The Communication Links in ProCell

- Intel386EX Peripheral Device Interfaces
by

Ning Ye

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering
and Master of Engineering in Electrical Engineering

at the Massachusetts Institute of Technology

ENG
Y
January 10, 2000 ASSSE’}%SELTOSL%SJ&TUTE
ene Tnwn
Copyright 2000 Ning Ye. All rights reserved. JUL 27 2000
LIBRARIES

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

Author

Department of Electﬂical/ﬁngineering and Computer Science

Certified by

A

Kamal Youcef-Toumi
Thesis Supervisor
b,,ﬁ /’i;

Accepted by

—

g Arthur c\sw
Chairman, Department Committee on Graduate Theses—.

The Communication Links in ProCell
- Intel386EX Peripheral Device Interfaces
by
Ning Ye

Submitted to the
Department of Electrical Engineering and Computer Science

January 10, 2000

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering
and Master of Engineering in Electrical Engineering

ABSTRACT

The communication links in a photoresist processing system are crucial issues of the
automation in semiconductor production facilities. On the module control level in
ProCell, the Intel386EX microprocessor interfaces with the peripheral devices via three
different data transfer protocols. Both the hardware and the software for these three
protocols are discussed in detail. The device drivers for two of the protocols, RS-232
serial communication and Controller Area Network are written in C in a VxWorks, real-
time operating system. A set of diagnostic procedures called echo is developed to test the
driver for a serial device SC26C92 in RS-232 serial communication. Overall testing was
done in both hardware and software.

Thesis Supervisor: Kamal Youcef-Toumi

Title: Associate Professor

il

Acknowledgements

The author wishes to acknowledge some of the people who contributed to the
completion of this thesis. The Track Division of Silicon Valley Group, Inc. in San Jose,
California provided a wonderful opportunity for me to carry out the work for this thesis.
I must thank the person who helped me the most, Charles Lee, my supervisor at SVG
who was instrumental in helping me define the research topic and providing a stimulating
research environment. Many engineers at SVG who worked on the ProCell system
contributed to the thesis work both directly and indirectly.

I would like to thank Professor Kamal Youcef-Toumi for traveling all the way to
San Jose to help me with writing of this thesis and directing the course of the thesis work.
His time and patience is greatly appreciated.

Additionally, I would like to thank my parents for their unending encouragement
and support. Without them I surely would never have reached this point.

Ning Ye

Massachusetts Institute of Technology
January, 2000

iii

Table of Contents

ABSTRACT ...ttt et et e et e e e e s ere e e e s e bee s e aeeenns ii
ACKNOWIBAZEIMEIIES «..eoviiiiiiiii ittt e il
Table Of CONENLSeiiiiiiiiiiieie et et bt e e e eeesnaneaee s iv
LSt OF FIGUIES «oeeeeeereieeeeee ettt ettt vi
Chapter 11 INtrodUCHION.oiiiiiiiiii it 1
Chapter 2: Photoresist ProCess........ccooiiviiiiiiiiiiiiii e 3
2.1 INtrOAUCHIONcooiiiiiiiiiiii et 3
2.2 PhOtOresSiSt PIOCESS ..uvvveeeiriiieiee ittt 3
2.3 SVG’S ProCell SYSIEIMueiiiiiiiiiiiieecee et iirae e e e 4
2.4 ProCell’s Control System ArchiteCtureccuueeeiiieiiiriieiiiiiee e 5
2.5 SUIMIMATY ...eeviiiiiieeieiee ettt e e s s e e eess e e e s e e nnaannaeaesesnnes 7
Chapter 3: Module Controller SYStem..........c...oooiiiiiiiiiiiiiiiicc e 8
3.1 OVEIVIEW ettt e e e e e e e ne e e e e e e e e e e e e e 8
3.2 Module Controller BOArd..........ccioviiriiiiiiiiiiien ettt e 9
3.2 Communication Protocols.............cocoiiiiiiiiiii e 10
3.2 SUMIMATY ...uiieiiiieeiiiii et e e e e e e e s e e e e e e e e e e e e e e e e e enns 11
Chapter 4: Device and Driver for RS-232 Serial Communication............ccccoocvieiiiiinn. 12
4.1 INErodUCHION ..c.ceiiiiieiiiiiierite e e 12
4.2 Advantages of Serial Data Transmission in ProCell...............ccccvviiininiinnn, 12
4.3 Philips SC26C92 DUARTcocoiiiiniiiriiiiii it 13
4.4 Device Driver for Philips SC26C92 DUARTccceiiiiiiiiiiiiii i 14
4.5 Introduction to Devices and Drivers in VXWOIKS.........cocoviiiiiiiiiiiinn . 16
4.5.1 T/O system in VXWOTIKS ...ceoeeiiiiiiiiiii e 16
4.5.2 Devices and DIIVETScoooiuieiiiiiiiiiieie et e 18
4.5.3 Opening a File/DevViICecccceviiiriiieiiiiiiiieiie i 19
4.5.4 Reading Data from the File/Device.........cocovvivioiiieiciiiiiiiiiiiiieee 21
4.5.5ClosING @ FIle ...cooiiiiiiiiiii et 25

4.6 Test for SC2OCI2 DIIVEToouiiiiiiieiie ettt et 25
4.6.1 TESt SEL-UP ...eeiiriiiiiiii ettt s s 25
4.6.2 “ECRO” ..ottt e 26
4.6.3 SCC TESE ettt et et e s e e e e e e s s s s e 28

4.7 SUINIMATY ...ooiiiiiiiiiiiieiieieee et e e et b aaa b bbbt e s e esnsbesarssnsse s 30
Chapter 5: Controller Area Network (CAN)ooveiiiiiiiiiii e 31
5.1 INEFOAUCTION ..ottt 31
5.2 HOW CAN WOTKS ..eiieeieiiiiiiiiiee ettt te et ee e eaaeee e ee e e s e aeae e e e ee e s et teeeeaeaeseaesessesannne 31

iv

5.2.1 Principles of Data EXChangecccciiiiiiiiiiiiiiiiicc e 31

5.2.2 CAN Protocol ..ottt 32
5.2.3 Brror DeteCtion . coouveieiiieiiic ettt 34

5.3 CAN Controller 82527eovmieeiiiiieieieie et 35
5.4 Driver for CAN Controller 82527coivvoiiiiiiiiiiiiiiiiiiiii e 36
5.5 SUITIIIATY «o e ieeteee ettt et ettt e s sts et s e e e s saben e ee e s enbeee s e ane e s sabbe e ennane e sesasnnneneessnnaas 38
Chapter 6: Paralle] CommuniCationccccooiiiiiiiiiiiiin i 40
6.1 INFOAUCHION . ..oereeieeeeeiiei ettt ettt et e e s e s e e e e e s e s s ananannas 40
6.2 Interface between 386 and Coater’s AImS........cocorrriiiiiiiiiiiciiicie e, 40
6.3 Advanced Multi- Axis Motion Control Chipset, MC1401Aby PMD..................... 41
6.4 Data Transfer Protocol...........ouiiiiiiiiiiiee e 42
6.5 SUIMIMIATY ...ovvivierieiieiiiiiiie it ee e e e s tr e e e e s s et an e ee st e e eaeeeeeeeesaaseas 44
Chapter 7: CONCIUSIONS.....uutiiiiiiiiiiiitireee ittt ee b e s e eeeeaeaaes 45
APPENAICES ...ttt e e e e e e e e e e na s 47
Appendix A: Source Code for SCC Driver (SCC.C) .oviiiviiiiiiaiiiiiiiicieiiee e, 47
Appendix B: Source Code for echo (SCCIESL.CCP) .ooovvvrriiniiiiiiiiiiiiiii e, 61
Appendix C: Source Code for PMD Chipset’s Interface (pmdio.c)cc...ooeeiiin. 67
Appendix D: Source Code for Motion Control (Imotion.o)cccocoviiieniiiininnnn 118
|3 (5] (= 1oL T OO U ROPPPPRPP 126

List of Figures

Figure 1: Silicon Valley Group’s ProCell SyStem.cccooeiuuiiiiiiiieerniiieneiiieeeeeeiieeeen 4
Figure 2: View of ProCell from top down............oooiiiiice 5
Figure 3: ProCell Systems Architecture / Communication Diagram.cccccceeerveninnnn.n. 6
Figure 4: Block diagram of ProCell’s control System.ccocviiiiiiiiiiiiniiiiiniiiiieiee s 8
Figure 5: The Module Controller Board in ProCell and the Interfaces. 10
Figure 6: Interfacing RS-232 ports t0 devICes.ooeiiueriiieiiiiiiiiiice it 14
Figure 7: Call to I/O Routine Open(). [part 1] ..ot 22
Figure 8: Call to I/O Routine Open(). [part 2]cccooocvieiiiiiniiiiiiiiiiiiiie e, 23
Figure 9: Call to I/O read ROULINE..........oocoiiiiiiiiiiiiiiiiii e 24
Figure 10: Set-up for “Echo” Test. ... 26

Figure 11: Wiring diagram between communication channel 1&2 (Null Modem Wiring).

... 26
Figure 12: Block Diagram of Echo between Coml and Com2. ..., 27
Figure 13: Message frame for standard format (CAN specification 2.0A). 33
Figure 14: Physical CAN CONNECLION. ...coovurieiiiiriiiiiiiieieeeee e riieeeceeeree e e 36
Figure 15: Block diagram of the MC 1401 Chipset........cccoeeiiiiiiiiiiiiiiiaiiiieieee e 42

vi

Chapter 1: Introduction

Semiconductor manufacturing has been such a rapidly growing industry that it has
enormous impacts on even the most mundane tasks in our daily life. Semiconductor
industry’s products nowadays are found not only in the high tech electronic goods which
semiconductors have been traditionally associated with, but in toys and household
appliances as well. The semiconductor equipment industry produces the process tools
that are used in the complex manufacturing of semiconductors. With the continued
expansion of Internet-related technologies and increasing demand for semiconductors in
new electronics, semiconductor equipment industry has been growing tremendously in
the last decade as a result of chip manufacturer’s increasing production.

This thesis addresses the photoresist processing tools in the semiconductor
equipment industry. A photoresist processing system is usually composed of several
process modules, i.e. coaters, developers, etc. The communications among the individual
modules, as well as the communications between modules and the module controllers,
have always been crucial issues of the automation in semiconductor production facilities,
and must be done in a timely and precise way. Failure in communications in the control
system can lead to severe consequences to possibly cause paralysis of the entire machine.

This thesis presents the architecture of the software control system in an
automated photoresist processing machine. It focuses on the communications and
interfaces between the host microprocessors and the modules. Thesis work includes

development of the drivers for serial communication devices, diagnostic procedures to

ensure the proper functioning of the driver, and parallel communication between the
microprocessor and a motion control chipset.

Chapter 2 gives a rudimentary introduction on photoresist process and Silicon
Valley Group’s ProCell, a photoresist processing system. Chapter 3 focuses on the
module controller board in ProCell. It illustrates how the microprocessor used in module
control interfaces with the modules. Three communication protocols are introduced at
the end of Chapter 3. Chapter 4, Chapter 5 and Chapter 6 address these three types of
communication protocols, RS-232 serial communication, Controller Area Network

(CAN) and parallel communication respectively.

Chapter 2: Photoresist Process

2.1 Introduction

This chapter provides a basic introduction to the integrated circuit (IC) fabrication
and Silicon Valley Group (SVG)’s ProCell system. SVG’s Track Systems Division' is a
world’s leading manufacturer of the complete family of photoresist processing products.
A brief description of the essential process in IC fabrication will help understanding
SVG’s ProCell system, the latest photoresist processing system, designed and

manufactured by SVG’s Track Systems Division.

2.2 Photoresist Process

The fundamental unit of IC manufacturing is a silicon wafer. The essential
process in IC fabrication is the imaging, alignment, and transfer of complex patterns onto
the silicon wafer. A photolithography machine called stepper is used to transfer patterns
from an optical plate called a mask, to photoresist on the wafer. Photoresist is a
photosensitive material that coats the top surface of the wafer [Howe ‘97]. It dissolves in
developer if it has been exposed to light. Patterns are transferred to a wafer by covering
the wafer with photoresist, exposing a pattern in the photoresist and then using the
patterned photoresist as a mask through which to implant dopants or etch the material.
Photoresist processing is a pivotal function, which includes numerous steps performed

repeatedly, such as coating, developing and baking of silicon wafers.

! §$VG’s Track Division is where the author’s thesis work was done.

2.3 SVG’s ProCell System

ProCell from SVG’s Tracks Systems Division is an evolutionary
photolithography processing system that provides a complete line of photoresist
processes, including vapor prime, vacuum-dehydration bake, photoresist coat, hot plate
bake, and wafer temperature control using chill plates. Designed around the principle of
symmetry, ProCell’s cluster configuration jump-starts productivity by departing from the
previous linear track models. This design eliminates the bottlenecks that plague
conventional track systems. Wafers flow smoothly through ProCell with the minimum
number of moves. In fact, this is currently the only platform that can complete the
lithography process in just 12 perfectly balanced moves [Silicon ‘99]. Figure 1 is a
picture of SVG’s ProCell. Figure 2 shows the top view of ProCell’s machine

configuration.

Figure 1: Silicon Valley Group’s ProCell system.’

? Courtesy of Silicon Valley Group.

Figure 2: View of ProCell from top down.’

2.4 ProCell’s Control System Architecture

This section gives a brief description of SVG’s ProCell’s architecture of its
control system. This description gives a background of the thesis work, and shows
where the work done in this thesis fits in the big picture of ProCell’s overall control
system.

Figure 3 illustrates ProCell’s software control system. At the top layer, System
Controller Board is a Pentium based single board computer running Windows NT 4.0.
This is used to host the system control software, where the user displays and operator
controls as well as factory interfaces are provided. The mid-layer is the Machine
Controller Board, which is also the same basic Pentium based SBC board, hosting the
machine control software. It provides high-level module controls, load ports and robot

controls. A Module Controller Board is based on an Intel386EX microprocessor with I/O

3 Courtesy of Silicon Valley Group.

and motion controllers to control each process module. The Module Controller Boards

share the same VxWorks real time operating system environment as the Machine

Controller Board.

System Control
Pentium

Machine Control
Pentium

Load Ports

Module Control
386

Module Control
386

Module Control
386

Devices
(e.g. coater, motor)

Figure 3: ProCell Systems Architecture / Communication Diagram.*

* Courtesy of Silicon Valley Group.

There are 7 main communication links in ProCell Control Systems.

1)

2)

3)

4)

5)

6)

7)

Pentium Window NT to Pentium VxWorks communication links over Ethernet.
Pentium Window NT to Pentium peripherals and VxWorks communication links via
VME BUS.

Pentium VxWorks to 386 VxWorks communication links via CAN-BUS and VME-
BUS.

Pentium VxWorks to OEM (Original Equipment Manufacturer) communication links
via serial or parallel signals.

386 VxWorks to 386 VxWorks peer to peer communication links via CAN-BUS.

386 to I/O control chips and OEM communication links via serial, parallel, or
electrical signals.

Pentium Windows NT to GEM/SECS (General Equipment Manufacturer / Semi-

conductor Equipment Communication Set) hose via HSMS protocol over Ethernet.

2.5 Summary

This chapter gave a brief introduction to semiconductor industry’s photoresist

process and described ProCell, SVG Track Systems Division’s new photoresist

processing system on the whole, as well as its overall control system architecture. The

following chapters will go on to discuss the module controller system in ProCell, with a

focus placed on the communications in the module controller system.

Chapter 3: Module Controller System

3.1 Overview

The Module Controller Boards in ProCell system are based on an Intel386EX
microprocessor with I/O and motion controllers to control each process module in
ProCell (link 6). Refer to Figure 4 for the block diagram of ProCell’s overall control

system to see where the Module Controller Boards are located at in the overall control

system.
System Control
Pentium
Machine Control
Pentium
Module Control Module Control <:> Module Control
386 386 386

Figure 4: Block diagram of ProCell’s control system.

Controls of modules at module level reduce the operation delays by the controller
system, which used to be a key reliability/process concern in the past, because the delays

have been seen to arise from the fact that all controls were at high level in the previous

systems. Distributed module control provides stand-alone module tests. Decisions are

made at module level so that there is less communication to system control level.

3.2 Module Controller Board

Link 6, which is the interface between the Intel386EX-based Module Controller
Board and the modules, together with link 5’s CAN-BUS are where the work of this
thesis has been focused on at SVG’s Track Division. The emphasis of the thesis will be
placed on 386 peripheral device interfaces, mostly on the device drivers’ side. The
Intel1386EX-based Module Controller Boards share the same standard VxWorks real time
operating system.

Figure 5 shows the block diagram for typical interfaces between Intel386EX
microprocessor and the peripheral devices, and communication between two
MiCroprocessors.

The heart of the Module Controller Board is an Intel386EX microprocessor. In
addition to memory and A/D converters, the microprocessor is directly interfaced with a
Universal Asynchronous Receiver/Transmitter (UART), an 82527 serial communication
controller which is a device that performs serial communication according to CAN
protocol, and an advanced multi-axis motion control chipset. They will be discussed in

further detail in later chapters.

Intel386Ex-based Module Controller

— ¥ Controller

FLASH
(Memory)

Motion Controller

Motion

Motor in a module

&P UART

{RS-232 serial

communication ports }

CAN Devices

A/D
Converter

CAN BUS

Figure 5: The Module Controller Board in ProCell and the Interfaces.

3.2 Communication Protocols

RS-232 Serial Communication

Most of the modules communicate with the Module Controller Boards via RS-232

serial ports. In order for the RS-232 serial ports to be connected to the microprocessor,

serial transmission needs to be converted to parallel transmission via UART. A Dual

UART device SC26C92 is used here. Chapter 4 will discuss the serial device driver in

VxWorks and diagnostic procedures for the device driver.

10

Controller Area Network (CAN)

In ProCell, peer module controllers are connected via a serial bus using Controller
Area Network (CAN) protocol. On the Module Controller Board, the microprocessor is
connected with a CAN controller 82527 which, in turn, connects to a CAN Transceiver to
perform the serial communication. The protocol for CAN, the driver for CAN devices in

VxWorks, as well as the physical CAN connection are described in Chapter 5.

Parallel Communication

The MC1401A used here is a 2-IC general-purpose motion control chipset that
provides closed-loop digital servo control for motors. The chipset is controlled by the
host microprocessor that interfaces with the chipset via an 8-bit, bi-directional port. All
communications to/from the chipset consist of packet-oriented messages. A packet is a
sequence of transfers to/from the microprocessor resulting in a chipset action or data
transfer. Chapter 6 will address the protocol and the hardware interface for the parallel

communication.

3.2 Summary

This Chapter gave an overall illustration of the Intel386EX-based Module
Controller Board, as well as the major components on the board. Three communication
protocols were introduced in this Chapter, RS-232 serial communication, Controller Area
Network (CAN) and parallel communication. The next three chapters will be discussing

each communication protocol in substantial detail.

11

Chapter 4: Device and Driver for RS-232 Serial Communication

4.1 Introduction

This Chapter presents the thesis work done on the RS-232 serial communication
device driver in VxWorks on the module control level in ProCell. It begins by discussing
the advantages of serial over parallel data transmission in the ProCell. Then it moves on
to describe a DUART Philips SC26C92 and its device driver in VxWorks, a real-time
operating system run on ProCell. An introduction on I/O system and device driver in
VxWorks in general is given in section 4.4 for a better understanding of SCC driver.
Section 4.5 focuses on the SCC test, a diagnostic procedure written for testing of SCC

driver and the serial communication between two RS-232 ports.

4.2 Advantages of Serial Data Transmission in ProCell

Serial communication is vastly used in ProCell, between the module controilers
and the modules. Using serial data transfer rather than parallel] transfer in ProCell has its
advantages. Serial cable can be much longer than parallel cables. The serial port
transmits a 'l' as -3 to -25 volts and a '0' as +3 to +25 volts whereas a parallel port
transmits a '0’ as Ov and a '1' as 5v. Therefore the serial port can have a maximum swing
of 50V compared to the parallel port which has a maximum swing of 5 Volts. Thus cable
loss 1s not going to be as much of a problem for serial cables than they are for parallel
ones. This is especially desirable in large wafer processing machines like ProCell, where
the host computers could be placed far away from the process modules in the system.
Moreover, serial transmission doesn’t require as many wires as parallel transmission.

When a device has to be mounted a great distance away from the computer, a 3-core

12

cable (Null Modem Configuration) is a lot cheaper that running 19-core or 25-core cable.
The above two features are both desirable in setting up test environment during the

engineering process as well.

4.3 Philips SC26C92 DUART

The Philips Semiconductors SC26C92 Dual Universal Asynchronous
Receiver/Transmitter (DUART) is a single-chip serial communications device that
provides two full-duplex asynchronous receiver/transmitter channels in a single package.
It interfaces directly with the Intel386EX microprocessor. When the SC26C92 is
conditioned to transmit data, the transmitter converts the parallel data from the
microprocessor to a serial bit stream on the TxD output pin. It automatically sends a start
bit followed by the programmed number of data bits, an optional parity bit, and the
programmed number of stop bits. The least significant bit is sent first. When the
SC26C92 is conditioned to receive data, the receiver looks for a mark-to-space transition
of the start bit on the RxD input pin. If a transition is detected, the state of the RxD pin
starts getting sampled every certain time interval depending on the clock until the proper
number of data bits and parity bit (if any) have been assembled, and one stop bit has been
detected. The least significant bit is received first. The data is then transferred to the

Receive buffer [Philips ‘97].

13

DURT

8-bit p?rallel data
/

— D0-D8 Tx/Rx1| RS-232
oy Level L. .~ RS-232
Converter Port 1
FURAZ MAX?232
— o M e s
Port 2

SC26C92

Figure 6: Interfacing RS-232 ports to devices.

Figure 6 shows how to interface RS-232 ports to devices. Note that almost all
digital devices require either TTL or CMOS logic levels. Therefore, the first step to
connecting a device to the RS-232 port is usually transforming the RS-232 levels back

into 0 and 5 Volts. This is done by an RS-232 Level Converter, MAX232 here.

4.4 Device Driver for Philips SC26C92 DUART

Device drivers are program routines that let peripheral devices communicate with
operating systems. The driver for the Philips SC26C92 is implemented as a standard
VxWorks terminal driver making use of the tyLib () system library. How VxWorks
provides terminal devices and device drivers and VxWorks’ I/O system will be described
in further detail in the next section.

Refer to Scc.c in Appendices for the tty driver for the Philips SC26C92
DUART. In Scc.c, there are two important routines: tySCCDrv and

tySCCDevCreat. They are described in the text below.

14

tySCCDrv

Before a diver is used to drive a device, it must be initialized by calling the
program routine: tySCCDxv (). The initialization routine installs the driver in the I/O
system, connects to any interrupts used by the devices serviced by the driver, and
performs any necessary hardware initialization. A single driver for a serial
communications device can often handle many separate channels. This routine should be

called exactly once before any read’s, write’s, or tySCCDevCreate’s.

tySCCDhevCreate

This routine adds terminal devices that are to be serviced by the driver (initialized
by routine tySCCDrv) to the I/O system. Before a terminal device can be used, it has to
be created first. This is done through calling the routine tySCCDrvCreate. Each
serial communication port to be used will have exactly one terminal device associated
with it after this routine has been called.

TySCCDrvCreate takes five arguments, and returns OK (1) if a terminal
device has been successfully created, or Error (0) otherwise.

STATUS tySCCDevCreate (name, channel, rdBufSize,

wBufsSize, baudRate)

Name name to use for this terminal device, i.e. “/tySCC/0”
Channel physical channel for this device

RdBufSize read buffer (input buffer) size, in bytes

WbufsSize write buffer (output buffer) size, in bytes

Baudrate baud rate to create the terminal device with, i.e. 9600

The arguments for tySCCDevCreate routine.

15

For instance, to create a terminal device “/tySCC/0”, with input and output
buffers of size 512 bytes, at 9600 baud rate, the proper call is:

TySCCDhevCreate (“/tyscc/07, 0, 512, 512, 9600);

4.5 Introduction to Devices and Drivers in VxWorks

4.5.1 1/O system in VxWorks

VxWorks is a high-performance networked real-time operating system. It runs on
a variety of hardware, including the Intel 386 based system. This section gives a
background on VxWorks I/O system, with an emphasis on devices and drivers in
VxWorks.

In VxWorks, applications access I/O devices by opening named files. A file can
refer to one of the two things:

A “raw” device such as a serial communication channel.

A logical file on a random-access device containing a file system.

Consider the following named files:

/usr/filel /pipe/mypipe/ /tyCo/0

The first one refers to a file called £ilel on a disk device called /usxr. The
second one is a pipe named mypipe. The third one refers to a physical serial channel.
However, I/O can be done to or from any of these in the same way. Within VxWorks,
they are all called files, even though they refer to very different physical objects [Wind
‘971.

Basic /O is the lowest level of I/O in Vxworks. The following are a few basic

/O calls.

16

open(): Open a file/device.

close(): Close a file/device.

read(): Read a previously created or opened file.

write(): Write a previously created or opened file.

At the basic I/O level, files are referred to by a file descriptor, or fd. An fd is a
small integer returned by a call to open(). The other basic I/O calls take an fd as a
parameter to specify the intended file. Before I/O can be performed to a device, an fd
must be opened to that device by invoking the open () routine.

After an fd is obtained by invoking open (), tasks can read bytes from a file
with read () and write bytes to a file with write(). The arguments to read () are
the fd, the address of the buffer to receive input, and the maximum number of bytes to
read:

int nBytes = read (fd, &buffer, maxBytes);

The read () routine waits for input to be available from the specified file/device,
and returns the number of bytes actually read.

The arguments to write () are the fd, the address of the buffer that contains the
data to be output, and the number of bytes to be written:

int actualBytes = write (fd, &buffer, nBytes);

The write () routine ensures that all specified data is at least queued for output
before returning to the caller, though the data may not yet have been written to the device
(that is driver dependent).

Another very important basic I/O routine is I/O control: ioctl () routine. It is
an open-ended mechanism for performing any I/O functions that do not fit the other basic

I/O calls. Examples include determining how many bytes are currently available for

17

output and setting device-specific options. The arguments to the ioctl () routine are
the fd, a code that identifies the control function requested, and an optional function-
dependent argument.

Result = ioctl (£d, function, arg);

For example, the following call uses the FIOFLUSH function to discard all the
bytes in the input or output buffer:

Status = ioctl (fd, FIOFLUSH, 0);

See scctest.cpp in the Appendices for how all the basic functions mentioned

above are used.

4.5.2 Devices and Drivers

Devices are handled by program modules called drivers. The VxWorks /O
system is flexible, allowing specific device drivers to handle the basic I/O functions
mentioned in the last section.

For serial I/O devices, VxWorks provides terminal device drivers (tty drivers).
VxWorks serial I/O devices are buffered serial byte streams. Each device has a ring
buffer (circular buffer) for both input and output. Reading from a tty device extracts
bytes from the input ring. Writing to a tty device adds bytes to the output ring. The
size of each ring buffer is specified when the device is created during system
initialization. The tty devices respond to the ioctl () functions mentioned in the
previous text.

A device driver implements the basic I/O functions for a particular kind of a

device. In general, drivers have routines that implement each of the basic functions, such

18

as read (), write (), etc. although some of the routines can be omitted if the functions
are not operative with that device.

In VxWorks, some drivers are capable of servicing many instances of a particular
kind of device. For example, a single driver for a serial communications device can
handle many separate channels that differ only in a few parameters, such as device
address.

Devices are added to the I/O system dynamically by calling the internal I/O
routine isoDevAdd (). The arguments to 3osDevAdd () are the address of the device
descriptor for the new device, the device’s name, and the driver number of the driver that
services the device. Refer to file scc.c in the Appendices for the use of

iosDevadd() .

4.5.3 Opening a File/Device

Files/devices are opened with open (). The I/O system searches the device list
for a device name that matches the file name (or an initial sub-string) specified by the
caller. If a match i1s found, the I/O system uses the driver number contained in the
corresponding device header and call the driver’s open routine in the driver table.

The I/O system must establish an association between the file descriptor used by
the caller in subsequent I/O calls, and the driver that services it. The I/O system
maintains these associations in a table called fd table. This table contains the driver
number and an additional driver-determined 4-byte value. The driver value is the internal
descriptor returned by the driver’s open routine, and can be any nonnegative value the

driver requires to identify the file. In subsequent calls to the driver’s other I/O functions,

19

such as read (), write(), ioctl() and close(), this value is supplied to the

driver in place of the fd in the application-level I/O calls.

drvnum value

Wi |—[O

fd Table

Example of Opening a Device
In Figure7 and Figure 8 {Wind ‘97], a user calls open() to open the device /xx0.

The following series of actions take place in the I/O system:

1) It searches for the device list for a device name that matches the specified device
name: /xx0.

2) It reserves a slot in the fd table, which is used if the open is successful.

3) It then looks up the address of the driver’s open routine, xxOpen (), and calls that
routine. Note that the arguments to xxOpen () are transformed by the I/O system
from the user’s original arguments to open (). The first argument to xxOpen() is
a pointer to the device descriptor the I/O system located in the full file name search.
The next parameter is the remainder of the file name specified by the user, after
removing the initial substring that matched the device name. In this case, because the

device name matched the entire file name, the remainder passed to the driver is a null

20

string. The last parameter is the file access flag, in the case O_RDONLY; this is, the
file is opened for reading only.

4) It executes xxOpen (), which returns a value that subsequently identifies the newly
opened file. In the case, the value is the pointer to the device descriptor. This value
is supplied to the driver in subsequent I/O calls that refer to the driver being opened.

5) The T/O system then enters the driver number and the value returned by xxOpen ()
in the reserved slot in the fd table. Again, the value entered in the fd table has

meaning only for the driver, and is arbitrary as far as the I/O system is concerned.

4.5.4 Reading Data from the File/Device

The routine read () is used to obtain input data from the device. The specified fd
is the index to the fd table for this device. The /O system uses the driver number
contained in the table to locate the driver’s read routine, xxRead(). The /O system
calls xxRead (), passing it the identifying value in the fd table that was returned by the
driver’s open routine, xxOpen(). Again, in this case the value is the pointer to the
device descriptor. The driver’s read routine then does whatever is necessary to read data
from the device. The process for user calls to write () and ioctl () follow the same

procedure. Refer to Figure 9 for an example of reading Data from a device [Wind ‘97].

21

User Call: Driver Call:

fd = open (“/xx0”, O_RDONLY) xxdev = xxOpen (dev_pointt?r, “” O_RDONLY);

[1] VO system finds

[2] /O system reserves
name in device list.

[3] /O system calls driver’s
a slot in the fd table.

open routine with pointer to

device descriptor.
i
i
!
FD TABLE: ‘x
drvnum value 1
!
|
i
|
DEVICE LIST:
“/dk0/” “Ixx0” “Ixx]™
1 2 2
Device-
Dependen
tdata
DRIVER TABLE:
create | Remove op€n close Read write ioctl

xxOpen

E R) el =]

Figure 7: Call to I/O Routine Open (). [part 1]

22

User Call: Driver Call:

fd = open (“/xx0”, O_RDONLY) xxdev = xxOpen (dev_pointer, “”, O_RDONLY);

[6] I/O system returns
index in fd table of new
open file (fd = 3).

[5] I/O system enters driver number

and identifying value in reserved fd

[4] Driver returns any
table slot.

identifying value, in the case
the pointer to the device

descriptor.
FD TABLE
drvnum value
0
1
2
3 2 xxdev
4 \
oA
\
%
DEVICE LIST 1\
\ v
i
]
“/dk0/” /xx0” “fxx1”
1 | 2 2
Device-
ependen
tdata
/
DRIVER TABLE /
{ create | Remove open close read write ioctl
0
1
2 xxOpen
3
4

Figure 8: Call to I/O Routine Open (). [part 2]

23

User Call:

n = read(fd, buf, len);

FD TABLE

DEVICE LIST

DRIVER TABLE

I/O system transforms the user’s /O
routine calls into driver routine calls
replacing the fd with the value returned
by the driver’s open routine, xxOpen().

Driver Call:

n = xxRead (dev_pointer, buf, len);

g
\\ |
drvnum value \\\M“
Y

|
:
|

0
1 \
2)
3 2 xxdev [&—
4 1 N
v
|
“/dk0/” [/xx0” “/xx1”
1 | 2 2
evice-
ependen
fdata
create | Remove open close read write ioctl
0
1
2 xxRead()
3
4

Figure 9: Call to I/O read Routine.

24

4.5.5 Closing a File

The user terminates the use of a file by calling close(). As in the case of
read (), the [/O system uses the driver number contained in the fd table to locate the
driver’s close routine. In the example driver, no close routine is specified; thus no driver
routines are called. Instead, the I/O system marks the slot in the fd table as being
available. Any subsequent references to that fd cause an error. However, subsequent

calls to open () can reuse that slot.

4.6 Test for SC26C92 Driver
Most of the modules on Procell communicate with the Intel386EX-based Module
Controller Board via serial communication. Therefore, it is pivotal to ensure the

reliability of the serial device driver.’

4.6.1 Test Set-up

One way to test the SCC driver is the echo method. This test method involves a
very simple set-up: one Module Controller Board, an extension I/O board, and a cable
connecting the two communication devices/channels to be tested. See Figure 10 for the
illustration of the set-up. These two communication devices/channels are wired up with
the method of Null Modem (Figure 11). The aim is to make the computer think it is
talking to a modem rather than another computer. Any data transmitted from the first
communication device/channel must be received by the second thus TD is connected to

RD. The second device/channel must have the same set-up thus RD is connected to TD.

25

Signal Ground (SG) must also be connected so both grounds are common to each

device/channel.

Module Controller Board Extension I/O Board

Coml [:
Com?2 [j

“ECHO”

Figure 10: Set-up for “Echo” Test.

Coml Com?2
SG SG
TD TD
RD | ———_| RD

Figure 11: Wiring diagram between communication channel 1&2 (Null Modem Wiring).

4.6.2 “Echo”

The following text describes echo in five steps, which are also illustrated in a

block diagram in Figure 12.

L Write a message in the output buffer of communication channel 1 using the

write () /O routine.

3 8C26C92 driver is referred to as SCC driver in this thesis.

26

II. Since channel 1’s TD line is wired together with channel 2’s RD line, reading
from channel 2 via a read () routine gets the message sent from channel 1 and
puts it in channel 2’s input buffer.

III. Then use the write () routine to place that message read from channel 2 into
channel 2’s output buffer.

IV. Likewise, since channel 2’s TD line is wired together with channel 1’s RD line,
reading from channel 1 now will get that message.

V. Compare this received message with the originally sent message at the beginning
of the process to see if they have the same content. If they do, the echo test

returns a positive result.

message

“l@#$%"
&l

L write(...) L read(...)
)
V. Output Buffer I] D
compare
the IIL. write(...)
messages
[:I Output Buffer
IV. read(...)
“l@#$ %"
&*1..7 COM COM

“echoed” message

Figure 12: Block Diagram of Echo between Coml and Com2.

27

4.6.3 SCC Test

This section describes in detail, in terms of VxWorks, how to implement the idea
of echo method in doing the SCC test.

e Initialize the SCC driver via a call to a tySCCDxv () routine. As mentioned in an
earlier section, tySCCDrv () has to be called exactly once before any terminal
devices can be created.

e Create two terminal devices: channel 1 and channel 2. Specify the input/output buffer
size for each terminal, i.e. 1024 bytes for buffer size. Specify the baud rate, i.e.
19200bps. The devices have to be successfully created in order for any data
transmission to happen. Every device has a unique name. No multiple devices can
share the same device name. If a device with a specified name has already been
created, an error message will be returned at a second attempt to create a device with
that name. In VxWorks window, a devs command at the prompt will show the user a
list of currently existing devices.

e Before /O can be performed to a device, an fd must be opened to that ACvice by
invoking the open() routine (discussed in detail in the previous section). The
arguments to open () are the file/device name, the type of access (open for reading
only, writing only or both), and, when necessary the mode.

e Discard all bytes in the input and output buffers in each device. A basic I/O
command jioctl () can be used here:

ie. ioctl = (£4, FIOFLUSH, 0);
FIOFLUSH is an I/O control function that does the above job. This is an important

step, because the input and output buffers in the devices may have data garbage in

28

them. To begin the echo test, all the buffers need to be cleared of garbage, or the
result of the echo test will not reflect accurately the functionality of the serial device
driver.
Start the echo process. First, write a message to Com 1 using the write () routine.
The write () routine takes three arguments: the file descriptor (fd) of the device the
message is to be written to, the address of the buffer that contains the data message to
be output, and the number of bytes to be written. write() puts data in device’s
output buffer.

ie. write(fd, InBuffer, strlen(InBuffer));
Read from Com 2. Note that Com 1°s data transmission (TD) line is connected with
Com 2’s data receiving (RD) line. The read () routine takes three arugements: the
file descriptor (fd) of the device, the address of the buffer to receive input, and the
maximum number of bytes to read.

1.e. read(fd, &EchoBuffer, maxBytes);
The read () routine waits for input to be available from the specified device, and
returns the number of bytes actually read. However, in the echo test development
stage, it’s been noticed that the data written to Com 1’s output buffer is not available
for input at Com 2 right away. The read () routine sometimes only returns the first
part of the data written to Com 1. In order to prevent the above from occuring,
enough time ought to be set aside for the data to be available for input at Com 2
before the read () routine is called. VxWorks, being a real-time operating system,
provides direct control over a task’s execution. The routine taskDelay ()

postpones a task in VxWorks. Calling the routine taskDelay () between writing

29

to Com 1 and reading from Com 2 guarantees the integrity of the data to be
transmitted. The read data are saved in EchoBuffer.

o Here starts the second half of the echo test. Transfer what is in the EchoBuffer to the
output buffer of Com 2 via calling another write () routine follwed by calling
another taskDelay (). As mentioned before, a taskDelay () routine will make
sure the complete data are available in Com 2’s output buffer for input to another
channel later.

» Read from Com 1. Note that Com 2’s data transmission (TD) line is connected with
Com 1’s data receiving (RD) line. The data that have just been read get to be saved
in the input buffer of Com 1.

o Compare the content in the input buffer of Com 1 with the original message written to
Com 1 at the beginning of the echo process. If they are the same, the echo test returns
a positive result for Com 1 and Com 2’s device driver. Otherwise, the test returns

error result.

4.7 Summary

This chapter focused on the devices and drivers for RS-232 serial
communications in ProCell. Philips SC26C92 DUART was desribed in section 4.3. A
general introduction to devices and drivers in VxWorks was given in section 4.5. In
section 4.6, a set of diagnostic procedures called echo was introduced to test the
functionality of the SCC driver. The source code for the SCC driver and the SCC test can

be found in the Appendices.

30

Chapter 5: Controller Area Network (CAN)

5.1 Introduction

In the ProCell system, peer Module Controller Boards communicate with one
another via CAN. CAN is a protocol for serial data transfer. Developed in automobile
industry, CAN was first adopted for serial communication in vehicles. The CAN network
protocol detects and corrects transmission errors caused by electromagnetic interference.
Additional advantages such as low cost, high real-time capabilities and ease of use make
CAN chosen by manufacturers in semiconductor and semiconductor equipment industry
as well many other industries. Section 5.2 describes how the CAN network functions.

5.3 and 5.4 focus on the CAN controller 82527 and its driver in VxWorks.

5.2 How CAN Works

5.2.1 Principles of Data Exchange

When data are transmitted by CAN, the content of the data messages does not
contain addresses of either the transmitting mode, or of any receiving node. Instead, the
message is labeled by an identifier that is unique throughout the network. The identifier
defines not only the content but also the priority of the message. The lower the numerical
value of the identifier is, the higher the priority the message has. A message with the
highest priority is guaranteed to gain bus access as if it were the only message being
transmitted. This is important for bus allocation when several stations are competing for

bus access.

31

If the CPU of a given station wishes to send a message to one or more stations, it
passes the data to be transmitted and their identifiers to the assigned CAN controller chip.
This is all the CPU has to do to initiate data exchange. The message is constructed and
transmitted by CAN controller. As soon as the CAN chip receives the bus allocation, all
other stations on the CAN network become receivers of this message. Each station in the
CAN network, having received the message correctly, conducts an acceptance test to
decided whether the data received are relevant for that station. If the data are of no
significance for the station concerned, they are ignored. Otherwise they get processed.

The above described content-oriented addressing scheme of the CAN network has
the advantage of a high degree of system and configuration flexibility. When more
stations are added to the existing CAN network, there is usually no need to make any
hardware or software modifications to the already existing stations, as long as the new
stations are pure receivers. Because the data transmission protocol does not require
physical destination addresses for the individual components, it permits multiple
reception and the synchronization of distributed processes. For instance, measurements
needed as information by several modules in the system can be transmitted via the

network, in such a way that it is not necessary for each module to have its own sensor.

5.2.2 CAN Protocol

In a CAN system, data are transmitted and received using Message Frames.
Message Frames carry data from a transmitting node to one or more receiving nodes in

the CAN network.

32

The CAN protocol supports two message frame formats: the Standard CAN
protocol (version 2.0A) and the Extended CAN protocol (version 2.0B). The only
essential difference between these two protocols is in the length of the identifier. In the
standard format the length of the identifier is 11 bits and it is 29 bits in the extended

format.

Arbitmtion Field Control Data Field CRC Ack Endof Imt Buslide

Fied | | Field F. Frrme
" ‘I‘—'\“l‘—’

BIDLCI 0- 8Bytes J‘Sb“CRGlH ' l

S B K|l
—H“ bltlDENTIFIERITID
F RIE

Figure 13: Message frame for standard format (CAN specification 2.0A).

The message frame for transmitting message on the bus consists of seven main
fields. A message in the standard format (see Figure 13) [CiA ‘99] begins with the start
bit “start of frame” (SOF). It is followed by the “arbitration field”, which contains the
identifier and the “RTR” (remote transmission request) bit, which indicates whether is a
data frame or a request frame without any data bytes. The “control field” contains the
IDE (“identifier extension) bit, which indicates either standard format or extended
format, a bit reserved for future extensions and a four bit Data Length Code (DLC), a
count of the data bytes in the data field. The “data field” ranges from O to 8 bytes in
length and is followed by the “CRC field”, which is used as a frame security check for
detecting bit errors. The “ACK field” comprises the ACK slot (1 bit) and the ACK
delimiter (1 recessive bit). The bit in the ACK slot is sent as a recessive bit and is
overwritten as a dominant bit by those receivers who have at this time received the data

correctly (positive acknowledgement). Correct messages are acknowledged by the

33

receivers regardless of the result of the acceptance test. The end of the message is
indicated by “end of frame”, seven recessive bits. “Intermission” is the minimum
number of bit periods separating consecutive messages. If there is no following bus

access by any consecutive message, the bus remains idle (“bus idle”).

5.2.3 Error Detection

One of the outstanding features of the CAN protocol is its high transmission
reliability. The CAN controller registers a station’s error and evaluates it statistically in
order to take appropriate measures.

CAN implements five error detection mechanisms; three at the message level and
two at the bit level. The ones at message level are Cyclic Redundancy Checks (CRC),
Frame Checks, and Acknowledgement Error Checks. At the bit level, there are bit
monitoring and bit stuffing.

Refer to Figure 13, every transmitted message contains a 15 bit “CRC field”. The
CRC is computed by the transmitter and is based on the message content. All receivers
that accept the message performs a similar calculation and flag any error.

There are certain predefined bit values that must be transmitted at certain points
within any CAN Message Frame. When the frame check of a receiver detects an invalid
bit in one of these positions, a Format Error will be flagged.

In a Acknowledgement (ACK) Error Check, if a transmitter determines that a
message has not been acknowledged, then an ACK Error is flagged.

What bit monitoring does is that any transmitter automatically monitors and
compares the actual bit level on the bus with the level that is transmitted. If the two

levels are not the same, a bit error is flagged.

34

Bit stuffing is a technique CAN uses to check on communication integrity. After
five consecutive identical bit levels have been transmitted, the transmitter will
automatically inject (stuff) a bit of the opposite polarity into the bit stream. Receiver of
the message will automatically delete (de-stuff) such bits before processing the message
in any way. Because of the bit stuffing rule, if any receiving node detects six consecutive

bits of the same level, a stuff error is flagged.

5.3 CAN Controller 82527

The 82527 serial communication controller is a highly integrated device that
performs serial communication according to the CAN protocol. It supports both the
standard and extended message frames in CAN specification.

The 82527 consists of six functional blocks including the CAN controller, RAM,
CPU interface logic, clockout and two 8-bit ports. The CPU interface logic manages the
interface between the CPU (Intel 386EX microprocessor) and the 82527 using an
address/data bus. The CAN controller interfaces to the CAN bus and implements the
protocol rules of the CAN protocol for the transmission and reception of messages. The
RAM is the interface layer between the CPU and the CAN bus. The two port blocks
provide 8-bit low speed I/O capability. The clockout block allows the 82527 to drive

other chips [Intel ‘95]. See Figure 14 for the physical CAN connection [CiA ‘99].

35

kMicrocontroller

| |

CAN Controller

™0 T RO RXi

e

=D RxD Ref Rs
CAN Transceiver Ve[| "{,m,,;

CAML CANH
Bus Termination Bus Termination
CAMNH
G RT CAN Bus Lines Ij Rt
CANL -

Figure 14: Physical CAN connection.

5.4 Driver for CAN Controller 82527

In section 4.5 there was a brief description on devices, drivers and I/O system in
VxWorks. The driver for the 82527 in VxWorks is very similar to the driver for Philips
SC26C92 DUART discussed in Chapter 4. This section describes the CAN driver-level

interface to the I/O system.

CanDrv ()

CanDrv () installs the CAN driver in the I/O system. It is the first thing that
must be done before any devices are added to the system or any I/O request is performed.

It returns either OK or ERROR.

36

CanDevCreate ()

This routine is called to add a device to the system that will be serviced by the
CAN driver. This function must be called before performing any I/O request to this
device. There are several device-dependent arguments required for the device
initialization and allocation of system resources.

The CAN driver supports the basic I/O interface functions, including open (),
read(), write() and ioctl (). A few other important I/O control functions are

described below.

FIO_SETFILTER

This /O control function modifies the acceptance filter masks of the CAN
controller. The acceptance masks allow message objects to receive messages with a
range of message identifiers instead of just a single message identifier. A *“0” means
“don’t care” and accepts a “0” or “1” for that position, while “1” value means that the
incoming bit value “must-match” identically to the corresponding bit in the message
identifier. The syntax looks like:

int result = ioctl (f4d, FIQO_SETFILTER, &AcceptMasks);

£4a is the file descriptor (see Chapter 4 for definition), AcceptMasks is a pointer to a

data structure which contains the specification for the masks.

FIO_GETFILTER

This I/O control function returns the contents of the acceptance filter masks of the

CAN controller in the data structure AcceptMasks. The syntax, for example, can be:

int result = ioctl (fd, FIO_GETFILTER, &AcceptMasks):;

37

FIO_BUSON

After an abnormal rate of occurrences of errors on the CAN bus, the CAN
controller enters the busoff state. This /O control function resets the Initial bit the
Control register. The CAN controller begins the busoff recovery sequence. This bus
recovery sequence resets the transmit and receive error counters. If the CAN controller
counts 128 packets of 11 consecutive recessive bits on the CAN bus, the busoff state is
exited. Here is an example:

int result = ioctl (f4d, FIO BUSON, 0);

FIO _BITTIMING

This I/O control function modifies the bit timing register of the CAN controller.
Here is how the function is used:

int result = ioctl (£f4, FIO_BITTIMG, &dc);

dc is a data structure that holds the new values for the bit timing register O (bit 8 to 15)
and the bit timing register 1 (bit O to 7). Possible transfer rates are between 5kbit per
second and 1.6 Mbit per second.

The above listed are a few of the important I/O control functions the CAN driver
supports. Refer to Canif.cpp in the appendix for the implementation of those

functions in the CAN interface.

5.5 Summary

Controller Area Network (CAN) is a protocol originally developed in automobile
industry for serial data transfer. Its low cost and high reliability makes CAN a widely

used network protocol in various industries. This chapter explained how CAN works and

38

described its unique error detection features. In section 5.3 and 5.4, CAN controller

82527 and its device driver in VxWorks were described.

39

Chapter 6: Parallel Communication

6.1 Introduction

The Intel386EX microprocessor communicates with a motion control chipset on
the module controller board via parallel data transfer. This chapter will discuss the
interface between the microprocessor and two of coater’s arms and describe the parallel
communication between the microprocessor and the chipset that controls the movement

of the arms.

6.2 Interface between 386 and Coater’s Arms

Coater is a module that applies photoresist and various chemicals on wafers
uniformly, and gives the surface of a wafer the characteristics similar to a piece of
photographic paper. It consists of two robot arms: a Dispense Arm, which dispenses the
chemicals onto the wafer, and a Top Edge Bead Remover (TEBR) Arm, which does the
job of cleaning and smoothing the edge of the wafer after chemicals get dispensed on the
surface of the wafer.

Both the Dispense Arm and the TEBR Arm are controlled by an advanced multi-
axis motion control chipset, PMD’s MC1401A. The 386, which serves as a host
processor, interfaces with the motion control chip via an 8-bit bi-directional bus and
various control signals. Host communication is coordinated by a ready/busy signal,
which indicates when communication is allowed.

Refer to pmdio.c in the Appendix for the low-level routines that enable the
communication between 386 and the motion control chipset. pmdio.c contains low-

level routines that write/read a single byte command/data to the chipset, routines that

40

write/read a 2-byte data word to/from the chipset and maintains the checksum word
(Checksum will be explained in a later section), and the main routine called
send_chipset_cmd, which is called to send complete commands to the chipset to
control motion. On the top of pmdio.c, a motion.c program (Refer to the
Appendix.) allows users to move the Dispense Arm and TEBR Arm to the positions

desired and completes the motion control interface.

6.3 Advanced Multi-Axis Motion Control Chipset, MC1401A by PMD

The MC1401A is a 2-IC general purpose motion control chipset, packaged in 2
68-pin PLCC packages. The Peripheral Input/Output IC (I/O chip) is responsible for
interfacing to the host processor (386 in this case), and to the position input encoders.
The Command Processor IC (CP chip) is responsible for all host command, profile and
servo computations, as well as for outputting the PWM and DAC signals.

Figure 15 shows a typical system block diagram, along with the pin connectors
between the I/O chip and the CP chip.

The CP and I/O chips function together as one integrated motion processor. The
major components connected to the chip set are the Encoder, the motor amplifier, and the
host processor (386). The 386 is interfaced with the chipset via an 8-bit bi-directional
bus and various control signals. The communication between the chipset and the 386 is

coordinated by a ready/busy signal, which indicates when communication is allowed.

41

|

{ Encoder } Amplifier]

MC 1401 chipset

Figure 15: Block diagram of the MC 1401 chipset.

6.4 Data Transfer Protocol

All communications to/from the chip set take the form of packets. A packet is a
sequence of transfers to/from the host resulting in a chip set action or data transfer.
Packets can consist of a command with no data (Dataless Command), a command with
associated data that is written to the chip set (Write Command) or a command with

associated data that is read from the chip set (Read Command).

42

The following charts [Performance ‘97] show the generic command packet

sequence for a Dataless Command, a Write Command, and a Read Command.

Dataless Command

Time -> -> -> ->
Command Write: Command byte

Data Write:

Data Read: [packet checksum]

Write Command

Time -> -> -> ->

Command Write: Command byte

Data Write: word 1 [word 2]

Data Read: [packet checksum]

Read Command

Time -> > > ->

Command Write: Command byte

Data Write:

Data Read: Word 1 [Word 2] [packet checksum]

The above charts show that at the end of each packet, a checksum word is
available for reading, which provides a reliability enhancement. This checksum consists
of a 16-bit sum of all previous communications that have occurred for the associated
command. The command byte is included in the low byte of the 1% checksum word (with

high byte set to 0). Data words are added as is to the checksum value. For example, if a

43

SET_VEL (set velocity) command (which takes two 16-bit words of data) was set with a
data value of fedcba98, the checksum would be [Performance ‘971:

0011 (code for SET_VEL command)
+ fedc (high data word)
+ ba98 (low data word)

16985
checksum = b985 (keep the bottom 16 bits only)

6.5 Summary

Chapter 6 contained the description of the parallel communication between the
host microprocessor and a motion control chipset. The MCI1401A chipset provides
closed-loop digital servo control for motors used in moving coater’s arms in ProCell
system. The interface both in software and hardware between the Intel386EX and the
motors were described in section 6.2 and 6.3. The data transfer protocol was illustrated
in section 6.4. The pmdio.c and motion.c in the Appendices will help better

understanding the low-level interface.

44

Chapter 7: Conclusions

This chapter briefly reviews the communication links in SVG’s photoresist
process system, ProCell. ProCell’s software control system contains a multi-layered
architecture. From its system control that provides user-interface on the top operating
level, to the middle machine control, to the distributed module control, communication
links stand to be very important issues in the successful automation of wafer handling.
The focus of this thesis was placed on the module control level in the ProCell system,
mainly the three communication protocols associated with the Intel386EX host
MICroprocessor.

Distributed module control, as opposed to control of modules at high system
level, not only enables stand-alone module tests to be carried out, but also reduces the
information and signals that communicate to the system control level. On ProCell’s
module control level, the Inte]386EX microprocessor serves as the core of the module
controller. Those microprocessors not only directly interface with peripheral devices to
pass commands and receive feedbacks from the modules, but also communicate with one
another to coordinate the tasks of wafer handling from system level.

The Intel386EX microprocessor communicates with the modules through two
types of communication protocols, RS-232 serial communication and 8-bit bi-directional
parallel communication. The communication between any two module controller boards
are done via Controller Area Network (CAN). The peripheral devices for RS-232 serial

communication and CAN are SC26C92 and 82527 respectively. The thesis work

45

includes program routines that let these two devices communicate with the operating
system, in this case VxWorks. These program routines can be found in the Appendix.

ProCell is to replace SVG’s 90 Series Photoresist Processing System (9X) and
200 Advanced Processing System (200APS). Distributed control (control of modules at
module level) has operated successfully on 9X platform for over ten years. Due to the
limited time of the author’s internship at SVG, ProCell system was still in its
development phase when this thesis was done. There was still a large amount of work
ahead to be done before ProCell would finally be up and running. For instance, in the
area related to the work of this thesis, diagnostic procedures need to be developed for
communication link 5’s Controller Area Network, to ensure successful data trasfer
between modules. These procedures would be similar to yet more complex than the SCC
test illustrated in Chapter 4 due to CAN’s unique features.

Go, ProCell!

46

Appendices

Appendix A: Source Code for SCC Driver (scc.c)

/* scc.c - tty driver for the Philips SC26C92 serial controller board */

/*
DESCRIPTION
This is the driver for the Philips SC26C92 DUART controller.

USER CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O
system. Two routines, however, must be called directly: tySCCDrv () to
initialize the driver, and tySCCDevCreate to create devices.

TYSCCDRV
Before using the driver, it must be initialized by calling the routine:
.CS

tySCCDxrv ()
.CE
This routine should be called exactly once, before any reads, writes, or
tySCCDevCreate's. Normally, it is called from usrRoot (2) in =
usrConfig.c.

CREATING TERMINAL DEVICES

Before a terminal can be used, it must be created.

This is done with the tySCCDevCreate call.

Each port to be used should have exactly one device associated with it,
by calling this routine.

.CS

STATUS tySCCDevCreate (name, channel, rdBufSize, wBufsSize, baudRate)
char *name; // Name to use for this device *
int channel; // Physical channel for this device (0 - 1) *
int rdBufSize; // Read buffer size, in bytes *
int wBufSize; // Write buffer size, in bytes *
int baudRate; // Baud rate to create device with *

.CE

For instance, to create the device "/tySCC/0", with buffer sizes of 512

bytes,

at 9600 baud, the proper call would be:
.CS
tySCChevCreate ("/tysScc/0", 0, 512, 512, 9600);
.CE
IOCTL

This driver responds to all the same ioctl codes as a mnormal ty driver.
All baud rates between 110 and 19200 are available.
*/

#include "vxWorks.h"
#include "iv.h"
#include "ioLib.h"
#include "iosLib.h"
#include "tylib.h"
#include "sccLib.h"
#include "intLib.h"

47

#include
#include
#include

#include
#define

#define
#define
#define
f##idefine
#define
#define

#define
#define
#define
#define

"errnoLib.h"
"gsysLib.h"
"gstdio.h”

"gc26c92.h"
INT_ NUM_TIRQO

RX0_INT LVL
RX1_INT LVL
RX2_INT LVL
RX3_INT LVL
XMT INT_ LVL
MUX_INT LVL

RX0_INT VEC
RX1_INT VEC
RX2_INT VEC
RX3_INT VEC

0x20

0x01
0x05
0x06
0x07
0x09
0x0D

INT_NUM IRQO
INT_NUM_IRQO
INT_NUM_TIRQO
INT_NUM_IRQO

RX0_INT_LVL
RX1 INT LVL
RX2 INT LVL
RX3_INT_LVL

e e Bt T e)
A R

#define MUX_INT VEC INT NUM_IRQO MUX INT LVL
#define SCC_BASE_0 0x1000

/* <@ WCS033099 - used to 0x14A0 - changed to avoid problem with Motion

Control $> */
/*#define SCC_BASE_1
Sun Phi*/

0x18A0 change again on 10/25 according to

#define SCC_BASE_1 0x14A0

##define SCC_BASE_2 0x1CAO

typedef struct

{
int rate;
int preset;

} BAUD;

typedef struct

{
USHORT iper; /* input port change register */
USHORT isr; /* interrupt status register */
USHORT ctu; /* counter/timer upper */
USHORT ctl; /* counter/timer lower */
USHORT ipr; /* input port */
USHORT startentr; /* start counter command */
USHORT stopcntr; /* stop counter command */
USHORT acr; /* aux. control register */
USHORT imrx; /* interrupt mask register */
USHORT ctpu; /* ¢/t upper preset register */
USHORT ctpl; /* C/T lower preset register */
USHORT oper; /* output port conf. registexr */
USHORT sopl2; /* set output port bits register */
USHORT ropl2; /* reset output port bits register */
USHORT imr 4; /* data of imxr */

} TY SCC_DEV;

typedef struct /* TY_SCC_DEV */

{
TY_ DEV tyDev;
TY SCC_DEV * ptySCC;
BOOL created;
BOOL isA;
USHORT rcv_int_1lvl;
USHORT rov_int_vec;

48

USHORT mr0l2;

USHORT sr;
USHORT rxfifo;
USHORT csr;
USHORT cr;
USHORT txfifo;
} TY SCC_CHL;
LOCAL TY_SCC_DEV tyscCdev[3] =
{{
SCC_BASE_ 0 + 0x08,
SCC_BASE 0 + 0x0A,
SCC_BASE 0 + 0x0C,
SCC_BASE_0 + OxO0OE,
SCC_BASE_0 + O0x1A,
SCC_BASE_0 + Oxlc,
SCC_BASE_0 + Ox1E,
SCC_BASE_0 + 0x08,
SCC_BASE_O0 + O0xO0a,
SCC_BASE 0 + 0x0C,
SCC_BASE_O + OxO0E,
SCC_BASE_0 + 0Oxla,
SCC_BASE 0 + Oxlc,
SCC_BASE_0 + Oxl1E
},
{
SCC_BASE 1 + 0x08,
SCC _BASE_1 + 0x0Aa,
SCC_BASE_1 + 0x0C,
SCC_BASE 1 + Ox0E,
SCC_BASE_1 + O0x1A,
SCC_BASE 1 + 0xlcC,
SCC_BASE 1 + Oxl1E,
SCC_BASE_1 + 0x08,
SCC_BASE_1 + 0x0A,
SCC_BASE 1 + 0x0C,
SCC BASE 1 + OxO0E,
SCC_BASE 1 + O0O=x1a,
SCC_BASE_1 + 0xlcC,
SCC_BASE 1 + Ox1E
3,
{
SCC_BASE 2 + 0x08,
SCC_BASE_2 + 0x0A,
SCC_BASE_2 + 0x0C,
SCC_BASE_2 + O0x0E,
SCC_BASE 2 + 0Ox1A,
SCC_BASE 2 + 0OxlcC,
SCC_BASE_ 2 + 0Ox1E,
SCC_BASE_2 + 0x08,
SCC_BASE 2 + 0x0A,
SCC_BASE 2 + 0x0C,
SCC_BASE 2 + Ox0E,
SCC_BASE_2 + O0xl1a,
SCC_BASE_2 + 0xl1C,
SCC_BASE_2 + Ox1E
},
}:
LOCAL TY SCC_CHL tysScCchl[6] =
{
{
{{{NULL}}},

&tysccdev[0],

FALSE,

TRUE,

RX0_INT LVL,
RXO0__INT VEC,
SCC_BASE_0 + 0x00,
SCC_BASE_0 + 0x02,
SCC_BASE_0 + 0x06,
SCC_BASE_0 + 0x02,
SCC_BASE_0 + 0x04,
SCC_BASE 0 + 0x06
},

{

{{{NULL}}},
&tySCcCdev([O0],
FALSE,

FALSE,

RX1 INT_LVL,
RX1_INT VEC,
SCC_BASE_0 + 0x10,
SCC_BASE 0 + 0x12,
SCC_BASE_0 + 0xl6,
SCC_BASE_0 + 0x12,
SCC_BASE_0 + 0x14,
SCC_BASE_0 + 0xl6
},

{

{{{NULL}}},
&tyScCCdevil],
FALSE,

TRUE,

RX2_INT_ LVL,
RX2_INT VEC,
SCC_BASE 1 + 0x00,
SCC_BASE_1 + 0x02,
SCC_BASE_1 + 0x06,
SCC BASE_1 + 0x02,
SCC_BASE_1 + 0x04,
SCC_BASE_1 + 0x06
},

{

{{{NULL}}},
&tysScCCdev[l],
FALSE,

FALSE,

RX3_INT LVL,

RX3 _INT VEC,
SCC_BASE_1 + 0xl10,
SCC_BASE_1 + 0xl12,
SCC_BASE_1 + 0Oxle6,
SCC_BASE_1 + 0xl12,
SCC_BASE_1 + 0xl14,
SCC_BASE 1 + 0x16
},

{

{{{NULL}}},
&tysccdev([2],
FALSE,

TRUE,

RX2 INT LVL,
RX2_INT VEC,
SCC_BASE 2 + 0x00,
SCC_BASE 2 + 0x02,
SCC_BASE_2 + 0x06,
SCC_BASE 2 + 0x02,

50

SCC_BASE_2 + 0x04,
SCC_BASE_2 + 0x06
},

{

{{{NULL}}},
&tysSccCdev([2],
FALSE,

TRUE,

RX3_ INT LVL,
RX3_INT VEC,
SCC_BASE_2 + 0x10,

SCC_BASE_2 + 0x12,
SCC_BASE_2 + 0x16,
SCC_BASE_2 + 0xl2,
SCC_BASE 2 + 0xl14,
SCC_BASE_2 + 0x16
}

};

LOCAYL, BAUD baudTable[] =

{
#if 0O

/* <@ WCS033099 - ACRI[7] =1 §> */

{ 50, 0 }, { 110, Oxl11 3}, { 200, Ox33 }, { 300, Ox44 }, { 600, Ox55
Y}, { 1200, 0x66 },

{1050, Ox77 }, { 2400, 0x88 }, { 4800, 0x99 }, { 7200, OxaAA }, { =
9600, OxBB }, { 38400, OxCC }
#else

/* <@ WCS033099 - ACRI[7] = 0 $§> */

{ 50, 0 3}, { 110, Ox11 }, { 150, Ox33 }, { 300, 0x44 }, { 600, 0Ox55
Y}, { 1200, Ox66)},

{2000, Ox77 }, { 2400, O0x88 }, { 4800, 0x99 }, { 1800, OxAA }, {
9600, O0xBB }, { 19200, OxCC }
#fendif

};

LOCAL int tySCCDrvNum; /* driver number assigned to this driver
*/

/* forward declarations */

LOCAL int tySCCOpen ();
LOCAL int tySCCRead {();
LOCAL int tySCCWrite ()
LOCAL int tySCCIoctl ()
LOCAL VOID tySCCStartup ();
LOCAL VOID tyS8CCrxInt ():
LOCAL VOID tySCCtxInt ();
LOCAL VOID tySCCMuxInt ()
LOCAL VOID tySCCHxdInit()

-
r
-
r

.
14
.
r

/***
*=
[2 2 2 2 2]

tySCCDrv - install Philips SC26C92 driver

OK or

*
*
* RETURNS:
x
* ERROR if board not present or unable to install driver

*/

51

STATUS tySCCDrv ()

{
static BOOL done; /* FALSE = not done; TRUE = done */

if (tdone)
{

/* connect to interrupt level and initialize hardware */

intConnect (INUM_TO IVEC(tySCCchl[0].rcv_int_wvec), tySCCrxInt,
(int) &tySCCchl([0]):

intConnect (INUM_TO IVEC(tySCCchl[l].rcv_int_vec), tySCCrxInt,
(int) &tySCCchl[1l]);

intConnect (INUM_TO_IVEC(tySCCchl(2].rcv_int_vec), tySCCrxInt,
(int) &tyScCchl[2]):

intConnect (INUM TO IVEC(tySCCchl[3].recv_int_vec), tySCCrxInt,
(int) &tysccchl([3]);

/* connect to mux interrupt for channel 5 & 6 */
intConnect(INUM_TO_IVEC(MUX_INT VEC), tySCCMuxInt, (int)
. &tySCCchl[0]):

tySCCHrdInit();
/* install driver */

tySCCDrvNum = iosDrvInstall (tySCCOpen, (FUNCPTR) NULL,
tySCCOpen, (FUNCPTR) NULL,
tySCCRead, tySCCWrite, tySCCIoctl):;
}

return (tySCCDrvNum == ERROR ? ERROR : OK);

int MyOutByte(Port, onebyte)
int Port;
char onebyte;

printf("<%x:%x>,", Port, onebyte);
sysOutByte(Port, onebyte);
}

/***
*=

*hkkkkkh

*

* tySCCDevCreate - create a device for a channel

*/
STATUS tySCCDevCreate (name, channel, rdBufSize, wrtBufSize, baudRate)
char *name; /* Name to use for this device */
int channel; /* Physical channel for this device (0 - 3) */
int rdBufSize; /* Read buffer size, in bytes */
int wrtBufsSize; /* Write buffer size, in bytes */
int baudRate; /* Baud rate to create device with */
{
STATUS status;
FAST TY_ SCC_CHL *pTyChl = &tySCCchl[channel];

if (channel >= N_SCC_CHANNELS)
{
return{ ERROR);

52

if (tySCCDrvNum < 1)
errnoSet (S_ioLib NO_ DRIVER);
return (ERROR);

/* if device exist, don't create it */

if (pTyChl->created)
return (ERROR);

/* initialize ty device descriptors and baud rate */

status = tyDevInit (&pTyChl->tyDev,
rdBufsSize, wrtBufSize, (FUNCPTR) tysSCCStartup);

if (status != OK)
return (ERROR);

/* enable the receiver and receiver error */
tySCCIoctl (pTyChl, FIOBAUDRATE, baudRate);

if (pTyChl->isA)

{
pTyChl->ptySCC->imr d &= O0x00F0;
PTyChl->ptySCC->imr_d |= IM_TXA RDY;
MyOutByte(pTyChl->ptySCC->imr, (char) pTyChl->ptyScC->imr_d);
}
else
{
pTyChl->ptySCC~>imr 4 &= 0x000F;
pTyChl->ptyscC->imr_d |= IM_TXB_RDY;
MyOutByte(pTyChl->ptySCC->imr, (char) pTyChl->ptySCC->imr 4);
}
if (pTyChl->rcv_int_vec)
{
sysIntEnablePIC(pTyChl->rcv _int_1lvl);
}

pTyChl->created = TRUE;

return (iosDevAdd ((DEV_HDR *) pTyChl, name, tySCCDxrvNum)):;
}

/***
*=
*okek ko ke k

TySCCHrdInit - initialize the SC26C92 controller

This routine initializes the Philips SC26C92.
same as for the Microbar UNIX system.

* * ¥ ¥ ¥

*/
#define P1LTC ox£g862
LOCAL VOID tySCCHrdInit ()

{
FAST TY_ SCC_CHL *pTyChl = &tySCCchl[0];

53

int
int

i;

oldLevel =

/* Reset the SC26C92 */

MyOutByte(P1lLTC,

for (i = 0; i < N_SCC_CHANNELS; i++)

{
MyOutByte(pTyChl->cr, CMD_TX DISABLE | CMD_RX_DISABLE);
MyOutByte(pTyChl->cr, CMD_RST RX);
MyOutByte(pTyChl->cr, 0); /* delay */
MyOutByte(pTyChl->cr, 0);
MyOutByte(pTyChl->cr, 0);
MyOutByte(pTyChl->cr, CMD_RST TX);
MyOutByte(pTyChl->cr, 0); /* delay */
MyOutByte(pTyChl->cr, 0);
MyoOutByte(pTyChl->cr, 0);
MyoOutByte(pTyChl->cr, CMD_SET MRO);
MyOutByte(pTyChl->cr, 0); /* delay */
MyOutByte(pTyChl->cr, 0);
MyOutByte(pTyChl->cr, 0);

0);

intLock();

/* Watch Dog Timer Enabled, TX FIFO 6 or more bytes empty,
RX FIFO 3 or more bytes in FIFO */

MyOutByte(pTyChl->mr012, MRO_WTD_ENB | MRO_TX FIFO 6);

/* RX FIFO Interrupt Level =
no parity,

3 or more bytes,
8 bit per character */

MyOutByte(pTyChl->mr012, MR1_RX_INTO | MR1_PAR MODE_NO |
MR1_BITS_CHAR_8);

/* normal mode, stop bit */
MyOutByte(pTyChl->mr012, MR2_CHAN_MODE NORM | MR2_STOP_BITS_ 1

/* 9600 baud */
MyOutByte(pTyChl->csr, RX_CLK 9600 | TX_CLK 9600);

if (pTyChl->isa)
{
/* Counter mode, source = External(IP2) */
MyOutByte(pTyChl->ptysSCC->acr, 0x80);
WCS033099 - =
19.2K support $§> */

/* <@

MyOutByte(pTyChl->ptySCC->opcr,
OPCR_RXB_INT | OPCR_TXA INT | OPCR_TXB_INT);
}

OPCR_RXA INT

MyOutByte(pTyChl->cr, CMD_RX_ENABLE);
pTyChl++;
}

sysIntEnablePIC(MUX INT LVL);
intUnlock(oldLevel);
}

/***
*

* TySCCOpen - open device

*

* ARGSUSED

54

*/

LOCAL int tySCCOpen (pTyChl, name, mode)
TY SCC_CHL *pTyChl;
char *name;
int mode;
{
return ({(int) pTycChl):;
}

/***
*=
*hkhkhkkhk

TySCCRead - task level read routine for Philips SC26C92

This routine fields all read calls to the Philips SC26C92
It calls tyRead with a pointer to the appropriate element of TyScCCchl.
/

* * % ¥ ¥ ¥

LOCAL int tySCCRead (pTyChl, buffer, maxbytes)
TY_ SCC_CHL *pTyChl;
char *buffer;
int maxbytes;

{
return (tyRead(&pTyChl->tyDev, buffer, maxbytes));
}

/***
*=
* ok kR ke kR

TySCCWrite - task level write routine for Intel 534 board

This routine fields all write calls to the Intel 534.
It calls tyWrite with a pointer to the appropriate element of TySCCDv.
/

* % % * ¥ *

LOCAL int tySCCWrite (pTyChl, buffer, nbytes)

TY_SCC_CHL *pTyChl;

char *buffer;

int nbytes;
{

return (tyWrite(&pTyChl->tyDev, buffer, nbytes));
}

/***
*=

X E X X X X 3

*

* TySCCIoctl - special device control

*/

LOCAL int tySCCIoctl (pTyChl, regquest, arg)
TY_SCC_CHIL *pTychl;
int request; /* request code */
int arg; /* some argument */

int i, count;

switch (request)

55

}

{
case FIOBAUDRATE:

for (i = 0; i < NELEMENTS(baudTable); i++)

{
if (baudTable[i] .rate == arg)
{
MyOutByte(pTyChl->csr, baudTable[i] .preset);
return(OK);
}
}
break;
default:

return (tyIoctl (&pTyChl->tyDev, request, arg));
}

return ERROR;

/***

*=

X E X X X X3

*

* PySCCrxInt - receive interrupt level processing

*

* This routine handles an interrupt from the 534 board. The interrupt
* is decoded and the appropriate routine invoked. The interrupt is

* terminated with a 'specific EOI'.

*

LOCAL VOID tySCCrxInt (

}

TY_ SCC_CHL *pTyChl
)

char interruptSR;
char mask;

if (pTyChl->isa)
mask = 0x2;
else
mask = 0x20;

interruptSR = sysInByte(pTyChl->ptySCC->isr) & mask;

do
{
if (interruptSR & mask)
{
if (pTyChl->created)
tyIRA(&pTyChl->tyDev, sysInByte(pTyChl->rxfifo));
else
sysInByte(pTyChl->rxfifo);
}

interruptSR = sysInByte(pTyChl->ptySCC->isr);

} while(interruptSR & mask):

JRrhhhhhhkkhhhhhhhhhhhhkhhkkhhhhhhhrhhhhhhhkhhdhhhkhdhkhhhhhdhhhrhhhrhhkrhd

*=

56

Kk kkkhkh
*

* TySCCtxInt - receive interrupt level processing
*

*/
LOCAL VOID tySCCtxInt (
TY SCC_CHL *pTyChl
)
{
int i;
char outchar;
char interruptSR;
char mask;
for (i = 0; i < N_SCC_CHANNELS; i++)
{
if (pTyChl->isA)
mask = 0xl;
else
mask = 0x10;
interruptSR = sysInByte(pTyChl->ptySCC->isxr);
while (interruptSR & mask)
{
if (pTyChl->created && (tyITx(&pTyChl->tyDev, &outchar
== OK))
{
MyOutByte(pTyChl->txfifo, outchar);
}
else
{
MyOutByte(pTyChl->cr, CMD_TX_DISABLE);
}
interruptSR = sysInByte(pTyChl->ptySCC->isr):
}
pTyChl++;
}
}
LOCAL VOID tySCCMuxInt (
TY_SCC_CHL *pTyChl
)
{
int i;
char outchar;
char interruptsSR;
char mask;
TY SCC_CHL *pTyChl5;
#if 0

PTYChl5 = pTyChl + 4;
/* take care of receive interrupt */
for (1 = 0; i < 2; i++)
{
if (pTyChlS5->isaA)
mask = 0x2;
else
mask = 0x20;

interruptSR = sysInByte(pTyChl5->ptySCC->isr);

while (interruptSR & mask)
{

57

if (pTyChl5->created)

tyIRA(&pTyChl5->tyDev, sysInByte(pTyChl5->rxfifo));
else

sysInByte(pTyChl5->rxfifo);

interruptSR = sysInByte(pTyChl5->ptySCC->isr);
}

pTyChl5++;
}
#endif
/* take care of transmit interxrupt */
for (i = 0; i < N_SCC_CHANNELS; i++)

{
if (pTyChl->isA)
mask = Ox1;
else
mask = 0x10;
interruptSR = sysInByte(pTyChl->ptySCC->isr);
while (interruptSR & mask)
{
if (pTyChl->created && (tyITx({ &pTyChl->tyDev, &outchar)
== OK))
{
sysOutByte(pTyChl->txfifo, outchar);
}
else
{
sysOutByte(pTyChl->cr, CMD_ TX DISABLE);
break;
}
interruptSR = sysInByte(pTyChl->ptySCC->isr);
}
PTYChl++;
}

}

/***
*=

*hkkhkkhk

*

* PTySCCStartup - transmitter startup routine
*

* Call interrupt level character output routine for

*/
LOCAL VOID tysccCStartup(pTyChl)
TY SCC_CHL *pTyChl; /* ty device to start up */
{
MyOutByte(pTyChl->cr, CMD_TX ENABLE);
#if O
/* any character to send ? */
while ((tyITx (&pTyChl->tyDev, &outchar) == OK))
{
if (sysInByte(pTyChl->sr) & SR_TXRDY)
MyOutByte(pTyChl->txfifo, outchar); /* output the
character =

58

*/
else
break;
}

#endif
}

/* The code below is added by Tony Wang */
static char caDevName{2] {20];

char * getPortDeviceName(int iPortID, int iBaudRate)
{

char caDev[2];
static BOOL bIsDeviceCreated[2] = { FALSE, FALSE };

/* Make sure tySCCDrv being called once.*/
if (!bIsDeviceCreated[0] && !bIsDeviceCreated[l])
{

/* nina */

if (tyScCDrv() == ERROR)
printf ("Device installation failed.\n");
}
if (iPortID > 1 || iPortID < 0)

return NULL;

if (bIsDeviceCreated[iPortID])
return caDevName [iPortID];

caDev[0]
cabDev[1l]

'0' + iPoxrtID;
0;

sprintf(caDevName[iPortID], "/tyCoSCC/%s", caDev);
/* nina */

if (tySCCDevCreate(caDevName[iPortID], iPoxrtID, 1024, 1024,
iBaudRate) != OK)

{

printf("scctest:tySCCDevCreate:Device[%d] :FAIL\n\x",
iPortID);

return NULL;
}
else
bIsDeviceCreated[iPortID] = TRUE;

return caDevName[iPortID];

59

60

Appendix B: Source Code for echo (scctest .ccp)

/* scctest.cpp - Test program for SCC driver */
/* channel 0 and channel 1 */

#include
#include
#include
#include
#include
#include
#include
#include

"vxWorks.h"
"sys/types.h"
" iolib .hn

L] stdio.h"
"stdlib.h"
"gtring.h"
"gysLib.h"
"gscclib.h”

void pmdHrdInit (int waitState)

{
short int adl = 0x0600 | (waitState % 16);
sysOutWord(0x£400, adl);
sysOutWord(0x£402, 0x0040);
sysOutWord(O0xf406, 0x3f);
sysOutWord(O0xf404, 0xfcOl);
}
void sccDriver ()
{
tySCCDxv():; /* initialize the scc lib */
}

void test (int channel) /*written for Binh N. for
/* this test() routine continuously sends data to

testing */
output buffer*/

{ int i=0, j=0;
int fhdli{é6] = ¢ -1, -1, -1, -1, -1, -1 };
char devname [20] ;
char dev[2];
char buf[]="0123456789";
for (i = 0; 1 < 4; i++)
{
dev[0] = '0' + i;
dev[1l] = 0;
sprintf(devname, "/tyCoSCC/%s", dev);
if (tySCCDevCreate(devname, i, 1024, 1024, 19200) != OK)
{
printf("scctest:tySCCDevCreate:Device[%d] :FAIL\n\r",
i);
}
}
for (i =0; 1 < 4; i++)
{
dev[0] = '0' + i;
dev[1l] = 0;
sprintf(devname, "/tyCoSCC/%s", dev);
if ((£fhdl[i] = open(devname, O _RDWR, 0)) == ERROR)
printf("scctest:open: [%s] :FAIL\n\r", devname);
}
while (1)
{ ioctl (fhdl[channel], FIOFLUSH, 0); // discard all bytes in

the input and output buffers

j = write(fhdl[channel], buf, strlen(buf));

61

printf("j=[%d], wrote to scc(%d):[0123456789]1\n",],
channel);

taskDelay(10); // make sure all characters have been sent to
the buffer
i=i++;
if (i==100000)
break;

}
close(f£hdl[0]
close(£hdl[1]
close(fhdl[2]
close(£hdl[3]

printf("It's written 100000 times. END for now. BYE!");

void echo01()

{
int Ji;
int fhdlfé] = (-1, -1, -1, -1, -1, -1 };
char devname [20];
char dev[2];
char buffer[128];
char buf[]="0123456789";
ULONG timeOutTicks=100;
ULONG tickCount=0;
ULONG countRight=0;

while (1)

{

ioctl(fhdl[0], FIOFLUSH, 0); // discard all bytes in the input
and output buffers
ioctl(fhdl[1l], FIOFLUSH, 0);

3 = write(£hdl[01, buf, strlen(buf));
printf("j=[%d], wrote to scc(0):[0123456789]1\n",3j);

taskDelay(10); // make sure all characters have been sent to the
buffer

i = read(fhdl([1l], buffer, 10);

buffer[j]l=0; printf("read from scc(0):[%s]\n", buffer);
j = write(fhdl[1l], buffer, strlen(buffer));

buffer[j]=0; printf("wrote to scc(l):[%s1\n", buffer);
taskbDelay(10);

j = read(f£hdl[0], buffer, 10):;
buffer[j]=0; printf("j=%d, read:[%s]l\n", j, buffer);

if ((buffer[0]==
'0r)&& (buffer{l]l=="1")&& (buffer[2]=='2"')&& (buffer[3]=='3"')&& (buffer[4]==
'4') && (buffer([5]=='5') && (buffer[6]=='6') && (buffer[7]=='7"')&&
(buffer[8]== '8') && (buffer[9]=='9') && (buffer[10]=='\0'))

{

}
tickCount++;
if (tickCount >= timeOutTicks)

countRight++;

62

break;
}
close(£hdl[0]):;
close(£hdlI[1l]):
printf(“*******************************\n“);
printf ("%d messages out of %d messages have been sent and read correctly

between channel 0 and 1\n", countRight, timeOutTicks):
printf("*******************************\nn);

}

void echo()

// two echo tests, between channel 0 and 1, and between channel 2 and 3
go

// on at the same time.

{
char OutBfr01[{100], InBfr01[100], EchoBfr01[100];
char OutBfr23([100], InBfr23[100], EchoBfr23[100];
int i, 3, m;
int readError01=0, readError23=0;
int fhdlfel] = { -1, -1, -1, -1, -1, -1 };
char devname[20];
char dev[2];

/***
****/

for (i =0; i < 3; i++)

devi0] = '0' + i;
dev[1l] = 0;
sprintf(devname, "/tyCoSCC/%s", dev);

if (tySCCDevCreate(devname, i, 1024, 1024, 19200) != OK)
{
printf("scctest:tySCCDevCreate:Device[%d] :FAIL\n\r",
i);
}
}
for (i =0; 1 < 3; i++)
{
dev([0] = '0' + i;
dev{l] = 0;
sprintf(devname, "/tyCoSCC/%s", dev);
if ((£hdl([i] = open{(devname, O_RDWR, 0)) == ERROR)
printf("scctest:open: [%s]:FAIL\n\r", devname);
}

/***/
for (i=0; i <999; i++)

for (j=0; §<99; j++)
{

63

InBfrol1[j] = InBfr23[j] =(char) ((i+25+3j) % 50
+35);

EchoBfr01{j] = EchoBfr23[j] =(char) ((i+24+j) % 50
+35);

outBfxr01[j] = QutBfr23([j] =(char) ((i+23+j) % 50
+35);

}
InBfr01[99] = InBfr23[991=0;

ioctl(fhdl[0], FIOFLUSH, 0); // discard all bytes in the
input and output buffers
ioctl(fhdl[1l], FIOFLUSH,
joctl (fhdl[2], FIOFLUSH,
ioctl (fhdl[3], FIOFLUSH,

(=N« Nl
(RN
~e N Ne

write(£hd4dl[0], InBfr0l, strlen(InBfr0l));
InBfr01[j1=0;

write(fhdl[2], InBfr23, strlen(InBfr23));
InBfr23[j]1=0;

j

3

taskDelay(10); // make sure all characters have been sent to

the buffer

// it seems like 4 is the minimum for 100 characters =)

3 = read(£hdl[1], EchoBfr01, 100):;
EchoBfr01[j1=0;

j = read(£hdl[3], EchoBfr23, 100);
EchoBfr23([j]1=0;

if ((m = memcmp(EchoBfr0l, InBfr01, 100)) != 0)
readError0l++;

if ((m = memcmp (EchoBfr23, InBfr23, 100)) != 0)
readError23++;

j = write(fhdl[1l], EchoBfr0l, strlen(EchoBfr0l));
EchoBfr01[j]=0;

j = write(fhdl[3], EchoBfr23, strlen(EchoBfr23));
EchoBfr23[j1=0;

taskDelay(4);

j = read(£hd4li0], OutBfr01l, 100);
QutBEfx01[j]1=0;

§ = read(£hdl[2], OutBfr23, 100);
outBfr23[j]1=0;

if ((m = memcmp(OutBfr0l, EchoBfr01l, 100)) != 0)
readError0l++;

if ((m = memcmp(OutBfr23, EchoBfr23, 100)) != 0)
readError23++;

}

printf ("There are %d reading errors between Channel 0 and
1\n"*, readError0l);

printf ("There are %d reading errors between Channel 2 and
3\n", readError23);

close(£hdl([0]
close{ £hdl[1l]
cloge(fhdl[2]
close(f£hdl[3]

L i et
e W3 M W

64

/* The following is the routine echo() divided to different tasks:
i.e. writeCom(O0, ™1234");

readCom(1l,4)

writeCom(1l,"1234");

readCom(0,4);

*/
int writeCom(int channel, char *buffer)
{
int i, 3;
int fhdllé] = (-1, -1, -1, -1, -1, -1 };
char devname[20];
char dev[2]:;

/***
****/

dev[0] '0' + channel;

dev[l] 0;

sprintf(devname, "/tyCoSCC/%s", dev);

if (tySCCDhevCreate(devname, channel, 1024, 1024, 19200)

1= OK)

{

printf("scctest:tySCCDevCreate:Device[%d] :FAIL\n\x",

channel);

}

dev[0] = '0' + channel;

dev[l] = 0;

sprintf(devname, "/tyCoSCC/%s", dev);

if ((£fhdl[channel] = open(devname, O_RDWR, 0)) == ERROR

printf("scctest:open: [%s] :FAIL\n\r", devname);

ioctl (fhdl [channel], FIOFLUSH, 0); // discard all bytes in the
input and output buffers

j = write(fhdl[channel], buffer, strlen(buffer)):;
buffer[j]l=0; printf("j=[%d], wrote:[%s]l\n",3j, buffer);

return(j);

int readCom(int channel, int len)
{

int i, J:

int fhdl{é] = {(-1, -1, -1, -1, -1, -1 };

char devname[20];

char dev[2];

char buf[128];
/***
****/

dev[0] '0' + channel;
dev[l] = 0;
sprintf(devname, "/tyCoSCC/%s", dev);

65

channel);

if (tySCCDevCreate(devname, channel, 1024, 1024, 19200)

{
printf("scctest:tySCCDevCreate:Device[%d] :FAIL\n\r",
}

dev[0] = '0' + channel;

dev{l] = 0;

sprintf(devname, "/tyCoSCC/%s", dev);

if ((fhdllchannel] = open(devname, O_RDWR, 0)) == ERROR

printf("scctest:open: [%8] :FAIL\n\r", devname);

/***/

while (1)

{

}

int nBytesUnread;
ioctl (fhdl[channel]), FIONREAD, (int) &nBytesUnread);
printf ("There are %d bytes unread\n", nBytesUnread):;

if (nBytesUnread > 0)
j+=read (fhdl [channel], buf+j, len);
else
break;

buf[j]=0;
printf ("read: [%s]\n", buf);
close(fhdl [channel]);
return j;

66

Appendix C: Source Code for PMD Chipset’s Interface (pmdio.c)

/* FileName: :PMDIO.C */

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<taskLib.h>
"yxWorks.h"
] J..V.h“
"joLib.h"
"josLib.h"
nintLib.h"
"errnoLib.h"
"gysLib.h"
"gsemLib.h"
"stdio.h"
"motion.h"
"taskLib.h"

/* defines */

#define inp_ x(ioAddr)
#define outp_ x(ioaddr,
#define DIAG

sysInByte(ioaAddr)
sysOutByte (ioaAddr,data)
1

data)

/* global variables */

int check sum err

0;

WORD PMDReady(void)

{
int in_val;
in_val = inp x(STATUS_PORT_ADDRESS);
return(in val & READY BUSY BIT_MASK);
}
/*
Routine: wait_until not_busy
Function:
This routine polls the ready/busy host bit and returms
when it is ready. If the chipset is not receiving
power, or if there is some other hardware I/0 problem,
this routine will report error after time out.
Arguments:

Time out.

Return Arguments:

67

OK if the the ready bit has been set before time out or
ERROR if not.

STATUS wait_until_not_busy(int iTimeOut)
{

int in_val, iTick;

/* poll ready port, if not ready, loop; chip should ready within
1l2us */
for (iTick = 0; iTick < iTimeOut; iTick++)
{
in val = (WORD) (inp_ x(STATUS_PORT ADDRESS) &
inp x(STATUS_ PORT ADDRESS) & inp_x(STATUS_PORT_ADDRESS));
if ((in_val & READY BUSY BIT MASK) != 0)
{
return OK;
}
taskDelay(1):;
}

#ifdef DIAG
printf("<Wait until not busy failed.>\n");
#endif

return ERROR;

}
/*
Routine: write_cmd
Function:
This is the low-level routine that writes a single byte
command
to the chipset.
Arguments:

the_cmd is the command byte to write to the chipset.

Return Arguments:
none

void write_cmd(BYTE the_cmd)
{
#ifdef DIAG
printf ("The writing command: %x.\n", the_cmd);
#endif

outp_x (COMMAND_PORT_ADDRESS, the_cmd);

68

/*
Routine: write_byte
Function:
This is the low-level routine that writes a single byte
of data
to the chipset.
Arguments:
the_byte is the data byte to write to the chipset.

Return Arguments:
none

*/
void write_byte(BYTE the_byte)
{
outp x(DATA_PORT ADDRESS, the_byte);
}
/*
Routine: read_byte
Function:
This is the low-level routine that reads a single byte
of
data from the chipset.
Arguments:

none

Return Arguments:
the byte read from the chipset

BYTE read_byte(void)
{
BYTE the_byte;
the_byte = inp x(DATA_PORT_ADDRESS);

return(the_byte);

69

Routine: write_ a word
Function:
This routine writes a 2-byte data word to the chipset,
and
maintains the checksum word.
Arguments:
the_word is the data word to write to the chipset.

the_ checksum is a pointer to the running checksum.

Return Arguments:
OK if writing is sucessful or ERROR if not.

*/

STATUS write_a_word(WORD the_word,
WORD *the checksum)

{

#ifdef DIAG

int in_val;

int i, time = 0;
#endif

/* poll ready port, if not ready, loop:; chip should ready within
12us */
if (wait_until not_busy(12) == ERROR)
{
#ifdef DIAG
printf ("<Write a word failed.>\n");
#endif
return ERROR;
}

write_byte((BYTE) ((the word & Oxf£f00) >> 8));
write_byte((BYTE) (the word & O0xff));

#ifdef DIAG

/* while (TRUE) */
{
in_val = (WORD)inp_ x(STATUS_PORT_ADDRESS);
if ((in_val & READY BUSY BIT MASK) != 0)
{
time++;

for (i = 0; i < time; i++);
printf ("After writnig a word, time issue
occured.\n");
}
else
printf("After write a word, chip is not ready after
%d.\n", time):;
}
#endif

70

*the_checksum += the_word;

return OK;

}
/*
Routine: read_a_ word
Function:
This routine reads a 2-byte data word from the chipset,
and
maintains the checksum word.
Arguments:
the_ _word is a pointer to the data word to read from the
chipset.

the_checksum is a pointer to the running checksum.

Return Arguments:
OK if reading is sucessful or ERROR if not.

*/

STATUS read_a_word (WORD *the word,
WORD *the_ checksum)

{

#ifdef DIAG

int in_ wval;

int i, time = 0
#endif

~y

BYTE lo_byte, hi_byte;

/* poll ready port, if not ready, loop; chip should ready within
12us */
if (wait_until_not_busy(12) == ERROR)
{
#ifdef DIAG
printf ("<Read a word failed.>\n");
#endif
return ERROR;
}

hi _byte = read byte():
/* sysInByte (0x1410); */
lo_byte = read_byte():;
/*
#ifdef DIAG
while (TRUE)
{
in_val = (WORD)inp x(STATUS_PORT_ ADDRESS);
if ((in_val & READY_BUSY BIT MASK) != 0)
{

71

time++;
for (1 = 0; 1 < time; i++);
printf("After reading a word, time issue
occured.\n");
}
else
printf("After read a word, chip is not ready after
%d.\n", time);
}
#endif
*/
#ifdef DIAG
printf ("<Hi byte: %x, Lo byte: %x.>\n", hi byte, lo_byte):;
#endif
*the _word = ((WORD) (hi_byte & 0xff) << 8) | (lo_byte & Oxff);
*the_checksum += *the_word;

return OK;

}
/*
Routine: read_n_check_ checksum
Function:

This routine is called at the end of a command sequence.
It

reads a data word from the chipset (the checksum), and
compares

it with the expected checksum provided as a calling
argument.

It returns an error condition if the checksums do not
compare

correctly.
Arguments:

checksum is the expected checksum, based on the previous

I/O operations

actual_checksum is a pointer to the actual checksum, read from the
chipset

Return Arguments:

CHECKSUM_BAD if the command checksum is bad,
CHECKSUM_GOOD if
the command checksum is OK

WORD read_n_check_ checksum(WORD checksum,
WORD *actual_checksum)
{

WORD asic_checksum, scratch;

read_a_word(&asic_checksum, &scratch);

72

if (asic_checksum == checksum)
{
#ifdef DIAG
printf ("<Actual checksum: %x, checksum: %x.>\n",
asic_checksum, checksum);
#endif
return (CHECKSUM GOOD) ;

else
{
sysOutByte (0x1402, Oxff);
#ifdef DIAG
printf ("<Actual checksum: %x, checksum: %x.>\n",
asic_checksum, checksum);
#endif
*actual_checksum = asic_checksun;
#ifdef DIAG
printf ("<Bad checksum.>\n");

/* exit(0); */
#endif
return (CHECKSUM_BAD) ;
}
}
/*
Routine: write_a cmd
Function:

This routine writes a single command byte to the
chipset, and
maintains the checksum word.

Arguments:
the_cmd is the command to write to the chipset.
the_checksum is a pointer to the running checksum. After this
routine

executes the running checksum is set equal to the
command

byte.

Return Arguments:
OK if writing a command is sucessful or ERROR if not.

*/
STATUS write_a_cmd(BYTE the_cmd,

WORD *the checksum)
{

/* poll ready port, if not ready, loop; chip should ready within
12us */

if (wait_until not_busy(l12) == ERROR)
{
#ifdef DIAG

73

printf("<Write a command failed.>\n");

#fendif

return ERROR;

}

write_cmd(the_cmd);

*the_checksum

the cmd;

return OK;

Routine:
Function:
chipset.
words.
operations.
command
status of
desired),
error.
Arguments:
command
cmd__type

length
send_data

rcv_data
receive

is

send_chipset_cmd

This is the main routine used to send a command to the

It accepts read or write commands, with any # of data
It uses the command checksum for both read and write

In case of a checksum error, it will not re-try the
automatically, although it does report the checksum
the operation,

so that the calling routine can (if

perform a special recovery sequence upon I/0O checksum

the hex command code

is the type of the command, the values are CHIPSET SET
and CHIPSET REQUEST

is the length of the read or write data stream in words
a pointer to an array of words where the data to send
stored

a pointer to an array of words where the data to

gtored

Return Arguments:

OK if sending chipset command sucessful

or ERROR if not.

*/

STATUS send_chipset_cmd(int

command,
int cmd_type,
int length,
WORD *send_data,
WORD *rcv_data)

74

WORD checksum, got;
int i;

/* write the command to the chipset */
if (write_a_cmd(command, &checksum) == ERROR)
return ERROR;

for (i = 0; i < length; i++)
{
if (cmd_type == CHIPSET SET)
{
if (write_a_word(send_data[i], &checksum) == ERROR)
return ERROR;
}
else
{
if (read_a_word(&rcv_data[i]l, &checksum) == ERROR)
return ERROR;
}

/* Temperary delay some time. */
for (i = 0; i < 1200; i++);

/* get & check the checksum */

if ((read n_check_ checksum(checksum, &got) == CHECKSUM BAD) &&
(command != RESET))
{

#ifdef DIAG
printf ("<I/0 CHECKSUM ERROR OCCURRED>\n\r");
#endif
check_sum_erxr++;
return ERROR;
}

return OK;

LONG set_1(void)
{

WORD axis_status, scratch;

if (send_chipset_cmd(SET_1, CHIPSET_ REQUEST, 1, &scratch,
&axis_status) == ERROR)

75

{
#ifdef DIAG
printf("<Setting axis to 1 failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("setting axis to 1, status : %x\n", axis_status);
#endif

return(((LONG) axis_status) & Oxffff);

LONG set_2(void)
{
WORD axis_status, scratch;

if (send chipset_cmd(SET_2, CHIPSET REQUEST, 1, &scratch,
&axis_status) == ERROR)
{
#ifdef DIAG
printf ("<Setting axis to 2 failed.>\n");
#tendif
return ERROR;
}

#ifdef DIAG
printf ("setting axis to 2, status : %x\n", axis_status);
#endif

return((LONG) axis_status);

LONG set_3(void)
{
WORD axis_status, scratch;

if (send chipset_cmd(SET_3, CHIPSET_REQUEST, 1, &scratch,
&axis_status) == ERROR)
{
#ifdef DIAG
printf ("<Setting to axis 3 failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf('setting axis to 3, status : %x\n", axis_status);
#endif

return((LONG) axis_status);

}
LONG set_4(void)

{
WORD axis_status, scratch;

76

if (send chipset_cmd(SET_4, CHIPSET REQUEST, 1, &scratch,
&axis_status) == ERROR)

{
#ifdef DIAG

printf ("<Setting to axis 4 failed.>\n");

#endif

return ERROR;

}

#ifdef DIAG
printf ("setting axis to 4, status : %x\n", axis_status);
f#fendif

return((LONG) axis_status);

LONG set_i(void)
{
WORD axis_status, scratch;

if (send_chipset_cmd(SET_I, CHIPSET_REQUEST, 1, &scratch,
&axis status) == ERROR)
{
#ifdef DIAG
printf ("<Setting axis to i failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG

printf (*setting to interrupting axis, status : %x\n",
axis_status);
#endif

return((LONG) axis_status);

STATUS set_prfl s crv(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting profile to s-curve\n");
#endif

if (send_chipset_cmd(SET_PRFL_S_CRV, CHIPSET SET, 0, &scratchl,

&scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Setting profile to s-curves failed.>\n");

77

#endif
return ERROR;

return OK;
}

STATUS set_prfl trap(veoid)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting profile to trapezoidal\n");
#endif

if (send_chipset_cmd(SET_PRFL_TRAP, CHIPSET_SET, 0, &scratchl,

&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting profile to trapezoidal failed.>\n"):;
#endif
return ERROR;
}

return OK;

}

STATUS set_prfl vel(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting profile to velocity contouring\n¥);
#endif

if (send_chipset cmd(SET_PRFL_VEL, CHIPSET_SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting profile to wvelocity contouring.>\n");
#endif
return ERROR;

return OK;
}

STATUS set_prfl gear(void)

{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting profile to electronic gear\n");
#endif

if (send_chipset_cmd(SET_PRFL_GEAR, CHIPSET SET, 0, &scratchl,

&scratch2) == ERROR)

78

{
#ifdef DIAG
printf ("<Setting profile to electronic gear failed.>\n");
#endif
return ERROR;

return OK;

}

STATUS set_pos (LONG the value)
{
WORD datal2], scratch;

#ifdef DIAG
printf ("setting destination position to: %lx\n%", the_value);
#endif

data[HIGH] = (WORD) ((the_value >> 16) & OxffffL);
data[LOW] = (WORD) (the_value & OxffffL);

if (send_chipset_cmd(SET POS, CHIPSET_SET, 2, data, &scratch) ==
ERROR)

{
#ifdef DIAG
printf ("<Setting destination position to: %1lx failed.>\n",
the_value);
#endif
return ERROR;
}

return OK;

}

STATUS set_vel (LONG the_ _value)

{
WORD data[2], scratch;

#ifdef DIAG
printf ("setting max. velocity to: %lx\n", the_value):
#endif

data[HIGH] = (WORD) ((the_value >> 16) & OxfffflL);
data[LOW] = (WORD) (the value & OxfffflL);

if (send_chipset_cmd(SET VEL, CHIPSET_SET, 2, data, &scratch) ==
ERROR)
{
#ifdef DIAG
printf ("<Setting max velocity to %lx failed.>\n",
the_value);
#endif
return ERROR;
}

return OK;

79

STATUS set_acc(LONG the_value)

{
WORD datal2], scratch;

#ifdef DIAG
printf ("setting acceleration to: %lx\n", the_value);
#endif

data[HIGH] = (WORD) ((the_value >> 16) & OxffffL);
data[LOW] = (WORD) (the_value & OxfffflL);

if (send_chipset cmd(SET_ ACC, CHIPSET SET, 2, data, &scratch) ==
ERROR)

{
#ifdef DIAG
printf ("<Setting acceleration to: %lx failed.>\n",
the_value);
#endif
return ERROR;
}

return OK;

}

STATUS set max_acc(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG

printf ("setting max. acceleration to: %1lx\n", the_value);
f#fendif

data = (WORD) (the _value & OxfffflL);

if (send_chipset_ cmd(SET_MAX ACC, CHIPSET SET, 1, &data,
&scratch) == ERROR)

{
#ifdef DIAG
printf("<Setting max. acceleration to: %lx failed.>",
the_value);
#endif
return ERROR;
}

return OK;

}
STATUS set_jerk(LONG the_value)
{ WORD data[2], scratch;
#ifdef DIAG
printf ("setting jerk to: %lx\n", the_value);

#endif

data[HIGH] = (WORD) ((the_value >> 16) & OxffffL);

80

data[LOW] = (WORD) (the_value & OxffffL);

if (send_chipset_cmd(SET_JERK, CHIPSET SET, 2, data, &scratch) ==
ERROR)

{
#ifdef DIAG
printf ("<Setting jerk to: %1lx failed.>", the_ value);
#endif
return ERROR;
}

return OK;
}

STATUS set ratio(LONG the_ value)
{
WORD datal[2], scratch;

#ifdef DIAG
printf ("setting target ratio to: %lx\n", the_value);
#endif

data[HIGH] = (WORD) ((the_value >> 16) & OxfffflL);
data[L.OW] = (WORD) (the_value & OxffffL);

if (send_chipset_cmd(SET RATIO, CHIPSET_ SET, 2, data, &scratch) ==
ERROR)

{
#ifdef DIAG
printf ("<Setting target ration to: %lx failed.>\n",
the value);
#endif
return ERROR;
}

return OK;

}

STATUS clr prfl(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("clear profile...\n");
#endif

if (send chipset_cmd(CLR_PRFL, CHIPSET SET, 0, &scratchil,
&scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Clearing profile failed.>\n"):;
#tendif

return ERROR;
}

return OK;

81

STATUS synch prfl(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("synch profile...\n");
#endif

if (send_chipset_cmd(SYNCH PRFL, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Synch profile failed.>\n");
#endif
return ERROR;
}

return OK;
}

STATUS zero_pos(void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("zeroing position...\n");
#endif

if (send_chipset_cmd(ZERO_POS, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Zeroing position failed.>\n");
#endif
return ERROR;
}

return OK;
}

LONG get_pos(void)

{
WORD data[2], scratch;
LONG pos;

if (send_ chipset_cmd(GET _POS, CHIPSET REQUEST, 2, &scratch, data) ==
ERROR)
{
#ifdef DIAG
printf ("<Getting position failed.>\n"):;
#endif
return ERROR;

pos = ((datal[HIGH] & OxffffL) << 16) | (data[LOW] & OxffffL);

82

#ifdef DIAG
printf ("position: %lx\n", pos);
#endif

return(pos);
}

LONG get_vel (void)

{
WORD datal[2], scratch;
LONG vel;

if (send_chipset cmd(GET_VEL, CHIPSET_ REQUEST, 2,
ERROR)

{
#ifdef DIAG

printf ("<Getting valocity failed.>\n");
#endif
return ERROR;

vel = ((data[HIGH] & OxffffL) << 16) | (datalLOwW]
#ifdef DIAG

printf("velocity: %lx\n", vel);
#endif

return(vel);
}

LONG get_acc(void)

{
WORD datal2], scratch;
LONG acc;

if (send_chipset_cmd(GET_ACC, CHIPSET REQUEST, 2,
ERROR)

{
#ifdef DIAG

&scratch, data)

& Oxf££f£fL);

&scratch, data)

printf ("<Getting acdeleration failed.>\n");

#endif
return ERROR;

acc = ((data[HIGH] & OxffffL) << 16) | (datalLOW] & OxffffL);

#ifdef DIAG

printf ("acceleration: %lx\n", acc);
#endif

return(acc);

}

LONG get_max acc(void)
{

WORD max_acc, scratch;

83

if (send chipset_cmd(GET_MAX ACC, CHIPSET REQUEST, 1, &scratch,
&max_acc) == ERROR)
{
#ifdef DIAG
printf ("<Getting max. acceleration failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("max. acceleration: %x\n", max_acc);
#endif

return((LONG) max_acc):;

}

LONG get_jerk(void)

{
WORD data{2], scratch;
LONG Jjerk;

if (send chipset_cmd(GET JERK, CHIPSET REQUEST, 2, &scratch, data)
== ERROR)
{
#ifdef DIAG
printf ("<Getting jerk failed.>\n");
#tendif
return ERROR;
}

jerk = ((data[HIGH] & OxffffL) << 16) | (datal[LOW] & OxffffL);

#ifdef DIAG
printf("jerk: %lx\n", jerk);
#tendif

return(jerk);

}

LONG get_ratio(void)

{
WORD datal2], scratch;
LONG ratio;

if (send_chipset_cmd(GET_RATIO, CHIPSET REQUEST, 2, &scratch, data)
== ERROR)

{
#ifdef DIAG
printf ("<Getting ratio failed.>\n");
#endif
return ERROR;
}

ratio = ((data[HIGH] & OxffffL) << 16) | (data[LOW] & OxffffL);

#ifdef DIAG

84

printf("ratio: %lx\n"”, ratio);
#endif

return(ratio);
}

LONG get_ trgt_pos(void)

{
WORD datal2], scratch;
LONG target_pos;

if (send_chipset_ cmd(GET_TRGT POS, CHIPSET REQUEST, 2, &scratch,
data) == ERROR)
{
#ifdef DIAG
printf ("<Getting target position failed.>\n");
#endif
return ERROR;

target_pos = ((data[HIGH] & OxffffL) << 16) | (data[LOW] & OxffffL);

#ifdef DIAG
printf ("target position: %ld\n", target_pos);
#endif

return(target_pos);

}

LONG get_trgt_vel(void)

{
WORD datal2], scratch;
LONG target_vel;

if (send_chipset_cmd(GET_TRGT VEL, CHIPSET REQUEST, 2, &scratch,
data) == ERROR)
{
#ifdef DIAG
printf ("<Getting target velocity failed.>\n"):;

#endif
return ERROR;
}
target_vel = ((data[HIGH] & Oxffffl.) << 16) | (data[LOW] & OxffffL);
#ifdef DIAG
printf ("target velocity: %1ld\n", target_vel);
#endif

return(target_vel);

85

STATUS set_fltr pid(void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting filter to: PID\n");
#endif

if (send_chipset_cmd(SET_FLTR_PID, CHIPSET SET, 0, &scratchil,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting filter to: PID failed.>"):;
#endif
return ERROR;
}

return OK;
}

STATUS set_ fltxr pivEf(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting filter to: PIVFF\n");
f#tendif

if (send_chipset_cmd(SET FLTR_PIVFF, CHIPSET_ SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting filter to: PIVFF failed.>\n");
#endif
return ERROR;
}

return OK;

}

STATUS set_kp (LONG the_ value)

{
WORD data, scratch;

#ifdef DIAG
printf ("setting kp to: %1lx\n", the value);
#endif

data = (WORD) (the_value & OxffffL);

if (send_chipset_cmd(SET_KP, CHIPSET_SET, 1, &data, &scratch) ==
ERROR)

{
#ifdef DIAG

printf("<Setting kp to: %lx failed.>\n", the_value);
#endif

86

return ERROR;
}

return OK;

}

STATUS set_kd(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf ("setting kd to: %1lx\n", the value);
#endif

data = (WORD) (the_value & OxfffflL);

if (send _chipset cmd(SET KD, CHIPSET SET, 1,
ERROR)

{
#ifdef DIAG

printf ("<Setting kd to: %lx failed.>\n",

#endif
return ERROR;
}

return OK;
}

STATUS set_ki(LONG the_value)
{
WORD data, scratch;

#ifdef DIAG
printf("setting ki to: %lx\n", the_value);
#endif

data = (WORD) (the_value & OxfffflL);

&data,

if (send_chipset_cmd(SET _KI, CHIPSET_SET, 1, &data,

ERROR)

{
#ifdef DIAG

printf ("<Setting ki to: %1lx failed.>\n",

#endif
return ERROR;
}

return OK;

}

STATUS set_kv(LONG the_value)
{
WORD data, scratch;

#ifdef DIAG

printf ("setting kv to: %lx\n", the_value);
#endif

87

&scratch)

the_value);

&scratch)

the_value);

data = (WORD) (the_value & OxffffL);

if (send_chipset _cmd(SET_KV, CHIPSET SET, 1, &data, &scratch) ==
ERROR)

{
#ifdef DIAG

printf("<Setting kv to: %lx failed.>\n", the_value);
#endif
return ERROR;
}

return OK;

}

STATUS set_kvEf (LONG the_value)
{
WORD data, scratch;

#ifdef DIAG
printf("setting kvff to: %lx\n", the_value);
#endif
data = (WORD) (the_value & Oxffffl);

if (send_chipset_cmd(SET_KVFF, CHIPSET SET, 1, &data, &scratch)
== ERROR)
{
#ifdef DIAG
printf("<Setting kvff to: %lx failed.>\n", the_value);
#endif
return ERROR;
}

return OK;

}

STATUS set_i_ 1lm(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf ("setting i_limit to: %1lx\n", the_ value);
#endif

data = (WORD) (the_value & OxffffL);

if (send_chipset_cmd(SET I_LM, CHIPSET_SET, 1, &data, &scratch)
== ERROR)
{
#ifdef DIAG
printf ("<Setting i_limit to: %lx failed.>\n", the_value);
#endif
return ERROR;
}

return OK;

88

STATUS set_pos_err(LONG the value)

{
WORD data, scratch;

#ifdef DIAG
printf ("setting position error to: %lx\n", the_value);
#endif

data = (WORD) (the value & OxfffflL);

if (send chipset_cmd(SET_POS_ERR, CHIPSET_SET, 1, &data,
&scratch) == ERROR)

{
#ifdef DIAG
printf ("<Setting position error to: %lx failed.>\n",
the_value);
#endif
return ERROR;
}

return OK;

}

LONG get_kp(void)
{
WORD kp, scratch;

if (send_chipset_cmd(GET KP, CHIPSET REQUEST, 1, &scratch, &kp) ==
ERROR)

{
#ifdef DIAG
printf("<Getting kp failed.>\n");
#tendif
return ERROR;
}

#ifdef DIAG
printf ("Kp: %04x\n", kp);
#endif

return((LONG) kp);
}

LONG get_kd(void)
{
WORD kd, scratch;

if (send_chipset_cmd(GET_KD, CHIPSET_REQUEST, 1, &scratch, &kd) ==
ERROR)

{
#ifdef DIAG

printf ("<Getting kd failed.>\n");
#endif

return ERROR;

89

#ifdef DIAG
printf ("Kd: %04x\n", kd):;
#endif

return((LONG) kd);
}

LONG get_ ki (void)
{
WORD ki, scratch;

if (send chipset cmd(GET KI, CHIPSET REQUEST, 1, &scratch, &ki)

ERROR)
{
#ifdef DIAG
printf ("<Getting ki failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf("Ki: %04x\n", ki);
#endif

return ((LONG) ki);
}

LONG get_ kv(void)
{
WORD kv, scratch;

if (send_chipset_cmd(GET_ KV, CHIPSET REQUEST, 1, &scratch, &kv)

ERROR)
{
#ifdef DIAG
printf ("<Getting kv failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("Kv: %x\n", kv):;
#endif

return((LONG) kv);
}

LONG get_kvif (void)

{
WORD kvff, scratch;

if (send_chipset_cmd(GET_KVFF, CHIPSET REQUEST, 1, &scratch, &kvEf)

== ERROR)
{
#ifdef DIAG
printf ("<Getting kvEff failed.>\n");
#endif

90

return ERROR;
}

#ifdef DIAG
printf ("RvEEf: %04x\n", kvff):;
#endif

return((LONG) kvff);
}

LONG get i Ilm(void)
{
WORD i _1lim, scratch;

if (send chipset_cmd(GET _I_ LM, CHIPSET REQUEST, 1,
== ERROR)
{
#ifdef DIAG
printf ("<Getting i_limit failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf("i_lim: %04x\n", i_1lim);
#endif

return((LONG) i_1lim);
}

LONG get_pos_err(void)
{
WORD pos_err, scratch;

if (send chipset_cmd(GET POS_ERR, CHIPSET REQUEST,
&pos_err) == ERROR)
{
#ifdef DIAG

&scratch, &i_1lim)

1, &scratch,

printf ("<Getting position error failed.>\n");

#endif
return ERROR;
}

#ifdef DIAG
printf("max. position err: %04x\n", pos_err);
#endif

return((LONG) pos_err);
}

LONG get_intgr(void)
{

WORD integration_value, scratch;
if (send_chipset_cmd(GET_INTGR, CHIPSET REQUEST, 1,

&integration value) == ERROR)
{

91

&scratch,

#ifdef DIAG
printf ("<Getting integration failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG

printf("integration value: %04x\n", integration value);
#endif

return((LONG) integration value):;
}

LONG get_actl_pos_err(void)
{
WORD actl_pos_err, scratch;

if (send_chipset_cmd(GET_ACTL_POS_ERR, CHIPSET REQUEST, 1, &scratch,
&actl_pos_err) == ERROR)

{
#ifdef DIAG
printf ("<Getting actural position error failed.>\n");
#tendif
return ERROR;
}

#ifdef DIAG

printf ("Actual filter position error: %04x\n", actl_pos_err);
f#fendif

return((LONG) actl_pos_err);
}

STATUS set_auto_stop_off (void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("turn auto_stop off...\n");
#endif

if (send_chipset_cmd(SET_AUTO_STOP_OFF, CHIPSET SET, O,
&scratchl, &scratch2) == ERROR)

{
#ifdef DIAG
printf ("<Turning auto_stop off failed.>\n");
#endif
return ERROR;

return OK;
}
STATUS set_auto_stop_on(void)

{
WORD scratchl, scratch2;

92

#ifdef DIAG
printf ("turn auto_stop on...\n");
#endif

if (send_chipset_cmd(SET_AUTO_ STOP_ON, CHIPSET_SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Turning auto_stop on failed.>\n");

#endif
return ERROR;
}
return OK;
}
/*

STATUS set_time_brk(void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting time breakpoint\n");
#endif

if (send_chipset_cmd(SET TIME_BRKPNT, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting timr breakpoint failed.>\n"):
#endif
return ERROR;

return OK;
}

STATUS set_pos_brk(void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting positive target position breakpoint\n");
#endif

if (send_chipset_cmd(SET_POS_BRKPNT, CHIPSET SET, 0, &scratchil,
&scratch2) == ERROR)
{
#ifdef DIAG
printf("<Setting positive target position breakpoint
failed.>\n");
#iendif

93

return ERROR;

return OK;
}

STATUS set_neg_brk{(void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting negative target position breakpoint\n");
#endif

if (send_chipset_cmd(SET_NEG_BRKPNT, CHIPSET_SET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Setting negative target positon breakpoint
failed.>\n");
#endif

return ERROR;

return OK;

}

STATUS set_actl_pos_brk(void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf("gsetting positive actual position breakpoint\n");
#endif

if (send chipset_cmd(SET_ACTL_POS_BRK, CHIPSET_ SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting positive actural position breakpoint
failed.>\n");
#endif
return ERROR;

return OK;

}

STATUS set_actl_neg brk(void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting negative actual position breakpoint\n");
f#fendif

94

if (send_chipset_cmd(SET_ACTL_NEG_BRK, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting negative actual position breakpoint
failed.>\n");
#endif
return ERROR;
}

return OK;
}

STATUS set_brk_off (void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting breakpoint off\n");
#endif

if (send_chipset_cmd(SET_ BRK_OFF, CHIPSET_ SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf (*<Setting breakpoint off failed.>\n"):;
#tendif
return ERROR;
}

return OK;
}

STATUS set_brk_ pnt(LONG the_value)
{
WORD data{2], scratch;

#ifdef DIAG
printf ("setting break point value to: %1lx\n", the_value);
#endif

data[HIGH] = (WORD) ((the_value >> 16) & OxfffflL);
data[LOW] = (WORD) (the_value & OxffffL):;

if (send_chipset_cmd(SET_BRK PNT, CHIPSET SET, 2, data, &scratch)
== ERROR)
{
#ifdef DIAG
printf (*"<Setting break point value to: %lx failed.>\n",
the_value);
#endif
return ERROR;
}

return OK;

95

STATUS update(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("update target info\n");
#endif

if (send_chipset_cmd(_UPDATE , CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Updating target info failed.>\n");
#endif
return ERROR;
}

return OK;
}

STATUS multi_update (LONG the_value)

{
WORD mask, scratch;

#ifdef DIAG

printf ("starting multiple axis...; using mask: %lx\n",
the_value);
#endif

mask = (WORD) (the_value & OxffffL):

if (send_chipset_cmd(MULTI_UPDATE, CHIPSET SET, 1, &mask,
&scratch) == ERROR)
{
#ifdef DIAG
printf ("<Multi-updating failed.>\n");
#endif
return ERROR;
}

return OK;
}

STATUS set_auto_update_on(void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting auto update on...\n");
#endif

if (send chipset_cmd(SET_AUTO_UPDATE_ON, CHIPSET_SET, 0,
&scratchl, &scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting auto update failed.>\n");
#endif

96

return ERROR;
}

return OK;
}

STATUS set_auto_update off (void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting auto update off...\n");
#endif

if (send_chipset_cmd(SET_AUTO_UPDATE_OFF, CHIPSET_SET, 0,
&scratchl, &scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Setting auto update off failed.>\n");
f#fendif
return ERROR;
}

return OK;

}

LONG get_brk pnt(void)

{
WORD datal2], scratch;
LONG breakpoint_value;

if (send_chipset_cmd(GET BRK_PNT, CHIPSET REQUEST, 2, &scratch,
data) == ERROR)
{
#ifdef DIAG
printf ("<Getting breakpoint failed.\n>");
#endif
return ERROR;
}

breakpoint_value = ({data[HIGH] & OxffffL) << 16) | (data[LOW] &
OxffffL);

#ifdef DIAG
printf ("breakpoint: %lx\n", breakpoint_value);

#endif

return (breakpoint_value);

—— - ————— oy T T T ——— " T = = e -

97

STATUS set_intrpt mask(LONG the_ value)
{
WORD mask, scratch;

#ifdef DIAG

printf ("setting interrupt mask to: %1lx\n", the_value);
#endif

mask = (WORD) {(the_value & OxfffflL);
if (send_chipset_cmd(SET INTRPT MASK, CHIPSET SET, 1, &mask,
&scratch) == ERROR)

{
#ifdef DIAG
printf ("<Setting interrupr mask to: %lx failed.>\n",
the_value);
#endif
return ERROR;

return OK;
}

LONG get_intrpt(void)
{
WORD axis_status, scratch;

if (send_chipset_cmd(GET_ INTRPT, CHIPSET_ REQUEST, 1, &scratch,
&axis_status) == ERROR)
{
#ifdef DIAG
printf ("<Getting interrupr status failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf("getting interrupt status : %x\n", axis_status);
#endif

return((LONG) axis_status);
}

STATUS rst_intrpt (LONG the_value)
{
WORD mask, scratch;

#ifdef DIAG

printf ("resetting interrupt using mask: %lx\n", the_value);
#endif

mask = (WORD) (the_value & OxffffL);
if (send_chipset_cmd(RST_ INTRPT, CHIPSET_ SET, 1, &mask, &scratch)
== ERROR)
{
#ifdef DIAG

printf ("Resetting interrupt using mask: %lx failed.>\n",
the_value);

98

#endif
return ERROR;

}
return OK;
}
LONG get_intrpt mask(void)
{
WORD interrupt_mask, scratch;
if (send_chipset_cmd(GET_INTRPT_MASK, CHIPSET REQUEST,
&interrupt_mask) == ERROR)

{
#ifdef DIAG

printf ("<Getting interrupt mask failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("Interrupt mask: %04x\n", interrupt_mask);

#endif

return((LONG) interrupt_mask):;

STATUS clr_status(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("clearing status...\n");
#endif

1,

&scratch,

if (send_chipset_cmd(CLR_STATUS, CHIPSET SET, 0, &scratchl,

&scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Clearing status failed.>\n");
#endif
return ERROR;

return OK;
}
STATUS rst_status (LONG the_value)

{
WORD scratchl, scratch2;

99

#ifdef DIAG

printf ("clearing status of selected bits using mask: %lx\n\r®,
the_value);
#endif

if (send_chipset_cmd(RST_STATUS, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Clearing status of selected bits using mask: %lx
failed.>\n", the_value);
#endif
return ERROR;

return OK;

}

LONG get_ status(void)

{
WORD axis_status, scratch;

if (send_chipset_cmd(GET_STATUS, CHIPSET_REQUEST, 1, &scratch,
&axis_status) == ERROR)

{
#ifdef DIAG
printf ("<Getting status failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG

printf ("getting status : %x\n", axis_status);
#endif

return((LONG) axis_status);

}

LONG get_mode(void)
{

WORD misc_mode_info, scratch;

if (send_chipset_cmd(GET_MODE, CHIPSET REQUEST, 1, &scratch,
&misc_mode_info) == ERROR)
{
#ifdef DIAG
printf ("<Getting mode failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("mode: %x\n", misc_mode_info):;
#endif

return((LONG) misc_mode_info);

100

STATUS set_cnts(LONG the_value)
{
WORD data, scratch:;

#ifdef DIAG
printf("setting # counts / rev to: %lx\n", the_value);
#endif

data = (WORD) (the_value & OxffffL);

if (send_chipset_cmd(SET CNTS, CHIPSET_SET, 1, &data, &scratch)
== ERROR)
{
#ifdef DIAG
printf ("<Setting # counts / rev to: %lx failed.>\n",
the_value);
#endif
return ERROR;

return OK;
}

STATUS set_capt_index(void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting capture mode to index sigmal\n");
#endif

if (send_chipset_cmd(SET_CAPT INDEX, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Setting capture mode to index signal failed.>\n");
#endif
return ERROR;

return OK;
}

STATUS set_capt_home(void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting capture mode to home signal\n");
#endif

101

if (send chipset_cmd(SET_CAPT_HOME, CHIPSET_SET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAF

printf ("<Setting capture mode to home signal failed.>\n");
#endif
return ERROR;
}

return OK;
}

LONG get_cnts(void)
{
WORD counts, scratch;

if (send_chipset_cmd(GET CNTS, CHIPSET REQUEST, 1, &scratch,
&counts) == ERROR)

{
#ifdef DIAG

printf ("<Getting counts failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("# counts/rev: %04x\n", counts);
#endif

return((LONG) counts);
}

LONG get_capt(void)

{
WORD dataf2], scratch;
LONG index;

if (send_chipset_cmd(GET_CAPT, CHIPSET_REQUEST, 2, &scratch, data)
== ERROR)
{
#ifdef DIAG

printf ("<Getting capture failed.>\n");
#endif
return ERROR;
}
index = ((data[HIGH] & OxffffL) << 16) | (data[LOW] & OxffffL);
#ifdef DIAG
printf(vindex: %lx\n", index);
#endif

return((LONG) index);

/*

102

STATUS set_output_pwm(void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("setting output mode to PWM...\n");
#fendif

if (send_chipset_cmd(SET_OUTPUT PWM, CHIPSET_ SET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Setting output mode to PWM failed.>\n");
#endif
return ERROR;

return OK;

}

STATUS set_output_dacl2(veoid)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting output mode to DACl2...\n");
#endif

if (send_chipset_cmd(SET_OUTPUT_DACl2, CHIPSET_SET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

printf ("<Setting output mode to DAC1l2 failed.>\n");
#endif
return ERROR;

return OK;
}

STATUS set_output_daclé (void)
{
WORD scratchl, scratch2;

#ifdef DIAG

printf("setting output mode to DACl6...\n");
#endif

if (send_chipset_cmd(SET OUTPUT_DACl1l6, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)

{
#ifdef DIAG

103

printf ("<Setting output mode to DAC16 failed.>\n");
#endif
return ERROR;
}

return OK;
}

STATUS mtr_on(void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("turn motor on...\n");
#endif

if (send chipset_cmd(MTR_ON, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Turning motor on failed.>n");
#endif
return ERROR;
}

return OK;

}

STATUS mtr_off (void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("turn motor off...\n");
#endif

if (send_chipset_cmd (MTR_OFF, CHIPSET_SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Turning motor off failed.>\n"):;
#tendif
return ERROR;
}

return OK;
}

STATUS set mtr cmd(LONG the_value)
{
WORD mtr _cmd, scratch;
#ifdef DIAG
printf ("setting motor cmd to: %lx\n", the_value);

#endif

mtr_cmd = (WORD) (the_value & OxfffflL);

104

if (send_chipset_cmd (SET_MTR CMD, CHIPSET SET, 1, &mtr_cmd,
&scratch) == ERROR)
{
#ifdef DIAG
printf ("<Setting motor command to: %lx failed.>\n",
the_value);
#endif
return ERROR;
}

return OK;

}

/* this routine is only available on the -b chipsets */

STATUS set_ buf mtr_cmd(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf ("setting buffered motor command to: %lx\n\r", the_value);
#endif

data = (WORD) (the_value & OxffffL);

if (send_chipset_cmd(SET_BUF MTR_CMD, CHIPSET SET, 1, &data,
&scratch) == ERROR)

{
#ifdef DIAG
printf ("<Setting buffered motor command to: %lx
falied.>\n", the_value);
f#fendif
return ERROR:;
}

return OK;

}

/* this routine is only available on the ~-b chipsets */

LONG get buf mtr cmd(void)

{
WORD buf mtr cmd value, scratch;
if (send_chipset_cmd(GET BUF_MTR_CMD, CHIPSET REQUEST, 1,
&scratch, &buf mtr cocmd_value) == ERROR)

(
#ifdef DIAG

printf ("<Getting buffer motor command failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG

printf ("\n\r\rdouble buffered motor cmd value: %04x\n\r",
buf_mtr_cmd_value);

105

#endif
return ((LONG) buf_mtr cmd value);
}

LONG get_output_mode(veoid)
{
WORD output_mode, scratch;

if (send_chipset_cmd (GET_OUTPUT MODE, CHIPSET_ REQUEST, 1, &scratch,
&output_mode) == ERROR)
{
#ifdef DIAG
printf ("<Getting output mode failed.>\n");

#endif
return ERROR;
}
#ifdef DIAG
printf ("Output_mode: %s\n", (output_mode == 0) ? "PWM" :
({output_mode == 1) ? "DAC12" : "DAC1lé6")):;

#endif

return((LONG) output_mode);

STATUS axis_on(void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf("turn axis on...\n");
#endif

if (send_chipset_cmd(AXIS ON, CHIPSET SET, 0, &scratchl, &scratch2)
== ERROR)
{
#ifdef DIAG
printf ("<Turnning axis on failed.>\n");
#endif
return ERROR;

return OK;
}

STATUS axis_off (void)
{
WORD scratchl, scratch2;

#ifdef DIAG
printf("turn axis off...\n");

106

#endif

if (send_chipset_cmd(AXIS OFF, CHIPSET_ SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Turnning axis off failed.>\n");
#endif
return ERROR;
}

return OK;

3

LONG get_ actl_pos(void)

{
WORD datal[2], scratch;
LONG actual_position;

if (send chipset_cmd(GET ACTL_POS, CHIPSET REQUEST, 2, &scratch,
data) == ERROR)
{
#ifdef DIAG
printf ("<Getting actual position failed.>\n");
#endif
return ERROR;
}

actual_position = ((data[HIGH] & OxfffflL) << 16) | (data[LOW] &
Oxf£f£ffL);

#ifdef DIAG
printf ("actual_position: %ld\n", actual_position);
#endif

return(actual position);

}

STATUS set_lmt_sense(LONG the_value)

{
WORD limit_sense, scratch;

#ifdef DIAG
printf ("setting limit sense to: %1lx\n", the_value);
#endif

limit_sense = (WORD) (the value & OxffffL);

if (send_chipset_ cmd(SET LMT SENSE, CHIPSET SET, 1, &limit_sense,
&scratch) == ERROR)
{

#ifdef DIAG

printf ("<Setting limit sense to: %lx failed.>\n",
the_value);
#endif

return ERROR;

107

return OK;
3}

LONG get_lmt_swtch(void)
{
WORD 1limit_ switch, scratch;

if (send_chipset_cmd(GET_LMT_ SWTCH, CHIPSET_ REQUEST, 1, &scratch,
&limit_switch) == ERROR)
{
#ifdef DIAG
printf ("<Getting limint switich failed.>\n");

#endif
return ERROR;
}
#ifdef DIAG
printf ("limit switch: %04x\n\n", limit_switch);
#endif

return ((LONG) limit_switch);
}

STATUS Ilmts_on(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("setting limit switches to on...\n");
#endif

if (send_chipset_cmd (LMTS_ON, CHIPSET_ SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf("<Setting limit switich to on failed.>\n");
#endif
return ERROR;
}

return OK;

}

STATUS lmts off (void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf("setting limit switches to off...\n"):;
#endif

if (send_chipset_cmd(LMTS_OFF, CHIPSET SET, 0, &scratchil,
&scratch2) == ERROR)

{
#ifdef DIAG

printf("<Setting limit switched to off failed.>\n");

108

#endif
return ERROR;

return OK;

LONG get_ _home(void)
{
WORD home_status, scratch;

if (send_chipset_cmd(GET HOME, CHIPSET REQUEST, 1, &scratch,
&home_status) == ERROR)

{
#ifdef DIAG
printf ("<Getting home status failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG

printf ("Home Status: %04x\n", home_status);
#endif

return((LONG) home_status):;

STATUS set_smpl_ time (LONG the_value)

{
WORD sample_time, scratch;

#ifdef DIAG
printf("setting sample time to: %1x\n”, the_value);
#endif

sample time = (WORD) (the_value & OxffffL);
if (send_chipset_cmd(SET_SMPL_TIME, CHIPSET SET, 1, &sample_time,
&gcratch) == ERROR)
{
#ifdef DIAG
printf ("<Setting sample time to: %lx failed.>\n",
the_value);
#endif
return ERROR;

return OK;

}
LONG get_smpl time(void)
{
WORD sample_time, scratch;

if (send_chipset_cmd(GET_SMPL TIME, CHIPSET REQUEST, 1, &scratch,
&sample_time) == ERROR)

109

{
#ifdef DIAG

printf ("<Getting sample time failed.>\n");

#endif
return ERROR;
}

#ifdef DIAG
printf ("Sample time: %04x\n", sample_time);
#endif

return((LONG) sample_time);
}

STATUS reset (void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("resetting chipset...\n");
#endif

if (send_ chipset_cmd(RESET, CHIPSET SET, 0,
== ERROR)
{
#ifdef DIAG
printf ("<Resetting failed.>\n");
#endif
return ERROR;

return OK;

}

LONG get_vrsn(void)
{
WORD data, scratch;

WORD generation, num axis, part_num, dash_ num,

min version num;

if (send_chipset_cmd(GET VRSN, CHIPSET_ REQUEST,

== ERROR)
{
#ifdef DIAG

printf ("<Getting version failed.>\n");

#endif
return ERROR;
}

generation = (data & 0xc000) >> 14;
num _axis = ((data & 0x3800) >> 11)+1;
part_num = (data & 0x0700) >> 8;

dash num = (data & Oxel) >> 5;
maj_version_num = (data & 0x18) >> 3;
min version_num = data & 7;

#ifdef DIAG

110

&scratchl, &scratch2)

maj_version_num,

1, &scratch, &data)

printf ("P/N: %04x%s, version #: %0d4.%04\n",
(generation << 12) + (num_axis << 8) + part num, {(dash_num ==
0) ? ww ; v_pv, maj_version num, min version_num);
}
#endif

return((LONG) data):;
}

LONG get_time(void)

{
WORD datal[5], scratch;
LONG chip_ time;

if (send_chipset cmd(GET_TIME, CHIPSET_REQUEST, 2, &scratch, data)
ERROR)

{
#ifdef DIAG

printf ("<Getting time failed.>\n");
#endif
return ERROR;
}

chip time = ((data[HIGH] & OxffffL) << 16) [(data[LOW] & OxffffL);

#ifdef DIAG
printf ("chip time: %lx\n", chip_time);
#endif

return(chip_ time);

STATUS stop(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf("stop...\n");
#endif

if (send_chipset_cmd(STOP, CHIPSET SET, 0, &scratchl, &scratch2)
== ERROR)
{
#ifdef DIAG
printf ("<Stoping failed.>\n"):;
#endif
return ERROR;

111

}

return OK;

STATUS smooth_ stop(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("smooth stop...\n"):
#endif

if (send_chipset_ cmd(SMOOTH_STOP, CHIPSET SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Smooth stop failed.>\n");
#endif
return ERROR;
}

return OK;

STATUS set_mtn_cmplt_brk(void)

{
WORD scratchl, scratch2;

#ifdef DIAG
printf ("set_mtn_cmplt_brk...\n");
#endif

if (send_chipset_cmd(SET_MTN_CMPLT_ BRK, CHIPSET SET, O,
&scratchl, &scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting motion complete break failed.>\n");
#endif
return ERROR;
}

return OK;

STATUS set_ext_brk(void)

{
WORD scratchl, scratch2;

#ifdef DIAG

printf ("set_ext_brk...\n"):;
#endif

112

if (send_chipset_ c¢md(SET EXT_ BRK, CHIPSET_SET, 0, &scratchl,
&scratch2) == ERROR)
{
#ifdef DIAG
printf ("<Setting ecteranl break failed.>\n");
#endif
return ERROR;
}

return OK;

STATUS set_mtr lmt (LONG the_value)
{
WORD data, scratch;

#ifdef DIAG
printf("set_mtr_ lmt to: %lx\n", the_value):;
#endif

data = (WORD) (the _value & OxffffL);

if (send_chipset_cmd(SET_MTR_LMT, CHIPSET SET, 1, &data,
&scratch) == ERROR)

{
#ifdef DIAG
printf ("<Setting motor limit to: %lx failed.>\n",
the value);
#endif
return ERROR;

return OK;

STATUS set_mtr bias(LONG the_value)

{
WORD data, scratch;

#ifdef DIAG
printf("set_mtr_bias to: %lx\n", the value);
#endif

data = (WORD) (the_value & OxffffL);

if (send_chipset_ cmd (SET_MTR _BIAS, CHIPSET SET, 1, &data,
&scratch) == ERROR)
{
#ifdef DIAG
printf ("<Setting motor bias to: %lx failed.>\n",
the_value);
#endif
return ERROR;

113

return OK;

STATUS set_actl pos (LONG the_value)
{
WORD datal[2], scratch;

#ifdef DIAG

printf ("setting actual destination position to: %lx\n",
the_value);
#endif

data[HIGH] = (WORD) ((the_wvalue >> 16) & OxfEffL);
data[LOW] = (WORD) (the_value & OxfffflL);

if (send_chipset_cmd(SET_ACTL_POS, CHIPSET_SET, 2, data,
&scratch) == ERROR)

{
#ifdef DIAG
printf ("<Setting actual destination position to: %lx
failed.>\n", the_value);
#endif
}

return OK;

LONG get_mtr_ lmt (void)
{
WORD mtrLimit, scratch;

if (send_chipset cmd(GET MAX ACC, CHIPSET REQUEST, 1, &scratch,
&mtrLimit) == ERROR)
{
#ifdef DIAG
printf ("<Getting motor limit failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("motor limit: %x\n", mtrLimit);

#endif

return((LONG) mtrLimit)

-

LONG get_mtr bias(void)
{
WORD mtrBias, scratch;

if (send_chipset_cmd (GET_MAX ACC, CHIPSET REQUEST, 1, &scratch,
&mtrBias) == ERROR)

114

{
#ifdef DIAG
printf ("<Getting motor bias failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("motor bias: %x\n", mtrBias);
#endif

return((LONG) mtrBias);

LONG get mtr_ cmd(void)
{

WORD mtrCommand, scratch;

if (send_chipset_cmd(GET MAX ACC, CHIPSET REQUEST, 1, &scratch,
&mtrCommand) == ERROR)

{
#ifdef DIAG
printf ("<Getting motor command failed.>\n");
#endif
return ERROR;
}

#ifdef DIAG
printf ("motor limit: %x\n", mtrCommand);
#endif

return((LONG) mtrCommand);

Routine: hardware_reset

Function:

This routine sends a hardware reset command to the
chipset.

Arguments:
none

Return Arguments:
none

void hardware_reset (void)
{
outp_x (RESET_PORT ADDRESS, RESET_CODE):;

115

}

void hardware unreset (void)

{
outp_x(RESET_PORT_ADDRESS, UNRESET_CODE);

void enable_ amps (void)

{
outp x(AMP_ ENABLE PORT, AMP ENABLE ALL);
}
void enable amp(int axis)
{
switch (axis)
{
case l: outp_x(AMP_ ENABLE_ PORT, AMP ENABLE_1l); break;
case 2: outp_x(AMP_ENABLE_PORT, AMP_ ENABLE_2); break;
case 3: outp x(AMP_ ENABLE_ PORT, AMP ENABLE_3); break;
case 4: outp x(AMP ENABLE PORT, AMP_ENABLE 4); break;
}
}
void disable_ amp (wvoid)
{
outp_x(AMP_ENABLE_PORT, 0);
}

BYTE read_home(void)

{
return inp x(HOME_ STATUS_PORT_1);

}
/*
Routine: wait_for_ interrupt
Function:

This routine polls the host interrupt bit of the status
port

and returns when an interrupt is active (the motion
chipset

is asserting the host_interrupt signal). Depending on
the

IRQ selection setting of the board, a chipset host
signal

may or may not generate a DOS interrupt. In any case
this

routine only looks at the 'polled’' mode bit in the
status

word. Note that this routine has no waiting period
timeout. If

the chipset is not receiving power, or if there is some
other

116

hardware I/0 problem, this routine many wait in an
minfinite loop".

Arguments:
none

Return Arguments:

none
*/
/*
void wait_for_interrupt(void)
{
BYTE the_byte;
while (TRUE)
{
the_byte = inp xX(INTERRUPT PORT ADDRESS);
if ((the_byte & HOST_ INTERRUPT_ BIT MASK) == INTERRUPT BIT_ SENSE)
return;
}
}

117

Appendix D: Source Code for Motion Control (motion.o)

#include "vxWorks.h"
#include "iv.h"
#include "ioLib.h"™
#include "iosLib.h"
#include "intLib.h"
#include "errnoLib.h"”
#include "sysLib.h"
#include "semLib.h"
#include "stdio.h"
#include "motion.h"
#include "pmdio.h”
#include "math.h"

/*Global Variables*/
int CurrentAxis = 0;

float CountsPerMM = 100.0;
float MMperCount = 0.0;
long ZeroPos = 0;

long MotionRange = 0;

static long abs(long value)

{
value = (value<0)? -value : value;
return value;
}
void WaitForSettle()
{
unsigned long t1;
while ({(tl=get_time()) > (OxfE££ffffff - 10000));
while (get_time() < t1+1000);
}
STATUS SetPID(long P, long I, long D, long I_ILM)
{
if (get_kp(P) == ERROR)
return ERROR;
if (set_ki(I) == ERROR)
return ERROR;
if (set_kd(D) == ERROR)
return ERROR;
if (set_i_1m(0) == ERROR)
return ERROR;
if (set_kvEf(0) == ERROR)
return ERROR;
if (set_i_lm(I_LM) == ERROR)

return ERROR;

118

return OK;

STATUS Reset ()

{
hardware_reset():;
hardware_unreset();

if (reset () == ERROR)
return ERROR;

disable_amp();

return OK;

STATUS Stop()
{
if (stop() == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

return OK;

STATUS SelectAxis(int Axis)

{
disable_amp();
switch(Axis)
{
case 1:
if (set_1() == ERROR)
return ERROR;
break;
case 2:
if (set_2() == ERROR)
return ERROR;
break;
case 3:
if (set_3() == ERROR)
return ERROR;
break;
case 4:
if (set_4() == ERROR)
return ERROR;
break;
}
if (Stop() == ERROR)

return ERROR;

119

if (set_smpl time(SMPL) == ERROR)
return ERROR;
if (set_auto_stop off() == ERROR)

return ERROR;

if (axis_on() == ERROR)
return ERROR;

if (mtr_on() == ERROR)
return ERROR;

enable_amp (Axis);
CurrentAxis = Axis;

return OK;

/* Move "counts" relative from the current position in
milliseconds */
STATUS MoveCounts(long counts, int tms)

{

long destpos;

long vel;

long acc;

float fsmpl_ms;
float ftempl, ftemp2;
float ftms;

float fcounts;

if (stop() == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

fsmpl ms = (float) SMPL * 100 / 1000;
ftms = (float) tms;
fcounts = (float) abs(counts);

destpos = get_actl_pos() + counts;

ftempl = fcounts / (ftms / fsmpl_ms):;
vel = (long) (ftempl * 65536);

ftemp2 (Etms*1000/10000) / f£smpl_ms;
ftempl ftempl/ftemp2;
ace = (long) (ftempl * 65535):

#ifdef DIAG

printf("\n smpl_ms: %10.4£f", f£smpl ms);
printf("\n ftms: %10.4£f", ftms);
printf("\n fcounts: %10.4f", fcounts);
printf("\n destpos: %d", destpos);

120

n tms L

printf("\n vel: %d4d", vel);
printf ("\n acc: %d\n\n", acc);
#endif

if (set_prfl_ trap() == ERROR)
return ERROR;

if (set_pos(destpos) == ERROR)
return ERROR;

if (set_vel(vel) == ERROR)
return ERROR;

if (set_acc(acc) == ERROR)
return ERROR;

if (clr status() == ERROR)
return ERROR;

if (axis _on() == ERROR)
return ERROR;

if (mtr_on() == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

return OK;

/* Move "MM" relative to the "ZeroPos"™ in "tms" millisec */
STATUS MoveArm(long MM, int tms)
{

long actualPos;

long absPos;

long movecount;

long counts;

[}

counts MM * CountsPerMM;
absPos = ZeroPos + counts;
actualPos = get_actl_pos():
movecount = absPos - actualPos;

#ifdef DIAG
printf ("\nCountsPerMM=%1i", CountsPerMM) ;
printf ("\ncounts=%1i", counts);
printf ("\nabsPos=%1i",absPos);
printf ("\nactualPos=%1li",actualPos);
printf (" \nmovecount=%li",movecount);
printf ("\n");

#endif

return MoveCounts(movecount, tms);

/* Move arm until home sensor is ON using the specified velocity */
STATUS CaptureHome(long vel, short int nbir)
{

/* stop any motion */

if (Stop() == ERROR)

121

/%
if

if

if

if

if

if

/*

if

if

if

if

if

/*

if

if

return ERROR;

Abort if home sensor is already ON */
((read _home() & (0x01 << ({(CurrentAxis-1) * 4)
return OK;

setup motion parms */
(set_prfl_trap() == ERROR)
return ERROR;
(set_actl_pos(0) == ERROR)
return ERROR;
(set_pos(0) == ERROR)
return ERROR;
(set_vel (NORMAL_VEL)
return ERROR;
(set_acc (NORMAL_ACC)
return ERROR;
(axis_on() == ERROR)
return ERROR;
{mtr_on() == ERROR)
return ERROR;
(GoUpdate() == ERROR)
return ERROR;

ERROR)

ERROR)

set up for home capture */

(get_capt() == ERROR) /* reset the capt hw */
return ERROR;

(set_capt_home() == ERROR)
return ERROR;

(clr_status() == ERROR)
return ERROR;

(set_pos(nDir * BACKWARD * ONE_REV_COUNT/2)

return ERROR;
(set_vel(vel) == ERROR)

return ERROR;
(GoUpdate() == ERROR)

return ERROR;

set auto smooth stop */

(smooth_stop() == ERROR)
return ERROR;

(set_ext_brk() =
return ERROR;

= ERROR)

/* wait till home capture is on */
while ((get_status() & GS_POSITION_CAPTURED) ==

/* check if error occured */

if
{

(get_status() & GS_MOTION_ERROR)

/* resume pmd */

if (clr_status() == ERROR)
return ERROR;

if (synch_prfl() == ERROR)
return ERROR;

if (GoUpdate() == ERROR)
return ERROR;

122

) 1= 10)

== ERROR)

0)

L

}

return OK;
}

/* Implements the Seek Home algorithm */
STATUS Home (short int nDir)
{
/* if not at home */
if ((read home() & (0x01 << ((CurrentAxis-1) * 4))) == 0)
{
/* fast home */
if (CaptureHome (NORMAL VEL/10, nDir) == ERROR)
return ERROR;

}
WaitForSettle():;

/* repeat move out N counts until not at home */
while ((read_home() & (0x01 << ({(CurrentAxis-1) * 4))) != 0)
{
if (set_actl_pos(0) == ERROR)
return ERROR;
if (MoveCounts(nDir * FORWARD * 200,50) == ERROR)
return ERROR;
while ((get_status() & GS MOTION COMPLETE) == 0);
}
WaitForSettle();

/* slow home */

if (CaptureHome (NORMAL_ VEL/500, nDir) == ERROR)
return ERROR;

WaitForSettle();

/* should be home now */

if (Stop() == ERROR)
return ERROR;

if (clr_status() == ERROR)
return ERROR;

if (set_actl_pos(0)
return ERROR;

ERROR)

return OK;

STATUS CaptureIndex(long vel)
{

/* stop any motion */
stop();

/* setup motion parms */

if (set_prfl trap() == ERROR)
return ERROR;
if (set_vel(vel) == ERROR)

return ERROR;

123

if (set_acc(NORMAL_ACC) == ERROR)
return ERROR;

if (axis_on() == ERROR)
return ERROR;
if (mtr_on() == ERROR)

return ERROR;

/* setup for index capture */
if (get_capt() == ERROR) /* reset the capt hw */
return ERROR;
if (set_capt_index() == ERROR)
return ERROR;
if (clxr_status() == ERROR)
return ERROR;
if (set_pos(get_actl_pos() + (FORWARD * ONE_REV_COUNT/2)) ==
ERROR)
return ERROR;
if (GoUpdate() == ERROR)
return ERROR;

/* wait till home capture is on */
while ((get_status() & GS_POSITION_CAPTURED) == 0);

/* stop the motion */

if (smooth_stop() == ERROR)
return ERROR;
if (GoUpdate() == ERROR)

return ERROR;

return OK;

}
LONG GetStatus()
{
return get_status();
}

void RatioOfMMtoCounts(float mm, flocat counts)
{
printf("Counts: %f, MM: %f.\n", counts, mm);
CountsPexrMM = (int) (counts / mm);
printf ("CountsPerMM: %f.\n", CountsPerMM);
MMperCount = mm / counts;

}

void SetArmZeroPosition(long counts)

{
ZeroPos = counts;
}
void SetMotionRange(long counts)
{
MotionRange = counts:;
}

124

STATUS GetArmPosition(long *MM)

{
LONG lPosition = get_actl_pos():
if (lPosition == ERROR)
return ERROR;
*MM = (lPosition - ZeroPos) * MMperCount;
return OK;
}
STATUS GetArmCount (long *counts)
{
*counts = get_actl pos():;
if (*counts == ERROR)
return ERROR;
return OK;
}

/* make sure that the previous data in the buffer is updated
before the the new data is put into the buffexr */

STATUS GoUpdate()
{

LONG prev_time, curr_time;

prev_time = curr time = get_time();

/* wait until the next x servo loop occurs */

while (curr time < (prev_time + DELAY LOOPS))
curr_time = get_ time():

return update():

}
void pmdHrdInit (int waitState)
{
short int adl = 0x0600 | (waitState % 16);
sysOutWord(Ox£400, adl);
sysOutWord(0xf402, 0x0040);
sysoutWord(0x£f406, Ox3f);
sysOoutWord(0xf404, OxfclOl):;
}

125

References

[CiA ‘99] CAN in Automation, hitp://www.can-cia.de, 1999.

[Howe ‘93] Roger T. Howe and Charles G. Soldini, Microelectronics, Prentice Hall,
1997.

[Intel ‘95] Intel Corporation, “82527 Serial Communication Controller Architectural
Overview”, 1995.

[Performance ‘97] Performance Motion Devices, “Advanced Multi-Axis Motion Control
Chipset”, 1997.

[Philips ‘97] Philips, “SC26C92 Dual Universal Asynchronous Receiver/Transmitter
(DUART) product specification”, 1997.

[Silicon ‘99] Silicon Valley Group, http://www.svg.con, 1999.

[Wind ‘97] Wind River System, VxWorks Programmer’s Guide 5.3.1, 1997.

126

