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ABSTRACT

The communication links in a photoresist processing system are crucial issues of the
automation in semiconductor production facilities. On the module control level in
ProCell, the Intel386EX microprocessor interfaces with the peripheral devices via three
different data transfer protocols. Both the hardware and the software for these three
protocols are discussed in detail. The device drivers for two of the protocols, RS-232
serial communication and Controller Area Network are written in C in a VxWorks, real-
time operating system. A set of diagnostic procedures called echo is developed to test the
driver for a serial device SC26C92 in RS-232 serial communication. Overall testing was
done in both hardware and software.
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Chapter 1: Introduction

Semiconductor manufacturing has been such a rapidly growing industry that it has

enormous impacts on even the most mundane tasks in our daily life. Semiconductor

industry's products nowadays are found not only in the high tech electronic goods which

semiconductors have been traditionally associated with, but in toys and household

appliances as well. The semiconductor equipment industry produces the process tools

that are used in the complex manufacturing of semiconductors. With the continued

expansion of Internet-related technologies and increasing demand for semiconductors in

new electronics, semiconductor equipment industry has been growing tremendously in

the last decade as a result of chip manufacturer's increasing production.

This thesis addresses the photoresist processing tools in the semiconductor

equipment industry. A photoresist processing system is usually composed of several

process modules, i.e. coaters, developers, etc. The communications among the individual

modules, as well as the communications between modules and the module controllers,

have always been crucial issues of the automation in semiconductor production facilities,

and must be done in a timely and precise way. Failure in communications in the control

system can lead to severe consequences to possibly cause paralysis of the entire machine.

This thesis presents the architecture of the software control system in an

automated photoresist processing machine. It focuses on the communications and

interfaces between the host microprocessors and the modules. Thesis work includes

development of the drivers for serial communication devices, diagnostic procedures to
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ensure the proper functioning of the driver, and parallel communication between the

microprocessor and a motion control chipset.

Chapter 2 gives a rudimentary introduction on photoresist process and Silicon

Valley Group's ProCell, a photoresist processing system. Chapter 3 focuses on the

module controller board in ProCell. It illustrates how the microprocessor used in module

control interfaces with the modules. Three communication protocols are introduced at

the end of Chapter 3. Chapter 4, Chapter 5 and Chapter 6 address these three types of

communication protocols, RS-232 serial communication, Controller Area Network

(CAN) and parallel communication respectively.
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Chapter 2: Photoresist Process

2.1 Introduction

This chapter provides a basic introduction to the integrated circuit (IC) fabrication

and Silicon Valley Group (SVG)'s ProCell system. SVG's Track Systems Division' is a

world's leading manufacturer of the complete family of photoresist processing products.

A brief description of the essential process in IC fabrication will help understanding

SVG's ProCell system, the latest photoresist processing system, designed and

manufactured by SVG's Track Systems Division.

2.2 Photoresist Process

The fundamental unit of IC manufacturing is a silicon wafer. The essential

process in IC fabrication is the imaging, alignment, and transfer of complex patterns onto

the silicon wafer. A photolithography machine called stepper is used to transfer patterns

from an optical plate called a mask, to photoresist on the wafer. Photoresist is a

photosensitive material that coats the top surface of the wafer [Howe '97]. It dissolves in

developer if it has been exposed to light. Patterns are transferred to a wafer by covering

the wafer with photoresist, exposing a pattern in the photoresist and then using the

patterned photoresist as a mask through which to implant dopants or etch the material.

Photoresist processing is a pivotal function, which includes numerous steps performed

repeatedly, such as coating, developing and baking of silicon wafers.

SVG's Track Division is where the author's thesis work was done.
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2.3 SVG's ProCell System

ProCell from SVG's Tracks Systems Division is an evolutionary

photolithography processing system that provides a complete line of photoresist

processes, including vapor prime, vacuum-dehydration bake, photoresist coat, hot plate

bake, and wafer temperature control using chill plates. Designed around the principle of

symmetry, ProCell's cluster configuration jump-starts productivity by departing from the

previous linear track models. This design eliminates the bottlenecks that plague

conventional track systems. Wafers flow smoothly through ProCell with the minimum

number of moves. In fact, this is currently the only platform that can complete the

lithography process in just 12 perfectly balanced moves [Silicon '99]. Figure 1 is a

picture of SVG's ProCell. Figure 2 shows the top view of ProCell's machine

configuration.

Figure 1: Silicon Valley Group's ProCell system.2

4
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Figure 2: View of ProCell from top down.3

2.4 ProCell's Control System Architecture

This section gives a brief description of SVG's ProCell's architecture of its

control system. This description gives a background of the thesis work, and shows

where the work done in this thesis fits in the big picture of ProCell's overall control

system.

Figure 3 illustrates ProCell's software control system. At the top layer, System

Controller Board is a Pentium based single board computer running Windows NT 4.0.

This is used to host the system control software, where the user displays and operator

controls as well as factory interfaces are provided. The mid-layer is the Machine

Controller Board, which is also the same basic Pentium based SBC board, hosting the

machine control software. It provides high-level module controls, load ports and robot

controls. A Module Controller Board is based on an Intel386EX microprocessor with 1/0

5
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and motion controllers to control each process module. The Module Controller Boards

share the same VxWorks real time operating system environment as the Machine

Controller Board.

z _- Host
System Control N

Pentium

Machine Control
Pentium Robots

Load Ports

Module Control Module Control Module Control
386 386 386

Devices
(e.g. coater, motor)

Figure 3: ProCell Systems Architecture / Communication Diagram.4

6
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There are 7 main communication links in ProCell Control Systems.

1) Pentium Window NT to Pentium VxWorks communication links over Ethernet.

2) Pentium Window NT to Pentium peripherals and VxWorks communication links via

VME BUS.

3) Pentium VxWorks to 386 VxWorks communication links via CAN-BUS and VME-

BUS.

4) Pentium VxWorks to OEM (Original Equipment Manufacturer) communication links

via serial or parallel signals.

5) 386 VxWorks to 386 VxWorks peer to peer communication links via CAN-BUS.

6) 386 to 1I/ control chips and OEM communication links via serial, parallel, or

electrical signals.

7) Pentium Windows NT to GEM/SECS (General Equipment Manufacturer / Semi-

conductor Equipment Communication Set) hose via HSMS protocol over Ethernet.

2.5 Summary

This chapter gave a brief introduction to semiconductor industry's photoresist

process and described ProCell, SVG Track Systems Division's new photoresist

processing system on the whole, as well as its overall control system architecture. The

following chapters will go on to discuss the module controller system in ProCell, with a

focus placed on the communications in the module controller system.
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Chapter 3: Module Controller System

3.1 Overview

The Module Controller Boards in ProCell system are based on an Intel386EX

microprocessor with I/O and motion controllers to control each process module in

ProCell (link 6). Refer to Figure 4 for the block diagram of ProCell's overall control

system to see where the Module Controller Boards are located at in the overall control

system.

System Control
Pentium

Machine Control
Pentium

Module Control Module Control Module Control
386 386 386

Figure 4: Block diagram of ProCell's control system.

Controls of modules at module level reduce the operation delays by the controller

system, which used to be a key reliability/process concern in the past, because the delays

have been seen to arise from the fact that all controls were at high level in the previous
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systems. Distributed module control provides stand-alone module tests. Decisions are

made at module level so that there is less communication to system control level.

3.2 Module Controller Board

Link 6, which is the interface between the Intel386EX-based Module Controller

Board and the modules, together with link 5's CAN-BUS are where the work of this

thesis has been focused on at SVG's Track Division. The emphasis of the thesis will be

placed on 386 peripheral device interfaces, mostly on the device drivers' side. The

Intel386EX-based Module Controller Boards share the same standard VxWorks real time

operating system.

Figure 5 shows the block diagram for typical interfaces between Intel386EX

microprocessor and the peripheral devices, and communication between two

microprocessors.

The heart of the Module Controller Board is an Intel386EX microprocessor. In

addition to memory and A/D converters, the microprocessor is directly interfaced with a

Universal Asynchronous Receiver/Transmitter (UART), an 82527 serial communication

controller which is a device that performs serial communication according to CAN

protocol, and an advanced multi-axis motion control chipset. They will be discussed in

further detail in later chapters.

9



Intel386Ex-based Module Controller

Motion Controller

Motor in a module
Motion

Controller

Intel
386EX {RS-232 serial

UART M P
communication ports }

CAN Devices
CAN BUS

FLASH A/D Another
(Memory) Converter Intel 386EX

----------------------------------------

Figure 5: The Module Controller Board in ProCell and the Interfaces.

3.2 Communication Protocols

RS-232 Serial Communication

Most of the modules communicate with the Module Controller Boards via RS-232

serial ports. In order for the RS-232 serial ports to be connected to the microprocessor,

serial transmission needs to be converted to parallel transmission via UART. A Dual

UART device SC26C92 is used here. Chapter 4 will discuss the serial device driver in

VxWorks and diagnostic procedures for the device driver.
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Controller Area Network (CAN)

In ProCell, peer module controllers are connected via a serial bus using Controller

Area Network (CAN) protocol. On the Module Controller Board, the microprocessor is

connected with a CAN controller 82527 which, in turn, connects to a CAN Transceiver to

perform the serial communication. The protocol for CAN, the driver for CAN devices in

VxWorks, as well as the physical CAN connection are described in Chapter 5.

Parallel Communication

The MC1401A used here is a 2-IC general-purpose motion control chipset that

provides closed-loop digital servo control for motors. The chipset is controlled by the

host microprocessor that interfaces with the chipset via an 8-bit, bi-directional port. All

communications to/from the chipset consist of packet-oriented messages. A packet is a

sequence of transfers to/from the microprocessor resulting in a chipset action or data

transfer. Chapter 6 will address the protocol and the hardware interface for the parallel

communication.

3.2 Summary

This Chapter gave an overall illustration of the Intel386EX-based Module

Controller Board, as well as the major components on the board. Three communication

protocols were introduced in this Chapter, RS-232 serial communication, Controller Area

Network (CAN) and parallel communication. The next three chapters will be discussing

each communication protocol in substantial detail.
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Chapter 4: Device and Driver for RS-232 Serial Communication

4.1 Introduction

This Chapter presents the thesis work done on the RS-232 serial communication

device driver in VxWorks on the module control level in ProCell. It begins by discussing

the advantages of serial over parallel data transmission in the ProCell. Then it moves on

to describe a DUART Philips SC26C92 and its device driver in VxWorks, a real-time

operating system run on ProCell. An introduction on I/O system and device driver in

VxWorks in general is given in section 4.4 for a better understanding of SCC driver.

Section 4.5 focuses on the SCC test, a diagnostic procedure written for testing of SCC

driver and the serial communication between two RS-232 ports.

4.2 Advantages of Serial Data Transmission in ProCell

Serial communication is vastly used in ProCell, between the module controllers

and the modules. Using serial data transfer rather than parallel transfer in ProCell has its

advantages. Serial cable can be much longer than parallel cables. The serial port

transmits a '1' as -3 to -25 volts and a '0' as +3 to +25 volts whereas a parallel port

transmits a '0' as Ov and a 'I' as 5v. Therefore the serial port can have a maximum swing

of 50V compared to the parallel port which has a maximum swing of 5 Volts. Thus cable

loss is not going to be as much of a problem for serial cables than they are for parallel

ones. This is especially desirable in large wafer processing machines like ProCell, where

the host computers could be placed far away from the process modules in the system.

Moreover, serial transmission doesn't require as many wires as parallel transmission.

When a device has to be mounted a great distance away from the computer, a 3-core

12



cable (Null Modem Configuration) is a lot cheaper that running 19-core or 25-core cable.

The above two features are both desirable in setting up test environment during the

engineering process as well.

4.3 Philips SC26C92 DUART

The Philips Semiconductors SC26C92 Dual Universal Asynchronous

Receiver/Transmitter (DUART) is a single-chip serial communications device that

provides two full-duplex asynchronous receiver/transmitter channels in a single package.

It interfaces directly with the Intel386EX microprocessor. When the SC26C92 is

conditioned to transmit data, the transmitter converts the parallel data from the

microprocessor to a serial bit stream on the TxD output pin. It automatically sends a start

bit followed by the programmed number of data bits, an optional parity bit, and the

programmed number of stop bits. The least significant bit is sent first. When the

SC26C92 is conditioned to receive data, the receiver looks for a mark-to-space transition

of the start bit on the RxD input pin. If a transition is detected, the state of the RxD pin

starts getting sampled every certain time interval depending on the clock until the proper

number of data bits and parity bit (if any) have been assembled, and one stop bit has been

detected. The least significant bit is received first. The data is then transferred to the

Receive buffer [Philips '97].

13



DURT

8-i palel data
DO-D8 Tx/Rxl RS-232

Level ( RS-232
Converter Port 1

Tx/Rx2
MAX232

RS-232
Port 2

SC26C92

Figure 6: Interfacing RS-232 ports to devices.

Figure 6 shows how to interface RS-232 ports to devices. Note that almost all

digital devices require either TTL or CMOS logic levels. Therefore, the first step to

connecting a device to the RS-232 port is usually transforming the RS-232 levels back

into 0 and 5 Volts. This is done by an RS-232 Level Converter, MAX232 here.

4.4 Device Driver for Philips SC26C92 DUART

Device drivers are program routines that let peripheral devices communicate with

operating systems. The driver for the Philips SC26C92 is implemented as a standard

VxWorks terminal driver making use of the tyLib () system library. How VxWorks

provides terminal devices and device drivers and VxWorks' I/O system will be described

in further detail in the next section.

Refer to Scc.c in Appendices for the tty driver for the Philips SC26C92

DUART. In Scc.c, there are two important routines: tySCCDrv and

tySCCDevCreat. They are described in the text below.

14



tySCCDrv

Before a diver is used to drive a device, it must be initialized by calling the

program routine: tySCCDrV( ). The initialization routine installs the driver in the I/O

system, connects to any interrupts used by the devices serviced by the driver, and

performs any necessary hardware initialization. A single driver for a serial

communications device can often handle many separate channels. This routine should be

called exactly once before any read's, write's, or tySCCDevCreate's.

tySCCDevCreate

This routine adds terminal devices that are to be serviced by the driver (initialized

by routine tySCCDrv) to the 1/0 system. Before a terminal device can be used, it has to

be created first. This is done through calling the routine tySCCDrvCreate. Each

serial communication port to be used will have exactly one terminal device associated

with it after this routine has been called.

TySCCDrvCreate takes five arguments, and returns OK (1) if a terminal

device has been successfully created, or Error (0) otherwise.

STATUS tySCCDevCreate (name, channel, rdBufSize,

wBufSize, baudRate)

Name name to use for this terminal device, i.e. "/tySCC/O"
Channel physical channel for this device
RdBufSize read buffer (input buffer) size, in bytes
WbufSize write buffer (output buffer) size, in bytes
Baudrate baud rate to create the terminal device with, i.e. 9600

The arguments for tySCCDevCreate routine.

15



For instance, to create a terminal device "/tySCC/0", with input and output

buffers of size 512 bytes, at 9600 baud rate, the proper call is:

TySCCDevCreate ("/tySCC/0", 0, 512, 512, 9600);

4.5 Introduction to Devices and Drivers in VxWorks

4.5.1 1/0 system in VxWorks

VxWorks is a high-performance networked real-time operating system. It runs on

a variety of hardware, including the Intel 386 based system. This section gives a

background on VxWorks I/O system, with an emphasis on devices and drivers in

VxWorks.

In VxWorks, applications access I/O devices by opening named files. A file can

refer to one of the two things:

A "raw" device such as a serial communication channel.

A logicalfile on a random-access device containing a file system.

Consider the following named files:

/usr/filel /pipe/mypipe/ /tyCo/0

The first one refers to a file called filel on a disk device called /usr. The

second one is a pipe named mypipe. The third one refers to a physical serial channel.

However, I/O can be done to or from any of these in the same way. Within VxWorks,

they are all called files, even though they refer to very different physical objects [Wind

'97].

Basic 1/0 is the lowest level of I/O in Vxworks. The following are a few basic

I/O calls.
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open (): Open a file/device.

close (): Close a file/device.

read 0: Read a previously created or opened file.

write () : Write a previously created or opened file.

At the basic I/O level, files are referred to by a file descriptor, or fd. An fd is a

small integer returned by a call to open(). The other basic 1/0 calls take an fd as a

parameter to specify the intended file. Before 1/0 can be performed to a device, an fd

must be opened to that device by invoking the open () routine.

After an fd is obtained by invoking open(), tasks can read bytes from a file

with read () and write bytes to a file with write (). The arguments to read () are

the fd, the address of the buffer to receive input, and the maximum number of bytes to

read:

int nBytes = read (fd, &buffer, maxBytes);

The read () routine waits for input to be available from the specified file/device,

and returns the number of bytes actually read.

The arguments to write () are the fd, the address of the buffer that contains the

data to be output, and the number of bytes to be written:

int actualBytes = write (fd, &buffer, nBytes);

The write () routine ensures that all specified data is at least queued for output

before returning to the caller, though the data may not yet have been written to the device

(that is driver dependent).

Another very important basic I/O routine is 1/0 control: iocti () routine. It is

an open-ended mechanism for performing any I/O functions that do not fit the other basic

I/O calls. Examples include determining how many bytes are currently available for

17



output and setting device-specific options. The arguments to the iocti () routine are

the fd, a code that identifies the control function requested, and an optional function-

dependent argument.

Result = ioctl (fd, function, arg);

For example, the following call uses the FIOFLUSH function to discard all the

bytes in the input or output buffer:

Status = ioctl (fd, FIOFLUSH, 0);

See scctest cpp in the Appendices for how all the basic functions mentioned

above are used.

4.5.2 Devices and Drivers

Devices are handled by program modules called drivers. The VxWorks 1/0

system is flexible, allowing specific device drivers to handle the basic 1/0 functions

mentioned in the last section.

For serial 1/0 devices, VxWorks provides terminal device drivers (tty drivers).

VxWorks serial I/O devices are buffered serial byte streams. Each device has a ring

buffer (circular buffer) for both input and output. Reading from a tty device extracts

bytes from the input ring. Writing to a tty device adds bytes to the output ring. The

size of each ring buffer is specified when the device is created during system

initialization. The tty devices respond to the ioctl () functions mentioned in the

previous text.

A device driver implements the basic I/O functions for a particular kind of a

device. In general, drivers have routines that implement each of the basic functions, such

18



as read (), write (), etc. although some of the routines can be omitted if the functions

are not operative with that device.

In VxWorks, some drivers are capable of servicing many instances of a particular

kind of device. For example, a single driver for a serial communications device can

handle many separate channels that differ only in a few parameters, such as device

address.

Devices are added to the 1/0 system dynamically by calling the internal I/O

routine isoDevAdd 0. The arguments to iosDevAdd () are the address of the device

descriptor for the new device, the device's name, and the driver number of the driver that

services the device. Refer to file scc . c in the Appendices for the use of

iosDevAdd).

4.5.3 Opening a File/Device

Files/devices are opened with open(). The I/O system searches the device list

for a device name that matches the file name (or an initial sub-string) specified by the

caller. If a match is found, the I/O system uses the driver number contained in the

corresponding device header and call the driver's open routine in the driver table.

The 1/0 system must establish an association between the file descriptor used by

the caller in subsequent 1/0 calls, and the driver that services it. The I/O system

maintains these associations in a table called fd table. This table contains the driver

number and an additional driver-determined 4-byte value. The driver value is the internal

descriptor returned by the driver's open routine, and can be any nonnegative value the

driver requires to identify the file. In subsequent calls to the driver's other I/O functions,

19



such as read (), write (), iocti () and close (), this value is supplied to the

driver in place of the fd in the application-level I/O calls.

drvnum value
0
1
2
3
4

fd Table

Example of Opening a Device

In Figure7 and Figure 8 [Wind '97], a user calls openo to open the device /xxO.

The following series of actions take place in the I/O system:

1) It searches for the device list for a device name that matches the specified device

name: /xxO.

2) It reserves a slot in the fd table, which is used if the open is successful.

3) It then looks up the address of the driver's open routine, xxOpen (), and calls that

routine. Note that the arguments to xxopen() are transformed by the I/O system

from the user's original arguments to open (). The first argument to xxOpen () is

a pointer to the device descriptor the 1/0 system located in the full file name search.

The next parameter is the remainder of the file name specified by the user, after

removing the initial substring that matched the device name. In this case, because the

device name matched the entire file name, the remainder passed to the driver is a null
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string. The last parameter is the file access flag, in the case ORDONLY; this is, the

file is opened for reading only.

4) It executes xxopen () , which returns a value that subsequently identifies the newly

opened file. In the case, the value is the pointer to the device descriptor. This value

is supplied to the driver in subsequent 1/0 calls that refer to the driver being opened.

5) The 1/0 system then enters the driver number and the value returned by xxopen ()

in the reserved slot in the fd table. Again, the value entered in the fd table has

meaning only for the driver, and is arbitrary as far as the 1/0 system is concerned.

4.5.4 Reading Data from the File/Device

The routine read () is used to obtain input data from the device. The specified fd

is the index to the fd table for this device. The 1/0 system uses the driver number

contained in the table to locate the driver's read routine, xxRead (). The I/O system

calls xxRead (), passing it the identifying value in the fd table that was returned by the

driver's open routine, xxOpen (). Again, in this case the value is the pointer to the

device descriptor. The driver's read routine then does whatever is necessary to read data

from the device. The process for user calls to write () and iocti () follow the same

procedure. Refer to Figure 9 for an example of reading Data from a device [Wind '97].
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User Call: Driver Call:

fd = open ("/xxO", ORDONLY)
xxdev = xxOpen (dev-pointer, " ", ORDONLY);

[1] 1/0 system finds
name in device list.

[2] 1/0 system reserves
a slot in the fd table.

[3] 1/0 system calls driver's
open routine with pointer to
device descriptor

FD TABLE:
drvnum value

0
1
2
3
4

DEVICE LIST: '

DRIVER TABLE

create Remove o n close Read write ioctl
0
1
2 xxOpen
3
4

Figure 7: Call to I/O Routine open (). [part 1]
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User Call:

fd = open ("/xxO", ORDONLY)

[6] I/O system returns
index in fd table of new
open file (fd = 3).

FD TABLE

DEVICE LIST

DRIVER TABLE

Driver Cal

xxdev = xxOpen

[5] 1/0 system enters driver number
and identifying value in reserved fd
table slot.

mum value

3 2 xxdev
4 \ 1 1

23

1:

(dev-pointer, " ", ORDONLY);

[4] Driver returns any
identifying value, in the case
the pointer to the device
descriptor.

0
1
2

"/dkO/" "/xxO" "/xx1"_

1 2 2
evice-
ependen

t ata

create Remove open close read write ioctl
0
1
2 xxopen
3
4

Figure 8: Call to I/O Routine open (). [part 2]
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User Call: Driver Call:

n = read(fd, buf, len);

FD TABLE

DEVICE LIST

DRIVER TABLE

1/0 system transforms the user
routine calls into driver routine
replacing the fd with the value
by the driver's open routine, xx

drvnum value
0
1
2
3 2 xxdev

4 \z _

n = xxRead (dev-pointer, buf, len);
A

s I/O
calls
returned
Openo.

"/dko/' "/xxO" "/xx 1"
1- 2 2

evice-
ependen

t ata

create Remove open close read write ioctl

0
1
2 xxReadO)
3
4

Figure 9: Call to 1/0 read Routine.
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4.5.5 Closing a File

The user terminates the use of a file by calling close (). As in the case of

read ), the 1/0 system uses the driver number contained in the fd table to locate the

driver's close routine. In the example driver, no close routine is specified; thus no driver

routines are called. Instead, the I/O system marks the slot in the fd table as being

available. Any subsequent references to that fd cause an error. However, subsequent

calls to open () can reuse that slot.

4.6 Test for SC26C92 Driver

Most of the modules on Procell communicate with the Intel386EX-based Module

Controller Board via serial communication. Therefore, it is pivotal to ensure the

reliability of the serial device driver.5

4.6.1 Test Set-up

One way to test the SCC driver is the echo method. This test method involves a

very simple set-up: one Module Controller Board, an extension I/O board, and a cable

connecting the two communication devices/channels to be tested. See Figure 10 for the

illustration of the set-up. These two communication devices/channels are wired up with

the method of Null Modem (Figure 11). The aim is to make the computer think it is

talking to a modem rather than another computer. Any data transmitted from the first

communication device/channel must be received by the second thus TD is connected to

RD. The second device/channel must have the same set-up thus RD is connected to TD.
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Signal Ground (SG) must also be connected so both grounds are common to each

device/channel.

Module Controller Board Extension I/O Board

Corn

Com2
"ECHO"

Figure 10: Set-up for "Echo" Test.

Comi

SG

TD
RD

Com2

SG

TD
RD

Figure 11: Wiring diagran between communication channel 1 &2 (Null Modem Wiring).

4.6.2 "Echo"

The following text describes echo in five steps, which are also illustrated in a

block diagram in Figure 12.

I. Write a message in the output buffer of communication channel 1 using the

write () I/O routine.

5 SC26C92 driver is referred to as SCC driver in this thesis.
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II. Since channel l's TD line is wired together with channel 2's RD line, reading

from channel 2 via a read () routine gets the message sent from channel 1 and

puts it in channel 2's input buffer.

III. Then use the write () routine to place that message read from channel 2 into

channel 2's output buffer.

IV. Likewise, since channel 2's TD line is wired together with channel I's RD line,

reading from channel 1 now will get that message.

V. Compare this received message with the originally sent message at the beginning

of the process to see if they have the same content. If they do, the echo test

returns a positive result.

message

"!@#$%A

I. write( ... )1.ra (.

V. Output Buffer Input Buffer

compare
the III. write(.)

messages
Input Buffer <Output Buffer

7 IV. read(...)
"!1@#$%^

COM COM

"echoed" message

Figure 12: Block Diagram of Echo between Comi and Com2.
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4.6.3 SCC Test

This section describes in detail, in terms of VxWorks, how to implement the idea

of echo method in doing the SCC test.

* Initialize the SCC driver via a call to a tySCCDrv () routine. As mentioned in an

earlier section, tySCCDrv () has to be called exactly once before any terminal

devices can be created.

" Create two terminal devices: channel 1 and channel 2. Specify the input/output buffer

size for each terminal, i.e. 1024 bytes for buffer size. Specify the baud rate, i.e.

19200bps. The devices have to be successfully created in order for any data

transmission to happen. Every device has a unique name. No multiple devices can

share the same device name. If a device with a specified name has already been

created, an error message will be returned at a second attempt to create a device with

that name. In VxWorks window, a devs command at the prompt will show the user a

list of currently existing devices.

" Before I/O can be performed to a device, an fd must be opened to that device by

invoking the open () routine (discussed in detail in the previous section). The

arguments to open() are the file/device name, the type of access (open for reading

only, writing only or both), and, when necessary the mode.

" Discard all bytes in the input and output buffers in each device. A basic 1/0

command ioct1() can be used here:

i.e. ioctl = (fd, FIOFLUSH, 0);

FIOFLUSH is an 1/0 control function that does the above job. This is an important

step, because the input and output buffers in the devices may have data garbage in
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them. To begin the echo test, all the buffers need to be cleared of garbage, or the

result of the echo test will not reflect accurately the functionality of the serial device

driver.

* Start the echo process. First, write a message to Com 1 using the write () routine.

The write () routine takes three arguments: the file descriptor (fd) of the device the

message is to be written to, the address of the buffer that contains the data message to

be output, and the number of bytes to be written. write () puts data in device's

output buffer.

i.e. write(fd, InBuffer, strlen(InBuffer));

* Read from Com 2. Note that Com l's data transmission (TD) line is connected with

Com 2's data receiving (RD) line. The read () routine takes three arugements: the

file descriptor (fd) of the device, the address of the buffer to receive input, and the

maximum number of bytes to read.

i.e. read(fd, &EchoBuffer, maxBytes);

The read () routine waits for input to be available from the specified device, and

returns the number of bytes actually read. However, in the echo test development

stage, it's been noticed that the data written to Com l's output buffer is not available

for input at Com 2 right away. The read () routine sometimes only returns the first

part of the data written to Com 1. In order to prevent the above from occuring,

enough time ought to be set aside for the data to be available for input at Com 2

before the read () routine is called. VxWorks, being a real-time operating system,

provides direct control over a task's execution. The routine taskDelay()

postpones a task in VxWorks. Calling the routine taskDelay () between writing
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to Corn 1 and reading from Corn 2 guarantees the integrity of the data to be

transmitted. The read data are saved in EchoBuf fer.

. Here starts the second half of the echo test. Transfer what is in the EchoBuffer to the

output buffer of Corn 2 via calling another write () routine follwed by calling

another taskDelay (). As mentioned before, a taskDelay () routine will make

sure the complete data are available in Corn 2's output buffer for input to another

channel later.

. Read from Corn 1. Note that Com 2's data transmission (TD) line is connected with

Corn l's data receiving (RD) line. The data that have just been read get to be saved

in the input buffer of Corn 1.

. Compare the content in the input buffer of Corn 1 with the original message written to

Corn 1 at the beginning of the echo process. If they are the same, the echo test returns

a positive result for Corn 1 and Com 2's device driver. Otherwise, the test returns

error result.

4.7 Summary

This chapter focused on the devices and drivers for RS-232 serial

communications in ProCell. Philips SC26C92 DUART was desribed in section 4.3. A

general introduction to devices and drivers in VxWorks was given in section 4.5. In

section 4.6, a set of diagnostic procedures called echo was introduced to test the

functionality of the SCC driver. The source code for the SCC driver and the SCC test can

be found in the Appendices.
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Chapter 5: Controller Area Network (CAN)

5.1 Introduction

In the ProCell system, peer Module Controller Boards communicate with one

another via CAN. CAN is a protocol for serial data transfer. Developed in automobile

industry, CAN was first adopted for serial communication in vehicles. The CAN network

protocol detects and corrects transmission errors caused by electromagnetic interference.

Additional advantages such as low cost, high real-time capabilities and ease of use make

CAN chosen by manufacturers in semiconductor and semiconductor equipment industry

as well many other industries. Section 5.2 describes how the CAN network functions.

5.3 and 5.4 focus on the CAN controller 82527 and its driver in VxWorks.

5.2 How CAN Works

5.2.1 Principles of Data Exchange

When data are transmitted by CAN, the content of the data messages does not

contain addresses of either the transmitting mode, or of any receiving node. Instead, the

message is labeled by an identifier that is unique throughout the network. The identifier

defines not only the content but also the priority of the message. The lower the numerical

value of the identifier is, the higher the priority the message has. A message with the

highest priority is guaranteed to gain bus access as if it were the only message being

transmitted. This is important for bus allocation when several stations are competing for

bus access.
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If the CPU of a given station wishes to send a message to one or more stations, it

passes the data to be transmitted and their identifiers to the assigned CAN controller chip.

This is all the CPU has to do to initiate data exchange. The message is constructed and

transmitted by CAN controller. As soon as the CAN chip receives the bus allocation, all

other stations on the CAN network become receivers of this message. Each station in the

CAN network, having received the message correctly, conducts an acceptance test to

decided whether the data received are relevant for that station. If the data are of no

significance for the station concerned, they are ignored. Otherwise they get processed.

The above described content-oriented addressing scheme of the CAN network has

the advantage of a high degree of system and configuration flexibility. When more

stations are added to the existing CAN network, there is usually no need to make any

hardware or software modifications to the already existing stations, as long as the new

stations are pure receivers. Because the data transmission protocol does not require

physical destination addresses for the individual components, it permits multiple

reception and the synchronization of distributed processes. For instance, measurements

needed as information by several modules in the system can be transmitted via the

network, in such a way that it is not necessary for each module to have its own sensor.

5.2.2 CAN Protocol

In a CAN system, data are transmitted and received using Message Frames.

Message Frames carry data from a transmitting node to one or more receiving nodes in

the CAN network.
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The CAN protocol supports two message frame formats: the Standard CAN

protocol (version 2.OA) and the Extended CAN protocol (version 2.0B). The only

essential difference between these two protocols is in the length of the identifier. In the

standard format the length of the identifier is 11 bits and it is 29 bits in the extended

format.

Arbitration Field ntro Daa Field GC Ac k Endof Int Bus Idle
___R___Id ~ I FiebI F. iFrae

roi Ii bit I DENT IFIER T DC - S Bytes Is bit R

Figure 13: Message frame for standard format (CAN specification 2.OA).

The message frame for transmitting message on the bus consists of seven main

fields. A message in the standard format (see Figure 13) [CiA '99] begins with the start

bit "start of frame" (SOF). It is followed by the "arbitration field", which contains the

identifier and the "RTR" (remote transmission request) bit, which indicates whether is a

data frame or a request frame without any data bytes. The "control field" contains the

IDE ("identifier extension) bit, which indicates either standard format or extended

format, a bit reserved for future extensions and a four bit Data Length Code (DLC), a

count of the data bytes in the data field. The "data field" ranges from 0 to 8 bytes in

length and is followed by the "CRC field", which is used as a frame security check for

detecting bit errors. The "ACK field" comprises the ACK slot (1 bit) and the ACK

delimiter (1 recessive bit). The bit in the ACK slot is sent as a recessive bit and is

overwritten as a dominant bit by those receivers who have at this time received the data

correctly (positive acknowledgement). Correct messages are acknowledged by the
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receivers regardless of the result of the acceptance test. The end of the message is

indicated by "end of frame", seven recessive bits. "Intermission" is the minimum

number of bit periods separating consecutive messages. If there is no following bus

access by any consecutive message, the bus remains idle ("bus idle").

5.2.3 Error Detection

One of the outstanding features of the CAN protocol is its high transmission

reliability. The CAN controller registers a station's error and evaluates it statistically in

order to take appropriate measures.

CAN implements five error detection mechanisms; three at the message level and

two at the bit level. The ones at message level are Cyclic Redundancy Checks (CRC),

Frame Checks, and Acknowledgement Error Checks. At the bit level, there are bit

monitoring and bit stuffing.

Refer to Figure 13, every transmitted message contains a 15 bit "CRC field". The

CRC is computed by the transmitter and is based on the message content. All receivers

that accept the message performs a similar calculation and flag any error.

There are certain predefined bit values that must be transmitted at certain points

within any CAN Message Frame. When the frame check of a receiver detects an invalid

bit in one of these positions, a Format Error will be flagged.

In a Acknowledgement (ACK) Error Check, if a transmitter determines that a

message has not been acknowledged, then an ACK Error is flagged.

What bit monitoring does is that any transmitter automatically monitors and

compares the actual bit level on the bus with the level that is transmitted. If the two

levels are not the same, a bit error is flagged.
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Bit stuffing is a technique CAN uses to check on communication integrity. After

five consecutive identical bit levels have been transmitted, the transmitter will

automatically inject (stuff) a bit of the opposite polarity into the bit stream. Receiver of

the message will automatically delete (de-stuff) such bits before processing the message

in any way. Because of the bit stuffing rule, if any receiving node detects six consecutive

bits of the same level, a stuff error is flagged.

5.3 CAN Controller 82527

The 82527 serial communication controller is a highly integrated device that

performs serial communication according to the CAN protocol. It supports both the

standard and extended message frames in CAN specification.

The 82527 consists of six functional blocks including the CAN controller, RAM,

CPU interface logic, clockout and two 8-bit ports. The CPU interface logic manages the

interface between the CPU (Intel 386EX microprocessor) and the 82527 using an

address/data bus. The CAN controller interfaces to the CAN bus and implements the

protocol rules of the CAN protocol for the transmission and reception of messages. The

RAM is the interface layer between the CPU and the CAN bus. The two port blocks

provide 8-bit low speed I/O capability. The clockout block allows the 82527 to drive

other chips [Intel '95]. See Figure 14 for the physical CAN connection [CiA '99].
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Figure 14: Physical CAN connection.

5.4 Driver for CAN Controller 82527

In section 4.5 there was a brief description on devices, drivers and 1/0 system in

VxWorks. The driver for the 82527 in VxWorks is very similar to the driver for Philips

SC26C92 DUART discussed in Chapter 4. This section describes the CAN driver-level

interface to the I/O system.

CanDrv()

CanDrv () installs the CAN driver in the 1/0 system. It is the first thing that

must be done before any devices are added to the system or any I/O request is performed.

It returns either OK or ERROR.
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CanDevCreate ()

This routine is called to add a device to the system that will be serviced by the

CAN driver. This function must be called before performing any I/O request to this

device. There are several device-dependent arguments required for the device

initialization and allocation of system resources.

The CAN driver supports the basic 1/0 interface functions, including open(),

read (, write () and ioctl 0. A few other important I/O control functions are

described below.

FIOSETFILTER

This I/O control function modifies the acceptance filter masks of the CAN

controller. The acceptance masks allow message objects to receive messages with a

range of message identifiers instead of just a single message identifier. A "0" means

"don't care" and accepts a "0" or "1" for that position, while "1" value means that the

incoming bit value "must-match" identically to the corresponding bit in the message

identifier. The syntax looks like:

int result = ioctl (fd, FIOSETFILTER, &AcceptMasks);

fd is the file descriptor (see Chapter 4 for definition), AcceptMasks is a pointer to a

data structure which contains the specification for the masks.

FIOGETFILTER

This 1/0 control function returns the contents of the acceptance filter masks of the

CAN controller in the data structure AcceptMasks. The syntax, for example, can be:

int result = ioctl (fd, FIOGETFILTER, &AcceptMasks);
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FIOBUSON

After an abnormal rate of occurrences of errors on the CAN bus, the CAN

controller enters the busoff state. This I/O control function resets the Initial bit the

Control register. The CAN controller begins the busoff recovery sequence. This bus

recovery sequence resets the transmit and receive error counters. If the CAN controller

counts 128 packets of 11 consecutive recessive bits on the CAN bus, the busoff state is

exited. Here is an example:

int result = ioctl (fd, FIOBUSON, 0);

FIOBITTIMING

This I/O control function modifies the bit timing register of the CAN controller.

Here is how the function is used:

int result = ioctl (fd, FIOBITTIMG, &dc);

dc is a data structure that holds the new values for the bit timing register 0 (bit 8 to 15)

and the bit timing register 1 (bit 0 to 7). Possible transfer rates are between 5kbit per

second and 1.6 Mbit per second.

The above listed are a few of the important I/O control functions the CAN driver

supports. Refer to Canif .cpp in the appendix for the implementation of those

functions in the CAN interface.

5.5 Summary

Controller Area Network (CAN) is a protocol originally developed in automobile

industry for serial data transfer. Its low cost and high reliability makes CAN a widely

used network protocol in various industries. This chapter explained how CAN works and
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described its unique error detection features. In section 5.3 and 5.4, CAN controller

82527 and its device driver in VxWorks were described.
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Chapter 6: Parallel Communication

6.1 Introduction

The Intel386EX microprocessor communicates with a motion control chipset on

the module controller board via parallel data transfer. This chapter will discuss the

interface between the microprocessor and two of coater's arms and describe the parallel

communication between the microprocessor and the chipset that controls the movement

of the arms.

6.2 Interface between 386 and Coater's Arms

Coater is a module that applies photoresist and various chemicals on wafers

uniformly, and gives the surface of a wafer the characteristics similar to a piece of

photographic paper. It consists of two robot arms: a Dispense Arm, which dispenses the

chemicals onto the wafer, and a Top Edge Bead Remover (TEBR) Arm, which does the

job of cleaning and smoothing the edge of the wafer after chemicals get dispensed on the

surface of the wafer.

Both the Dispense Arm and the TEBR Arm are controlled by an advanced multi-

axis motion control chipset, PMD's MC1401A. The 386, which serves as a host

processor, interfaces with the motion control chip via an 8-bit bi-directional bus and

various control signals. Host communication is coordinated by a ready/busy signal,

which indicates when communication is allowed.

Refer to pmdio. c in the Appendix for the low-level routines that enable the

communication between 386 and the motion control chipset. pmdio. c contains low-

level routines that write/read a single byte command/data to the chipset, routines that
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write/read a 2-byte data word to/from the chipset and maintains the checksum word

(Checksum will be explained in a later section), and the main routine called

send chipset_cmd, which is called to send complete commands to the chipset to

control motion. On the top of pmdio.c, a motion.c program (Refer to the

Appendix.) allows users to move the Dispense Arm and TEBR Arm to the positions

desired and completes the motion control interface.

6.3 Advanced Multi-Axis Motion Control Chipset, MC1401A by PMD

The MC1401A is a 2-IC general purpose motion control chipset, packaged in 2

68-pin PLCC packages. The Peripheral Input/Output IC (I/O chip) is responsible for

interfacing to the host processor (386 in this case), and to the position input encoders.

The Command Processor IC (CP chip) is responsible for all host command, profile and

servo computations, as well as for outputting the PWM and DAC signals.

Figure 15 shows a typical system block diagram, along with the pin connectors

between the 1/0 chip and the CP chip.

The CP and I/O chips function together as one integrated motion processor. The

major components connected to the chip set are the Encoder, the motor amplifier, and the

host processor (386). The 386 is interfaced with the chipset via an 8-bit bi-directional

bus and various control signals. The communication between the chipset and the 386 is

coordinated by a ready/busy signal, which indicates when communication is allowed.
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Figure 15: Block diagram of the MC 1401 chipset.

6.4 Data Transfer Protocol

All communications to/from the chip set take the form of packets. A packet is a

sequence of transfers to/from the host resulting in a chip set action or data transfer.

Packets can consist of a command with no data (Dataless Command), a command with

associated data that is written to the chip set (Write Command) or a command with

associated data that is read from the chip set (Read Command).
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The following charts [Performance '97] show the generic command packet

sequence for a Dataless Command, a Write Command, and a Read Command.

Dataless Command

Time -> -> -> ->
Command Write: Command byte
Data Write:
Data Read: [packet checksum]

Write Command

Time -> -> -> ->
Command Write: Command byte
Data Write: word 1 [word 2]
Data Read: [packet checksum]

Read Command

Time -> -> -> ->
Command Write: Command byte
Data Write:
Data Read: Word 1 [Word 2] [packet checksum]

The above charts show that at the end of each packet, a checksum word is

available for reading, which provides a reliability enhancement. This checksum consists

of a 16-bit sum of all previous communications that have occurred for the associated

command. The command byte is included in the low byte of the 1st checksum word (with

high byte set to 0). Data words are added as is to the checksum value. For example, if a
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SETVEL (set velocity) command (which takes two 16-bit words of data) was set with a

data value of fedcba98, the checksum would be [Performance '97]:

0011 (code for SETVEL command)
+ fedc (high data word)
+ ba98 (low data word)

1b985
checksum = b985 (keep the bottom 16 bits only)

6.5 Summary

Chapter 6 contained the description of the parallel communication between the

host microprocessor and a motion control chipset. The MC1401A chipset provides

closed-loop digital servo control for motors used in moving coater's arms in ProCell

system. The interface both in software and hardware between the Intel386EX and the

motors were described in section 6.2 and 6.3. The data transfer protocol was illustrated

in section 6.4. The pmdio.c and motion.c in the Appendices will help better

understanding the low-level interface.
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Chapter 7: Conclusions

This chapter briefly reviews the communication links in SVG's photoresist

process system, ProCell. ProCell's software control system contains a multi-layered

architecture. From its system control that provides user-interface on the top operating

level, to the middle machine control, to the distributed module control, communication

links stand to be very important issues in the successful automation of wafer handling.

The focus of this thesis was placed on the module control level in the ProCell system,

mainly the three communication protocols associated with the Intel386EX host

microprocessor.

Distributed module control, as opposed to control of modules at high system

level, not only enables stand-alone module tests to be carried out, but also reduces the

information and signals that communicate to the system control level. On ProCell's

module control level, the Intel386EX microprocessor serves as the core of the module

controller. Those microprocessors not only directly interface with peripheral devices to

pass commands and receive feedbacks from the modules, but also communicate with one

another to coordinate the tasks of wafer handling from system level.

The Intel386EX microprocessor communicates with the modules through two

types of communication protocols, RS-232 serial communication and 8-bit bi-directional

parallel communication. The communication between any two module controller boards

are done via Controller Area Network (CAN). The peripheral devices for RS-232 serial

communication and CAN are SC26C92 and 82527 respectively. The thesis work
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includes program routines that let these two devices communicate with the operating

system, in this case VxWorks. These program routines can be found in the Appendix.

ProCell is to replace SVG's 90 Series Photoresist Processing System (9X) and

200 Advanced Processing System (200APS). Distributed control (control of modules at

module level) has operated successfully on 9X platform for over ten years. Due to the

limited time of the author's internship at SVG, ProCell system was still in its

development phase when this thesis was done. There was still a large amount of work

ahead to be done before ProCell would finally be up and running. For instance, in the

area related to the work of this thesis, diagnostic procedures need to be developed for

communication link 5's Controller Area Network, to ensure successful data trasfer

between modules. These procedures would be similar to yet more complex than the SCC

test illustrated in Chapter 4 due to CAN's unique features.

Go, ProCell!
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Appendices

Appendix A: Source Code for SCC Driver (scc. c)

/* scc.c - tty driver for the Philips SC26C92 serial controller board */

/*
DESCRIPTION
This is the driver for the Philips SC26C92 DUART controller.

USER CALLABLE ROUTINES
Most of the routines in this driver are accessible only through the I/O
system. Two routines, however, must be called directly: tySCCDrv () to
initialize the driver, and tySCCDevCreate to create devices.

TYSCCDRV
Before using the driver, it must be initialized by calling the routine:
.CS

tySCCDrv ()
.CE
This routine should be called exactly once, before any reads, writes, or
tySCCDevCreate's. Normally, it is called from usrRoot (2) in =
usrConfig.c.

CREATING TERMINAL DEVICES
Before a terminal can be used, it must be created.
This is done with the tySCCDevCreate call.
Each port to be used should have exactly one device associated with it,
by calling this routine.

.CS
STATUS tySCCDevCreate (name, channel, rdBufSize, wBufSize, baudRate)

char *name; // Name to use for this device *
int channel; // Physical channel for this device (0 - 1) *
int rdBufSize; // Read buffer size, in bytes *
int wBufSize; // Write buffer size, in bytes *
int baudRate; // Baud rate to create device with *

.CE

For instance, to create the device "/tySCC/0", with buffer sizes of 512

bytes,
at 9600 baud, the proper call would be:
.CS

tySCCDevCreate ("/tySCC/0", 0, 512, 512, 9600);
.CE
IOCTL
This driver responds to all the same ioctl codes as a normal ty driver.
All baud rates between 110 and 19200 are available.
*/

#include "vxWorks.h"
#include "iv.h"
#include "ioLib.h"
#include "iosLib.h"
#include "tylib.h"
#include "sccLib.h"
#include "intLib.h"
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#include "errnoLib.h"
#include "sysLib.h"
#include "stdio.h"

#include "sc26c92.h"

#define INT_NUM_IRQO

#define
#def ine
#define
#define
#def ine
#def ine

#def ine
#define
#define
#define
#def ine

RXOINTLVL
RX1_INTLVL
RX2_INTLVL
RX3_INTLVL
XMTINTLVL
MUX_INTLVL

RXOINTVEC
RX1_INTVEC
RX2_INTVEC
RX3_INTVEC
MUXINTVEC

0x2 0

Ox0 1
Ox0 5
OxO6
0x07
Ox0 9
OxOD

INTNUMIRQO + RXOINTLVL )
INTNUMIRQO + RX1_INTLVL )
INTNUMIRQO + RX2_INTLVL )
INTNUMIRQO + RX3_INTLVL )
INTNUMIRQO + MUXINTLVL )

#define SCCBASE_0 0x1000
/* <@ WCS033099 - used to Ox14AO - changed to avoid problem with Motion

Control $> */
/*#define SCCBASE_1
Sun Phi*/
#define SCCBASE_1
#define SCCBASE_2

typedef struct
{

int
intD

} BAUD;

0x18AO change again on 10/25 according to

Ox14AO
Ox1CAO

rate;
preset;

typedef struct
{

USHORT ipcr;
USHORT isr;
USHORT ctu;
USHORT ctl;
USHORT ipr;
USHORT startcntr;
USHORT stopcntr;
USHORT acr;
USHORT imr;
USHORT ctpu;
USHORT ctpl;
USHORT opcr;
USHORT sop12;
USHORT rop12;
USHORT imr_d;

} TYSCCDEV;

typedef struct
{

TYDEV tyDev;
TYSCCDEV * ptySCC;
BOOL created;
BOOL isA;
USHORT rcv_int_lvl;
USHORT rcvint_vec;

1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

input port change register */
interrupt status register */
counter/timer upper */
counter/timer lower */
input port */
start counter command */
stop counter command */
aux. control register */
interrupt mask register */
c/t upper preset register */
C/T lower preset register */
output port conf. register */
set output port bits register */
reset output port bits register */
data of imr */

/* TYSCCDEV */
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USHORT mr012;
USHORT sr;
USHORT rxfifo;
USHORT csr;
USHORT cr;
USHORT txfifo;
TYSCC_CHL;

LOCAL TYSCCDEV

SCC_BASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
SCCBASE_0
},
{
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1
SCCBASE_1

SCCBASE_1
},
{
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCCBASE_2
SCC_BASE_2
},

LOCAL TY_SCC_CHL
(

+

+

+

+

+

+

+

+

+

+

+

+

+

+

tySCCdev[3] =

0x08,
OxOA,
OxOC,
OxOE,
OxiA,
Ox1C,
OxiE,
OxO8,
OxOA,
Ox0C,
OxOE,
OxiA,
oxiC,
0xiE

OxO8,
OxOA,
Ox0C,
OxOE,
OxiA,
OxiC,
OxiE,
0x08,
OxOA,
Ox0C,
OxOE,
OxiA,
oxiC,
OxiE

0x08,
OxOA,
Ox0C,
OxOE,
OxiA,
OxiC,
OxiE,
0x08,
OxOA,
OxOC,
OxOE,
OxiA,
oxiC,
OxlE

tySCCchl[6] =

{
{{{NULL}}},
&tySCCdev[0],
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FALSE,
TRUE,
RXOINTLVL,
RXOINTVEC,
SCCBASE_0 + OxOO,
SCCBASE_0 + 0x02,
SCCBASE_0 + 0x06,
SCCBASE_0 + 0x02,
SCCBASE_0 + 0x04,
SCCBASE_0 + 0x06
},
{
(((NULL}},
&tySCCdev[0],
FALSE,
FALSE,
RX1_INTLVL,
RX1_INTVEC,
SCCBASE_0 + 0x10,
SCCBASE_0 + 0x12,
SCCBASE_0 + 0x16,
SCCBASE_0 + 0x12,
SCCBASE_0 + 0x14,
SCCBASE_0 + 0x16
},
{
({(NULL}),
&tySCCdev[1],
FALSE,
TRUE,
RX2_INTLVL,
RX2_INTVEC,
SCCBASE_1 + 0x00,
SCCBASE_1 + 0x02,
SCCBASE_1 + 0x06,
SCCBASE_1 + 0x02,
SCC_BASE_1 + 0x04,
SCCBASE_1 + 0x06
},
{
{{{NULL}}},
&tySCCdev[1],
FALSE,
FALSE,
RX3_INTLVL,
RX3_INTVEC,
SCCBASE_1 + 0x10,
SCCBASE_1 + 0x12,
SCCBASE_1 + 0x16,
SCCBASE_1 + 0x12,
SCCBASE_1 + 0x14,
SCCBASE_1 + 0x16
},

{{(NULL}}),
&tySCCdev[2],
FALSE,
TRUE,
RX2_INTLVL,
RX2_INTVEC,
SCCBASE_2 + 0x00,
SCCBASE_2 + 0x02,
SCCBASE_2 + 0x06,
SCCBASE_2 + 0x02,
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SCCBASE_2 + 0x04,
SCCBASE_2 + 0x06
},
{
{{{NULL})},
&tySCCdev[2J,
FALSE,
TRUE,
RX3_INTLVL,
RX3_INTVEC,
SCCBASE_2 + 0x10,
SCCBASE_2 + 0x12,
SCCBASE_2 + 0x16,
SCCBASE_2 + 0x12,
SCCBASE_2 + 0x14,
SCCBASE_2 + 0x16
}

LOCAL BAUD baudTable[] =

{
#if 0

/* <@ WCS033099 - ACR[7] = 1 $> */
{ 50, 0 }, ( 110, 0x11 }, ( 200, 0x33 }, ( 300, Ox44 }, { 600, Ox55

}, { 1200, 0x66 },
(1050, Ox77 }, ( 2400, 0x88 }, { 4800, 0x99 }, { 7200, OxAA }, { =

9600, OxBB }, { 38400, OxCC }
#else

/* <@ WCS033099 - ACR[7] = 0 $> */
{ 50, 0 }, ( 110, 0x11 }, { 150, 0x33 }, { 300, 0x44 }, ( 600, 0x55

}, { 1200, 0x66 },
(2000, 0x77 ), { 2400, 0x88 }, { 4800, Ox99 }, { 1800, OxAA }, {

9600, OxBB }, { 19200, OxCC }
#endif

LOCAL int tySCCDrvNum; /* driver number assigned to this driver
*/

/* forward declarations */

LOCAL int tySCCOpen (;
LOCAL int tySCCRead );
LOCAL int tySCCWrite (;
LOCAL int tySCCIoctl );
LOCAL VOID tySCCStartup );
LOCAL VOID tySCCrxInt );
LOCAL VOID tySCCtxInt (;
LOCAL VOID tySCCMuxlnt (;
LOCAL VOID tySCCHrdlnit(;

*=

* tySCCDrv - install Philips SC26C92 driver

* RETURNS:
* OK or
* ERROR if board not present or unable to install driver
*/
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STATUS tySCCDrv ()

{
static BOOL done; /* FALSE = not done; TRUE = done */

if (!done)
(

/* connect to interrupt level and initialize hardware */

intConnect ( INUMTOIVEC ( tySCCchl [0] .rcv-intvec ), tySCCrxInt,
(int) &tySCCchl[O] );

intConnect ( INUMTOIVEC ( tySCCchl [1] rcv-intvec ), tySCCrxInt,
(int) &tySCCchl[l] );

intConnect ( INUMTOIVEC ( tySCCchl [2] .rcvintvec ), tySCCrxlnt,
(int) &tySCCchl[2] );

intConnect( INUMTOIVEC( tySCCchl[3].rcv-intvec ), tySCCrxInt,
(int) &tySCCchl[3] );

/* connect to mux interrupt for channel 5 & 6 */
intConnect ( INUMTOIVEC ( MIUX_INTVEC ), tySCCMuxInt, (int)

&tySCCchl[0] );

tySCCHrdlnit();

/* install driver */

tySCCDrvNum = iosDrvInstall (tySCCOpen, (FUNCPTR) NULL,
tySCCOpen, (FUNCPTR) NULL,
tySCCRead, tySCCWrite, tySCCIoctl);

}

return (tySCCDrvNum == ERROR ? ERROR OK);
}

int MyOutByte( Port, onebyte
int Port;
char onebyte;

printf( "<%x:%x>,"', Port, onebyte )
sysOutByte( Port, onebyte );

}

*=

* tySCCDevCreate - create a device for a channel
*/

STATUS tySCCDevCreate (name, channel, rdBufSize, wrtBufSize, baudRate)
char *name; /* Name to use for this device */
int channel; /* Physical channel for this device (0 - 3) */
int rdBufSize; /* Read buffer size, in bytes */
int wrtBufSize; /* Write buffer size, in bytes */
int baudRate; /* Baud rate to create device with */

{
STATUS status;
FAST TYSCCCHL *pTyChl = &tySCCchl [channel];

if ( channel >= NSCCCHANNELS )
{

return( ERROR );
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}

if ( tySCCDrvNum < 1

errnoSet (SioLibNODRIVER);
return (ERROR);

}

/* if device exist, don't create it */

if ( pTyChl->created
return (ERROR);

/* initialize ty device descriptors and baud rate */

status = tyDevInit ( &pTyChl->tyDev,
rdBufSize, wrtBufSize,(FUNCPTR) tySCCStartup );

if ( status 1= OK )
return (ERROR);

/* enable the receiver and receiver error */

tySCCIoctl (pTyChl, FIOBAUDRATE, baudRate);

if ( pTyChl->isA

pTyChl->ptySCC->imr_d &= OxOOFO;
pTyChl->ptySCC->imrd 1= INTXARDY;
MyOutByte ( pTyChl->ptySCC->imr, (char) pTyChl->ptySCC->imrd );

}
else

pTyChl->ptySCC->imr_d &= OxOOOF;
pTyChl->ptySCC->imr d 1= IMTXBRDY;
MyOutByte ( pTyChl->ptySCC->imr, (char) pTyChl ->ptySCC->imrd );

}

if ( pTyChl->rcvint_vec

sysIntEnablePIC( pTyChl->rcvint_lvl );
}

pTyChl->created = TRUE;

return (iosDevAdd ((DEVHDR *) pTyChl, name, tySCCDrvNum));

}

*=

* TySCCHrdInit - initialize the SC26C92 controller
*

* This routine initializes the Philips SC26C92.
* same as for the Microbar UNIX system.
*/

#define P1LTC Oxf862

LOCAL VOID tySCCHrdlnit ()

FAST TYSCCCHL *pTyChl = &tySCCchl [0];
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int i;
int oldLevel = intLock();

/* Reset the SC26C92 */
MyOutByte( P1LTC, 0 );

for ( i = 0; i < NSCCCHANNELS; i++ )
{

MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(
MyOutByte(

pTyChl ->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,
pTyChl->cr,

CMDTXDISABLE I CMDRXDISABLE );
CMDRSTRX );
o ); /* delay */
o );
o );
CMDRSTTX );
o ); /* delay */
o );
o );
CMDSETMR );
o ); /* delay */
0 );
o );

/* Watch Dog Timer Enabled, TX FIFO 6 or more bytes empty,
RX FIFO 3 or more bytes in FIFO */

MyOutByte( pTyChl->mrOl2, MR_WTDENB MROTXFIFO6 );

/* RX FIFO Interrupt Level = 3 or more bytes,
no parity, 8 bit per character */

MyOutByte( pTyChl->mr012, MR1_RXINTO MR__PARMODENO
MR1_BITSCHAR_8 );

/* normal mode, stop bit */
MyOutByte( pTyChl->mr012, MR2_CHANMODENORM I MR2_STOPBITS_1

/* 9600 baud */
MyOutByte( pTyChl->csr, RX_CLK_9600 I TXCLK_9600 );

if ( pTyChl->isA
{

/* Counter mode, source = External( IP2 ) */
MyOutByte( pTyChl->ptySCC->acr, 0x80 );

WCS033099 - =
19.2K support $> */

/* <@

MyOutByte( pTyChl->ptySCC->opcr, OPCRRXAINT
OPCRRXBINT I OPCRTXAINT I OPCRTXBINT );

}

MyOutByte( pTyChl->cr, CMDRXENABLE );
pTyChl++;

}

sysIntEnablePIC( MUXINTLVL );
intUnlock( oldLevel );

}

*

* TySCCOpen - open device

* ARGSUSED
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*/

LOCAL int tySCCOpen (pTyChl, name, mode)
TYSCCCHL *pTyChl;
char *name;
int mode;

{
return ((int) pTyChl);

}

*=

* TySCCRead - task level read routine for Philips SC26C92
*

* This routine fields all read calls to the Philips SC26C92
* It calls tyRead with a pointer to the appropriate element of TySCCchl.
*/

LOCAL int tySCCRead (pTyChl, buffer, maxbytes)
TYSCCCHL *pTyChl;
char *buffer;
int maxbytes;

{
return (tyRead( &pTyChl->tyDev, buffer, maxbytes));

}

/***********************************************************************

*=

* TySCCWrite - task level write routine for Intel 534 board
*

* This routine fields all write calls to the Intel 534.
* It calls tyWrite with a pointer to the appropriate element of TySCCDv.
*/

LOCAL int tySCCWrite (pTyChl, buffer, nbytes)
TYSCCCHL *pTyChl;
char *buffer;
int nbytes;

return (tyWrite( &pTyChl->tyDev, buffer, nbytes));
}

*

* TySCCIoctl - special device control
*/

LOCAL int tySCCIoctl (pTyChl, request, arg)
TYSCCCHL *pTyChl;
int request; /* request code */
int arg; /* some argument */

int i, count;

switch (request)
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(
case FIOBAUDRATE:

for ( i = 0; i < NELEMENTS( baudTable ); i++

{
if ( baudTable[i].rate == arg
{

MyOutByte( pTyChl->csr, baudTable [i] .preset );
return( OK );

}

}

break;

default:
return (tyloctl ( &pTyChl->tyDev, request, arg));

}

return ERROR;
}

/***********************************************************************

*=

* TySCCrxInt - receive interrupt level processing
*

* This routine handles an interrupt from the 534 board. The interrupt
* is decoded and the appropriate routine invoked. The interrupt is
* terminated with a 'specific EOI'.
*/

LOCAL VOID tySCCrxInt (
TYSCCCHL *pTyChl

)
{

char interruptSR;
char mask;

if ( pTyChl->isA
mask = 0x2;

else
mask = 0x20;

interruptSR = syslnByte( pTyChl->ptySCC->isr ) & mask;

do
{

if ( interruptSR & mask )
{

if ( pTyChl->created
tylRd( &pTyChl->tyDev, sysInByte( pTyChl->rxfifo ) );

else
sysInByte( pTyChl->rxfifo );

}

interruptSR = sysInByte( pTyChl->ptySCC->isr );

} while( interruptSR & mask );
}
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*

* TySCCtxInt - receive interrupt level processing
*

*/

LOCAL VOID tySCCtxInt (
TYSCCCHL *pTyChl

)
{

int i;
char outchar;
char interruptSR;
char mask;

for ( i = 0; i < NSCCCHANNELS; i++ )
{

if ( pTyChl->isA
mask = 0x1;

else
mask = 0x10;

interruptSR = sysInByte( pTyChl->ptySCC->isr );
while ( interruptSR & mask )
{

if ( pTyChl->created && ( tylTx( &pTyChl->tyDev, &outchar
= OK)

{
MyOutByte( pTyChl->txfifo, outchar );

}
else
(

MyOutByte( pTyChl->cr, CMD_TXDISABLE );
}
interruptSR = syslnByte( pTyChl->ptySCC->isr );

}

pTyChl++;
}

}

LOCAL VOID tySCCMuxlnt(
TYSCCCHL *pTyChl

)
{

int
char
char
char
TYSCCCHL

i;
outchar;
interruptSR;
mask;

*pTyChl5;

#if 0
pTyChl5 = pTyChl + 4;

/* take care of receive interrupt */
for ( i = 0; i < 2; i++
{

if ( pTyChl5->isA
mask = 0x2;

else
mask = 0x20;

interruptSR = sysInByte( pTyChl5->ptySCC->isr );
while ( interruptSR & mask )
{
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if ( pTychl5->created )
tyIRd( &pTyChl5->tyDev, sysInByte( pTyChl5->rxfifo ) );

else
sysInByte( pTyChl5->rxfifo );

interruptSR = sysInByte( pTyChl5->ptySCC->isr );
}

pTyChl5++;
}

#endif
/* take care of transmit interrupt */
for ( i = 0; i < NSCC_CHANNELS; i++
{

if ( pTyChl->isA
mask = 0x1;

else
mask = 0x10;

interruptSR = sysInByte( pTyChl->ptySCC->isr );
while ( interruptSR & mask )
{

if ( pTyChl->created && ( tylTx( &pTyChl->tyDev, &outchar
= OK)

sysOutByte( pTyChl->txfifo, outchar );
}
else

sysOutByte( pTyChl->cr, CMD_TXDISABLE );
break;

}
interruptSR = sysInByte( pTyChl->ptySCC->isr );

}

pTyChl++;
}

}

*=

* TySCCStartup - transmitter startup routine
*

* Call interrupt level character output routine for
*/

LOCAL VOID tySCCStartup( pTyChl
TYSCCCHL *pTyChl; /* ty device to start up */

MyOutByte( pTyChl->cr, CMDTXENABLE );

#if 0

/* any character to send ? */

while ( ( tyITx ( &pTyChl->tyDev, &outchar) == OK ) )
{

if ( sysInByte( pTyChl->sr ) & SRTXRDY
MyOutByte( pTyChl->txfifo, outchar ); /* output the

character =
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*/
else

break;
}

#endif

}

/* The code below is added by Tony Wang */
static char caDevName[2][20];

char * getPortDeviceName(int iPortID, int iBaudRate)
{

char caDev[2];
static BOOL bIsDeviceCreated[2] = { FALSE, FALSE };

/* Make sure tySCCDrv being called once.*/
if (!bIsDeviceCreated[0] && !bIsDeviceCreated[1])
{

/* nina */
if (tySCCDrv() == ERROR)

printf ("Device installation failed.\n");
}

if (iPortID > 1 11 iPortID < 0)
return NULL;

if (bIsDeviceCreated[iPortID])
return caDevName[iPortID];

caDev[0] = '0' + iPortID;
caDev[1] = 0;

sprintf( caDevName[iPortID], "/tyCoSCC/%s", caDev );
/* nina */

if ( tySCCDevCreate( caDevName[iPortID], iPortID, 1024, 1024,
iBaudRate ) != OK

{
printf( "scctest:tySCCDevCreate:Device[%d]:FAIL\n\r",

iPortID );
return NULL;

}
else

bIsDeviceCreated[iPortID] = TRUE;

return caDevName [iPortID];
}
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Appendix B: Source Code for echo (scctest. ccp)

/* scctest.cpp - Test program for SCC driver */
/* channel 0 and channel 1 */

#include "vxWorks.h"
#include "sys/types.h"
#include "iolib.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "sysLib.h"
#include "scclib.h"

void pmdHrdInit(int waitState)
{

short int adl = 0x0600 I (waitState % 16);
sysOutWord( Oxf400, adl );
sysOutWord( Oxf402, 0x0040 );
sysOutWord( Oxf406, 0x3f );
sysOutWord( Oxf404, Oxfc0l );

}

void sccDriver()
{

tySCCDrvo; /* initialize the scc lib */
}

void test(int channel) /*written for Binh N. for testing */
/* this test() routine continuously sends data to output buffer*/

{ int i=0, j=0;
int fhdl[6] = ( -1, -1, -1, -1, -1, -1 }
char devname[20];
char dev[2];
char buf[]="0123456789";

for ( i = 0; i < 4; i++
{

dev[0] = '0' + i;
dev[1] = 0;
sprintf( devname, "/tyCoSCC/%s", dev );
if ( tySCCDevCreate( devname, i, 1024, 1024, 19200 ) != OK )
{

printf( "scctest:tySCCDevCreate:Device [%d]:FAIL\n\r",
i );

}
}

for ( i = 0; i < 4; i++
{

dev[0] = '0' + i;
dev[1] = 0;
sprintf( devname, "/tyCoSCC/%s", dev );
if ( ( fhdl[i] = open( devname, ORDWR, 0 ) ) == ERROR )

printf( "scctest:open: [%s] :FAIL\n\r", devname );

}

while (1)
{ ioctl(fhdl[channel], FIOFLUSH, 0); // discard all bytes in

the input and output buffers
j = write( fhdl[channel], buf, strlen(buf));

61



printf("j=[%d], wrote to scc(%d):[0123456789]\n",j,
channel);

taskDelay(10); // make sure all characters have been sent to
the buffer

i=i++;
if (i==100000)

break;
}
close( fhdl[0] );
close( fhdl[1] );
close( fhdl[2] );
close( fhdl[3] );

printf("It's written 100000 times. END for now. BYE!");
}

void echo0l()
{

int j;
int fhdl[6] = -1, -1, -1, -1, -1, -1 };
char devname[20];
char dev[2];
char buffer[128];
char buf[]="0123456789";

ULONG timeOutTicks=100;
ULONG tickCount=0;
ULONG countRight=0;

while (1)
{

ioctl(fhdl[0], FIOFLUSH, 0); // discard all bytes in the input
and output buffers

ioctl(fhdl[1], FIOFLUSH, 0);

j = write( fhdl[0], buf, strlen(buf));
printf("j=[%d], wrote to scc(0):[0123456789]\n",j);

taskDelay(10); // make sure all characters have been sent to the
buffer

j = read( fhdl[1], buffer, 10);
buffer[j]=0; printf("read from scc(0):[%s]\n", buffer);

j = write(fhdl[1], buffer, strlen(buffer));
buffer[j]=0; printf("wrote to scc(l):[%s]\n", buffer);

taskDelay(10);
j = read( fhdl[0], buffer, 10);

buffer[j]=0; printf("j=%d, read:[%s]\n", j, buffer);

if ((buffer[0]==
'0')&&(buffer[1]=='1')&&(buffer[2]=='2')&&(buffer[3]=='3')&&(buffer[4]==
'4') && (buffer[5]=='5') && (buffer[6]=='6') && (buffer[7]=='7')&&
(buffer[8]== '8') && (buffer[9]=='9') && (buffer[10]=='\0'))

{
countRight++;

}
tickCount++;
if (tickCount >= timeOutTicks)
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break;
}
close( fhdl[O] );
close( fhdl[1] );

printf("%d messages out of %d messages have been sent and read correctly
between channel 0 and 1\n", countRight, timeOutTicks);

void echo()
// two echo tests, between channel 0 and 1, and between channel 2 and 3
go
/I on at the same time.

{
char OutBfr01[100], InBfr01[100], EchoBfr01[100];
char OutBfr23[100], InBfr23[100], EchoBfr23[100];
int i, j, m;
int readError01=0, readError23=0;
int fhdl[6] = { -1, -1, -1, -1, -1, -1 };
char devname[20];
char dev[2];

for ( i = 0; i < 3; i++

dev[O] = '0' + i;
dev[1] = 0;
sprintf( devname, "/tyCoSCC/%s", dev );
if ( tySCCDevCreate( devname, i, 1024, 1024, 19200 ) != OK )

printf( "scctest:tySCCDevCreate:Device[%d]:FAIL\n\r",
i );

}
}

for ( i = 0; i < 3; i++

dev[0] = '0' + i;
dev[1] = 0;
sprintf( devname, "/tyCoSCC/%s", dev );
if ( ( fhdl[i] = open( devname, ORDWR, 0 ) ) == ERROR )

printf( "scctest:open:[%s]:FAIL\n\r", devname );

}

for ( i=0; i <999; i++)

for (j=0; j<99; j++)
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InBfrOl[j] = InBfr23[j] =(char) ((i+25+j) % 50
+35);

EchoBfr01[j] = EchoBfr23[j] =(char) ((i+24+j) % 50
+35);

OutBfr01[j] = OutBfr23[j] =(char) ((i+23+j) % 50
+35);

}

InBfr0l[99] = InBfr23[99]=0;

ioctl(fhdl[O], FIOFLUSH, 0); // discard all bytes in the
input and output buffers

ioctl(fhdl[l], FIOFLUSH, 0);
ioctl(fhdl[2], FIOFLUSH, 0);
ioctl(fhdl[3], FIOFLUSH, 0);

j = write( fhdl[0], InBfrO1, strlen(InBfrOl));
InBfr0l[j]=0;

j = write( fhdl[2], InBfr23, strlen(InBfr23));
InBfr23[j]=0;

taskDelay(10); // make sure all characters have been sent to
the buffer

// it seems like 4 is the minimum for 100 characters =)

j = read( fhdl[1], EchoBfr01, 100);
EchoBfr0l[j]=0;

j = read( fhdl[3], EchoBfr23, 100);
EchoBfr23[j]=0;

if ((m = memcmp(EchoBfrOl, InBfrO1, 100)) != 0)
readError01++;

if ((m = memcmp(EchoBfr23, InBfr23, 100)) != 0)
readError23++;

j = write(fhdl[1], EchoBfr01, strlen(EchoBfrOl));
EchoBfr0l[j]=0;

j = write(fhdl[3], EchoBfr23, strlen(EchoBfr23));
EchoBfr23[j]=0;

taskDelay(4);

j = read( fhdl[O], OutBfrO1, 100);
OutBfr0l[j]=0;

j = read( fhdl[2], OutBfr23, 100);
OutBfr23 [j] =0;

if ((m = memcmp(OutBfrO1, EchoBfr01, 100)) 1= 0)
readError0l++;

if ((m = memcmp(OutBfr23, EchoBfr23, 100)) != 0)
readError23++;

}

printf("There are %d reading errors between Channel 0 and
1\n", readError0l);

printf("There are %d reading errors between Channel 2 and
3\n", readError23);

close( fhdl[O] );
close( fhdl[l] );
close( fhdl[2] );
close( fhdl[3] );

}
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/* The following is the routine echo() divided to different tasks:
i.e. writeCom(O, "1234");

readCom(1,4)
writeCom(1, "1234");
readCom(0,4);

*/
int writeCom(int channel, char *buffer)
{

int i, j;
int fhdl[6] 1 1 1 1 1 1}
char devname[20];
char dev[2];

dev[0] = '0' + channel;
dev[1] = 0;
sprintf( devname, "/tyCoSCC/%s", dev );
if ( tySCCDevCreate( devname, channel, 1024, 1024, 19200 )

!= OK
{

printf( "scctest:tySCCDevCreate:Device [%d]:FAIL\n\r",
channel );

}

dev[0] = '0' + channel;
devEl] = 0;
sprintf( devname, "/tyCoSCC/%s", dev );
if ( ( fhdl[channelJ = open( devname, ORDWR, 0 ) ) == ERROR

)
printf ( "scctest: open: [%s] :FAIL\n\r", devname );

ioctl(fhdl[channel], FIOFLUSH, 0); // discard all bytes in the
input and output buffers

j = write(fhdl[channel], buffer, strlen(buffer));
buffer[j]=0; printf("j=[%d], wrote: [%s]\n",j, buffer);

return(j);
}

int readCom(int channel, int len)

int i, j;
int fhdl[6] = { -1, -1, -1, -1, -1, -1 };
char devname[20];
char dev[2];
char buf[128];

dev[0] = '0' + channel;
dev[1] = 0;
sprintf( devname, "/tyCoSCC/%s", dev );
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if ( tySCCDevCreate( devname, channel, 1024, 1024, 19200 )
1= OK

(
printf( "scctest:tySCCDevCreate:Device[%d]:FAIL\n\r",

channel );
}

dev[O] = '0' + channel;
dev[1] = 0;
sprintf( devname, "/tyCoSCC/%s', dev );
if ( ( fhdl[channel] = open( devname, ORDWR, 0 ) ) == ERROR

)
printf( "scctest:open:[%s]:FAIL\n\r", devname );

while(1)
{

int nBytesUnread;
iocti (fhdl[channel], FIONREAD, (int) &nBytesUnread);
printf("There are %d bytes unread\n", nBytesUnread);

if (nBytesUnread > 0)
j+=read(fhdl[channel], buf+j, len);

else
break;

}
buf[j]=0;

printf("read:[%s]\n", buf);
close(fhdl[channel]);
return j;

)
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Appendix C: Source Code for PMD Chipset's Interface (pmdio. c)

/* FileName::PMDIO.C */

#include <taskLib.h>
#include "vxWorks.h"
#include "iv.h"
#include "1ioLib.h"
#include "iosLib.h"
#include "intLib.h"

#include "errnoLib.h"
#include "sysLib.h"
#include "semLib.h"
#include "stdio.h"
#include "motion.h"
#include "taskLib.h"

/* defines */
#define inpx(ioAddr) sysInByte(ioAddr)
#define outpx(ioAddr, data) sysOutByte(ioAddr,data)
#define DIAG 1

/* global variables */
int checksumerr = 0;

/*

LOW-LEVEL HOST I/O ROUTINES

*/

WORD PMDReady(void)

int in val;
in val = inp_x(STATUSPORTADDRESS);
return(in-val & READYBUSYBITMASK);

}

/*

Routine: waituntilnot-busy

Function:
This routine polls the ready/busy host bit and returns
when it is ready. If the chipset is not receiving
power, or if there is some other hardware I/O problem,
this routine will report error after time out.

Arguments:
Time out.

Return Arguments:
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OK if the the ready bit has been set before time out or
ERROR if not.

*/

STATUS waituntilnotbusy(int iTimeOut)

{
int in-val, iTick;

/* poll ready port, if not ready, loop; chip should ready within
12us */

for (iTick = 0; iTick < iTimeOut; iTick++)

{
inval = (WORD) (inp-x(STATUSPORTADDRESS) &

inpx (STATUSPORTADDRESS) & inpx (STATUSPORTADDRESS));
if ((inval & READYBUSYBITMASK) != 0)
{

return OK;

}
taskDelay(l);

}

#ifdef DIAG
printf("<Wait until not busy failed.>\n");

#endif

return ERROR;

}

/*

Routine: writecmd

Function:
This is the low-level routine that writes a single byte

command
to the chipset.

Arguments:
thecmd is the command byte to write to the chipset.

Return Arguments:
none

*/

void writecmd(BYTE the_cmd)

#ifdef DIAG
printf ("The writing command: %x.\n", thecmd);

#endif

outpx (COMMANDPORTADDRESS, the-cmd);
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}

/*

Routine: writebyte

Function:
This is the low-level routine that writes a single byte

of data
to the chipset.

Arguments:
the byte is the data byte to write to the chipset.

Return Arguments:
none

*/

void writebyte (BYTE thebyte)
{

outpx (DATA_PORTADDRESS, thebyte);

}

/*

Routine: readbyte

Function:
This is the low-level routine that reads a single byte

of
data from the chipset.

Arguments:
none

Return Arguments:
the byte read from the chipset

*/

BYTE readjbyte (void)

(
BYTE thebyte;

thebyte = inpx (DATAPORTADDRESS);

return(thebyte);

I
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/*

Routine: write_a_word

Function:
This routine writes a 2-byte data word to the chipset,

and
maintains the checksum word.

Arguments:

the-word is the data word to write to the chipset.
thechecksum is a pointer to the running checksum.

Return Arguments:
OK if writing is sucessful or ERROR if not.

*/

STATUS write_a_word(WORD theword,

WORD *thechecksum)

{
#ifdef DIAG

int in val;
int i, time = 0;

#endif

/* poll ready port, if not ready, loop; chip should ready within
12us */

if (wait-untilnot-busy(12) == ERROR)
{

#ifdef DIAG
printf("<Write a word failed.>\n");

#endif
return ERROR;

}

write_byte ((BYTE) ((theword & OxffOO) >> 8));

writ e_byte ((BYTE) (the-word & Oxff));

#ifdef DIAG
/* while (TRUE) */

inval = (WORD)inp_x(STATUSPORTADDRESS);

if ((inval & READYBUSYBITMASK) != 0)

time++;

for (i = 0; i < time; i++);
printf ("After writnig a word, time issue

occured.\n");
)
else

printf ("After write a word, chip is not ready after
%d.\n", time);

}
#endif
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*the-checksum += theword;

return OK;

}

/*

Routine: read_a_word

Function:
This routine reads a 2-byte data word from the chipset,

and
maintains the checksum word.

Arguments:

theword is a pointer to the data word to read from the
chipset.

thechecksum is a pointer to the running checksum.

Return Arguments:

OK if reading is sucessful or ERROR if not.

*/

STATUS read_a_word(WORD *the-word,

WORD *thechecksum)

{
#ifdef DIAG

int in val;
int i, time = 0;

#endif

BYTE lobyte, hibyte;

/* poll ready port, if not ready, loop; chip should ready within
12us */

if (waituntilnot busy(12) == ERROR)

#ifdef DIAG
printf("<Read a word failed.>\n");

#endif
return ERROR;

}

hibyte = readbyte();
/* sysInByte(0x1410); */

lo-byte = readbyte();
/*
#ifdef DIAG

while (TRUE)

{
inval = (WORD)inp_x(STATUSPORTADDRESS);

if ((inval & READYBUSYBITMASK) != 0)
{:
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time++;
for (i = 0; i < time; i++);
printf("After reading a word, time issue

occured.\n");

}
else

printf("After read a word, chip is not ready after
%d.\n", time);

}
#endif
*/
#ifdef DIAG

printf("<Hi byte: %x, Lo byte: %x.>\n", hibyte, lo byte);
#endif

*the_word = ((WORD) (hi-byte & Oxff) << 8) 1 (lobyte & Oxff);
*thechecksum += *theword;

return OK;

}

/*

Routine: read_n_checkchecksum

Function:
This routine is called at the end of a command sequence.

It
reads a data word from the chipset (the checksum), and

compares
it with the expected checksum provided as a calling

argument.
It returns an error condition if the checksums do not

compare
correctly.

Arguments:
checksum is the expected checksum, based on the previous

I/O operations
actualchecksum is a pointer to the actual checksum, read from the

chipset

Return Arguments:
CHECKSUMBAD if the command checksum is bad,

CHECKSUMGOOD if
the command checksum is OK

*/

WORD read_n_checkchecksum(WORD checksum,
WORD *actualchecksum)

WORD asicchecksum, scratch;

read_a_word(&asicchecksum, &scratch);
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if (asic_checksum == checksum)
{

#ifdef DIAG
printf ("<Actual checksum: %x, checksum: %x.>\n",

asicchecksum, checksum);
#endif

return (CHECKSUMGOOD) ;

}
else

sysOutByte(0x1402, Oxff);
#ifdef DIAG

printf ("<Actual checksum: %x, checksum: %x.>\n",

asicchecksum, checksum);
#endif

*actualchecksum = asicchecksum;
#ifdef DIAG

printf ("<Bad checksum. >\n");
/* exit(O); */

#endif
return (CHECKSUMBAD) ;

}

/*

Routine: write_a_cmd

Function:

This routine writes a single command byte to the

chipset, and
maintains the checksum word.

Arguments:
thecmd is the command to write to the chipset.
thechecksum is a pointer to the running checksum. After this

routine
executes the running checksum is set equal to the

command
byte.

Return Arguments:
OK if writing a command is sucessful or ERROR if not.

*/

STATUS write_a_cmd(BYTE the_cmd,
WORD *thechecksum)

/* poll ready port, if not ready, loop; chip should ready within
12us */

if (waituntilnot-busy(12) == ERROR)

#ifdef DIAG
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#endif
printf("<Write a command failed.>\n");

return ERROR;

}

writecmd(thecmd);

*thechecksum = thecmd;

return OK;

}

/*

Routine: send-chipsetcmd

Function:

This is the main routine used to send a command to the
chipset.

It accepts read or write commands, with any # of data

words.
It uses the command checksum for both read and write

operations.
In case of a checksum error, it will not re-try the

command
automatically, although it does report the checksum

status of
the operation, so that the calling routine can (if

desired),
perform a special recovery sequence upon I/O checksum

error.

Arguments:
command is the hex command code
cmd type is the type of the command, the values are CHIPSETSET

and CHIPSET REQUEST

length is the length of the read or write data stream in words
senddata is a pointer to an array of words where the data to send

is stored
rcvdata is a pointer to an array of words where the data to

receive
is stored

Return Arguments:
OK if sending chipset command sucessful

or ERROR if not.

*/

STATUS send-chipsetcmd(int
int
int
WORD
WORD

{

command,
cmdtype,
length,
*senddata,
*rcvdata)
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WORD checksum, got;
int i;

/* write the command to the chipset */
if (write_a_cmd(command, &checksum) == ERROR)

return ERROR;

for (i = 0; i < length; i++)

{
if (cmdtype == CHIPSETSET)

if (write a-word(senddata[i], &checksum) == ERROR)
return ERROR;

}
else

(
if (read a-word(&rcvdata[i], &checksum) == ERROR)

return ERROR;

}

}

/* Temperary delay some time. */
for (i = 0; i < 1200; i++);

/* get & check the checksum */

if ((read_n_checkchecksum(checksum, &got) == CHECKSUMBAD) &&
(command != RESET))

{

#ifdef DIAG
printf ("<I/O CHECKSUM ERROR OCCURRED>\n\r");

#endif
checksumerr++;
return ERROR;

}

return OK;

}

/*

AXIS CONTROL CONMANDS

*/

LONG set_1(void)

WORD axisstatus, scratch;

if (sendchipset-cmd(SET_1, CHIPSETREQUEST, 1, &scratch,
&axisstatus) == ERROR)
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(
#ifdef DIAG

printf("<Setting axis to 1 failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("setting axis to 1, status : %x\n", axisstatus);

#endif

return(((LONG) axisstatus) & Oxffff);

}

LONG set_2(void)

{
WORD axisstatus, scratch;

if (sendchipsetcmd(SET_2, CHIPSET_REQUEST, 1, &scratch,
&axisstatus) == ERROR)

{
#ifdef DIAG

printf("<Setting axis to 2 failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("setting axis to 2, status %x\n", axisstatus);

#endif

return((LONG) axisstatus);

}

LONG set_3(void)

{
WORD axisstatus, scratch;

if (sendchipset-cmd(SET_3, CHIPSET_REQUEST, 1, &scratch,
&axisstatus) == ERROR)

{
#ifdef DIAG

printf("<Setting to axis 3 failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("setting axis to 3, status :%x\n", axis-status);

#endif

return((LONG) axisstatus);

}

LONG set_4(void)

{
WORD axis_status, scratch;
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if (sendchipsetcmd(SET_4, CHIPSETREQUEST, 1, &scratch,

&axisstatus) == ERROR)

#ifdef DIAG
printf("<Setting to axis 4 failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf("setting axis to 4, status %x\n", axisstatus);

#endif

return((LONG) axisstatus);

}

LONG seti(void)

WORD axisstatus, scratch;

if (sendchipset-cmd(SETI, CHIPSET_REQUEST, 1, &scratch,
&axisstatus) == ERROR)

#ifdef DIAG
printf("<Setting axis to i failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf("setting to interrupting axis, status %x\n",

axisstatus);
#endif

return((LONG) axisstatus);
}

/*

PROFILE GENERATION

*/

STATUS setprfl_s_crv(void)

WORD scratchi, scratch2;

#ifdef DIAG
printf("setting profile to s-curve\n");

#endif

if (send chipset-cmd(SETPRFL_SCRV, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

#ifdef DIAG
printf("<Setting profile to s-curves failed.>\n");
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#endif
return ERROR;

}

return OK;

}

STATUS setprfl-trap (void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf("setting profile to trapezoidal\n");

#endif

if (sendchipsetcmd(SETPRFLTRAP, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

#ifdef DIAG
printf("<Setting profile to trapezoidal failed.>\n");

#endif
return ERROR;

}

return OK;
}

STATUS setprfl-vel(void)

WORD scratchi, scratch2;

#ifdef DIAG
printf ("setting profile to velocity contouring\n");

#endif

if (send-chipsetcmd(SETPRFL_VEL, CHIPSETSET, 0, &scratchl,

&scratch2) == ERROR)

#ifdef DIAG
printf("<Setting profile to velocity contouring.>\n");

#endif
return ERROR;

}

return OK;

}

STATUS set-prfl_gear (void)

WORD scratchi, scratch2;

#ifdef DIAG
printf("setting profile to electronic gear\n");

#endif

if (sendchipsetcmd(SETPRFLGEAR, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)
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{
#ifdef DIAG

#endif
printf("<Setting profile to electronic gear failed.>\n");

return ERROR;

}

return OK;

}

STATUS set-pos(LONG thevalue)

{
WORD data[2], scratch;

#ifdef DIAG
printf("setting destination position to: %lx\n", the-value);

#endif

data[HIGH] = (WORD) ( (thevalue >> 16) & OxffffL);
data[LOW] = (WORD) (thevalue & OxffffL);

if (send chipset-cmd(SETPOS, CHIPSETSET, 2, data, &scratch) ==
ERROR)

{
#ifdef DIAG

printf ("<Setting destination position to: %lx failed. >\n",
the-value);
#endif

return ERROR;

}

return OK;

}

STATUS set vel(LONG thevalue)

{
WORD data[2], scratch;

#ifdef DIAG
printf("setting max. velocity to: %lx\n", the-value);

#endif

data[HIGH] = (WORD) ((thevalue >> 16) & OxffffL);
data[LOW] = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(SETYVEL, CHIPSETSET, 2, data, &scratch) ==
ERROR)

{
#ifdef DIAG

the-value);
#endif

printf("<Setting max velocity to %lx failed.>\n",

return ERROR;

}

return OK;
}
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STATUS setacc(LONG thevalue)

{
WORD data[2], scratch;

#ifdef DIAG
printf("setting acceleration to: %lx\n", the-value);

#endif

data[HIGH] = (WORD) ((thevalue >> 16) & OxffffL);
data[LOW] = (WORD) (thevalue & OxffffL);

if (send chipsetcmd(SETACC, CHIPSETSET, 2, data, &scratch) ==
ERROR)

(
#ifdef DIAG

the value);
#endif

printf("<Setting acceleration to: %lx failed.>\n",

return ERROR;
}

return OK;

}

STATUS setmaxacc(LONG thevalue)

{
WORD data, scratch;

#ifdef DIAG
printf("setting max. acceleration to: %lx\n", the-value);

#endif

data = (WORD) (thevalue & OxffffL);

if (sendchipsetcmd(SETMAXACC, CHIPSETSET, 1, &data,
&scratch) == ERROR)

{
#ifdef DIAG

printf("<Setting max. acceleration to: %lx failed.>",

the value);
#endif

return ERROR;

}

return OK;

}

STATUS set_jerk(LONG thevalue)

{
WORD data[2], scratch;

#ifdef DIAG
printf("setting jerk to: %lx\n", the-value);

#endif

data[HIGH] = (WORD) ((thevalue >> 16) & OxffffL);
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data[LOW] = (WORD) (thevalue & OxffffL);

if (send-chipsetcmd(SETJERK, CHIPSETSET, 2, data, &scratch) ==

ERROR)

{
#ifdef DIAG

printf("<Setting jerk to: %lx failed.>", the-value);

#endif
return ERROR;

}

return OK;

}

STATUS setratio(LONG thevalue)

{
WORD data[2], scratch;

#ifdef DIAG
printf("setting target ratio to: %lx\n", the-value);

#endif

data[HIGHJ = (WORD ) ((thevalue >> 16) & OxffffL);
data[LOW] = (WORD) (thevalue & OxffffL);

if (send chipsetcmd(SETRATIO, CHIPSETSET, 2, data, &scratch) ==
ERROR)

{
#ifdef DIAG

printf("<Setting target ration to: %lx failed.>\n",
the value);
#endif

return ERROR;

}

return OK;

}

STATUS clrprf1(void)
{

WORD scratchi, scratch2;

#ifdef DIAG
printf("clear profile...\n");

#endif

if (sendchipsetcmd(CLRPRFL, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

#ifdef DIAG
printf("<Clearing profile failed.>\n");

#endif
return ERROR;

}

return OK;
}
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STATUS synchprf1(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("synch profile...\n");

#endif

if (sendchipset-cmd(SYNCHPRFL, CHIPSETSET, 0, &scratchl,

&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Synch profile failed.>\n");

#endif
return ERROR;

}

return OK;

}

STATUS zeropos (void)

WORD scratchi, scratch2;

#ifdef DIAG
printf("zeroing position...\n");

#endif

if (sendchipset-cmd(ZEROPOS, CHIPSETSET, 0, &scratchl,

&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Zeroing position failed.>\n");
#endif

return ERROR;
}

return OK;

}

LONG get-pos(void)

WORD data[2], scratch;
LONG pos;

if (send chipsetcmd(GETPOS, CHIPSETREQUEST, 2, &scratch, data) ==
ERROR)

#ifdef DIAG
printf("<Getting position failed.>\n");

#endif
return ERROR;

}

pos = ((data[HIGH] & OxffffL) << 16) j (data[LOW] & OxffffL);
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#ifdef DIAG
printf("position: %lx\n", pos);

#endif

return(pos);
}

LONG get vel (void)

{
WORD data[2], scratch;
LONG vel;

if (send chipsetcmd(GETVEL, CHIPSETREQUEST, 2, &scratch, data) ==
ERROR)

{
#ifdef DIAG

printf("<Getting valocity failed.>\n");

#endif
return ERROR;

I

vel = ((data[HIGH] & OxffffL) << 16) (data[LOW] & OxffffL);

#ifdef DIAG

printf("velocity: %lx\n", vel);
#endif

return(vel);
}

LONG getacc(void)

{
WORD data[2], scratch;
LONG acc;

if (send chipsetcmd(GETACC, CHIPSETREQUEST, 2, &scratch, data) ==
ERROR)

{
#ifdef DIAG

printf("<Getting acdeleration failed.>\n");
#endif

return ERROR;

I

acc = ((data[HIGH] & OxffffL) << 16) 1 (data[LOW] & OxffffL);

#ifdef DIAG
printf ("acceleration: %lx\n", acc);

#endif

return(acc);

}

LONG get max acc (void)

{
WORD maxacc, scratch;
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if (send chipset-cmd(GETMAXACC, CHIPSETREQUEST, 1, &scratch,

&max-acc) == ERROR)

{
#ifdef DIAG

printf("<Getting max. acceleration failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf ("max. acceleration: %x\n", max-acc);

#endif

return( (LONG) max-acc);

}

LONG get_jerk(void)

{
WORD data[2], scratch;
LONG jerk;

if (send chipset-cmd(GETJERK,

== ERROR)
{

#ifdef DIAG
printf("<Getting jerk

#endif
return ERROR;

}

jerk = ((data[HIGH] & OxffffL)

#ifdef DIAG
printf("jerk: %lx\n", jerk);

#endif

return(jerk);
}

CHIPSETREQUEST, 2, &scratch, data)

failed.>\n");

<< 16) 1 (data[LOW] & OxffffL);

LONG get ratio(void)

WORD data[2], scratch;

LONG ratio;

if (send chipsetcmd(GETRATIO, CHIPSETREQUEST, 2, &scratch, data)
== ERROR)

{
#ifdef DIAG

printf("<Getting ratio failed.>\n");
#endif

return ERROR;

}

ratio = ((data[HIGH] & OxffffL) << 16) 1 (data[LOW] & OxffffL);

#ifdef DIAG
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printf("ratio: %lx\n", ratio);

#endif

return(ratio);

}

LONG gettrgtpos(void)

{
WORD data[2], scratch;
LONG targetpos;

if (send chipsetcmd(GETTRGT_POS, CHIPSETREQUEST, 2, &scratch,

data) == ERROR)
{

#ifdef DIAG
printf("<Getting target position failed.>\n");

#endif
return ERROR;

}

targetpos = ((data[HIGH] & OxffffL) << 16) 1 (data[LOW] & OxffffL);

#ifdef DIAG
printf ("target position: %ld\n", targetpos);

#endif

return(targetpos);

}

LONG gettrgt-vel(void)

WORD data[2], scratch;
LONG target-vel;

if (send chipsetcmd(GETTRGTVEL, CHIPSETREQUEST, 2, &scratch,

data) == ERROR)
{

#ifdef DIAG
printf("<Getting target velocity failed.>\n");

#endif
return ERROR;

}

target-vel = ((data[HIGH] & OxffffL) << 16) 1 (data[LOW] & OxffffL);

#ifdef DIAG
printf ("target velocity: %ld\n", target-vel);

#endif

return(target-vel);

}

/*

DIGITAL FILTER

*/
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STATUS setfltrpid(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf("setting filter to: PID\n");

#endif

if (sendchipset-cmd(SETFLTRPID, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting filter to: PID failed.>");
#endif

return ERROR;

}

return OK;

}

STATUS set_fltrpivff(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("setting filter to: PIVFF\n");

#endif

if (sendchipset-cmd(SETFLTRPIVFF, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting filter to: PIVFF failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS setkp(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf("setting kp to: %lx\n", the-value);

#endif

data = (WORD)(thevalue & OxffffL);

if (sendchipset-cmd(SETKP, CHIPSETSET, 1, &data, &scratch) ==

ERROR)

{
#ifdef DIAG

printf("<Setting kp to: %1x failed.>\n", the-value);
#endif
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return ERROR;

}

return OK;

}

STATUS setkd(LONG the_value)

(
WORD data, scratch;

#ifdef DIAG
printf("setting kd to: %lx\n", the-value);

#endif

data = (WORD) (thevalue & OxffffL);

if (send_chipsetcmd(SETKD, CHIPSETSET, 1, &data, &scratch) ==
ERROR)

{
#ifdef DIAG

printf("<Setting kd to: %lx failed.>\n", the-value);
#endif

return ERROR;

}

return OK;

)

STATUS set_ki(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf("setting ki to: %lx\n", the-value);

#endif

data = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(SET KI, CHIPSETSET, 1, &data, &scratch) ==
ERROR)

#ifdef DIAG
printf("<Setting ki to: %lx failed.>\n", the-value);

#endif
return ERROR;

}

return OK;

}

STATUS set-kv(LONG thevalue)

{
WORD data, scratch;

#ifdef DIAG
printf("setting kv to: %lx\n", the-value);

#endif
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data = (WORD) (thevalue & OxffffL);

if (sendchipsetcmd(SETKV, CHIPSETSET, 1, &data, &scratch) ==
ERROR)

{
#ifdef DIAG

printf("<Setting kv to: %lx failed.>\n", the-value);
#endif

return ERROR;

}

return OK;

}

STATUS set kvff(LONG thevalue)

{
WORD data, scratch;

#ifdef DIAG
printf("setting kvff to: %lx\n", the-value);

#endif
data = (WORD) (thevalue & OxffffL);

if (send_chipset-cmd(SETKVFF, CHIPSETSET, 1, &data, &scratch)
== ERROR)

{
#ifdef DIAG

printf("<Setting kvff to: %lx failed.>\n", the-value);
#endif

return ERROR;

}

return OK;

}

STATUS set i-lm(LONG thevalue)

{
WORD data, scratch;

#ifdef DIAG
printf("setting ijlimit to: %lx\n", thevalue);

#endif

data = (WORD) (thevalue & Oxf f f f L);

if (send_chipset-cmd(SETI_LM, CHIPSETSET, 1, &data, &scratch)
== ERROR)

#ifdef DIAG
printf("<Setting i limit to: %lx failed.>\n", thevalue);

#endif
return ERROR;

r

return OK;
}
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STATUS setposerr(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf("setting position error to: %lx\n", thevalue);

#endif

data = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(SETPOSERR, CHIPSETSET, 1, &data,

&scratch) == ERROR)

{
#ifdef DIAG

printf("<Setting position error to: %lx failed.>\n",
the value);
#endif

return ERROR;

}

return OK;

)

LONG get_kp(void)

{
WORD kp, scratch;

if (send-chipset-cmd(GETKP, CHIPSETREQUEST, 1, &scratch, &kp) ==
ERROR)

{
#ifdef DIAG

printf("<Getting kp failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("Kp: %04x\n", kp);

#endif

return((LONG) kp);

}

LONG getkd(void)

{
WORD kd, scratch;

if (send-chipsetcmd(GETKD, CHIPSET_REQUEST, 1, &scratch, &kd) ==
ERROR)

(
#ifdef DIAG

printf("<Getting kd failed.>\n");
#endif

return ERROR;

}
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#ifdef DIAG
printf("Kd: %04x\n", kd);

#endif

return((LONG) kd);

}

LONG getki(void)

{
WORD ki, scratch;

if (send chipsetcmd(GETKI, CHIPSETREQUEST, 1, &scratch, &ki) ==

ERROR)

{
#ifdef DIAG

printf("<Getting ki failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("Ki: %04x\n", ki);

#endif

return((LONG) ki);

}

LONG get-kv(void)

{
WORD kv, scratch;

if (send-chipsetcmd(GETKV, CHIPSETREQUEST, 1, &scratch, &kv) ==

ERROR)
{

#ifdef DIAG
printf("<Getting kv failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf ("Kv: %x\n", kv);

#endif

return((LONG) kv);

}

LONG get kvff (void)

(
WORD kvff, scratch;

if (send-chipsetcmd(GETKVFF, CHIPSETREQUEST, 1, &scratch, &kvff)
== ERROR)

{
#ifdef DIAG

printf("<Getting kvff failed.>\n");
#endif
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return ERROR;

}

#ifdef DIAG
printf("Kvff: %04x\n", kvff);

#endif

return( (LONG) kvff);

}

LONG getilm(void)

{
WORD i_lim, scratch;

if (send chipset-cmd(GET_ILM, CHIPSETREQUEST, 1, &scratch, &i lim)

== ERROR)

{
#ifdef DIAG

printf("<Getting ilimit failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("ilim: %04x\n", ilim);

#endif

return( (LONG) ilim);

I

LONG getposerr(void)

{
WORD poserr, scratch;

if (send chipset-cmd(GET POSERR, CHIPSETREQUEST, 1, &scratch,
&pos-err) == ERROR)

{
#ifdef DIAG

printf("<Getting position error failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("max. position err: %04x\n", poserr);

#endif

return((LONG) poserr);

}

LONG getintgr(void)

{
WORD integration-value, scratch;

if (send-chipsetcmd(GET-INTGR, CHIPSETREQUEST, 1, &scratch,
&integration-value) == ERROR)

{
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#ifdef DIAG
printf ("<Getting integration failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf("integration value: %04x\n", integrationvalue);

#endif

return((LONG) integrationvalue);

}

LONG get actlposerr(void)

{
WORD actlposerr, scratch;

if (send chipsetcmd(GETACTLPOSERR, CHIPSET REQUEST, 1, &scratch,

&actlposerr) == ERROR)

{
#ifdef DIAG

printf("<Getting actural position error failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf ("Actual filter position error: %04x\n", actlposerr);

#endif

return ((LONG) actl_poserr);

}

STATUS setautostopoff (void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf( "turn autostop off...\n");

#endif

if (send chipset-cmd(SETAUTOSTOPOFF, CHIPSETSET, 0,
&scratchl, &scratch2) == ERROR)

{
#ifdef DIAG

printf("<Turning auto-stop off failed.>\n");
#endif

return ERROR;

I

return OK;

I

STATUS setautostopon(void)

W
WORD scratchi, scratch2;
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#ifdef DIAG
printf("turn auto_stop on...\n");

#endif

if (sendchipset-cmd(SETAUTOSTOP_ON, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Turning auto-stop on failed.>\n");
#endif

return ERROR;

}

return OK;

}

/*

PARAMETER UPDATE

*/

STATUS set_timebrk(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf ("setting time breakpoint\n");

#endif

if (sendchipset-cmd(SETTIMEBRKPNT, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting timr breakpoint failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS setpos-brk (void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting positive target position breakpoint\n");

#endif

if (sendchipsetcmd(SETPOSBRKPNT, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting positive target position breakpoint
failed.>\n");
#endif
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return ERROR;

}

return OK;

I

STATUS set negbrk (void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf ("setting negative target position breakpoint\n");

#endif

if (sendchipset-cmd(SETNEGBRKPNT, CHIPSETSET, 0, &scratchl,

&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting negative target positon breakpoint

failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS set actlpos-brk (void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf ("setting positive actual position breakpoint\n");

#endif

if (sendchipsetcmd(SETACTLPOS_BRK, CHIPSETSET, 0, &scratchl,

&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting positive actural position breakpoint

failed.>\n");
#endif

return ERROR;

}

return OK;

I

STATUS setactlnegbrk(void)

(
WORD scratchi, scratch2;

#ifdef DIAG
printf ("setting negative actual position breakpoint\n");

#endif
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if (send-chipsetcmd(SETACTLNEGBRK, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting negative actual position breakpoint
failed.>\n");
#endif

return ERROR;
}

return OK;

}

STATUS setbrkoff (void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("setting breakpoint off\n");

#endif

if (sendchipsetcmd(SETEBRK0OFF, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting breakpoint off failed.>\n");
#endif

return ERROR;

}

return OK;

I

STATUS setbrkpnt(LONG thevalue)

{
WORD data[2], scratch;

#ifdef DIAG
printf("setting break point value to: %lx\n", the-value);

#endif

data[HIGH] = (WORD) ((thevalue >> 16) & OxffffL);
data[LOW] = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(SETBRKPNT, CHIPSETSET, 2, data, &scratch)

== ERROR)
(

#ifdef DIAG
printf("<Setting break point value to: %lx failed.>\n",

the value);
#endif

return ERROR;

}

return OK;
}
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STATUS update (void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("update target info\n");

#endif

if (sendchipset-cmd(_UPDATE_, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Updating target info failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS multiupdate(LONG thevalue)
{

WORD mask, scratch;

#ifdef DIAG
printf("starting multiple axis...; using mask: %lx\n",

the value);
#endif

mask = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(MULTIUPDATE, CHIPSETSET, 1, &mask,

&scratch) == ERROR)
{

#ifdef DIAG
printf("<Multi-updating failed.>\n");

#endif
return ERROR;

}

return OK;

}

STATUS setauto-update-on (void)

WORD scratchi, scratch2;

#ifdef DIAG
printf("setting auto update on...\n");

#endif

if (sendchipset-cmd(SETAUTOUPDATEON, CHIPSETSET, 0,
&scratchl, &scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting auto update failed.>\n");
#endif
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return ERROR;

}

return OK;

}

STATUS setauto__update-off (void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("setting auto update off...\n");

#endif

if (sendchipset-cmd(SETAUTOUPDATEOFF, CHIPSETSET, 0,
&scratchl, &scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting auto update off failed.>\n");
#endif

return ERROR;

}

return OK;
}

LONG get-brkpnt (void)
{

WORD data[2], scratch;
LONG breakpoint-value;

if (send chipset-cmd(GETBRKPNT, CHIPSETREQUEST, 2, &scratch,
data) == ERROR)

{
#ifdef DIAG

printf("<Getting breakpoint failed.\n>");
#endif

return ERROR;

}

breakpointvalue = ((data[HIGH] & OxffffL) << 16) I (data[LOW] &
OxffffL);

#ifdef DIAG
printf ("breakpoint: %lx\n", breakpointvalue);

#endif

return(breakpointvalue);

I

/*

INTERRUPT PROCESSING

*/
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STATUS set_intrpt-mask(LONG thevalue)

{
WORD mask, scratch;

#ifdef DIAG
printf("setting interrupt mask to: %lx\n", thevalue);

#endif

mask = (WORD) (thevalue & OxffffL);
if (sendchipset-cmd(SETINTRPTMASK, CHIPSET-SET, 1, &mask,

&scratch) == ERROR)

{
#ifdef DIAG

printf("<Setting interrupr mask to: %lx failed.>\n",

the value);
#endif

return ERROR;

}

return OK;

}

LONG getintrpt(void)

WORD axisstatus, scratch;

if (send chipsetcmd(GETINTRPT, CHIPSETREQUEST, 1, &scratch,

&axisstatus) == ERROR)
(

#ifdef DIAG
printf("<Getting interrupr status failed.>\n");

#endif
return ERROR;

)

#ifdef DIAG
printf("getting interrupt status : 4x\n", axisstatus);

#endif

return((LONG) axisstatus);

}

STATUS rst_intrpt(LONG the-value)

WORD mask, scratch;

#ifdef DIAG
printf("resetting interrupt using mask: %lx\n", the-value);

#endif

mask = (WORD) (thevalue & OxffffL);
if (sendchipset-cmd(RSTINTRPT, CHIPSET_SET, 1, &mask, &scratch)

== ERROR)

#ifdef DIAG
printf("Resetting interrupt using mask: %lx failed.>\n",

the-value);
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#endif
return ERROR;

}

return OK;
}

LONG getintrpt mask (void)

{
WORD interrupt-mask, scratch;

if (send-chipset-cmd(GETINTRPTMASK, CHIPSETREQUEST, 1, &scratch,
&interrupt-mask) == ERROR)

{
#ifdef DIAG

printf("<Getting interrupt mask failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf ("Interrupt mask: %04x\n", interrupt-mask);

#endif

return ((LONG) interrupt-mask);

}

/*

STATUS/MODE PROCESSING

*/

STATUS clr_status(void)
{

WORD scratchi, scratch2;

#ifdef DIAG
printf("clearing status...\n");

#endif

if (sendchipset-cmd(CLRSTATUS, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Clearing status failed.>\n");
#endif

return ERROR;

I

return OK;

}

STATUS rst status(LONG the-value)

{
WORD scratchi, scratch2;
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#ifdef DIAG
printf("clearing status of selected bits using mask: %lx\n\r",

the value);
#endif

if (sendchipsetcmd(RSTSTATUS, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Clearing status of selected bits using mask: %lx
failed.>\n", the-value);
#endif

return ERROR;

}

return OK;

)

LONG get status(void)

{
WORD axisstatus, scratch;

if (send chipset-cmd(GETSTATUS, CHIPSETREQUEST, 1, &scratch,

&axisstatus) == ERROR)
{

#ifdef DIAG
printf("<Getting status failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf("getting status : %x\n", axis-status);

#endif

return((LONG) axisstatus);

}

LONG get mode (void)

{
WORD miscmodeinfo, scratch;

if (sendchipsetcmd(GETMODE, CHIPSET_REQUEST, 1, &scratch,
&miscmode-info) == ERROR)

{
#ifdef DIAG

printf("<Getting mode failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf ("mode: %x\n", miscmode-info);

#endif

return((LONG) miscmode-info);
}
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/*

ENCODER

*/

STATUS set cnts(LONG thevalue)

{
WORD data, scratch;

#ifdef DIAG
printf("setting # counts / rev to: %lx\n", thevalue);

#endif

data = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(SETCNTS, CHIPSETSET, 1, &data, &scratch)
== ERROR)

{
#ifdef DIAG

printf("<Setting # counts / rev to: %lx failed.>\n",
the-value);
#endif

return ERROR;

}

return OK;

}

STATUS setcaptindex(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("setting capture mode to index signal\n");

#endif

if (sendchipset-cmd(SETCAPTINDEX, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting capture mode to index signal failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS setcapt-home (void)
{

WORD scratchi, scratch2;

#ifdef DIAG
printf("setting capture mode to home signal\n");

#endif
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if (sendchipset-cmd(SETCAPTHOME, CHIPSETSET, 0, &scratchl,

&scratch2) == ERROR)

#ifdef DIAF
printf("<Setting capture mode to home signal failed.>\n");

#endif
return ERROR;

}

return OK;

}

LONG getcnts(void)

WORD counts, scratch;

if (send-chipset-cmd(GETCNTS, CHIPSET_REQUEST, 1, &scratch,

&counts) == ERROR)

#ifdef DIAG
printf("<Getting counts failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf("# counts/rev: %04x\n", counts);

#endif

return( (LONG) counts);

}

LONG getcapt(void)

WORD data[2], scratch;
LONG index;

if (send chipsetcmd(GETCAPT, CHIPSETREQUEST, 2, &scratch, data)

== ERROR)

#ifdef DIAG
printf("<Getting capture failed.>\n");

#endif
return ERROR;

}

index = ((data[HIGH] & OxffffL) << 16) 1 (data[LOW] & OxffffL);

#ifdef DIAG
printf("index: %lx\n", index);

#endif

return((LONG) index);

}

/*
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MOTOR

*/

STATUS set_outputpwm(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf( "setting output mode to PWM... \n");

#endif

if (send chipsetcmd(SETOUTPUTPWM, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting output mode to PWM failed.>\n");

#endif
return ERROR;

}

return OK;

}

STATUS set_output-dacl2(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("setting output mode to DAC12...\n");

#endif

if (send chipset-cmd(SETOUTPUTDAC12, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

(
#ifdef DIAG

printf("<Setting output mode to DAC12 failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS setoutput-dacl6(void)

WORD scratchi, scratch2;

#ifdef DIAG
printf ("setting output mode to DAC16...\n");

#endif

if (sendchipsetcmd(SETOUTPUTDAC16, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
*ifdef DIAG
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printf("<Setting output mode to DAC16 failed.>\n");

#endif
return ERROR;

}

return OK;

}

STATUS mtron(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf( "turn motor on ... \n");

#endif

if (sendchipsetcmd(HTRON, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Turning motor on failed.>n");
#endif

return ERROR;

}

return OK;

}

STATUS mtrof f(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf( "turn motor off... \n");

#endif

if (sendchipset-cmd(MTROFF, CHIPSET SET, 0, &scratchl,

&scratch2) == ERROR)
{

#ifdef DIAG
printf ("<Turning motor off failed.>\n");

#endif
return ERROR;

}

return OK;

}

STATUS setmtrcmd(LONG the-value)

{
WORD mtr-cmd, scratch;

#ifdef DIAG
printf ("setting motor cmd to: %lx\n", the-value);

#endif

mtr_cmd = (WORD) (the-value & OxffffL);
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if (send-chipsetcmd(SETMTRCMD, CHIPSETSET, 1, &mtrcmd,

&scratch) == ERROR)

#ifdef DIAG
printf ("<Setting motor command to: %lx failed.>\n",

the value);
#endif

return ERROR;

}

return OK;

}

/* this routine is only available on the -b chipsets */

STATUS setbufmtr-cmd(LONG thevalue)

WORD data, scratch;

#ifdef DIAG
printf ("setting buffered motor command to: %lx\n\r", thevalue);

#endif

data = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(SETBUFMTRCMD, CHIPSETSET, 1, &data,

&scratch) == ERROR)

#ifdef DIAG
printf ("<Setting buffered motor command to: %lx

falied.>\n", the-value);
#endif

return ERROR;

}

return OK;

}

/* this routine is only available on the -b chipsets */

LONG get-bufmtrcmd(void)

WORD bufmtrcmdvalue, scratch;

if (sendchipset-cmd(GETBUFMTR_CMD, CHIPSETREQUEST, 1,
&scratch, &bufmtrcmdvalue) == ERROR)

#ifdef DIAG
printf ("<Getting buffer motor command failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf ("\n\r\rdouble buffered motor cmd value: %04x\n\r",

bufmtrcmd value);
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#endif
return ((LONG) bufmtrcmdvalue);

}

LONG get-output mode(void)

{
WORD output-mode, scratch;

if (send chipsetcmd(GETOUTPUTMODE, CHIPSET_REQUEST, 1, &scratch,
&output-mode) == ERROR)

#ifdef DIAG
printf("<Getting output mode failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf("Outputmode: %s\n", (output-mode == 0) ? "PWM"

((outputmode == 1) ? "DAC12" : "DAC16"));
#endif

return ((LONG) output-mode);

}

/*

MISCELLANEOUS

*/

STATUS axis on(void)

WORD scratchi, scratch2;

#ifdef DIAG
printf("turn axis on...\n");

#endif

if (send-chipset-cmd(AXISON, CHIPSETSET, 0, &scratchl, &scratch2)
== ERROR)

#ifdef DIAG
printf("<Turnning axis on failed.>\n");

#endif
return ERROR;

}

return OK;

}

STATUS axis off (void)

WORD scratchi, scratch2;

#ifdef DIAG
printf("turn axis off...\n");
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#endif

if (sendchipset-cmd(AXISOFF, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Turnning axis off failed.>\n");

#endif
return ERROR;

}

return OK;

}

LONG getactl_pos(void)

{
WORD data[2], scratch;

LONG actualposition;

if (send chipsetcmd(GETACTLPOS, CHIPSETREQUEST, 2, &scratch,
data) == ERROR)

{
#ifdef DIAG

printf("<Getting actual position failed.>\n");
#endif

return ERROR;

}

actual-position = ((data[HIGH] & OxffffL) << 16) 1 (data[LOW] &

OxffffL);

#ifdef DIAG
printf( "actualposition: %ld\n", actual-position);

#endif

return(actualposition);

}

STATUS set_lmt_sense(LONG the_value)

WORD limitsense, scratch;

#ifdef DIAG
printf("setting limit sense to: %lx\n", the-value);

#endif

limitsense = (WORD) (thevalue & OxffffL);

if (send chipsetcmd(SET_LMT_SENSE, CHIPSETSET, 1, &limitsense,

&scratch) == ERROR)

#ifdef DIAG
printf("<Setting limit sense to: %lx failed.>\n",

the-value);
#endif

return ERROR;

}
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return OK;

}

LONG get lmt_swtch(void)

WORD limitswitch, scratch;

if (send chipsetcmd(GET_LMT_SWTCH, CHIPSETREQUEST, 1, &scratch,
&limitswitch) == ERROR)

{
#ifdef DIAG

printf("<Getting limint switich failed.>\n");
#endif

return ERROR;

#ifdef DIAG
printf("limit switch: %04x\n\n", limitswitch);

#endif

return((LONG) limitswitch);

}

STATUS hmts-on(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf('setting limit switches to on...\n");

#endif

if (sendchipset-cmd(LMTSON, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting limit switich to on failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS lmts off (void)

WORD scratchl, scratch2;

#ifdef DIAG
printf('setting limit switches to off...\n");

#endif

if (sendchipset-cmd(LMTSOFF, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

#ifdef DIAG
printf("<Setting limit switched to off failed.>\n");
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#endif
return ERROR;

}

return OK;
}

LONG get home (void)

{
WORD homestatus, scratch;

if (send-chipsetcmd(GETHOME, CHIPSETREQUEST, 1, &scratch,
&homestatus) == ERROR)

{
#ifdef DIAG

printf("<Getting home status failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf("Home Status: %04x\n", home-status);

#endif

return((LONG) homestatus);

}

STATUS setsmpltime(LONG the_value)

{
WORD sampletime, scratch;

#ifdef DIAG
printf ("setting sample time to: %lx\n", the-value);

#endif

sample-time = (WORD) (thevalue & OxffffL);
if (sendchipset-cmd(SETSMPLTIME, CHIPSETSET, 1, &sampletime,

&scratch) == ERROR)
{

#ifdef DIAG
printf("<Setting sample time to: %lx failed.>\n",

the-value);
#endif

return ERROR;

}

return OK;

}

LONG getsmpltime (void)

{
WORD sampletime, scratch;

if (send chipset-cmd(GET_SMPLTIME, CHIPSET_REQUEST, 1, &scratch,
&sampletime) == ERROR)
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{
#ifdef DIAG

printf("<Getting sample time failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf ("Sample time: %04x\n", sampletime);

#endif

return( (LONG) sampletime);

}

STATUS reset(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf ("resetting chipset... \n");

#endif

if (sendchipset-cmd(RESET, CHIPSETSET, 0, &scratchl, &scratch2)
== ERROR)

#ifdef DIAG
printf ("<Resetting failed.>\n");

#endif
return ERROR;

}

return OK;

}

LONG get-vrsn (void)

{
WORD data, scratch;
WORD generation, num axis, part num, dash num, majversionnum,

minversion num;

if (send-chipset-cmd(GETVRSN, CHIPSETREQUEST, 1, &scratch, &data)

== ERROR)
(

#ifdef DIAG
printf ("<Getting version failed. >\n");

#endif
return ERROR;

)

generation = (data & 0xc000) >> 14;
numaxis = ((data & 0x3800) >> 11)+1;
part-num = (data & 0x0700) >> 8;
dashnum = (data & OxeO) >> 5;
maj_versionnum = (data & 0x18) >> 3;
minversionnum = data & 7;

#ifdef DIAG
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printf ("P/N: %04x6s, version #: %Od.%Od\n",
(generation << 12) + (num_axis << 8) + part num, (dash num ==

0) ? "" : " -P ", majversion num, minversionnum);
}

#endif

return((LONG) data);

}

LONG gettime (void)

{
WORD data[5], scratch;
LONG chiptime;

if (send-chipsetcmd(GETTIME, CHIPSET_REQUEST, 2, &scratch, data)
== ERROR)

{
#ifdef DIAG

printf("<Getting time failed.>\n");
#endif

return ERROR;

}

chiptime = ((data[HIGH] & OxffffL) << 16) j (data[LOW] & OxffffL);

#ifdef DIAG
printf ("chip time: %lx\n", chiptime);

#endif

return(chiptime);

}

/*

ADDITIONAL COMMANDS FOR MC1401A

*/

STATUS stop(void)

WORD scratchi, scratch2;

#ifdef DIAG
printf ("stop... \n");

#endif

if (sendchipsetcmd(STOP, CHIPSETSET, 0, &scratchl, &scratch2)
== ERROR)

{
#ifdef DIAG

printf ("<Stoping failed.>\n");
#endif

return ERROR;
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}

return OK;

STATUS smooth-stop (void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf("smooth stop... \n");

#endif

if (sendchipsetcmd(SMOOTHSTOP, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Smooth stop failed.>\n");
#endif

return ERROR;

}

return OK;
}

STATUS setmtn-cmplt-brk(void)

{
WORD scratchi, scratch2;

#ifdef DIAG
printf ("set-mtn-cmpltbrk.... \n");

#endif

if (sendchipsetcmd(SETHMTNCMPLTBRK, CHIPSET SET, 0,
&scratchl, &scratch2) == ERROR)

f
#ifdef DIAG

printf("<Setting motion complete break failed.>\n");
#endif

return ERROR;

}

return OK;
}

STATUS setextbrk(void)

(
WORD scratchi, scratch2;

#ifdef DIAG
printf("set extbrk...\n");

#endif
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if (send-chipset-cmd(SETEXTBRK, CHIPSETSET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting ecterani break failed.>\n");
#endif

return ERROR;

}

return OK;

}

STATUS setmtrlmt(LONG thevalue)

{
WORD data, scratch;

#ifdef DIAG
printf ("set mtr_lmt to: %lx\n", the-value);

#endif

data = (WORD) (thevalue & OxffffL);

if (sendchipsetcmd(SETMTRJLMT, CHIPSETSET, 1, &data,
&scratch) == ERROR)

{
#ifdef DIAG

printf("<Setting motor limit to: %lx failed.>\n",
the-value);
#endif

return ERROR;

}

return OK;

}

STATUS setmtrbias(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf ("set-mtrbias to: %lx\n", the-value);

#endif

data = (WORD) (thevalue & OxffffL);

if (sendchipset-cmd(SETMTRBIAS, CHIPSETSET, 1, &data,
&scratch) == ERROR)

{
#ifdef DIAG

printf("<Setting motor bias to: %lx failed.>\n",
the-value);
#endif

return ERROR;
}
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return OK;

}

STATUS setactlpos(LONG thevalue)

{
WORD data[2], scratch;

#ifdef DIAG
printf("setting actual destination position to: %lx\n",

the value);
#endif

data[HIGH] = (WORD) ( (thevalue >> 16) & OxffffL);

data[LOW] = (WORD) (the_value & OxffffL);

if (sendchipset-cmd(SETACTLPOS, CHIPSETSET, 2, data,
&scratch) == ERROR)

{
#ifdef DIAG

printf("<Setting actual destination position to: %lx
failed.>\n", the-value);
#endif

}

return OK;

}

LONG get-mtr-lmt (void)

WORD mtrLimit, scratch;

if (send chipsetcmd(GETMAXACC, CHIPSETREQUEST, 1, &scratch,
&mtrLimit) == ERROR)

{
#ifdef DIAG

printf ("<Getting motor limit failed.>\n");
#endif

return ERROR;

}

#ifdef DIAG
printf ("motor limit: %x\n", mtrLimit);

#endif

return( (LONG) mtrLimit);

}

LONG get mtrbias(void)

WORD mtrBias, scratch;

if (send chipsetcmd(GET_MAX_ACC, CHIPSET REQUEST, 1, &scratch,
&mtrBias) == ERROR)
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#ifdef DIAG
printf ("<Getting motor bias failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf ("motor bias: %x\n", mtrBias);

#endif

return( (LONG) mtrBias);

)

LONG get mtr-cmd (void)

{
WORD mtrCommand, scratch;

if (send-chipsetcmd(GETMAXACC, CHIPSETREQUEST, 1, &scratch,
&mtrCommand) == ERROR)

#ifdef DIAG
printf("<Getting motor command failed.>\n");

#endif
return ERROR;

}

#ifdef DIAG
printf ("motor limit: %x\n", mtrCommand);

#endif

return( (LONG) mtrCommand);

}

/*

Routine: hardwarereset

Function:
This routine sends a hardware reset command to the

chipset.

Arguments:
none

Return Arguments:
none

*/

void hardwarereset(void)

outpx (RESET_PORTADDRESS, RESETCODE) ;
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}

void hardwareunreset(void)

{
outp_x(RESETPORTADDRESS, UNRESETCODE);

I

void enableamps (void)

{
outp_x (AMP_ENABLEPORT, AMPENABLEALL);

}

void enableamp(int axis)
{

switch (axis)

{
case 1: outp_x(AMPENABLEPORT, AMPENABLE_4); break;
case 2: outp-x(AMPENABLEPORT, AMPENABLE_2); break;
case 3: outpx(AMPENABLEPORT, AMPENABLE_3); break;
case 4: outpx(AMP_ENABLE_PORT, AMP_ENABLE_4); break;

}
}

void disableamp (void)

{
outpx (AMP_ENABLEPORT, 0);

}

BYTE readhome(void)

{
return inpx (HOMESTATUSPORT_1);

}

/*

Routine: waitforinterrupt

Function:
This routine polls the host interrupt bit of the status

port
and returns when an interrupt is active (the motion

chipset
is asserting the hostinterrupt signal). Depending on

the
IRQ selection setting of the board, a chipset host

signal
may or may not generate a DOS interrupt. In any case

this
routine only looks at the 'polled' mode bit in the

status
word. Note that this routine has no waiting period

timeout. If
the chipset is not receiving power, or if there is some

other
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hardware I/O problem, this routine many wait in an

"infinite loop".

Arguments:
none

Return Arguments:
none

*/

/*

void wait_forinterrupt(void)

{
BYTE the-byte;

while (TRUE)

{
the_byte = inp-x(INTERRUPTPORTADDRESS);

if ((thebyte & HOSTINTERRUPTBIT__HASK) == INTERRUPTBITSENSE)
return;

}
}
*/
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Appendix D: Source Code for Motion Control (motion. o)

#include "vxWorks.h"
#include "iv.h"
#include "ioLib.h"
#include "iosLib.h"
#include "intLib.h"
#include "errnoLib.h"
#include "sysLib.h"
#include "semLib.h"
#include "stdio.h"
#include "motion.h"
#include "pmdio.h"
#include 'math.h"

/*Global Variables*/
int CurrentAxis = 0;
float CountsPerMM = 100.0;
float MMperCount = 0.0;
long ZeroPos = 0;
long MotionRange = 0;

static long abs(long value)

{
value = (value<0)? -value value;
return value;

}

void WaitForSettle()

unsigned long t1;
while ((tl=gettimeo) > (Oxffffffff - 10000));
while (gettime() < t1+1000);

}

STATUS SetPID(long P, long I, long D, long ILM)

{
if (setkp(P) == ERROR)

return ERROR;

if (set-ki(I) == ERROR)
return ERROR;

if (set kd(D) == ERROR)
return ERROR;

if (set_i_lm(0) == ERROR)
return ERROR;

if (setkvff(0) == ERROR)
return ERROR;

if (set_i_lm(ILM) == ERROR)
return ERROR;
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return OK;

}

STATUS Reset ()

hardwarereset(;

hardwareunreset;

if (reset() == ERROR)
return ERROR;

disableamp );

return OK;

}

STATUS Stop()

{
if (stop() == ERROR)

return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

return OK;

}

STATUS SelectAxis(int Axis)

{
disableamp );

switch (Axis)
(

case 1:
if (setl() == ERROR)

return ERROR;

break;
case 2:

if (set_2() == ERROR)
return ERROR;

break;
case 3:

if (set_3() == ERROR)

return ERROR;
break;

case 4:
if (set_4() == ERROR)

return ERROR;
break;

}

if (Stop() == ERROR)
return ERROR;
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if (set_ smpltime(SMPL) == ERROR)
return ERROR;

if (set_auto-stopoff() == ERROR)
return ERROR;

if (axison() == ERROR)
return ERROR;

if (mtr-on() == ERROR)
return ERROR;

enable-amp (Axis) ;

CurrentAxis = Axis;

return OK;

}

/* Move "counts" relative from the current position in "tmis"
milliseconds */
STATUS MoveCounts(long counts, int tms)
{

long destpos;
long vel;
long acc;
float fsmpl-ms;
float ftempl, ftemp2;
float ftms;
float fcounts;

if (stop() == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

fsmpl-ms = (float) SMPL * 100 / 1000;
ftms = (float) tms;
fcounts = (float) abs(counts);

destpos = getactlpos() + counts;

ftempl = fcounts / (ftms / fsmpl-ms);
vel = (long) (ftempl * 65536);

ftemp2 = (ftms*1000/10000) / fsmpl-ms;
ftempl = ftempl/ftemp2;
acc = (long) (ftempl * 65535);

#ifdef DIAG
printf ("\n smpl ms: %10.4f", fsmplms);
printf("\n ftms: %10.4f", ftms);
printf("\n fcounts: %10.4f", fcounts);
printf ("1\n destpos: %1d", destpos);
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printf("\n vel: %d", vel);
printf("\n acc: %d\n\n", acc);

#endif

if (set-prfl-trap() == ERROR)
return ERROR;

if (setpos(destpos) == ERROR)
return ERROR;

if (set-vel(vel) == ERROR)
return ERROR;

if (set-acc(acc) == ERROR)
return ERROR;

if (clrstatus() == ERROR)
return ERROR;

if (axison() == ERROR)
return ERROR;

if (mtron() == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

return OK;

}

/* Move "MM" relative to the "ZeroPos" in "tms" millisec */
STATUS MoveArm(long MM, int tms)

{
long actualpos;
long absPos;
long movecount;
long counts;

counts = MM * CountsPerMM;
absPos = ZeroPos + counts;
actualPos = getactlposo;
movecount = absPos - actualPos;

#ifdef DIAG
printf (1" \nCountsPerMM=%li", CountsPerMM);
printf ("\ncounts=%li", counts);

printf("\nabsPos=%li",absPos);
printf("\nactualPos=%li",actualPos);
printf (" \nmovecount=%li",movecount);
printf("\n");

#endif

return MoveCounts( movecount, tms );
}

/* Move arm until home sensor is ON using the specified velocity */
STATUS CaptureHome(long vel, short int nDir)

{
/* stop any motion */
if (Stop() == ERROR)
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return ERROR;

/* Abort if home sensor is already ON */
if ((read home() & (0x01 <<((CurrentAxis-1) * 4))) != 0)

return OK;

/* setup motion parms */

if (setprfltrap() == ERROR)
return ERROR;

if (set_actlpos(0) == ERROR)
return ERROR;

if (setpos(0) == ERROR)
return ERROR;

if (set vel(NORMALVEL) == ERROR)
return ERROR;

if (set-acc(NORMALACC) == ERROR)
return ERROR;

if (axis-on() == ERROR)
return ERROR;

if (mtr-on() == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

/* set up for home capture */
if (getcapt() == ERROR) /* reset the capt hw */

return ERROR;

if (setcapthome() == ERROR)
return ERROR;

if (clr_status() == ERROR)
return ERROR;

if (setpos( nDir * BACKWARD * ONEREVCOUNT/2) == ERROR)
return ERROR;

if (set vel(vel) == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

/* set auto smooth stop */
if (smoothstop() == ERROR)

return ERROR;

if (setextbrk() == ERROR)
return ERROR;

/* wait till home capture is on */
while ( (get-status() & GSPOSITIONCAPTURED) == 0);

/* check if error occured */
if (getstatus() & GSMOTIONERROR)

{
/* resume pmd */
if (clr_status() == ERROR)

return ERROR;
if (synchprfl() == ERROR)

return ERROR;
if (GoUpdate() == ERROR)

return ERROR;
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}

return OK;

}

/* Implements the Seek Home algorithm */
STATUS Home(short int nDir)

/* if not at home */
if ((read home() & (0x01 << ((CurrentAxis-1) * 4))) == 0)

/* fast home */
if (CaptureHome(NORMALVEL/10, nDir) == ERROR)

return ERROR;

}
WaitForSettle();

/* repeat move out N counts until not at home */
while ((read home() & (0x01 <<((CurrentAxis-1) * 4))) 1= 0)

if (set actlpos(0) == ERROR)
return ERROR;

if (MoveCounts(nDir * FORWARD * 200,50) == ERROR)

return ERROR;
while ((getstatus() & GSMOTIONCOMPLETE) == 0);

}
WaitForSettle();

/* slow home */
if (CaptureHome(NORMALVEL/500, nDir) == ERROR)

return ERROR;
WaitForSettle();

/* should be home now */
if (Stop() == ERROR)

return ERROR;

if (clr_status() == ERROR)
return ERROR;

if (set_actlpos(0) == ERROR)
return ERROR;

return OK;

)

STATUS CaptureIndex(long vel)

{
/* stop any motion */
Stop();

/* setup motion parms */
if (setprfltrap() == ERROR)

return ERROR;

if (set vel(vel) == ERROR)
return ERROR;
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if (setacc(NORMALACC) == ERROR)
return ERROR;

if (axison() == ERROR)
return ERROR;

if (mtron() == ERROR)
return ERROR;

/* setup for index capture */
if (getcapt() == ERROR) /* reset the capt hw */

return ERROR;
if (setcaptindex() == ERROR)

return ERROR;
if (clr_status() == ERROR)

return ERROR;

if (set-pos(getactlpos() + (FORWARD * ONEREVCOUNT/2)) ==

ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

/* wait till home capture is on */
while ((get-status() & GSPOSITIONCAPTURED) == 0);

/* stop the motion */
if (smoothstop() == ERROR)

return ERROR;
if (GoUpdate() == ERROR)

return ERROR;

return OK;

}

LONG GetStatus()

return getstatus();

}

void RatioOfMMtoCounts (float mm, float counts)
{
printf("Counts: %f, MM: %f.\n", counts, mm);

CountsPerMM = (int) (counts / mn);
printf ("CountsPerMN: %f. \n", CountsPerMM);

MMperCount = mm / counts;

}

void SetArmZeroPosition(long counts)

{
ZeroPos = counts;

)

void SetMotionRange(long counts)

{
NotionRange = counts;

}
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STATUS GetArmPosition(long *MM)

{
LONG lPosition = getactl_pos();

if (lPosition == ERROR)
return ERROR;

*MM = (lPosition - ZeroPos) * MMperCount;

return OK;

}

STATUS GetArmCount(long *counts)

{
*counts = getactlposo;

if (*counts == ERROR)

return ERROR;

return OK;
}

/* make sure that the previous data in the buffer is updated
before the the new data is put into the buffer */

STATUS GoUpdate ()
{
LONG prev-time, currtime;

prev-time = currtime = get-time();
/* wait until the next x servo loop occurs */
while ( currtime < (prevtime + DELAY-LOOPS) )
currtime = get-time(;

return update);
}

void pmdHrdInit(int waitState)

{
short int adl = OxO6OO I (waitState % 16);
sysOutWord( Oxf400, adl );
sysOutWord( Oxf402, 0x0040 );
sysOutWord( Oxf406, Ox3f );
sysOutWord( Oxf404, Oxfc0l );

I
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