter. The selection set Sn can be viewed as the set of filter coefficients that are
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used to compute each output. If this set were the same for every n, it would simply
define a new filter that is an approximation of the original filter. This approximation
approach could be evaluated using standard filter response techniques and the analysis
of such an approach is not part of this work.

Problem Statement

Using the model shown in Figure 5-9 and the definitions above, we now state our
problem more precisely:

Find the sequence z, that minimizes the expected amount of computation
required to approximate the filter output while ensuring that the error
variance is less than or equal to a bound B:

min [Pr{za # 0}] such that E{e } < B (5.20)

Finding the Error Variance

To analyze the effects of zn on the variance of the error sequence, we first write the
power spectrum density of the output of the filter in Figure 5-9. This output PSD
can be written in terms of the input PSD and the frequency response of the filter,
similar to (5.11):

Se(Q) = |H(Q)|2 Sd(Q) (5.21)

The variance of en can be written as the inverse DTFT of this PSD evaluated at
k = 0:

var(en) Re[0] = Se(Q)jQkdQl = Se(Q)dQ (5.22)
[2 2I . k=O K2

Writing this variance in terms of the input sequence PSD:

var(e,) = ] f H(Q) 2 Sd(Q)dQ (5.23)

The PSD of the input sequence, Sd(Q), represents the distribution in frequency of
the expected distortion (the squared difference, d2) caused by discarding samples
according to the sequence zn. To reduce the variance at the output we would ideally
like this distortion to occur at frequencies for which the amplitude of H(Q) in (5.23)is
small: the stopband of the filter. If dn is a white sequence then Sd(Q) will be constant
for all Q (since d, must also be zero-mean). This implies, from (5.23), that the
output variance will be simply proportional to the input variance, E{d2}, and that
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the proportionality factor will depend only on the response of the bandpass filter,
H(Q).
If we substitute in (5.23) using the definition of the DTFT of Rd[k],

var(e) = |H E Rd[k] dQ (5.24)
27 L7r H) k=-oo

Exchanging the order of summation and integration, we get:

var(e,) = Rd[k] [ JH(Q) |2 e-jnkdQ (5.25)
k=-oo 2i

The expression in the square brackets above is the inverse DTFT of the squared
response of the filter. This can be written as the ACS of the deterministic, finite-
length sequence of filter coefficients ha, which we will call Ch[k]:

001

Ch [k1Z h[m] h [k + m] =- H ()|2 e-jnkdQ (5.26)
=-00 27r I2-r HQ e~d

We can now combine all of these results to show that the output error variance is
simply the sum of a product of three sequences:

0)o 
00

var(en) = Rr[k]R[k]c[k) = E Rr[k](R[k - l)ch[k] (5.27)
k=-00 k=-00

To check this result, consider the case of zero output distortion: choosing zn = 1 for
all n results in R,[k] = 0 for all k, giving zero error.

This result in (5.27) is significant for several reasons. First, it shows that the
error variance of our approximation scheme depends on the sequence vn (and hence

Zn) only through its ACS. Second, it shows that the error variance depends linearly
on all three of the key parts of the system: the ACS of the input sequence, the ACS
of the selection sequence and the coefficients of the channel selection filter.

Finding a Good Selection Sequence

We can now begin to look at how (5.27) helps us choose the selection sequence zn,
minimizing the amount of computation to produce an output with a specified bounded
variance. This sequence will have the following properties:

1. It provides a bounded error variance, given by (5.27).
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Figure 5-10: Random sub-sampling using a transformed sequence for sample selection.

2. It allows us to discard as many samples as possible, that is to maximize the
probability that z,, = 0, subject to property (1) above.

3. It produces a distortion with uncorrelated error values at each point in the
sequence.

We now identify two separate cases as we try to decide which samples to discard.
In (5.27), we saw that the induced error variance depended only on the ACS of
the received wideband sequence and the ACS of the channel filter. Although it is
conceivable that in some cases we may have a good idea of the spectral distribution of
the received signal (and therefore its ACS), we may not always have this information.
We therefore identify two cases as we try to find a good choice for the selection
sequence, zn.

Although it is well known how to generate a random sequence with a desired ACS

(e.g. by generating "shaped noise", see [Stark and Woods, 1986]), we found no prior
work on how to directly generate such a sequence with a relatively high probability
that z, = 0. Instead, we will start with a candidate selection sequence, x,, that has
a desirable ACS and perform a sequence transformation to convert it to a sequence

zn that has more zero elements and an ACS that remains "close" to that of xn, i.e.
R2[k] ~ Rx[k]. This sequence transformation approach is shown in Figure 5-10, which
also depicts the creation of the initial sequence x, by the filtering of a white noise
sequence w, with the shaping filter gn. We will describe how the filter g" is chosen
in a later section.

In terms of our transformation scheme, the error variance of (5.27) can be written
as two components: one component due to choice of the original sequence Xn (the
first term below), and another to the transforming effect that introduces more zeros
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and produces z,:

var(e) [ E R,[k](R,[k] - 1)ch[k] + [: R,[k](R[k] - R,[k])ch[k] (5.28)
_k=-oo _ k=-oo

We can perform a similar decomposition to that of (5.19) which gave us ACS for
the distortion sequence d,. This decomposition also has two terms: the first term
is the portion of the autocorrelation due to the initial choice of x", the second term
corresponds to the part of the distortion due to the transformation process:

Rd[k] = Rr[k]Rv[k] = Rr[k](Rx[k] - 1) + Rr[k](Rz[k] - RxI[k]) (5.29)

Because we want the distortion to be uncorrelated at each sample (white), we would
like Rd[k] to be non-zero only for k = 0. To achieve this goal requires that for all
k $ 0: (1) we choose the sequence x, to make the first term in the right-hand side of
(5.29) zero, and (2) we choose the transformation such that (Rz[k]- Rx[k]) = 0 in the
second term. We now explain these two steps in more detail. We will first describe
the way that our sequence transformer is designed, and then discuss the best way to
choose the initial sequence x,.

The Sequence Transformer

Given a sequence x. with ACS Rx[k1, we want to produce a sequence z" with R,[k] ~
Rx[k] while increasing the number of zero elements, z. = 0. Furthermore, we saw in
(5.29) that we must have Rz[k] - Rx[k] = 0 for k 5 0 while minimizing the difference
Rz[0] - Rx[0] to minimize the error variance due to the choice of transformation.

We now present a transformation that will change some of the elements of the
sequence to zero while ensuring that the difference sequence, d" will be white, that
is, it will satisfy E{dsdn+k} = 0 for k $ 0. This may not be the optimal transformer,
since there may be some sequences that allow even less computation for the same
error variance, producing a non-white d,. In addition, we would like our sequence
transformer to be able to transform the sequence one element at at a time: each ele-
ment of the transformed sequence, zu, will depend on only the corresponding element
of the candidate sequence, xz.

To design this transform scheme, we begin with a general rule for transforming
the individual elements of x,:

Zn _ f(xn) with probability q(xn) (5.30)
0 otherwise

This rule requires that we define two mappings: f : R -+ R and q : R -+ [0,1]. In
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choosing f and q to accomplish our goals, we first compute the ACS of the transformed
sequence z,. For the case k # 0 we have

E{ZnZn+k} = J J Zn Zn+kp(Zn, Zn+k)dZn dZn+k

F f J (xf)q(xn)f (xn+k)q(Xn+k)p(Xn, Xn+k)dXfndXn+k (5.31)

To ensure that E{znzn+k} = E{XnXn+k} for k $ 0, we now choose f(Xn) = xn/q(xn),
giving:

E{ZnZn+k J XnXn+kP(Xn, Xn+k)dXndXn+k E{XnXn+k} (5.32)

A similar computation allows us to find Rz[0]:

R2[0] = } E " (5.33)E[] } Z oo q(Xn) P(X)dXq()

Now, since 0 < q(Xn) < 1, it is clear that Rz[0] > Rx[0], with equality only in the
case where q(xn) = 1, for all values of Xn that occur with non-zero probability. This
implies that anytime Pr{q(Xn) < 1} > 0, our sequence transformer will induce some
non-zero output distortion as seen in the second term of (5.28). We wish to find the
function q that minimizes the expected computation (minimizes Pr{zn # 0}) for a
given bounded output distortion, var(en).

To simplify the problem of finding the best q, we assume that the Xz are drawn
from a discrete distribution: Xn E X (and therefore zn C Z). This simplification will
allow us to solve a discrete optimization problem to find the best choice for q(xn) and
does not significantly affect the eventual result. We use the notation xi to indicate an
element of the set X and we refer to the probability mass function over these values
using pi, that is Pr{X = Xi} = pi. We will also use the notation qj to refer to the
values of function q(Xn), that is q(xn) = qj when Xn-, Xi. So we now have f : X -+ Z
and q : X -+ [0, 1].

In order to ensure Rz[k] = Rx[k] for k # 0, we choose f(xi) = xi/qj, and (5.33)
now becomes Rz[0] = E{X2/q} when we use a discrete distribution for Xn.

At this point, finding the best choice for the function qj can be written as an
optimization problem. The goal is to choose the values of qj providing the highest
probability of zn = 0 (lowest probability that Zn # 0) given a bounded distortion for
the transformer:
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Problem Statement

Find qi to give

min piqi such that E{/qi} = < /3 (5.34)
L I qi

Note that although the value we actually need to bound is R,[0] - Rx[0] = E{x2/qi} -
E{x2}, since both terms in the difference are positive and E{xf} is fixed for the given
sequence Xn, we can equivalently bound the first term alone.

Solution

We can assume that equality holds in the constraint above at any optimal solution;
otherwise we would be able to increase one of the qi to achieve equality, thereby
reducing the sum to be minimized. This constraint is a hyperbolic surface in the
qis and since all of the parameters are non-negative, this is a convex surface. The
convexity implies that there exists a single global minimum point on the constraint
surface. Any global solution to this constrained minimization in (5.34) will also satisfy
pair-wise optimality for the individual pis. That is, the same global solution will also
satisfy:

2 1 2 2

min piqi + pj such that PZ + aij (5.35)

for some fixed aij for all i # j. If this were not so, then we would be able to improve
on the global optimum. Because of this pairwise optimality condition, we can solve
the pairwise problem by eliminating qj through substitution in the above, setting the
derivative equal to zero and finding the optimal qi (and qj by symmetry):

1
q= - |xi| pi~xi|+pjlx4| (5.36)

These relationships allow us to show that the ratio qi/qj does not depend on aij:
qi/qj = Jxij/|xjj. From here we can easily find the global solution:

qi = 1xil E{ Xn}) (5.37)

This result for the values of qi is not quite complete. If any of the xi are such that

1xil > 3/E{xjn} this would result in a value of qi that is greater than one, which
would be unacceptable for a probability value. For such xi, the optimal solution is
to choose qi = 1, so that such values will never be changed as we transform the se-
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quence x, into z,. The intuition here is that these are the outlying values of xi in the
distribution, and changing these values with non-zero probability causes more distor-
tion than simply changing the values of smaller-magnitude xi with higher probability.
Only those with smaller IxiI are subject to possible transformation according to (5.30)
and in the limit as 3 -+ E{x'} none of the xis will be subject to rounding. In this
case we will not be able to transform any elements to zero, but will have z. = x", Vn
in order to satisfy the bound on distortion. To capture this effect, we define the set SR
as those xi that will be subject to being transformed with non-zero probability, that
is, those xi such that fxil < /E{xJn}. The final rule for our sequence transformer
is now:

Z = Xn/q(xn) with probability q(Xn) (5.38)
" 0 with probability 1 - q(Xn)

Where the values of q(xn) are given by:

q(xn)= qi for x, =i, where qi 1 if Xi SR (5.39)x =i (E{|X-} if xi E SR

The set SR consists of xi that are subject to rounding (those xi for which qi < 1) are
those for which:

SR x such that |xiI < (5.40)

5.4.4 Analytical evaluation of the sequence transformer

Before analyzing the results above, it is helpful to review the overall goal of our
random sub-sampling scheme, which is to approximate the output of narrowband
channel selection filter by using only a subset of the input samples. The particular
approach of using a selection sequence to model the effect of sub-sampling is motivated
by the high costs of memory retrieval relative to multiplication operations. The idea is
to use a selection sequence zn so that those samples not discarded could be multiplied
by some non-zero value to reduce the effect of sub-sampling.

Our analysis showed that MSE distortion due to sub-sampling depends on the ACS
of selection sequence. There is no known prior work on generating such a sequence
with large proportion of zeros, we therefore decided to use a two-step approach:
choose a candidate sequence, Xv, that has desired ACS, followed by a transformation
that would increase the number of zero elements. As we evaluate the performance of
the sequence transformer, we must keep in mind that this approach is not the entire
solution to our main problem of minimizing the computation for a channel filter in
a digital receiver through sub-sampling the input, as defined by (5.20). In general,
there may be an entire class of sequences that cannot be generated through our two-
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90 CHAPTER 5. FLEXIBLE PROCESSING IN A DIGITAL RECEIVER

step approach, yet provide superior performance when used to select which samples
should be discarded in our random sub-sampling approach. This being said, we now
analyze the performance of our sequence transformation scheme.

The performance of the sequence transformer can be measured by determining how
much it is able to reduce the cost of computing the filter output for a given bound on
error variance. This cost reduction is simply the probability that a particular element
of the input sequence will be discarded:

Pr{za = 0} = E{1 - q(xn)} = Zpi(1 - qj) (5.41)
i

Substituting the expression for qi from (5.39), we can write the complement of this,
the amount of computation required:

Pr{z, # 0} = piq= E{|Xnj} E p~xi I + pi (5.42)
z/ i: XiGSR i: XiOSR

We can use this result to compare the two cases that we identified earlier to see if
having knowledge of the received wideband signal and the filter response can help to
reduce computation.

Case I: Autocorrelation of received sequence is unknown

In the first case, we assume no knowledge of the ACS of the received sequence r,.
We recall that the error variance given in (5.28) had two components. The first of
these is due to the choice of xn. Because we do not know R,[k], it is reasonable to
choose Xn = 1 for all n. This will give zero distortion due to the first term (since
we will have Rx[k] = 1, Vk). The distortion due to the transformation, the second
term in (5.28), is simply R,[0](Rz[0] - Rx[01)ch[0]. For our sequence x" we have a
trivial distribution, x,= 1 with probability one. For a given amount B of allowable
distortion in this case, we have:

var(en) = R,[0}(R[0] - Rx[01)ch[0] = R,[0](,3 - 1)ch[0] = B (5.43)

1 +1 (5.44)
R,[]ch [0]

The transformer reduces to the simple case:

_ 1 with probability 3(4{ 0 otherwise (5.45)
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Using this rule, we will always have x2 < #1/E{xn} = /1, so the expected computa-
tion is:

1
Pr{za # 0} =(5.46)

This case where the candidate sequence is chosen as x, = 1 for all n corresponds
to the simple case of using a biased coin that we discussed earlier in this chapter,
although is is now clear how we should pick the probability p = 1/01 to achieve a
desired level of error. We will perform further analysis on these results in the next
section to provide more insight on the effectiveness of this scheme for this case and
the next.

Case II: Autocorrelation of received sequence is known

In this case, we assume that the ACS of the received sequence r, is known. The first
term of the error variance given in (5.28) was zero in Case I, but here we consider
that we can find a non-trivial sequence x, that will make this term small (or even
zero), so let E = Ek R,[k](Rx[k] - 1)ch[k]. The total distortion for this case is now

var(e,) = E + R,[0] (2 - Rx[0])ch[01 = B (5.47)

B - E 1
/2 = + Rx[0] =01 + var(x,) - (5.48)

Rr [0] Ch[0] R,[0] Ch [0

The transformer is:

xn if Xn V SR

Zn = E{ixI} - Sign(xn) with probability |Xnj#24E{ Xnj} if xn E SR (5.49)
0 otherwise

Using this rule, the expected computation from (5.42) is:

Pr{z, 4 0} = (E{ | Pixi I + Pi (5.50)
\M2 / i: XiGSR i: XiVSR

Comparison of Cases I and II

At this point we have produced results that show the expected amount of computation
that is required to produce the approximate filter output for two different cases. To
determine whether the second case is able to improve on the performance of the first,
we simply need to see which can produce an output with the same bounded error
variance using less computation.
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As we consider the above results, we will need to understand the effect of the
E{ x72 J} term that appears in (5.50). We do so in the context of our approach which
generates x, using an FIR filter to shape the spectrum of a white sequence, as in
Figure 5-10. Here x, has an ACS that is determined by the response of the filter g",
which itself is determined from (5.28) in order to minimize c. When we generate x"

using an FIR filter, each sample of x, will be the weighted sum of a large number
of independent samples of the white sequence w,. This will tend to produce samples
of x, that have a Gaussian distribution. When we consider (5.50), we see that for
a Gaussian distribution with mean E{xn} = 1 (because z, must also have unit
mean and the transformer preserves the mean), E{xJn} is strictly greater than one.
Although E{ x,,} > 1, it is not much greater if the variance of x, is relatively small
so that the negative tail the distribution of xn (the part affected by the absolute value
operation) has a small area.

To get a qualitative feel for the relative performance of the two cases, we can
now compare the results of (5.46) and (5.50). We consider the case of values of the
bound B on the variance of the error in (5.20) for which most of the xi are subject
to rounding, that is, xi - SR for most xi. In this case, the second summation in
(5.50) will be very small and the first summation will be approximately equal to
E{x~n} ~ 1. We will then have Pr{zn : 0} ~ 1/.32. Furthermore, if we assume that

E in (5.48) is small, the we see that a non-zero variance for xn will lead to 02 > /1 and
thus to an improvement in performance for case II relative to case I. To achieve this
improved performance, however, we need to find a general solution which allows us to
determine an ACS for a candidate sequence xn with non-zero variance in addition to
a small (or zero) resulting value for 6, the first term in (5.28). This general solution
is the goal of on-going work.

In the next section, we present the result of computer simulations that validate the
results of (5.46) and provide a more concrete comparison of the two different cases.

5.5 Evaluation of Random Sub-sampling

Figure 5-11 shows the results of computer simulations that validate the performance
of the sequence transformer analysis for the case where the autocorrelation is not
known (Case I). In these simulations, random WSS signals were generated to represent
the received signal. A selection sequence zn was produced to simulate independent
random rounding decisions according to the transformation rule in (5.45). In the
figure, the solid lines represent the result of (5.46) plotted for specific values of Rr(01
and ch[0] over a range of values for B, in dB relative to the power of the received
signal. The individual points on the plot are the measured results of the error variance
produced when sub-sampling the random signal by zeroing specific proportions of the
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Figure 5-11: Output error variance relative to desired signal power versus proportion
of input samples used for several cases of output signal relative bandwidth.

input samples. The plot shows results for five different values of ch[0], corresponding
to different bandwidths for the desired signal relative to the wideband input. The
results show that if we need to bound the distortion at some level, say -15dB relative
to the received signal, the approach of Case I would provide some reasonable reduction
in computation. The results shown are for the base case where there are no interfering
signals in adjacent channels and all of the signal energy is in the desired band. If any
other signals are present in the wideband input signal, the respective curves would
shift upward to reflect the increased value of R,[O], the input signal variance.

A contrast between the approach of Case I and an alternative, a uniform sub-
sampling scheme, is their behavior in the presence of interference. The qualitative
effect of the random sub-sampling approach is to provide more uniform behavior,
regardless of the location of any interfering signals relative to the desired signal.

For example, consider the case where a single interfering signal is present in the
stopband of the channel filter. For the random sub-sampling approach, this would
result in an upward shift of the curves in Figure 5-11 by 3 dB when the interferer is
independent of the desired signal and has equal power (so R,[0] will be twice as much

0
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as with no interferer present). This result does not depend on the location of the
interferer within the stopband: the interfering signal could have a center frequency
anywhere in the stopband and the result would be additive uncorrelated distortion at
about -15 dB relative to the desired signal (using half of the samples with a relative
bandwidth of 2% in Figure 5-11).

If half of the samples are instead chosen uniformly, this is equivalent to decimation
by a factor of two prior to filtering. The resulting effect would depend on the relative
frequencies of the desired signal and the interferer. The interfering signal might be
aliased into the stopband of the filter, resulting in negligible distortion. On the other
hand, it is possible that the interferer would be aliased into the passband of the filter
by the decimation, and this would result in significant distortion at the filter output

(zero dB relative to the desired signal).

It is also interesting to note the difference between the individual curves in Fig-
ure 5-11 for the different relative bandwidths of the output signal. These curves show
that there is smaller error variance when the bandwidth of the output signal is more
narrow relative to the input bandwidth. This observation leads to a more general and
important conclusion about the results of (5.46) and (5.50), which is that the amount
of computation required to separate a narrowband signal with a fixed level of output
distortion need not depend on the input bandwidth, but rather on output bandwidth
and the amount of interference in the stopband.

For example, consider the case of a narrowband lowpass channel separation filter.
If we increase the input sample rate while the output sample rate is held constant,
the sum of the coefficients h, will remain constant to provide constant gain at center
of the passband (zero frequency). The number of coefficient in the filter, however, will
increase in proportion to the increasing input bandwidth because its response must
span a constant interval of time (and the sample interval T, will decrease as the input
bandwidth increases). The value of ch[0] is the sum of the squared coefficients, ch[0] =

TM o h 2 and this will decrease in inverse proportion to an increasing input sample
rate. From (5.43), we conclude that the computation, CNB, required to separate the
narrowband channel will thus remain constant if a fixed level of distortion (B) is
specified in the output:

CNB = PR{z, J 0} x {Length of filter} ~ Constant as (n) increases (5.51)

Although the amount of computation required for the channel filtering does not
depend directly on the input sample rate, this amount does depend on the amount
of interference present in the stopband. From (5.43) we see that if more interfering
signals are present, the variance of the input signal, Rr[0], will increase, resulting
in an increasing amount of computation required to maintain a fixed level of output
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Figure 5-12: Comparison of Case I and Case II results for three values of var(xn).

error variance, B.

In Figure 5-12, we show a comparison of the performance for the two different
cases. This plot shows a comparison of the results for cases I and II from (5.46)
and (5.50) for several different values of Rx[0] under the assumption that f = 0 and
the output signal bandwidth is 10% of the input bandwidth. Here we see that using
a candidate sequence with a non-zero variance can further reduce the proportion of
samples required to produce an output signal with a bounded error variance. As
in the previous case, this plot shows the base case where all of the received signal
power is assumed to be in-band, any interfering signals present in the stopband of
the filter would result in an upward shift in each of the curves. The curves show that
at low levels of distortion (less than -15 dB), increasing the variance of the candidate
sequence reduces the computation required to produce a fixed quality output only to
a point (when var(x, ~ 2), beyond which a further increase in variance is not helpful.
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5.6 Summary

In this chapter, we have addressed the two different steps of the channel selection
process: frequency translation and bandwidth reduction through filtering. For fre-
quency translation, the conventional approach provides excessive flexibility in fre-
quency translation, but at the cost of significant excess computation. We have demon-
strated how to perform the same function using a composite filter followed by final
translation at the low output sample rate after filtering, this enabling the computa-
tion of the frequency translation step to be made proportional to the output sample
rate.

We have also describes an unnecessary coupling that exists between the length
of the filter response and the number of input samples used when computing the
output of a narrowband channel separating filter using conventional approaches. In
order to provide adequate out-of-band rejection, it may incur unnecessary computa-
tion by processing excessive samples. Instead, we have demonstrated that we can
independently control filter response and output SNR.

We control output SNR by bounding the distortion caused by approximating
the input signal through random sub-sampling. We then can perform bandwidth
reduction using a relatively small number of input samples while maintaining the
desired output SNR. This reduced number of samples reduces the number of memory
accesses required to retrieve data, at the cost of potentially performing an additional
multiplication for each input sample used. The two-step approach presented here
utilizes a sequence transformer to produce white additive distortion (noise) at the
output, although it is conceivable that a more general approach can be developed
that provides greater computation reduction using non-white distortion.
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Chapter 6

Data Symbol Detection

The job of the channel decoder is to analyze the signal recovered from the channel
in order to determine the original bits that were sent by the transmitter. In the
previous chapter, we described this process as a many-to-one mapping since there
are many ways that the channel can corrupt the transmitted waveform sensed by
the receiver, and the receiver must map each of these corrupted versions back to the
original discrete data. We have already shown how the process of channel separation
deals with the part of the channel distortion caused by interfering signals in other
frequency bands. In this chapter, we will examine the second step of the process,
detection.

We begin with an overview of the detection process, emphasizing the relationship
between the input samples and the symbol to be estimated. We then review one
widely-used approach to detection that relies on a special property of certain pulse
shapes enabling us to make optimal symbol-by-symbol decisions. We then spend the
remainder of the chapter describing a new approach to detection that enables the
system to adapt the detector to efficiently provide a specified level of performance for
existing channel conditions.

6.1 Overview: Symbol Detection

After channel separation has been completed, the receiver must make decisions about
the individual symbols encoded in the received waveform. The sequence of processing
steps in the receiver is shown in figure 6-1: in this figure, the symbol detector is
divided into two different tasks, synchronization and detection. Synchronization is
the process of determining the specific set of received samples that correspond to
each particular symbol to be detected. The job of the detector is then to analyze the
specific section of the received waveform that corresponds to a particular symbol and
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Synchronization
Channel User

Channel Error Source
Separation Decoder Decoder

Detection

Symbol Detection

Channel Decoder

Figure 6-1: Diagram of the channel decoder showing division of the symbol detector
into synchronization and detection steps.

decide which is the most likely corresponding data symbol. In this chapter, we focus
on the detection process under the assumption that the required synchronization has
been accomplished. A more detailed discussion of techniques for synchronization in
digital receivers is available in [Meyr et al., 1997].

The output of the detection process is the sequence of symbols that the receiver
believes was originally transmitted. This sequence is passed to the error decoder,
which will either correct those errors it can, or simply detect errors and take other
appropriate actions. It is in this context of protecting against errors in the receiver
that the overall role of the detector in the system becomes clear. In a noisy envi-
ronment, the detector will always produce some errors. One of the functions of the
receiver as a whole is to control the level of errors through various mechanisms to
ensure that end user sees only an acceptable level of errors. These mechanisms are
not limited to the detector, or even the channel decoder, but include redundancy
at higher layers in the communication system or other techniques such as protocols
for retransmission. To design an efficient and flexible system, we need to provide
the required error performance in a way that efficiently uses the available system
resources.

When seen in this light, the detector does not necessarily need to produce an
optimal estimate of the received symbols in every situation. Rather, it needs to recover
symbols in such a way that the required error performance is efficiently achieved
through the composite behavior of all the error control mechanisms. Figure 6-2 shows
a typical performance curve for an optimal digital detector. In this plot, we see that
the probability of bit errors depends on the SNR of the received signal. If a particular
system is designed such that the detector needs to achieve a bit error rate (BER) of
104 at some worst-case SNR, say 8.5 dB SNR, then it will provide much better BER
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Figure 6-2: Plot of bit-error rate versus SNR for a two level PAM system.

if the SNR is higher. For example, if the system is experiencing an SNR of 11 dB then
the optimal detector will produce a BER of 10-6. This extra performance will not
hurt the overall system performance, but if it is achieved at the cost of unnecessary
resource consumption, then it will not be the most efficient solution.

In this chapter we will present an approach that enables the detector to efficiently
provide a desired level of BER for a specific SNR from current channel conditions. Be-
fore presenting these results, we first review some conventional techniques to perform
detection and try to develop an understanding of how this process can be modified
to provide efficient and controllable performance trade-offs.

6.2 Conventional Approach to Detection

Conventional approaches to detection depend heavily on the type of distortion expe-
rienced in the wireless channel. In some cases multi-path reception causes a situation
where a specific symbol in the encoded waveform is distorted by other preceding or
following symbols. In such a case, symbol-by-symbol detection is not feasible, but
the receiver must, in a sense, simultaneously estimate an entire sequence of symbols
because of the inter-symbol interference (ISI) effects. We will not consider this case
in the present work, but will consider the case of a system that experiences additive
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noise. We will consider this case in the context of a system that has limited RF
spectrum available and needs to efficiently use this limited bandwidth to achieve the
best possible data rate.

As we consider some standard approaches to this problem, we will review how the
system can use pulse shaping techniques to effectively use its spectrum as well as the
concept of the matched filter detector.

6.2.1 The design of pulses for digital modulation

In chapter 4 we discussed how to synthesize waveforms that encode sequences of
symbols into a continuous waveform. We noted that each symbol can be encoded
with a shaped pulse and then time-shifted pulses added together to form continuous
waveform. At the same time we saw that these pulses often overlap. As we try
to recover the values of original data symbols, we need to somehow separate the
original pulse shapes that were added together. One common way to make this
separation possible is to use pulses that satisfy the Nyquist Criterion for zero inter-
symbol interference (ISI) [Lee and Messerschmitt, 1994].

This criterion ensures that for each encoded symbol there will be one instant in
time when the contributions in the composite waveform from all adjacent pulses will
be zero (although there will still be noise present in the received waveform). Such a
pulse shape is shown in figure 6-3, part (a). In part (b) of this figure are a series of
eight scaled and time shifted pulses that encode eight consecutive data symbols, and
in part (c) is the composite waveform, the sum of the components in (b). To estimate
a specific symbol, the receiver can examine the waveform at that instant in time
when only the desired corresponding pulse had a non-zero component (these instants
are indicated by the black dots in the composite waveform). These locations in the
continuous waveform are known as the ideal slicing points. This property makes it
clear why the pulse has the distinctive shape with multiple zero-crossings: it is zero
at time t = kT for all k # 0 (Tb is the symbol, or baud, interval).

In systems that use such pulses, the transmitter ensures that the waveform is
generated in such a way that this zero ISI condition will be met. The receiver has the
task of identifying these specific points in time for each symbol. This fact indicates
the importance in the receiver of the synchronization, or symbol timing recovery:
the receiver needs to synchronize its time reference with the transmitter in order
to examine the waveform at the correct locations. If the receiver is not precisely
synchronized it will reduce the receiver's ability to determine the correct symbol in
each interval. In practice the receiver will not be exactly synchronized, but it needs
to get close enough to ensure that the small amount of ISI from the adjacent pulses
does not cause excessive detection errors [Lee and Messerschmitt, 1994].

As we examine the detection process in the following sections, we treat the received
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Figure 6-3: Representation of (a) an isolated pulse satisfying the zero ISI condition,
(b) multiple scaled and shifted pulses and (c) the noise-free composite waveform. (In
the plots, T = Tb, the symbol interval.)
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pulses as if they are isolated pulses, that is, as if they are not part of a sequence of

time-shifted pulses added together to form a continuous waveform. We will review a
technique that is used to perform optimal detection on noisy versions of such pulses,
in the sense that it will make decisions with minimum probability of error. This
optimal detector is known as the matched filter, for reasons that we will describe

later. The basic approach is to pass the received sequence through a digital filter and
generate output samples that correspond to the ideal slicing points, as shown in figure
6-3(c). A model of this approach is shown in figure 6-4, part (a). This filter shows
the transmit filter, an addition of noise (which we will treat as the channel distortion)
and finally a receiver filter. The effects of interfering signals are not shown because

we assume that they are removed in the channel separation process discussed in the

previous chapter.

Although our discussion will focus on the detection for an isolated pulse, we will
still be able to apply the results of this analysis to the case of a sequence of pulses

because we will assume that it is the cascaded response of the transmit and receive

filters that satisfies the Nyquist Criterion. This means that we can look at the output

of the receive filter and treat is as an isolated pulse in the sense that there will still
be an instant in time for each symbol where there will be zero contribution from

pulses encoding the adjacent symbols. This situation will be equivalent to that in
figure 6-3(c) if we assume that the waveform shown is at the output of the receive

filter [Frerking, 1994].
As we begin our discussion of the detection problem in the next section, we will

consider the case of only two symbols (i.e. 0 and 1). This makes the subsequent
discussion more simple yet still captures the essential parts of our analysis. All of
the results for the binary case of the detection problem can be generalized to case of

M-symbol modulation with the appropriate modifications.

6.2.2 The matched filter detector

Given the assumptions described above, i.e., that there is correct synchronization and

a binary constellation, we can consider the detection problem in a very simple form.
We consider a length-N vector that takes on one of two possible values X E {so, s1 }.
These two vectors represent the discrete-time waveforms that are transmitted through

the channel when the transmitter sends either a zero or a one. The receiver has access

to a noisy version of this vector: Y = X + Z, where Z is a vector of independent,
identically distributed Gaussian random variables (RVs) with mean zero and each

with variance o2 . The receiver must decide between two hypotheses: either the

transmitter sent a zero (H = 0) or a one (H = 1). We assume that the prior

probabilities of the two hypotheses (0 or 1) are equal.
If we wish to minimize the probability of making an incorrect decision, the opti-
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Figure 6-4: Cascade of transmit pulse-shaping filter and receive filter whose combined
response satisfies the Nyquist Criterion for zero ISI.

mal solution is well known as the matched filter or correlation detector, and detailed
derivations are available in many texts, for example [Lee and Messerschmitt, 1994].
In this case of a discrete-time FIR implementation, we simply compute a weighted
sum of the N observations and use a threshold test on this sum:

N

U = EbiYi = bTY (6.1)
i=1

In the general N-dimensional case, b is the vector of weights that is determined
as the difference b = si - s. and bi are its elements. The PDFs of this RV U when
conditioned on each of the two hypotheses are shown in figure 6-6. The threshold test
is made using the threshold -y = 1bT(so + s1 ) and the particular value of the sum,
U = u. We decide H = 0 if u < y and H = 1 if u > -y, where H is our estimate.

The intuition here is that we project the received vector onto the line connecting
the two possible vectors represented as points in N-space. We then choose as our
estimate H the point in the constellation that is closest to the projection of the
received point onto the line (illustrated in figure 6-5 for 2-dimensional case). The
conditional PDFs in figure 6-6 are the conditional distributions of the projection U
along the line that passes through si and so.

In a binary system the minimum energy constellation is achieved by si = -so.
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midpoint

Figure 6-5: Projection of noisy received vector onto the line connecting the two
possible transmitted points.

Without loss of generality, we will assume this is true for the rest of the discussion in
order to simplify the notation, giving b = 2s 1 and -y = 0.

The probability of making an error, P, in our decision is always non-zero because
of the Gaussian distributions. Due to symmetry and the equal prior probabilities
of the hypotheses, this unconditional error probability is equal to the probability of
error, conditional on either value of the transmitted bit:

Pe Pr{H $ H} = Pr{H $ HIH = 0} = PUIH(uJH = 0)du = Q
(6.2)

Where the function Q(x) is the area under the tail of the Gaussian distribution given
by

/oo 1 _y2
Q(x) = exp dy (6.3)

This function Q(x) becomes very small as x becomes large, but is always non-zero.
The result in (6.2) show us that probability of error depends on the ratio between the
total energy in the pulse (bTb) and the variance of the random noise (o 2 ).

In many implementations, the matched filter is used exactly as presented here.
As already noted, this structure provides the solution to the detection problem with
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PUIH(u|H = 0)
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Figure 6-6: Conditional PDFs for H=0 and H=1.

lowest possible probability of error for the conditions described above. This result can
be generalized in a number of ways, including the case where the transmitted pulse
is one of a set of 2' different pulses, so that b bits of information are communicated
with each pulse transmitted, or the case where the prior probabilities of transmitted
symbols are unequal.

6.3 Efficient Detection for Error Control

At this point, we have seen the conventional approach to a digital detector: the
matched filter that provides an optimal decision under any SNR conditions and does
so with a constant amount of computation for each decision. We now present a
general framework for understanding the detection process that will not only allow
us to represent conventional approaches to designing channel decoders, but will also
enable us to develop a more general approach that allows more controlled symbol
detection.

6.3.1 A general framework for detection

We first begin with a general framework that represents the channel decoder. We then
consider a special case that corresponds to our detector with correct synchronization.
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The framework

Our framework begins with a very general model of the input to a digital signal
processing function. This input is a sequence of uniformly spaced samples of analog
waveform, with interval between samples of T, seconds. The sample rate is therefore
f, = 1/T, Hz, and this rate determines the maximum width of frequency band that
the input sequence can represent. For a general channel decoder, the timing of the
individual sample instants for the sequence is independent of the timing of any data
symbols encoded by the analog signal. We will refer to this as asynchronous sampling,
because in general it assumes no synchronization between the data encoded by the
waveform and the samples that represent the waveform. Our channel separation
techniques in the previous chapter, for example, required no synchronization of the
sampling process. We will discuss this synchronization aspect of the framework more
in Chapter 7.

The purpose of the framework is to help establish a more explicit relationship be-
tween input and output values. In a digital receiver, for example, the overall task is
to produce an estimate of the original data symbol sequence encoded by the transmit-
ter: {...k 1ak, k+1, ...}. For each symbol to be estimated we therefore identify the
set of all input samples that contain any information about that particular symbol.
This set is the footprint of the symbol in the input sequence, and is represented in
figure 6-7. In general, the footprints for different symbols can overlap, often to a very
high degree. This overlap is caused by interference in the channel, as well as possible
overlap due to pulse-shaping and coding at the transmitter.

Although there might be many samples in the footprint of a particular symbol,
these samples are not all equally useful to the receiver as it performs detection. In the
set of samples that contain non-zero information about a specific symbol, ak, some
samples may be very useful, others only slightly so. This idea will be important as we
design a detection algorithm that can produce symbol estimates with some desired
level of quality (probability of error) while efficiently using computational resources.
The final piece of our framework, then, is an understanding of the utility of each of
the samples in the footprint, either in an absolute sense, or in a relative sense of which
samples are more useful than others.

Approximating optimal output values

In general, a signal processing algorithm has access to a set of input data and there is
some theoretical relationship that determines the quality of the best possible output
value. In chapter 3 we discussed the idea of producing a flexible algorithm by effi-
ciently approximating the optimal output value. As we consider approximating this
optimal output for a general function, we can use several approaches:
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Figure 6-7: Footprints of symbols within the sample sequence.

" Use only some of input data and "completely" process those samples, that is we
decompose the input data in time. The assumption here is that using less data
allows approximation with less computation than using the full set of data.

" Use the entire set of data and perform "sub-optimal" processing to produce
an approximation. The assumption here is that the sub-optimal result would
require less computation than the optimal result, that is we decompose the
system. In some cases, it is even possible to identify algorithms that produce a
series of successive approximations as the computation proceeds.

" Use a combination of these two approaches, where a sub-optimal computation
is performed using only part of the input data.

As we seek to efficiently produce estimates of the transmitted data, it may some-
times be best to "squeeze" all of the relevant information out of each sample we use
and only use as many as necessary. In other situations, it may be better to use all of
the available data and find a way to efficiently extract only the information that we
need.

In case of the matched filter detector, we see that the per-sample optimal pro-
cessing is very simple; the matched filter implementation requires only a multiply-
accumulate operation. This means that performing sub-optimal processing on the
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entire data set is not likely to be much easier than performing optimal processing.
On the other hand, if we consider using only some of the input samples, we can realize
the savings of not retrieving those samples from memory for processing, in addition
to the reduced processing.

Onward to a controllable detector

Our goal in this chapter is to develop a detector that can control the quality of its out-
put while efficiently using computational resources. We begin with the conventional
matched filter detector and modify it to produce lower quality output decisions in a
controllable manner. This leads us to approximate the matched filter computation
with a sub-optimal approach that uses only part of the available input data. As part
of our results, we demonstrate that there is a significant proportion of samples in our
sample stream that are only marginally useful as we try to estimate the data sym-
bols from the samples in the footprint. Using this knowledge, we design a detection
algorithm that can be tuned to make estimates with a specified probability of error,
allowing us to reduce the amount of computation required for detection.

We further demonstrate that if we are willing to accept only statistical guaran-
tees on the amount of computation required, we can further reduce the computation
required by introducing the idea of multiple threshold tests for the detector.

6.4 Detection for Controlled Error Probability

6.4.1 Data-efficient decisions

In a digital receiver, we often do not need to minimize the error, but rather to ensure
that the error is below some maximum allowable level, say Pe < Pe,aiow. To this end,
we would like to solve the detection problem by minimizing the required amount of
computation, subject to ensuring the desired upper bound on the probability of error.

Our first approach is to use the same technique as the matched filter: evaluate a
weighted sum of observations and then use a simple threshold test. The difference in
this approach, though, depends on our desire to simply bound the error probability.
This leads to two distinct cases of the problem, the first of which we address here and
the second of which we examine in the next section.

Case I: When the allowable error probability of the decision is larger than the N-
observation minimum error as defined in (6.2), Pe,aiow > Pe,N (i.e. less restrictive),
we can always produce such a decision. In this case, we want to find the smallest
number of M < N samples that always allows such a decision:
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Result: The smallest number of observations M that always allows a decision with
probability of error Pe, M< Pe,alow using a simple threshold test is the smallest M

such that P,aiow < Q ( r where bM is the vector of the M largest magnitude

weights from b.
This result says that to make the required decision using a minimum number of

samples, we need only use the samples corresponding to the M largest magnitude
weights in the weight vector b.

Proof: To show this, we define a family of RVs similar to U, but where the summation
is truncated at n terms and then scaled to give a unit-magnitude expected value:

1 ( " b Y'
Un = bY = n (6.4)b~bn E1 b Tbn

Here bn is the truncated column vector bn = [bi b2 ... bn]T. We also use the notation
Yn to refer to similar truncations of the random vector Y. Each Un is a Gaussian RV
with unit magnitude expected value (conditioned on each hypothesis): E{UJH =
0} = -1 and E{UnjH = 1} =1 for all n E {1...N}. Additionally, the two conditional
variances for each Un are equal:

92
var{UnIH = 0} = var{UnIH = 1} = b (6.5)

b~n

Because the value of the product bibn is non-negative and non-decreasing as n
goes from 1 to N, we can see from (6.5) that the conditional PDFs, PUnIH(unlh)

have non-increasing variances as n increases from 1 to N. This fact is represented
in figure 6-8 which shows the conditional PDFs PUnIH(UnjH = 1) for three different
Un with ni < n 2 < n 3 . Because of these non-increasing variances, when we make

a decision about the original hypothesis using each of the Un and the same simple
threshold test, we see that the probability of error for each decision (denoted by
Hn) decreases as more terms in the sum are computed: Pe,n, > P,n2 > P,n3 where
ni < n 2 < n3 and the error probabilities are defined as:

b b
Pe,n = Pr{Hkn / H} = Q ( n (6.6)

2o-

This result shows that if we desire to minimize the number of observations used

and bound the error probability, we can easily solve for the smallest M such that

Pe,, M PeaIlow as in (6.6) above. We can do even better, however, if instead of using
the observations sequentially, we allow ourselves to choose a particular subset of m
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PU.,|H (Un 3 |H = 1)

PU' 2 1H (Un2|H - 1)

PU 1 1H (Unl1H = 1)

0 1 Un

Figure 6-8: Conditional PDFs for Un conditioned on H =1 for several values of n,
where ni < n2 < n3.

of the N observations.
We define a more general family of RVs Un that are also scaled, weighted partial

sums of the observations, but where the samples are re-ordered according to the set
of ordering indices (i1...iN):

1 m bYm (6.7)
bUr brn b bmbm

We use the notation bn to indicate a length-m truncated vector of the elements of b
re-ordered according to (Z1... N) and similarly Ym for the observations. For this new
family of RVs, Ur, we still have the property that each conditional PDF is Gaussian
with unit-magnitude conditional mean and that the conditional variances for each Um
are equal:

.2
var{Um|H = 0} = var{UmIH = 1} b=br (6.8)

Using this result, we can re-order the observations to improve the quality of our m-

observation decision for any fixed m. We choose the order in which the observations

are used so that for each m (from 1 to N) the value of bTmbm is maximized. This

property is ensured if we choose the indices (ii... N) in a greedy manner so that the

magnitudes of the elements of bn are in descending order: Ib-, ; b2  -. > Ib

Choosing this ordering ensures that any decisions made using the simple decision rule
and only a subset of m observations will have the highest quality (lowest conditional
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variance and therefore probability of error) possible for each value of m.
We can now describe the solution to our problem for the case of Pe,aiow > Pe,N

and where the decision is made using a single threshold test. This solution is to

1. order the observations according to the magnitudes of the weights in b, and

2. find that M that is the smallest value of m that satisfies Pe,m < Pe,aliow. We
then evaluate the partial sum for UM as in (6.7), deciding H 0 if uM < y and
H =1 ifuM >y, QED

6.4.2 A generalized threshold test

In the previous section, we discussed making a decision with a desired probability of
error in the case where Pe,aiow > Pe,N. We now present a second case.

Case II: This case occurs when the allowable error probability is smaller than the

minimum achievable with all N available samples, Pe,aiow < Pe,N-

If we use the simple decision rule presented above we will not always be able to

make a decision with the desired probability of error, even if we use all N of the
available observations. If we use a more complex decision rule, however, we can
make a satisfactory decision some of the time. To see this, we simply recall that the
probability of error was equal to the area under the tail of the PDF that was in the
"wrong" decision region. To provide a decision rule with a lower probability of error,
we simply need to evaluate all of the observations and then move the boundaries of the

decision regions. For example, to determine the decision region R 1 (where we choose

H = 1), we place the boundary at the value of UN for which Q ( bN(UN-1)

Pe,aiiow. When we do this for both hypotheses, we find that we now have three decision

regions, as shown in figure 6-9: Ro for H = 0, R 1 for H = 1, and Rx for Cannot
decide. These three regions are determined by the values UN = -T and UN = T,
where the threshold T is defined by:

T (UQ1(Pe,alow) -i (6.9)
\ bNbN /

When the value of UN is computed and we find that UN is in either Ro or R1,
we can decide H = 0 or H = 0 with an acceptable probability of error. In the new
third case, however, we could make a "best guess", but we will not be able to say
that we have error probability less than Pe,alow. Another result that can be seen from
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Ro 4= =:> R, x R1

-1 -T +T 1 Un

Figure 6-9: Conditional PDFs for H = 0 and H = 1 and the three decision regions
defined by: (u. < (-T)), (-T < UN T), and (T < UN)-

figure 6-9 is that we can determine the probability that our computed value UN UN

will exceed the threshold and allow a decision with the desired error probability. This
decision probability, PD, is equal to the area under the tails of the conditional PDF
that exceeds the threshold T:

PD Pr {UNE {R URo }= Q ( -) _Q(T ) (6.10)

where p = E{UNIH = 1} is the conditional mean of the N-term sum. We can use the
above results to produce a decision rule for Case II above: we compute the threshold
T that provides an acceptable probability of error, then make decisions only when
the N-term sum exceeds this value (i.e. in Ro or R1 ). This will ensure an acceptable
decision in the largest number of cases.

6.4.3 Detection using multiple tests

We have seen that the idea of a more complex decision rule is useful when we want
to produce higher quality decisions (error probability less than Pe,N), although this
does not allow us to make a decision in every case. We now use this idea to produce
an algorithm that uses an additional threshold after partially evaluating the available
observations in order to reduce the expected number of observations needed to solve
our bounded error probability problem.
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For simplicity we design our algorithm only for the case when Pe,allow > P,N (case
I above). When this is true, we know from the earlier section that we can always
make a decision with the desired probability using at most some number M < N of
the observations.

The two-threshold approach

Our new approach is to combine the ideas of the two previous sections and develop an
algorithm that uses (up to) two different threshold tests in the detection process. This
approach evaluates some of the samples, then perform a three-region threshold test
using a non-zero threshold. If decision is indicated, then the algorithm terminates.
Otherwise, the algorithm evaluates the remaining samples and make a final decision
using a two-region threshold test. More specifically, we will evaluate the first ki
samples and perform a test. If the sum does not exceed the threshold we continue

to a total of kf samples (kf < N) and make a final decision. Otherwise, terminate.
This approach could easily generalize to more than two tests, but our analysis of the
two-test case will be sufficient to demonstrate the key ideas of the approach.

Our analysis begins with the case where the initial test is performed after partial
evaluation of ki terms of the matched filter sum (we explain how to find the best ki

and kf later):
kf

S = bjYz = b Y = S1 + S2  (6.11)
i=1

where:
ki kf

S1 = bjY, S2 = , bI (6.12)
i=1 i=ki

These two sums are independent when conditioned on the case that a one (or zero)

was transmitted. Given these two partial sums, we perform an initial test after the

first ki steps using threshold T, and decide "0", "1", or continue.

We now consider the effect on the probability of error (conditioned on H = 1) of

incorporating this initial test at step ki. We write the total conditional error proba-

bility produced using two tests, PeIH=1,total, relative to the conditional probability of
error using only the final test at the end, PeIH=1,kf:

PeIH=1,total - PeIH=1,kf -+- APeIH=1 (6-13)

We already know how to compute the first term on the right-hand side. To compute

the second, it is helpful to look at the regions in the S1 - S2 plane shown in figure

6-10. The six different regions shown in this plane represent the six different outcomes
possible on the two tests: Ra,b means outcome a on the initial test and b on the final
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test.

The only regions in this figure that affect the APeIH=l term in (6.13) are R 0,1 and
R 1,0 . Although the areas of these regions are equal in Figure 6-10, the volumes under
the joint PDF for each region are not. Region R 1,0 contains those cases that would
result in a correct decision on the initial test and an incorrect decision on the final
test. In the situation where the final test is not performed if the algorithm terminates,
this would be an outcome that improves the error performance: it produces a correct
decision where an incorrect decision would have occurred with the single test. The
cases that fall into region R0 ,1 are the opposite, i.e., they cause an incorrect decision
where a correct decision would have previously been made. The remaining four regions
in figure 6-10 do not matter when we compute the relative error performance, APelH=1,
since R 1,1 and Rx,1 both produce a correct answer in either situation, and R0 ,0 and
Rx,0 always produce an incorrect answer.

Computing APeIH=l is now the difference:

APe|Hl fI p(S1, S2 H - 1)dS1 dS2 - J p(S1, S2 H = 1)dS 1dS 2  (6.14)
O' R R, R1,0

Here p(Si, S21H = 1) is the conditional PDF for the two partial sums. This PDF
is Gaussian and is centered over the point (Pi, [12) where P1i = E{S 1 |H = 1} and
P 2 = E{S 2 1H = 1}. Although this integral cannot be solved in closed form, we can
evaluate the relative error probability (APeH=1) numerically, and we can see the effect
of choosing different values for a threshold T, for the initial test used at step ki. To
design the best two-test detector, we know that there will be a final zero-threshold test
at some step kf between M and N (since we must always satisfy Petota < Pe,aiow).
We can initially compute the P, due to this final test at each choice of k1 . For each
possible value of kf we then have some excess APe to "spend" as we try to reduce
the expected number of steps required for a decision.

For each value of kf E {M.. .N} we can find the reduction in computation for
spending our excess APe at each possible step ki E {1...(kf - 1)}. We then choose the
combination of ki and kf that minimizes the expected number of samples required
for each decision:

E{Number of samples required} = kf - (kf - ki)Pr(IS1 I > T1k) (6.15)

This procedure allows us to design a detector that will use the minimum number
of samples to produce a decision with Pe,totai = Pe,aiow using two threshold tests. If
we wish to further improve performance (lower expected number of samples used for
a given Pe,anow, we might consider designing a test that uses threshold tests at more
than two places in the computation of the weighted sum of observations. However,
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Figure 6-10: Plot of the six different regions for the different combination of outcomes
of the two tests in the S1-S 2 plane.
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finding the best combination of step number and thresholds for each step to minimize
the expected number of steps becomes more complex when more tests are used.

6.5 Performance of a two-test detector

Our goal in this final section is to quantify the potential performance gains are due
to some of the approaches to detection describe in previous sections. These gains due
to two specific effects which we will attempt to analyze separately. The first effect
is that of evaluating only the minimum number of samples necessary to achieve a
specific probability of error, as in Section 6.4.1.

This is seen by looking at the distribution of energy in a typical pulse, both for a
raised cosine pulse and a rectangular pulse with the same total energy for comparison
in Figure 6-11. Here we see the samples in sequential order in part (a), and also
the cumulative energy in the samples when sorted by decreasing magnitude in (b).
according to decreasing magnitude. We also see the cumulative energy (proportional
to amplitude squared) available in an evaluation of the sorted samples. Clearly many
samples are not useful to the receiver. In fact, this result shows that, in a sense, large
portions of the transmitted waveform are not useful in helping to communicate data
to receiver, although they are important for other reasons. Ons such function is in
shaping the spectrum of the transmitted signal, i.e., they help to reduce interference
seen by other receivers sharing the RF medium.

The implications of the energy distribution are seen in Figure 6-12, which shows
a plot of theoretical BER performance versus number of samples used for several
different level of signal-to-noise ratio. In each case, it is clear that almost all of the
error performance is obtained from only a portion of the received samples.

These results illustrate how the idea of evaluating received samples in a greedy
manner enables us to reduce computation relative to a detector matched to the entire
pulse. In Figure 6-12 the computation could be reduced by almost a factor of 5x
with little degradation in BER performance, or by more if higher BERs are tolerable.
In a sense, this greedy evaluation is equivalent to using the received sample in order
of decreasing SNR, which in this case would represent the ratio of signal energy to
noise energy in each sample.

The second effect that improves performance is the idea of using a second threshold
test to further reduce the average number of samples required for a decision with a
desired probability of error. A second test allows us to pick a non-zero threshold to
be used at some point prior to the final test. This threshold is chosen to balance the
effect of preventing some later incorrect decisions with the effect of inducing some
early additional errors. Performance is improved because any early decisions will
reduce the average number of samples used per decision. The threshold provides
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Figure 6-12: Plot of BER versus number of samples used in decision for various levels
of SNR.

a performance improvement by "spending" any excess error performance to reduce
computation at the expense of a carefully-controlled increase in BER up to the desired
maximum level.

The design of a two-test detector for specific set of performance specifications
proceeds in several steps. The two-test detector is designed for a specific level of
SNR and for a specific maximum probability of error. Given these two values, we
first find the step number for the final threshold test, kf. This is chosen as the
smallest number of samples that will always provide a error probability less than
the maximum allowable, Pe,k, < Pe,aiiow. Figure 6-13 shows the performance for a
detection scheme using only a final test at this lowest kf for a range of SNR values,
assuming that a minimum error probability is Pe,aiow = 3 x 10-3. The unusual shape
of the performance curve is due to the detection scheme using a different number of
samples at different SNR levels. The performance curve jumps between members of
a family of curves that would each be obtained using a fixed subset of the available
samples. A few of these curves are shown in Figure 6-13 as dashed lines for the
cases of decisions based on using only the largest one, two, or three samples. This
single-test scheme will ensure a satisfactory error probability, but does not yet provide
the lowest computation. In Figure 6-13, the data point marked with a star on the
modified performance curve represents a BER of 2.3 x 10-3 at a SNR of 6 dB and
uses only seven of the 32 input samples. This BER is below the acceptable bound, so
we can further reduce the expected amount of computation by adding a second test
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Figure 6-14: Lowest threshold value for potential values of ki.

at some step ki < kf that uses a non-zero threshold. This initial test will allow some
decisions to be made early to reduce the expected computation, while still ensuring
that the total error probability is below the allowable level.

Figure 6-14 shows the lowest threshold that can be used for each potential value of
ki < kf. This information is used to determine which value for ki will yield the lowest
expected amount of computation, which is shown in Figure 6-15. In the example
shown in the figures, using an initial threshold test after the fourth data sample
reduces the expected amount of computation to about 5.3 samples per decision, a
reduction of about 25% below the result for the single, fixed test after the seventh
data sample.

There are several points to note in these results that would be interesting areas for
further work. The ability of this scheme to reduce computation depends on knowl-
edge of the current SNR conditions. This is not unreasonable for a wireless system;
many current wide area wireless networks periodically transmit sequences of known
data to enable the receiver to estimate channel conditions [Rappaport, 1996]. The
effect of uncertainly in the SNR estimate has not been analyzed in this work, but
would be important factor in an actual implementation. Equally important would be
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Figure 6-15: Expected number of samples required for each bit decision using a two-
test detector.
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the scheme's performance under dynamic SNR conditions. This technique could be
modified to use tests at different times and different threshold values in response to
changes in SNR. This would add complexity to the implementation, but the potential
savings in computation might be worth it.

6.6 Summary

This chapter describes an approach to data symbol detection that allows a wireless re-
ceiver to reduce computational complexity by computing decisions with a sub-optimal,
but bounded, BER. The results show two effective techniques for reducing computa-
tion. The first technique is to approximate the optimal decision by using a partial
evaluation of the matched filter sum. We showed that the best way to approximate
the sum is to use evaluate the received samples using a greedy ordering according to
the magnitude of the corresponding filter coefficients. We can compute how many
samples should be evaluated in the partial sum as a function of the desired BER and
the current SNR.

The second technique is used to further reduce computation by introducing a
second threshold test after only a portion of the approximate sum has been evaluated.
This initial test can be designed to allow some of the decisions to be made early while
ensuring that the acceptable level of BER is achieved. This second technique results
in a run-time that is statistical, but which is lower than the original run-time that
was achievable using a deterministic decision rule.
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Chapter 7

Summary, Contributions and
Future Work

In this thesis, we presented the results of an investigation of how physical layer pro-
cessing algorithms can balance flexibility and efficiency in wireless communication
systems. The work was motivated by a number of trends that are changing the type
of service expected from wireless communications systems of the future. These trends
include more dynamic environmental conditions, heterogeneous traffic, and increasing
demands for efficiency and performance. All of these trends have implications on the
physical layer implementation of the communication system.

Given these trends, we believe that it will be difficult, if not impossible, to design
a static physical layer that will be able to provide efficient service in all of the different
anticipated situations. This led us to investigate the design of DSP algorithms that
provide processing that is both flexible and computationally efficient.

As we began to develop algorithms that could balance flexibility and efficiency,
it became clear that we needed a precise understanding about the specific types of
flexibility that would be useful in each situation. In other words, we needed an im-
proved understanding of how a system could be designed to exploit better conditions:
e.g., how could it exploit better SNR conditions to lower processing requirements?
In a number of cases addressed in this thesis, the answer to this question was that
we could specify the requirements for processing in specific portions of the system so
that in better conditions we could produce a sufficiently high quality result using less
computation.

Furthermore, we began to understand that producing DSP algorithms to efficiently
compute approximate results requires, in many cases, a more careful understanding of
the specific relationship between input and output samples for the signal processing
function in question.

In this thesis, this idea has been articulated through the concept of sub-sampling
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and the idea of the footprint of a desired result. The random sub-sampling techniques
described in Chapter 5 recognize that an approximate result for a frequency selective
filter needs to be computed from data that span the same interval of time, but need
only use a subset of those samples in that interval. Similarly, the idea of a symbol
footprint in Chapter 6 stems from the need to identify the precise set of samples that
had information relevant to a specific symbol estimate in a detector. In this case, an
approximate result can be found using a subset of the samples in the footprint. This
led to an investigation of which samples in the footprint were most useful and would
therefore be used first.

In other situations, approximate results are not appropriate. In these cases, how-
ever, the same understanding of input-output data relationships led to algorithms
that could produce the desired results using less computation by taking advantage of
larger amounts of memory or removing intermediate processing steps.

In all of these cases, it was also important to understand the role of each processing
stage within the large communications system. It is this understanding that led to
the conclusion that approximate results would be sufficient in some cases, or that
intermediate processing stages could be eliminated because they were unnecessary
for overall system operation.

One final aspect of this work that has been instrumental in helping to guide the
choice of problems and validate the results has been the implementation of the algo-
rithms in a working wireless communications system. Some of these implementations
were described in chapters 4 and 5 of this thesis. These implementation efforts helped
to identify important issues for the design of new signal processing algorithms, such as
the relative costs of memory access and computation, and have also led us to identify
new areas for future investigation.

7.1 Contributions

This thesis has demonstrated that it is possible to design DSP algorithms for the
physical layer of a wireless communications system that is itself designed to use flex-
ibility to improve overall system performance. These algorithms allow the system
to take advantage of variable conditions in the wireless channel and changing sys-
tem performance requirements to provide more efficient system operation. In this
algorithm development work, we have achieved the following:

* Developed an Efficient Digital Modulation Technique: Direct waveform
synthesis is a technique that efficiently synthesizes digitally modulated wave-
forms at IF. This technique provides a 20 - 25x computation reduction relative
to conventional techniques using a look-up table of pre-computed samples. We
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also described table decomposition techniques that allow a flexible trade-off
between memory and computation required to synthesize different waveforms.

" Separated Bandwidth Reduction from SNR Control in FIR Filters:
Conventional FIR filter design techniques assume that filters will operate on
contiguous blocks of input samples. This assumption leads to an unnecessarily
coupling between the length of the FIR filter and the number of input samples
used. We have demonstrated a model for filtering that decouples the require-
ment for a long filter response from the number of input samples used, avoiding
excessive computation. This decoupling is accomplished through algorithms
that use only as many input samples as necessary to compute output signals
with the desired SNR levels.

" Developed a Frequency-Translating Filter: Our technique shows how the
function of arbitrary frequency translation can be combined with a decimating
FIR filter through the design of a composite filter followed by a frequency shift
at the lower output sample rate. We also described how the use of a complex-
valued filter design can lead to an additional two-fold reduction in computation
by reducing the number of coefficients required for the filter.

" Demonstrated the Effectiveness of Random Sub-sampling: This tech-
nique is used to realize the decoupling of bandwidth reduction and SNR control
in the channel separation filter. Random sub-sampling provides an effective way
to approximate the input sample stream of a narrowband FIR filter, allowing
us to control the trade-off between computation and output SNR.

Using the analytical model we developed to understand this technique, we
showed that amount of computation required to produce an output signal with
desired SNR depends only on the output sample rate and the signal energy in
the filter stopband, not on the filter input sample rate. This result allows us
to increase the input bandwidth of the system without increasing the compu-
tation required to separate each channel or, conversely, to narrow the output
bandwidth and reduce the required computation accordingly.

" Designed a Detector that Provides Controlled Error Probability: We
demonstrate how to design a matched filter detector that uses multiple thresh-
old tests to provide significant computational saving relative to a conventional
implementation. The reduction in computation is due to two distinct effects.
First, we demonstrate that widely-used pulse shaping techniques result in a
concentration of the useful signal energy in a small number of samples. Our
technique identifies those most useful samples, providing a reduction in com-
putation of five-fold or more relative to evaluating the full matched filter sum.
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Secondly, we introduce an additional threshold test early in the computation.
The timing and threshold value for this test are chosen to minimize computation
while ensuring the desired error probability for symbol decisions.

7.2 Future Work

Each of the accomplishments above demonstrate that understanding the role of the
DSP algorithms in the context of the larger system can lead to significant perfor-
mance gains. Future systems will experience more situations where dynamic channel
conditions and changing application needs will call for a flexible physical layer design
to more effectively provide the communications services desired by the endpoint users.

7.2.1 Investigation of Additional Physical Layer Functions

There are a number of other functions required in the physical layer of some wire-
less systems that were not investigated in this work. The synchronization functions
required in a digital receiver are critical to effective symbol detection and, like detec-
tion, their complexity can vary heavily depending on the signal conditions and the
demands of the systems. Flexible techniques to provide synchronization functions,
such as symbol timing recovery, could lead to more efficient implementations and
better performance.

Also, the trend toward higher data-rate systems will lead to a greater need for
effective equalization techniques to compensate for multipath interference. Equaliza-
tion often requires intensive processing and depends heavily on the conditions in the
wireless channel. A flexible approach to equalization could lead to significant gains
when favorable conditions allow a reduction in processing.

7.2.2 Flexible System Design

This work involved the design of DSP algorithms that exhibit specific modes of flex-
ibility in their behavior. These types of behavior were chosen to allow the overall
system to benefit from changing conditions or performance requirements. Many of
the improvements suggested in this work, however, allow a single stage of processing
to improve its efficiency using information about the overall system requirements. An
important area of study is how to coordinate flexible behavior changes among multiple
components of a system to improve performance. Work in [Secor, 1996] investigates
how to coordinate networks of processing stages to efficiently accomplish system pro-
cessing goals. The use of such techniques in a wireless communications system could
lead to further improvements in system performance under changing conditions.
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7.3 Conclusions

The dynamic nature of the wireless operating environment and the variable perfor-
mance requirements of wireless applications is in conflict with the traditional static
implementations of the physical layer. The dynamic channel and variable performance
requirements preclude effective static optimization of the physical layer processing,
and provide an opportunity for flexible implementations to dramatically improve over-
all system performance. This presents an opportunity for flexible algorithms that can
enable the entire communication system to adapt to the changing conditions and de-
mands. We believe that future wireless systems will have to incorporate this type of
physical layer flexibility if they are to provide the types of efficient communications
services expected by the users of tomorrow.

It is often assumed that flexibility in an algorithm comes at the cost of reduced
computational efficiency. In this thesis, however, we have demonstrated a suite of
flexible algorithms that take advantage of changing conditions and system demands
to provide significantly improved performance relative to static designs.

Although the results of this work are very encouraging, we believe that the al-
gorithms presented are just a start, and that there are still many significant and
interesting problems to be solved. Complex system requirements and technological
advances have led to a merging of the fields of digital signal processing, theoreti-
cal computer science and communications system design. We believe that effective
designs for the systems of tomorrow will need to draw on results from all of these
disciplines to meet the growing demand for communication services without wires.
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