
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

APR 2 4 2001

LIBRARIES

The Static Single Information Form
by

C. Scott Ananian

B.S.E. Electrical Engineering

Princeton University, 1997

Submitted to the Department of Electrical Engineering and Computer Sci-

ence in partial fulfillment of the requirements for the degree of Master

of Science in Electrical Engineering and Computer Science at the Mas-

sachusetts Institute of Technology.

September 3, 1999

Copyright 1999 Massachusetts Institute of Technology

All right reserved.

Author-
Department of Electrical Engineering and Computer Science

September 3, 1999

Certified by
Martin Rinard

. 'esis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

The Static Single Information Form
by

C. Scott Ananian

Submmitted to the
Department of Electrical Engineering and Computer Science

September 3, 1999

In partial fulfillment of the requirements for the Degree of Master of

Science in Electrical Engineering and Computer Science.

Abstract
The Static Single Information (SSI) form is a compiler intermediate

representation that allows efficient sparse implementations of predicated

analysis and backward dataflow algorithms. It possesses several attractive

graph-theoretic properties which aid in program analysis. An extension to

SSI form, SSI+, is also presented, along with a complete executable abstract

semantics for the representation. Applications to abstract interpretation

and hardware compilation are discussed.

The SSI form has been implemented on the FLEX compiler infrastruc-

ture, and it has been used to implement several analyses and optimizations.

Details on these predicated analysis techniques are presented, as well as

data from the practical implementation.

Thesis Supervisor: Martin Rinard

Title: Professor, Laboratory for Computer Science

2

Contents

1 Introduction 7

2 Context and goals 8

3 Definitions 12

4 Static Single Assignment form 13

4.1 Definition of SSA form . 13

4.2 Minimal and pruned SSA forms 15

5 Static Single Information form 16

5.1 Definition of SSI form . 17

5.2 Minimal and pruned SSI forms 21

5.3 Fast construction of SSI form 23

5.3.1 Cycle-equivalency 24

5.3.2 SESE regions and the program structure tree 29

5.3.3 Placing cp- and o-functions 32

5.3.4 Computing liveness 37

5.3.5 Variable renaming 38

5.3.6 Pruning SSI form . 46

5.3.7 D iscussion . 46

5.4 Time and space complexity of SSI form 49

6 Uses and applications of SSI 52

6.1 Backward Dataflow Analysis 53

6.2 Sparse Predicated Typed Constant Propagation 55

6.2.1 Wegman and Zadeck's SCC/SSA algorithm 56

6.2.2 SCC/SSI: predication using o-functions. 60

6.2.3 Extending the value domain 62

3

6.2.4

6.2.5

Type analysis .

Addressing array-bounds and null-pointer checks . .

6.2.6 Experimental results .

6.3 Bit-width analysis

7 An

7.1

7.2

7.3

7.4

7.5

7.6

executable representation

Deficiencies in SSIo

7.1.1 Imperative constructs, po

effects

7.1.2 Loop constructs

Definitions

Sem antics

7.3.1 Cycle-oriented semantics

7.3.2 Event-driven semantics

Construction

Datafiow and control dependence

Hardware compilation.

inter variables,

63

67

and side-

. 76

. 78

. 80

. 8 1

. 82

. 83

. 8 5

. 86

. 8 7

8 Methodology

9 Conclusions

Bibliography

List of Figures

4.1 A simple program and its single assignment version.

4.2 Minimal and pruned SSA forms.

5.1 A comparison of SSA and SSI forms.

5.2 Minimal and pruned SSI forms.

87

88

89

14

16

17

22

4

. 7 1

. 73

75

76

5.3 Transformation from directed to undirected graph (from [18]). 25

5.4 Datatypes and operations for the cycle-equivalency algorithm. 26

5.5 Control flow graph and cycle-equivalent edges. 28

5.6 Datatypes and operations used in construction of the PST. 30

5.7 SESE regions and PST for the CFG of Figure 5.5 (from [19]). 32

5.8 An flowgraph where Algorithm 5.3 places cb-functions con-

servatively. 37

5.9 Environment datatype for the SSI renaming algorithm. . . . 47

5.10 Datatypes and operations used in unused code elimination. 47

5.11 A worst-case CFG for "optimistic" algorithms. 49

5.12 Number of uses in SSI form as a function of procedure length. 50

5.13 Number of original variables as a function of procedure length. 50

6.1 Value and executability lattices for SCC. 56

6.2 A simple constant-propagation example. 60

6.3 SCC value lattice extended to Java primitive value domain. 62

6.4 SCC value lattice extended with type information. 64

6.5 "Typed" category of Figure 6.4 shown expanded. 64

6.6 Java typing rules for binary operations. 66

6.7 Value lattice extended with array and null information. . . 67

6.8 Extended value lattice inequalities. 68

6.9 An example illustrating the power of combined analysis. . . 68

6.10 Implicit bounds checks on Java array references. 70

6.11 An integer lattice for signed integers. 72

6.12 SPTC optimization performance. 73

6.13 Some combination rules for bit-width analysis. 74

7.1 An example of unnecessary control dependence. 76

7.2 Use of the "store variable" S, in SSI+ form. 77

5

7.3 Factoring the store (S.) using type information in a type-safe

language. 78

7.4 Pointer manipulation of local variables in C. 79

7.5 A simple loop, in SSIO and SSI+ forms. 80

7.6 Cycle-oriented transition rules for SSI+. 83

7.7 Event-driven transition rules for SSI+. 84

List of Tables

6.1 Meet and binary operation rules on the SCC value lattice. . 56

6.2 Class hierarchy statistics for several large 0-0 projects. . . 63

List of Algorithms

5.1 The cycle-equivalency algorithm (corrected from [18]). . . 27

5.2 Computing nested SESE regions and the PST. 31

5.3 Placing 4p- and o-functions. 33

5.4 SSI renaming algorithm. 38

5.5 SSI renaming algorithm, cont. 39

5.6 Identifying unused code using SSI form. 48

6.1 SCC algorithm for SSA form. 57

6.2 SCC algorithm for SSA form, cont. 58

6.3 A revised Visit procedure for SCC/SSI. 61

6.4 Visit procedure for typed SCC/SSI. 65

6.5 Visit procedure outline with array and null information. . 69

6

1 Introduction

This paper introduces a compiler intermediate representation: Static Sin-

gle Information (SSI) form. This IR is the core of the FLEX compiler

project, which is primarily investigating intelligent compilation techniques

for distributed systems. This thesis, in presenting the IR, attempts to keep

both the mathematician and the programmer in mind. SSI form has both

a rigorous mathematical semantics and a factored form which aids efficient

implementation of advanced analyses. I believe that it effectively strad-

dles the gap between dataflow-oriented, graph-structured, and control-flow

driven IRs, while maintaining the sparsity needed to achieve practical effi-

ciency. The construction algorithms are linear in the size of the program.

Our discussion of the Static Single Information form will be at times

tied to the source language of the FLEX compiler, Java. Unlike many ab-

stract IRs, the choices made in the design of SSI form have been dictated by

the necessities of compiling a real-world imperative language. Java, how-

ever, has several theoretical properties that make program a-a@yzis more

tractable. In particular, we mention here Java's strict constraints on pointer

variables. Pointers in earlier languages such as C can be abused in many

ways that Java disallows.

Ultimately, the choice of compiler internal representation is fundamen-

tal. Advances in IRs translate into advances in compilers. SSI form rep-

resents a clean and simple unification of many extant ideas, and our hope

is that it will allow the FLEX compiler to achieve a similar integration of

practical implementation and mathematical elegance.

7

2 Context and goals

Strong et al. [40]1 first advocated the use of compiler intermediate represen-

tations in a 1958 committee report. Their idealistic "universal intermediate

language" was called UNCOL. Thirty years later, the Static Single Assign-

ment (SSA) form was introduced by Alpern, Rosen, Wegman and Zadeck as

a tool for efficient optimization in a pair of POPL papers [2, 35], and three

years after that Cytron and Ferrante joined Rosen, Wegman, and Zadeck

in explaining how to compute SSA form efficiently in what has since be-

come the "canonical" SSA paper [10]. Johnson and Pingali [20] trace the

development of SSA form back to Shapiro and Saint in [37], while Havlak

[17] views 4p-functions as descendants of the "birthpoints" introduced in

[34].

Despite industry adoption of SSA form in production compilers [8, 9],
academic research into alternative representations continues. Recent pro-

posals have included Value Dependence Graphs [45], Program Dependence

Webs [5], the Program Structure Tree [19], DJ graphs [39], and Depedence

Flow Graphs [20].

In comparison to these representations, the dominant characteristics of

our Static Single Information form may be summarized as follows:

" It names information units.

" It is complete.

" It is simple.

" It is efficient.

" It has no explicit control dependencies.

8

'Attribution by Aho [1].

* It supports both forward and reverse dataflow analyses.

SSI form is used as an IR for the FLEX compiler for the Java programming

language, which informs some of these design decisions. The FLEX com-

piler does deep analysis and will support hardware/software co-design. SSI

addresses these needs, concentrating on analysis rather than optimization.

We will address each design point in turn.

It names information units. SSA form (which we will describe fur-

ther in section 4) assigns unique names to unique static values of a vari-

able. However, it ignores the value information which may be added to a

variable at program branch points. SSI form renames variable at branch

points, which allows us to associate unique names with unique irnforma-

tion about static values. For example, a program may test the value of an

integer against zero before using it as a divisor. After the branch on the

tested predicate, it is possible to make statements about values (regarding

equality or inequality to zero) which were impossible to make previously.

SSI form allows us to exploit this additional information.

It is complete. By this we mean that there exists an executable se-

mantics for the IR that does not require the use of information external to

the IR. The original SSA form-and most derivatives-require use of the

original program control flow graph during analysis, translation, or direct

execution. In fact, 4-functions are intimately tied with the precise input

edge structure of the control flow graph, and switch nodes (where control

flow splits) are undecipherable without referring to the control flow graph.

In practice, this seems not a great disadvantage-it merely forces us to

maintain a mapping of SSA statements to nodes (equivalently, basic blocks)

of the original control flow graph. But maintaining this correspondence

complicates editing the IR. Also, it complicates the interpretation of the

program as a set of simultaneous equations, which SSI form will allow us

9

to do. Finally, explicit control flow may limit the available parallelism of

the program.

SSI+, as it will be presented in section 7, overcomes these difficulties

and presents a complete representation of program meaning as a set of

simultaneous equations, without resort to graph information.

It is simple. A bestiary of new 4)-like functions have been introduced

in the past decade, including jt-, y-, and a-functions in [5, 43], *4- and 71-

functions in [24], interprocedural 4-functions in [26], pi- and X-functions in

[9], it- and -q-functions in [14],2 and A-functions in [27], among others.Some

of these are orthogonal to our work-the techniques of [24] can be used to

extend SSI form to explicitly parallel source languages, and those of [9]

to languages with local variable aliasing (absent in Java). Our goal is to

achieve minimal conceptual complexity in SSI form; that is, to introduce

the minimum set of 4)-like functions necessary to represent the "interesting"

properties of the compiled program.

It is efficient. Construction of SSI form should be fast, and space

requirements should be reasonable. The original SSA algorithms required

O(E + VSSAIDFl + NVSSA) time.3 This bound was dominated by the time

and space required to construct the dominance frontier, as |DFI, the size

of the dominance frontier, could be O(N 2) for common cases. Taking the

dominant term, we abbreviate the time complexity of the Cytron's SSA-

construction algorithm as O(N 2V).

Our algorithms do not require the construction of a dominance frontier-

building on recent work on efficient SSA construction in this regard-and

run in so-called "linear" time. A more detailed analysis will be given in

section 5.4, but suffice for now to say that our construction and analysis

2Compare to [5, 43].
3See section 3 for definitions of the variables used in the complexity bounds of these

two paragraphs.

10

algorithms are efficient.4

All explicit control dependencies are eliminated. Some researchers

(including [4] and [32]) view control dependence as a fundamental prop-

erty of the CFG, and [5, 4] suggest that accurate knowledge of control-

dependence relations is the sole key to automatic parallelization. Of-

ten, incomplete intermediate representations5 are augmented with control-

dependence edges to express proper program semantics-see [20] on DFGs

and [45] on VDGs, for example.

Unfortunately, explicit control-flow edges tend to serialize computation

more than strictly necessary. Figure 7.1 on page 76, for example, contains

two parallel loops which would be serialized by the explicit control depen-

dency between them. Prior work often focused on fine-grain intra-loop par-

allelism and ignored this coarser inter-loop parallelism.6 Our objective in

this work is to fully utilize coarse parallelism by removing source-language

control-dependency artifacts.

It is efficient for both forward and backward dataflow analyses.

It is often observed that traditional SSA form cannot handle backward data-

flow analysis. Johnson and Pingali note this, and suggest anticipatability

as an example of a backwards dataflow analysis where their dependence

flow graph representation betters SSA form [20]. Lo et al. suggest the use

of an "SSU" form to address much the same issue [27]. There are in fact

many analyses where both use and definition information is utilized, and

where dataflow in both forward and reverse directions occurs. SSI form is

able to handle both of these cases, as we demonstrate in section 6.1.

4 Dhamdhere [12] quite correctly states that Cytron's original algorithm has a worst-

case time bound of O(N 3). This is also true for our algorithms. However, these worst-case

time bounds are not tight; we will present experimental evidence that run times on real

programs are O(N).
5 See page 9 for our definition of "completeness" in an IR.
6 We discuss the dataflow-architecture work of Traub [42] in particular in section 7.5.

11

3 Definitions

We next provide some definitions. Our complexity metrics will usually be

in terms of the following variables:

N is the number of nodes in the program control flow graph. Each node

represents either a single statement or a basic block; the difference is

unimportant for complexity metrics.

E is the number of edges in the program control flow graph. For most

programs E is reasonably assumed to be O(N), since most nodes

have either one or two successors (simple assignments and conditional

branches, respectively). Unusual use of computed-goto and switch

statements may invalidate this assumption; but in these cases E is

generally a better metric of program "complexity" than N. For this

reason, we will case O(E) "linear in program size".

V is the number of variables in the program.

U is the total number of variable uses in the program.

As the transformations we will describe split and rename variables, we will

use subscripts to denote the number of variables, uses, or definitions in

a particular transformed version of a program. For example, USSA is the

number of uses in the SSA form (see section 4) of a program. When it is

necessary to explicitly denote a metric on the untransformed program, a

zero subscript will be used; for example, Vo.

Graphs will be directed unless specified otherwise. If X and Y are

nodes in some graph G, an edge from X to Y is written X -> Y. A path

X = so - s -- ... --> s = Y is written X - Y. A simple path is one in

which all the nodes si in it are distinct.

12

Control-flow graphs are assumed to be connected, and to contain unique

START and END nodes marking procedure entry and exit points, respectively.

To ensure that graphs representing infinite loops are connected, an edge will

typically exist between the START and END nodes. The presence of unique

START and END nodes ensures that both the dominance and post-dominance

relation define trees rooted at START and END, respectively.

For simplicity, we will assume that every node in the control-flow graph

with one successor and one predecessor contains exactly one statement. A

node with no predecessors and a node with no successors (START and END)

are empty; they contain no statements. Nodes with multiple successors or

multiple predecessors are also empty for conventional program representa-

tions, but may contain multiple (p- or a-function assignment statements in

the SSA and SSI forms we will discuss. No node may contain both multiple

predecessors and multiple successors.

The symbol n will be used for the dataflow "meet" operator. The

operator F is the partial ordering relation for a lattice, and x E -y iff x E y

and x : i.

4 Static Single Assignment form

Static Single Information (SSI) form derives many features from Static

Single Assignment (SSA) form, as described by Cytron in [10]. To provide

context for our definition of SSI form in section 5, we review SSA form.

4.1 Definition of SSA form

Static Single-Assignment form is a sparse program representation in which

each variable has exactly one definition point. As a consequence, only one

assignment can reach each use, which means that SSA form can be viewed

13

P (X 7 2)
if P jump

fa Ise

Z 5

Y -Y+1
/*no further uses of X or Z*/

Figure 4.1: A simple program (left) and its single assignment version
(right).

as a type of sparse def-use chain [1].

For straight-line code, the SSA transformation is straightforward: each

assignment to a variable is given a unique name (conventionally indicated

by the use of a subscripted version of the original variable name) and each

use is renamed to match its reaching definition. Special 4-functions must

be inserted at join points to preserve the single-assignment property. These

$-functions have the form vo 4- (v1 ,v 2) and perform an assignment ac-

cording to the path by which control flow reaches the $-function. Figure 4.1

shows a simple program and its SSA form; the c-function Y3 - $(Y1, Y2)

in the SSA version on the right assigns Y3 the value of Y, if control flow

reaches it along the false branch of the if statement. If the true branch is

taken, Y3 will get the value of Y2 at the 5-function.

Formally, a program is said to be in SSA form if the following three

conditions hold:

14

Po <-(XO 7 2)
if PO jump

fals tre

Y, 4+Xo Y2 6X
Z I 5

Y3 +-@(Yi, Y2)
Z2 +-*(ZO, ZI)

Y4 <-Y3+ I
/*no further uses of X or Z *

1. If two nonnull paths X -4 Z and Y -> Z converge at a node Z, and

nodes X and Y contain assignments to [a variable] V (in the origi-

nal program), then a trivial $-function V ,- (. .. , V) has been

inserted at Z (in the new program).

2. Each mention of V in the original program or in an inserted #-function

has been replaced by a mention of a new variable Vj, leaving the new

program in SSA form.

3. Along any control flow path, consider any use of a variable V (in

the original program) and the corresponding use of Vi (in the new

program). Then V and V have the same value.

This formulation of this definition is due to Cytron et al. [11]. Note that

the definition does not prohibit "extra" #-functions not strictly required

by condition 1.

4.2 Minimal and pruned SSA forms

Cytron et al. [11] defines minimal SSA form as an SSA form using the

smallest number of $-functions such that the above three conditions hold.

The SSA form in the previous example (Figure 4.1 on the facing page) is

minimal.

A variation on minimal SSA form, called pruned form, avoids placing

#-functions which define variables which are never used. The 4-functions

in pruned form are a subset of those in minimal form, and as such note that

pruned form does not strictly satisfy the given SSA criteria. In most cases,

the more regular properties of minimal SSA form outweigh the pruned

form's slight increase in space efficiency. Choi, Cytron, and Ferrante [7]

give a formal definition and construction algorithm for pruned SSA.

15

PO - (XO : 2)
if PO jump

fa lsre

Yi 4+Xo Y2 -6 + X0

Z ,5

Y3 #(Y1 ,Y2)
Z2 +-#(ZO, ZI)

Y4 Y3 + I
/*no further uses of X or Z*/

PO (XO : 2)
if PO Jump

fals tre

Y, i 4 +XL) Y2 6+X
Z I5

Y3 -4)(Y 1,Y2)

Y4 +- Y3 + I
no further uses of X or Z */

Figure 4.2: Minimal (left) and pruned (right) SSA forms.

Figure 4.2 compares minimal and pruned

program.

SSA form for our example

5 Static Single Information form

SSI form extends SSA form to achieve symmetry for both forward and

reverse dataflow. SSI form recognizes that information about variables

is generated at branches and generates new names at these points. This

provides us with a one-to-one mapping between variable names and infor-

mation about the variables at each point in the program. Analyses can then

associate information with variable names and propagate this information

efficiently and directly both with and against the control-flow direction.

16

PO (XO 02)
if PO jump

fal - tre

Yi 4-+ XO Y2 -6 + X0
Z 1<-5

Y3 C (Y1 , Y2)
Z 2 *- (ZO, ZI)

Y4 <- Y3 + 1
no further uses of X or Z

I

PO (XO :, 2)
if PO jump

(Xl, X2) +- (XO)

faletu

Y, i 4+ X, Y2 -6 + X2
ZII--5

X3 @(X1, X2)
Y3 <- (Y I, Y2)
Z2 -- C (ZO, Zi)

Y4 ' Y3+ I
/*no further uses of X or Z *

Figure 5.1: A comparison of SSA (left) and SSI (right) forms.

5.1 Definition of SSI form

Building SSI form involves adding pseudo-assignments for a variable V:

(b) at a control-flow merge when disjoint paths from a conditional branch

come together and at least one of the paths contains a definition of

V; and

(o-) at locations where control-flow splits and at least one of the disjoint

paths from the split uses the value of V.

Figure 5.1 compares the SSA and SSI forms for the example of Fig-

ure 4.1. Note that X is renamed at the conditional branch, allowing the

compiler to distinguish between X, (which is always the constant 2) from

X2 (which is never equal to 2).

Formally, a program transformation to SSI form satisfies the following

conditions:

17

1. If two nonnull paths X -4 Z and Y -4 Z exist having only the node Z

where they converge in common, and nodes X and Y contain either

assignments to a variable V in the original program or a 5- or c-

function for V in the new program, then a 5-function for V has been

inserted at Z in the new program. [Placement of $-functions.]

2. If two nonnull paths Z -A X and Z -4 Y exist having only the node

Z where they diverge in common, and nodes X and Y contain either

uses of a variable V in the original program or a #- or o-function for

V in the new program, then a a-function for V has been inserted at

Z in the new program. [Placement of o-functions.]

3. For every node X containing a definition of a variable V in the new

program and node Y containing a use of that variable, there exists

at least one path X - Y and no such path contains a definition of V

other than at X. [Naming after $-functions.]

4. For every pair of nodes X and Y containing uses of a variable V defined

at node Z in the new program, either every path Z -4 X must contain

Y or every path Z 4) Y must contain X. [Naming after o-functions.]

5. For the purposes of this definition, the START node is assumed to

contain a definition and the END node a use for every variable in the

original program. [Boundary conditions.]

6. Along any possible control-flow path in a program being executed

consider any use of a variable V in the original program and the

corresponding use of Vj in the new program. Then, at every occurance

of the use on the path, V and V have the same value. The path need

not be cycle-free. [Correctness.]

18

As with the SSA conditions, this definition does not prohibit "extra"

Q- or --functions not required by conditions 1 and 2.

Property 5.1. There exists exactly one reaching definition of V at ev-

ery non-4-function use of V in the new program.

Proof. Offner [29] defines a reaching definition as follows:

A definition of a variable v reaches the point P in the program

iff there is a path from the definition to P on which... there is

no other definition of v....

From this definition and condition 3 we directly obtain the property. D

Note that condition 3 and this property do not require there to be

exactly one definition of any variable V, just that at every use only a single

definition is relevant. The renaming algorithm we will present enforces the

stricter single-definition constraint.

Property 5.2. Every cycle-free path S -: Y from the START node to

a node Y containing a non-p-function use of a variable must contain

exactly one node X defining that variable in the new program. Likewise,

every path X - E from a node X containing a non-o-function definition

of a variable to the END node must contain every node Y which is a use

of that variable in the new program.

Proof. Let us call the variable v. Conditions 5 and 6 ensure that there

exists at least one definition node X for v from which Y is reachable-

conditions 5 and 6 substitute the START node, from which every node is

reachable, for any use of v not reachable by some other definition in the

original program. So assume this definition node X exists, but is not on

the path S -t Y. Then X - Y and S -> Y must have some earliest node

19

N in common. But N must then have a 5-function for v by condition 1,
which violates either our choice of Y as a non-5-function use (if N Y)

or else condition 3 which prohibits definitions other than at X. If S 4 Y

contains more than one node Xi defining v, then the path Xo - Y between

the first and Y also violates condition 3. So S -4 Y must contain exactly

one definition X of v.

The second part is symmetric. Assume there exists some node Y using

v which is not contained on some path X -4 E. The path X -4 Y must exist

by conditions 3 and 5. And X -4 E and X -4 Y must have some final node

N in common, which must have a --function for v by condition 2. The

case N - X violates the choice of X as a non-o--function definition. But if

N # X, then condition 3, which prohibits paths with multiple definitions,

is violated. Thus X -4 E must contain every use of v. 0

Property 5.3. Every definition of a variable V dominates all non-4-

function uses of V and every use of V post-dominates any non--

function reaching definition of V in the new program.

Proof. The dominance relation is defined in Offner [29] as:

If x and y are two elements in a flow graph G, then x dominates

p (x is a dominator of -y) iff every path from s [START] to p

includes x.

Post-dominance is the dual on a flow graph with edges reversed: x post-

dominates y iff every path from END to p includes x.

The previous property showed that every path from START to a non-4-

function use contained a unique definition node X. If two paths from START

to Y contained different definition nodes X1, then Y would be a $-function,

which it was chosen not to be. So every non-$-function use is dominated

by the single definition node. Likewise the previous property showed that

20

every path from a non-u-function definition to END must include every use;

therefore every use post-dominates a non-u-function definition. D

5.2 Minimal and pruned SSI forms

Minimal and pruned SSI forms can be defined which parallel their SSA

counterparts. Minimal SSI form would have the smallest number of 4)-
and u-functions such that the above conditions are satisfied. Pruned SSI

form is the minimal form with any unused 4)- and u-functions deleted; that

is, it contains no 4)- or u-functions after which there are no subsequent

non-4)- or u-function uses of any of the variables defined on the left-hand

side.7 Figure 5.2 on the next page compares minimal and pruned SSI form

for our example program.

Note that, as in SSA form, pruned SSI does not strictly satisfy the SSI

constraints because it omits dead 4)- and u-functions otherwise required by

conditions 1 and 2 of the definition. In practice, a subtractive definition

of pruned form - generate minimal form and then removed the unused

4)- and u-functions - is most useful, but a constructive definition can be

generated from the standard SSI form definition as follows:

1. The convergence/divergence node Z of conditions 1 and 2 must also

satisfy: "and there exists a path from Z -4 U to a U, a use of V in the

original program, which does not contain another definition of V."

2. The boundary condition 5 at END can be loosened as follows (emphasis

indicates modifications): "For the purposes of this definition, the

START node is assumed to contain a definition for every variable in
7 An even more compact SSI form may be produced by removing U-functions for which

there are uses for exactly one of the variables on the left-hand side, but by doing so one

loses the ability to perform renaming at control-flow splits which generate additional value

information.

21

Po -(XO : 2)
if PO Jump

(X I, X2) e-a(XO)

faletu

Y, 44+X 1Y2tZ 6+X2
Z <- 5

Y3 (-#(Y1 Y2)

Y4 Y3+ I
/*no further uses of X or Z *

Figure 5.2: Minimal (left) and pruned (right) SSI forms.

the original program and the END nodes a use for every variable live

at END in the original program."

Pruned form is defined as having the minimal set of q)- and o-functions

that satisfy the amended conditions. It can easily be verified that the

modifications suffice to eliminate unused 4)- and a-functions: if the variable

defined in a 4)- or a-function is used, there must exist a path Z -4 U as

mandated by amendment 1, where amendment 2 lets U = END for variables

live exiting the procedure and thus usefully defined.

Property 5.4. A node Z gets a 4)- or a-function for some variable Vi

in pruned SSI form only if the corresponding variable V is live at Z in

the original program.

Proof. This is a trivial restatement of amendment 1. A variable v is said to

be live at some node N if there exists a node U using v and a path N -4 U

on which no definitions of v are to be found. If V is not live at Z then no

22

Po (-(Xo : 2)
if PO jump

(X1, X2) <-- U (XO)

f as tre

Yi <-4+X, Y2 -- 6 +X2
Z +- 5

X3 +-#(Xi , X2)
Y3 +-#(Y] Y2)
Z2 +-#(ZO , ZI)

Y4 <-Y3 + I
/*no further uses of X or Z*/

path Z + U satisfying the amended conditions 1 and 2 can be found and

neither a $- or c-function can be placed. Amendment 2 ensures this holds

true at boundaries. E

5.3 Fast construction of SSI form

The most common construction algorithm for SSA form [11] uses domi-

nance frontiers and suffers from a possible quadratic blow-up in the size

of the dominance frontier for certain common programming constructs.

Various improved algorithms use such things as DJ graphs [38] and the de-

pendence flow graph [20] to achieve O(EV) time complexity for 4-function

placement. We build on this work to achieve O(EV) construction of SSI

form, and present a new algorithm for variable renaming in SSI form after

-- and c--functions are placed.

Our construction algorithm begins with a program structure tree of

single-entry single-exit (SESE) regions, constructed as described by John-

son, Pearson, and Pingali [19]. We will review the algorithms involved, as

their published descriptions [18] contain a number of errors.

We begin with a few definitions from [19].

Definition 5.1. Edges a and b are said to be edge cycle-equivalent

in a graph iff every cycle containing a contains b, and vice-versa.

Similarly, two nodes are said to be node cycle-equivalent iff every

cycle containing one of the nodes also contains the other.

Definition 5.2. A SESE region in a graph G is an ordered edge pair

(a, b) of distinct control flow edges a and b where

1. a dominates b,

2. b postdominates a, and

3. every cycle containing a also contains b and vice-versa.

23

Edges a and b are called the entry and exit edges, respectively.

Definition 5.3. A SESE region (a, b) is canonical provided

1. b dominates b' for any SESE region (a,b'), and

2. a postdominates a' for any SESE region (a', b).

We will give time bounds in terms of N and E, the number of nodes

and edges of the control-flow graph, respectively. Placement of (p- and c-

functions is also dependent on V, the number of variables in the program.

Since SSI renaming increases the number of variables, we will use VO and

Vss1 to indicate the number of variables in the original program and SSI

form, respectively.

Note that V is O(N) at most, since our representation only allows a

constant number of variable definitions per node. Typically Vo will be

much smaller than N, but Vss1 need not be. Also E may be as large as

O(N 2), but in most control-flow graphs is 0(N) instead, as node arities are

typically limited by a constant.

5.3.1 Cycle-equivalency

The identification of SESE regions begins by computing the cycle-equivalency

of the edges in the program control flow graph. The cycle-equivalency algo-

rithm works on undirected graphs, so we prepare the directed control flow

graph G as follows:

1. Add an edge from END to START in G. It is common practice to

add an edge from START to END in order to root the control depen-

dence graph at START [10]. However, our goal is not rooted control

dependence but to make the control flow graph into a single strongly

connected component; for this reason the direction of the edge is from

END to START instead.

24

TLi

Figure 5.3: Transformation from directed to undirected graph (from [18]).

2. Create an equivalent undirected graph. Johnson et al. prove that

the node expansion illustrated in Figure 5.3 results in an undirected

graph with the same cycle-equivalency properties as the original di-

rected graph. More precisely, nodes a and b in directed graph G are

cycle-equivalent if and only if nodes a' and b' are cycle-equivalent in

transformed undirected graph G'. The nodes nr and no generated

by the expansion are termed not representative; the node n' in G'

is said to be representative of node n in G. Obviously, this corre-

spondence must be recorded during the transformation so we may

properly attribute the cycle-equivalency properties of n' to n later.

3. Perform a pre-order numbering of nodes in G'. This is done

with a simple depth-first search of G'. When we visit a node aj or

ao, we prefer to visit a' before any other neighbor. This ensures that

representative nodes are interior nodes in the DFS spanning tree. The

START node is numbered 0, and succeeding nodes in the traversal get

increasing numbers. Thus low-numbered nodes are closest to START

and we will call them "highest" in the DFS spanning tree.

The above steps form an undirected graph G' from the control-flow

graph G. The remainder of the cycle-equivalency algorithm is presented

25

Data type BracketList:

createo: BracketList : Make an empty BracketList structure

size(bl:BracketList): integer : Number of elements in BracketList structure

push(bl:BracketList, e:bracket): BracketList : Push e on top of bl

top(bl:BracketList): bracket : Topmost bracket in bi

delete(bl:BracketList, e:bracket): BracketList : Delete e from bl

concat(bl1,b12:BracketList): BracketList : Concatenate bl1 and b12

Operations on nodes:

Number(n:node): integer : DFS preorder number of node

NQClass(n:node): integer : Cycle-equivalency class of node

BList(n:node): BracketList : List of brackets of node

Hi(n:node): integer : Highest destination node of any edge originating from a

descendant of node n

Operations on edges:

EQClass(e:node): integer : Cycle-equivalency class of edge

RecentSize(e:edge): integer : Size of bracket set when e was most recently the

topmost bracket for a representative node

RecentClass(e:edge): integer : Cycle-equivalency class number of representa-

tive node for which e was most recently the topmost bracket.

Figure 5.4: Datatypes and operations for the cycle-equivalency algorithm.

26

Procedure cycle-equiv (G: CFG)
{

/* Preprocessing */
GI := Preprocess (G); /* described in text */

/* Compute CD equivalence classes */
for each node n of G', in reverse depth-first order, do {
/* Compute Hi(n) */
/* hiO is highest using backedges only */
hiO := min{ Number(t) I (t,n) is a backedge };
/* hit is highest through children */
hit := min{ Hi(c) I c is a child of n
/* hi2 is lowest through children */

I hi2 := max{ Hi(c) I c is a child of n

Hi(n) := min{ hiO, hit };

/* Compute BList(n) */
BList(n) := create (;

for each child c of n, do
BList(n) := concat (BList(n), BList(c));

for each backedge <d, n> from a descendant d of n to n, do
BList(n) := delete (BList(n), <d, n>);

for each capping backedge <d, n> of n, do
BList(n) := delete (BList(n), <d, n>);

for each backedge <n, a> from n to an ancestor a of n, do {
BList(n) := push (BList(n), <n, a>)
RecentSize(<n, a>) := -1; /* not a representative node */

}

if n has more than one child, then {
BList(n) := push (BList(n), <n, hi2>); /* capping backedge */
RecentSize(<n, hi2>) := -1;
add <n, hi2> to capping backedges list of hi2;

}

/* Compute NQClass (n) */
if n is a representative node, then {

if RecentSize (top (BList(n))) != size (BList(n)), then {
/* start a new equivalence class */
RecentSize (top (BList(n))) size (BList(n));
RecentClass (top (BList(n))) new-class-name(;

}
NQClass (n) := RecentClass (top (Blist(n)));

}
} /* for each node */

}

27
Algorithm 5.1: The cycle- equivalency algorithm (corrected from [18]).

START

(START,1) cq (16, END)

3 10 (1, 2) -cq (8, 16)

(2, 3) -cq (3,4) -cq (7, 8)

(4, 5) -- cq (5, 7)

(4 6) 1cq (6, 7)
7 14 (1,9) -cq (9,10) --cq (14,15) --cq (15,16)

15 (10,11) -cq (11,13)

16

END

Figure 5.5: Control flow graph and cycle- equivalent edges.

as Algorithm 5.1 on the preceding page, with the above procedure corre-

sponding to the statement G' :=Preprocess (G). The algorithm has been

corrected from the published version in [18]; in addition it has been ex-

tended to compute both node and edge equivalencies (in effect, merging

the algorithm of [19]). Lines modified from the presentation in [18] are

indicated in the figure with a vertical bar in the left margin. The datatype

BracketList and the node and edge properties used in the algorithm are

described in Figure 5.4 on page 26. The interested reader is encouraged

to consult [18] for additional detail on these data structures and represen-

tations. Figure 5.5 shows cycle-equivalent regions in a simple control-flow

graph. We use the notation (a, b) =cq (c, d) to indicate that the CFG edge

from node a to node b is edge cycle-equivalent to the edge from node c to

node d.

28

Calculating cycle-equivalent regions is based on a single reverse depth-

first traversal of G, so as long as all datatype operations in Figure 5.4 can be

completed in constant time (and [18] shows how to do so), this computation

is 0(E).

5.3.2 SESE regions and the program structure tree

Johnson, Pearson, and Pingali show how to construct a tree structure of

nested SESE regions from the cycle-equivalency information in [19]. The

cycle-equivalent regions are sorted by dominance using a simple depth-

first traversal of the graph, and then canonical SESE regions are found by

taking adjacent pairs of edges from the cycle-equivalence classes. Another

depth-first search of the CFG suffices to obtain to nesting of these regions,

which is represented in a data structure called the program structure tree.

The algorithm and data structures required are presented in Figure 5.6 and

Algorithm 5.2. Figure 5.7 on page 32 shows the SESE regions on the left

and program structure tree on the right for the example of Figure 5.5 on

the preceding page.'

The time complexity for constructing the PST is easily seen to be 0(E).

Algorithm 5.2 on page 31 begins with a depth first traversal of G to con-

struct an ordered edge list for each cycle-equivalent region; the traversal is

0(E) and the list-append operation can be done in constant time. We then

iterate through the cycle-equivalence classes and the edge lists of each con-

structing SESE regions. No edge can be on more than one list, so this step

is O(E). Finally, we do a final O(E) depth-first traversal of G, performing

the constant-time operations append and LinkRegion. All steps are O(E)

and their sequential composition is also O(E).

8 In addition, the regions c, d, e and f, g are sequentially composed [19]. However, our

SSI construction algorithm doesn't use this property.

29

Data type EdgeList:

size(el:EdgeList): integer : Number of elements in EdgeList structure

head(el:EdgeList): edge : First edge in el

tail(el:EdgeList): EdgeList : EdgeList like el but missing first element

append(el:BracketList, e:edge): EdgeList : Add e to the end of el

Data type Region:

NewRegion(el:edge, e2:edge): Region : Creates a new region with entry el

and exit e2 and no parent

Entry(r:Region): Edge : The entry edge of r

Exit(r:Region): Edge : The exit edge of r

Parent(r:Region): Region : The parent of r, or nil if none

Nodes(r:Region): NodeList : A list of nodes in r

LinkRegion(r1,r2:Region): void : Sets the parent of r2 to be ri

Operations on nodes:

Mark(n:node): boolean : Visited status during DFS

SESE(n:node): Region : The canonical SESE of n

Operations on edges:

EntryRegion(e:edge): Region : the region with entry e, or nil if none exists

ExitRegion(e:edge): Region : the region with exit e, or nil if none exists

Figure 5.6: Datatypes and operations used in construction of the PST.

30

NestedSESE(G: CFG)
1: /* initialize */
2: for all nodes n of G do
3: Mark(n) <- false
4: for all edges e of G do
5: EntryRegion(e) -- nil
6: ExitRegion(e) <- nil
7:
8: /* order edges within cycle-equivalency classes by dominance */
9: for each edge e of G in depth first order do

10: CQList (EQClass(e)) - append (CQList(EQClass(e)), e)
11: /* get all canonical SESE regions *7
12: for all equivalency classes q do
13: t <- CQList(q)
14: while size(l) > 1 do
15: r - NewRegion (head(t), head(t ail(t)))
16: EntryRegion(Entry(r)) <- r
17: ExitRegion(Exit(r)) - r
18: /* determine proper nesting of SESE regions *7
19: VisitNode(START, top-region)

VisitNode(n: node, r: Region)
1: if Mark(n) f alse then
2: Mark(n) - true
3: /* record mapping from n to r *7
4: SESE(n) <- r
5: Nodes(r) - append(Nodes(r), n)
6:
7: for each edge (n, n') from n to n' do
8: r 1 *- EntryRegion((n, n'))

9: r2 <-ExitRegion((n, n'))
10: if r=r 1 orr=r 2 then
11: rN <- Parent(r) /* exiting current region *7
12: else
13: rN -

14: if ri 7 nil and rl 4 r then
15: LinkRegion(rN r1) /* entering new region */
16: VN <- T1
17: if r 2 # nil and r 2 4 r then
18: LinkRegion(rN, r 2) 7* entering new region *7
19: VN ~- r2
20: VisitNode(n', TN)

31
Algorithm 5.2: Computing nested SESE regions and the PST.

b c d e

f g

Figure 5.7: SESE regions and PST for the CFG of Figure 5.5 (from [19]).

5.3.3 Placing $- and -functions

As with the presentation of SSA form in [11], we split construction of

SSI form into two parts: placing #- and c-functions and renaming vari-

ables. The placement algorithm runs in O(NVO) time, and is presented

as Algorithm 5.3 on the next page. No new node properties or datatypes

are required; however, it is parameterized on a function called MaybeLive.

For minimal SSI form, MaybeLive should always return true. Faster prac-

tical run-time may be obtained if pruned SSI form is the desired goal by

allowing MaybeLive to return any conservative approximation of variable

liveness information, which will allow early suppression of unused $- and

c-functions. Note that MaybeLive need not be precise; conservative values

will only result in an excess of #- and c-functions, not an invalid SSI form.

Section 5.3.6 describes a post-processing algorithm to efficiently remove the

32

START

3 10

4 112

5 13

7 14

: L 16

END

Place(G: CFG) =

1: let r be the top-level region for G
2: for each variable v in G do

3: PlaceOne(r, v, f alse) /* place phis */
4: PlaceOne(r, v, true) /* place sigmas */

PlaceOne(r: region, v: variable, ps: boolean): boolean

1: /* Post-order traversal */
2: flag <- false

3: for each child region r' do

4: if PlaceOne(r', v, ps) then

5: flag <- true

6:
7: for each node n in region r not contained in a child region do

8: if ps is f alse and n contains a definition of v then

9: flag - true

10: if ps is true and n contains a use of v then

11: flag -- true

12:

13: /* add phis/sigmas to merges/splits where v may be live */

14: if flag = true then

15: for each node n in region r not contained in a child region do

16: if MaybeLive(v, n) = true then

17: if ps is f alse and the input arity of n exceeds 1 then

18: place a phi function for v at n

19: if ps is true and the output arity of n exceeds 1 then

20: place a sigma function for v at n

21:

22: return flag

Algorithm 5.3: Placing (b- and a--functions.

33

excess 4)- and o-functions.9 The remainder of this section will be devoted

to a correctness proof of Algorithm 5.3.

Lemma 5.1. No 4-functions (u--functions) for a variable v are needed

in an SESE region not containing a definition (use) of v.

Proof. Let us assume a 4-function for v is needed at some node Z inside an

SESE not containing a definition of v. Then by condition 1 of the SSI form

definition, there exist paths X -> Z and Y -4 Z having no nodes but Z in

common where X and Y contain either definitions of v or 4)- or cr-functions

for v. Choose any such paths:

Case I: Both X and Y are outside the SESE. Then, as there is only one

entrance edge into the SESE, the paths X -4 Z and Y -± Z must

contain some node in common other than Z. But this contradicts our

choice of X and Y.

Case II: At least one of X and Y must be inside the SESE. If both X and

Y are not definitions of v but rather 4)- or o-functions for v, then

by recursive application of this proof there must exist some choice

of X, Y, and Z inside this SESE where at least one of X and Y is a

definition. But X or Y cannot be a definition of v because they are

inside the SESE of Z which was chosen to contain no definitions of v.

A symmetric argument holds for o-functions for v, using condition 2 of

the SSI form definition, and the fact that there exists one exit edge from

the SESE.
9 Note that equivalent results could be obtained by adding a Pb-function for every vari-

able at every merge and a o-function for every variable at every split, and post-processing.

In fact the same time bounds (O(NVo)) would be obtained. There is a large practical dif-

ference in actual runtime and space costs, however, which motivates our more efficient

approach.

34

The above lemma justifies line 14 of the algorithm on page 33, which

skips over any SESE region not containing a definition (use) of v when

placing 4-functions (a-functions) for v.

Lemma 5.2. If a definition (use) or a $- or a--function for a variable

v is present at some node D (U), then a #-function (o-function) for

v is needed at every node N:

1. of input (output) arity greater than 1,

2. reachable from D (from which U is reachable),

3. whose smallest enclosing SESE contains D (U), and

4. which is not dominated by D (not post-dominated by U).

Proof. We will first prove that a node N failing any one of the conditions

does not need a $- or a-function.

" Conditions 1 and 2 of the SSI form definition require node N to be

the first convergence (divergence) of some paths X -4 N and Y -4 N
(N -4 X and N -4 Y). If the input arity is less than 2 or there is no

path from a definition of v, than it fails the #-placement criterion 1.

If the output arity is less than 2 or there is no path to a use of v, then

it fails the a-placement criterion 2.

" If there exists a SESE containing N that does not contain any def-

inition, 4- or a-function D for v, then N does not require a #- or

o--function for v by lemma 5.1.

" Let us suppose every Di containing a definition, $- or a-function

for v dominates N. If N requires a 4-function for v, there exist

paths D i - N and D2 % N containing no nodes in common but

35

N. We use these paths to construct simple paths START -4 Di -± N

and START -4 D2 -± N. By the definition of a dominator, every

path from START to N must contain every Di. But D, -4 N cannot

contain D2 , and if START -4 Di contains D2 , we can make a path

START -4 D 2 -4 N which does not contain D1 by using the Di-free

path D 2 -± N. The assumption leads to a contradiction; thus, there

must exist some Di which does not dominate N if N is required to

have a u-function for v. The symmetric argument holds for post-

dominance and o-functions.

This proves that the conditions are necessary. It is obvious from an exami-

nation of conditions 1 and 2 of the SSI form definition and lemma 5.1 that

they are sufficient. D

In practice, the conditions of lemma 5.2 are too expensive to implement

directly. Instead, we use a conservative approximation to SSI form, which

allows us to place more $- and --functions than minimal SSI requires (for

example, a c-function for v at the circled node in Figure 5.8), while satis-

fying the conditions of the SSI form definition. Our algorithm also allows

us to do pre-pruning of the SSI form during placement. The result is not

pruned SSI, but contains a tight superset of the 4- and o-functions that

pruned form requires.

Theorem 5.1. Algorithm 5.3 places all the $- and o-functions required

by conditions 1 and 2 of the SSI form definition.

Proof. Lemma 5.1 states that the child region exclusion of Algorithm 5.3

does not cause required q- or o-functions to be omitted. Property 5.4

allows the omission of $- and c-functions for v at nodes where v is dead

when creating pruned form; MaybeLive may not return f alse for nodes

36

Figure 5.8: An flowgraph where Algorithm 5.3 places 5-functions conser-

vatively.

where v is not dead, but may return true at nodes where v is dead without

harming the correctness of the $- and c-function placement. l

5.3.4 Computing liveness

Incorporating liveness information into the creation of pruned SSI form

appears to lead to a chicken-and-egg problem: although the pruned SSI

framework allows highly efficient liveness analysis, obtaining the liveness

information from the original program can be problematic. The fastest

sparse algorithm has stated time bounds of O(E + N2) [7], which is likely

to be more expensive than the rest of the SSI form conversion. Luckily,

Kam and Ullman [21], in conjunction with an empirical study by Knuth

[23], show that liveness analysis is highly likely to be linear for reducible

flow-graphs. In our work this question is avoided, as we obtain our liveness

information directly from properties of the Java bytecode files that are our

input to the compiler. But in any case our algorithms allow conservative

approximation to liveness, so even in the case of non-reducible flow graphs

it should not be difficult to quickly generate a rough approximation.

37

Rename(G: CFG)
1: Init(G)
2: for each edge e leaving START do
3: Search(e)

Init(G: CFG) =

1: for each edge e in G do
2: Marked[e] - false

3: for each variable V in G do
4: C(V) - 0
5: S = create() /* create a new environment */

Inc(S: Environment, V: variable): variable
1: i +- C(V) + 1
2: C(v) - i

3: E.put(VV)
4: return Vi

Algorithm 5.4: SSI renaming algorithm.

5.3.5 Variable renaming

Algorithm 5.4 performs variable renaming on a flow-graph with placed

4b- and o-functions in a single depth-first traversal. When the algorithm is

complete, the control flow-graph will be in proper SSI form. The variable

renaming algorithm requires an Environment datatype which is defined in

Figure 5.9. Using an imperative programming style, it is possible to per-

form a sequence of any N operations on Environment as defined in the figure

in O(N) time; in a functional programming style any N operations can be

completed in 0 (N log N) time.10 As the coarse structure of Algorithm 5.4

is a simple depth-first search, it is easy to see that the Search procedure

can be invoked from line 3 on page 38 and line 32 on page 39 a total of

10The curious reader is referred to section 5.1 of Appel [4] for implementation details.

38

Search((s, d): edge) =
Require: s to be a node containing ci- or a-functions, or START
Require: Marked[(s, d)] = false

1: Marked[(s, d)] <- true

2: beginScope(S)
3: if s is a node containing *-functions then

4: for each 4-function P in s do

5: replace the destination V of P by Inc(E,V)

6: else if s is a node containing u-functions then

7: for each u-function S in s do

8: j w WhichSucc((s, d))
9: replace the j-th destination V of S by Inc(S, V)

10: loop /* now rename inside basic block */
11: if d is a node containing cf-functions then

12: for each 5-function P in d do

13: j -- WhichPred((s, d))
14: replace the j-th operand V of P by get(S,V)

15: break /* end of basic block */
16: else if s is a node containing u-functions then
17: for each a-function S in d do

18: replace the operand V of S by get(E, V)
19: break /* end of basic block */

20: /* ordinary assignment, at most one successor

21: for each variable V in RHS(d) do

22: replace V by get(S,V) in RHS(d)
23: for each variable V in LHS(d) do

24: replace V by Inc(E, V) in LHS(d)
25: if d has no successor then
26: break /* end of basic block *7
27: s- d
28: d <- successor of d
29: end loop
30: for each successor n of d do
31: if not Marked[(d, n)] then

32: Search((d,n)) /* dfs recursion *7
33: endScope(S)
34: return

Algorithm 5.5: SSI renaming algorithm, cont.
39

O(E) times; likewise its inner loop (lines 10 to 29) can be executed a total

of E times across all invocations of Search. A total of USSA + DSSA calls to

the operations of the Environment datatype will be made within all execu-

tions of Search. For the imperative implementation of Environment a total

time bounds of 0(E + USSA - DSSA) for the variable renaming algorithm is

obtained.

We have shown that Algorithm 5.3 places all the required 4p- and o-

functions in the control-flow graph according to SSI form conditions 1, 2,

and 5; we will now show that this algorithm renames variables consistent

with conditions 3 and 4 to prove that these algorithms combined suffice to

convert a program into SSI form. The SSI form is not necessarily minimal,

as we showed in section 5.3.3; the next section will show how to post-process

to create minimal or pruned SSI form.

Lemma 5.3. The stack trace of calls to Search defines a unique path

through G from START.

Proof. We will prove this lemma by construction. For every consecutive

pair of calls to Search we construct a path X -4 Y starting with the edge

(X, No) which is the argument of the first call, and ending with the edge

(Nn, Y) which is the argument of the second call. From line 28 of the Search

procedure on page 39 we note that every edge (Ni, Nie) between the first

and last has exactly one successor. Furthermore, the call to search on line 32

defines a path starting with the edge which our segment X -4 Y ends with;

therefore the paths can be combined. By so doing from the bottom of the

call stack to the top we construct a unique path from START. D

For brevity, we will hereafter refer to the canonical path constructed

in the manner of lemma 5.3 corresponding to the stack of calls to Search

when an edge e is first encountered as CP(e). Every edge in the CFG is

40

encountered exactly once by Search, so CP(e) exists and is unique for every

edge e in the CFG.

Lemma 5.4. SSI form condition 3 (Vfunction naming) holds for vari-

ables renamed according to Algorithm 5.4.

Proof. We restate SSI form condition 3 for reference:

For every node X containing a definition of a variable V in the

new program and node Y containing a use of that variable, there

exists at least one path X -4 Y and no such path contains a

definition of V other than at X.

We consider the canonical path CP((Y', Y)) = START -* Y' -+ Y for some

use of a variable v at Y, constructed according to lemma 5.3 from a stack

trace of calls to Search. is encountered. This path is unique, although more

than one canonical path may terminate at Y at nodes with more than one

predecessor. These paths are distinguished by the incoming edge to Y."

We identify each operand vi of a $-function with the appropriate incoming

edge e to ensure that CP(e) is well defined and unique in the context of a

use of vi.

The canonical path START -±) Y must contain X, a definition of v, if Y

uses a variable defined in X, as Search renames all definitions (in lines 5,
9, and 24) and destroys the name mapping in S just before it returns. The

call to Search which creates the definition of v must therefore always be

on the stack, and thus in the path CP((Y', Y)), for any use to receive a the

"Note that the notation (N, N') for denoting edges does not always denote an edge

unambigiously; imagine a conditional branch where both the true and false case lead

to the same label. In such cases an additional identifier is necessary to distinguish the

edges. Alternatively, one may split such edges to remove the ambiguity. We treat edges

as uniquely identifiable and leave the implementation to the reader.

41

name v. Note that this is true for 4-functions as well, which receive names

when the appropriate incoming edge (Y', Y) is traversed, not necessarily

when the node Y containing the 4-function is first encountered.

We have proved that START -4 X -4 Y exists; now we must prove that no

other path from X to Y contains a definition of v. Call this other definition

D. Obviously D cannot be on our canonical path START 4 X 4 Y, or

line 24 would have caused Y to use a different name. But as we just stated,

all variable name mappings done by D will be removed when the call to

Search which touched D is taken off the call stack. So D must be on the

call stack, and thus on the canonical path; a contradiction. Since assuming

the existence of some other path X -4 Y containing a definition of v leads

to contradiction no other such path may exist, completing the proof of the

lemma. E

Lemma 5.5. SSI form condition 4 (--function naming) holds for vari-

ables renamed according to Algorithm 5.4.

Proof. We restate SSI form condition 4 for reference:

For every pair of nodes X and Y containing uses of a variable V

defined at node Z in the new program, either every path Z 4 X

must contain Y or every path Z -4 Y must contain X.

Let us assume there are paths Z -4 X and Z -4 Y violating this condition;

that is, let us chose nodes X and Y which use V and Z defining V such that

there exists a path PI from Z to X not containing Y and a path P2 from Z to

Y not containing X. By the argument of the previous lemma, there exists

a canonical path P3 CP(e) from START to X through Z corresponding to

a stack trace of Search; note that P3 need not contain PI. There are two

cases:

42

Case I: P3 does not contains Y. Then there is some last node N present

on both P2 : Z *+ N -4 Y and P3 : START -A Z -* N -4 X. By SSI

condition 2 this node N requires a o--function for V. If N 7 Z then

line 5 of Algorithm 5.4 would rename V along P3 and X would not

use the same variable Z defined; if N = Z, then line 9 would have

ensured that X and Y used different names. Either case contradicts

our choices of X, Y, and Z.

Case II: P3 does contain Y. Then consider the path START -± Z -> Y along

P3 , which does not contain X. The argument of case I applies with X

and Y reversed.

Any assumed violation of condition 4 leads to contradiction, proving the

lemma. E

Every path CP(e) corresponds to a execution state in a call to Search

at the point where e is first encountered. The value of the environment

mapping E at this point in the execution of Algorithm 5.4 we will denote

as Ee. For a node N having a single predecessor N. and single successor

NS, we will denote
8

(Np,N) as elore and 8 (NNs) as 8after. It is obvious that

aer before eforer bfre when N, and Ns, respectively, are also

single-predecessor single-successor nodes.

Lemma 5.6. SSI form condition 6 (correctness) holds for variables re-

named according to Algorithm 5.4. That is, along any possible control-

flow path in a program being executed a use of a variable Vi in the new

program will always have the same value as a use of the corresponding

variable V in the original program.

Proof. We will use induction along the path No - N1 -> ... - N,. We

consider ek = Nk, Nk+1), the (k+1)th edge in the path, and assume that,

43

for all j < k, each variable V in the original program agrees with the value

of Sei [VI - Vi in the new program. We show that Eek [VI agrees with V at

edge ek in the path.

Case I: k = 0. The base case is trivial: the START node (NO) contains

no statements, and along each edge e leaving start Se[V) = VO. By

definition Vo agrees with V at the entry to the procedure.

Case II: k > 0 and Nk has exactly one predecessor and one successor.

If Nk is single-entry single-exit, then it is not a 4- or u-function.

As an ordinary assignment, it will be handled by lines 20 to 24 of

Algorithm 5.5 on page 39. By the induction hypothesis (which tells

us that the uses at Nk correspond to the same values as the uses in the

original program) and the semantics of assignment, the mapping EN,

is easily verified to be valid when ke is valid. Thus the value of

every original variable V corresponds to the value of the new variable

ENr[V] =ek [VI on ek.

Case III: k > 0 and Nk has multiple predecessors and one successor. In

this case Nk may have multiple $-functions in the new program, and

by the definition in section 3 Nk has no statements in the original

program. Thus the value of any variable V in the original program

along edge ek is identical to its value along edge ek_1. We need only

show that the value of the variable ek-1 [V] is the same as the value

of the variable Eek [V] in the new program. For any variable V not

mentioned in a 4-function at Nk this is obvious. Each variable defined

in a $-function will get the value of the operand corresponding to the

incoming control-flow path edge. The relevant lines in Algorithm 5.5

start with 13 and 14, where we see that the operand corresponding to

edge ek-1 of a $-function for V correctly gets Eek-1 [V]. At line 5, we

44

see that the destination of the 4-function is correctly Eek [V]. Thus

the value of every original variable V correctly correponds to Sek[XV/

by the induction hyptothesis and the semantics of the 4-functions.

Case IV: k > 0 and Nk has one predecessor and multiple successors. Here

Nk may have multiple o-functions in the new program, and is empty

in the original program. The argument goes as for the previous

case. It is obvious that variables not mentioned in the o-functions

correspond at ek if they did at ek_1. For variables mentioned in

o-functions, line 18 shows that operands correctly get Eek--1 [V] and

line 9 shows that the destination corresponding to ek correctly gets

Eek [V]. Therefore the values of original variables V correspond to the

value of Eek [V] by the induction hypothesis and the semantics of the

o-functions.

Case V: Nk has multiple predecessors and multiple successors. Forbidden

by the CFG definition in section 3.

Therefore, on every edge of the chosen path, the values of the original vari-

ables correspond to the values of the renamed SSI form variables. The value

correspondence at the path endpoint (a use of some variable V) follows. E

Theorem 5.2. Algorithm 5.4 renames variables such that SSI form

conditions 3, 4, and 6 hold.

Proof. Direct from lemmas 5.4, 5.5, and 5.6. l

Theorem 5.3. Algorithms 5.3 and 5.4 correctly transform a program

into SSI form.

Proof. Theorem 5.1 proves that 4)- and a-functions are placed correctly to

satisfy conditions 1, 2 and 5 of the SSI form definition, and theorem 5.2

proves that variables are renamed correctly to satisfy conditions 3, 4 and 6.

l

45

5.3.6 Pruning SSI form

The SSI algorithm can be run using any conservative approximation to the

liveness information (including the function MaybeLive(v,n) = true) if

unused code elimination" is performed to remove extra $- and o-functions

added and create pruned SSI. Figure 5.10 and Algorithm 5.6 present an

algorithm to identify unused code in O(NVss1) time, after which a simple

O(N) pass suffices to remove it. The complexity analysis is simple: nodes

and variables are visited at most once, raising their value in the analysis

lattive from unused to used. Nodes marked used are never visted. So

MarkNodeUseful is invoked at most N times, and MarkVarUseful is invoked

at most Vss1 times. The calls to MarkNodeUseful may examine at most

every variable use in the program in lines 3-5, taking O(Uss1) time at

worst. Each call to MarkVarUseful examines at most one node (the single

definition node for the variable, if it exists) and in constant time pushes at

most one node on to the worklist for a total of O(Vss1) time. So the total

run time of FindUseful is O(Uss 1 + Vss1) =O(Uss1).

5.3.7 Discussion

Note that our algorithm for placing q- and -functions in SSI form is

pessimistic; that is, we at first assume every node in the control-flow graph

with input arity larger than one requires a $-function for every variable

and every node with out-arity larger than one requires a --function for

every variable, and then use the PST, liveness information, and unused

code elimination to determine safe places to omit $- or o-functions. Most

1
2 We follow [44] in distinguishing unreachable code elimination, which removes code

that can never be executed, from unused code elimination, which deletes sections of

code whose results are never used. Both are often called "dead code elimination" in the

literature.

46

Data type Environment:

createo: Environment
make an environment with no mappings.

put(E: Environment, v1 : variable, v2 : variable)

extend environment E with a mapping from vi to v2 .

get(S: Environment, v: variable): variable

return the current mapping in S for v.

beginScope(S: Environment) :
save the current mapping of E for later restoration.

endScope(S: Environment) :

restore the mapping of S to that present at the last beginScope on E.

Figure 5.9: Environment datatype for the SSI renaming algorithm.

Operations on nodes:

NodeUseful(n:node): boolean : Whether the results of this node are ever used

Uses(n:node): set of variables : Variables for which this node contains a use

Operations on variables:

VarUseful(v:variable): boolean : Whether there is some n for which Uses(n)

contains v and NodeUseful(n) is true

Definitions(v:variable): set of nodes : Nodes which contain a definition for v

Figure 5.10: Datatypes and operations used in unused code elimination.

47

FindUseful(G: CFG) =
1: let W be an empty work list

2: for each variable v in G do

3: VarUseful(v) f- false

4: for each node n in G in any order do

5: NodeUseful(n) <- f alse

6: if n is a CALL, RETURN, or other node with side-effects then
7: add n to W

8:

9: while W is not empty do

10: let n be any element from W

11: remove n from W

12: MarkNodeUseful(n, W)

MarkNodeUseful(n: node, W: WorkList) =
1: NodeUseful(n) (- true

2: /* everything used by a useful node is useful */

3: for each variable v in Uses(n) do

4: if not VarUseful(v) then

5: MarkVarUseful(v, W)

MarkVarUseful(v: variable, W: WorkList)

1: VarUseful(v) <- true

2: /* The definition of a useful variable is useful */

3: for each node n in Definitions(v) do

4: /* In SSI form, size(Definitions(v)) < 1 */

5: if not NodeUseful(n) then

6: addrT to W

48

Algorithm 5.6: Identifying unused code using SSI form.

START

4q

CL = LL +

END

Figure 5.11: A worst-case CFG for "optimistic" algorithms.

SSA construction algorithms, by contrast, are optimistic; they assume no

$- or o--functions are needed and attempt to determine where they are

provably necessary. In my experience, optimistic algorithms tend to have

poor time bounds because of the possibility of input graphs like the one

illustrated in Figure 5.11. Proving that all but two nodes require 4- and/or

o-functions for the variable a in this example seems to inherently require

O (N) passes over the graph; each pass can prove that $- or u-functions are

required for only those nodes adjacent to nodes tagged in the previous pass.

Starting with the circled node, the $- and u-functions spread one node left

on each pass. On the other hand, an pessimistic algorithm assumes the

correct answer at the start, fails to show that any 5- or o--functions can be

removed, and terminates in one pass.

5.4 Time and space complexity of SSI form

Discussions of time and space complexity for sparse evaluation frameworks

in the literature are often misleadingly called "linear" regardless of what

the 0-notation runtime bounds are. A canonical example is [38], which

states that for SSA form, "the number of $-nodes needed remains linear."

Typically Cytron [11 is cited; however, that reference actually reads:

49

Linearity of uses in SSI form

10 100

Procedure size

1000 10000

Figure 5.12: Number of uses in SSI form as a function of procedure length.

Number of variables in large procedures

10 100

Procedure size

1000 10000

Figure 5.13: Number of original variables as a function of procedure length.

50

100000

10000

1000
USSI

I I I I I ..I I I I I I I

j = Cx

100

10

10000

1000 P

VO 100 -

10

1
1

I I I

. I I I T > .T

For the programs we tested, the plot in [Figure 21 of Cytron's

paper] shows that the number of (p-functions is also linear in

the size of the original program.

It is important to note that Cytron's claim is based not on algorithmic

worst-bounds complexity, but on empirical evidence. This reasoning is not

unjustified; Knuth [23] showed in 1974 that "human-generated" programs

almost without exception show properties favorable to analysis; in particu-

lar shallow maximum loop nesting depth. Wegman and Zadeck [44] clearly

make this distinction by noting that:

In theory the size [of the SSA form representation] can be O(EV),

but empirical evidence indicates that the work required to com-

pute the SSA graph is linear in the program size.

Our worst-case space complexity bounds for SSI form are identical to SSA

form - O(EV) - but in this section we will endeavour to show that typical

complexities are likewise "linear in the program size."

The total runtime for SSI placement and subsequent pruning, including

the time to construct the PST, is O(E + NVO + Uss1). For most programs

E will be a small constant factor multiple of N; as Wegman and Zadeck

[44] note, most control flow graph nodes will have at most two successors.

For those graphs where E is not O(N), it can be argued that E is the more

relevant measure of program complexity.1 3

Thus the "linearity" of our SSI construction algorithm rests on the

quantities NVO and Uss1. Figures 5.12 and 5.13 present empirical data

for Vo and Uss1 on a sample of 1,048 Java methods. The methods varied

in length from 4 to 6,642 statements and were taken from the dynamic

"We will not follow Cytron [11] in defining a new variable R to denote max(N, E) to

avoid following him in declaring worst-case complexity O(R 3) and leaving it to the reader

to puzzle out whether O(N 6) (!) is really being implied.

51

call-graph of the FLEX compiler itself, which includes large portions of

the standard Java class libraries. Figure 5.12 shows convincingly that Uss1

grows as N for large procedures, and Figure 5.13 supports an argument

that VO grows very slowly and that the quantity NVO would tend to grow

as N 1. This would argue for a near-linear practical run-time.

In contrast, Cytron's original algorithm for SSA form had theoretical

complexity O(E + VSSAIDFl + NVSSA). Cytron does not present empirical

data for VSSA, but one can infer from the data he presents for "number of

introduced 4 -functions" that VSSA behaves similarly to Vss1 - that is, it

grows as N, not as VO. It is frequently pointed out' 4 that the |DF term,
the size of the dominance frontier, can be 0(N 2) for common programming

constructs (repeat-until loops), which indicates that the VSSAIDFI term

in Cytron's algorithm will be O(N 2) at best and at times as bad as O(N 3).

Note that the space complexity of SSI form, which may be O(EV) in the

worst case (5- and a-functions for every variable inserted at every node) is

certainly not greater than Uss1, and thus Figure 5.12 shows linear practical

space use.

6 Uses and applications of SSI

The principle benefits of using SSI form are the ability to do predicated

and backward dataflow analyses efficiently. Predicated analysis means

that we can use information extracted from branch conditions and control

flow. The o-functions in SSI form provide an variable naming that allows

us to sparsely associate the predication information with variable names

at control flow splits. The o--functions also provide a reverse symmetry to

SSI form that allow efficient backward dataflow analyses like liveness and

52

"See Dhamdhere [12] for example.

anticipatability.

In this section, we will briefly sketch how SSI form can be applied

to backwards dataflow analyses, including anticipatability, an important

component of partial redundancy elimination. We will then describe in de-

tail our Sparse Predicated Typed Constant propagation algorithm, which

shows how the predication information of SSI form may be used to advan-

tage in practical applications, including the removal of array bounds and

null-pointer checks. Lastly, we will describe an extension to SPTC that

allows bitwidth analysis, and the possible uses of this information.

6.1 Backward Dataflow Analysis

Backward dataflow analyses are those in which information is propa-

gated in the direction opposite that of program execution [29]. There is

general agreement [20, 7, 45] that SSA form is unable to directly handle

backwards dataflow analyses; liveness is often cited as a canonical exam-

ple.

However, SSI form allows the sparse computation of such backwards

properties. Liveness, for example, comes "for free" from pruned SSI form:

every variable is live in the region between its use and sole definition. Prop-

erty 5.2 states that every non-$-function use of a variable is dominated by

the definition; Cytron [11] has shown that $-functions will always be found

on the dominance frontier. Thus the live region between definition and use

can be enumerated with a simple depth-first search, taking advantage of

the topological sorting by dominance that DFS provides [29]. Because of

$-function uses, the DFS will have to look one node past its spanning-

tree leaves to see the 4-functions on the dominance frontier; this does not

change the algorithmic complexity.

Computation of other dataflow properties will use this same enumera-

53

tion routine to propagate values computed on the sparse SSI graph to the

intermediate nodes on the control-flow graph. Formally, we can say that

the dataflow property for variable v at node N is dependent only on the

properties at nodes D and U, defining and using v, for which there is a path

D -± U containing N. There is a "default" property which holds for nodes

on no such path from a definition to use; for liveness the default property is

"not live." The remainder of this section will concentrate on the dataflow

properties at use and definition points.

A slightly more complicated backward dataflow property is very busy

expressions; this analysis is somewhat obsolete as it serves to save code

space, not time. This in turn is related to partial and total anticipatabil-

ity.

Definition 6.1. An expression e is very busy at a point P of the pro-

gram iff it is always subsequently used before it is killed [29].

Definition 6.2. An expression e is totally (partially) anticipatable at

a point P if, on every (some) path in the CFG from P to END, there is

a computation of e before an assignment to any of the variables in e

[20].

Johnson and Pingali [20] show how to reduce these properties of ex-

pressions to properties on variables. We will therefore consider properties

BSY(v, N), ANT(v, N), and PAN(v, N) denoting very busy, totally antici-

patable, and partially anticipatable variables v at some program point N.

To compute BSY, we start with pruned SSI form. Any variable defined

in a cp- or a-function is used at some point, by definition. So for statements

54

at a point P we have the rules:

v ... BSYi, (v, P) f alse

. . . = v BSYin (v, P)= true

X= (y, jn BSYin (Yi, P) =BSYout (x, P)

(xo, .. x.) = j-() BSY-n (J, P) A \ BSY 0ut(xiP)

Total anticipatability, in the single variable case, is identical to BSY.

Partial anticipatability for a variable v at point P follows the rules:

v ... PANj (v, P) = f alse

.. v PANM (v, P) = true

X=$(,...,) PANin (_Li, P) = PAN(,ut(x, P)

(xo, ... , x-) = r-y) PAN-, (, P) =VTO PAN0 mi(xiP)

The present section is concerned more with feasibility than the mechan-

ics of implementation; we refer the interested reader to [29] and [20] for

details on how to turn the efficient computation of BSY, PAN and ANT

into practical code-hoisting and partial-redundancy elimination routines,

respectively.

We note in passing that the sophisticated strength-reduction and code-

motion techniques of SSAPRE [22] are applicable to an SSI-based represen-

tation, as well, and may benefit from the predication information available

in SSI. The remainder of this section will focus on practical implementa-

tions of predicated analyses using SSI form.

6.2 Sparse Predicated Typed Constant Propagation

Sparse Predicated Typed Constant (SPTC) Propagation is a powerful anal-

ysis tool which derives its efficiency from SSI form. It is built on Wegman

and Zadeck's Sparse Conditional Constant (SCC) algorithm [44] and re-

moves unnecessary array-bounds and null-pointer checks, computes vari-

55

T

Executable

- -2 -1 0 1 2 ...

Not Executable

Figure 6.1: Three-level value lattice and two-level executability lattice for
SCC.

n I c d(- c) T ei d T

l I c d T I I d T

c c c T T c c cEd T

T T T T T T T T

Table 6.1: Meet and binary operation rules on the SCC value lattice.

able types, and performs floating-point- and string-constant-propagation

in addition to the integer constant propagation of standard SCC.

We will describe this algorithm incrementally, beginning with the stan-

dard SCC constant-propagation algorithm for review. Wegman and Zadeck's

algorithm operates on a program in SSA form; we will call this SCC/SSA

to differentiate it from SCC/SSI, using the SSI form, which we will describe

in section 6.2.2. Section 6.3 on page 73 will discuss an extension to SPTC

which does bit-width analysis.

6.2.1 Wegman and Zadeck's SCC/SSA algorithm

The SCC algorithm works on a simple three-level value lattice asso-

ciated with variable definition points and a two-level executability lattice

associated with flow-graph edges. These lattices are shown in Figure 6.1.

56

Init(G:CFG) =
1: E, <- 0
2: En <- 0

3: for each variable v in G do

4: if some node n defines v then

5: V[v]-_

6: else
7: V[v] <- T /* Procedure argu

Analyze(G:CFG) =
1: let r be the start

2: E - E, U {r}
3: W, <- {r}

4: Wv <- 0

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

ments, etc. */

node of graph G

repeat
if W, is not empty then

remove some node n from W,

if n has only one outgoing edge e and e Ee then

RaiseE(e)
Visit(n)

if Wv, is not empty then
remove some variable v from Wv

for each node n containing a use of v do

Visit(n)
until both Wv and W, are empty

Algorithm 6.1: SCC algorithm for SSA form.

57

RaiseE(e:edge) =
1: /* When called, e Ee */

2: Ee - Ee U {e}
3: let n be the destination of edge e

4: if n 0 E, then

5: ET- E, U {n}
6: WV <- WT U {N}

RaiseV(v:variable, L:lattice value) =

1: if V[v] i L then

2: V[v] -L

3: W - W U{v}

Visit(n:node) =

1: for each assignment "v <- x a i" in n do
2: RaiseV(v, V[xl e Vfty]) /* binop rule: see table 6.1 */

3:
4: for each assignment "v +- MEM(.. .)" or "v <- CALL(...)" in n do
5: RaiseV(v, T)

6:
7: for each assignment "v <- px...,xn)" in n do

8: for each variable xi corresponding to predecessor edge e1 of T11 do
9: if ej C E, then

10: RaiseV(v, V[v F1 V[xi]) /* meet rule: see table 6.1 */
11:
12: for each branch "if v goto el else e2 " in n do

13: L -V[v]
14: if L = T or L = c where c signifies "true" and el (Ee then
15: RaiseE(e 1)

16: if L = T or L = c where c signifies "false" and e2 E Ee then

17: RaiseE(e 2)

Algorithm 6.2: SCC algorithm for SSA form, cont.

58

Associating a lattice value with a definition point is a conservative state-

ment that, for all possible program paths, the value of that variable has a

certain property. The value lattice is, formally, IntI; the lattice value I

signifies that no information about the value is known, the lattice value T

indicates that it is possible that the variable has more than one dynamic

value, and the other lattice entries (corresponding to integer constants and

occuping a flat space between T and _) indicate that the variable can

be proven to have a single constant value in all runs of the program.1 5

Similarly, the executability lattice indicates whether it is possible that the

control flow edge is traversed in some execution of the program (marked

"executable"), or if it can be proven that the edge is never traversed in any

valid program path (marked "not executable"). The algorithm works with

SSA form, and is presented as Algorithm 6.1. Binary operations on lattice

values and combination at $-nodes follow the rules in Table 6.1; notice that

the meet operation ([1) is simply the least upper bound on the lattice. The

time complexity of SCC/SSA can be found easily: the procedure RaiseE

puts each node on the W, worklist at most once, and RaiseV puts a variable

on the W, worklist at most D - 1 times, where D is the maximum lattice

depth. The Visit procedure can thus be invoked a maximum of N times

by line 11 of the Analyze procedure of Algorithm 6.1, and a maximum of

USSA(D - 1) times by line 15, where USSA is the number of variable uses in

the SSA representation of the program. The lattice depth D is the constant

3 in this version of the algorithm, so it drops out of the expression. The

RaiseE procedure itself is called at most E times. The time complexity is

"Note that we follow the T and I conventions used in semantics and abstract interpre-

tation; authors in dataflow analysis (including Wegman and Zadeck in their SCC paper

[44]) often use contrary definitions, letting T mean undefined and I indicate overdefini-

tion. As section 7.3 will discuss the semantics of SSI+ at length, we thought it best to

adhere to one set of definitions consistently, instead of switching mid-paper.

59

fa0 = f(; fao0 = f(;

if (foo == 1) if (fU0 == 1)

(foo 1 ,foo 2) = U(faoo)
bar = foo + 1; baro = foo 2 + 1;

else else

bar = 2; bar, = 2;

bar 2 = (b(baro,barj)

Figure 6.2: A simple constant-propagation example.

thus O(E + N + USSA(D - 1)) which simplifies to O(E + USSA).

6.2.2 SCC/SSI: predication using c-functions.

Porting the SCC algorithm from SSA to SSI form immediately increases

the number of constants we can find. A simple example is shown in

Figure 6.2: the version of the program on the right is in SSI form, and

SCC/SSI-unlike SCC/SSA-can determine that faa 2 is a constant with

value 1 (although nothing can be said about the value of f ooo or f oo1) and

therefore that baro, bar,, and bar 2 are constants with the value 2. SSI

form creates a new name for bar at the conditional branch to indicate that

more information about its value is known.

Only the Visit procedure must be updated for SCC/SSI: lattice update

rules for u-functions must be added. Algorithm 6.3 shows a new Visit

procedure for the two-level integer constant lattice of Wegman and Zadeck's

SCC/SSA; with this restricted value set only integer equality tests tap the

algorithm's full power. The utility of SCC/SSI's predicated analysis will

become more evident as the value lattice is extended to cover more constant

types.

The time complexity of the updated algorithm is identical to that of

60

Visit(n:node) =
1: /* Assignment rules as on page 58 */

2:

3: for each branch "if x = j goto el else e2 " in -n do

4: if L[x = T or L[y]= T then

5: RaiseE(ei)
6: RaiseE(e 2)
7: else if L[x] = c and L[W] = d then

8: if c = d then

9: RaiseE(ei)

10: else

11: RaiseE(e 2)
12: for each assignment "(v],v 2) <- c-(vo)" associated with this branch do

13: if edge el c Ee and variable vo is the x or -ij in the test then

14: RaiseV(vi, min(L[xl, L[W]))

15: else if edge el G Ee then

16: RaiseV(vi, L[vo])

17: if edge e2 E Ee then /* False branch */

18: RaiseV(v 2 , L[vo])

19:

20: /* Obvious generalization applies for tests like "x # "

Algorithm 6.3: A revised Visit procedure for SCC/SSI.

61

T

float double int long String

Figure 6.3: SCC value lattice extended to Java primitive value domain.

SCC/SSA: O(E + USSA), by the same argument as before.

6.2.3 Extending the value domain

The first simple extension of the SCC value lattice enables us to represent

floating-point and other values. For this work, we extended the domain

to cover the full type system of Java bytecode [15]; the extended lattice is

presented in Figure 6.3. The figure also introduces the abbreviated lattice

notation we will use through the following sections; it is understood that

the lattice entry labelled "int" stands for a finite-but-large set of incom-

parable lattice elements, consisting (in this case) of the members of the

Java int integer type. Java ints are 32 bits long, so the "int" entry ab-

breviates 232 lattice elements. Similarly, the "double" entry encodes not

the infinite domain of real numbers, but the domain spanned by the Java

double type which has fewer than 264 members.16 The Java String type is

also included, to allow simple constant string coalescing to be performed.

The propagation algorithm over this lattice is a trivial modification to Al-

gorithm 6.3, and will be omitted for brevity. In the next sections, the

"int" and "long" entries in this lattice will be summarized as "Integer Con-

16In IEEE-standard floating-point, some possible bit patterns are not valid number

encodings.

62

Hierarchy Source language Classes Avg. depth Max. depth

FLEX infrastructure Java 550 1.9 5

j avac compiler Java 304 2.8 7

NeXTStep 3 .2 t Objective-C 488 3.5 8

Objectworks 4 .1t Smalltalk 774 4.4 10

t indicates data obtained from Muthukrishnan and Mhller [28].

Table 6.2: Class hierarchy statistics for several large 0-0 projects.

stant", the "float" and "double" entries as "Floating-point Constant", and

the "String" entry as "String Constant". As the lattice is still only three

levels deep, the asymptotic runtime complexity is identical to that of the

previous algorithm.

6.2.4 Type analysis

In Figure 6.4 we extend the lattice to compute Java type information.

The new lattice entry marked "Typed" is actually forest-structured as

shown in Figure 6.5; it is as deep as the class hierarchy, and the roots

and leaves are all comparable to T and 1. Only the Visit procedure must

be modified; the new procedure is given as Algorithm 6.4. Because the lat-

tice L is deeper, the asymptotic runtime complexity is now O(E + USSADc)

where D, is the maximum depth of the class hierarchy. To form an esti-

mate of the magnitude of De, Table 6.2 compares class hierarchy statistics

for several large object-oriented projects in various source languages. Our

FLEX compiler infrastructure, as a typical Java example, has an average

class depth of 1.91.17 In a forced example, of course, one can make the class

depth O(N); however, one can infer from the data given that in real code

the Dc term is not likely to make the algorithm significantly non-linear.

7 Measured August 2, 1999; the infrastructure is under continuing development.

63

T

Typed

String Floating-point Integer
Constant Constant Constant

Figure 6.4: SCC value lattice extended with type information.

T

Tyed
java.lang .Object non-void primitive types

java.lang.Number java.lang.String evels

- java.lan .Integer

String Floating-point Integer

Null Constant Constant Constant

Constant

Figure 6.5: "Typed" category of Figure 6.4 shown expanded.

64

Visit(n:node) =
1: for each assignment "v <- x e -y" in n do

2: RaiseV(v, V[x] (V[tj]) /* binop rule: see figure 6.6 */

3:
4: for each assignment "v 4- MEM(.. .)" or "v -- CALL(.. .)" in n do

5: let t be the type of the MEM or CALL expression

6: RaiseV(v, t)

7:

8: for each assignment "v - ... ,xn)" in n do

9: for each variable x1 corresponding to predecessor edge ej of n do

10: if eC G Ee then

11: RaiseV(v, LL{Vfvl, VIxi1}) /* meet rule: use least upper bound */

12:

13: for each branch "if x = ij goto el else e2 " in n do

14: if Typed E L[x] or Typed E L[-y then

15: RaiseE(e 1)

16: RaiseE(e 2)
17: else if L[x] = c and L[il = d then /* if x and ij are constants...

18: if c = d then

19: RaiseE(ei)

20: else

21: RaiseE(e 2)
22: for each assignment "(vi,v 2) 4- -(vo)" associated with this branch do

23: if edge el C Ee and variable vo is the x or ij in the test then

24: /* type error in source program if Lx] and L[Wi] are incomparable */

25: RaiseV(vi, min(L[xl, L[jl))

26: else if edge el E Ee then

27: RaiseV(vi, L[vol)

28: if edge e2 E E, then /* False branch */

29: RaiseV(v 2 , L~vol)

30:

31: /* Obvious generalization applies for tests like "x i" *Y/

32: /* Obvious generalization applies for tests like "x instanceof C" */

Algorithm 6.4: Visit procedure for typed SCC/SSI.

65

int e int =int

longe{int,long} long

f loat e {int, long, f loat} = float

double e {int, long, float, double} double

String D {int, long, f loat, double, Object} String

Figure 6.6: Java typing rules for binary operations.

A brief word on the roots of the hierarchy forest in Figure 6.5 is called

for: Java has both a class hierarchy, rooted at java. lang. Object, and

several primitive types, which we will also use as roots. The primitive

types include int, long, float, and double.18 Integer constants in the

lattice are comparable to and less than the int or long type; floating-point

constants are likewise comparable to and less than either float or double.

String constants are comparable to and less than the java.lang. String

non-primitive class type.

The void type, which is the type of the expression null, is also a prim-

itive type in Java; however we wish to keep x n -y identical to LJL{X, ij} (the

least upper bound of x and 1y) while satisfying the Java typing rule that

null F1 x = x when x is a non-primitive type and not a constant. This

requires putting void comparable to but less than every non-primitive leaf

in the class hierarchy lattice.

The Java class hierarchy also includes interfaces, which are the means

by which Java implements multiple inheritance. Base interface classes

1 8 In the type system our infrastructure uses (which is borrowed from Java bytecode)

the char, boolean, short and byte types are folded into int.

66

T

Typed

Non-null Typed

Fixed-length Integer Floating-point String Null
Array Constant Constant Constant Constant

Figure 6.7: Value lattice extended with array and null information.

(which do not extend other interfaces) are additional roots in the hierarchy

forest, although no examples of this are shown in Figure 6.5.

Since untypeable variables are generally forbidden, no operation should

ever raise a lattice value above "Typed" to T. The otherwise-unnecessary

T element is retained to indicate error conditions.

This variant of the constant-propagation algorithm allows us to elim-

inate unnecessary instanceof checks due to type-casting or type-safety

checks. Section 6.2.6 will provide experimental validation of its utility.

Finally, note that the ability to represent null as the void type in the

lattice begins to allow us to address null-pointer checks, although because

null n x = x for non-primitive types we can only reason about variables

which can be proven to be null, not those which might be proven to be

non-null (which is the more useful case). The next section will provide a

more satisfactory treatment.

6.2.5 Addressing array-bounds and null-pointer checks

At this point, we can expand the value lattice once more to allow elim-

67

VC (E Class, Cnon-null E Cpossibly-null

VC E Classnon-nun, LL{vOid, C} E Classpossibly-null

VC E Classpossibly-null, void E C

VC E Classnon-nul, (void, C) K

Let A(C, n) be a function to turn a lattice entry representing a non-null

array class type C into the lattice entry representing a said array class with

known integer constant length n. Then for any non-null array class C and

integers i and j,

A(Ci) r C

(A(C, i), A(C, j)) E - if and only if i = j

Figure 6.8: Extended value lattice inequalities.

x = 5 + 6;

do {
y = new int[x];
z = x-1;

if (0 <= z && z < y.length)

y[z] = 0;

else

x--;

} while (P);

Figure 6.9: An example illustrating the power of combined analysis.

68

Visit(n:node) =
1: /* Binop and <p-function rules as in algorithm 6.4 */

2:

3: for each assignment "v <- MEM(...)" or "v <- CALL(.. .)" in n do

4: let t e Classpossibly-null U Classprimitive be the type of the MEM or CALL

5: RaiseV(v, t)
6:

7: for each array creation expression "v <- new T[x]" do

8: if L[x] is an integer constant then

9: RaiseV(v, A(T, L[xl))
10: else

11: RaiseV(v, TO,,..null)
12:

13: for each array length assignment "v <- arraylength(x)" do

14: if L[x] is an array of known constant length n then

15: RaiseV(v, n)

16: else
17: RaiseV(v, int)

18:

19: /* Branch rules as in algorithm 6.4, with the obvious extension to allow tests

against null to lower a lattice value from Classpossibly-null to Classnon-nu-* */

Algorithm 6.5: Visit procedure outline with array and null information.

69

if (10 < 0)

throw new NegativeArraySizeExceptiono;

int[] A = new intE10];

if (0 < 0 11 0 >= A.length)

throw new ArrayIndexfutfBoundsExceptiono;

A[0] = 1;

for (int i=1; i < 10; i++) {
if (i < 0 11 i >= A.length)

throw new ArrayIndex0utofBoundsExceptiono;

A[i] = 0;

}

Figure 6.10: Implicit bounds checks (underlined) on Java array references.

ination of unnecessary array-bounds and null-pointer checks, based on our

constant-propagation algorithm. The new lattice is shown in Figure 6.7; we

have split the "Typed" lattice entry to enable the algorithm to distinguish

between non-null and possibly-null values, 19 and added a lattice level for

arrays of known constant length. Some formal definition of the new value

lattice can be found in Figure 6.8; the meet rule is still the least upper

bound on the lattice. Modifications to the Visit procedure are outlined

in Algorithm 6.5. Notice that we exploit the pre-existing integer-constant

propagation to identify constant-length arrays, and that our integrated ap-

proach allows one-pass optimization of the program in Figure 6.9.

Note that the variable renaming performed by the SSI form at control-

flow splits is essential in allowing the algorithm to do null-pointer check

elimination. However, the lattice we are using can remove bound checks

from an expression A[k] when k is a constant, but not when k is an bounded

9 Values which are always-null were discussed in the previous section; they are identified

as having primitive type void.

70

induction variable. In the example of Figure 6.10 on the facing page, the

first two implicit checks are optimized away by this version of the algorithm,

but the loop-borne test is not.

A typical array-bounds check (as shown in the example on the preceding

page) verifies that the index i of the array reference satisfies the condition

0 < i < n, where n is the length of the array.20 By identifying integer

constants as either positive, negative, or zero the first half of the bounds

check may be eliminated. This requires a simple extension of the integer

constant portion of the lattice, outlined in Figure 6.11 on the following

page, with negligible performance cost. However, handling upper bounds

completely requires a symbolic analysis that is out of the current scope of

this work. Future work will use induction variable analysis and integrate

an existing integer linear programming approach [36] to fully address array-

bounds checks.

6.2.6 Experimental results

The full SPTC analysis and optimization has been implemented in the

FLEX java compiler platform." Some quantitative measure of the utility of

SPTC is given as Figure 6.12. The "run-times" given are intermediate rep-

resentation dynamic statement counts generated by the FLEX compiler SSI

IR interpreter. The FLEX infrastructure is still under development, and its

backends are not stable enough to allow directly executable code. As such,

the numbers bear a tenuous relation to reality; in particular branch delays

on real architectures, which the elimination of null-pointer checks seeks to

eliminate, are unrepresented. Furthermore, the intermediate representa-

tion interpreter gives the same cycle-count to two-operand instructions as
20 Languages in which array indices start at 1 can be handled by slight modifications to

the same techniques.
21See section 8 for details of methodology.

71

T
(MZP)

(M-P) (MZ-) (-ZP) (M-P)

(M-- -- P)

--- - - 0 1 2 - --2 -1 (-Z-)

I

Figure 6.11: An integer lattice for signed integers. A classification into
negative (M), positive (P), or zero (Z) is grafted onto the standard fiat
integer constant domain. The (M-P) entry is duplicated to aid clarity.

to loading constants, which tends to negate most of the benefit of constant

propagation. As is obvious from the figure, the standard Wegman-Zadeck

SCC algorithm, which has proven utility in practice, shows no improvement

over unoptimized code due to the metric used. Even so, SPTC shows a 10%

speed-up. It is expected that the improvement given in actual practice will

be greater.

Note that the speed-up is constant despite widely differing test cases.

The "Hello world" example actually executes quite a bit of library code

in the Java implementation; this includes numerous element-by-element

array initializations (due to the semantics of java bytecode) which we expect

SPTC to excel at optimizing. But SPTC does just as well on the full FLEX

compiler (68,032 lines of source at the time the benchmark was run), which

shows that the speed-up is not limited to constant initialization code.

72

1.3

1.2 N Noopt

1.1 FuWZ
o 491,322 19,761,884 I FuI

0 447,398 17,571,472
O0.9

C-) 0.8

CZ 0.7

0.6

0.5

o 0.4

0.3

0.2

0.1

Hello world FLEX compiler

Figure 6.12: SPTC optimization performance.

6.3 Bit-width analysis

The SPTC algorithm can be extended to allow efficient bit-width analy-

sis. Bit-width analysis is a variation of constant propagation with the goal

of determining value ranges for variables. In this sense it is similar to, but

simpler than, array-bounds analysis: no symbolic manipulation is required

and the value lattice has N levels (where N is the maximum bitwidth of

the underlying datatype) instead of 2 N. For C and Java programs, this

means that only 32 levels need be added to the lattice; thus the bit-width

analysis can be made efficient.

Bit-width analysis allows optimization for modern media-processing in-

struction set extensions which typically offer vector processing of limited-

width types. Intel's MMX extensions, for example, offer packed 8-bit, 16-

bit, 32-bit and 64-bit vectors [30]. To take advantage of these functional

units without explicit human annotation, the compiler must be able to

73

- (M, P) (P, M)

(M, Pt) + (Mr, P,) (1 + max(Mt, Mr), 1 + max(Pt, Pr))

(M, Pt) X (Mr, Pr) (max(MI + P, , P, + Mr), max(MI + Mr, Pt + Pr))

(, Pi) A (0, Pr) (0, min(P, Pr))

(M , Pt) A (Mr, Pr) (max(M1 , Mr), max(Pt, Pr))

Figure 6.13: Some combination rules for bit-width analysis.

guarantee that the data in a vector can be expressed using the limited

bit-width available. A simpler bit-width analysis in a previous work [3]

showed that a large amount of width-limit information can be extracted

from appropriate source programs; however, that work was not able to in-

telligently compute widths of loop-bound variables due to the limitations

of the SSA form. Extending the bitwidth algorithm to SSI form allows

induction variables width-limited by loop-bounds to be detected.

Bit-width analysis is also a vital step in compiling a high-level language

to a hardware description. General purpose programming languages do not

contain the fine-grained bit-width information that a hardware implemen-

tation can take advantage of, so the compiler must extract it itself. The

work cited showed that this is viable and efficient.

The bit-width analysis algorithm has been implemented in the FLEX

compiler infrastructure. Because most types in Java are signed, it is neces-

sary to separate bit-width information into "positive width" and "negative

width." This is just an extension of the signed value lattice of Figure 6.11 to

variable bit-widths. In practice the bit-widths are represented by a tuple,

extending the integer constant lattice with (Int x Int)1 under the natural

74

total ordering of Int. The tuple (0, 0) is identical to the constant 0, and the

tuple (0, 16) represents an ordinary unsigned 16-bit data type. The T ele-

ment is represented by an appropriate tuple reflecting the source-language

semantics of the value's type. Figure 6.13 presents bit-width combina-

tion rules for some unary negation and binary addition, multiplication and

bitwise-and. In practice, the rules would be extended to more precisely

handle operands of zero, one, and other small constants.

7 An executable representation

The Static Single Information (SSI) form, as presented in the first half

of this thesis, requires control-flow graph information in order to be exe-

cutable. We would like to have a demand-driven operational semantics for

SSI form that does not require control-flow information; thus freeing us to

more flexibly reorder execution.

In particular, we would like a representation that eliminates unnecessary

control dependencies such as exist in the program of Figure 7.1 on the next

page. A control-flow graph for this program, as it is written, will explicitly

specify that no assignments to B [] will take place until all elements of A [1

have been assigned; that is, the second loop will be control-dependent on

the first. We would like to remove this control dependence in order to

provide greater parallelism-in this case, to allow the assignments to A [U

and B [] to take place in parallel, if possible.

In addition, an executable representation allows us to more easily apply

the techniques of abstract interpretation [311. Although abstract interpre-

tation may be applied to the original SSI form using information extracted

from the control flow graph, an executable SSI form allows more concise

(and thus, more easily derived and verified) abstract interpretation algo-

75

for (int i=O; i<10; i++)

A[il = x;

for (int j=0; j<10; j++)
B[jI = y;

Figure 7.1: An example of unnecessary control dependence: the second
loop is control-dependent on the first and so assignments to A [] and B[]
cannot take place in parallel.

rithms.

The modifications outlined here extend SSI form to provide a useful and

descriptive operational semantics. We will call the extended form SSI+.

For clarity, SSI form as originally presented we will call SSIO. We will

describe algorithms to contruct SSI+ efficiently, and illustrate analyses and

optimizations using the form.

7.1 Deficiencies in SSIo

Although a demand-driven execution model can be constructed for SSIO, it

fails to handle loops and imperative constructs well. SSI+ form addresses

these deficiencies.

7.1.1 Imperative constructs, pointer variables, and side-effects

The presentation of SSIO ignored pointers, concentrating on so-called regis-

ter variables. Extending SSIO to handle these imperative constructs is quite

easy: we simply define a "variable" S to represent an updatable store. This

variable is renamed and numbered as before, so that So represents the initial

contents of the store and S1 , i > 0 represents the contents of the store after

some sequence of writes. Figure 7.2 shows a simple imperative program in

76

swap A[i] and B[J] // SSI+ form:

x = A[i]; xO = FETCH(SO, Ao+io)

y = B[j]; ijo = FETCH(SO, Bo+ jo)

AEi] = y; S, = STORE(SO, Ao+io, io);

B[j] = x; S2 = STORE(SI, Bo+ jo, xO);

Figure 7.2: Use of the "store variable" S, in SSI+ form.

SSI+ form. Note that modifications to the store typically take the previous

contents of the store as input, and that subroutines with side-effects mod-

ifying the store must be written in SSI+ form such that they both take a

store and return a store.

The single monolithic store may provide aliasing at too coarse a resolu-

tion to be useful. Decomposing the store into smaller regions is a straight-

forward application of pointer analysis, which may benefit from an initial

conversion of register variables to SSIO form. In type-safe languages, defin-

ing multiple stores for differing type sets is a trivial implementation of basic

pointer analysis; Figure 7.3 shows a simple example of this form of decom-

position using two different subtypes (Integer and Float) of a common

base class (Number). Pointer analysis is a huge and rapidly-growing field

which we cannot attempt to summarize here; suffice to say that the may-

point-to relation from pointer analysis may be used to define a fine-grained

model of the store.

Proper sequencing among statements with side-effects may be handled

in a similar way: a special SSI name is used/defined where side-effects occur

to impose an implicit ordering. For maximum symmetry with the 'store'

case, we will name this special variable Sfx. This variable may be further

decomposed using effect analysis for more precision.

Note that precise analysis of side-effects and the store is much more

77

SN : Number, I: Integer, F : Float

I cN and FcN

if (P) /7 SSI+ form:

N=I;

else No = (0, FO)

N=F;

F.add(3.14159); SF = CALL (add, SF, Fo, 3.14159)

N.add(5); S1 , S = CALL(add, S1, SF, No, 5)

Figure 7.3: Factoring the store (S,) using type information in a type-safe

language.

important in C-like languages. The example on the left in Figure 7.4 shows

the difficulties one may encounter in dealing with pointer variables that

may rewrite SSI temporaries. It is possible to deal with this in the manner

of Figure 7.3 using explicit stores, and with sufficient analysis one may write

the SSI representation on the right in the figure. The source language for

our FLEX compiler does not encounter this difficulty: Java has no pointers

to base types, and so the compiler does not have to worry about values

changing "behind its back" as in the example.

7.1.2 Loop constructs

The center column of Figure 7.5 on page 80 shows a typical loop in SSIO

form. Note first that an explicit "control flow" expression (goto Li) is

required in order to make sense of the program. Note also that i1, i 2 and

i 3 are potentially dynamically assigned many times, although statically

they have only one definition each. This complicates any sort of demand-

driven semantics: should the 5-function demand the value of io, or i 3 ,

78

int x=1; xO = I

int y=2 ; yo = 2

int *p = &x; po {x} // P is of type "location set"

if (P)

p = &y; PI ={y}

P2 =(Po,P)

*p = 3; (x), 1j) = DEREF(p2,3)

return x; return x,

Figure 7.4: Pointer manipulation of local variables in C.

when it is evaluated the first time? Which of the values of i3 does it receive

when the 4-function is subsequently evaluated? A token-based dataflow

interpretation fails as well: it is easy to see that tokens for i, flow around

the loop before flowing out at the end, but the token for jo seems to be

"used up" in the first iteration.

SSI+ introduces a E-function in the block of $-functions to clarify the

loop semantics. The left-hand column of Figure 7.5 illustrates the nature of

this function. The n-function arbitrates loop iteration, and will be defined

precisely by the operational semantics of SSI+ form. For now note that

it relates iteration variables (the top tuple of the parameter and result

vectors) to loop invariants (the bottom tuple of the vectors). We followed

the statement ordering of SSIO in the figure, but unlike SSIO, the statements

of SSI+ could appear in any order without affecting their meaning-and so

the statement label Li of the SSIO representation and its implicit control-

flow edge are unnecessary in SSI+.

79

// a simple loop // SSIO form: // SSI+ form:

j=1; jo=1 jo =

i=O; io = 0 io = 0

do Li:) (w)

{ 1 =$(ioi 3) 1= (i , i()

i+=j ;12 =1 + +jo i2 = 1 + ji
} while (i<5); Po = (i2 < 5) Po = (i2 < 5)

if PO goto Li (i3,i4) o(Poi2)

(i 3 ,i 4) = o~(i 2)

Figure 7.5: A simple loop, in SSIO and SSI+ forms.

7.2 Definitions

The signature characteristic of SSI+ are the &functions. These E-functions

exist in the same places 4-functions do, and control loop iteration. The

exact semantics may vary-the sections below present two different valid

semantics for a &functions-but informally they can be viewed as "time-

warp" operators. They take values from the "past" (previous iterations of

the loop or loop invariants valid when the loop began) and project them

into the "future" (the current loop iteration).

There is at most one Lfunction per q-function block, and it always

precedes the #-functions. Construction of &functions takes place before

the renaming step associated with SSI form, and the s-functions are then

renamed in the same manner as any other definition. The top tuple of

the constructed E-function contains the names of all variables reaching

the guarded q-function via a backedge, and the bottom tuple contains

all variables used inside the guarded loop that are not mentioned in the

header's $-function.

80

The SSI+ form also has triggered constants. The time-oriented se-

mantics of SSI+ dictate that each constant must be associated with a trigger

specifying for what times (cycles/loop iterations) the value of the constant

is valid. These are similar to the constant generators in some dataflow

machines [42]. The triggers for a constant c come from the variables de-

fined in the earliest applicable instruction post-dominated by the constant

definition statement v = c. This is designed to generate the trigger as

soon as it is known that the constant definition statement will always ex-

ecute. In practice it is necessary to introduce a bogus trigger variable,

CT which is generated at the START node and used to trigger any constants

otherwise without a suitable generator. If the use of the constant does not

post-dominate the START node, CT will have to be threaded through Cp- and

--functions to reach the earliest post-dominated node.

7.3 Semantics

We will base the operational semantics of SSI+ on a demand-driven data-

flow model. We will define both a cycle-oriented semantics and an event-

driven semantics, which (incidentally) correspond to synchronous and asyn-

chronous hardware models.

Following the lead of Pingali [31], we present Plotkin-style semantics

[33] in which configurations are rewritten instead of programs. The con-

figurations represent program state and transitions correspond to steps in

program execution. The set of valid transitions is generated from the pro-

gram text.

The semantics operate over a lifted value domain V Int. When

some variable t - I we say it is undefined; conversely t ~i _L indicates

that the variable is defined. "Store" metavariables S,, are not explicitly

handled by the semantics, but the extension is trivial with an appropriate

81

redefinition of the value domain V. Floating-point and other types are also

trivial extensions. The metavariables c and v stand for elements of V.

We also define a domain of variable names, Nam= {no, n, The

metavariables t and P stand for elements in Nam, although P will be re-

served for naming branch predicates.

A fixed set of "built-in" operators, op, is defined, of type V* -4 V. If any

operator argument is I, the result is also I. Constants are implemented

as a special case of the general operator rule: an op producing a constant

has a single trigger input which does not affect the output.

7.3.1 Cycle-oriented semantics

In the cycle-oriented semantics, configurations consist of an environment,

p, which maps names in Nam to values in V.

Definition 7.1.

1. An environment p : N -> V is a finite function-its domain N C

Nam is finite. The notation p~t - c] represents an environment

identical to p except for name t which is mapped to c.

2. The null environment po maps every t G N to Lv.

3. A configuration consists of an environment. The initial config-

uration is pO CT - 0] extended with mappings for procedure pa-

rameters. That is, all names in N are mapped to Lv except for

the default constant trigger CT mapped to 0,22 and any procedure

parameters mapped to their proper entry values.

Figure 7.6 on the next page shows the cycle-oriented transition rules for

SSI+ form. The left column consists of definitions and the right column

82

22 Any k] I V would do.

t OP~t, p[t] = I A (p[ti] :: 1 A ... A p[tn] :: _L)

p -> p[t "- op(p[t 11,. ., p[t])]

p[t] = _L A p[tj] :: I A all other p[t]], ..., p [ts] =_L
p -> p[t " p[tj]]

p[P] = v z _ A p[t- 1] IL A p[t] z I

(t], . . ,) = -(P, t) :p --a p tv_ - I P-- t]]I

where (0 < V < n - 1)

p[tj] =I A p[t'] i _

(fi~~~ ~~ rt =E():p [tj " p[t']]

where (1 < j < n)

(t1,...,t) _ -- pt'T+1] i -LA . .. A pRt]]

(F + 1) -. ,t)p -v p.t p "ptt1]I...A apit]]I

[t., " p~tn']]1...[Itm p~t']

Figure 7.6: Cycle-oriented transition rules for SSI+.

shows a precondition on top of the line, and a transition below the line.

If the definition in the left column is present in the SSI+ form and the

precondition on top of the line is satisfied, then the transition shown below

the line can be performed.

7.3.2 Event-driven semantics

In the event-driven semantics, configurations consist of an event set and an

invariant store. The event set E contains definitions of the form t = c, and

the invariant store is a mapping from numbered E-functions in the source

SSI+ form to a set of tuples representing saved values for loop invariants.

We define the following domains:

83

(E[tj = v1, S) - (E[t = v1, S)

(E [t = v] [P = i], S) -: (E [tj = v], S)

(E[t =v], S) --
(E[tj = v], S[K " S[K] U (ti, v)])

where 1 < i < u

S [K] = (ti, vi) , . , (t., v-,)}

(E [tn' I = Vn+] .I [t,' =vm, S)-
(E[tj vi] . .. [t. = vm], S)

Figure 7.7: Event-driven transition rules for SSI+. In the last two rules K is
a statement-identifier constant which is unique for each source E-function.

" Evt = Nam x V is the event domain. An event consists of a name-

value pair. The metavariable e stands for elements of Evt.

" Xif c Int is used to number 4-functions in the source SSI+ form.

There is some mapping function which relates E-functions to unique

elements of Xif. The metavariable K stands for an element in Xif.

A formal definition of our configuration domain is now possible:

Definition 7.2.

1. An event set E : Evt*. The notation E [t- c] represents an event

set identical to E except that it contains the event (t, c). We say a

name t is defined if (t,v) E E for some v. For all (t 1 ,vI) , (t 2 ,v 2) E

E, t and t 2 differ. This is equivalent to saying that no name t is

84

(E[t, = vi . . . [t, = v'], S) --- (E[t = OP(vj, .. . , v), S)t = OP(tl,...,tT,-) :

I ~ () : M

multiply defined in an event set. This constraint is enforced by

the transition rules, not by the definition of E.

2. An invariant store S : Xif -+ Evt* is a finite mapping from E

functions to event sets.

3. A configuration is a tuple (E, S) : Evt* x (Xif -4 Evt*) consisting of

an event set and an invariant store. The initial configuration for

procedure parameters po, . .. , p, mapped to non-I values vo, ... ,v.

is ({C1 = 0 ,Po = VO, .). , =v}Evt, UXif->Evt*) that is, it consists of

an empty event set extended with events for default constant trig-

ger CT and the procedure parameters, and an empty mapping for

the invariant store.

Figure 7.7 on the facing page shows the event-driven transition rules

for SSI+ form. As before, the left column consists of definitions and the

right column shows an optional precondition above a line, and a transition.

If the definition in the left column is present in the SSI+ form and the

precondition (if any) above the line is satisfied, then the transition can be

performed. Note that most transitions remove some event from the event

set E, replacing it with a new event. The invariant store S stores the values

of loop invariants for regeneration at each loop iteration.

7.4 Construction

Construction of SSI+ is only a slight variation on the construction algo-

rithms for SSIO. First, dominator and post-dominator trees are produced

using the Lengauer-Tarjan [25] or Harel [16] algorithm. The nodes of

the dominator tree are numbered in pre-order such that for all nodes N,
num[N] > num[idom[N]]. Then, in a single traversal of the post-dominator

tree, we find the lowest-numbered node post-dominated by any given node.

85

We add triggers to constants from variables defined at this lowest node

post-dominated by the constant use; using the default trigger CT where

necessary. We then place (- and a-functions for all variables, including

constant triggers, using Algorithm 5.3.

We then generate -functions. A standard interval analysis creates a

loop nesting tree, and each loop is scanned for invariants and other defini-

tions/uses to create the proper h-function tuples. Renaming is done using

Algorithm 5.4, as before.

7.5 Dataflow and control dependence

The SSI+ semantics are data-driven, and thus bring to mind work on com-

pilers for dataflow machines. Beck, Johnson, and Pingali have previously

written [6] on the benefits of dataflow-oriented intermediate representa-

tions. However, the previous work on dataflow compilers (Traub [42], for

example) has concentrated on intra-loop dependencies, often leaving in

pseudo-control-flow edges to serialize non-loop structures. This strategy

results in the sort of fine-grain intra-loop parallelism suitable for parallel

dataflow machines, vector processors, and VLIW machines.

The current work concentrates on removing unnecessary dependencies

between loops, which allows a coarser parallelism which does not require

as many functional units to take advantage of. Moreover, we extract par-

allel sequential threads that are not loop-based. Obviously both fine-grain

and coarse-grain parallelism are important, but we feel the current indus-

try trends towards loosely coupled multiprocessors support our coarser-

grained approach which has, to date, seemingly been neglected by dataflow

approaches.

86

7.6 Hardware compilation.

The observant reader may have noticed that the two operational semantics

given in section 7.3 closely resemble circuit implementations for the pro-

gram according to synchronous and asynchronous design methodologies.

In fact, SSI+ was designed specifically to facilitate rendering a high-level

program into hardware. The two semantics differ primarily on how cyclic

dependencies (i.e. loops) are handled.

Translation of high-level languages directly to hardware has long been

a goal of researchers. Tanaka et al. constructed a system based on FOR-

TRAN [41], and Galloway's C-based hardware description language [13]

inspired a new interest in applying general-purpose languages to the task.

The recent general use of type-safe object-oriented languages has encour-

aged speculation that the more favorable analysis properties of these stricter

languages would enable further advances in general-use hardware compila-

tion. In this context, the well-defined semantics and data-flow orientation

of SSI+ solve the local-level hardware compilation problem and allow effort

to be concentrated on the more difficult intra-procedural analyses required.

8 Methodology

The SSI intermediate representation described in this paper is the core IR

for the FLEX compiler infrastructure project, started in July 1998 and

currently containing about 70,000 lines of Java source code. The FLEX

compiler reads in Java bytecodes, and targets both the JVM (for high-level

portable code transformations) and several combinations of machine archi-

tectures and runtime systems. Currently the bytecode and ARM processor

backends are near completion. Interpreters exist for the various interme-

diate representations used in the compiler, allowing the correctness of the

87

earlier passes of the compiler to be verified. The compiler will correctly

compile itself to IR and interpret itself.

The FLEX compiler implements the algorithms described in this paper,

validating their correctness. Variable counting for the graphs of section 5.4

was done by a special statistics module that could be applied to the results

of any pass. The full bitwidth-extended SPTC constant propagation al-

gorithm was implemented, although we currently do not use the bitwidth

information produced. SSI+ and hardware compilation are the focus of

current work.

9 Conclusions

The Static Single Information form extends SSA without adding unneeded

complexity to allow efficient predicated analysis and backward dataflow

analyses. Futher, the SSI+ variant removes all explicit control-dependence

relations, allowing extraction of parallelism from the code, and possesses a

complete and straight-forward semantics which makes it useful for, among

other things, abstract interpretation and hardware compilation.

We have demonstrated efficient construction of SSI form, and several

optimizations which use it to obtain efficiency improvements over previous

methods. The many SSA-variant papers in the literature attest to limi-

tations of standard SSA form; we believe SSI form solves these problems

in a simple and symmetric manner. The FLEX compiler infrastructure

demonstrates the practicality of SSI form.

88

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1988. The "Dragon Book".

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of

variables in programs. In Proceedings of the 15th ACM Symposium

on Principles of Programming Languages (POPL), pages 1-11, San

Diego, California, Jan. 1988.

[3] C. S. Ananian. Silicon C: A hardware backend for SUIF. Available

from http://flex-compiler.lcs .mit .edu/SiliconC/paper.pdf,

May 1998.

[4] A. W. Appel. Modern Compiler Implementation in Java. Cam-

bridge University Press, 1998.

[5] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The Program

Dependence Web: A representation supporting control-, data-, and

demand-driven interpretation of imperative languages. In Proceedings

of the ACM SIGPLAN '90 Conference on Programming Language

Design and Implementation (PLDI), pages 257-271, White Plains,
New York, June 1990.

[6] M. Beck, R. Johnson, and K. Pingali. From control flow to data-

flow. Journal of Parallel and Distributed Computing, 12(2):118-

129, June 1991.

[7] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction of

sparse data flow evaluation graphs. In Proceedings of the 18th ACM

Symposium on Principles of Programming Languages (POPL),
pages 55-66, Orlando, Florida, Jan. 1991.

89

[8] F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo, and P. Tu. A new algo-

rithm for partial redundancy elimination based on SSA form. In Pro-

ceedings of the ACM SIGPLAN '97 Conference on Programming

Language Design and Implementation (PLDI), pages 273-286, Las

Vegas, Nevada, May 1997.

[9] F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Effective repre-

sentation of aliases and indirect memory operations in SSA form. In

Proceedings of the Sixth International Conference on Compiler

Construction, pages 253-267, Apr. 1996.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck. An efficient method of computing static single assignment

form. In Proceedings of the 16th ACM Symposium on Principles

of Programming Languages (POPL), pages 25-35, Austin, Texas,

Jan. 1989.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Efficiently computing static single assignment form and the control

dependence graph. ACM Transactions on Programming Languages

and Systems, 13(4):451-490, Oct. 1991.

[12] D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to ana-

lyze large programs efficiently and informatively. In Proceedings of

the ACM SIGPLAN '92 Conference on Programming Language

Design and Implementation (PLDI), pages 212-223, San Francisco,

California, June 1992.

[13] D. Galloway. The Transmogrifier C hardware description language and

compiler for FPGAs. In IEEE Symposium on FPGAs for Custom

Computing Machines. Proceedings, pages 136-144, Apr. 1995.

90

[14] M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction vari-

ables: Detecting and classifying sequences using a demand-driven SSA

form. ACM Transactions on Programming Languages and Sys-

tems, 17(1):85-122, Jan. 1995.

[15] J. Gosling. Java intermediate bytecodes. In Papers of the First A CM

SIGPLAN workshop on Intermediate Representations, pages 111-

118, San Francisco, California, Jan. 1995.

[16] D. Harel. A linear time algorithm for finding dominators in flow graphs

and related problems. In Proceedings of the 17th Annual ACM

Symposium on Theory of Computing, pages 185-194, May 1985.

[17] P. Havlak. Interprocedural Symbolic Analysis. PhD thesis, Rice

University, Houston, Texas, May 1994.

[18] R. Johnson, D. Pearson, and K. Pingali. Finding regions fast: Single

entry single exit and control regions in linear time. Technical Report

TR 93-1365, Cornell University, Ithaca, NY 14853-7501, July 1993.

[19] R. Johnson, D. Pearson, and K. Pingali. The program structure tree:

Computing control regions in linear time. In Proceedings of the

ACM SIGPLAN '94 Conference on Programming Language De-

sign and Implementation (PLDI), pages 171-185, Orlando, Florida,

June 1994.

[20] R. Johnson and K. Pingali. Dependence-based program analysis. In

Proceedings of the ACM SIGPLAN '93 Conference on Program-

ming Language Design and Implementation (PLDI), pages 78-89,
Albuquerque, New Mexico, June 1993.

[21] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative

algorithms. Journal of the ACM, 21(3):158-171, Jan. 1976.

91

[22] R. Kennedy, F. Chow, P. Dahl, S.-M. Liu, R. Lo, and M. Streich.

Strength reduction via SSAPRE. In Proceedings of the Seventh In-

ternational Conference on Compiler Construction, pages 144-158,

Lisbon, Portugal, Apr. 1998.

[23] D. Knuth. An empirical study of FORTRAN programs. Software

Practice and Experience, 1(12):105-134, 1974.

[24] J. Lee, D. A. Padua, and S. P. Midkiff. Basic compiler algorithms

for parallel programs. In Proceedings of the 7th ACM SIGPLAN

symposium on Principles and practice of parallel programming

(PPoPP), pages 1-12, Atlanta, Georgia, May 1999.

[25] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators

in a flowgraph. ACM Transactions on Programming Languages and

Systems, 1(1):121-141, 1979.

[26] S.-W. Liao, A. Diwan, R. P. B. Jr., A. Ghuloum, and M. S. Lam. SUIF

explorer: An interactive and interprocedural parallelizer. In Proceed-

ings of the 7th ACM SIGPLAN symposium on Principles and

practice of parallel programming (PPoPP), pages 37-48, Atlanta,

Georgia, May 1999.

[27] R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu. Register promo-

tion by sparse partial redundancy elimination of loads and stores. In

Proceedings of the ACM SIGPLAN '98 Conference on Program-

ming Language Design and Implementation (PLDI), pages 26-37,

Montreal, Canada, June 1998.

[28] S. Muthukrishnan and M. M6ller. Time and space efficient method-

lookup for object-oriented programs (extended abstract). In Proceed-

92

ings of the Seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 42-51, Atlanta, Georgia, Jan. 1996.

[29] C. D. Offner. Notes on graph algorithms used in optimizing

compilers. Available from http: //www. cs. umb. edu/~of f ner/f iles/

flow-graph.ps, 1995.

[30] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs.

Communications of the ACM, 40(1):25-38, Jan. 1997.

[31] K. Pingali, M. Beck, R. C. Johnson, M. Moudgill, and P. Stodghill.

Dependence flow graphs: An algebraic approach to program depen-

dencies. Technical Report TR 90-1152, Cornell University, Ithaca, NY

14853-7501, Sept. 1990.

[32] K. Pingali and G. Bilardi. Optimal control dependence computation

and the roman chariots problem. ACM Transactions on Program-

ming Languages and Systems, 19(3):462-491, May 1997.

[33] G. D. Plotkin. A structural approach to operational semantics. Tech-

nical Report DAIMI FN-19, Aarhus University, 1981.

[34] J. H. Reif and R. E. Tarjan. Symbolic program analysis in almost-

linear time. SIAM Journal on Computing, 11(1):81-93, Feb. 1981.

[35] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers

and redundant computations. In Proceedings of the 15th A CM Sym-

posium on Principles of Programming Languages (POPL), pages

12-27, San Diego, California, Jan. 1988.

[36] R. Rugina and M. Rinard. Automatic parallelization of divide and

conquer algorithms. Slides for talk given at PPoPP '99; available

93

from http://www.cag.lcs.mit .edu/~rinard/divideand-conquer/

ppopp99.slides.ps, May 1999.

[37] R. M. Shapiro and H. Saint. The representation of algorithms. Tech-

nical Report CA-7002-1432, Massachusetts Computer Associates, Feb.

1970.

[38] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing p-

nodes. In Proceedings of the 22nd ACM Symposium on Principles

of Programming Languages (POPL), pages 62-73, San Francisco,

California, Jan. 1995.

[39] V. C. Sreedhar, G. R. Gao, and Y. Lee. A new framework for exhaus-

tive and incremental data flow analysis using DJ graphs. In Proceed-

ings of the ACM SIGPLAN '96 Conference on Programming Lan-

guage Design and Implementation (PLDI), pages 278-290, Philadel-

phia, Pennsylvania, May 1996.

[40] J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, 0. Mock, and T. Steel.

The problem of programming communication with changing machines:

a proposed solution. Communications of the ACM, 1(8):12-18, Aug.

1958. Part 2: 1(9):9-15. Report of the Share Ad-Hoc committee on

Universal Languages.

[41] T. Tanaka, T. Kobayashi, and 0. Karatsu. HARP: FORTRAN to sili-

con. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(6):649-660, June 1989.

[42] K. R. Traub. A compiler for the MIT tagged-token dataflow architec-

ture. Technical Report MIT/LCS/TR-370, Massachusetts Institute of

Technology, Cambridge, MA 02139, Aug. 1986.

94

[43] P. Tu and D. Padua. Efficient building and placing of gating functions.

In Proceedings of the ACM SIGPLA N '95 Conference on Program-

ming Language Design and Implementation (PLDI), pages 47-55,
La Jolla, California, June 1995.

[44] M. N. Wegman and F. K. Zadeck. Constant propagation with con-

ditional branches. ACM Transactions on Programming Languages

and Systems, 13(2):181-210, Apr. 1991.

[45] D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard. Value depen-

dence graphs: Representation without taxation. In Proceedings of the

21st ACM Symposium on Principles of Programming Languages

(POPL), pages 297-310, Portland, Oregon, Jan. 1994.

95

