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Abstract

In their ground-breaking paper, Luby and Rackoff [88] formally model the notion of a secure
block cipher, and realize this notion under standard cryptographic assumptions. Ciphers
based on their original techniques are termed Luby-Rackoff ciphers. This dissertation en-
gages in a deeper study of such ciphers in order to better understand their security properties
and make them more practical.

First, we present a new, more practical, Luby-Rackoff cipher. The construction is effi-
cient in terms of computation and key length. We also consider an alternate security analysis
of this construction where we make a weaker but more practical underlying assumption, and
arrive at a weaker security claim.

Second, we consider modifying the algebraic structure over which some of the cipher
operations work. This paradigm shift offers new lines of research, and leads to several
interesting results. In particular, we construct a provably-secure cipher, operating over
various finite groups, that has better time/space complexity, and uses less key material
than previously considered Luby-Rackoff ciphers. Surprisingly, the cipher is insecure when
these operations are performed over additive groups attached to finite fields of characteristic
two. We also discuss the security of other Luby-Rackoff ciphers in this more general setting.

Third, we propose a more refined notion of security for symmetric-key cryptographic
primitives. The model uses the fact that many such primitives involve iterating simpler
constructs for some number of rounds, and may be used to gain insight into the security
of these constructions. We completely characterize the security of various Luby-Rackoff
ciphers under this new model. We surprisingly show that even if an adversary is allowed
black-box access to some internal components of the cipher, it still remains secure.

Fourth, we show how to efficiently construct A-universal hash functions, which are used
in many of the ciphers we consider. We present the square hash function which involves
two novel ideas in the construction of such functions. Square hash performs quite well on
modern microprocessors. We substantiate our claims via a hand-optimized assembly lan-
guage implementation. Beyond their use in block cipher design, A-universal hash functions
are useful for message authentication.

Thesis Supervisor: Ronald L. Rivest
Title: Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Overview

In the late 1970's three ground-breaking papers on cryptography were published. These

were the results of Diffie and Hellman [45], Merkle and Hellman [96], and Rivest, Shamir

and Adleman [125]. Together these seminal papers pioneered the field of public-key cryptog-

raphy, and brought cryptography research to the main stream. In each case, the problem of

compromising the security of these proposed schemes is reduced to some well-defined math-

ematical problem. The general concept of reducing one problem to another had already

been seen in the theory of NP-completeness whose development, not surprisingly, began

just a few years earlier [37, 74].

The idea of designing cryptographic primitives whose security provably relies on the

hardness of a well-defined mathematical problem has been the focus of much academic

research in cryptography and a great deal of effort has been made to lay down the theoretical

foundations of cryptography. The field of cryptography itself, however, is significantly

older, and the theoretical foundations that paved the way for the future of public-key

cryptography were conspicuously lacking when it came to the conventional field of private-

key cryptography. In particular, very little research of this sort had been done in the

area of block cipher design. Recall that a block cipher is a family of permutations on a

message space indexed by a secret key. Each permutation in the family deterministically

maps plaintext blocks of some fixed length to ciphertext blocks of the same length; both the

permutation and its inverse are efficiently computable given the key.

Block ciphers have been popular in private-key cryptography for some time. The

13



best known practical example of a block cipher is the U.S. Data Encryption Standard

(DES) [1083, which has been used to encrypt a large number of transactions. Much of

the work surrounding block ciphers has been heuristic in nature, and very little has been

understood about why certain constructions are secure while others are not.

In their ground-breaking paper, Luby and Rackoff [88] formally model the notion of

a secure block cipher, and show how to realize this notion under standard cryptographic

assumptions. Their work was motivated by the design of DES. They consider a block cipher

to be secure ("super pseudorandom," or secure under both "chosen plaintext" and "chosen

ciphertext" attacks) if, without knowing the key, a polynomial-time adversary with oracle

access to both directions of the permutation is unable to distinguish it from a truly random

permutation on the same message space. This definition extends the concept of a pseudo-

random function generator which is due to Goldreich, Goldwasser, and Micali [62], where

the adversary has oracle access only to the forward direction of the function.1 The Luby-

Rackoff construction of a super pseudorandom permutation was a theoretical breakthrough

and stimulated a great deal of research. We use the term Luby-Rackoff cipher to describe

constructions based on these principles.

In this dissertation, we engage in a deeper study of Luby-Rackoff ciphers with the aim

of better understanding their security properties and making them more practical. First,

we start by trying to optimize the original Luby-Rackoff construction, both in terms of

computation time and key length. Next, we consider what happens when we modify some

of the operations in the cipher and examine the security of these variants. Third, we propose

a more refined notion of security for block ciphers, in general, and completely characterize

the security of various Luby-Rackoff style ciphers under this new model. Finally, we look

at how to efficiently construct A-universal hash functions, which appear as a component in

many of the Luby-Rackoff cipher constructions we consider.

We discuss these areas in more detail in the subsequent chapters. The work in the

thesis offers a cohesive presentation of the results in a paper by Reyzin and Ramzan [121];

two papers by Patel, Ramzan, and Sundaram [114, 115]; a paper by Etzel, Patel, and

Ramzan [49]; and two standards contributions due to Patel, Ramzan, and Sundaram [116,

'The original Luby-Rackoff paper [88] also considers block ciphers that are just pseudorandom, or secure
against chosen plaintext attack only, where the adversary has access only to the forward direction of the
permutation.

14



1171.

The rest of this chapter discusses block ciphers and message authentication codes, which

are central to this thesis, and we finish the chapter by summarizing the results we present

in the remaining portion of this dissertation.

1.2 Block Ciphers

1.2.1 Overview

Block ciphers are one of the most frequently seen and used symmetric-key cryptographic

primitives. A block cipher is a family of permutations on a particular message space,

indexed by a secret key. A block cipher, instantiated on a particular key, can be used to

encrypt a message. The message space typically consists of fixed-length bit strings. The

number of bits needed to represent an element of the message space is called the block

length. The secret key is also typically a string of bits, but known only to select parties.

For example, the U.S. Data Encryption Standard (DES) [108] employs a 56-bit key, and

operates on 64-bit message blocks. To encrypt longer messages, one can break the message

up into 64-bit blocks (perhaps padding the last block if necessary) and apply the block

cipher transformation to each block individually. There are, however, a variety of ways in

which one can utilize a block cipher to encrypt data. These methods are typically referred

to as modes of operation.

1.2.2 Modes of Operation

We now describe various methods for encrypting a large amount of data using a block

cipher. We start with a block cipher B, and secret key k. Suppose we want to encrypt the

plaintext P. We break it up into b blocks: P1, ... , P, where the length of these individual

plaintext blocks is the block length of B. If the true length of the plaintext message is not

a multiple of the block length, we can pad the message until it is.

The simplest mode of operation for a block cipher is the electronic codebook (ECB) mode

(see figure 1-1). Here we simply take each individual block P, encrypt it with the block

cipher B under the key k, and call the resulting ciphertext block C. The full ciphertext is

then C1, . . . , Cb. To decrypt a message, one simply decrypts each block via the inverse of

the block cipher.

15



Message = P1 P2 ... Pb

P1 P2 Pb

Key k Keyk Key k

B B B =

C1 C2 Cb

Ciphertext = C1 C2 ... Cb

Figure 1-1: Encrypting Data in Electronic Codebook Mode

One drawback of the ECB mode of encryption is that if two distinct blocks P and Pj

(i $ j) happen to contain the same text, then the corresponding ciphertext blocks Ci and C

will look identical. This property is not terribly desirable. One alternate encryption mode,

which overcomes this dilemma, is the cipher block chaining (CBC) mode (see figure 1-2).

Here we start with a fixed and public initialization vector IV, which is a bit string whose

length is the same as the block length. The ciphertext C1, . . . , Cb is then computed as

follows:

C1 = Bk(IV E P)

and for each 2 < i < b,

Cz = Bk(C.-1 e Pi).

Here the symbol E denotes the bit-wise exclusive-or operation (or bit-wise sum modulo 2).

Thus, a given ciphertext block is a function of the bit-wise exclusive-or of the corresponding

plaintext block with the previous ciphertext block. Decrypting a message simply involves

decrypting each block in-turn, and applying the bit-wise exclusive-or.

Another well-known mode of operation is the output feedback mode (see figure 1-3).

Here we start with a seed S, and compute

S1 = Bk(S)

16



Message = P1 P2 ... Pb

P1

IV

Keyk 

C1

Ciphertext = C1

Key k

P2

C2

C2 ... Cb

Figure 1-2: Encrypting Data in the Cipher Block Chaining Mode

and for each 2 < i < b,

Si = Bk(Si_1).

The ith ciphertext block is then defined by

Cz = P e St.

In this mode of encryption, the block cipher is turned into what is called a stream cipher.

We discuss stream ciphers in section 1.2.8.

The counter mode is another frequently used method for encryption. In counter mode,

we start with a fixed counter value; for example 0. We encrypt the current counter value,

and the ciphertext block is the bit-wise exclusive-or of the plaintext block and the encryption

of the counter value. We increment the counter, and move on to the next block. The block

cipher is again turned into a stream cipher in this mode of encryption. We discuss a minor

variation on this mode when we discuss stream ciphers. For a more thorough discussion on

17
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Message = P1 P2 ... Pb

S

Key k Key k
P B

P1 P2

C1 C2

Ciphertext = C1 C2 ... Cb

Figure 1-3: Encrypting Data in the Output Feedback Mode

various modes of encryption the reader may refer to the original specification for DES modes

of operation [109], or to chapter 7 of the comprehensive text by Menezes, van Oorschot,

and Vanstone [95].

1.2.3 Evaluating Block Ciphers

Now that we have explained, roughly, what a block cipher is, we explain how one might

evaluate a block cipher. There are a variety of criteria that one may want to consider in

judging a block cipher design proposal. We list a few below, though we stress that this list

is by no means complete, and many of these criteria are related to one another.

1. Security: What degree of data confidentiality are we striving for? This is the most

important property to consider. Since it is so important, we carefully and rigorously

define what we mean by security later in this thesis. For now we give an intuitive

definition. Informally, we say that a block cipher is secure if it appears to an adversary

to behave like a truly random permutation even if the adversary has a certain kind of

black-box access to the cipher. We explain this notion of a black box when we discuss

the adversarial model in section 1.2.5. This gives us an "ultimate" form of security
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since the adversary essentially gains no information about the plaintext (other than

its approximate length) from the ciphertext. In certain situations, one may not always

be willing to pay for such a strong level of security. In practice, one often evaluates

security in terms of weaker notions such as how easy it is to either recover the secret

key, or decrypt messages of one's choice, without a priori knowledge of the secret

key. We prefer to consider the stronger notion of indistinguishability from a random

permutation since other definitions may not be adequate for a variety of scenarios.

2. Encryption / Decryption Speed: How much time does it take to encrypt data? The

answer may have a different interpretation depending on a variety of criteria. For

example, it may depend on whether we are talking about encrypting a single block

of data, or multiple blocks. We also need to consider the kinds of environments are

we trying to optimize for, such as software, special purpose hardware, or particular

microprocessors. We may attain radically different speed estimates depending on the

exact nature of the environment; for example, DES works especially fast in hardware.

On the other hand, it contains various transformations at the individual bit level,

which are not handled efficiently by most modern microprocessors without careful

and extensive optimization. Thus its software performance is relatively poor.

Another consideration is that some modes of block cipher operation only require com-

puting the forward direction of the permutation. Consider, for example, the output

feedback mode or the counter mode of encryption. Even when one needs to decrypt

the data, there is never a need to actually compute the inverse direction of the permu-

tation. In such cases, the performance relies on the speed of computing the forward

direction rather than the speed of computing the reverse direction. While these two

speeds are nearly identical for many block ciphers, there are a number of examples for

which the values are different. One particular example is the Rijndael cipher [41] which

was chosen by the National Institute of Standards to be the next-generation United

States encryption standard. In all current Rijndael implementations, the forward

direction of the permutation takes less time to compute than the reverse direction.

While achieving security is the most important design goal, there are a number of

applications for which the costs associated with the cryptography are a very small

portion of the overall cost of the system. Such applications include, but are not limited
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to, ATM and ISDN switches, Virtual Private Network (VPN) Routers, Database

servers, and Firewalls. Thus, overall performance is an important issue to consider.

3. Memory Requirements: How much memory does it take to implement the cipher?

If the cipher requires too much memory, it may not be possible to implement it

effectively in certain environments (e.g. smartcards). Also, memory usage effects

running time since the implementation may require extra references to memory in the

form of LOAD / STORE instructions, rather than through much faster data registers.

In some situations, one may be able to increase the speed via the use of extra memory.

This phenomenon occurs with the Rijndael Cipher [41]. This feature may be useful

for applications where speed is more important than memory; for example, if a large

centralized server is handling a number of concurrent client requests.

Of course, if memory is of no concern, one can always design a block cipher via a

series of very large look-up tables, though this approach will most likely not be very

practical.

4. Key Size: How long should the key be to provide adequate security for the applica-

tion at hand? If the key is too short, then it may be possible for an adversary to

do a brute-force search through the entire key space. Having a long key may hurt

performance since it adds to memory requirements, which may in-turn, lead to a

slower implementation. Also, key size may be related to communication complexity

since symmetric keys may be agreed upon and exchanged over a network via a key

exchange algorithm such as Diffie-Hellman [45] or RSA [125]. We stress, however,

that having a long key does not automatically guarantee security since there may be

other weaknesses in the block cipher. For a more thorough discussion on adequate

key sizes for achieving commercial security in symmetric ciphers we refer the reader

to the report by Blaze et al. [26].

5. Block Length: What is the ideal size of the message block on which the cipher will

operate? If the block length is too short, then an adversary might be able to build a

"code book" of plaintext / ciphertext pairs, and use it to determine information about

a large number of message blocks. If the block length is too large, then this may hurt

performance since a short message may have to be padded to the block length before

it can be encrypted. This may result in extra storage and communication. It might
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help to have some flexibility in the design so that there are versions of the cipher

that can operate on various different block lengths. For example, the specification for

the Rijndael [41] block cipher focuses on 128-bit, 192-bit, and 256-bit blocks, but the

cipher also generalizes to larger block sizes.

There is a paper by Bellare and Rogaway [17] which explains how to take any block

cipher on a given block length, and design a new cipher that has the same security as

the original construction, but operates on all larger block lengths. Unfortunately, the

throughput is reduced by a factor of about two.

6. Complexity of Design: How intricate is the design? It is not easy to quantify precisely

what one means by "simplicity" though in general, one should aim for relatively simple

block cipher designs for a variety of reasons. First of all, simpler designs tend to be eas-

ier to analyze from a security standpoint. As a result one may be able to obtain formal

proofs that the cipher is secure. In practice, it is more likely that one can prove theo-

rems which provide evidence that a particular construction is secure. Second, simpler

designs are more likely to get implemented correctly. The incorrect implementation

of a cipher may lead to a compromise in system security which is completely inde-

pendent of the underlying cryptography. Finally, design complexity is often related

to performance; for example, if one were doing a hardware implementation of a block

cipher via a Field Programmable Gate Array (FPGA), a complex design may require

many Configurable Logic Blocks (CLB), which would increase the circuit area, and

hence the cost. There are a number of papers which discuss FGPA implementations

of block ciphers which explain these kinds of issues in more detail [48, 55, 141]. These

kinds of issues also apply to other hardware-based technologies.

7. Code Size: How many lines of code does it take to implement the cipher? In some

sense this criterion is captured by some of the others, so it may not be worth worrying

about. At the same time, there are a number of applications in which this criterion

is especially important. For example, if the cipher is implemented in Javascript or

in a Java Applet on a web page, then fewer lines of code results in faster download

time. Also, one may want to include source code for cipher in a self-extracting archive

- this idea appears in a number of commercial products such as DataSafe2 and PC-
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Encrypt'. This last application may be viewed under the aegis of the more general

concept of self-describing cryptography. This concept was discussed by Adida in his

MIT Master's thesis [2]. In such cases, smaller code size will lead to an improvement

in communication complexity, and bandwidth needs.

We stress that this list of criteria is by no means complete. Different applications call

for different evaluation criteria. Also, as technology changes, new criteria may become more

important; for example, many of the applications that are concerned with code size have

arisen because of the Internet and cross platform languages such as Java. Similarly, the need

for cryptography in embedded devices such as personal digital assistants, cellular phones,

and smartcards has increased the need for constructions that are especially efficient.

1.2.4 Practical Approaches to Block Cipher Design

There are a number of principles and tools for block cipher design which are commonly seen

in practice. We briefly survey some of these approaches. For a more involved treatment,

we suggest the survey article by Robshaw [126], and the references contained therein.

We start with the principles of confusion and diffusion. These ideas are due to Shannon

and appear in his seminal paper [133]. Roughly speaking, confusion refers to the idea of

trying to obscure the relationship among the plaintext, ciphertext, and the key. In practice,

confusion is almost always achieved via the use of substitution boxes (or S-Boxes), which

are essentially carefully designed look-up tables. Diffusion refers to the idea of spreading

the influence of individual plaintext bits and key bits over a sufficiently large portion of

the ciphertext. Confusion, by itself, can be enough to build a secure block cipher; for

example, one could essentially create a block cipher via an extremely large look-up table.

This approach will probably not be terribly practical in most situations.

In practice, block ciphers repeatedly mix confusion and diffusion steps. Such ciphers are

known as product ciphers. Often times the core of such a block cipher is a relatively simple

function of the plaintext and key that incorporates a confusion step and a diffusion step.

The cipher then consists of repeated applications of this so-called round function. There are

number of well-known product ciphers. These include Lucifer [136], DES [108], LOKI [30],

FEAL [134], PES [84, 85] (also known as IDEA), Khufu and Khafre [97].
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The Feistel cipher is a specific type of product cipher. Such ciphers are, arguably, the

most commonly seen in practice; the DES block cipher is an example. In fact, the ciphers

we study in this thesis fall into this category. At the core of a Feistel cipher is a so-called

Feistel permutation. The eponym for this term is Horst Feistel, who was on the original

IBM team that designed the block cipher DES. It is not clear, however, if Feistel was the

sole inventor of the concept. In particular, Notz and Smith, who were also on the original

DES design team, may have played a role in developing this important concept [39].

The Feistel permutation works as follows (see figure 1-4). We start with an input block

m that is n bits long (where n is even), together with a keyed length-preserving round

function f that operates on bit strings of length n/2. The Feistel transformation on m is

then:

m R . (TL (D (nR)

where mL and mR are the left and right halves of m respectively. Typically f is a function

of the round key. We discuss this type of permutation in much greater detail throughout

the thesis.

The one thing to note is that even if the function f is not a permutation, the overall

Feistel construction using f still is. A block cipher can now be designed via repeated

applications of a Feistel permutation where the round function depends on the key.

1.2.5 Security of Block Ciphers: The Adversarial Model

Having briefly discussed how block ciphers are designed, we now examine the kinds of

resources an adversary will be able to access when trying to compromise the security of

the cipher. The most basic assumption we make is that the adversary has access to the

specifications for the underlying algorithm being used, though he does not have access to

the key. For example, the adversary should know the key length, the block length, and

how the cipher encrypts/decrypts data as a function of the key. This idea is known as

Kerckhoff's Principle and was published in a two-part article in the January and February

issues of the Journal des Sciences Militaires, 1883 [75].

While we assume that the adversary has no knowledge of the key, one may want to

consider alternate models in which the adversary has partial knowledge of the key. Con-

structions which are secure in this setting have appeared in the literature [33, 47], and this
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Figure 1-4: The basic Feistel permutation

branch of research is referred to as exposure-resilient cryptography.

We now look at the resources the adversary has with respect to plaintexts and ciphertexts

produced by the cipher. There are two broad categories of attacks based on these types of

resources: passive attacks and active attacks.

Passive Attacks

In passive attacks, we assume that the adversary can quietly eavesdrop. If the adversary has

access to only various ciphertexts that are transmitted, then we classify any attack he makes

as a ciphertext only attack. It is unlikely that any well-known cipher extensively used in

practice can be compromised with this type of attack. A slightly more interesting case is the

known plaintext attack in which the adversary gets to see various plaintext-ciphertext pairs.

In its most generic form, no assumption should be made about the distribution of these

known plaintext-ciphertext pairs, though we stress that many known plaintext attacks given

in the literature assume that the plaintexts were generated at random. Indeed, many block

cipher constructions can be broken if the adversary has access to enough randomly chosen

plaintext-ciphertext pairs. See for example, Biham and Shamir's text on the differential

cryptanalysis of DES [23].
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Active Attacks

We now move on to the active attacks. In this scenario, we assume that the adversary has

a certain kind of black-box access to the cipher. The adversary can query this cipher on

inputs of his choice. For example, we can allow the adversary to see the encryption of any

message of his choice. An attack based on such a resource is called a chosen plaintext attack.

Similarly, if we allow the adversary to see the decryption of any ciphertext of his choice, we

get a chosen ciphertext attack. Of course, it may even be possible that the adversary can

mount both a chosen plaintext and ciphertext attack. One can further classify these types of

attacks into static versus adaptive attacks. In a static attack, we assume that the adversary

chooses all plaintexts (or ciphertexts) he is interested in encrypting (or decrypting) all at

once. In contrast, an adaptive attack allows the adversary to choose future plaintexts (or

ciphertexts) as functions of the answers it received to previous queries to its black box. In

such cases he can interleave chosen plaintext queries with chosen ciphertext queries, which

could be quite troublesome. We focus on this last scenario in this thesis.

At an initial glance, it may not be clear why active attacks have any practical impor-

tance. After all, if the adversary has access to a black box for decryption, he can decrypt

any ciphertext he wishes. There are, however, practical scenarios in which these attacks

are interesting. For example, the adversary may only have temporary access to a tamper-

resistant device that encrypts and/or decrypts. Similarly, perhaps the adversary can obtain

encryptions and/or decryptions for messages of a certain restricted form, but not necessarily

for messages that might be of interest to him. There are a variety of other scenarios one can

imagine. For this reason, it is important to consider the most general and powerful attacks

the adversary can mount. The ciphers we propose in this thesis are provably secure against

adaptive interleaved chosen plaintext and ciphertext attacks.

Other Attacks

The passive and active attacks are a very broad and general class which capture a number

of important scenarios. There are several other attack models of interest which we briefly

discuss here.

One recently proposed notion is that of round security. This concept was introduced

in a paper by Ramzan and Reyzin [121], and is a novel contribution of this thesis. We
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discuss it in great detail in chapter 5. Briefly, the round security model allows an adversary

black-box access to some of the internals of a particular cryptographic primitive in addition

to allowing him black-box access to the primitive as a whole. The hope is to gain more

insight into why particular constructions are secure or insecure.

Another method of interest is power analysis [78, 79]. The idea is that, in practice,

any reasonably tamper-resistant device that performs cryptographic computation still leaks

certain kinds of information; for example, one can measure power consumption, electro-

magnetic radiation, and the time taken by the device to perform the computation. Careful

analysis of these quantities can sometimes lead to information about the underlying secret

key involved in the algorithm. This type of attack is dangerous since it depends less on the

underlying mathematics of a cryptographic scheme, and more on its concrete implementa-

tion.

1.2.6 Cryptanalysis of Block Ciphers

Having discussed the types of resources an adversary has when trying to compromise the

security offered by a block cipher, we turn to various techniques in the cryptanalysis of

block ciphers. The term cryptanalysis refers to the art of trying to "break" a cryptosystem.

For the most part, the literature on the cryptanalysis of block ciphers has focused on the

traditional passive and active attack models we just discussed. We briefly survey some of

the more noteworthy results in the cryptanalysis of block ciphers.

The most basic mechanism for compromising the confidentiality of the data encrypted

by a block cipher is via an exhaustive search over the entire key space. This method works

if you have a few of the plaintext messages and their corresponding ciphertexts, so you

can check if a given guess for the secret key is correct. Of course this method is grossly

inefficient, but in some ways it serves as a benchmark. We can determine the quality of a

cryptanalytic attack by comparing its efficiency to that of doing an exhaustive key search.

For certain block ciphers, however, exhaustive key search is not impossible. For example,

DES only has a 56-bit key, and many efforts have been made to defeat it by an exhaustive

key search. One of the most noteworthy efforts is Deep Crack [54] which is a special purpose

hardware device, that costs about $250,000, and can search through all 256 possible DES

keys in a matter of a few days. A number of techniques for building cryptanalytic hardware

to do exhaustive key search are discussed in a paper by Goldberg and Wagner [59]. The
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paper appears in chapter 10 of the Electronic Frontier Foundation's book [54], and some

of these techniques were taken from a paper by Weiner [143]. We now move on to more

specific cryptanalytic techniques.

Differential Cryptanalysis

Perhaps one of the most prominent results in this area is differential cryptanalysis which is

due to Biham and Shamir [23]. Differential cryptanalysis involves a chosen plaintext attack

in which the adversary picks pairs of plaintexts that have a particular difference between

them. He then studies the difference between the corresponding ciphertexts. By studying

the probability distribution of ciphertext pair differences for given plaintext pair differences,

he may be able to gain information about the secret key. The method often works well since

many block ciphers combine simple linear transformations with non-linear transformations.

A differential between plaintexts can be analyzed with respect to the linear components,

and one can try to approximate its distribution through the non-linear components. Thus,

this method is especially effective if this distribution is heavily skewed.

The technique, in its most basic form, appears in a paper by Murphy [98], which gives an

attack on the four-round version of the FEAL block cipher [134] requiring only 20 chosen

plaintexts. Since the four-round version was suggested for a variety of applications, and

since the attack is especially efficient, it points to a serious weakness in FEAL. Biham

and Shamir generalize the technique and apply it to many block ciphers [20, 21, 22, 23].

Most notable is their ability to mount an attack on DES [23]. The attack requires 247

chosen plaintexts and about 2 time steps,4 which is still fairly high, even though it is less

work than doing an exhaustive search.5 In fact, many other DES-like cryptosystems are

significantly more susceptible to differential cryptanalysis than DES itself [20]. In part, DES

seems like a good candidate for differential cryptanalysis since all of its components, except

for the S-boxes, are linear, and thus do not obfuscate differentials between pairs of inputs.

Later, Coppersmith, who was part of the original DES design team at IBM admitted that

their team knew about the technique, but could not tell anyone, and optimized the S-boxes

in DES to resist the attack [38].

4The attack also works with 255 known plaintexts, where the plaintexts are independently and identically
distributed.

5 The DES cipher has 256 different keys, and so on average an exhaustive search will yield a key after
roughly 255 tries.
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There are a number of variations on the basic theme of differential cryptanalysis. Among

these are higher-order differential attacks, due to Lai [82], and truncated differential attacks,

due to Knudsen [76]. There are also a number of theoretical approaches to designing block

ciphers that are secure against differential attacks, which we will discuss in section 1.2.7.

Linear Cryptanalysis

Linear cryptanalysis, which is another major breakthrough in block cipher cryptanalysis, is

due to Matsui [93]. The idea is to find relations involving the parity of individual plaintext,

ciphertext, and key bits. The technique was first applied to DES, and can recover the key

using 245 known plaintexts. One can compute the necessary parity relations by examining

the number of times the exclusive-or of certain input bits to the S-box coincides with the

exclusive-or of certain output bits. By observing when these values differ from what one

expects under the uniform distribution, one can derive a linear approximation for the S-

boxes. Since the S-boxes are the only non-linear part of DES, a linear approximation for

the S-boxes extends to a linear approximation for the cipher as a whole.

Other Cryptanalytic Techniques

While linear and differential cryptanalysis are perhaps the two most prominent cryptanalytic

techniques, by no means do they exhaust the list of possible techniques one could use when

trying to break a block cipher. One other technique is differential-linear cryptanalysis which

is due to Hellman and Langford [86, 69]. By combining techniques from differential and

linear cryptanalysis, they are able to break various reduced-round versions of DES slightly

faster than what was previously known. Another technique, is the interpolation attack

due to Jakobsen and Knudsen [72]. Here one attempts to approximate block ciphers by

polynomials, and then performs Lagrange Interpolation using plaintext/ciphertext pairs as

data points. For more information on techniques for block cipher cryptanalysis one can

consult the article by Schneier [130] and the references mentioned therein.

1.2.7 Provable Security of Block Ciphers

Having discussed various approaches to compromising the security of block ciphers, we turn

our attention to the problem of designing block ciphers which have some form of "provable

security." The central focus of this dissertation involves gaining a deeper understanding of
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certain provably-secure constructions. We start with some of the existing work, point out

some of the inherent gaps, and then briefly discuss how this dissertation attempts to fill

these gaps.

The work on provable security of block ciphers can be broadly classified into two cate-

gories. First there is work which attempts to design ciphers that resist specific attacks such

as linear and differential cryptanalysis. The other broad category involves designing ciphers

which are, to a certain extent, resistant to all efficient attacks. Typically, the security proofs

involve relating the security of the entire cipher to a (possibly conjectured) mathematical

property of an underlying primitive used in the cipher's design.

Resistance to Specific Attacks

One approach to block cipher design involves designing ciphers so that they are immune

to specific forms of cryptanalysis such as linear and differential. As is typical in most

block cipher designs, one starts with a function f which takes as input a block of text

and a key. The function is then iterated a number of times with different keys, and each

iteration is termed a "round." The final outcome is the ciphertext. Now, one can attempt

to understand the security of the entire cipher by determining various statistical properties

of the function f.

This approach was utilized by Nyberg and Knudsen [106], who make minor modifications

to simple algebraic functions. Specifically, they begin with the function g(x) = x3 taken

over GF(23 3 ). They discard one bit of the output to obtain a function h whose domain

is GF(233 ) and whose range is GF(232 ). Next, they employ an affine expansion function

E: GF(232 ) - GF(233 ). Their round function f : GF(264 ) -+ GF(264) is then

f(L - R) = R- (L + h(E(R) + k))

where L and R denote the leftmost and rightmost 32 bits of the 64-bit input, and k is the

round key, and the symbol - denotes concatenation. By iterating the function six times

with six different independently and identically distributed keys, one obtains a cipher that

cannot be broken via differential cryptanalysis.

There are a number of other similar functions which one could use to obtain the same

types of results, and more examples can be found in a paper by Nyberg [105]. A slightly
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more complicated round function that offers immunity to differential cryptanalysis when

iterated sufficiently many times is the one used in PES [84]. The security analysis was done

by Lai, Massey, and Murphy [83]; the first two authors were the co-designers of PES.

Another approach to the design of such an f function was developed by Vaudenay [140,

and is called decorrelation theory. The idea is to use k-wise independent hash function

families. Roughly speaking, a family of functions is k-wise independent if the outputs

corresponding to k distinct inputs are uniformly distributed and independent of each other.

In chapter 2 we formally define strongly universal hash functions which are the same as

2-wise independent hash functions. Vaudenay's main observation is that by utilizing k-wise

independent function families in a Feistel ladder, one can design block ciphers which are

"almost" k-wise independent permutation families. He then shows that these almost k-wise

independent permutation families are secure against the traditional linear and differential

attacks.

Since, in practice, one typically implements a simple function like f through S-boxes,

another approach one can use is to design secure block ciphers by designing good S-boxes.

To start with, one must first identify the criteria that make a particular S-box good. Dawson

and Tavares have a paper on this topic [43]. Next, one must explain how to design S-boxes

that meet some or all of these criteria. There have been a number of approaches along these

lines. One approach, studied by Adams and Tavares [1] involves the use of bent functions.

Another approach due to Nyberg [105] involves taking a simple algebraic function, tweaking

it, and having the S-box compute this new tweaked function. One can also just generate

random sequences of bits, form an S-box using them, and then check if the desired properties

are met. This approach was utilized in the Serpent block cipher [7] which was a finalist for

the Advanced Encryption Standard.

Immunity to Broad Classes of Attacks

One drawback of the previously mentioned approach is that it only thwarts certain kinds of

attacks. Moreover, typically provable immunity is only achieved for the most plain flavor

of these attacks. Thus there has been a great deal of work on designing ciphers that are

essentially secure against all forms of attacks.

This approach was utilized by Anderson and Biham [6] in their Bear and Lion block

ciphers. Both ciphers utilize cryptographic hash functions and stream ciphers (which we
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discuss in section 1.2.8) as underlying components. The security argument first involves

making hallowed assumptions about these underlying components; namely that it is hard

to find collisions or pre-images in the hash function, or that it is hard to find the seed of the

stream cipher. Next, they show that if someone were to recover the key of the block cipher

efficiently given one plaintext and its corresponding ciphertext, then they could violate one

of the hallowed assumptions about the underlying component. While efficient key recovery

is one threat, it is clearly not the only one to worry about. Thus, while both Bear and Lion

are quite fast, the security guarantees one can make about them are of limited scope.

A more powerful result on designing secure block ciphers was obtained by Luby and

Rackoff [88], and this dissertation studies their result in more detail. We now briefly sur-

vey some of the literature related to the Luby-Rackoff result; a more detailed treatment is

presented throughout the dissertation. Luby and Rackoff provide a formal model for the

security requirements of block ciphers in their seminal paper [88], and give a construction

of a block cipher that achieved this level of security. Their work was motivated originally

by the study of security of the block cipher DES [108]. They consider a block cipher to

be secure, or super pseudorandom if, without knowing the key, a polynomial-time adver-

sary with oracle access to both directions of the permutation is unable to distinguish it

from a truly random permutation on the same message space. This notion captures the

ultimate level of security one could desire under an adaptive interleaved chosen plaintext

and chosen ciphertext attack. Luby and Rackoff also discuss the notion of a block cipher

that is indistinguishable from random under just adaptive plaintext queries; they refer to

this notion simply as a pseudorandom permutation. The Luby-Rackoff definition of a super

pseudorandom permutation extends the the definition of a pseudorandom function, due to

Goldreich, Goldwasser, and Micali [62]. In that scenario the adversary has oracle access

only to the forward direction of the function.

The Luby-Rackoff construction of a super pseudorandom permutation was a theoretical

breakthrough and stimulated a great deal of research. We use the term Luby-Rackoff cipher

to describe constructions based on these principles. The original Luby-Rackoff construction

is based on a pseudorandom function generator [62]. It consists of four rounds of Feistel

permutations [51], each of which involves an application of a pseudorandom function and

an exclusive-or operation. Each round's output is used for the next round's input, except

for the last round, whose output is the output of the block cipher.
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The cipher proposed by Luby and Rackoff operates on a 2n-bit string L - R, where L

and R are n bits each, and can be described simply as follows:

S L E fi(R);

T = RE f 2 (S);

V = S E f3(T);

W = T f 4 (V).

Here fi, f2, f3, f4 are independently-keyed pseudorandom functions whose domain and range

are bit strings of length n, E represents the bit-wise exclusive-or operation, and the output

is V -W.

The original proofs of security due to Luby and Rackoff were subsequently simplified by

Maurer [94]. Though his focus was on the non-adaptive case of the three-round Luby-Rackoff

cipher. Following this work, Lucks [89] further generalized the proofs to include unbalanced

Feistel networks and contributed the notion of a difference concentrator. This is a non-

cryptographic primitive that replaces the pseudorandom function in the first round but still

offers the same security. In parallel, much research has concentrated on obtaining variants

of Luby-Rackoff constructions where the number of different pseudorandom functions used

in the four rounds is minimized in order to save key material. For example, see the papers

by Patarin and Pieprzyk [112, 118].

Following these works, Naor and Reingold [101], established a very efficient generaliza-

tion where they formalize Lucks' treatment by using strongly universal hash functions and

also provide a clean framework for proofs of security in the case of adaptive attacks. Naor

and Reingold achieve an improvement in the time complexity by using only two pseudoran-

dom function applications on n-bit strings to compute the value of a 2n-bit pseudorandom

permutation. The central idea is to sandwich a two rounds Feistel permutation involv-

ing pseudo-random functions between two pairwise independent 2n-bit permutations. In

other words, f is an n-bit to n-bit pseudorandom function and hi, h 2 are two pairwise

independent 2n-bit permutations (for example hi(x) = aix + bi over GF(2'), where aj, bi

are uniformly distributed). Naor and Reingold prove that this construction is 2n-bit super

pseudorandom permutation. They generalize this construction by relaxing the pairwise in-

dependence condition on the exterior permutation rounds but changed the interior rounds
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to include two different pseudorandom functions. Their work fundamentally contributed to

the understanding of Luby-Rackoff ciphers, and inspired much of the work in this disserta-

tion. Subsequent work on optimizing the Naor-Reingold construction was done by Patel,

Ramzan, and Sundaram [114], and this work will be described in great detail in chapter 3.

A number of variants to the original constructions were considered. For example, Patel,

Ramzan, and Sundaram [115] examined the question of what happens when the exclusive-

or operation, in the Feistel permutation, is replaced by other operations. We discuss these

results in detail in chapter 4.

Ramzan and Reyzin [121] later proposed a more refined model of security for symmetric-

key primitives and completely characterized the security of a number of Luby-Rackoff style

ciphers in this model. This work will be presented in chapter 5.

1.2.8 Block Ciphers versus Stream Ciphers

Having discussed block ciphers in some detail, we take a step back and ask ourselves a more

fundamental question: is a block cipher the best tool for encrypting data? The answer to

this question is not clear. In this section we briefly discuss stream ciphers which are another

symmetric-key primitive for encrypting data, and compare them to block ciphers. We stress,

though, that block ciphers and stream ciphers are not completely disjoint notions; in fact,

one can take a block cipher and build a stream cipher from it, and vice versa. Stream ciphers,

in their most basic form, can typically be broken up into three constituent components:

1. Internal state: this component is often a sequence of bits, and initially the internal

state is a function of the stream cipher's secret key. The key is often referred to as a

seed in the context of stream ciphers.

2. Next state function: this component maps the existing state to some other state as a

function of the key and possibly some portion of the message.

3. Final transformation: this component takes a piece of the plaintext and the current

state as input, and computes the ciphertext.

The process defined by these three components is then repeated on subsequent plaintext

blocks. Before proceeding further, we give an example of a stream cipher (see figure 1-5),

which essentially involves using a block cipher in counter mode. Let us start with the DES
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Figure 1-5: A stream cipher using DES

block cipher, and a counter which begins at 0. The seed to our stream cipher will be a

56-bit key k. We compute the ciphertext as follows. We encrypt the value of the counter,

under DES with key k. We take the first byte of the output given by DES, and take the

bit-wise exclusive-or with the first byte of the plaintext. The next state is then obtained

by incrementing the counter and encrypting it under DES with the key k. The next block

of ciphertext would thus be obtained by taking the first byte of the output given by DES

and taking the bit-wise exclusive-or with the second byte of the plaintext. We repeat this

process until we have encrypted all the data.

Now that we have described stream ciphers and given an example, we compare them

to block ciphers. The first thing to notice is that while block ciphers and stream ciphers

transform the plaintext one block at a time, block ciphers tend to encrypt larger input

blocks than stream ciphers. For example, the DES block cipher encrypts messages in 64-bit

blocks, whereas the stream cipher we described works on 8-bit blocks. Of course, in the
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above example, we could have designed the stream cipher to encrypt in 64-bit blocks as

well, but we chose not to in order to illustrate the point that stream ciphers can work on

smaller chunks of data. Since stream ciphers can encrypt smaller portions of data, they

may be advantageous when encrypted messages must be transmitted over a network. In

particular, for many common encryption modes, the length of the ciphertext transmitted

by a block cipher will always be a multiple of the block length. On the other hand, if we use

the stream cipher just mentioned, then the ciphertext has the same length as the plaintext.

The next observation to make is that stream ciphers may apply different transforma-

tions to different blocks of the plaintext. In particular, the output of the stream cipher

is a function of its current state, and since the current state is sequentially updated, the

corresponding transformations on two identical looking message blocks may be different.

On the other hand, since a block cipher is a permutation, if we feed the same input to the

permutation, then we get the same output. This feature may be problematic for certain

encryption modes, such as the ECB mode. For this mode, if two different message blocks

contain the same text, then the corresponding ciphertext blocks contain are identical. Of

course, one can avoid this type of behavior with a block cipher by using it in a feedback or

chaining mode.

A third observation is that, with a block cipher, both the plaintext and the key are

extensively obfuscated in order to produce the ciphertext. Typically, in a stream cipher,

a complex transformation is applied to the seed, though the final transformation is often

simple. It is not clear that this observation directly leads to a weakness of one method

versus another, but it primarily points out one fundamental difference between these two

constructs.

One weakness of stream ciphers is that they are often malleable. That is, if the adversary

intercepts a ciphertext, he can simply modify a few of the bits, and in many cases the

plaintext corresponding to this corrupted ciphertext will look quite similar to the original

pristine plaintext block, with those few bits changed. As a result, the decrypted message

might appear to be valid, which results in miscommunication between the sender and the

recipient, and could potentially be problematic. On the other hand, if a block cipher is

used for encryption, then the decryption of the corrupted ciphertext block will look almost

nothing like the original plaintext block, and will probably look like random junk. The

recipient will probably be able to tell that the message block was corrupted en-route, and
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may ask for the message to be retransmitted. Of course we stress that one could avoid these

problems through the use of message authentication codes, or MACs, which we discuss in

section 1.3.

One issue that is related to the one just mentioned is that of error propagation. Suppose

that encrypted messages are being transmitted over a noisy and unreliable environment,

such as a wireless connection. As a result it may be possible that a single bit of the ciphertext

gets flipped from a 0 to a 1, or vice versa. If the plaintext was encrypted with a stream

cipher, the plaintext that results from decrypting this corrupted message with probably still

look like the original plaintext, and so it may be easier to correct the transmission errors.

On the other hand, if a block cipher had been used, the plaintext corresponding to the

corrupted ciphertext would probably not look very much like the original plaintext. These

types of problems could easily be overcome through the use of error-correcting codes. See the

classic text by MacWilliams and Sloane [91] for a thorough exposition on error-correcting

codes.

Given the points just mentioned, there is no overwhelming reason to prefer a block cipher

over a stream cipher, or vice versa. It depends on the exact nature of the application, and

in part on the personal preferences of the system designer. Surprisingly, however, block

ciphers have received a significantly more extensive treatment in the literature. Much has

been done in the way of developing general techniques for designing and cryptanalyzing

block ciphers, whereas the body of academic literature on stream ciphers has been more

sparse. For that reason, as well as the fact that block ciphers can easily be used in a stream

cipher mode, we focus our own efforts on block ciphers. We refer the reader to the survey

article by Robshaw [127] for more information on stream ciphers.

1.3 Message Authentication Codes

Message authentication is one of the most important tasks in cryptography. While it is not

the main focus of this dissertation, the topic comes up in chapters 3, 5, and 6. For this

reason, we give a high level description and brief history of the problem. In chapter 2 we

give a more rigorous mathematical description.

Message authentication schemes involve communicating parties, and aim to fulfill two

primary goals:
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1. Authentication: messages are indeed sent by the person who is purported to have sent

them.

2. Integrity: messages are not modified en-route.

The problem was first formally studied by Gilbert, MacWilliams, and Sloane [57]. The

task of message authentication can be accomplished via the computation of a message au-

thentication code, or MAC, on a message. The MAC should be designed so that knowledge

of a secret key is required to both compute and verify the MAC.

In general, message authentication codes will be computed frequently and on inputs

which are often thousands of bytes long. Moreover, computing and verifying tags is typ-

ically done in software, and may be done on relatively weak platforms. Additionally, the

computations must often be done in real time. Therefore, developing techniques for opti-

mizing MAC Algorithms while retaining the appropriate level of security is crucial.

There have been a number of approaches in designing MACs. One approach to message

authentication involves using a secure block cipher, such as DES, in CBC mode. We simply

take the last block produced by the CBC mode of DES, and encrypt it one more time

under a different key, which is independent of the others, and uniformly chosen. Although

this method was known for quite some time, very little was understood about its security.

Eventually Bellare, Kilian, and Rogaway [14] showed that this method is secure under

the assumption that the underlying block cipher is a pseudorandom permutation, and all

messages are of the same length. Subsequently, Black and Rogaway [25], developed variants

of the CBC MAC which are provably secure for variable-length messages.

Another approach to message authentication, often seen in practice, involves using cryp-

tographic hash functions like M D5 [123]. For example, one approach is to envelope a message

block with the secret key: MD5(x - m - x). Here x is the secret key for the MAC and m is a

message block. One can iterate this type of construction to compute a MAC on the entire

message. Unfortunately, several schemes of this type are vulnerable to a key-recovery attack

due to Preneel and and van Oorschot [120]. Another construction that uses cryptographic

hash functions in MACs is the HMAC, which is due to Bellare, Canetti, and Krawczyk [10];

their scheme is good because it utilizes fast and secure cryptographic building blocks. At

an initial glance, it might seem that these techniques yield the best results. It turns out,

however, that a very fundamental paradigm due to Wegman and Carter [142] allows us
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avoid using heavy duty cryptographic primitives on the entire input string via the use of

universal hash functions. More remarkable is the fact that Wegman-Carter paradigm ap-

peared in the literature over a decade before the formal security requirements for message

authentication. In chapter 6, we describe the construction of the square hash, which is a

fast universal hash function that can be used in the Carter-Wegman paradigm. The square

hash can also be used with the block cipher constructions given in other parts of this thesis.

1.4 The Universal Hash Function Approach

In this approach, one starts with a family of c-almost- A-universal hash functions H. We

formally define this notion in chapter 2. In order to compute the authentication tag for a

message m, the communicating parties secretly agree on a function h C H chosen at random,

and on a sequence of random pads P1,P2. ... To compute a MAC on the ith message mi, the

sender computes pi = h(mi) +pi. One remarkable aspect of this approach is that, even if a

computationally unbounded adversary performs q black-box oracle queries to both algorithms

used by the MAC, he has probability less than qe to forge the MAC. In the Wegman-Carter

construction one pre-processes a message quickly using universal hash functions, and then

applies a cryptographic operation such as a one-time pad. In general, the one-time pad can

be replaced by pseudorandom sequence [27, 87]. Then, the parties would have to pre-agree

on the function h and on the seed s for the pseudorandom generator which produces this

sequence. This approach to message authentication was suggested by Brassard [29]. If a

pseudorandom sequence is used, then the resulting MAC is secure against a polynomial-time

bounded adversary and typically the result only holds under the assumption that a given

mathematical problem, such as computing a discrete logarithm, cannot be solved efficiently

in the average case. Another technique employed in schemes such as UMAC [24], involves

the use of pseudorandom functions [62]. Here one takes the output of the universal hash

function, concatenates it with with a nonce and a counter, and feeds it into a pseudorandom

function; the output produced by the pseudorandom function is the corresponding MAC.

The nonce and counter are used to thwart statistical attacks based on the birthday paradox.

The secret key for the MAC consists of the key for the hash function as well as the key for

the pseudorandom function.

The original Wegman-Carter idea involves unconditionally secure message authentica-
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tion. Prior to Wegman and Carter's original paper [142], unconditionally secure message

authentication was studied by Gilbert, MacWilliams, and Sloane [57], which was the first

paper to pose the problem of message authentication. The universal hash function ap-

proach for MACs was first studied by Wegman and Carter [142] and the topic has been

heavily addressed in the literature [137, 80, 8, 68, 73, 135, 65]. In chapter 6, we develop a

hash function based on the MMH scheme of Halevi and Krawczyk [65]. The MMH scheme

achieves impressive software speeds and is substantially faster than many current software

implementations of message authentication techniques and software implementations of uni-

versal hashing. Unfortunately, it is not always possible to do precise comparisons because

the available data represents simulations done on various platforms, and often with code

that was hand optimized. There are a number of papers in the literature that deal with

experimental results of these types of constructions [135, 28, 104].

1.5 The Organization of this Dissertation

Having given some of the basic background and motivation, we outline the various chapters

in this dissertation. We describe various preliminaries in chapter 2. We also discuss some of

the notation, fundamental definitions, and mathematical tools necessary to understand all

of the constructions and results we present throughout this thesis. In addition, we prove a

number of general theorems which are used to analyze the constructions given in chapters 3,

4, and 5.

In chapter 3 we present a new construction of a more practical Luby-Rackoff cipher. The

construction is efficient in terms of computation and key length. In addition, we consider

an alternate security analysis of this construction, in which we make a weaker but more

practical underlying assumption, and arrive at a weaker security claim. We also give an

informal discussion on the optimality of Luby-Rackoff ciphers, and explain how the new

construct we present fits into this framework.

Next, in chapter 4 we initiate a study of Luby-Rackoff ciphers in which we replace

the exclusive-or operation in the Feistel ladder with addition in an arbitrary algebraic

structure. This generalization opens up new lines of research, and we obtain a number of

fascinating results. In particular, we construct a cipher which operates over various finite

groups of characteristic greater than two, that is not only super pseudorandom, but also
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has better time/space complexity, and uses less key material than all previously considered

Luby-Rackoff ciphers in the literature. Surprisingly, when we use the traditional bit-wise

exclusive-or operation instead, the cipher can be distinguished from a random permutation

with near certainty using only two queries. In addition to this result, we examine a number

of other Luby-Rackoff ciphers which are known to be insecure when exclusive-or is used.

In some cases, we can extend the attacks to our more general setting. The attacks are

slightly more complicated. In other cases, it is unclear how to generalize the attacks, and

determining the security of these new constructs is left as an open problem.

In chapter 5, we discuss a new model for analyzing the security of symmetric-key cryp-

tographic primitives. The model makes use of the fact that many such primitives typically

involve iterating simpler constructs for some number of rounds. The new model may be

used to gain new insights into the security of these constructions. We completely charac-

terize the security of a number of four-round Luby-Rackoff ciphers in this new model, and

show that these ciphers remain secure even if the adversary is given black-box access to the

middle two round functions. The powerful aspect of this result is that these extra resources

offer the adversary no advantage in attacking the various ciphers we consider. We also

describe situations in which Luby-Rackoff ciphers fail to remain secure in our model. These

same techniques can also be applied to message authentication codes based on composing

pseudorandom functions with universal hash functions, so we characterize their security in

this new model as well.

Chapter 6 describes two novel ideas in the construction of fast universal hash functions.

Such functions are used in numerous constructions throughout the thesis. In addition to

their applicability in block cipher design, such functions can be used for message authen-

tication. Universal hash functions possess various statistical properties which are useful

in these cryptographic scenarios. Moreover, these properties are not conditioned on any

kind of mathematical conjecture, so they always hold. In addition, since universal hash

functions are not cryptographic, in and of themselves, they lend themselves to faster imple-

mentation. We introduce the square hash, which is a construction that performs especially

well on modern microprocessor architectures. The first novel technique is to use squaring

as opposed to multiplication, since the former can be implemented faster than the latter.

The second novel technique involves ignoring various portions of the computation which,

we can formally prove, does not significantly affect the required statistical properties for the
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applications at hand. One can think of this approach as "theoretical hacking." We discuss

various implementation consideration and we substantiate our performance claims through

hand optimized assembly language implementation results on an ARM processor.

We offer some concluding remarks in 7. Specifically, we summarize the results described

throughout the thesis, and describe a number of possible avenues for future research. In

particular, chapters 4 and 5 present entirely new paradigms in the study of provably-secure

block ciphers, and thus open up new lines of work.

Finally, we have an appendix that describes the block cipher DES [108]. Luby and

Rackoff were motivated by the design of DES, which led to their seminal paper [88], and

eventually to the work in this dissertation. DES is a concrete example of a block cipher

that uses the Feistel permutation, which we also use in the constructions we give.
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Chapter 2

Preliminaries and Notation

2.1 Introduction

In this chapter we describe the notation to be used throughout the thesis, and we give various

relevant definitions and prior constructions of Luby-Rackoff ciphers. Our presentation is

in the "concrete" (or "exact") security model as opposed to the traditional complexity-

theoretic model (though our results can be made to hold for either). Our treatment follows

that of Bellare, Kilian, and Rogaway [14], and Bellare, Canetti, Krawczyk [11].

This chapter is organized as follows. We start by outlining some of the basic notation

used throughout the thesis. In sections 2.3 and 2.4 we discuss basic tools such as finite func-

tion families, and various models of computation for our adversaries. These are necessary

for understanding the cryptographic constructions given in this thesis. Then we discuss the

concept of pseudorandomness, which we use to model the security of the block ciphers we

consider. Next, we delve into the notion of a transcript, which helps us analyze security,

and we state and prove various general theorems that relate transcripts to pseudorandom-

ness. We go on to describe some of the specific constructions used in this dissertation such

as universal hash function families and Feistel ladders. This paves the way for examining

Luby-Rackoff ciphers, which are the central focus of this dissertation. Thereafter, we for-

mally describe message authentication codes, which come up at various points in the thesis.

In the next to last section we discuss the difference between the concrete security treatment

and the traditional complexity-theoretic treatment, and then we end the chapter with some

concluding remarks.
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2.2 Notation

" We let I, denote the set of bit strings of length n. In some cases, we use the notation

{0, 1}" to describe the same set.

* For a bit string x, we let lxi denote its length.

" For bit strings x and y, we let x - y denote their concatenation. If x and y are the

same length, then we sometimes write (X, y) to denote their concatenation.

* If x has even length, then xL and xR denote the left and right halves of the bits

respectively; we sometimes write x (XL, XR) or L . XR.

* If x and y are two bit strings of the same length, x e y denotes their bit-wise exclusive-

or.

" If n is a positive integer, we let GF(2n) denote the Galois Field of order 2", and

we let GF(2n)+ denote the additive group attached to the field GF(2"). Recall that

elements of GF(2n) can be represented as bit strings of length n, and that the addition

operation on two elements merely amounts to taking their bit-wise exclusive-or.

" For functions f and g, where the range of f is contained in the domain of g, we let

g o f denote their functional composition; i.e. x '-+ g(f(x)).

* If D and 7Z are sets, then RandD'R denotes the set of all functions with domain D

and range 7Z.

* If k and 1 are positive integers, then Randk-I denotes the set of all functions going

from Ik to Ij.

" If D is a set, then PermD denotes the set of all permutations on D.

" If m is a positive integer, then Perm' denotes the set of all permutations on the set

Im .

" If S is set whose elements can be sampled according to some pre-specified underlying

probability distribution, then x +- S denotes the process of picking an element x

from S according to this distribution. Unless otherwise specified, the underlying

distribution is assumed to be uniform.
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" If S is a set contained in a universe U, then SC denotes the set-theoretic complement

of S - that is the set of elements of U that are not in S.

" If S is a set, and o- = s, 2,1 . , sn is a sequence consisting of elements from this set,

then for 1 < i < n we let orji denote the subsequence s 1 , ... ,si.

2.3 Finite Function Families

This thesis focuses on constructions of secure block ciphers. We model our ciphers as

pseudorandom permutation families. Such permutation families are a type of finite function

family. By a finite function (or permutation) family F, we mean a set of functions with

common domain and common range. In addition, the domain and range must be of finite

size. Two particular examples are:

1. The set of all functions going from Ik to I,, which we have denoted by Randk-l

2. The set of all permutations on the set In, which we have denoted by Perm"'.

We can associate a key a with each function in a given finite function family. We permit

the possibility that the same function is indexed by several different keys. We denote the

function given by a key a as fa. We let Keys(Y) denote the set of keys for a keyed family

7. We assume that given the key a, it is possible to efficiently evaluate fa at any point (as

well as f-' in the case of a keyed permutation family). For a given keyed function family,

the key length is the maximum number of bits needed to denote any key for a function in

the family. Often a key will be a string from Is, in which case s is the key length. We

also assume that the keys for our function families are picked according to some probability

distribution. Typically, this distribution will be uniform.

2.4 Model of Computation

To discuss security, we need to explain our threat model. We do so by describing how an ad-

versary will work. The adversary A is modeled as a program for a Random Access Machine

(RAM) that has black-box access to some number k of oracles, each of which computes some

specified function. The adversary A will have a one-bit output. If (fi,... , fk) is a k-tuple

of functions, then Al---,fk denotes a k-oracle adversary who is given black-box oracle access
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to each of the functions fi, ... , fk. We define A's "running time" to be the number of time

steps it takes plus the length of its description (to prevent one from embedding arbitrarily

large lookup tables in A's description). This convention was used by Bellare, Kilian, and

Rogaway [14].

Sometimes we abuse notation by listing an entire function family as the oracle, rather

than just a single function. In this case, the oracle is considered to be a function (or some

set of functions) chosen from the family, according to some induced probability distribution.

That is, we can think of the oracle as a random variable, which denotes a function, and

outputs the value of the function on any input queries it receives. For example, ARand"I

would be used to denote an adversary whose oracle computes a function chosen at random

from the set of all functions with domain and range I,.

Similarly, it may be the case that an adversary has access to multiple oracles, all of which

are drawn from the same family. For example, if we deal with oracles chosen from the family

Perm", we could conceive of giving oracle access to the permutations f, f 1_ E Perm'. These

kinds of scenarios apply when we talk about attacks on block ciphers, and we discuss them

in much greater detail in the subsequent chapters of this thesis.

We also remark that oracles need not simply represent deterministic functions. Instead

there could be some degree of randomness in their answers. In this case the oracle's output

is determined by the input together with some internal coin tosses. Both deterministic and

randomized oracles are used in this thesis.

We can also consider modeling our adversaries as traditional Turing machines (uniform

model) or as circuits (non-uniform model). A Turing Machine would be equipped with a

special oracle tape and instructions for making an oracle query, and a circuit would come

with a special oracle gate. For our purposes, the choice is immaterial. The results we attain

for one model can be translated for the other models. For a more in-depth discussion on

these various models of computation, see the comprehensive text on complexity theory by

Papadimitriou [111].

2.5 Pseudorandom Functions and Block Ciphers

The notion of pseudorandomness is extremely important since we use it to model the security

of block ciphers. The pseudorandomness of a keyed function family T with domain D and
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range R captures its computational indistinguishability from Rando1n. That is, the "more"

pseudorandom a function family F, the "harder" it is for an adversary to distinguish between

a function chosen randomly from T and a function chosen randomly from RandvD.

Computational indistinguishability of two function families is captured by observing the

average behavior of some adversary A when its oracle queries are answered by a function

drawn from one family versus when its oracle queries are answered by a function drawn from

the other family. In particular, we define the advantage the adversary has in distinguishing

between two finite function families as follows:

Definition 1 Let Y 1 and F2 be two finite function families which both have domain D and

range R. Let A be a 1-oracle adversary. Then, the advantage of A in distinguishing between

F 1 and F 2 is defined by

R R
AdvA(Fl, F 2 ) = Pr[a - Keys(F 1) : Afa = 1] - Pr[a +- Keys(.F 2 ) : Afa = 1].

For any integers q,t > 0, we define an insecurity function:

Adv F(q,t) = max{AdvA(.F1,F 2)},T2 A

where the above maximum is taken over choices of adversary A such that

" A makes at most q queries to its oracle.

" The running time of A, plus the time necessary to select the key a, and answer A's

queries, is at most t.

Definition 2 We say that 71 is a (t, q, e) indistinguishable from F 2 if

AdvO (q, t) < E.

The above definitions easily extend to the case of multiple-oracle adversaries. We explain

the intuition behind these definitions after we discuss the concept of the pseudorandomness

of a function family, which involves special cases of the above definitions.

We also remark that traditionally, in an asymptotic or complexity-theoretic analysis, the

advantage is defined by taking the absolute value of the difference of the above probabilities
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(see, for example, Oded Goldreich's text [60]). This approach is intuitive since the advantage

is then always a positive number. We, on the other hand, focus on the concrete security-

theoretic treatment and do not use absolute values. The definition of advantage we use

appears in a number of papers [14, 11]. For the concrete-security case we can ignore absolute

value signs. In particular, for every adversary whose advantage is negative, we can construct

an adversary whose advantage is positive; namely, consider the adversary whose responses

are the exact opposite of another adversary. We can make this simplification since we are

dealing with a fixed size function family, and hence a fixed value for the security parameter.

Thus we only have to worry about a single adversary. In the asymptotic case, it is a little

more difficult to remove the absolute value signs since primitives are defined as families

of families; that is, one defines a family for each value of the security parameter. Thus

one must define an adversary for each value of the security parameter. For example, in

the uniform case one must deal with all values for the security parameters via a Turing

machine that represents an infinite family of adversaries, so it is more difficult to get rid of

the absolute value signs. In the non-uniform case, it is less of a concern since we essentially

have one circuit (adversary) for every value of the security parameter.

It turns out that incorporating absolute value signs actually makes a small difference

in the analysis of the block cipher constructions we propose in this dissertation; namely,

the adversary's advantage increases by an additive factor of 2 -2n. This phenomenon occurs

since certain terms do not cancel when absolute value signs are used. Since the difference in

the actual analysis is minor, and given the reasoning mentioned above, we choose to ignore

the absolute value signs.

We now move on to discussing the concept of pseudorandomness. The following defini-

tions are based on ideas due to Goldreich, Goldwasser, and Micali [62]:

Definition 3 Let F be a keyed function family with domain D and range R. Let A be a 1-

oracle adversary. Then we define A's advantage in distinguishing between F and RandDR

as

Adv.,(A) = Pr[a 4- Keys(F) : Ala = 1] - Pr[f 4- Rand-+R : A = 11.

For any integers q, t > 0, we define an insecurity function Adv (q, t):

Advf (q, t) = max{Advy (A)},
.F A
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where the above maximum is taken over choices of adversary A such that:

" A makes at most q queries to its oracle.

" The running time of A, plus the time necessary to select the key a, and answer A's

queries, is at most t.

Definition 4 We say that Y is a (t, q, e)-secure pseudorandom function family if

Adv (q, t) <.

Let us examine the above definitions to gain more intuition. If Adv r(A) = 0, then Y

behaves exactly like Rand"4 from the adversary's point of view. Similarly, if Adv '(q, t) =

0, then an adversary restricted to making q queries, and using at most t time steps cannot

tell the difference between a function chosen from Y and one chosen from RandD-+R If

instead, Adv, (q, t) = e, where E is extremely small, then the adversary's ability to tell the

difference between functions chosen from these two families is as small. We use the term

pseudorandom function loosely to mean a function, drawn from a (t, q, e)-secure finite family

of functions, for "small" values of e, and "large" values of t and q. Of course, in many ways,

what we mean by "small" and "large" is relative, and depends on the particular application

at hand. For the purposes of this dissertation, it is immaterial.

Goldreich, Goldwasser, and Micali [62] give a construction of a good pseudorandom func-

tion family based on the existence of any pseudorandom number generator. Subsequently,

Hastad, Imagliazzo, Levin, and Luby show how to construct pseudorandom number gener-

ators from any one-way function [67], thus we can construct good pseudorandom function

families under minimal cryptographic assumptions.

We are now ready to define a notion of security for block ciphers. This notion was first

described by Luby and Rackoff [88]. The notion captures the pseudorandomness of a per-

mutation family on D in terms of its indistinguishability from PermE, where the adversary

is given oracle access to the forward direction of the permutation. If the adversary is given

access to only the forward direction of the permutation, then he can receive the cipher-

text corresponding to any plaintext of his choice. In this case, the adversary is given the

ability to mount an adaptive chosen plaintext attack. A block cipher that cannot be distin-

guished from a random permutation against this type of attack is termed a pseudorandom
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permutation. More formally:

Definition 5 Let Y be a keyed permutation family with domain and range D. Let A be a

1-oracle adversary. Then we say that A is an e pseudorandom permutation distinguisher

for _ if

Advj,(A) = Pr[a +_ Keys(Y) : Ala = 1] - Pr[f +- Perm A = 1] < E.

For any integers q, t > 0, we define an insecurity function AdviP(q,t) similar to the one in

definition 3:

Adv p(q, t) = max{Adv P(A)},
A

where the above maximum is taken over adversaries A who make at most q oracle queries,

and whose running time, together with the time necessary to select the key a, and answer

A's queries, is at most t.

Definition 6 We say that Y is a (t, q, E)-secure pseudorandom permutation family if

Adv,, (q, t) < E.

Now, since we are dealing with permutations, we can imagine that the adversary also

has access to an oracle that computes the reverse or inverse direction of the permutation

on any input. Having access to this direction of the permutation can be viewed as having

an oracle which returns the plaintext corresponding to a particular ciphertext input. If the

adversary has access to oracles which compute both directions of the permutation, then

he is capable of mounting an interleaved adaptive chosen plaintext and ciphertext attack.

A block cipher that is secure against this type of attack is termed a super pseudorandom

permutation. We now give a more formal definition of the super pseudorandomness of a

permutation family:

Definition 7 Let .F be a keyed permutation family with domain and range D. Let A be a 2-

oracle adversary. Then we say that A is an E super pseudorandom permutation distinguisher

for Y if

Advs r(A) = Pr[a 4- Keys(F) : Afa,a = 1] - Pr[f 4 PermD : Af' 11 = 1].
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For any integers q, t > 0, we define an insecurity function Advrp (q, t) similar to the one

in definition 3:

AdvfrP(q, t) = max{Advrp(A)
A

where the above maximum is taken over adversaries A who make at most q oracle queries,

and whose running time, together with the time necessary to select the key a, and answer

A's queries, is at most t.

Definition 8 We say that F is a (t, q, E) -secure super pseudorandom permutation family if

Advprp
Advs(q, t) < E.

In this thesis, we focus on adaptive interleaved chosen plaintext and ciphertext attacks.

Thus we prove security of our block cipher constructions by showing that they are (t, q, E)-

secure super pseudorandom permutation families for the appropriate values of the param-

eters t, q, and E. Finally, we remark that there are a number of examples of permutation

families which are pseudorandom, but not super pseudorandom. One example, as we shall

later see, is the original three-round Luby-Rackoff cipher.

2.6 Transcripts

The notion of a transcript is central to many of the mathematical arguments made in this

thesis. The transcript records all of the communication between the adversary and its oracle.

If a total of q queries are made to the oracle, then the transcript is of the form

0'- (Q1, Q2, - -, Qq),

where each Qi is a representation of the ith query made to the oracle, together with the

oracle's response. For example, Qi might be of the form (x, y) where x is the input to the

oracle and y is the oracle's answer. It is often convenient to talk about some prefix of the

transcript sequence. Thus, we denote by a(') the sequence of the first i elements in the

transcript -: Qi,... , Qi. In addition, we consider the notion of a function C which can

determine the adversary's next query given the previous queries and answers.

Definition 9 Let CA[a( -1)] denote the ith query A makes to an oracle as a function of
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the first i - 1 query-answer pairs in A's transcript. Here 1 < i < q, and we assume that A

makes exactly q queries. Let CA[O(q)] denote the output that A would give as a function of

the transcript. If the transcript is invalid for some reason (e.g. the inputs do not constitute

proper queries or responses) then the output is undefined.

If the underlying oracle is randomized, then the function C may also be randomized.

We can modify the above definitions to handle this case. For the purposes of this thesis,

however, we only need to consider deterministic C's. We also need to consider the notion

of which transcripts can possibly be generated.

Definition 10 Suppose o- = (Q1,... , Qq) is a sequence. Then, o- is said to be a possible

A-transcript if it could be generated by an interaction of A with its oracle. In particular,

for all 1 < i < q, the ith query made by A (as determined from o-) is

CA[(Qi, Q2, .. ,Qi-1.

Also, if we have an adversary A with access to a set of oracles 0, then we often let the

random variable To denote the transcript seen by A when its oracle queries are answered

by 0. We also employ the shorthand CA(O) to denote CA(To).

2.7 Relating 'Transcripts and Computational Advantage

Since transcripts describe the adversary's interaction with its oracles, it should come as

little surprise that we can bound the adversary's advantage in distinguishing between two

function families in terms of probabilities related to the transcripts generated from these

interactions. The following theorem is a slightly more generalized variant of one that has

appeared in various forms in the literature [101, 114, 115, 121].

Theorem 1 Suppose A is a deterministic oracle machine and let 01 and 02 be random

variables denoting two possible oracles that A can use. Let Toi be a random variable denoting

the transcript of A's interaction with oracle 0 (for i = 1, 2). Let P be a particular property

(i.e. a boolean predicate that takes on the value, 1 when the property is satisfied, and 0

otherwise) on the set of possible transcripts. Now, if all transcripts generated by A 0 1 have

property P then:

51



Adv(0 1 , 02) <; E Pr[To1 = a] - Pr[T0 2 = O],
901 02

where F is the set of all possible transcripts o- satisfying P and for which CA(-) = 1

Proof: Let T denote all possible transcripts. Then:

Adv(0 1 , 02) = Pr[A0' = 1] - Pr[A02
01 02

Pr[CA(01) = 1] - Pr[CA(02) = 1]
01 02

S(Pr[CA(01) = 11 To = o-] - Pr[To = o-]

Pr[CA(02) = 1 1 T02 = o] -Pr[T92 = O~
02 02 /

E Pr[CA(a) = 1] -Pr[To = a] - Pr[CA(o-) 1] -Pr[T02 = o]
(01 01 02 02

Pr[CA(o-) = 1] - Pr[T91 = o] - Pr[CA(o-) = 1] - Pr[T02 = o]
ee01 02

+ Pr[CA(a) = 1] - Pr[Tol = o] - Pr[CA(o-) = 1] - Pr[T 2 = a].
YErc 01 02

The derivation of the last equality from the previous requires a fairly subtle observation;

namely, when we fix a particular transcript o, then CA(o-) is always either 0 or 1 since A is

assumed to be deterministic in the theorem statement. As a result:

Pr[CA(-) = 1] = Pr[CA(o-) = 1]
01 02

since neither probability actually depends on the choice of the oracle. We proceed:

5 Pr[CA(o-) = 1] - Pr[TO, = a] - Pr[CA(a) = 1] - Pr[T 2 = a]
aEr 01 02

+ 5 Pr[CA(-) = 1] -Pr[TO, = a] - Pr[CA(o-) = 1] - Pr[T 2 = a]
5E(rc 01  

02 0 [ a [ )

Pr 1o = o, - Pr[T2 = O - Pr[CA(o-) =1]

52



+ Pr[Toi = o] - Pr[To2 = a]) Pr[CA(u) = 1]
" 1 02

oEerc

= (Pr[Toi = o] - Pr[T0 2 = o] (2.1)
O'01 02

+ E Pr[Toi = o] - Pr[T0 2 = al) Pr[CA(u) = 1]. (2.2)
UErc (10

The last equality follows from the previous, by definition, since CA(a) = 1 whenever 0' C F.

Now, if a given transcript o, is in the set-theoretic complement pC, then exactly one of the

following cases must occur:

1. CA(o) # 1, or

2. CA(cr) = 1 and a does not satisfy property P.

To complete the proof, it suffices to show that the value attained in equation 2.2 is never

positive, in which case we are done since equation 2.1 is the upper bound we are trying to

achieve. This fact follows from the following two observations:

1. If CA(a) 5 1 then Pr[CA(ox) = 1] = 0.

2. If a transcript a does not satisfy property P, then Pr[To, = o] = 0 since all possible

transcripts generated by A 0 1 satisfy property P according to the theorem statement.

Thus, none of the terms in the summation are positive, which concludes the proof. M

We now state another useful general theorem regarding the relationship between transcripts

and indistinguishability. Like before, the theorem slightly generalizes and unifies theorems

that have appeared in various forms in the literature [101, 114, 115, 121]. Roughly speaking,

the theorem gives a bound on the distinguishing advantage with respect to probabilities

associated with a transcript appearing in a given set. Here the set itself is defined by the

particular choice of one of the oracles for the function families we wish to distinguish. By

the term particular choice, we mean a specific function picked according to an underlying

distribution; that is, if the oracle represents a function family, then we pick a single function

from that family according to some underlying distribution. Here is the formal theorem

statement:
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Theorem 2 Let A, 01, 02, TO1 , T 0 2 , and F take on the same roles as in the previous

theorem. Let S(0 1 ) be a particular set of transcripts, where S(0 1) depends on the choice of

the specific function that 01 instantiates. Let o-* denote the transcript which has the best

chance of being in S(0 1). That is,

o-* = argmaxg Pr[o- E S(0 1 )].
01i

Then

Adv(0 1, 02) ( r[To = o- |o- V S(0 1 )] - Pr[T0 2 = O - Pr[o V S(0 1 )]

+ Pr[o-* E S(0 1)].
01

Proof: The proof follows by first applying theorem 1 and then performing some arithmetic

manipulation. As before, let F be the set of all possible transcripts 0- satisfying P and for

which CA(o-) = 1.

Adv(0i, 02) E Pr[To1 = (-] - Pr[T 2 = oj
er01 02

(Pr[Tol =.- 0o- E S(0 1 )] -Pr[o- E S(0 1)]
CEr

+ Pr[To0 = o- jo- S(01)] -Pr[o- V S(01)]
01

- Pr[T02 = or] (Pr[o- E S(0 1 )] + Pr[or S(01)]
02 \0 01

E (Pr[To, = o- ou S(01)] - Pr[T0 2 = oi) Pr[o- V S(0 1)]

+ Pr[To = oa o- S(01)] - Pr[To2 = o). Pr[o E S(0 1 )].
cTIP(0 0 )0

We complete the proof by obtaining the appropriate bound for the last expression:

Pr[Toi = o, |o E S(0 1 )] - Pr[T2 = o]) Pr[o- E S(0 1)]

< Pr[o-* E S(0 1)] - Pr[To, = o- ja E S(01)]
0 1 PE r 0 1

< Pr[u-* E S(01)],01
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where the last equation follows from the previous since the sum of the probabilities of all

the events in a particular sample space is at most 1. We thus get the desired bound. U

2.8 Hash Functions

In many of the constructions given in this dissertation, we utilize particular finite function

families with specific statistical properties of interest. The families we consider are called

universal hash function families. We stress that such universal hash function families should

not be confused with cryptographic hash functions such as MD5 [123] or the SHA family [102,

103]. The definitions of the universal hash function families we give follow those given in

a number of works [36, 114, 142, 80, 128]. Stinson prepared a very nice note outlining the

history of these definitions [138]. We review this history below.

In the following definitions, we assume H is a keyed function family with domain D and

range R. Moreover, we assume that R can be viewed as a group with additive notation ('+'

and '-'). Finally, for the definitions below, we require that El , 66 are all greater than or

equal to 1/|17.

We start with the concept of universal hash function families, which are designed so

that, on average, a function picked at random from the family will rarely map distinct

elements in the domain to the same element in the range.

Definition 11 We say that H is an E1 -universal family of hash functions if for all x $ y C

D7
R

Pr[a +- Keys(H) : ha(X) = ha(y)] ei.

The concept of a universal hash function is due to Carter and Wegman [36], and it was

generalized to E-universal by Stinson [137].

A uniform family of hash functions is a similar concept. Here, the function families

should be designed so that no single fixed element gets mapped to another fixed element

by a disproportionate number of functions chosen from the family.

Definition 12 We say that H is an 62 -uniform family of hash functions if for all x E

Dz E R,
RPr[a +- Keys(H) :ha,(x) = z] < 62.
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We note that in some of the past literature, hash functions are assumed to be uniform by

default. We prefer to separate uniformity from the other properties we consider.

We now consider A-universal families, in which no value appears as the difference of the

images of two distinct domain elements disproportionately often.

Definition 13 We say that H is an E3 -almost-A -universal if for all x 4 y G D, z E R,

R

Pr[a +- Keys(H) : ha() - ha(y) = z] < e3-

The concept of A-universal hash function families is due to Stinson [137], who generalizes

the definition of Krawczyk [80] to arbitrary Abelian groups. We remark that A-universal

families are often called XOR-universal when the range is II, for some positive integer 1,

and the bit-wise exclusive-or is used as the subtraction operation. This latter term is due

to Rogaway [128]; the original concept is due to Krawczyk [80], who calls such function

families e-OTP-secure (OTP stands for one-time pad).

Next, we consider strongly universal hash function families. These families have the

property that images of any pair of distinct inputs are uniformly distributed among the

range elements. Thus, the function appears to be a truly random function whenever one only

sees two input/output pairs. We remark that the synonymous terms pairwise-independent

or 2-universal hash function families are often seen in the literature.

Definition 14 H is an 64 -strongly universal family of hash functions if for all x 4 y E D,

and z 1 , z 2 E R,

Pr[a +- Keys(H) : ha() = zi, ha(y) = z 2] e4 /IR I.

Carter and Wegman [36] were the first to define strongly universal hash functions. The

notion was subsequently generalized to E-strongly universal by Stinson [137]. The next

two types of hash function families are novel contributions of this thesis. They respec-

tively appear in two papers by Patel, Ramzan, and Sundaram [114], [115]. The first is

the bisymmetric family which requires that the sum of the images of two (possibly identi-

cal) elements under two randomly chosen hash functions, never takes on a particular value

disproportionately often.
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Definition 15 We say that H is an E5-bisymmetric family of hash functions if for all

X, y E D (here we allow x = y), z E R,

R RPr[ai +- Keys(H), a2 +- Keys(H) : hai(X) + ha2 (y) = Z] < E6.

The last family we consider is the monosymmetric family. It requires that the sum of the

images of two (possibly identical) elements under the same randomly chosen hash function

never takes on a particular value disproportionately often. It is similar to the previous

definition, with the exception that the previous definition considers two (possibly distinct)

hash functions, whereas the next one only involves one such function.

Definition 16 We say that H is an E6 -monosymmetric family of hash functions if for all

X,y E D (here we allow x = y) and z E R,

R
Pr[a +- Keys(H) : ha(x) + ha(y) = z] < e6.

An example of a family that has all four properties for el = - = 66 = 1/1RZ is a family

keyed by a random pair a = (ai, a 2 ) with a1 E Z*, a2 E ZP, and ha( ) = aIx + a2 mod p

where p is a prime, Z* is the multiplicative group modulo p, and Z, is the additive group

modulo p. Similarly, the affine transformation ax + b where a, b E GF(2'), and a = 0

works as well. Another example that satisfies all of the above properties, except for strong

universality, for fairly small values for e, is the square hash family which we discuss in great

detail in chapter 6.

We remark that we use the phrase "h is a universal (respectively uniform, A-universal,

strongly universal, bisymmetric, monosymmetric) hash function" to mean "h is drawn from

a universal (respectively uniform, A-universal, strongly universal, bisymmetric, monosym-

metric) family of hash functions."

2.9 Constructions of Luby-Rackoff Ciphers

We now formally define Feistel ladders which are the main tool for constructing pseudo-

random permutations on 2n-bit strings from length-preserving functions on n-bits strings.

Recall that we discuss this notion in chapter 1. Feistel ladders have been used in a large
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number of popular block cipher constructions such as DES. To start with, we define the

basic Feistel permutation (see figure 1-4, in chapter 1).

Definition 17 (Basic Feistel Permutation) Let f be a mapping from In to I,. Let

x = (xL XR) with xL, XR E I,. We denote by f the permutation on I2n defined as f(x) =

(xRXL E f(XR)). Note that it is a permutation because f--(y) = (yR E f (L),yL), which

can be computed if the function f is known.

The Feistel ladder involves chaining several basic Feistel permutations together (see figure 2-

1).

Definition 18 (Feistel Ladder) If fi,..., f, are mappings with domain and range In,

then we denote by TI(f1,. .. , f,) the permutation on I2n defined as I (fl,..., f,) = fT o. of1

Observe that a Feistel ladder is invertible since it is simply a composition of basic Feistel

permutations. Sometimes we refer to Feistel ladders as Feistel networks. There is a natural

"round" structure to these Feistel ladders. In particular, one can visualize that the plaintext

input to the Feistel ladder is transformed via a series of individual rounds, where each round

consists of the basic Feistel permutation i. We discuss this round structure in more detail

in chapter 5.

Luby and Rackoff [88] construct a pseudorandom permutation using three independently-

keyed pseudorandom functions in a Feistel ladder. The main theorem in their paper is:

Theorem 3 (Luby-Rackoff PRP) Let hl, fi, f2 be independently-keyed functions from a

keyed function family F with domain and range I, and key space I,. Let B be the family

of permutations on I2n with key space I3, consisting of permutations of the form P =

I (h 1 , f1, f2) (the key for an element of B is simply the concatenation of keys for h1 , f1, f2).

Then

Adv,3(q, t) <; Advf (q, t + O(2s + 2q(tf + n))) + (2n+1 + 22n)

where tf is the worst case time it takes to compute the value of a function from Y on a

given input.

We remark that in the original Luby-Rackoff paper, the main theorem statement is given

in terms of complexity-theoretic security; we have recast the statement to the concrete

58



~f

f2

0
0

fs~

Figure 2- 1: The s-round Feistel Ladder T(i..,f)
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security setting. The same remark applies for the theorems due to Naor and Reingold

which we describe shortly.

In their paper, Luby and Rackoff show that their three-round construction is not super

pseudorandom by giving a very efficient distinguishing attack. We give variants on this

attack, generalized to different settings, in chapters 4 and 5. Luby and Rackoff did observe,

however, that by adding an extra round to their construction, they could achieve super

pseudorandomness:

Theorem 4 (Luby-Rackoff SPRP) Let hl, fi, f2, h2 be independently-keyed functions

chosen from a keyed function family F with domain and range I and key space I. Let B

be the family of permutations on I2n with key space I4, consisting of permutations of the

form P = T (h1, f1, f2, h 2 ) (the key for an element of B is simply the concatenation of keys

for h 1,f 1 ,f 2 ,h 2). Then

AdvsrP(q, t) < Advf (q, t + O(3s + 3q(tf + n))) + ) (2n+1 + 22n)

where tf is the worst case time it takes to compute the value of a function from F on a

given input.

Naor and Reingold [101] optimize the above construction by removing the first and last

rounds in the Feistel ladder, and replacing them with strongly universal hash functions (see

figure 2-2). Of course, in this setting, the underlying hash function family must consist of

permutations, in order for the cipher to be invertible. Their construction is more efficient

since universal hash functions only involve specific statistical properties, so can typically

be implemented much faster than good pseudorandom functions. Also, we can construct

such universal hash functions without making any cryptographic assumption or conjecture.

By reducing the number of pseudorandom function invocations from four to two, Naor and

Reingold achieve a significant savings.

Theorem 5 (Naor-Reingold) Let f1 and f2 be independently-keyed functions from a

keyed function family F with domain and range In and key space I,. Let h1 , h2 be strongly-

universal hash functions, keyed independently of each other and of f1, f2, from a keyed

permutation family H with domain and range In and key space 1s2. Let B be the fam-

ily of permutations on I2n with key space I2s1+2s2 consisting of permutations of the form

60



L Rx x

fi

f2

h2

Figure 2-2: The Naor-Reingold construction h2 1o (fi, f2) o hi.

P=h2 1 oPF(f1,f 2 )oh1. Then

Advprp (q, t) <; Advf (q, t + O(si + 2s 2 + q( 2th + tf))) + (+) (2- + 2-2n)

where tf is the worst case time it takes to compute the value of a function from F on a

given input, and th is the worst case time it takes to compute the value of a function from

H on a given input.

Patel, Ramzan, and Sundaram [114], following a suggestion by Naor and Reingold [101],

optimize the construction further to use the same pseudorandom function in each of the
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middle two rounds, thus reducing the key size. They require an additional condition on the

hash function. We present the following theorem in chapter 3 of the thesis:

Theorem 6 (Patel-Ramzan-Sundaram) Let f be a function from a keyed function fam-

ily F with domain and range I, and key space Is,. Let h1 , h2 be e1-bisymmetric 62-almost A-

universal hash functions, keyed independently of each other and of f, from a keyed function

family H with domain and range I, and key space S2. Let B be the family of permutations

on I2n with key space s,+2s2 consisting of permutations of the form P = TI(h 1 , f f, h2 ).

Then

Advrp (q, t) < Advf (2q, t + 0(2s2 + 2q(th + n))) + q2 1 + (q) (2e2 + 2-2n)

We gain two advantages from using bisymmetric A-universal hash functions. The first is

that we can construct such functions without using any type of underlying cryptographic

assumption. The second is that since these functions only require specific statistical prop-

erties, they can be implemented much more efficiently than pseudorandom functions. For

example, the square hash, which we present in chapter 6 only requires a single modular

squaring. Also, the modulus, which is a prime, can be constructed in a specific manner

to help make the modular reduction more efficient. On the other hand, the most efficient

known number-theoretic construction of a pseudorandom function, due to Naor and Rein-

gold [99], requires a few full-length modular exponentiations, each of which requires several

hundred modular multiplications.

Another approach to designing pseudorandom functions is via the use of cryptographic

hash functions such as SHA-1 [102]. The use of such functions as PRFs is more dubious

since there is no simple precise cryptographic assumption one can make to justify their

claimed pseudorandomness. At the same time, such cryptographic hash functions are much

more efficient than number-theoretic constructions. Yet, they are still still slower than

well-designed universal hash functions. For example, on a particular implementation on an

ARM7 processor with hand-optimized assembly language code, a single call of the square

hash function is about six times faster than a single call to the SHA-1 compression func-

tion. The square hash function in this test has 160-bit inputs and outputs, and the SHA-1

compression function has a 512-bit input and 160-bit output. We stress, however, that one

would need to use at least one call to the SHA-1 compression function to achieve a PRF
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with a 160-bit output.

The above result of Patel, Ramzan, and Sundaram gives the most optimal known Luby-

Rackoff cipher under the traditional assumptions. In this dissertation we examine some of

these assumptions, and establish additional results related to such ciphers.

We note that we will often need to talk about the intermediate stages of the computation

in a Feistel ladder as a plaintext is transformed to a ciphertext (and vice-versa). We denote

the right halves of the values attained, as each of the successive basic Feistel permutations

is applied, by the letters S, T, V, and W respectively. In addition, we refer to the left half

and right halves of the plaintext input to the cipher as L and R respectively. Similarly,

we refer to the left and right halves of the ciphertext output as V and W respectively.

Consider, for example, the Patel-Ramzan-Sundaram construction 1I (hl, f, f, h2 ) [114]. We

can now describe it by the following equations (see figure 2-3):

S = L G h1(R);

T = Re f(S);

V = S E f(T);

W = Te h 2 (V).

For example, in the above case, the input to the second round is (R, S); the output after

the second round is (S, T).

2.10 Message Authentication Codes

The notion of message authentication codes appears at various points in this thesis. Recall

that message authentication codes are a secret-key construct which allow one party to

efficiently transmit a message to another party so that the following two properties are

satisfied:

1. Authentication: Messages are indeed sent by the person who is purported to have

sent them.

2. Integrity: Messages are not modified en-route from the sender to the recipient.
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Figure 2-3: The Labeled Patel-Ramzan-Sundaram construction TI(hi, fi, f2, h2 ).
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We give a high-level description of the problem together with some of the relevant work

in chapter 1. We now describe the setting in more rigorous detail. Two parties, Alice and

Bob, are involved. We assume they have pre-agreed on a secret key a. In addition, there is

a tagging algorithm Sa that applies a tag to a message, and a verification algorithm Va that

checks to see if the tag does indeed correspond to the message and the secret key a. In this

thesis, we model both algorithms as keyed function families. Hence, once the key is chosen

and fixed, the algorithms are deterministic. In addition, we also assume the algorithms are

stateless. That is, they do not use counters or pass any other type of state information.

We note that, in general, message authentication schemes may be probabilistic and may

maintain some type of state information.

Let M denote a finite function family whose domain is the message space. We denote

the key space by Keys(M). If Alice wants to send a message M to Bob, she first computes

a message authentication code, or MAC, y = Ma(M). She sends (M, p) to Bob, and

upon receiving the pair, Bob checks to see if indeed p = Ma(M). The family M should

be designed so that without knowledge of the secret key a, it should be infeasible for an

adversary to construct a message and the corresponding tag. We stress that finite function

families are not the only way to model message authentication codes, and there may be

other ways which are more desirable.

Bellare, Kilian, and Rogaway [14] provided the first formal definition of security for a

MAC. This definition is analogous to the formal security definition of a digital signature

given by Goldwasser, Micali, and Rivest [63]. We adapt this definition for message authen-

tication codes that are modeled as finite function families. In particular, we say that an

adversary A breaks the MAC if, when given oracle access to Ma, where a is kept secret, the

adversary can come up with a pair (M*, 11*) such that p* = Ma(M*) but the message M*

was never given as an input to the oracle for Ma. We now give a more formal treatment in

terms of concrete security. We run the following experiment in which we use the adversary

A to come up with a message and its corresponding message authentication code:
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EXPERIMENT-FORGE(M, A):
R

a +- Keys(M)

(M*, p*) +- A^'

If p*" = Ma(M*) and A never made M* a query to its oracle, then

return 1

else

return 0.

Now we are ready to formally define security for a message authentication code.

Definition 19 Let M be a keyed function family with domain Ik and range I. Let A be a

1-oracle adversary. Then,

Adv"c(A) = Pr[EXPERIMENT-FORGE(M, A) returns 1].

For any integers q, t > 0, we define an insecurity function Adv"C (q, t):

Adv"ac(q, t) = max{AdvC (A)}I
A

The above maximum is taken over choices of an adversary A restricted to running time at

most t, and to at most q oracle queries.

Definition 20 We say that M is a (t, q, e)-secure family of message authentication codes

if

Adv"'(q, t) < E.

The intuition behind the above definitions is that the security of message authentication

codes depends on the unpredictability of the keyed finite function family M.

2.11 Construction of Universal Hash Function based Mes-

sage Authentication Codes

As we mention in section 2.9, we can utilize universal hash functions in order to construct

provably-secure block ciphers. Prior to their use in block ciphers, it was noticed that uni-

versal hash functions could be used for message authentication. As we discuss in chapter 1,
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the concept of a universal hash function based message authentication code was first seen in

a paper by Wegman and Carter [142] - though in the unconditionally secure model. In the

computational setting, one can construct these MACs by composing a universal hash func-

tion with a pseudorandom function. This construction yields a a pseudorandom function

with a larger domain:

Theorem 7 Let F be a keyed function family with domain I, range Ii and key space

si I Let H be an E-universal family of hash functions with domain Ik, range In, and key

space IS2. Define the function family M with domain Ik, range I and key space s1+s2 via

Mk1 ,k2 (') = fk1 (hk2 (x)), where fkl E F and hk2 E H. Then:

AdvP(q, t) 5 Advf (q, t + O(s 2 + qth)) + q) E,

where th is the worst case time it takes to compute the value of a function from H on a

given input.

The above is a folklore result, and no published proof exists in the literature. One can easily

prove the theorem using techniques from this thesis. Using a proposition due to Bellare,

Kilian and Rogaway [14] (that analyzes the concrete security of using any pseudorandom

function family M as a message authentication code) one can get a MAC construction. We

can then prove the following theorem.

Theorem 8 If we construct M as described above, then

Adv"'(q, t) < Adv (q, t') + 1/2' < Advf (q, t') + ( + 1/2',

where t' = t + O(k + I + S2 + qth).

We remark that the idea of using a pseudorandom function family for message authenti-

cation was seen much earlier [62, 61], and the above proposition primarily works out the

concrete security of the construction.

2.12 Concrete Security versus Asymptotic Security

In this thesis we focus on proving our results in the concrete security model, rather than

the complexity-theoretic security model. To justify our choice of the former over the latter,
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we discuss the relative merits and demerits of these models, though we stress that in many

ways these two models are not terribly different.

Complexity-theoretic security analysis has been the focus of much research in theoretical

cryptography. This treatment has its foundations in computational complexity theory. In

this complexity-based cryptography, one typically talks about "polynomial-time" bounded

adversaries, and "negligible" advantages. The approach was pioneered in the seminal paper

of Goldwasser and Micali [64] on probabilistic encryption, and subsequently the complexity-

theoretic approach was applied to pseudorandomness [27, 62, 144] and digital signatures [63).

This approach led to a number of important results, and helped lay the theoretical founda-

tions for cryptography. For an excellent exposition on this aspect of cryptography, we refer

the reader to Goldreich's text [60].

Often, in the complexity-theoretic model, one aims to arrive at a "proof of concept"

that it is possible to construct a secure cryptographic system with certain properties. Thus,

the various system parameters are often asymptotically approximated rather than precisely

determined. The goal in concrete security is to determine the exact parameter values

necessary in order to implement the system securely. It was developed in a series of papers

by Bellare and Rogaway [15, 14, 13], and we refer the reader to Bellare's survey article [9] for

a high-level exposition. In a concrete analysis, one tries to establish a tight approximation of

the adversary's advantage as a function of the system's security parameters. In a complexity-

theoretic analysis, however, it might be sufficient to say that a polynomial-time bounded

adversary has negligible advantage; i.e. its advantage is bounded above by any inverse

polynomial in the security parameters.

Now, if the security parameters are not set large enough, it might be possible for the

adversary to break a real implementation of the system. For example, in our block cipher

constructions, we build pseudorandom permutations out of pseudorandom functions, though

we lose some security in the process. If the functions we start with are not "pseudorandom

enough" then, because of the security loss, the permutations we build from them may not

have adequate security for a particular application.

Thus the concrete security model requires us to be very precise in making our security

claims. We stress that a complexity-theoretic analysis is still extremely useful since we can

often determine the concrete parameters by working through it carefully. Similarly, given a

security theorem and proof in the concrete setting, we can often come up with the analogous
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theorem and proof in the complexity-theoretic setting.

2.13 Conclusion

In this chapter we gave preliminary discussions on many of the notions relevant to this

thesis. In addition to defining the notation to be used throughout the thesis, we gave some

background information on Luby-Rackoff ciphers, and their constituent components like

Feistel ladders and universal hash functions. We also explained the notion of a transcript

since it is used in many of the proofs throughout the thesis. In addition, we defined message

authentication codes (or MACs) which also appear throughout the thesis. Finally, we gave

a brief discussion on concrete versus complexity-theoretic security analysis.
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Chapter 3

Towards Optimal and Practical

Luby-Rackoff Ciphers

3.1 Introduction

In this chapter we give new constructions of more practical Luby-Rackoff block ciphers

which are efficient in terms of computation time and key length. In addition, we provide

security guarantees for Luby-Rackoff ciphers under weaker and more practical assumptions

about the underlying primitive. The results in this chapter appear in a paper by Patel,

Ramzan, and Sundaram [114]. We start with the Naor-Reingold construction [101] and

introduce new improvements in efficiency. Our constructions use the same pseudorandom

function in rounds 2 and 3, and our universal hash functions in the 1st and 4th rounds

operate on only half of the data as opposed to the entire data thereby improving on the

Naor-Reingold construction.

We employ a novel construct called a bisymmetric universal hash function, that we

define in chapter 2, which helps us attain more efficient constructions. In addition, we give

an alternate security analysis which shows that even if the underlying round function is

only a secure message authentication code (as opposed to the much stronger pseudorandom

function) no adversary can easily invert Luby-Rackoff block ciphers.

This chapter is organized as follows. In section 3.2 we start by giving the Naor-Reingold

construction and explain some of the difficulties associated with optimizing it. Also, we

provide our construction, which overcomes these difficulties. In the next section, we ana-
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lyze the super pseudorandomness of this construction. In section 3.4, we give an alternate

security analysis under the assumption that the underlying round function is a secure mes-

sage authentication code rather than a pseudorandom function, though our security claim

is much weaker. In section 3.5 we initiate an informal discussion on the optimality of Luby-

Rackoff ciphers, and explain where our cipher fits in. In the final section, we make some

concluding remarks.

3.2 Improving Luby-Rackoff Ciphers

In this section we provide a construction and security proof of a more optimized Luby-

Rackoff cipher. Our construction is more practical than the one given by Naor and Reingold

[101] - which was the state of the art in Luby-Rackoff block ciphers. Recall the main theorem

proven by Naor and Reingold:

Theorem 9 (Naor-Reingold [101]) Let f1 and f2 be independently-keyed functions from

a keyed function family F with domain and range I, and key space I,. Let h1 , h2 be

strongly-universal hash functions, keyed independently of each other and of f1, f2, from a

keyed permutation family H, with domain and range In, and key space Is2. Let P be the

family of permutations on I2n with key space I2s1+2s2 defined by permutations of the form

h2 'o (fi, f2) o hi. Then

AdvP (q, t) _< AdvT (q, t + O(si + 28 2 + q(2th + tf))) + (2 + + 22n)

where tf is the worst case time it takes to compute the value of a function from F on a

given input, and th is the worst case time it takes to compute the value of a function from

H on a given input.

The Naor-Reingold construction significantly enhances the efficiency of the original

Luby-Rackoff construction since it completely removes two calls of the expensive pseudo-

random functions, and replaces them with much more efficient non-cryptographic strongly

universal hash functions. In general, replacing pseudorandom functions with universal hash

functions has a number of advantages, and we give a more thorough discussion in section 2.9

of chapter 2.
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Naor and Reingold separately suggest two possible optimizations to their original con-

struction and individually prove them to be secure block ciphers. The first is to use the same

pseudorandom function in rounds two and three, thus saving key material: h2 o X (f, f) o h1 .

The other possible optimization is to use the construction 4(hi, fi, f2, h2 ) where the hi are

c-almost A-universal hash functions which now operate on only half the data, as opposed

to the entire 2n-bit data. This construction saves running time and key material. Unfortu-

nately, trying to realize both optimizations simultaneously (I(hi, f, f, h2 )) does not always

lead to a secure cipher.

In particular, suppose that the c-almost A-universal hash function family we use is the

linear hash (ha(x) = ax) where multiplication is performed over GF(2'). This family is

known to be A-universal. Let us prove this.

Lemma 1 The family H consisting of functions ha(x) ax is a A-universal hash function.

Proof: For all x,y E GF(2'), with x # y, and all 6 E GF(2")

Pr[ha(x) - ha(y) = 6]a

= Pr[ax - ay= 6]
a

= Pr[a= 6. (x - y)']
a

= 1/2".

The last equality follows from the previous since there is only a unique value of a satisfying

the above equation, and there are 2n possible choices. U

We can distinguish the cipher P = TI(hi, f, f, h 2 ) from a random permutation by making

one encryption query and one decryption query as follows. First we encrypt Li - R, = 0 2n

(i.e. the 2n-bit string of all O's). If the underlying cipher is P, then following the equations

for encryption, we get:

Si = L 1, h,(R 1 )

= 0" E hi(0")

= Ri(on);

Ti R, (D f (Si)
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=n (D f (hi (o"))

= (hi(0O));

V1 = Si e f(T1)

= hi(o") e f2(hI(on));

W1 = T1 e h2(V)

= f (h1(0)) e h2(h1(0") e f2(hi(o"))).

Thus, the left half of the ciphertext output is:

V1  f2(h1 (on)) D h1(0").

Next, we decrypt V2 W2 = 02n; i.e. the same string we encrypt in the first query. If the

underlying cipher is P, then following the equations for decryption, we get:

T2 = W 2 ED h2 (V2 )

= on e h2(on)

= h2 (o");

S 2 = V2 E f (T 2 )

=n "E f (h2 (o"))

= (h2());

R2 = T2 e f(S2 )

= h2(o") e f2(h2(on));

L2= S2 ED h1( R 2)

= f (h2(o")) e hi(h 2(o") E f2(h2(o"))).

Thus, the right half of the plaintext output is

R 2 = f 2(h2(o")) E h2(on).
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Now, if we use the linear hash ha(x) = ax, we have that

hi(0") = 0' = h2 (0").

Thus:

Vi = hi(0") E f 2 (h1 (0"))

= o" ( f 2((o)

= f 2 (on).

Similarly,

R2 = h2(o) ED f 2 (h2(on))

= o" E f 2((o)

= f2(O4).

Thus,

V1 = f 2 (O")= R2

with certainty whenever P is the underlying cipher. This property would only hold with

probability about 1/2n if the cipher were a truly random permutation. Therefore, we have

found an attack, which only requires two non-adaptive queries, and yields a distinguisher

A with Adv,,(A) exponentially close to 1. Observe that this attack imposes no restrictions

on the underlying pseudorandom functions. In fact, the attack would still work if these

functions were truly random rather than pseudorandom.

This raises the question of whether one can use the same pseudorandom function in

rounds two and three and have an efficient non-cryptographic function operating on only

half the bits in rounds 1 and 4. In this chapter, we give a construction which answers this

question in the affirmative.

We employ el-bisymmetric e2 -almost A-universal hash functions. This novel construct

will give us more efficient constructions than the strongly universal hash function based

constructions of Naor and Reingold [101]. One universal hash function that satisfies these

properties is the square hash, which can be implemented very efficiently on many platforms.
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We discuss this function in great detail in chapter 6.

Using these E1-bisymmetric e2 -almost A-universal hash functions in rounds one and four,

and the same pseudorandom function in rounds 2 and 3, we can get a secure and efficient

Luby-Rackoff cipher. Typically we want El, E2 to be extremely small - around 1/2' where

the hash functions have domain and range I,. In this chapter, we prove the following

theorem:

Theorem 10 (Patel-Ramzan-Sundaram [114]) Let f be a function from a keyed func-

tion family F with domain and range In and key space Is,. Let h1 , h2 be el-bisymmetric

e2 -almost A-universal hash functions, keyed independently of each other and of f, from a

keyed function family H with domain and range In and key space Is2. Let B be the fam-

ily of permutations on I2n with key space Is1+2s2 consisting of permutations of the form

B=4'(h1 ,f,f,h 2 ). Then

Advsrp(q, t) < Advp (2q, t + 0(2S2 + 2 q(th + n))) + q2 i + (212 + 2-2n),

where th is the time it takes (in the worst case) to compute the functions h1 and h2 on a

given input.

We will focus our efforts on proving the following theorem, which utilizes truly random

functions in the middle rounds rather than pseudorandom ones. Then, by applying standard

techniques, the above theorem will follow as corollary.

Theorem 11 (Patel-Ramzan-Sundaram [114]) Let f be chosen uniformly from the

family Rand",n. Let h1 , h 2 be f 1-bisymmetric E2 -almost A-universal hash functions, keyed

independently of each other and of f, from a keyed function family H with domain and

range In. Let P be the family of permutations on I2n consisting of permutations of the form

P=4'(h1 ,f,f,h2). Then

Advrp (q,t) q2 e1 + ( (2E2+ -22n)

Maurer [94] presents a very simple proof of security of the three-round Luby-Rackoff

construction. His proof does not generalize to the four-round Luby-Rackoff construction,

and does not deal well with adaptive adversaries. Naor and Reingold [101] give a more
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formal framework for proving adaptive security of Luby-Rackoff ciphers. Fortunately, the

conditions that we need to satisfy for the security of our block cipher as in a Maurer-type

treatment are the same as the conditions resulting from the more formal Naor-Reingold

treatment. The proof that we sketch in the published version [114 uses a Maurer-style

argument and does not include all the details. In addition it does not handle the adaptive

case. In this chapter, with a view towards completeness and precision, we adopt the more

general framework of Naor and Reingold, which allows us to present the proof of security

in the setting of adaptive adversaries.

3.3 Proof of Security

We now analyze the security of our construction P = 'T(hi, f, f, h2 ) that we define in the

above theorems. We proceed in the standard manner by showing that the our permutation

P = TI(hi, f, f, h2 ) is pseudorandom when f is truly random (instead of just pseudoran-

dom). Our overall treatment, however, follows the nicely laid out framework of Naor and

Reingold [101].

Recall that in our setting we model the adversary A as a program for a random access

machine. The adversary gets a certain kind of black-box access to either a permutation

sampled uniformly from the set of all possible permutations on 2n bits, or one sampled

from the set of ciphers P = I(h 1 , f, f, h2 ). In the latter case, the sampling is done by

randomly sampling functions hl, h2 from an Ei-bisymmetric Q2 -almost A-universal family

H according to its underlying distribution, and sampling f uniformly at random from

Rand"'" (the family of all possible functions whose domain and range consists of n-bit

strings).

The adversary must determine which of the two was actually sampled. Clearly, if the

adversary cannot distinguish between the two then the cipher P = TI(h 1 , f, f, h2 ) is, for all

practical purposes, a truly random permutation, and no information about the plaintext

can be derived from the ciphertext. This gives us the ultimate level of security.

The adversary A has access to two oracles: one oracle for each direction of the permu-

tation. We can represent A's queries in two possible forms: (+, x) which asks to obtain the

value of P(x), or (-, y) which asks to obtain the value of P-1(y). For simplicity, we often

write L - R to represent the left and right n bits of the plaintext x, and V - W to represent
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the left and right n bits of the ciphertext y. We define the query-answer pair for the ith

query as (Xi, y,) E {0, 1}2n x {O, i}2n, where A's query is either (+, xi) and yj is the answer

it receives from P or its query is (-, yi) and xi is the answer it receives. We assume that A

makes exactly q queries, and we represent A's transcript by the sequence

o = ((X1 , Yi),..., (Xq, Yq)).

We restrict ourselves to the case that A is deterministic. This restriction does not

really affect our results since we can fix the random tape that maximizes A's advantage,

in addition to which the security bounds we attain are independent of the number of time

steps needed by A. Under this assumption, the ith query made by A can be determined

from the first i - 1 query-answer pairs in A's transcript. Moreover, given the transcript

and the description of the adversary, we can efficiently determine whether a given entry

in the transcript represents a plaintext query or a ciphertext query, and we can determine

the response (since A is deterministic, we can always simulate, and hence determine, its

behavior).

From the way we have defined our transcripts, and using the notation discussed in

section 2.6 of chapter 2, the only possible transcripts are ones for which:

CA[O(i 1 )] E {(+, xi), (-, yI)}, (3.1)

where o'j) represents the first j entries of o-, for 1 < j < q. That is:

0o () = ((X I, yi ),... -, (Xj, yA)).

We also assume that the adversary does not unnecessarily repeat queries.

Convention 1 For any possible A-transcript

o-= ((Xi, yi),..., (q, Yq))

we assume from now on that if o- is consistent and if i # j then both xi : xj and yi # yj.

This formalizes the concept that A never repeats a query if it can determine the answer

from a previous query-answer pair.
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We now consider another process for answering A's queries that will be useful to us.

Definition 21 The random process P answers the ith query of A as follows:

1. If A's query is (+,xi) and for some 1 < j < i the jth query-answer pair is (xi,yi),

then R answers with yi. If more than one such query-answer pair exists, we pick the

one with the smallest index.

2. If A's query is (-, yi) and for some 1 < j < i the jth query-answer pair is (xi, yi),

then R answers with xi. If more than one such query-answer pair exists, we pick the

one with the smallest index.

3. If neither of the above happens, then R answers with a uniformly chosen 2n-bit string.

Note that R's answers may not be consistent with any function, let alone any permutation.

We formalize this concept.

Definition 22 Let

o- = ((xi,yi),. . .

be any possible A-transcript. We say that a is inconsistent if for some 1 < j < i < q the

corresponding query-answer pairs satisfy:

xi= x and y L yj, or

xi xj and yi =y.

Fortunately, we can show that the process R often "behaves" exactly like a permutation.

It turns out that if A is given oracle access to either f or a function from Perm2n, it will

have a negligible advantage in distinguishing between the two. We prove this more formally

in proposition 1 as was done by Naor and Reingold [1013. Before proceeding, recall that

we can denote by the random variables Tp, Tperm2., Tk the transcript seen by A when its

oracle queries are answered by ', Perm2n, f respectively.

Proposition 1 Let A be a 2-oracle adversary restricted to making a total of at most q

queries to its oracles. Then

Pr[CA(T, ) = 1] - Pr [CA(Tperm2n) = 1] .(q- 2~-2n.
i? Perm 2n 2
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Proof: First, let Con denote the event that Tk is consistent, and let -,Con denote the

complement of this event. Then, for any possible and consistent A-transcript o- we have

that:

(22n _
Pr[TPerm2n = ] Pr[Tk = o- I Con].
R 2nv R

Thus TPerm2. and TA have the

bound the probability of -,Con.

1 < j < i < q for which

same distribution conditioned on the event Con. We now

Recall that TA is inconsistent if there exists an i and j with

Xi =x and yj yj, or

xi x# and yi yj.

For a particular i and j this event happens with probability 2-2n. So,

(3.2)

We complete the proof via a standard argument:

= 1] - Pr [CA(TPerm2n) = 1]
Perm 2n

= (Pr[CA(Tk) = 1 1 Con] -
\ R Per

+ (r[C(Tk) = 1 I-Con] - P
\RP

= ([CA(TA) = 1 I-Con] - Pe

< Pr[-,Con]
R

q)(.2 -2n

Pr [CA(Term2n) = 1] - Pr[Con]

Pr [CA(TPerm2n) = I - Pr[-,Con]
rm /Per R

Pr 2n[CA(Tperm 2n) =1 1] Pr[-,Con]
ermn/ R

which is the bound we desire. U

We now proceed to obtain a bound on the advantage A will have in distinguishing

between Tp and TA. It turns out that Tp and TA are identically distributed unless some

event depending on the choice of hl, h2 in ? occurs. We call this event Bad and obtain
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a bound on the probability that it actually occurs. Intuitively Bad occurs whenever the

internal function f in P would have been evaluated on the exact same point twice for

" two distinct chosen plaintext queries (forward direction of the permutation), or

" two distinct chosen ciphertext queries (reverse direction of the permutation), or

" one plaintext and one ciphertext query.

That is, Bad occurs whenever there is an internal collision in the function f during the

computation of 'I(hi, f, f, h 2 ). We formalize this as follows.

Definition 23 Let a = ((xI,yl),. . .,(Xq,yq)). Let Li - Ri denote the leftmost n bits and

rightmost n bits of xi, and let Vi - Wi denote the leftmost n bits and rightmost n bits

of yi, for every 1 < i < q. Then, for every specific pair of E1-bisymmetric E2-almost

A-universal hash functions h1 ,h 2 we define Bad(h1,h 2 ) to be the set of all possible and

consistent A - transcripts:

-=((Li -R,V -W),...(L * RV -Wq))

satisfying:

" event Bi: there exists 1 < i < j < q such that hi(Ri) E Li = h1 (Rj) 0 Lj, or

" event B2: there exists 1 < i < j < q such that Wi e h 2 (V) = Wj 0 h 2 (Vj), or

" event B3: there exists 1 < i, j q such that h, (Ri) E Li = Wj E h2 (V.

In the following proposition, we show that these bad events occur rarely.

Proposition 2 Let h 1 ,h 2 C H be E-bisymmetric e2 -almost A-universal hash functions.

Then, for any possible and consistent A - transcript

= ((Li -R 1,V1 -Wi),...,(Lqg- RV -Wq)),

we have that

Pr [o- E Bad(hi, h2 )] < q2E + 2 ( 2-
hi,h 2
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Proof: Recall that a transcript o- E Bad(h1, h2 ) if event B1, event B2, or event B3 occurs.

We can determine the individual probabilities of each of these events separately, and obtain

an upper bound on the desired probability by taking the sum. We start with bounding the

probability of the first bad event:

Pr[B1] < Pr[31 < i < j 5 q : hi(Ri) e Li = hi(Rj) e Lj]
hi hi

< Pr[h1(IR) e Li = h1(Rj) e Lj]

< Pr[h1 (R-) e h1 ( Rj) = Li e Li]
E< <hi1<i<j~q

The last inequality follows from the previous since if Ri # Rj then we can use the fact that

h, is E2 -almost A-universal, and if Ri = Rj we know that Li j Lj, since we assume the

queries are distinct, in which case

Pr[h1(Ri) E hi(Rj) = L ED Lj] = 0.
hi

Now, we bound the probability of the second event:

Pr[B2] < Pr[31 < i < j ! q : W E h2 (Vi) = W E h2 (V)]
h2 h 2

< Pr[Wi eh 2(Vi)=Wj Dh 2 (V)]
15 <j<q

< S Pr[h2 (Vj ) h2 (Vi) = W E Wil]
1<i<j<q

The last inequality follows from the previous since if Vi = V then we can use the fact that

h2 is 62-almost A-universal, and if Vi = Vj we know that W 5 Wj, since we assume the

queries are distinct, in which case

Pr[h(Vi) E h(Vj) = Wj e Wj] = 0.
h

Finally, we must bound the probability of the third event:
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Pr [B3] Pr[31 < i, j q : hi(Ri) D Li = Wj E h2 (V)]
h1,h2 h

< Z Pr[h1(Ri)&ELj=WjE h 2 (Vj)]
1<i,j<q

< S Pr[hi(Ri)&Dh 2(Vj)=Wj DLi]

< q2 .fl

The last inequality follows from the previous since h, and h2 are Ei-bisymmetric.

We thus get that:

Pr [o- E Bad(hi,h 2 )) 5 Pr [B1] + Pr [B2] + Pr [B3)
hi,h2 hi,h2 h1,h2 h1,h2

5 q 2E, -+-2 (q -I2,

which is the desired bound. U

The following key lemma shows that the distribution of possible and consistent transcripts

generated by Tp given that the bad conditions do not occur is identical to the distribution

of possible and consistent transcripts generated by Tk. This lemma will later help us to

determine a bound on the advantage our adversary A will have when trying to distinguish

between these two cases in general.

Lemma 2 Let a be any possible and consistent A-transcript, where

o-= ((Li R 1 ,V1 -W1),...,(Lq -R,V -Wq)).

Then

Pr[Tp = o-la Bad(hi, h2 )] = Pr[Tp = a].
R

Proof: A fairly straightforward argument first provided by Naor and Reingold [101] gives

us

Pr[Tk = o-] = 2-2nq
R

This equality follows from the fact that 1 works by picking elements at random from I2n-

Thus, if we consider a fixed transcript entry, the probability that we can generate it is 2 -2n.
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For q consistent transcript entries, R can generate it by picking q elements independently

from I2n, which gives us the desired equality 2 -2nq. Let us consider the case in which o- was

generated by T-p; i.e. the oracle computes a function of the form P = T (hl, f, f, h2 ). Now,

o- is a possible A-transcript so T = a if and only if Vi - Wi = P(Li - Ri) for all 1 < i < q.

We know that Li - Ri and Vi - Wi must satisfy the following series of equations:

Si = Li E h 1 (Ri);

T = Ri (D f (Si);

V = Si E f (T);

Wi = T E h2 (Vi).

So, in particular

Vi -Wi = P(Li - Rj) <- f (Si) = T e Ri and f (T) = Vi D Si.

Next, suppose hl, h2 are e1-bisymmetric E2-almost A-universal hash functions for which

o- V Bad(hi, h 2 ). Then, for all 1 < i < j 5 q, it follows that Si = Sj and T 0 Tj (otherwise

o- E Bad(hi, h 2 )). Similarly, for all 1 < i, j < q, we have that Si 4 Tj. So, if o- V Bad(hi, h2 )

all the inputs to f are distinct. Since f is chosen from Rand"'", for every fixed choice

of hl, h2 such that o- Bad(hi, h2 ) the probability (taken only over the choice of f) that

Tp = o- is exactly 2 -2nq. Therefore:

Pr[Tp = alo V Bad(hi, h2 )] = 2 -2nq

which completes the proof of the lemma. U

To complete the proof of the main theorem, we can follow the Naor-Reingold framework

utilizing the above lemma where appropriate. Before going through the necessary steps,

we state a preliminary proposition. In the following, we abuse notation by listing the

adversary's oracles as (P, P- 1), and (Perm2n, (Perm2n - 1 ) to remind the reader that oracle

access is given to both the forward and inverse directions of the permutation.

Proposition 3 Let I be the set of all possible and consistent transcripts o- such that
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CA(o-) = 1. Then:

Adva((P,P- 1), (Perm 2", (Perm 2,) 1 )) < j(Pr[Tp = -] - Pr[T -2n

where A is restricted to making a total of at most q queries to its oracles.

Proof: First, we break up the left hand side of the above inequality so that the distin-

guishability of both distributions are taken with respect to the process R:

AdVA((P, P-1), (Perm 2,, (Perm 2ng-1))

5 Adv((P, P- 1 ), ) + AdVA(R, (Perm 2n, (Perm 2n )- 1)). (3.3)

Now, since A with an oracle for P only generates possible and consistent transcripts, we

can apply theorem 1 from chapter 2 to the first summand in equation 3.3. Next, we can

apply proposition 1 from this chapter to the second summand. The proposition follows. U

We now prove the main theorem:

Proof: (of Theorem 11) First we successively apply proposition 3 given above, and the-

orem 2 from chapter 2 with the set Bad(hi, h2 ):

Adv((P, P- 1 ), (Perm 2n, (Perm 2n)-1))

5 (Pr[Tp =o-] - Pr[T, = o-D + - 2-2n.

Now, applying Theorem 2:

Z(Pr[T-p = a] - Pr[TA = or])
CEF R

S Pr[T = o |- Bad(h, h 2 )] - Pr[Tr = o-] - Pr[o- V Bad(hi, h 2 )]

+ Pr[o-* E Bad(hi,h 2)].
P
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Observe that according to Lemma 2:

Pr[TT, = o- j, Bad(hi, h2)] - Pr[Tk = a] Pr[o V Bad(hi, h2)] = 0.

In addition, observe that proposition 2 tells us that

Pr[a* c Bad(hi, h 2 )] < q 2 e + 2 ()- 2

Combining these observations, we get:

Adv((P, P-1), (Perm 2,, (Perm 2n -1))

< q2 61 + q) (22 + 2-2n)

which is the desired bound. U

Having proven theorem 11, we now give the complete proof of theorem 10.

Proof: (of Theorem 10) The proof starts by analyzing the advantage an adversary has in

distinguishing between the permutation families B and P. Recall that P is the construction

in which the functions in the middle two rounds are taken from Rand"', and B is almost

identical, with the exception that the middle two round functions are taken from F and

may not be truly random. Combining this analysis with the result of theorem 11 gives us

the desired result.

Consider an adversary A 1 who tries to distinguish B and P. We convert this adversary

A 1 into another adversary A 2 that tries to distinguish between 7 and Rand"' via the

following reduction algorithm. We assume that A 1 has access to an oracle 01 which either

computes a permutation from B or P (or the inverse of such a permutation), and we assume

that A 2 has access to an oracle 02 which computes a function from Y or Rand"'. We

represent the permutation that the first oracle computes by p, and function that the second

oracle computes by f.
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Description of A02

h1 ,h 2 <- H.

Repeat

Simulate A01

If A 1 asks for p(x) then

compute 'T(hi, f, f, h2 ) using two queries to 02:

S = xL e h(xR)

T = xR E f(S).

V = S e f(T).

W = Te h2 (V).

Return V - W as the response to Al's query for p(x).

If A 1 asks for p-1(y) then

compute T- 1 (h 1 , f, f, h 2) using two queries to 02:

T = yR E h 2 (yL)

S YL ED f (T).

R =T D f (S).

L = S E hi(R).

Return L - R as the response to Ai's query for p-(y).

Until A 1 is done.

Give the same output as A 1 .

We now explain what this algorithm does. It starts by picking two functions hl, h 2 from the

universal family H. This really amounts to picking two strings from s2, and using these to

key two functions. Next, the adversary A, is simulated. As the simulation progresses, A,

can make two types of queries to its oracle: it can ask to have either the forward direction

or inverse direction of the permutation on a given input. These would correspond to the

encryption of a chosen plaintext, or the decryption of a chosen ciphertext. In either case,

A 2 can provide an answer to this query by actually performing the computation required in

the Feistel ladder. To do so A 2 must make two oracle calls to its oracle 02, which computes

the function f. In addition, it must compute the value of hi on one input, and the value of

h2 on one input. Finally, when A 1 is done, and outputs a value, A 2 should give the same
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output.

Observe that for every query A, makes in the simulation, A 2 makes two queries to its

oracle 02 and two universal hash function computations (since it must simulate a four-round

Feistel network in which the outer two rounds each involve a hash function computation,

and the middle two rounds each involve oracle calls). In addition, A 2 must write various

strings to its tape in order to make its oracle calls, and pick two random strings from s2 to

choose functions from H. Thus, if the simulation of A, takes t time steps, then the running

time for A 2 is t + O(2s2 + 2 q(th + n)). Now, suppose that

AdV (2q, t + O(2s2 + 2 q(th + n))) = 6

for some value 6 smaller than 1. Then, it follows that

Adv"p(q, t) < 6

since if the advantage were greater than 6, the algorithm we just described would be able

to distinguish between T and Randn~n with advantage better than 6. Consequently,

Adv'3 (q, t) ! Advrf (2q, t + O(2s2 + 2 q(th + n))).

Now, theorem 11 gives us that

Adv((P, P- 1), (Perm 2,, (Perm 2n-1))

q2 E, + (q) (2E2 + 22n).

Combining these two inequalities, we get that:

Advsp (q, t) Adv T(2q, t + O(2s 2 + 2 q(th + n))) + qE + ( (2E2 + 2 -2n)

which is the desired bound. U
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3.4 Proving Security Under the MAC Assumption

We give an alternate security analysis of our construction. We utilize a weaker, but perhaps

more practical, assumption, but make a weaker claim on the security of our construction. In

particular, we show that if the underlying function f in our construction is a secure message

authentication code (MAC), then it is infeasible for an adversary to come up with the

plaintext corresponding to a randomly chosen ciphertext, or the ciphertext corresponding

to a randomly chosen plaintext. Here the challenge plaintext (ciphertext) must be chosen

at random from the set of all plaintexts (ciphertexts) that do not appear in any query made

by the adversary. Some earlier work on the relationship between unpredictability (MACs)

and indistinguishability was studied in a paper by Naor and Reingold [100].

While the security claim we make and prove is not strong from a purely theoretical

point of view, it does have practical importance since unpredictability is a less stringent

requirement than pseudorandomness on a function family. The weaker notions of security

we discuss were formally defined in a paper by Even and Mansour [50]. The versions we

present in the thesis are slightly adapted for our settings.

The first notion is security against the cracking problem or CP. In this scenario, the

adversary has oracle access to a particular block cipher. He makes a series of (possibly

adaptive) queries to these oracles. Finally, we he is given a challenge ciphertext that has

never appeared either as a query, or as an answer to a query. We say that the adversary

succeeds if it can successfully invert the ciphertext to produce the original plaintext (without

making additional queries to the oracle).

The second notion is security against the forgery problem or FP. Here the adversary again

makes a series of (possibly adaptive) queries to its oracles, and then is given a challenge

plaintext, that has never appeared either as a query, or as an answer to a query. We say

that the adversary succeeds if it can come up with the corresponding ciphertext.

There are several types of challenges that one can imagine. Our results involve the case

of a random challenge. That is, the plaintext or ciphertext which is given as a challenge

must be chosen at random. One can imagine other scenarios; for example, allowing the

adversary to pick his or her own challenge. We make these definitions more formal.

Definition 24 Let P be a permutation family over a set D. Let A 1 and A 2 be adversaries,
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where A 1 has access to two oracles. Then,

Advi,(A,, A 2 ) = Pr[a +- Keys(P); s + ; c 4- D'; m +- A2(S, c) : pk (m) c].

Here the set D' represents all elements of D that do not appear as a component of a ciphertext

oracle query to pa I or as a ciphertext response of an oracle query to pa. Thus the challenge

ciphertext c is different from any ciphertext that has been given as a query or as a response

to a query during the execution of A 1 . For any integers q, t, we define an insecurity function

AdvC, (q, t) as follows:

Adv-,P(q, t) = max {AdvCP (A1, A2)}.
Al1,A2 P

The above maximum is taken over choices of adversary pairs A1 , A 2 , that have combined

running time at most t, and such that Al makes at most q queries.

Definition 25 We say that P is (t, q, e)-secure against the cracking problem on random

challenges if

AdvCP(q, t) < E.

Similarly, we can establish a formal definition for the forgery problem:

Definition 26 Let P be a permutation family over a set D. Let Al and A 2 be adversaries,

where A 1 has access to two oracles. Then,

A FPPa,Pa-1 M R Dyc -

Adv (A 1, A 2) = Pr[a <- Keys(P); s - ; + ';c +- A 2 (s, m) : pk (m) = c].

Here the set D' represents all elements of D that do not appear as a component of a plaintext

oracle query to Pa or as a plaintext response of an oracle query to pa 1. Thus the challenge

plaintext m is different from any ciphertext that has been given as a query or as a response

to a query during the execution of A 1 . For any integers q, t, we define an insecurity function

Advp (q, t) as follows:

Advp (q, t) = max {Adv P(A,, A 2 )}-
A 1 ,A2

The above maximum is taken over choices of adversary pairs A1 , A 2 , that have combined

running time at most t, and such that A 1 makes at most q queries.

Definition 27 We say that P is (t,q,e)-secure against the cracking problem on random
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challenges if

Advp (q, t) < c.

These definitions are quite similar. In both cases we have two adversaries, one of which

makes queries, and computes a "cookie" or some piece of state information s, and the other

which takes this cookie s, together with a challenge ciphertext (plaintext), and tries to come

up with the corresponding plaintext (ciphertext). While there are significantly stronger

definitions of block cipher security (e.g. super pseudorandomness) the security measures

we propose above are still useful; for example, they give guarantees against key-recovery

attacks.

Theorem 12 Let f be a function from a keyed function family Y, with domain and range

I, and key space IS. Let h1 , h2 be two functions, keyed independently of each other and of

f, chosen from a keyed function family H, which also has domain and range In, and key

space I's. Consider the permutation family P, that consists of permutations of the form

'I(h 1 , ff, h2), with domain and range I2n, and key space s1+2s2- Then

AdvCP(qt) < Advmac(2q,t + 0(2s2 + 2 q(th + n))) + 2q/2n,

where th is the worst case time to evaluate a function from H on a given input.

Proof: The overall idea is to show that given any adversary pair Al, A2 who can solve

the cracking problem, we can construct an adversary A' who can break the underlying MAC

f where A' has access to an oracle 02, which computes the MAC function f. We describe

A' as follows.
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Description of A'

h 1 , h2 +- H.

Repeat

Simulate AC9 '

If A 1 asks for p(x) then

compute TI(h 1 , f, f, h2 ) using two queries to 02:

S = XL h1 (xR).

T = xR f(S).

V = S e f(T).

W =T e h2(V).

Return V - W as the response to Ai's query for p(x).

If A1 asks for p 1 (y) then

compute I- 1 (hi, f, f, h2 ) using two queries to 02:

T = yR h2(yL).

S = yL f(T).

R =T e f(S).

L = S e h1 (R).

Return L - R as the response to Al's query for p-(y

Until A 1 is done.

Let s denote the output of Al (s is a cookie).

V - W +- 12n (where V, W E I,).

Simulate A 2(s, V -W).

Let m = (L, R) denote the output of A 2.

Output: (W eh 2(V),V±ELEDhi(R)).

Here is what A' does. First it picks two functions h, and h2 at random from some

function family; for example, a family of bisymmetric A-universal hash functions. Then

A' proceeds simulating A,. At some point A 1 is going to make a query which could be in

either of two forms: "Please give me the encryption of a message m" or "Please give me the

decryption of a ciphertext c." In either case, A' must give a legitimate answer to the query

that A, makes. The adversary A' can do this easily by making two calls to the black box

for f and simulating the encryption or decryption algorithms. For example, if the ith query
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is an encryption query on a message Mi = Li - Ri, then A' computes values Si, T, V, Wi

according to equations:

Si = Li E) h ( Ri);

T = RiEf (Si);

V Si E) f(T);

Wi =T E h2 (Vi).

We see that A' calls the black box for f whenever it computes T and Vi. Decryption

queries are handled in a similar fashion. Now, after A, finishes making q queries, (which

results in A' having made 2q queries), A' collects the state information s, that Ai computes.

Next, A' picks a random ciphertext c = V - W. It gives this ciphertext together with the

state information s to A 2. Call the response m, and divide it up into left and right halves:

(L, R). Then, A' outputs:

(W E h2 (V),V E L e h1 (R)).

Observe that if A, makes q queries, then A' must make 2q queries to its oracle 02, and

must compute the value of hi on q inputs, and the value of h 2 on q inputs. In addition, A'

must record various values in order to make its oracle queries.

If the adversary pair A 1 , A 2 successfully solves the cracking problem, then the above

equation represents the pair (T, f (T)), which constitutes a candidate forgery on the MAC f.

This event happens with some probability. This probability is almost identical to probability

that EXPERIMENT-FORGE(A') returns 1, where EXPERIMENT-FORGE is the experiment we

defined when we discussed message authentication codes in chapter 2.

There is still one technicality remaining. Recall that in our definition of a secure message

authentication code, we require that the adversary forge a message which is different from

the messages that the adversary gives to the black box during the query phase. It turns out

that, in the current scenario, this event happens with high probability. In particular, since

V - W is chosen at random, and is independent of the other queries, the value W e h2 (V)

is distributed uniformly, and is independent of any values that are given as input to f in
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the query phase. Since there were 2q input queries made to f, the probability that any of

them equals W e h2 (V) is bounded above by 2q/2".

Now, let us first compute the probability that A' fails to come up with a valid forgery.

Observe that A' fails if at least one of the following two conditions occur:

1. The adversary pair A1, A2 does not correctly solve the cracking problem.

2. The value W E h2 (V) was already given as a query by A, during the query phase of

the simulation (i.e. A' did not forge a new message).

Suppose the first condition occurs with some probability 1 - 6'. We know that the second

condition happens with probability 2q/2". Thus, the probability that A' fails is bounded

above by

1 - E'+ 2q/2".

Consequently, the probability that A' succeeds is bounded from below by c'- 2q/2". Notice

that by the statement of the theorem, the success probability of A' is bounded above by

the probability that we can create a valid forgery; i.e. the probability that EXPERIMENT-

FORGE(A') returns 1. Also, the maximum value of c' is AdvCP(q, t). Thus:

Advicp(q, t) - 2q/2" < Adv a(2q, t + 0(282 + 2 q(th + n))).

The required bound follows. M

We can state a similar theorem for security against the forgery problem under random

challenges. We omit the full proof since it is similar to the previous proof. The only

difference is that the adversary A' will construct a forgery of the form (S, f (S)) via the pair

(L ED h1 (R),W D h 2(V ) e R).

Theorem 13 Let f be a function from a keyed function family Y, with domain and range

In, and key space IS,. Let h1 , h 2 be two functions, keyed independently of each other and of

f, chosen from a keyed function family H, which also has domain and range In, and key
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space Is. Consider the permutation family P, that consists of permutations of the form

'I(h 1 , f, f, h 2 ), with domain and range I2n, and key space s1+2s2. Then

Advp (q, t) < Advmac(2q, t + 0(2s2 + 2 q(th + n))) + 2q/2",

where th is the worst case time to evaluate a function from H on a given input.

3.5 A Discussion on Optimality

Having examined the class of ciphers T(hi, f, f, h2 ), under two distinct security analyses, we

give an informal discussion on the optimality of a Luby-Rackoff cipher, and explain where

our construction fits. Recall that since the path-breaking paper of Luby and Rackoff [88],

considerable progress has been made with respect to making the construction more efficient.

Specifically, as noted previously, most of the focus has been in "reducing" the number of

invocations of a random function and the amount of key material used. Following the work

of Lucks [89], Naor and Reingold [101] produce extremely efficient constructions with the

help of universal hash functions and just two calls to a random function. In the present

chapter, we describe a further generalization by using a different class of hash functions

operating on only half the size of the input, in addition to a reduction in the key material.

Is the end of progress in sight? We now discuss what it might mean for a Luby-Rackoff

cipher to be optimal. We present various parameters of interest, and discuss how our

proposal fits within this discussion.

1. Minimal number of rounds: In their original paper [88], Luby and Rackoff show that

a cipher with only two Feistel rounds can easily be distinguished from random. In

addition, the show that three rounds are necessary for pseudorandomness and four

rounds are necessary for super pseudorandomness. Our construction also consists of

four rounds.

2. Maximal security: Patarin [112] showed that the four-round Luby-Rackoff construc-

tion can be distinguished from a random permutation with probability O(2) with

q queries. We meet this bound as stated in Theorem 1. We can reduce the distin-

guishing probability by increasing the number of rounds, but this would violate the

previous criterion.
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3. Minimal calls to cryptographic functions: Since the output of the block cipher is 2n-

bits long, it would seem that two calls to n-bit pseudorandom functions are necessary

to ensure cryptographic security. We only make two pseudorandom function calls in

rounds two and three respectively. For rounds one and four we use non-cryptographic

ci-bisymmetric c2 -almost A-universal hash functions, which results in a noticeable

efficiency improvement.

4. Reusing the same pseudorandom function: It has been the goal of many papers to re-

duce the number of different pseudorandom functions that are used, ultimately hoping

to use just one keyed pseudorandom function. Doing so saves key material, which may

lead to an improvement in encryption / decryption time in practical implementations.

We reuse the same key for the pseudorandom function in rounds two and three, so we

achieve this goal as well.

5. Minimal data size operated on by non-cryptographic function: Our Ei-bisymmetric

C2 -almost A-universal hash functions in rounds one and four operate on n-bits of the

data. If we operated on any smaller part of the data then one could cause internal

collisions with fewer queries via a birthday-type attack. The result would be an

increase in the distinguishing probability and thus a decrease in security.

6. Reusing hash functions: It might be tempting to use the same universal hash function

in rounds 1 and 4 (i.e. TI(h, f, f, h)) to save even more key material. However, using

the same hash function h in both rounds, leads to an attack, which we now describe.

First we encrypt a randomly chosen string L, - R 1 , where L 1 , R, C I,. Following the

equations for encryption:

Si = Li E h(R);

T = Ri e f(Si)

=R e f (L e h(R));

V1 = S e f (T1 )

= LE h(R1 ) e f (Ri e f (L1 e h(R)));

W1 = T1 E h(V1 )

SRif (Li e h(R)) B h(L1 D h(R) E f (R1 e f (L 1 D h(R)))).

95



Now, we decrypt the same message, but with the left and right halves swapped. That

is,

V2 -W 2 = R 1 -L 1 .

Following the equations for decryption, we get:

T2= W2 E h(V2 )

= Li h(Ri);

S2 = V2 E f (T2 )

SR, E f (L1 E h(R));

R2= T2 e f(S 2 )

= L1 E h(RI) E f (Ri 0 f (L 1 E h(R1)));

L2= S2 E h(R 2)

= RE f (L1 D h(R1 )) E h(Li E h(R 1 ) D f(R 1 E f(L 1 B h(R1 )))).

Now, observe that

L2 - R2 = W1 - V1

with certainty whenever the cipher is of the form TJ(h, f, f, h). If the cipher were

truly random, this equation would only hold with negligible probability. Thus we

have a distinguishing test. The attack only requires one chosen plaintext query and

one chosen ciphertext query. Moreover, the attack is non-adaptive. The cipher is

still insecure if we only allow plaintext queries (or only ciphertext queries), though

requires the adversary to be adaptive. We illustrate another attack.

Suppose that we ask for the encryption of L, -R 1 , where this quantity is again chosen

at random. Call the ciphertext output V -W1. Now, we ask for the encryption of this

quantity, but with the left and right halves swapped. That is,

L 2 -R 2 =W 1 -V 1.
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Following the equations for encryption, we get:

S2 = L 2 ® h(R 2)

= W e h(V)

T2 = R 2 ( f (S 2 )

= V 1 e f (T1 )

V2 = 2 e f(T 2 )

=Ti E f (S1 )

=Ri;*

W2 = T 2 e h(V2 )

= S1 ® h(R 1 )

=L 1 .

Consequently,

W2 -V2 = L1 - R1

which is our original plaintext. This equation holds with certainty whenever the

underlying cipher is TJ(h, f, f, h), and only holds with negligible probability whenever

the cipher is a truly random permutation. The attack only requires two plaintext

queries, though is adaptive since the second query is a involves the answer of the first

query.

These attacks are extremely effective since they require the adversary to have few

computational resources. It thus seems that the cipher TI(h, f, f, h) is not a terribly

good choice. The attacks we give, however, rely on the involutory properties of the

exclusive-or; that is, for any values a, b,

a E b ED b = a
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since b e b = 0. In chapter 4 we show, surprisingly, that if we permit certain other

operations besides the exclusive-or in the Feistel ladder, then we can, in fact, utilize

the same hash functions in rounds 1 and 4, and create a provably-secure cipher of the

form I(h, f, f, h).

3.6 Conclusion

In this chapter we have described some novel improvements to Luby-Rackoff ciphers. We

introduced the concept of bisymmetric universal hash function families, which enable us to

develop more efficient constructions. We also showed that under the weaker and more prac-

tical assumption that our round functions are unpredictable (rather than pseudorandom),

the resulting ciphers are secure against certain inversion and forgery attacks. Finally, we

gave an informal discussion on optimality criteria related to Luby-Rackoff ciphers and show

that our cipher meets these criteria.
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Chapter 4

Luby-Rackoff Ciphers Over

Arbitrary Algebraic Structures

4.1 Introduction

In all of the previous Luby-Rackoff block cipher constructions given in the literature, the

Feistel permutation takes as input the 2n-bit block L -R and computes R -(L e f (R)) where f

is the underlying round function. In this case, the Feistel permutation utilizes the exclusive-

or operation. Stated abstractly: all bit strings are treated as elements in the additive group

of the Galois field of order 2" and the Feistel permutation involves the addition operation

in this group. In this chapter we initiate the study of Luby-Rackoff ciphers over arbitrary

algebraic structures. The hope is that utilizing different operations, with different algebraic

properties, may yield new more powerful constructions.

Our efforts focus on the case of four-round Feistel networks that permute 2n-bits of data

as in the original Luby-Rackoff construction and some of its variants [88, 101, 114], such as

the one we discuss in chapter 3. Our point of departure is that we treat the n-bit strings as

elements in an arbitrary algebraic structure which is not necessarily GF(2n)+.l This idea

seems to open up new lines of research and we obtain results which are both surprising and

useful. Specifically, we achieve the following:

e Our main result is the construction of a Luby-Rackoff style cipher, whose Feistel ladder

'Recall that GF(2")+ refers to the additive group attached to the field GF(2"). The addition of two
elements in this group amounts to computing their bit-wise exclusive-or.
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operates over various finite groups of characteristic greater than 2, that is not only

super-pseudorandom, but has better time/space complexity and uses fewer random

bits than all previously considered Luby-Rackoff ciphers of equivalent security in the

literature. Surprisingly, when we use the bit-wise exclusive-or operation instead, we

can distinguish the cipher from random with near certainty using only two queries.

" We show that the requirements on our construction are precise when operations are

performed in a finite field. In particular, eliminating one of the statistical requirements

on the hash function used in the first and last round results in the cipher becoming

distinguishable from random with near certainty using only a small constant number

of queries.

" We examine various other Luby-Rackoff ciphers known to be insecure over GF(2n)+.

In some cases, we can break these ciphers over arbitrary Abelian groups - though we

have to employ more complex attacks. In other cases, however, the security remains

an open problem.

The main result is fairly surprising since then one can construct a Luby-Rackoff cipher that

can be broken with two plaintext/ciphertext queries when the bit-wise exclusive-or is the

group operation; yet, if one simply changes four of those bit-wise exclusive-or operations to,

for example, additions mod 2 , the cipher becomes completely secure against both adaptive

chosen plaintext and ciphertext attacks. A more careful analysis shows that we only need to

change the exclusive-or operation in the first and last round to addition mod 2' to achieve

security. Thus, in some sense, there are two very simple operations at the heart of the

cipher's security.

Our main result utilizes the notion of a monosymmetric universal hash function. In

particular the monosymmetric property does not really hold in groups of characteristic 2,

which explains why our constructions fail to be secure in this case. Moreover our new

constructions are practical; for example our constructions may work with addition modulo

2n as the underlying operation, and we get security guarantees which are not otherwise

attainable in the group GF(2n)+ - even though both operations can be implemented very

efficiently on most current microprocessors, and both are frequently used in popular block

ciphers.

The impact of the underlying set and binary operation on bit strings with respect to a
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given problem can be seen in other settings, though we are not aware of any formal attempt

to study it. Consider for example the subset sum problem:

Instance: A set S, of size n, consisting of elements from Z 2-, together with a

value B E Z2n.

Problem: Find a subset S' C S such that the sum of all the elements in S'

(modulo 2") is exactly B:

s mod 2' = B
sES'

This problem is NP-hard when the inputs are treated as elements in the group of integers

modulo 2' [56, 74]. Yet, when we treat the inputs as elements of GF(2n)+, the subset sum

problem can be efficiently solved via a system of linear equations. In particular, suppose

that the elements in our set S are A1,...,A,. Each Ai can be represented as an n-bit

quantity

Ai = AA A2 ... An,

where each Aj is a single bit, for 1 < j < n. Similarly, we can represent the bound B as:

B = B1 ... Bn.

Now, consider the following linear system of equations over GF(2):

Al

A 2

An

... Al

... A~n

... AnI
B,

B 2

Bn

X1

X2

xn I
By solving this system, we can construct the required subset S' as follows. For 1 < i < n,

if xi is 1, then we include Ai in the subset S', and if xi is 0, we do not include Ai in

the subset S'. We thus have a procedure for finding the appropriate subset which requires

solving a linear system of equations over a finite field. There are a number of efficient
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algorithms for accomplishing this task [40]. Thus the problem becomes much easier to solve

over GF(2")+. 2

The intuition behind this anomaly is that when we perform addition modulo 2' on two

bit strings, each bit of the output may be affected by several bits of each of the inputs.

On the other hand, when we perform addition over GF(2")+, the ith output bit is only a

function of the ith bits of each of the inputs. We see a similar phenomenon in our study

of Luby-Rackoff ciphers over arbitrary algebraic structures and our results provide formal

evidence for the intuition that groups of characteristic greater than 2 provide better mixing

of data for cryptographic purposes.

The idea of modifying operations in existing block ciphers has been previously consid-

ered, though not studied in any formal context. For example, Biham and Shamir [23] show

that replacing some of the exclusive-or operations in DES with additions modulo 2', makes

their differential attack less powerful. Similarly, Carter, Dawson, and Nielsen [35] show a

similar phenomenon when addition in DES is replaced by addition using a particular Latin

Square. While these results show resistance to one particular type of attack, our results,

in contrast, show provable security against all attacks. We thus pinpoint the precise reason

that our cipher is secure.

The rest of this chapter is organized as follows. In section 4.2 we describe our main result

in more detail. In the section thereafter, we give a detailed proof of security. In section 4.4

we give a brief discussion of monosymmetric hash functions, which are at the heart of our

security analysis. In section 4.5 we show how to attack our cipher over arbitrary finite fields

when the underlying hash functions do not satisfy the monosymmetric property. The next

three sections discuss various Luby-Rackoff style ciphers known to be insecure when the

underlying operation in the Feistel ladder is bit-wise exclusive-or, and show how to extend

many of these results to the more general setting of arbitrary algebraic structures. In some

cases, we cannot extend these results, so we leave these problems open. In the last section,

we make some concluding remarks.

2We note that the above attack works over any finite field of constant characteristic greater than 2.

102



4.2 Main Result: A Minimal-Key Luby-Rackoff Cipher

The main result of this chapter is the construction of a Luby-Rackoff cipher which is secure

when the underlying operation is addition in certain algebraic structures, but can be broken

easily when addition is performed in GF(2')+.

We describe our construction. Suppose G is a group with additive notation. Recall that

a group is a set of elements which is closed under a binary operation "+" and that satisfies

the following properties:

1. All elements are associative under +:

Va, b, c c G, (a + b) + c = a + (b+ c).

2. There is an identity element 0 where:

Va E G, a +0 = 0 + a = a.

3. Every element a E G has a unique inverse element -a where:

-a + a = a + -a = 0.

Furthermore if all elements commute under +:

Va,b c G,a+b=b+a

then the group is said to be Abelian.

Let f be a function drawn from a family Y, with domain and range G. Let h be drawn

from an Ei-monosymmetric E2-almost A-universal family of hash functions. Remember that

we define these families in chapter 2. Then, our construction is I(h, f, f, h) where addition

in the underlying Feistel ladder is performed in the group G. Note that *J(h, f, f, h) can

be viewed as a permutation on G x G. The security of this construction can be related in

a precise manner to the parameters El and E2 , and the pseudorandomness of the function

family F. It turns out that if this group G has characteristic 2, then El = 1, and the

cipher can easily be broken. On the other hand, for various other groups, the construction
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is provably secure. We now make some important observations about this construction:

1. The hash functions in the first and fourth rounds have the same randomly chosen

key. Alternatively, we can replace h by f2, where f2 is a pseudorandom function

keyed independently of f. Hence we also obtain the new result that xy(f2, f, f, f2) is

strongly pseudorandom as a corollary.

2. The pseudorandom functions in the second and third rounds have the same randomly

chosen key (though this key should be chosen independently from the key for the hash

functions).

3. If addition is performed over a group G of characteristic 2 (e.g. G = GF(2n)+),

then this cipher can easily be distinguished from random since it has involution-like

properties; we discuss these properties in section 3.5 of chapter 3.

The cipher I(h, f, f, h) is a very efficient Luby-Rackoff style cipher: only two calls to the

same pseudorandom function are made, the universal hash functions operate on half the

input block, and the same universal hash function is used in the first and fourth rounds,

which saves additional key material. We cite our main theorem:

Theorem 14 (Patel-Ramzan-Sundaram [115]) Let G be a group, where each element

of G can be represented by a bit string of length at most n. Let f be a function from a

keyed function family F with domain and range G, and key space IS. Let h G H be an

E1-monosymmetric E2 -almost A-universal hash function over the group G, with key space

Is2. Let B be the family of permutations on G x G, with key space 11+s2, consisting of

permutations of the form B = 'I(h, f, f, h). Then:

Advsprp(q, t) < Advf (2q, t + O(8 2 + 2 q(th + n))) + q2 E, + (q) (262 + 1G- 2 )

We remark that although A-universal hash functions are traditionally defined over

Abelian groups, such a restriction is not necessary. One could easily extend the notion

of A-universal hash functions over non-Abelian groups, and our above result would con-

tinue to hold for such groups.

We note that by modifying the appropriate definitions and using the same proof tech-

niques, we can generalize these results to cases in which the each individual round involves a
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possibly different group operation. One particular result we can easily prove in this general

model, using our techniques, is that TI(h, f, f, h) is secure if the second and third rounds

involve exclusive-or, but the first and fourth perform addition in certain other groups (for

example the integers modulo 2 f). This is surprising since if we simply change two operations

by making the first and fourth round use exclusive-or, then the cipher can be distinguished

from random using only two queries. We also remark that our proof techniques do not

utilize all of the group axioms. In fact, we only require an algebraic structure G in which:

" For all a, b c G, there is one and only one value x E G such that a + x = b.

" For all a, b E G, there is one and only one value y E G such that y + a = b.

Such an algebraic structure is called a quasigroup, and the addition table for a quasigroup

can be represented by what is called a latin square [31]. However, since all of our concrete

examples involve traditional groups, we prefer to cast our main result this way.

4.3 Proof of Security

We analyze the security of T(h, f, f, h) assuming addition is performed in an arbitrary

group. We relate the security of the cipher to the value of e attained by the monosymmetric

E-almost-A-universal hash function h. In the next section, we examine constructions of such

functions over various algebraic structures.

We proceed in the standard manner by showing that our permutation TI(h, f, f, h) is

pseudorandom when f is truly random (instead of just pseudorandom). Our overall treat-

ment, however, follows the nicely laid out framework of Naor and Reingold [101], but in

the more general context of arbitrary finite groups. In particular we focus on proving the

following theorem:

Theorem 15 (Patel-Ramzan-Sundaram [115]) Let G be a group and let f be a func-

tion chosen uniformly from RandG-G. Let h be an c1-monosymmetric E2 -almost-A-universal

hash function with domain and range G, keyed independently of f, taken from a keyed func-

tion family H. Let P be the family of permutations on G x G consisting of permutations of

the form P = I(h, f, f, h). Then:

AdvspP(q, t) < q2 ei + ( (212 + IG- 2)
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The proof of theorem 15, like that of theorem 11 follows the framework of Naor and Reingold

[1011. We start by recasting the original setting into the more general context of arbitrary

finite groups. As usual, our adversary A is modeled as a program for a random access ma-

chine that gets black-box access to either a permutation uniformly sampled from PermGxG

or one sampled from the set of ciphers P = I(h, f, f, h). As was done previously, the adver-

sary will have access to two oracles - one for computing each direction of the permutation.

We denote a query for the forward direction of the permutation by (+, x). Such a query

asks to obtain the value P(x). Similarly, we denote query in the reverse direction by (-, y).

Such a query asks to obtain the value for P- 1 (y). Like before, we write L - R to denote the

left and right halves of the plaintext respectively, and we write V -W to denote the left and

right halves of the ciphertext respectively. In this case, however, L and R are each elements

of the group G, and we can think of L - R as an element of G x G. The transcripts in our

setting mimic those used in proof of theorem 11 of chapter 3. Also, in the following proof

we make the standard assumption that the adversary A is deterministic.

We now consider a special random process for A's queries that will be useful to us. This

random process is analogous to the one given in the proof of theorem 15 from chapter 3.

Definition 28 The random process R answers the ith query of A as follows:

1. If A's query is (+,x,) and for some 1 < j < i the jith query-answer pair is (xi, yi),

then ft answers with yi. If more than one such query-answer pair exists, we pick the

one with the smallest index.

2. If A's query is (-, yi) and for some 1 < j < i the jth query-answer pair is (xi,yi),

then R answers with xi. If more than one such query-answer pair exists, we pick the

one with the smallest index.

3. If neither of the above happens, then ft answers with a uniformly chosen pair (g1, g2) E

G x G.

As before, we note that R's answers may not be consistent with any function, let alone any

permutation. We formalize this concept.

Definition 29 Let o = ((xi,y1),... , (xq,yq)) be any possible A-transcript. We say that o-

106



is inconsistent if for some 1 j < i < q the corresponding query-answer pairs satisfy:

Xi =x and yi yj, or

xi xj and yi yj.

Fortunately, we can show that the process R often "behaves" exactly like a permutation

over G x G. It turns out that if A is given oracle access to either R or PermGXG it

will have a negligible advantage in distinguishing between the two. We prove this more

formally in proposition 4. Before proceeding, recall that we denote by the random vari-

ables Tp, TPermGXG, Tk the transcript seen by A when its oracle queries are answered by 'P,

PermGxG, and R respectively.

Proposition 4 Let A be a 2-oracle adversary restricted to making a total of at most q

queries to its oracles. Then:

Pr[CA(T?) = 1] - Pr [CA(TermGxG) = 1] -|Gl 2
R PermGxG (

Proof: The proof is analogous to the one given in proposition 1 from chapter 3, but en-

compasses arbitrary finite groups. We include the more general proof here for completeness.

First, let Con denote the event that Ti? is consistent, and let -,Con denote the comple-

ment. Then, for any possible and consistent A-transcript o- we have that:

Pr [TPermGxG O (|G| - q)! = Pr[T = c- I Con].
PermGxG |G|-

Thus TPermGxG and TA have the same distribution conditioned on the event Con. We now

bound the probability of ,Con. Recall that TA is inconsistent if there exists an i and j with

1 <j < i < q for which

xi = xj and yi yj, or

xi =A j and yi =y.

For a particular i and j this event happens with probability IG~2. So,

Pr[-,Con] 5 - JG--2
R \2/
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We complete the proof via a standard argument:

PFr[CA(Ti?) = 1] - Pr[CA(TR) =
R R

= (Pr[T = a Con]
\R

+ (Pr[T = o- Con]
\R

P r[Tk = o-r Con]

<Pr[,'Con]
R

" (q) -. I2

- Pr[CA(TR) = 1]
R (

- Pr[CA(TR) = 1]
R /

- Pr[CA(TR) = 1]
R /

which completes the proof. U

We now proceed to obtain a bound on the advantage A will have in distinguishing

between Tp and Tk. It turns out that Tp and TA are identically distributed unless some

event depending on the choice of h in P occurs. We call this event Bad and obtain a bound

on the probability that it actually occurs. Intuitively, Bad occurs whenever the internal

function f in P would be evaluated on the exact same point twice for two distinct oracle

queries - that is, whenever there is an internal collision. We formalize this as follows.

Definition 30 For every specific monosymmetric c-almost-A-universal hash function h,

define Bad(h) to be the set of all possible and consistent A-transcripts

or-= ((L1 -R1,1 -W),..., (Lq ' Rq,V -Wq))

satisfying:

" Event Bi: there exists 1 < i < j q such that h(Ri) + Li = h(Rj) + Lj, or

" Event B2: there exists 1 < i < j < q such that Wi - h(V) = Wj - h(Vjj), or

" Event B3: there exists 1 < ij 5 q such that h(Ri) + Li = Wj - h(V).

108

- Pr[Con]
R

-Pr[-,Con]
R

-Pr[-,Con}
R



Proposition 5 Let h E H be an c1-monosymmetric e2 -almost-A-universal hash function.

Then, for any possible and consistent A-transcript

o- = ((Li -RI, V1 - W), ... (Lq * R, V - Wq)),

we have that

Pr[a E Bad(h)] 2 () 62 + q2 . E

Proof: Recall that a transcript o- E Bad(h) if event Bi, event B2, or event B3 occurs.

We can determine the individual probabilities of each of these events separately, and obtain

an upper bound on the desired probability by taking the sum. We start with bounding the

probability of the first event:

Pr[B1] Pr[31 < i < j < q : h(Ri) + Li = h(Rj) + Lj]
h h

< Pr[h(Ri)+ Lih(Rj)+Lj]
1<z_<j<q

< Pr[h(Ri) - h(Rj) = Lj - Li]

h

The last inequality follows from the previous since if Ri 5 Rj then we can use the fact

that h is f2 -almost A-universal, and if Ri = Rj we know that Li : Lj since we assume the

queries are distinct, in which case:

Pr[h(Ri) - h(Rj) = Lj - Li] = 0.
h

Now, we bound the probability of the second event:

Pr[B2] Pr[31 < i < j :5 q : Wi - h(Vi) = Wj - h(V)]
h h

< Pr[Wi - h(V) = Wj - h(V)]
1<z<j<q

< Pr[h(Vj) - h(V) = Wj - W ]
1<i<j<q

(q 2
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The last inequality follows from the previous since if Vi : V then we can use the fact that h

is e2 -almost-A-universal, and if V = V we know that W W since we assume the queries

are distinct in which case Prh[h(Vi) - h(V) = Wj - Wi] = 0. Finally, we must bound the

probability of the third event:

Pr[B3] < Pr[-31 < i, j q : h(Rj) + Li = Wj - h(V)]
h h

< S Pr[h(Ri) + Li = Wj - h(V)]

< S Pr[h(Ri) + h(V) = W, - Li]
I1i,jsq
2

< q2 . El.

Here the last inequality follows from the previous since h is cI-monosymmetric. We thus

get that:

Pr[a C Bad(h)] Pr[B1] + Pr[B2] + Pr[B3]
h h h h

< ()-62 + (q - 2 +| q 2 . El

2 ( .e2 + q2 .Eq

This concludes proof. U

The following key lemma for proving theorem 15 shows that the distribution of possible

and consistent transcripts generated by T given that the bad conditions do not occur is

identical to the distribution of possible and consistent transcripts generated by Tf?. This

lemma will be useful when we try to determine a bound on the advantage our adversary A

will have when trying to distinguish between these two cases in general; it is analogous to

lemma 2, from chapter 3.

Lemma 3 Let a be any possible and consistent A - transcript, then

Pr[Tp = a lo Bad(h)] = PIr[TA = o]. (4.1)
R

Proof: First observe that Prk[T = a] = IGI-2q. This equality follows since R picks
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elements from G x G. Thus for a given fixed transcript entry, the probability that ft could

generate it is 1/fG x GI which equals IGI-2. Now, for q consistent transcript entries, f?

would generate them by picking q elements independently from G x G, which gives us the

desired probability of IG- 2 .

Since o is a possible A-transcript, it follows that Tp = o- if and only if Vi -Wi = P(Li -R)

for all 1 < i < q. Next, suppose h is an El-monosymmetric c2 -almost-A-universal hash

function for which a Bad(h). Now, we know that Li - Ri and Vi - Wi must satisfy the

following series of equations:

Si = Li+h(Ri);

T Ri + f(Si);

Vi Si+ f(T);

Wi= T 2 + h(Vi).

So, in particular

(V,Wj) = P(Li, R) f(Si) = T - Ri and f(T) = Vi - Si.

Now observe that for all 1 < i < j < q, Si = Sj and T $ T (otherwise a E Bad(h)).

Similarly, for all 1 < ij < q, Si # T. So, if o- Bad(h) all the inputs to f are distinct.

Since f is a random function, for every specific choice of h such that 0' Bad(h) the

probability that Tp = o- is exactly IGI-2q. Therefore:

Pr[Tp = ala Bad(h)] = |G-

which completes the proof of the lemma. M

To complete the proof of the main theorem, we can follow the Naor-Reingold framework

utilizing the above lemma where appropriate. Before doing so, we state and prove a pre-

liminary proposition.

Proposition 6 Let I' be the set of all possible and consistent transcripts o such that

CA(o) = 1. Then:
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Adv((P, P~1), (PermGxG, (PermGxG )-1)) < E(Pr[Tp = o-] - Pr[T, = o-) + ()- G2,

where (P, P- 1 ) and (PermGxG, (PermGxG)-l) both represent a pair of oracles: one which

computes the forward direction of the permutation, and the other which computes the inverse

direction of the permutation.

Proof: First, we break up the left hand side of the above inequality so that the distin-

guishability of both distributions are taken with respect to the process R:

Adv((P, P-1), (PermGxG, (PermGxG )-)

< Adv((P, P- 1 ), h) + Adv(h, (PermGxG, (PermGxG) (4.2)

Now, since A with an oracle for P only generates possible and consistent transcripts, we

can apply theorem 1 from chapter 2 to the first summand in equation 4.2. Next, we can

apply proposition 4 from this chapter to the second summand. The proposition follows. U

We now prove the main theorem:

Proof: (of Theorem 15) First we successively apply proposition 6 given above, and the-

orem 2 from chapter 2 with the set Bad(h):

Adv((P, P- 1), (PermGxG, (PermGxG) 1

< j:(Pr[Tp = o-] - Pr[T ( ) -2

Now, applying Theorem 2:

Z(Pr[Tp = o-] - Pr[TA =

< Pr[Tp = o- jo- Bad(h)] - P~r[Tk = o-] -Pr[o- Bad(h)]
CEr 

R/

+ Pr[a-* E Bad(h)].
P,
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Now, observe that according to lemma 3:

Pr[T-p = a ao- V Bad(h)] - Pr [TPermGxG = o) Pr[o- Bad(h)] = 0.
P Perm"G

In addition, observe that proposition 5 tells us that

Pr[o-* E Bad(h)] q26i + 2 ( E2.

Combining these observations, we get:

Adv((P, P-1), (PermGxG, (PermGx G)1))

q21i + (q) (2E2 + IG- 2),

which completes the proof. U

Thus we have proven theorem 15. Theorem 14 follows as a corollary using fairly standard

techniques. The proof looks nearly identical to the proof of theorem 10 given in chapter 3.

4.4 Monosymmetric A-Universal Hash Functions over vari-

ous Groups

In the previous section we construct a Luby-Rackoff style cipher that uses the same hash

function h in rounds one and four, and the same round function f rounds two and three.

The security of this construction rests upon the pseudorandomness of the round function

f, and the parameters El, 62 associated with the hash function h.

In this section we initially demonstrate that over certain algebraic structures, small

values of E, 62 are easy to attain. Next, we show that in other groups, the value of Ei will

always be quite large. Our first example concerns the family RandG G, for a group G.

Lemma 4 Let G be any group in which no element has order 2. Then, the set of all possible

functions RandG+G is 1/GI-monosymmetric 1/ GI -almost-A-universal.

Proof: First we show that RandG-G is 1/ GI-almost-A-universal. Consider three values

x, y, 6 C G, with x : y. The values f (x) and f(y) are uniformly distributed when f is
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chosen at random from RandG-G. Thus, their difference is uniformly distributed, and takes

on any value in the range G with equal probability. Consequently,

Vz # y E~ ~~ G, EG:Pf Rnd-G : f (X) - f (Y) = 6] = 1/1GI.

Now we examine the monosymmetric property. Again, we pick values x, y, S E G. There

are two cases to consider. If x =L y, then using an argument very similar to the one above,

we get:

Vx 0 y c G,V6 E G : Pr[f 4 RandG+G : f(X) + f(Y) = 6] = luG!.

The only remaining case is when x = y. In this case, f(x) + f(y) = 2f(x). Thus we are

then left with an equation of the form 2f(x) = 6. We claim that there is at most one value

of f(x) that satisfies this equation. If this claim were true, then we are done since f(x) is

uniformly distributed since f is chosen at random from RandG+G. We now prove the claim

by contradiction. Suppose that there are two values xi, x 2 such that 2f(xi) = 2f(x2) = 6,

but f (xi) 0 f (x2). Then, it follows that 2(f (xi) - f (x2)) = 0. However, f (Xi) - f (X2) E G,

and f(Xi) - f(x2 ) # 0. This contradicts the assumption that G does not contain any

element of order 2. U

Unfortunately, it is difficult to efficiently sample from RandGG because it contains |GIGI

elements, which is quite large for our purposes. Though, if one looks at the above proof, it

is not hard to see that we did not need truly random functions. Instead, strongly universal

families of functions suffice for the proof since they appear random whenever one considers

only two input / output pairs. We thus have the following corollary.

Corollary 1 Let G be any group in which no element has order 2. Then any strongly

universal family of functions is 1/|G|-monosymmetric 1 /1 I G-almost-A -universal.

If G is the additive group attached to a finite field F, then one such family of strongly

universal hash functions is the linear congruential hash family: hab(x) = ax + b where

arithmetic is performed in F. Since there are finite fields, of characteristic greater than

2, of size pk for any odd prime p, and any natural number k, we can construct good

monosymmetric A-universal hash function families for sets of these size. We now show that

we can construct reasonably good families of such hash functions for sets of any size.
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Lemma 5 Let m be a natural number, and let G be the cyclic group Zm. Let p be the

smallest prime such that m < p. Let H be any E1-monosymmetric 62 -almost-A-universal

hash function family over the additive group attached to the finite field Fp. Consider the

family of functions H', which is defined as follows:

H' {h' : Zm -+ Zm | a c Keys(H)},

where the functions h' are defined as:

h' (x) = ha (X) mod m.

Here ha is chosen from H according to key a. We are also using the natural representation

of elements in Zm and ZP whereby we utilize the smallest non-negative integer. Then H' is

4c1-monosymmetric 4E2 - almost-A-universal over the group Zm.

Proof: We first start with Bertrand's postulate,3 which states that for each integer m > 2,

there is a prime number p with m < p < 2m. First, we examine the A-universal property.

Let x, y, 6 C Zm be chosen arbitrarily, with x 3 y. Let a be a key such that h' (x)-h' (y) = 6.

Equivalently:

(ha(X) - ha(y)) mod m = J. (4.3)

Now, since H operates over the additive group attached to the finite field Fp, it follows that

ha(x), ha(y) E {, ... p - 1}. Therefore,

ha() - ha(y) C {p + 1, ... ,p - 1} (4.4)

Moreover, by equation (4.3) given above, it follows that:

ha(x) - ha(y) E{, 6 + m,6 - m, 6 + 2m, 6 - 2m,...}.

Now, the set of possible differences is finite, so there must be some least possible element.

Denote this element by lo. It must be of the form lo = 6 + im, for some integer i. Consider

values of the form 1r = 6+ (i + r)m, where r > 4. We claim such values can never occur as a

3A proof of Bertrand's postulate can be found in the classic number theory text of Hardy and Wright [66].
The proof given there is due to Erd6s, and is much simpler than the original proof given by Chebyshev.
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possible difference. This follows from the fact that ir - l > rm > 4m > 2p. But, according

to equation (4.4), there are at most 2p values in the range. Thus, 1, cannot appear as a

difference for r > 4. This observation implies that there at most four candidate values for

the difference. Thus,

R
Pr[a +- Keys(H) : h' (x) - h' (y) = 6]

Pr[a .# Keys(H') :ha(x) - ha(y) E {lO, l1,12,1/3}]R

* Pr[a +- Keys(H) ha(X) - ha(y) = lo]R

+ Pr[a 4- Keys(H) ha(X) - ha(y) = i0R

+ Pr[a +- Keys(H) ha(X) - ha(y) = l2]R

+ Pr[a +- Keys(H) ha(X) - ha(y) = 13]

* 4E2

The last equation follows from the previous since H is 62-almost-A-universal. Thus, we

have shown that H' is 4E2 -almost-A-universal. We can use the same technique to show that

H' is 4E,-monosymmetric. N

In specific cases we may be able to get a tighter bound by exploiting either the algebraic

structure of the hash function itself or the relationship between p and m (for example,

if m < p < 3m/2, then we can achieve values of 3Ui and 362). For the case m = 2,

these functions are especially important since addition modulo 2' is easily implemented on

most processors. Therefore, our constructions have very important practical implications.

Another very efficient family of monosymmetric E-almost-A-universal hash functions for

which e is small (2/2") is the square hash family [49], which we discuss in great detail in

chapter 6.

We now consider groups for which there are no good families of monosymmetric-A

universal hash functions. The most striking example occurs in the additive group of the

Galois Field of order 2", GF(2')+. In particular, if H is any family of functions whose

range is GF(2")+, then PrhEH[h(x) + h(y) = 6] = 1 whenever x = y and 6 = 0. Thus,

it is not possible to get a value of El smaller than 1 for the monosymmetry property.

Another example of a group which may not possess good monosymmetry properties is the

multiplicative group modulo m, Z*. In this case, when we set x = y, then the expression
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PrhEH[h(x) - h(y) = 6] may be very high if 6 has many square roots. In particular, if the

prime factorization of m consists of k distinct odd primes pi,... , P then it follows from

the Chinese Remainder Theorem that certain elements of Z*m may have up to 2 k square

roots. Thus it might be difficult to construct good examples of monosymmetric E-almost-A-

universal hash functions over the multiplicative group modulo m if there are many primes

in m's factorization. There are many other groups one may want to examine - an extensive

study of this topic is beyond the scope of this thesis.

4.5 Necessity of the Monosymmetric Property

In this section we provide evidence that our minimal-key construction is fairly optimal, and

that the monosymmetry property is needed. In particular, we show that TI(hl, f, f, h2 ) is

not necessarily secure if h, and h2 are independently keyed A-universal hash functions that

do not satisfy the additional monosymmetry property. Note that in this case, we consider

a cipher for which h, and h2 may be different hash functions, so our attack is more general.

The attack also works if they are the same hash function. In chapter 3, we show that

this particular cipher could be broken when operations were performed in GF(2")+; in this

chapter we extend the result to the case when operations are performed over arbitrary finite

fields, though we need to resort to different techniques to do so. We note that this result

is shown not for arbitrary finite groups, but for arbitrary finite fields. Extending it to hold

for arbitrary groups is left as an open problem.

We describe the attack. Suppose that h, and h2 are taken from the linear hash family.

That is hi(x) = al - x and h2 (X) = a2 - x, where multiplication is performed with respect

to the underlying finite field. This family is known to be A-universal, and we show this

in section 3.2 of chapter 3. Pick a value a at random, and obtain both the encryption of

x a 0 and the decryption of 0 - a. Working through the equations for the encryption of

x = a 0:

S1  = hi(R1)+ Li

= hi()+a
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a;

T1 f(S) + R1

= f(a);

V1 =f (T) + S

= f2(a) + a;

W1 h2 (V) + TI

= a2 - Vi + f (a).

Now we work through the equations for decrypting V2W = 0 a:

T2= W 2 - h2 (V2 )

Sa -0

= a;

S 2  V2 -f(T2 )

- 0-f(a)

R2= T2 - f(S2 )

=a - f (-f(a));

L2 =S2 - h(R 2 )

= -f(a) - ai - R 2 -

Next, let A 1 = L 2 + W 1. Observe that:

A 1 = L2+W1

= a2 -V 1 -aj-R 2.

Now, we repeat the same process as above. In particular, we ask for the encryption of

L3 -R3 = a' - 0 and call the result V3 -W 3 . We also ask for the decryption of V4 - W4 = 0 -a'

and call the result L 4 - R 4 . Let A 2 denote L 4 + W 3 . By an argument similar to the one
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given above, A 2 = a2 V3 - al - R 4. We now have a system of equations:

-a, R2+ a2 -V= A1;

-a - R4+a2 V3= A 2 -

Since we know R 2, R 4 , V1, V3 , A 1, A 2 the only unknowns are a,, a2. With high probability,

this system of equations has full rank, and we can solve for a, and a2 . This procedure allows

us to compute the keys to the hash functions in the first and fourth rounds. Knowing these

keys reduces the problem to distinguishing the two round Luby-Rackoff cipher '(f, f) from

random, which can easily be done in two queries [88].

4.6 Attacking the Three-Round Luby Rackoff Cipher over

Arbitrary Abelian Groups

Luby and Rackoff show that the three-round variant of their cipher IF(fi, f2, f3) is pseu-

dorandom, but not super pseudorandom [88]. In particular, one can distinguish the cipher

from random with high probability by making two plaintext queries, and one ciphertext

query. We generalize their attack to work when the operation in the Feistel ladder is ad-

dition over an arbitrary Abelian group G. We stress that the cipher is still pseudorandom

over these other algebraic structures - it is just not super pseudorandom. We describe the

attack.
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Description of attack against TI(fi, f2, f3).

1. Choose a random plaintext: (L1, Ri) + G x G.

2. Query for the encryption of L1 - R 1 and call the result T- V1 .
R

3. Choose a value L 2 at random: L 2 +- G.

4. If L 2 = L1 repeat the above step.

5. Query for the encryption of L 2 R 1 and call the result T 2 V2 .

6. Query for the decryption of T 2 (V2 + Li - L 2 ), and call the result L3 R 3 -

If R 3 =T 2 +R 1 -T 1 then

return that the cipher is not random

else

return that the cipher is random.

We claim that this attack works with overwhelming probability. The analysis now

follows. Assume the underlying cipher is the three-round Luby-Rackoff cipher 'Q(fl, f2, f3).

We denote the three round Luby-Rackoff cipher in the usual manner. Suppose that we want

to encrypt Li - Ri. The process can be described by the following equations:

Si = f1(Ri);

T§' = f2(Si);

= S+f 3 (Ti).

The ciphertext output is T - V. Now, the process of decrypting the pair T - V can be

described by the following equations:

Sz = Vi - f 3 (T);

Ri = T - f2(Si);

Li = Si - f1 ( Ri).
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The plaintext output is L - R. Now, when we carry out the attack previously mentioned,

we get the following crucial observation:

Si - S2 = (L 1 + f (Ri)) - (L 2 + f (R1))

= L, - L 2. (4.5)

which follows since S1 = L 1 + fi(R1 ), and S2 = L 2 + f 2 (Ri). Let us observe what happens

when we make the ciphertext query (query number 3). Decrypting T 2 - (V2 + Li - L 2 ) we

get:

S3 = V3 - f 3(T3 )

= V2 + L1 - L 2 - f 3 (T2 )

=S2 + L1-L2

=s 1.

The third equation follows from the second since S2 = V2 - f 3 (T2 ) by definition. Also, the

last equation follows from the previous by our crucial observation (equation 4.5). Continuing

on with the decrypting process:

R3 = T3 - f 2 (S3 )

= T2 - f 2 (SI).

The last equation follows from the previous since S3 = S1. Now, observe that:

R3+Ti = (T2 -2(S 1 ))+(R1+f2(S))

= T2 + R1.

Therefore,

R 3 =T2 +R 1 -T 1 .

121



So, if the cipher is the three-round Luby-Rackoff cipher T (fi, f2, f3), the above property

holds with certainty (and we can check it since R 1 , R 3 , T 1, T2 are all known). If the cipher

were a random permutation, this property would hold with negligible probability.

From the above equations, one can see that the attack requires the group to be commu-

tative. We are unable to develop an attack that works for non-Abelian groups, in general.

At the same time, we note that in certain cases, there are non-Abelian groups which are

still very "commutative." Consider, for example, the dihedral group D 2n, which represents

the group of symmetries (rotations and flips) of a regular n-gon [70]. In this case, any two

rotations with no flips commute with each other. Thus, if two elements are picked uniformly

at random from D 2n, they commute with probability at least 1/4. In fact, the probability is

higher since other randomly chosen pairs of elements commute; for example, every element

commutes with itself. We can thus extend our above attack to work for Dihedral groups,

though the success probability will diminish by a constant factor.

4.7 Attacking T(f, f, f)

Rueppel [129] shows that IT(f, f, f), the three-round Feistel cipher in which all the round

functions are identical, is not even pseudorandom when the operation in the Feistel ladder is

the bit-wise exclusive-or. The idea behind his attack is that when we use the same function

f in all three rounds and addition is performed in a group of characteristic 2, TI(f, f, f) has

certain involution-like properties. Rueppel left open the problem of generalizing his attack

to Feistel ladders that operate over other algebraic structures.

When operations are performed over an arbitrary algebraic structure, the involution-

like properties that Rueppel exploits in his original attack no longer seem to hold. It turns

out that this cipher is still insecure, but requires a different attack. We emphasize that

the attack requires the underlying group to be Abelian - we leave as open the problem of

determining the security when non-Abelian groups are considered. We present this attack

here.
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Description of attack against TI(f, f, f).

1. Query for the encryption of 0 -0 and call the result Ti - V1.

2. Query for the encryption of 0 T1 and call the result T 2 - V2.

3. Query for the encryption of (Vi - V2 ) -T 2 and call the result T3 - V3.

If T3 = Ti + T 2 then

return that the cipher is not random

else

return that the cipher is random.

Here is the analysis. We show that if the cipher is really TF(f, f, f) then this condition

holds with certainty; if the cipher is a truly random permutation, then the condition T3 =

Ti + T 2 holds with negligible probability. This gives us a distinguisher. Now we show why

T3 = Ti + T2 with certainty when the cipher is TJ(f, f, f). First let L - R1 = 0 - 0. Then,

following the equations for encryption of a three-round Luby-Rackoff cipher:

S1  = f()

T = f2(0);

V = f(0) + f (0).

Now, we let L 2 - R2 = 0 - T 1 . When we encrypt:

S2 = f(R2)+L2

= f(T 1 )

= f3(0);

T2 = f(S2) + R2

=f 4(O) + f2(0);

V2 = f(T2) + S2
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= f(T 2 )+f 3 (0).

Finally, when we encrypt L3 - R 3 = (V - V2) T 2 we get:

S3  f (R3) + L3

Sf (T 2 ) + (V1 - V2 )

=f (T2) + (f 3(0) + f (0)) -(f (T2) + f3(0))

= f(0)

= S1;

T3 =f (S3) + R3

=f (S1) + R3

= f2(0) + T2

=T1 + V2-

Thus V3 = T1 + V2 . This event happens with probability 1 when the underlying cipher is

'I(f, f, f) but happens with probability that is exponentially small in the underlying group

size when the underlying cipher is truly random. The exact same attack can be used to show

that 'I(fi, f2, fi) is insecure, where fi and f2 are independently-keyed random functions.

4.8 Attacking T (fi, fi, fk) When k is Multiple of i+ j

Another interesting class of ciphers is 4 (fi, fi, fk) where f is a pseudorandom function,

and fi represents the i-fold composition of f with itself. Zheng, Matsumoto, and Imai [145

show how to break this class of ciphers for arbitrary i, j, k, when working over GF(2")+. The

attack more heavily depends on the involutory properties of GF(2")+. When considering

arbitrary finite groups, we know how to break the cipher only when i, j, and k satisfy certain

relations; in particular, when k is a multiple of i + j. We are unable to produce an attack

that works in general, nor are we able to prove security in any of the other cases. We now

describe the attack.
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Description of attack against T (fi, fi, fk) where k is a multiple of i + j.

1. Let a = k/(i + j).

2. Query for the encryption of (0, 0) and call the result (TI, V1).

3. Query for the encryption of (0, T1 ) and call the result (T 2 , V2).

4. For l=3tooa+1do

4a. Query for the encryption of (0, T 1_ 1 - T- 2 ) and call the result (T, V).

5. Query for the encryption of (T,+1 - T0 - V1, 0), and call the result (T.2 , V02)-

6. Query for the encryption of (-T 1 , T+ 2 ), and call the result (T,3 , Va3).

If T,+3 = Ti + T1 then

return that the cipher is not random

else

return that the cipher is random.

We claim that this attack works with high probability. Here is the analysis. It is not hard

to see that if the cipher were truly random, then the above attack would return the correct

answer with probability extremely close to 1. We now claim that if the cipher is of the form

p(fi, fj, fk) with k = a(i + j) then the above attack will always output that the cipher is

not random. First, consider what happens when we encrypt 0 - 0:

S = f (0);

Ti = fi+j (0);

V1 = fi(0) + fi+j+k(0).

Next, consider what happens when we encrypt 0 - Ti:

S2 = fi(T);

T2 = fi+j(T 1) + T 1;

V2 = fi(T1)+fk(fi+j(T1)+T).

Thus, T 2 - Ti = fi+j(T) = f 2 (i+j) (0). In general, when we encrypt 0 x:
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S

T

V

= f i (x) + X;

=S + f kyi+j(X + X)

Thus,

T - x= fi+(x).

Using this observation, we see that:

f(i+j)(O+1)(0)

Sf(i+i)a+(i+j)(0)

f 1+1 k(0).

Thus TQ+1 - T - V = -fi(0). During query a + 2 this value is on the left hand side of

the encryption, and 0 is on the right hand side. The result of this encryption is:

Sa+2= 0;

Ta+2  = gt (0);

Va+2 = fk+j (0).

Finally, when we encrypt (-TI, Ta+2), we get:

Sa+3

Ta+3

V--

= 0;

= (- ) + ff (SC3);

= f j (0) +Ta+2).-

Which implies that

Ta+ 3 = P (0) + f(0)
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= Ti+T.

The claim now follows.

4.9 Conclusion

This chapter initiated a study of Luby-Rackoff ciphers over arbitrary finite algebraic struc-

tures. In particular, we surprisingly discovered that there are certain Luby-Rackoff cipher

constructions which are secure when the Feistel operation is taken with respect to certain

groups, though become insecure when operations are taken with respect to other groups.

For example, when we replace bit-wise exclusive-or by addition modulo 2" we turn an in-

secure cipher into a secure one. Our results spawn new areas for research, and motivate

a need to re-examine the literature on Luby-Rackoff ciphers and determine the extent to

which the old results hold when we look at arbitrary finite algebraic structures.
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Chapter 5

On the Round Security of

Symmetric-Key Cryptographic

Primitives

5.1 Introduction

In this chapter we put forward a new model for analyzing the security of symmetric-key

cryptographic primitives, such as block ciphers. The model involves giving the adversary

black-box access to some of the internal keyed components of the primitive; it captures the

fact that many such primitives often consist of iterating simpler constructs for a number

of rounds, and may provide insight into the security of such designs. The model can be

though of as a refinement to the traditional model of giving the adversary black-box access

to the entire primitive.

We completely characterize the security of four-round Luby-Rackoff style ciphers in our

model, and show that the ciphers remain secure even if the adversary is given black-box

access to the middle two round functions. Our results not only apply to the four-round

Feistel construction that appeared in the original paper of Luby and Rackoff [88], but also

to some of the variants that we discussed in chapters 3 and 4. We can also apply these

techniques to study message authentication codes based on universal hash functions. The

results in this chapter appear in a paper by Ramzan and Reyzin [121].

We obtain our results by utilizing a transcript argument, similar to the one used in
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chapters 3 and 4. In the present case, however, the argument is more complex because the

adversary has more power since he is given black-box access to internal components of the

cipher.

We organize the remainder of this chapter as follows. In section 5.2 we give a motivating

discussion on the natural round structure of symmetric-key cryptographic primitives. In

the section that follows, we give a high-level overview of our contributions. In section 5.4

we discuss our new model of looking at the "round security" and in the subsequent section

we discuss how this new model applies to four-round Luby-Rackoff ciphers. Sections 5.6

and 5.7 respectively explain our negative and positive results. The negative results describe

the situations for which the Luby-Rackoff style ciphers fail to remain secure in our model,

and the positive results describe the situations in which security is upheld. Remarkably, we

cover the universe of possible scenarios in these sections, so our characterization of Luby-

Rackoff ciphers in this new model is complete. In section 5.8 we discuss the round security

of universal hash function based message authentication codes. Finally, in section 5.9 we

make some concluding remarks.

5.2 The Natural Round Structure of Symmetric-Key Prim-

itives

Recall that in their path-breaking paper, Luby and Rackoff [88] give a formal definition of

a secure block cipher, and then show how to construct such a cipher using pseudorandom

functions. Their block cipher consists of four rounds of Feistel permutations, each of which

consists of an application of a pseudorandom function and an exclusive-or operation. Each

round's output is used for the next round's input, except for the last round, whose output

is the output of the block cipher (see figure 5-1).

Much of the theoretical research that followed the work of Luby and Rackoff [88] focuses

on efficiency improvements to this construction - thus far this thesis has discussed some

of this work. All of these variations also possess the same natural round structure as the

original Luby-Rackoff construction.

This theme of an inherent round structure in block ciphers is also seen extensively in

practice. For example, a number of ciphers, including DES [108] (which motivated Luby and

Rackoff's work) and many of the AES submissions [110] have an inherent round structure
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(though not necessarily involving Feistel permutations), where the output of one round is

used as input to the next.

In addition to block ciphers, constructions of other cryptographic primitives often also

proceed in rounds. For example, universal-hash-function-based message authentication

codes (Wegman-Carter MACs [142]), which we discuss in section 2.11 of chapter 2, can

be viewed as consisting of two rounds. Moreover, cryptographic hash functions (e.g.,

MD5 [123]), and the various message authentication schemes that are built on top of them

(e.g., HMAC [10]), have an induced round structure as well.

Consequently, it should come as little surprise that cryptanalysts have often considered

looking at individual rounds in order to better understand the security properties of a given

design; for example, a large number of papers have been written analyzing reduced-round

variants of block ciphers and hash functions. See, for example, Biham and Shamir's text

on the cryptanalysis of DES [23], or Schneier's self-study course on block cipher cryptanal-

ysis [130], and the references therein.

It thus seems that a theoretical framework incorporating the notion of rounds would

be desirable. This chapter proposes such a framework. Although our model is a simple

extension of the classical models of security for symmetric primitives ([88], [62], [11]), it

allows one to obtain a number of interesting results not captured by the traditional models.

In particular, we analyze the security of the original Luby-Rackoff construction, some of its

variants, and Wegman-Carter message authentication codes within our framework.

5.3 Our Contributions

5.3.1 A New Model

The definition of a secure block cipher from Luby and Rackoff [88], or of a secure message

authentication code from Bellare, Kilian, and Rogaway [14], allows the adversary only black-

box access to the full primitive. We discuss this model in detail in section 1.2.5 of chapter 1.

It is, perhaps, the most widely used model in the research literature. We develop the notion

of round security, which considers what happens when the adversary has additional black-

box access to some of the internal rounds of the computation of the primitive. Although we

focus on block ciphers, our techniques can be extended to other primitives such as message

authentication codes.
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For example, in the case of block ciphers, we study what happens when the adversary is

allowed, in addition to its chosen-plaintext and chosen-ciphertext queries, to input a value

directly to some round i of the block cipher and view the output after some round j, with

restrictions on i and j. The adversary's job is still the same: to determine whether the

chosen-ciphertext and chosen-plaintext queries are being answered by the block cipher or

by a random permutation. The queries to internal rounds are always answered by the block

cipher.

As discussed below, this model allows us gain a better understanding of what makes

symmetric constructions secure, and enables us to make statements about security that are

not captured by the traditional model.

5.3.2 Round Security of Luby-Rackoff Ciphers

We completely characterize the round security of the original Luby-Rackoff construction

and its more efficient variants, such as the ones presented in chapters 3 and 4. That is, we

precisely specify the sets of rounds that the adversary can access for the cipher to remain

secure, and show that access to other sets of rounds will make the cipher insecure.

Recall that the cipher proposed by Luby and Rackoff operates on a 2n-bit string L - R

and can be described simply as follows:

S = LDh1(R);

T = R e fi(S);

V = S e f 2 (T);

W = Teh2(V),

where hl, h2 , fl, f2 are pseudorandom functions, E represents the exclusive-or, and the

output is V - W.

Subsequent work by Naor and Reingold [101], and Patel, Ramzan, and Sundaram [114]

(which we describe in chapter 3), demonstrates that the pseudorandom functions h, and

h2 can be replaced by bisymmetric A-universal hash functions, and that fi could equal f2.

This work suggests that strong randomness is important only in the middle two rounds. We

extend this observation by showing that, in fact, secrecy is important in the first and last

rounds, while randomness (but no secrecy) is needed in the middle two rounds. Specifically,
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we show that:

" The cipher remains secure even if the adversary has oracle access to both fi and f2.

" The cipher becomes insecure if the adversary is allowed access to any other round

oracles.

Moreover, we demonstrate that instantiating hl and h2 as hash functions instead of as

pseudorandom functions does not significantly lower the round security of the block cipher,

thus supporting the observation that strong randomness is not needed in the first and last

rounds of the Luby-Rackoff construction.

5.3.3 Round Security of Universal Hash Function MACs

Using techniques in this thesis, one can also characterize the round security of a class

of universal hash function based message authentication codes (Wegman-Carter MACs).

Recall that we can construct such MACs with the following two-round process. In the first

round, we apply a universal hash function h to a relatively large message, to get a shorter

intermediary string. Then, in the second round, we use a pseudorandom function f on the

shorter string to get a final tag. It turns out that:

" The MAC remains secure if the adversary has oracle access to f.

" The MAC is, in general, insecure if the adversary has oracle access to h.

There are other types of Wegman-Carter MACs in which one uses other cryptographic

primitives instead of pseudorandom functions. We discuss some of these alternatives in

section 1.4 of chapter 1. We do not study these other types of MACs in this chapter since

we are unable to effectively characterize them in our model.

5.3.4 Implications for the Random Oracle Model

Our work has interesting implications for Luby-Rackoff ciphers and Wegman-Carter MACs

in the random oracle model. In this model, one assumes the existence of a publicly com-

putable function that behaves randomly. One can easily define security of block ciphers and

message authentication codes in this model given the work of Bellare and Rogaway [16]:

one simply allows all parties (including the adversary) access to the same public random

oracle, and the adversary has to succeed for a random choice of the oracle.
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Our results imply that the Luby-Rackoff cipher remains secure in the random oracle

model if one replaces the functions fi and f2 with random oracles. That is, in the random

oracle model, keying material will only be necessary for h, and h2 , which, as we show in

chapter 3, can be just universal hash functions.

Similarly, the Wegman-Carter MAC remains secure if the pseudorandom function, used

in the second round, is replaced with a random oracle. Thus, again, in the random oracle

model, keying material is needed only for the hash function.

Block ciphers have been analyzed in the random-oracle model before. For example,

Even and Mansour [50] construct a cipher using a public random permutation oracle P

(essentially, the construction is y = P(ki D x) & k2 , where k, and k2 constitute the key, x

is the plaintext, and y is the resulting ciphertext). They show their construction is hard to

invert and to existentially forge. We can recast their construction in our model, as a three-

round cipher, where the adversary has access to the second round. Using the techniques

in this chapter we can, in fact, obtain a stronger result; namely, that their cipher is super

pseudorandom. We stress, however, that their construction involves access to a random

permutation oracle, which is a more stringent requirement.

Of course, whether a scheme in the random oracle model can be instantiated securely

in the real world (that is, with polynomial-time computable functions in place of random

oracles) is uncertain, particularly in light of the results of Canetti, Goldreich and Halevi [34],

who show that there are schemes which are secure in the random oracle model, but become

insecure when the random oracle is replaced by any polynomial-time publicly computable

function. However, our results open up an interesting direction: is it possible to replace

pseudorandom functions with unkeyed functions in any of the constructions we discuss?

5.3.5 Implications for Tamper Resistance

Our model also has some implications for designing tamper-resistant devices. For example,

suppose that one wants to implement a block cipher (or some other primitive) on a smart

card and one wants to determine whether or not the entire smart card should be resistant

to tampering. This consideration has some importance since it may cost more to make the

entire card tamper resistant. If certain parts of the card are not tamper resistant, then it

may be possible for an adversary to probe various parts of the card and see the data as it is

being transformed from the plaintext to the ciphertext. For example, the adversary may see
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the data between rounds i and i + 1. In our round security model, this probing capability

is achieved by giving the adversary access to an oracle which allows it to put input into

round one and see the results after round i (and an oracle that allows the adversary to

place an input after the last round, and see the corresponding output before round i + 1).

For four-round Luby-Rackoff ciphers, we show that we cannot allow the adversary to probe

the data being transformed between any two rounds. Similarly, for Wegman-Carter MACs,

we cannot allow the adversary to probe the data being transformed between the first and

second round.

5.4 New Model: Round Security

We now discuss our new model of round security. The definitions can be easily extended

to other symmetric primitives, such as MACs. We start by defining the notion of a round

decomposition.

Definition 31 Let p, F 1 , F 2  yr be keyed permutation families, each with domain and

range I, and key length s. Suppose that for any key a E I, it turns out that

Pa =fa fa,

where Pa denotes picking the function in P whose key corresponds to a. Then Y1,..., Fr

is called an r-round decomposition for P. For i < j, we denote by (i - J)a the permutation

f a ... fa,

and we denote by (i +- j)a the permutation

(fa 0 ... 0 fai)

We denote by i -+ j and i +- j the corresponding keyed function families.

Note that having oracle access to a member of i -4 j means being able to give inputs to

round i of the forward direction of a block cipher and view outputs after round j. Likewise,

having oracle access to i +- j corresponds to being able to give "inputs" to round j of the

reverse direction of the block cipher and view outputs "before" round i. Note that it makes
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sense to talk about having oracle access to i -+ i since it allows one to give input before

round i, and and see the output after round i has been processed. We also observe that if

we implement the cipher on a device which allows the adversary to probe the data as it is

being transformed between rounds i and i + 1, then this can be modeled by giving oracle

access to 1 -+ i and i + 1 +- r. Also observe that the oracle for 1 -+ r corresponds to an

oracle for a chosen plaintext attack P, and the oracle for 1 <- r corresponds to an oracle

for chosen ciphertext attack P-1. Thus, one can think of our model as a refinement of the

traditional models which only give oracle access to P or P-1.

We are now ready to define security in this round-based model. This definition closely

mimics definition 5 from chapter 2. The difference is that the adversary is allowed oracle

access to some subset K of the set

{ i -+ j, < j: < i < j < r},

and the insecurity function additionally depends on K.

Definition 32 Let P be a block cipher with domain and range I, key length s and some

r-round decomposition y 1,...,yr. Fix some subset K = {17r,..., 7rk} of the set {i - j,i +-

j1 i < j < r}, and let A be a k + 2-oracle adversary. Then we define A's advantage as

Advs,.l .rK (A)

Pr[a R is :APaPa 17 1 17r k [P R RP +_# s: ~' = 1] - Prp Perm ,a +_ Is : AP'P '7r' -... = r

For any integers q, t > 0 and set K, we define an insecurity function

AdV (q, t, K) = max{AdV,... r(A)}
A

similarly to the one in definition 5. Again, the above maximum is taken over adversaries A

who make at most q total queries (to all of their oracles), and whose running time, together

with the time to select the appropriate keys and answer oracle queries, is at most t.

We remark that the notion of round security is taken with respect to a particular round

decomposition of the underlying primitive. In some sense, if the round decomposition is

not "interesting" then the results obtained may not be "interesting" either. For example,
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if P is the cipher, then P, id, d,.. ., i d, where id is the identity function, is a legitimate

round decomposition of the cipher. Yet, at the same time, this decomposition will not

yield additional insights beyond what we know from analyzing security with respect to the

traditional models.

We also note that our definition of security involves comparing a block cipher, with

additional round oracles, to a truly random permutation. Another plausible definition for

round security might be to compare a block cipher with itself, where in the first instance

we give round oracles corresponding to the cipher, and in the other instance we give round

oracles which are independent of the cipher. This alternate approach turns out not to be

terribly different from the originally proposed approach. In particular, if the cipher already

is a super pseudorandom permutation, then one can show that the two approaches are

equivalent. On the other hand, if the cipher is not a super pseudorandom permutation,

then there are already security concerns, so it is not clear if one should expend much effort

in analyzing this scenario.

5.5 Round Security of Luby-Rackoff Ciphers

Having developed a round security framework for block ciphers, we examine the specific case

of the original four-round Luby-Rackoff cipher, which we described in chapter 2. Our goal

is to characterize the insecurity function defined above depending on the set K of oracles.

We are able to do so completely, in the following sense. We place every set K in one of two

categories: either the insecurity function is unacceptably high, or it is almost as low as in

the standard model. That is, we completely characterize the acceptable sets of oracles for

the construction to remain secure in our model.

Moreover, we do so for all three ciphers presented in section 2.9 although we need to add

an E-uniformity condition on the hash functions in the second and third constructions in

order for them to remain secure; this is a mild condition, often already achieved by a hash

function family. Recall that we formally define the E-uniformity condition in chapter 2.

As it turns out, the round security of the three constructions is the same. Specifically, all

three ciphers remain secure if the adversary is given access to the second and third rounds.

These results suggest, in some sense, that the so-called "whitening" steps, performed in the

first and last rounds, require secrecy but only weak randomness, whereas the middle rounds
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require strong randomness but no secrecy.

We present our results in two parts. First, in Section 5.6, we examine what combina-

tions of oracles make the cipher insecure. Then, in Section 5.7, we show that any other

combination leaves it secure.

5.6 Negative Results

In this section we demonstrate which oracles make the cipher insecure. Our negative results

are strong, in the sense that they hold regardless of what internal functions hl, h 2 , fi, f2

are used. That is, the cipher can be distinguished from a random permutation even if each

of these functions is chosen truly at random. Thus, our results hold for all the four-round

ciphers presented in this dissertation. For now, we concentrate on the ciphers whose under-

lying Feistel ladder operates over GF(2")+ (bit-wise exclusive-or), though our techniques

can apply to Luby-Rackoff style ciphers over other algebraic structures, such as the ones we

consider in chapter 4.

Theorem 16 Regardless of how the functions h1 , fl, f2, h 2 are chosen from the set of all

possible functions with domain and range I1, let P = TI(h 1 , f1, f2, h 2 ). Let t be the time

required to compute 17 n-bit exclusive-or operations, a comparison of two n-bit strings, and

9 oracle queries.1 Then

Advsp T - -(9 t K) > 1 -
P,h,fi ,f 2 ,h2

as long as K is not a subset of {2 -+ 2,2 +- 2, 3 -+ 3, 3 - 3, 2 -+ 3, 2 <- 3}. That is, P

is insecure as long as the adversary has access to an oracle that includes the first or fourth

rounds.

In the above theorem recall that hi (respectively fl, f2, h2 ) denotes the basic Feistel per-

mutation mapping (L, R) to (R, L e hi(R)). This notation appears in definition 17 in

chapter 2.

We will prove the theorem by eliminating oracles that allow the adversary to distinguish

the cipher from a random permutation. This involves using the attack against a three-round

cipher from the original Luby-Rackoff paper [88]. If we consider ciphers whose underlying

'The values 17 and 9 can be reduced by more careful counting; it is unclear, however, if there is any
reason to expend effort finding the minimal numbers that work.
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Feistel ladder does not use the bit-wise exclusive-or, then we can use the attack given in

section 4.6. We now give the complete proof. First, we note the following fact.

Lemma 6 If we give a way to compute the values of h1 on arbitrary inputs, then there exists

an adversary A that asks three queries to h1 , two queries to the chosen-plain text oracle p,

and one query to the chosen-ciphertext oracle p- 1 , performs 8 exclusive-or operations, and

has an advantage of 1 - 2-'.

Proof: This is so because access to h, allows the adversary to "peel off" the first round of

the cipher, and then use the original Luby-Rackoff attack [88] against a three-round cipher.

Consider the following attack, which assumes the existence of an oracle to compute the first

round function h, (i.e. 1 -+ 1).

Description of adversary who has oracle access to (1 -+ 1).

1. Pick three arbitrary n-bit strings: L1 +- In, R 1 4- I, R2 +- 1.

2. Query for the encryption of L, - R 1 and call the result Vi - W 1 .

3. Query the (1 -+ 1) oracle on R 1 and R 2 . Call the results hi(R1 ) and hi(R2 ).

4. Let L 2 = Li D hi(R1 ) e hi(R2 )-

5. Query for the encryption of L 2 - R 2 and call the result V2 - W 2 .

6. Let V3 = V2 .

7. Let W 3 = W 2 e R1 E R 2.

8. Query for the decryption of V3 - W3 and call the result L 3 - R 3 -

9. Query the (1 -+1) oracle on R 3 . The result is hi(R 3 ).

If hi(R 3 ) e L 3 = Vi e V2 E L1 e h,(R1 ) then

return that the cipher is not random.

else

return that the cipher is random.

If the plaintext and ciphertext oracles are truly random, then the above attack will output

the incorrect answer with probability 2-, because V and L 3 are then random and inde-

pendent of the rest of the terms. However, if the plaintext and ciphertext oracles are for
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the block cipher, then the adversary will output the correct answer with certainty. Here is

why.

Let Si, Ti (1 < i < 3) be the

block cipher for the three queries.

L2

V3

W3

intermediate values computed in rounds 1 and 2 of the

Now, observe that:

= Li e hi (R 1 ) e hi(R 2 );

= V2;

= W2 ( R 1 D R 2.

Note that:

S 1 = L, e hi(R1 )

= L2 D h1 (R 2 )

= S2.

Then:

T3= W3 e h2 (V3)

= W 2 e R1 E R 2 D h2 (V 2 )

= T 2 ED R1 E R 2

=f 1 (S2) D R2 E R, D R2

=, 1(Si) (D R,

=, T1

Finally,

hi(R 3 ) e L 3 = S3

= V3 ( f 2 (T3 )

= V2 e f 2 (T 1)

= V2 ( V1 e S 1

= V2 ED V 1 ED L 1E hi(R1 ),

139



which completes the proof. U

Note that this fact can be similarly shown for h2 . The lemma above allows us to prove the

following result.

Lemma 7 If K contains at least one of the following oracles: 1 - 4, 1 +- 4, 2 -+ 4, 2 <- 4,

1 -+ 3, 1 - 3, 1 -+ 1, 1 -+ 2, 1 +- 1, 1 +- 2, 4 <- 4, 3 <- 4, 4 4 or 3 <- 4, then there

exists A making no more than 9 queries to the oracles and performing no more than 17

exclusive operations whose advantage is 1 - 2-n.

Proof: If K contains 1 -+ 4 or 1 -+ 3, then A can input an arbitrary pair L - R to either

of these and receive V -W or T - V. A then inputs L - R to the chosen plaintext oracle p to

receive V'- W', and checks if V = V'. A similar attack holds if K contains 1 <- 4 or 2 +- 4.

If K contains 2 -+ 4, then A can input an arbitrary pair R - S to it to receive V - W. In

this case, A inputs V - W to the chosen ciphertext oracle p- 1 to receive L -R' and checks if

R = R'. A similar attack holds for 1 +- 3.

If K contains 1 -+ 1 or 1 -+ 2, then A can input L - R and receive, in particular,

S = L E hi(R). A can then compute hi(R) = S E L, and use the procedure of Lemma 6.

Access to 1 +- 1 allows A to input R - S and receive (L = S E hi(R), R). A can then

compute hi (R) = L E S. Access to 1 <- 2 allows A to compute hi (R) as follows:

1. Query the 1 +- 2 oracle on an arbitrary pair Si -T to get L, - R 1 .

2. Let T 2 = Ti D R 1 E R and S2 = S1.

3. Query the 1 +- 2 oracle on S 2 - T2 to get L 2 -R 2 . Then

R2= T 2 ED f1 (S2)

- (T 1 e R1 e R) E (R E T1 )

=R;

4. Compute h1 (R) = L2 E S2.

Thus, any of the oracles 1 - 1, 1 - 2,1 <- 1, 1 +- 2 gives A access to h, and thus makes

the cipher insecure. A similar argument holds for access to any of the oracles 4 <- 4, 3 <- 4,

4 -+ 4 and 3 - 4. M
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Finally, to prove Theorem 16, note that there are 20 possible oracles. Of those, 14 are

ruled out by the above lemma, leaving only 6 possible oracles to choose from.

5.7 Positive Results

In this section, we prove what is essentially the converse of the results of the previous

section. Namely, we show that if K is the set given in Theorem 16, then the cipher is

secure. Of course, if K is a subset of it, then the cipher is also secure. In particular, we

prove the following theorem.

Theorem 17 (Ramzan-Reyzin [121]) Suppose K C {2 -+ 2,2 +- 2,3 -+ 3,3 +- 3,2 -+

3,2 +- 3}.

Let h1 , f1, f2,h 2,tf and B be as in the original Luby-Rackoff construction (Theorem 4).
Then

Advs(qt,K) Adv(q, t') + (2n1 +22n) + q2 (2--i)
B3,h

1 
1f 2 f

2 
,t) ! A

where

t' = t + O(3s + 3qc(tf + n) + on).

If hi, fi, f2, h 2 , th, tf and B are as in the Naor-Reingold construction (Theorem 5), with the

additional condition that h1 and h2 be e3 -uniform, then

Adv -(q, t, K) < Advr (q, t') + (q) (2e + 2-2n) + q2 F3/2,

where

t'= t + O(s1 + 232 + qc( 2 th + tf) + qon).

Finally, if hi,!, h 2 , th, tf and B are as in Patel-Ramzan-Sundaram construction of chapter 3

(Theorem 6), with the additional condition that h1 and h 2 be E3-uniform, then

Advs (q t) K Adv 7(2q, t') + q2 (e + 2E3 ) + (2C2 + 2-2n)
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where

t' = t + O(2s 2 + 2 qc(th + n) + qn).

We focus our proof on the last part of the theorem. The proofs of the other cases are

very similar. Our proof technique is a generalization of the techniques seen in chapters 3

and 4, but is designed to deal with the extra queries. We continue to analyze security in

the concrete or exact model, rather than the asymptotic model.

We proceed in the standard manner by showing that the permutation TI(hl, f, f, h2 ) is

pseudorandom when f is truly random (rather than pseudorandom). We also note that

access to the oracles of K is equivalent to access to the oracle for f (although one query

to 2 - 3 or 3 -+ 2 can be simulated by two queries to f). Thus, it suffices to prove the

following theorem.

Theorem 18 Let f be chosen uniformly from Rand"'*. Let h1 , h2 be E1-bisymmetric 62 -

almost-A-universal e3 -uniform hash functions with domain and range In. Let P be the

family of permutations on I2n consisting of permutations of the form P = XI(h 1 , f, f,h 2 ).

Then, for any 3-oracle adversary A that makes at most qc queries to its first two oracles

and at most q0 queries to its third oracle (q = q0 + qt),

Adv s ff (q, t, f) < qc2C + 2qoqcE3 + (c (262 + 2-2n)

The remainder of this section gives the proof of this theorem. To summarize, the first part

of the proof focuses on the transcript (a.k.a. the "view") of the adversary, and shows that

each possible transcript is about as likely to occur when A is given P as when A is given

Perm 2,. The second part uses a probability argument to show that this implies that A will

have a small advantage in distinguishing P from Perm2 n

Proof of Theorem 18

We now analyze the security of our construction P = I(h 1 , f, f, h2 ) under the round security

model. The technique used involves a more complex transcript argument, similar in spirit

to the arguments used in chapters 3 and 4.
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Recall that in our setting we model the adversary A as a program for Random Access

Machines. The adversary gets a certain kind of black-box access to either a permutation

uniformly sampled from the set of all possible permutations on 2n bits, or one sampled

from some the set of ciphers I(hi, f, f, h2 ). Let P denote this first oracle. In addition, the

adversary gets access to an oracle that computes the function f - we denote this oracle by

Of. In the case that P = TJ(hi, f, f, h2 ), Of computes the same function as the one used in

the second and third rounds for P. In the case that P is a truly random permutation, then

Of still computes the kind of function used in the second and third rounds of a cipher of

the form I(hi, f, f, h2 ). In this case, however, the function f is completely independent of

P + Perm 2n. Now, A has two possibilities for queries to the oracle P: (+, x) which asks to

obtain the value of P(x), or (-, y) which asks to obtain the value of P-1 (y) - where both x

and y are in I2n. We call these cipher queries. As per our usual convention, we often write

L - R to represent the left and right n bits of the plaintext x, and V - W to represent the

left and right n bits of the ciphertext y. We define the query-answer pair for the ith cipher

query as (xi, yi) E 12n X I2n if A's query was (+, xi) and y is the answer it received from P

or its query was (-, yi) and xi is the answer it received. We assume that A makes exactly

qc queries and we call the sequence

S((Xi, y1), . xq .. , q (P ye)

the cipher-transcript of A.

In addition, A can make queries to Of. We call these internal queries. We denote these

queries as: (Of, x') which asks to obtain f(x'). We define the query-answer pair for the Zth

internal query as (X/, y) C In x I, if A's query was (Of, xz) and the answer it received was

y . We assume that A makes q, queries to this oracle. We call the sequence

(( ', 7 y') ..., (X'1, y')I

the internal-transcript of A.

Now, we can make the standard assumption that A is deterministic (since we can always

fix the optimal random choices). Under this assumption, the exact next query made by A

can be determined by the previous queries and the answers received. We now formalize

this notion by generalizing the function C that we defined in our section on transcripts
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(section 2.6 of chapter 2).

Definition 33 Let

CA [((Xi y1, .YO , (Xi, yi)) P, ((X', Y11)), .. j . ,(x, )) of

where i < q, or j < qO, denote the i + j + 1Vt query A makes as a function of the first i + j

query-answer pairs in A's cipher and oracle transcripts. Let

CA [((X 1, . , (Xqc, yqj))P, ((Wi, y1) .. , (zqy')) of

denote the output A gives as a function of its cipher and oracle transcripts.

Definition 34 Let - be the pair of sequences

(((z , y1),. , (Xqc, ygc))P, ((i y1),.. (qo,, Y'))Of),

where for 1 < i < qc we have that (x1, y1) E I2, X I2n, and for 1 < j < qO, we have that

(X', y') E I. Then, o- is a consistent A-transcript if for every 1 < i < q:

CA[((xi, YO),.... , (Xi, YO))P, ((Wi, Y11), .. ,(XI, y'))of]

{(+, xi+1), (-, yi+1), (of , Xj1+1M

We will make use of the random process R (see definition 21 in chapter 3). The main

difference is that in this scenario, the random process R will only answer the cipher queries

of A. The internal queries will always be answered by round functions (or the composition

of round functions) from the block cipher. As before, R's answers may not be consistent

with any function, let alone any permutation. In this case, we say that the underlying

transcript is inconsistent. We also assume, as we did before, that A never asks a query if it

can determine the answer directly from a previous query-answer pair.

Recall that the process f often "behaves" exactly like a permutation, and if A is given

oracle access to either f or Perm2 , to answer its cipher queries, it will have a negligible

advantage in distinguishing between the two. We prove this formally in proposition 1 in

chapter 3. In fact, if A only makes qc cipher queries, then his advantage in distinguishing

between 1 and Perm 2n is (c) .2-2n. Note that internal queries are immaterial for obtaining
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this bound since not only are internal query oracles independent of the cipher query oracles,

but they are identically distributed for both f and Perm 2, since they are always drawn

directly from the construction of the cipher.

Before proceeding, recall that we can denote by the random variables TP, Tperms, ,T the

cipher-transcript / internal-transcript pair seen by A when its cipher queries are answered

by P, Perm2n, R respectively, and its internal queries are all answered by Of.

We now proceed to obtain a bound on the advantage that A will have in distinguishing

between T and TA. It turns out that Tp and TA are identically distributed unless some

bad event depending on the choice of hl, h2 in P occurs. We call this event Bad and obtain

a bound on the probability that it occurs. Similar to the previous chapters, Bad occurs

whenever the function f in P would have been evaluated on the same input twice during

the process of answering queries. For example, this event would occur if the input to the

internal query oracle were identical to the value on which f is evaluated during a normal

cipher query (either in the plaintext or ciphertext direction). We formally define Bad in the

next definition, and in proposition 7 we obtain a bound on the probability that it actually

occurs. Then, in lemma 8 we show that Tp and TA are identically distributed conditioned

on the event Bad occurring.

Definition 35 For every specific pair of functions h1 , h2 define Bad(h1, h 2 ) to be the set of

all possible and consistent transcripts

o- = ((x1,yi), . . . , (xqc,Yq))p, ((x',y1), . .. , (X

satisfying at least one of the following events:

* Event Bi: there exists 1 < i < j < qc such that h 1 (x!j) D x = h1 (x') D x, or

" Event B2: there exists 1 < i < j < q, such that yR e h2 (yf) = yj' e h2 (y ), or

* Event B3: there exists 1 < i, j < q, such that h1(x') E x' = yI e h2 (yg"), or

" Event B4: there exists 1 < i < qc, 1 < j qo such that hi(x! ) ( x' = x', or

" Event B5 : there exists 1 < i < qc, 1 < j q such that yY e h 2(yf) = x/.
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Proposition 7 Let h1 ,h 2 be E1-bisymmetric E2 -almost-A -universal 63 -uniform hash func-

tions. Then, for any possible and consistent A - transcript o-, we have that

Pr [o- E Bad (hi, h 2 )] q 21E + 2qoqcE3 + qc 2E2-
hi,h2 2)

Proof: Recall that a transcript o- E Bad(hi, h2 ) if at least one of the events B1 through

B5 occur. We can determine the individual probabilities of each of these events separately,

and obtain an upper bound on the desired probability by taking the sum. We start with

bounding the probability of the first event:

Pr[B1] Pr[31 < i < j < q: hi(Ri) D Li = hi(Rj) D Lj]
h1 hi

< S Pr[h1(Ri) Li = hi(Rj) E Lj]
1<i<j:!qc h

< E Pr[h1(Ri) E hi(Rj) =Lj Li]
1si<jsqc

The last inequality follows from the previous since if Ri R Rj then we can use the fact that

hi, h2 are e2 -almost-A-universal; if Ri = R3 , we know that x' = xf (since we assume the

cipher queries are distinct), in which case

Pr[h(Ri) D h(Rj) = L (D Lj] = 0.
h

Now, we bound the probability of the second event:

Pr[B2] K Pr[31 < i < j < q : Wi h2 (Vi) = Wj E h 2 (Vj)]
h2 h 2

< S Pr[Wi ED h2 (Vi) = Wj e h 2 (Vj)]
1<i<j<qc

< E Pr[h2 (Vj) E h 2 (Vi) = E Wj]
1si<jsqc

The last inequality follows from the previous since if Vi V then we can use the fact that

h is e2-almost-A-universal; if V = V, we know that Wi # Wj (since we assume the queries

146



are distinct), in which case

Pr[h(V) E h(V) = W& E W ] = 0.
h

A bound for the probability of the third event similarly follows, from El-bisymmetry of

hl, h2 :

Pr [B3]
h1,h2

< Pr[31 < i,j ! q, : hi(Ri) e Li = Wj D h2 (V)]
h

< E Pr[h1(Rj)EDLj=Wj Eh 2(V )]
1<i,j<qc

< S Pr[h1(Rj)e h2 (V9)=WjELj]
1<i,j<qc

qc2

We bound the remaining two events using E3 -uniformity.

Pr[B4] < Pr[31 < i < qc,1 j :!q% : h(Ri) Li = x']
hi hi

< Pr[hi (Ri) = x' e Lj]
1<i<qc,1<j<q. h

< (qc - go) -3

And finally,

Pr[B5]
h2

< Pr[31 < i < qc,1 < j < q0 : Wi E h2 (V) = X']
h1

< Pr[h2(Vi ) = Wi E X']
1<i<qc,1<j<q. h

<(qc , gO) - E3 .

We thus get that:

Pr [o- E Bad(hih 2 )]
hi,h2

< Pr [B1]+...+ Pr [B5]
h1,h2 hi,h2
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< q2ei + 2qaqc 3 + () 262,

which concludes the proof. U

The following key lemma shows that the distribution of possible and consistent transcripts

generated by Tp given that the bad conditions do not occur is identical to the distribution

of possible and consistent transcripts generated by TA. This lemma will later help us to

determine a bound on the advantage our adversary A will have when trying to distinguish

between these two cases in general. The lemma is the analogue of lemma 2 from chapter 3,

but takes the internal query transcript into account as well.

Lemma 8 Let

a = ((Xi, yi), . . , (Xqc, yqc))p, ((i, y1), . . . , (X', y))Of

be any possible and consistent A-transcript, then

Pr[Tp = ala V Bad(hi, h2 )] = Pr[Tft = a].
R

Proof: By the same reasoning in the proof of lemma 2 from chapter 3, one can show that

Pr[T = a] = 2 -(2qc+qo)n
R

The only difference in the argument is the extra multiplicative factor of 2 - 0 n. This factor

arises since we make qO internal queries, resulting in qO - n bits of total output; moreover,

these bits are uniformly distributed and independent of each other since the queries are

answered by a random function.

Now, we fix hl, h2 such that a V Bad(hi, h2 ). We will compute Pr1 [Tp = a] (note that

the probability is now only over the choice of f). Since a is a possible A-transcript, it

follows that Tp = a if and only if yi = TJ(h 1, f, f, h2)(Xi) for all 1 < i < q, and y'.= f(x.)

for all 1 < j 5 qO. If we define

Si = LiEhI(Ri);

T = Wi E h2(Vi ,
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then

Vi -Wi = P(Li -Rj) ->* f (Si) =T ED Ri and f (T) = V e Si.

Now observe that for all 1 < i < j < qc, Si / Si and T =A T (otherwise a E Bad(hi, h2 )).

Similarly, for all 1 < i, j < qc, Si 5 T. In addition, it follows again from the fact that a

Bad(hi, h2 ) that for all 1 < i < q, and 1 < j < q, x' / S and x' :A Tj. So, if o- Bad(hi, h2 )

all the inputs to f are distinct. Since f is a random function, Prf[Tp = a] =2--(2q+qo)n

(the cipher transcript contributes 2 -2nqc and the oracle transcript contributes 2 -q 0 n to the

probability).

Thus, for every choice of hl, h2 such that a V Bad(hi, h2 ), the probability that Tp = o-

is exactly the same: 2 --(2qc+qo)n. Therefore:

Pr[Tp = ala 0 Bad(hi, h2 )] = 2 -qcIqo)n

which completes the proof of the lemma. M

The rest of the proof consists of using the above lemma and propositions 1 and 7 in a

probability argument. In the following, we abuse notation by listing the adversary's oracles

as (P, P-1, f), and (Perm2n, (Perm2n - 1, f) to remind the reader that the adversary is given

oracle access to both the forward and inverse directions of the permutation, as well as to

an internal round function f. We start with the following preliminary proposition.

Proposition 8 Let 1' be the set of all possible and consistent transcripts 0- such that

CA(-) = 1. Then:

Adv((P, P- 1 ,f), (Perm 2,, (Perm 2n), f)) 5 >(Pr[Tp = o] - Pr[TA = cr3) + ( --2n

where A is restricted to making at most q, cipher queries to its oracles.

Proof: First, we break up the left hand side of the above inequality so that the distin-

guishability of both distributions are taken with respect to the process R:

Adv((P, P--1, f), (Perm 2 ,, (Perm2n ) 1 , f))

< Adv((P, P-1 , f), (N, f)) + Adv((R, f), (Perm 2n, (Perm 2ng-, f)). (5.1)
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Now, since A with an oracle for P only generates possible and consistent transcripts, we

can apply theorem 1 from chapter 2 to the first summand in equation 5.1. Next, we can

apply proposition 1 from chapter 3 to the second summand. The proposition follows. M

We now prove the main theorem:

Proof: (of Theorem 18) First we successively apply proposition 8 given above, and

theorem 2 from chapter 2 with the set Bad(hi, h 2 ):

Adv((P, P 1 , f), (Perm 2,, (Perm 2,-1 p)

Z(Pr[Tp = o-] - Pr[T = a]) + (c 2-2n
TEF

Now, applying theorem 2:

Z(Pr[Tp = o] - Pr[Tk = o])

Pr[T-p = a- lo V Bad(hi, h2 )] - Pr[T, = -] -Pr[a- Bad(hi, h2)]
sr

+ Pr[a-* E Bad(hl, h 2 )].

Observe that according to lemma 8:

Pr[T = a o- Bad(hi, h 2)] - PrF1TPerm2n = - Pr[a- V Bad(hi, h 2 )] = 0.
P[ ~ Perm l2nL Pe ]

In addition, observe that proposition 7 tells us that

Pr[o* E Bad(hi, h2 )] < q2 i + 2qaqE3 + qc - 2

Combining these observations, we get:

Adv((P, P- 1), (Perm 2n, (Perm 2n)-1))

q 2E, + 2qqcE3 + ( - (2 E2+2 -2n),

which completes the proof. U
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Theorem 17 follows as a corollary using standard techniques. The proof looks nearly iden-

tical to the proof of theorem 10 given in chapter 3.

5.8 Round Security of Universal Hash Function Based Mes-

sage Authentication Codes

We can analyze the round security of the Wegman-Carter MAC similarly to the round

security of the Luby-Rackoff construction. Recall that the first round of a Wegman-Carter

MAC is a hash function h, and the second round is a pseudorandom function f. Thus the

number of possibilities for the set K of oracles for internal rounds is smaller: the adversary

already has access to 1 -+ 2; so the only oracles of interest are K = 1 -* 1 (an oracle for h)

and K = 2 -- 2 (an oracle for f).

Negative Results

If we give the adversary oracle access to h, then the scheme is not, in general, secure. This

is so because, for many hash functions (in particular, for the one presented in the example

in Section 2), given sufficiently many input-output pairs one can construct a new pair of

values x, y such that h(x) = h(y), but x - y. In such a case, Sa(x) = Sa(y). So, once the

adversary queries Sa on x, it will be able to output a valid MAC for y.

Positive Results

Surprisingly, it turns out that if we give the adversary oracle access to f, the Wegman-

Carter MAC continues to be secure, provided h is uniform, in addition to being universal.

This is not a serious restriction on h, because most natural examples of universal hash

functions exhibit good uniformity properties.

Theorem 19 Let F, H, U, M be as in Theorems 7 and 8, with the additional property that

H is c1-uniform. Let K = {2 -* 2}, let qO denote the number of queries made to the oracle

K, and let qm denote the number of queries made to the function family M (q = qn + q,).

Then

AdvMHy(q, t, K) < AdvF (q, t') + ( + q2 Ei/4 + 1/2',

where t' = t + O(k + 1 + s2 + qmth + qon).
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The theorem can be proven via the techniques used for the block cipher case - in fact, the

argument is simpler because there are fewer bad conditions to analyze. We omit the proof

for this reason. We point out that our results imply the somewhat paradoxical fact that

S remains pseudorandom even if the adversary has oracle access to its only pseudorandom

component f.

5.9 Conclusion

In this chapter we discussed a new model for analyzing the security of symmetric-key cryp-

tographic primitives which accounts for the fact that many such primitives have an induced

round structure. The model allows the adversary black-box access to some of the internal

keyed functions in the primitive. We analyzed the security of various four-round Luby-

Rackoff ciphers in this new model, and showed that the cipher remains secure even if we

give the adversary black-box access to the round function f. We explained how our re-

sults also apply to universal hash function based message authentication codes, and to the

Even-Mansour [50] block cipher.
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Chapter 6

Square Hash: A Fast A-universal

Hash Function

6.1 Introduction

Many of the previously described results of the thesis utilize universal families of hash

functions. Such hash functions provably possess particular statistical properties and can be

implemented without any cryptographic assumptions. In this chapter we discuss two new

ideas in the construction of fast universal hash functions. In addition to their applicability

in block cipher design as we describe in chapters 3, 4, 5, these hash functions can actually

be used for the purposes of message authentication, which is where we focus our attention

in this chapter. A less detailed description of these results appeared in a paper by Etzel,

Patel, and Ramzan [49]. We describe the problem of message authentication, together with

various approaches to solving it, in chapters 1 and 2.

The starting point of our construction is a simple but novel family of universal hash

functions that is more efficient than many standard constructions. We compare our hash

functions to the MM H family studied by Halevi and Krawczyk [65]. We then introduce

additional techniques for speeding up our constructions; these techniques apply to MM H

and may apply to other universal hash functions. The techniques involve ignoring certain

parts of the computation, while still retaining the necessary statistical properties for secure

message authentication. We substantiate our claims through implementation results on an

ARM (Advanced RISC Machine) processor. Our constructions are general and can be used
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in any setting where universal hash functions are needed. Consequently, they may be of

independent interest.

The remainder of this chapter is organized as follows. In section 6.2 we outline the

basic square hash. In section 6.3 we compare the basic square hash to MM H and describe

the optimizations to our basic construction. In the two sections thereafter, we discuss

various implementation considerations, and give concrete implementation results. Finally,

in section 6.6 we make some concluding remarks.

6.2 The Square Hash

The square hash introduces two new ideas in the construction of fast universal hash func-

tions. We start with a simple, but novel family of universal hash functions which is more

efficient than certain well-known hash function families. The efficiency lies in the fact that

whereas other common constructions involve integer multiplications, our construction in-

volves integer squaring. It turns out that squaring a large integer requires fewer basic word

multiplications than multiplying two large integers [95], so we get a speed-up. In certain

architectures, multiplication takes significantly more time than other basic arithmetic op-

erations, so we can get good savings with this approach. Our second idea is to optimize the

implementation of this hash function by ignoring certain parts of the computation; more-

over, we formally prove that, despite ignoring these parts of the computation, the bound

E on the resulting optimized hash function is still low enough to provide for a very secure

MAC. One can think of this approach as "theoretical hacking." Specifically, the second new

idea discussed in this chapter is to completely ignore some of the carry bits when perform-

ing the computation of the hash function in our basic construction. Since carry bits can

be cumbersome to deal with, we can save computational effort in this manner. We stress

that this savings will primarily occur when our tag size is several words long since some

microprocessors, such as the Intel Pentium, allow you to multiply two 32-bit words, and get

a 64-bit result with all the carries "for free."

At first it seems counterintuitive that we can simply ignore what appears to be a crucial

part of the computation. However, we are able to show that our MAC algorithms are

still secure for natural choices of the parameters. Square hash builds on some of the ideas

in the MM H construction of Halevi and Krawczyk [65]; Knudsen independently proposed
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a construction similar to square hash for use in block cipher design [77]. We start with

an underlying hash function which is similar to the one used in MM H; however, our new

hash function performs fewer multiplications. In MMH, the final carry bit of the output

is ignored - in square hash we extend this idea by showing that we can ignore almost all

of the carry bits and still get quite a reasonable trade-off in security. Hence, in theory,

square hash should be a strong alternative to MM H. We have implementation results on an

ARM processor to substantiate this claim. Moreover, since word blocks in the input can be

worked on independently, our constructions are parallelizable.

We now describe some basic constructions of universal hash function families based on

squaring. We also examine modifications that enable faster implementations at negligible

costs in collision probability. In the definitions and theorems that follow, we work over the

integers modulo p where p is a prime.

6.2.1 The Basic Construction

Definition 36 Define the SQH family of functions from ZP to ZP as: SQH {h Z, -+

Zp\x E Zp} where the functions hx are defined as:

hx (m) (m-+X) 2 mod p.

Theorem 20 The family SQH is A-universal.

Proof: For all m : n E Zp, and 6 E Zp:

Pr[hx(m) - hx (n) = 6] = Pr[(m + X) 2 _ (n + X)2

= Pr[m 2 _ n 2 + 2(m - n)x=]

= 1/p.

The last inequality follows since for all m # n E ZP and 6 E ZP there is a unique x which

satisfies the equation m 2 _ n 2 + 2(m - n)x = 6. U
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6.2.2 Comparison with Linear Congruential Hash

We compare the square hash to the linear congruential hash, which is one of the most heavily

referenced universal hash functions in the literature. We define the linear congruential hash

(LCH) family of functions to be: LCH {hxb : Zp -- + ZpIx, b E Zp} where each of the

functions h1 ,b are defined as:

hx,b(m) mx + b mod p.

In most cases, the SQH family requires less computation time than LCH. The speed-up

occurs because squaring an n-bit number requires roughly half the number of basic word

multiplications than multiplying two n-bit numbers [95]; thus we can save when dealing with

quantities that are several words long. One major caveat is that SQH is not a permutation.

Thus one should not use it an application that requires a strongly-universal permutation.

We now compare square hash with the M M H construction [65].

6.3 Comparison with MMH

Halevi and Krawczyk [65] studied a family of A-universal hash functions entitled M M H.

MMH was originally defined by Carter and Wegman [36]. Halevi and Krawczyk discovered

techniques to speed up the software implementation at negligible costs in the collision

probabilities. These hash functions are suitable for very fast software implementation. They

apply to hashing variable sized data and to fast cryptographic message authentication. In

this section we compare our SQH family to MMH. We show that in theory SQH is more

efficient with respect to both computation time and key sizes than MMH. We also show

that all of the clever software optimizations discovered by Halevi and Krawczyk for MM H

can be applied to SQH as well. Finally, we further optimize square hash by disregarding

many of the carry bits in the computation. We now describe MM H* which is the basic

non-optimized version of MM H.

6.3.1 Description of MMH*

Definition 37 [65] Let k > 0 be an integer. Let x = (Xi,... , xk), and m = (Mi, ... M),

xi,mi E ZeThe MMH* family of functions from Zk to Z is defined as follows: MMH*
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{g9 : Z - 4 | x E Zk} where the functions gx are defined as

k

gx(m) = m- x = mixi mod p.
i=1

Theorem 21 [Halevi and Krawczyk]: M M H* is a A-universal family of hash functions.

Halevi and Krawczyk [65] also discussed a way to generalize these functions so that their

range is Z rather than just ZP. This can be done via a Cartesian product type idea due

to Stinson [137]. Specifically, we hash the message I times using I independently chosen

keys and we concatenate the hashes. This yields a collision probability of 1/pl. At first this

requires a much larger key size, but that can be reduced by applying a Toeplitz matrix type

idea due to Krawczyk [80]; namely (for the case I = 2), choose k + 1 scalars X1 ,.. ., Xk+ 1 and

set the first key to be (XI, .. . , Xk) and the second key to be (X2,... , xk+1). The collision

probability reduces to roughly 1/p 2 .

6.3.2 A Variant of Square Hash Similar to MMH*

Definition 38 Let k > 0 be an integer. Let x (Xi,... ,xk), and m = (Mi,... ,mk),

i, mi E 7y. The SQH* family of functions from Zk to Z, is defined as follows: SQH*

{g :k -- + ZP | x G Zk} where the functions gx are defined as

k

9X(m) = Z(m, + X,) 2 mod p (6.1)
i=1

Theorem 22 SQH* is a A-universal family of hash functions.

Proof: Let m n E 2,k with m = (Mi,... ,mk), n = (ni,...,nk) and mini C Zp.

Let 3 E ZP. Since m n there is some i for which m =,A ni. Without loss of generality,

suppose mi : n 1. Now, we show: for all x 2 , .. . , Xk Prx, [gx(m) - gx (n) = 3] = 1/p (where

X = (Xi,... , Xk)) which implies the lemma. So,

Pr[gx (m) - gx (n) 6]
X1

k k

= Pr[Z(Xz + m,) 2 - (zi + ni)2

i=1 i=1

158



k k

= Pr[2(mi - n)= J - m + n Z(i + )+ Z(zi
i=2 i=2

= i/p.

The last equation follows since (mi - ni) = 0 implies that there is a unique xi E Zp

satisfying the equation inside the probability. N

6.3.3 Comparing SQH* to MMH*

SQH* should be faster than MM H* because squaring can be implemented so it requires

roughly half the number of basic word multiplications as multiplying two numbers. In

particular, here is a fast squaring algorithm which is adapted from the one given by Menezes,

Vanstone, and van Oorschot [95].

The above algorithm essentially makes use of the following observation. If you have

positive integer x = x._1 ... xO where each xi (0 < i < w - 1) is an i-bit quantity, then you

have to compute xi - x3 for all 0 < i < j < w - 1. This computation requires w(w + 1)/2

basic i-bit word multiplications. On the other hand, if you want to multiply x with another

quantity y = yw-1 ... yo, then you would have to compute xi - yj for all 0 < i, j 5 w -
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Description of fast squaring algorithm.

Input: x = x,,- - x0 where xi E {, 1}, i w -1.

Output: x2 as a concatenation of i-bit words.

1. For i = ito 2w - 1 do:

la. tj +- 0.

2. For i = 0 to w - 1 do:

2a. (u,v) <-t2i + Xi - Xi, t2i v, c - u.

2b. For j = (i + 1) to (w - 1) do:

(u, v) <- ti+j + 2xjxi + c, ti+j <- v, c +- U.

2c. ti+t +- u.

3. (u, v) +- t 2 w- 2 + Xw-1 - xw-1, t2w-2 +- V, t2w-1 +- U.

4. Return t2w-1t2w-2 ... tO.



1. This computation requires w 2 basic i-bit word multiplications. Thus squaring gives a

speed-up factor of (w(w + 1)/2)/W2 = (w + 1)/2w in terms of basic word multiplications.

Since multiplication is relatively expensive on many architectures, we may save considerably

through the use of efficient squaring. There are a number of other techniques one may use

to enhance the efficiency of these types of universal hash functions. In particular, Halevi

and Krawczyk made several clever software optimizations on M M H; the same optimizations

apply to SQH as well.

6.3.4 Speeding up MMH*

Halevi and Krawzyck [65] define MMH 3 2 , which is an optimized version of MMH*:

Definition 39 Set p = 232 + 15 and let k be a positive integer. Let x = (x 1 , ... , xk), and

m = (m1,... , m), i, mi C Zp. Define the MMH 3 2 family of functions from ({, 1}32)k to

{0, 1}32 as: M M H32 = {hx : ({0, 1}32)k _-4 {, 1}32 1 x E ({0, 1}32)k} where the functions

hx are defined as

k
hx(m) (((Zmjxj) mod 264) modp) mod 232

i=1

Theorem 23 [Halevi and Krawczyk]: MMH 32 is an e-almost-A -universalfamily of hash

functions with e < 6 - 2-32.

The same optimization applies to SQH*, and we discuss this now.

6.3.5 Speeding up SQH*

Here is a variant of square hash, called SQHasm, which is suited for assembly language

implementation since both its domain and range consist of bit strings of length 1. Ideally,

1 should be chosen as a multiple of the word size on the processor on which the algorithm

will be implemented in order to enhance efficiency.

Definition 40 Let I and k be positive integers, and let 2' < p < 2' + 21-1. Let x =

(x1,...,xk), and m = (M 1,... ,mk), Xi,Mi E ZP. The SQHasm family of functions from

Zk to {0, 1}1 is defined as follows: SQHasm ={gx : Zk -- + {0, 1}' I x E Zk}, where the
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functions g. are defined as

k

gx(m) = ((Z(mi + Xi) 2 ) mod p) mod 2'.
i:=1

Theorem 24 SQHasm is an e-almost-As-universal family of hash functions with e < 3.2-1.

Proof: Let J E {0, 1}1 be chosen arbitrarily. Let m : n be arbitrary message vectors.

Let x be a key such that hx(m) - hx(n) = 6 (mod 2'), where h E SQH*. Equivalently,

h'(m) - h' (n) =6 (mod 2')

where h' E SQHasm. Now, both hx(m) and hx(n) are in the range 0,...,p - 1. Therefore,

their difference taken over the integers lies in the range -p + 1, ... , p - 1. If we denote

p = 2' + t where 0 < t < 21-1 then:

h' (m) - h' (n)EI{6,6 - 2'}

{6 - 2, 6, 6 + 2'}

{,6 - 2', 6 - 2'+'}

t < 6 < 2' - t

0 < 6 < t -1

2' - t < 6 < 2' - 1

Therefore, there are at most three values for the quantity hx(m) - hx(n) which cause

hx(m) - hx(n) 6 6 (mod 2'). Since SQH* is a A-universal hash function, it follows that

for any 6' E {0, I}' there is at most one choice of the key x for which

hx(m) - hx(n) 6 6' mod p.

So, at most 3 keys satisfy the equation

h'(m) - h'(n) 6 6' (mod 2').

Therefore: Prx[hx(m) - hx(n) _ 6 (mod 2')] < 3 . 2-. U

6.3.6 A Further Speed-Up

There is a minor weakness in SQHasm. Since arithmetic is done modulo p, with 21 < p <

21+ 21-1, elements in Z, are 1+1 bits long. We would, however, like to make 1 the word size
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of the machine on which we are implementing our code in order to speed up computations.

Typically 1 = 32 (e.g. Pentium processors), or may be has high as 64 (Intel Merced). Having

to deal with 1+ 1 bit quantities means that we have to store and square several extra words.

A first solution is to restrict both mi and xi to be at most I bits since we have flexibility

over the choice of domain. Unfortunately, mi + xi may be an I+1 bit quantity which means

we still need to store and square extra words. It turns out that we simply can ignore the

most significant bit of mi + xi at just a minor cost in the important statistical properties

of the new hash function. We give another square hash variant and prove that it performs

well.

Definition 41 Let 1 and k be positive integers with 2' < p < 2'+21-1. Let x = (X1,... ,

and let m = (mi,... , mk), xi, mi E {0, 1}'. Define the SQ Hasm2 family of functions from

({O, 1)k to {0, 1}1 as: SQHasm2  :({, : }'l)k {0, 1}1 | x E {0, 1}'} where the

functions gx are defined as

k

gx (m) = ((Z((mi + xi) mod 21)2) mod p).

So, all we are doing is ignoring the most significant bit of xi + mi. This means that the sum

will fit into 1 bits, which means that we do not have to use an extra word to both store and

square.

Theorem 25 SQHasm2 is an e-almost-AL-universal family of hash functions with E < 2.2-'.

Proof: Let m :An E {0, } with m = (mi, . ..,mk), n = (ni,... , nk) and mi, ni E {0, 1}'.

Let 6 E ZP. Since m n there is some i for whichmi =A ni. Without loss of generality,

suppose mi : n 1 . Now, we show that for all X2,... , Xk:

Pr[gx(m) - gx(n) = 6] < 2/2'
X1

(where x = (Xi,... , Xx)), which implies the lemma. First, let

k

A = Z((xi + mi) mod 21)2 mod p,
i=2
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and let

k

B = Z((xi+ni)mod2') 2 modp.
i=2

Then:

Pr[gx(m) - gx(n) = 3]
X1

= Pr[(((xi + mi) mod 2')2 + A) - (((xi + ni) mod 2')2 + B) 6 (mod p)]
X1

= Pr[((xi + mi) mod 21)2 - ((xi + ni) mod 21)2 = B - A + 3 (mod p)].
X1

Since x1 and m, are both i-bit quantities, their sum will be at most 21+1 - 2, which

means that to reduce this quantity mod 21 we have to subtract off at most 21. Therefore,

((xi + mi) mod 21) = xi + m, - 2'c(xi, mi),

where c(xi, mi) is some value in {0, 1}. In this case, c is the carry or overflow bit associated

with adding x1 and mi. Similarly, we can write

((xi + ni) mod 21) = x, + ni - 2'c(xi, ni).

Replacing these equations into the above and performing some arithmetic manipulation, we

get:

Pr[((xi + mi) mod 21)2 - ((xi + ni) mod 21)2 = B - A + 3 (mod p)]
X1

= Pr[2x1 ((mi - ni) + (c(xi,ni) - c(xi,mi))- 2) 3 ' (mod p)].
Xl

Where

3' = B - A + 3 + (n, - c(xi, ni)2')2 - (Mi - c(xi, m1 )2') 2.

Now,

(c(xi, ni) - c(xi, mi)) - 2 C {-2', 0, 2}.
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However, since mi, ni E {0, 1}' and since m 1 : ni, it follows that

(mni - ni) E {1-2)...,-,1,...,(21 - M),

which implies that

((mi - ni) + (c(xi, ni) - c(xi, mi)) - 2') # 0,

and for a given c(xi, mi) and c(xi, ni) there is at most one value of x, satisfying the above

equations. Finally, we have

Pr[2x1 ((m, - ni) + (c(xi, ni) - c(xi, ml)) -2') ']

* Pr[2x 1 ((mi - ni) - 2) = 6' (mod p) I c(xi, ni) - c(xi, mi) = -11
X1

+ Pr[2x 1 (mi - ni) =6 ' (mod p) I c(xi, ni) - c(xi, mi) = 0]
X1

+ Pr[2xi((mi - ni) + 2') 6 6' (mod p) I c(xi, ni) - c(xi, mi) 11

* 3/2'.

This gives us a bound of 3/2'. We can improve this to 2/2' by observing that for fixed values

of m and n, c(xi, ni) - c(xi, mi) cannot simultaneously take on the values +1 and -1 for

varying choices of x1 . In particular, if n1 > mi then we claim that c(xi, ni) - c(xi, mi) > 0.

This follows because c(xi, n 1) - c(xi , in1 ) = -1 implies xi + n1 < 21 and x1 + i I 2' which

implies that mi > ni. Similarly, it can be shown that ni < mi implies c(xi, ni)-c(xi, Mi) <

0. Thus c(xi, n1 ) - c(x1 , ml) takes on at most two possible values and c is bounded by 2/2'.

N

6.3.7 Ignoring Carry Bits in the Computation

We now describe a way to further speed up square hash at a small tradeoff in the colli-

sion probability. The idea is novel, and applies not only to MM H but perhaps to other

constructions of universal hash functions. Basically, we show that we can ignore many of

the carry bits in the computation of square hash and still get very strong performance for

cryptographic applications. In some sense this extends the ideas of Halevi and Krawczyk

who speed up M M H by ignoring only the most significant carry bit. We start by describing
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the notion of carry bits and explain why computation can speed up if you ignore them. We

then define variants of square hash in which you can ignore some of the carry bits, and

show that the resulting security guarantee is still excellent for cryptographic applications.

Finally, we define yet another variant of square hash in which you can ignore even more

carry bits and show that the security guarantee is still strong for cryptographic applications

under suitable settings for the parameters.

Carry Bits

When two words are added, there is usually an overflow or carry that takes place in the com-

putation. For example, if the word size is 8, and you compute 11001001 + 10010001 you get

101011010. Since the word size is 8, the most significant bit 1 is called the carry or overflow

bit because it overflowed from the usual 8 bit word size. Now, when arithmetic operations

are performed on very long integers, as is usually the case for cryptographic applications,

the carry bits between individual word operations are used for the next operation. So, if

the word size is 8, and you are trying to compute 1011010100110101 + 1010101111100101

then the computation is broken up into parts. First, each bit string is broken up to take

word size into account. The first string is broken up into two parts which we label A and B

respectively: A = 10110101 and B = 00110101. The second string would be broken up into

two parts: C = 10101011 and D = 11100101. Now, the computation is carried out as fol-

lows: first we compute B + D store the answer in a word, and store the carry co separately.

Denote by E the word in which we store B + D. Then E = 00011010 and the carry bit

co = 1. Now, we compute F = A+ C+co and store the carry bit in c1 . Then F = 01100001

and the carry bit ci is 1. The total answer is the concatenation ciFE: 10110000100011010.

So, it is necessary to keep track of a carry bit as you do the computations on integers that

require more than one word to represent. Unfortunately, certain instructions on processors

do not deal with carry bits effectively (for example the Multiply with Accumulate instruc-

tion on the ARM). Also, even if an instruction saves the carry bit (for example, in the

condition code register), this information may get destroyed when other instructions are

executed. In addition, most high level programming languages do not deal with carry bits

effectively; this increases the computation time of arithmetic instructions over integers that

are several words long because it becomes necessary to explicitly keep track of the carry

bit. High level programming languages are often preferable because they are portable and

165



they facilitate software development. Also, various cross-platform languages, such as Java

and Javascript, tend not to handle carry bits effectively. We show that we can overcome

these dilemmas by ignoring the carry bits altogether. We call these variants of square hash

SQH and SQHc2 since they can be effectively implemented with high level programming

languages such as C. We also prove that we get strong performance despite ignoring what

seems to be a crucial part of the computation.

Ignoring Carry Bits in the Outer Summation

We describe a preliminary speedup in which we ignore the carry bits in the outer summation,

and show that we still get a good approximation to a A-universal hash function. First, we

start with some notation.

Definition 42 Let w, 1 be a positive integers, and let let a1 , ... , ak denote positive integers,

each of which can be represented by wl-bits. We denote by:

(I-e)

E ai
1<i<k

the value you get if you compute the sum En ai but ignore the carry bits between the

words, where I is the word length.

For example, if you let the word size be 8 and compute a1 = 1011010100110101 and a2 =

10101011i1100101 as in the above example, then

(I - V

Z ai = 0110000000011010.
l~i<2

The normal sum a, + a2 is 10110000100011010. But recall that the 9 th least significant bit

is the result of the carry from the summation of first pair of words, and the most significant

bit is the result of the carry from the second pair of words. Since you are ignoring the

carry bits, the function 1 ai can be implemented much more efficiently than just the

normal sum El ai. This is especially true if the ai are large integers (several words long).

We now formally define a new variant of square hash and show that it still gives us strong

performance.

Definition 43 Let I and k be positive integers with 2' < p < 2'+2'-1. Let x = (x 1 ,... , xk),
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and m = (Mi1 , ... , ), xi, mi E Zp. The SQH family of functions from Zk to Zp is defined

as follows: SQH =gx : Zk -- + Zp I x E Zk} where the functions gx are defined as

(1-T)

gx(m) = (mi + xi) 2 mod p.
1<i<k

Theorem 26 Let I be the word size of the processor on which you are computing and let w

be the number of words it takes to store xi. Then SQH is an E-almost-A-universal family

of hash functions with e < 32w /21w.

Proof: Fix a value a E Z4 and let m = (Mi1 ,... Mk) m' = (m'.,... m' ) be your

two messages. Assume without loss of generality that mi # m'. We prove that for all

X2,... ,Xk G {0, 1}

Pr[gx (m) - gx(m') = a mod p] < 32w/21w,
X1

where x = (Xi , . ,Xk), which implies the theorem. Now, let us fix some choice of x 2 ,... , 34

and let
(1-0)

s = (M, + X,)2

2<i<k

That is, s denotes the sum of all but the first term where the carry bits are ignored between

the words. Then,
(1-0)

(M, + X,)2 = (XI + M1 )2 + s - C,
1<i<k

where c E {0, 1}21+1 is a "correction vector" in which the ith bit of c (counting from the

left) contains a 1 if there was an overflow of 1 at that position (and contains a 0 otherwise).

Observe that the correction taking place here is actually between the quantity (X1 +mi)2 and

the quantity s, which represents the remaining terms after the carry bits have already been

ignored. In the example above with al and a2 the correction vector c is: 1000000100000000.

Similarly, if we let
(I-E)

s= (M'I + X,)2,
2<i<k

167



then

(m + X,) 2 = (Xi + m) 2 + s' - C',
1<i<k

where c' is the associated correction vector. Therefore,

Pr[gx(m) - gx(m') = a (mod p)]
X1

= Pr[(i + mi)2 + s - c - (Xi + m) 2 - s' + c' a (mod p)]

= Pr[xi = (a + (c-c') + s'- s +m' -m )/2(mi - m') (mod p)]
X1II

K (The number of distinct values c - c' can take) - 2 -l'.

So we must derive a bound for the number of distinct values c - c' can take. Now, c and

c' consist mostly of O's. In fact, the only positions of c in which there could be a 1 are the

ones where there could be a carry. The first thing to observe is that s (and s') represent

the sum of the remaining terms after the carry bits have been ignored, so the correction

vectors c and c' only need to correct the effects of adding two quantities. The second thing

to observe is that carries only occur at the boundaries between words. The first observation

tells us that for a given pair of words, the correction vector only needs to correct for at

most a single bit of error, and the second observation tells us where these correction bits

must be. Thus only positions

I + 1, 21 + 1,31 + 1, ... , 2wl + 1

of the correction vectors c and c' can possibly contain a 1. Now, for cij+ 1 - c'e+E {-1, 0, 1}

for 1 < i < 2w. Since there are only 2w bits that can get affected and 3 different values for

their difference, the total number of different vectors c - c' is bounded by 3 2w. So, we have

that

Pr[gx(m) - gx(m') = a (mod p)] 32w/21',
X1

which proves the theorem. U

Now, observe that the quantity 32w/21w is actually rather small. We see this if we

substitute suitable values for the parameters. If the word size 1 is 32 bits, then the ensuing

value E for output tags of size 2,3,4, or 5 words is at most 2~, 286, 2-115, and 214
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respectively. These are negligible and are smaller that what one may need for a reasonably

secure MAC implementation. Also, keep in mind that these bounds are derived for the case

that all carry bits in between word additions are ignored. In practice, one may only want

to ignore some subset of these carry bits.

We now consider the question of whether we can optimize further at a slightly greater

cost in security. The next section works towards this aim by showing that we can ignore

even more carry bits at an increased cost in collision probability.

Ignoring Carry Bits When Squaring

Since the process of squaring can be expressed entirely in terms of doing basic word multipli-

cations, shifts, and addition operations, we can consider the idea of ignoring the carry bits

when performing additions during a squaring operation to further speed up our hash func-

tions. We show that if we also ignore the carry bits that occur when the quantity (xi + mi)

is squared, then the resulting value of e still provides adequate security for suitable values

for the parameters. We start with some notation.

Definition 44 Let w, I be a positive integers, and let let a 1,... , ak denote positive integers,

each of which can be represented by some multiple-word quantity. We denote by:

the value you get if you compute a2 , but ignore the carry bits between the word when you

perform the necessary additions. Here 1 is the word length.

Now, we define a new square hash variant that ignores the carry bits when squaring.

Definition 45 Let I and k be positive integers, with 2' < p < 21+21-1. Let x = (x1,... , ),

and m = (mI, .. .,mk)i, mi {0, 1}'. The SQHc2 family of functions from ({0, 1})k to

Z, is defined as follows: SQHc2 =gx : ({0, 1})k -- + Zp I x E ({O,1 }I)k} where the

functions g1 are defined as

gx(m) = (mi + xi) 2 -e) mod p . (6.2)
1I<i<k
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Note that we ignore carry bits when we square and when we take the sum over the (X,+m 2 ) 2.

However, we do not ignore the carry bits when we actually compute (xi + mi). We can get

away with ignoring these carry bits as well, but for simplicity of analysis we do not ignore

them. We now state our main theorem about how well this new family of hash functions

performs:

Theorem 27 Let I be the word size of the architecture on which you are computing and

let w be the number of words it takes to store xi. Then SQHc2 is an E-almost-A-universal

family of hash functions with e (H' 1 (4i + 1)2)121w.

Proof: The proof uses similar ideas to the proof of the previous theorem about ignoring

carry bits in the outer summation. In particular, we define correction vectors c and c' in the

same manner as before, and bound the number of distinct possibilities for their difference

c-c'. We first observe that for the ith word of c (counting from the right for 1 < i < w) there

are l's in at most the log(2i+ 1) least significant bit positions of that word - this observation

follows from the fact that the value at that word is obtained by adding 2i + 1 words (when

squaring). The remaining bits must be 0. So, only the least significant log(2i + 1) bits in

word i are undetermined. Similarly, for word j with w + 1 < j < 2w, the least significant

log(4w +3 - 2j) are undetermined. Now, if the b least significant bits of each of two different

words are undetermined, then the value attained in each case lies in the range {0, ... , 2 - 1}.

Thus, the difference of those two words lies in the range {-2b + 1,. , 2 - 1}, hence the

difference can take on at most

(2 ' - 1) - (- 2 b + 1) + 1 = 2 b+1 - 1

different values. The number of distinct possible values for c - c' is the product of the

number of different possible values each of the individual words can take. This quantity

equals:

w 2w

(( 2 log(2i+l)+l _ 1 . 1 ( 2
10g(4w+3-2j)+1 _ 1))

i=1 j=m+1

- (II 210g(2i+1)+1 _ 1)2

i=1

= (l 4i + 1) 2 ,
i=1
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which yields the desired bound. E

Although this expression looks large, for suitable values of the parameters it still gives

good security. Keep in mind that typically 1 <w K< 5. In particular, if the word size I is 32

bits, and we hash down to 2,3,4, or 5 words, then computationally unbounded adversaries will

fail to forge the MAC with probability better than 2-53, 2-77, 2-101, or 2-124 respectively.

Again, these bounds occur for the case that all carry bits are ignored - in practice, one may

want to ignore some subset of the bits and obtain better security guarantees.

6.3.8 Fully Optimized Square Hash

We present the fully optimized version of square hash:

Definition 46 Let 1 and k be positive integers with 2' < p < 21+21-1. Let x = (x 1 , . X.. )

and m = (Mi, .. . , m), xi,mi E {0, 1}'. The SQHE family of functions from ({0, 1 )k to

{0, 1}1 is defined as follows: SQHE = x : ({0, i})k + {, 11 x E {0, 1} }, where the

functions gx are defined as

gx (m) = ((mi + xi(,-,@) mod p mod 21. (6.3)
1<i<k

Theorem 28 Let 1 be the word size on which you are computing and w is the total number

of words needed to store xi. Then SQHE is an e-almost-A-universal family of hash functions

with c < (6 - ]Hw, (4i + 1)2)/21w

Proof: The theorem follows by combining the statements and proofs of the previous

theorems. U

6.3.9 Comparison to NMH

At the end of their paper, Halevi and Krawczyk [65] briefly discussed another family of A-

universal hash functions called NMH. It would be interesting to do a detailed comparison

between NMH and SQH that studies speed and required key sizes. Another interesting

area for future research would be to apply some of our techniques of ignoring carry bits to

MMH and NMH.
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6.4 Considerations on Implementing Square Hash

In this section, we discuss various important implementation considerations, and in the

next we give actual implementation results. To start with, square hash should be faster

since we use squaring instead of multiplication. The speed-up factor for squaring an w-word

integer versus multiplying two w word integers (in terms of basic word multiplications) is

(w - 1)/2w. Typically, MACs have tag sizes between 32 and 160 bits, depending on the

level of security needed. Therefore, on 32-bit architectures, 1 < w < 5 and we get speed up

factors of %0, %25, %33, %38, and %40 for the different values of w. Now, on most slower

architectures, multiplications require many more clock cycles than other simple arithmetic

operations such as addition. For example, on the original Pentium processor, the ratio

between number of clock cycles for unsigned multiplication versus addition is about 5:1.

This ratio probably gets much larger on weaker processors such as those on cellular phones,

embedded devices, smart-cards, etc,. Moreover, for these types of smaller processors, word

sizes may be smaller, hence the number of words we multiply increases, and the savings we

achieve by using squaring rather than multiplication greatly increases. Thus, we recommend

using square hash on such architectures. On some of the more modern processors such as the

Pentium Pro and Pentium II, multiplications do not take much more time than additions

(closer to 2:1, [42]), so square hash is not advantageous is such cases.

Another important implementation consideration is the memory architecture of the pro-

cessor on which you are implementing. In our case, we need extra data registers to quickly

implement squaring. On Pentium architectures there are only 4 32-bit data registers [42].

Hence, we may need to make additional memory references which could slow things down.

On the other hand, the PowerPC has 32 32-bit general purpose registers [122], which allows

us to get fast squaring.

6.5 Implementation Results

We used the ARM (i.e. ARM7) processor to create hand-optimized assembly code to

compare speeds of various algorithms. The ARM7 is a popular RISC processor and is

used inside cellular phones, PDAs, smartcards, etc. It is a 32-bit processor with 16 general

purpose registers. Basic operations like addition require 1 cycle whereas multiplication

usually requires 6 cycles.
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Table 6.1: Assembly implementations on ARM7 with 96 bit output and input block size of
2112 bits.

Our results show a significant speedup for square hash over M M H, and thus validate our

theoretical results. For long messages and same or better security than MMH, square hash

is 1.31 times faster than MMH (Table 1).

Message authentication using universal hash functions is typically performed by breaking

up a long message (e.g 1 megabyte) in to smaller blocks (e.g. 2112 bits) and reducing each

block, using an equivalent size hash key, down to the size of the MAC output or tag size

(e.g. 96 bits). These tags are then concatenated, and the procedure is repeated until we are

left with a single 96-bit tag. We can describe this process by an upside-down tree. The leaf

nodes correspond to the blocks of the original message, and the data at each level represents

one application of the above procedure. The root node is the final tag or output for the

MAC. This tree hashing procedure adds about 10% overhead to both square hash and

MM H and we omit it in the calculations presented in the tables for purposes of simplifying

comparison. The security parameter E as reported in the tables would have to be multiplied

by the height of the tree [65].

We report results for a tag size of 96 bits since we believe it is a popular choice for

message authentication in Internet standards (e.g. HMAC). Larger output sizes of 128 and

160 bits could further improve speedup factors due to greater savings on multiplications. We

also report cycle counts for SHA-1 on an ARM7 to verify that we are faster than traditional

non-universal hash based MACs (e.g. HMAC). To create the MAC, in actual use, MMH

and square hash would have to encrypt the 96 bit output and HMAC-SHA-1 would need

to perform a further SHA-1. We exclude this in the cycle counts in the tables to simplify

173

MMH SQH1 SQH2 HMAC-SHA-1
(some carries
dropped)

Cycles 2061 1659 1575 4000+
Speedup over MMH 1x 1.24x 1.31x .52x
Speedup over SHA-1 1.94x 2.41x 2.54x 1x
Security - e 6.25 2-90 6- 296 2.53 -_90
Code Size (bytes) 408 3040 2704 4000+
Hash key Size 2208 2112 2112
(random bits) (2112+96)



MMH SQH1 SQH2 HMAC-SHA-1
(some carries
dropped)

Cycles 1086 856 816 2000

Speedup over M M H lx 1.27x 1.33x .54x

Speedup over SHA-1 1.84x 2.34x 2.45x 1x
Code Size 220 1544 1384 4000+
Hash key Size 1152 1056 1056
(random bits) (1056+96)

Table 6.2: Assembly implementations on ARM7 with 96 bit output and input block size of
1056 bits.

comparison.

First for 2112-bit blocks (a multiple of 96) we compare MMH, SQH1, SQH2, and

HMAC-SHA-1. SQH1 is the basic square hash function SQHasm with the minor optimiza-

tion of SQHasm2 giving an overall security of 6.2-96 compared to the security of 6.25 -2-90

for 96 bit MMH. SQH2 is the same as SQH1, except that some carry bits are dropped

in the squaring until the security is similar or better than that of MMH. As a result of

dropping some carries, computation time decreases.

SHA-1 requires more than 1000 operations on 512-bit input and thus requires more than

4000 operations on 2112 bit input. All 3 universal hashes are significantly faster than the

SHA-1 based MAC. SQH1 is 1.24 times as fast as MMH and SQH2 is 1.31 times as fast

as M M H. Code sizes are somewhat large because of loop unrolling. Without unrolling

additional computational time will be added to all three universal hashes to handle looping.

The hash key (random bits) for MM H is 96 bits larger than square hash if the Toeplitz

construction is used [65].

In Table 2 we also report cycle counts for 1056-bit blocks. Since 1024 bit blocks, as used

by Halevi and Krawczyk [65], are not a multiple of 96, we used 1056 (a multiple of 32 and

96) as the input length. We ran experiments with messages that had the same size as the

tag, and we noticed similar speedups. We also tested C versions of MM H and square hash

and we saw similar speedups. Table 6.3 gives a break down of the instruction and cycle

counts for both M MH and SQH2.
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Table 6.3: MMH and SQH2 cycle count break downs:
bits.

96 bit output and block size of 2112

6.6 Conclusion

We described a new family of universal hash functions geared towards high speed message

authentication. On some platforms, our hash functions appear to be faster than the MM H

family, which itself is considered to be one of the fastest universal hash function implemen-

tations. We also introduced additional techniques for speeding up our constructions. These

constructions and techniques are general and may be of independent interest.
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Instructions Cycles

MMH 66 (2112/32) words 105 687
key + message loading 28 188
Multiply + Accumulate 66 461
mod p reduction 5 9
function call 6 29

Total (3 times MMH 66 words) 105 2061

SQH2 3 words 29 69
key + message loading 2 10
Multiply 5 30
Multiply + Accumulate 1 7
Adds 21 21

22 (2112/96) times SQH2 (3 words) 638 1518
mod p reduction 16 25
function overhead 10 32
Total 664 1575



Chapter 7

Conclusions and Extensions

This thesis has focused on both the highly theoretical and highly practical aspects of secure

block cipher design. In this chapter, we briefly summarize these results, and point to some

potential areas for future research.

7.1 Summary

In this dissertation we engaged in a detailed study of the Luby-Rackoff block cipher con-

struction [88]. Our aim was to better understand the security of these ciphers, and attempt

to make them more practical. We began by providing new constructions of Luby-Rackoff

ciphers which were simultaneously faster and utilized less key material than previous con-

structions in the literature. In addition, we examined Luby-Rackoff ciphers when the un-

derlying round function was merely unpredictable, rather than pseudorandom. In this case,

we showed that the resulting block cipher had some unpredictability properties as well.

Next, we initiated a study of Luby-Rackoff ciphers over arbitrary finite algebraic struc-

tures. Our main result was the existence of a Luby-Rackoff cipher that is secure in one

algebraic structure, yet completely insecure in another. The surprising aspect of this result

is that cipher is broken when the operation is a bit-wise exclusive-or, but is secure when

the operation is addition modulo 2", even though both operations are used extensively in

practical block cipher design.

This cipher is the most optimal in terms of time complexity and key material, than any

other Luby-Rackoff style cipher in the literature. Besides constructing a new cipher, we

extended particular attacks for Luby-Rackoff ciphers that worked in one algebraic structure
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to attacks that worked in more arbitrary structures. These attacks required new ideas.

We also proposed a new notion called round security for studying symmetric-key prim-

itives. This new way of thinking was inspired by the fact that many symmetric-key primi-

tives, such as block ciphers, have an induced round structure. We completely characterized

the original Luby-Rackoff construction [88], and some of its variants [101, 114], in this new

model. This analysis led to a number of insights into the security of these schemes.

Finally, we proposed the construction of a new hash function called the square hash

which can be used in many of the above constructions. Square hash was designed to be

fast on modern microprocessors, and in some sense involved "theoretical hacking" in order

to develop constructions which provably had various statistical properties, and which were

fast. We implemented square hash on an ARM processor using hand-optimized assembly

language, and validated our theoretical results.

7.2 Extensions and Future Work

Beyond providing faster constructions and novel notions of security, this dissertation opens

up a number of interesting areas for future research, which we now outline.

7.2.1 Weaker Round Functions

In chapter 3, we considered the notion of what happens when the round function in a

Feistel ladder is unpredictable instead of pseudorandom. In some sense this question is part

of a broader area of study: what happens when you replace the pseudorandom function

by a non-pseudorandom function in a Feistel ladder? In many ways gaining insight into a

question like this would bridge the gap between theory and practice since most practical

block cipher constructions involve taking a simple round function and iterating it many

times. A related question was addressed by Maurer [94], Naor and Reingold [101], and

Vaudenay [140]. In these papers, the authors replace the pseudorandom functions with

k-wise independent functions, and examine the extent to which the whole cipher is a k-

wise independent permutation. It would be interesting to build a general theory around

Luby-Rackoff ciphers with weak round functions.
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7.2.2 Arbitrary Algebraic Structures

In chapter 4, we initiated a study of Luby-Rackoff ciphers over arbitrary algebraic structures.

We observed that there are situations in which a cipher is insecure when the traditional

operation is the bitwise exclusive-or, but secure otherwise. In some sense many of the

attacks that work in one setting do not translate so easily to the other. Thus, a general

area for research would be to examine the various known results for Luby-Rackoff ciphers in

the traditional setting, and examine the extent to which they hold in this more generalized

setting.

We did this for a number of results pertaining to the cipher lI(fi, fi, fk) where f is a

pseudorandom function. This cipher was broken for all i, j, and k by Zheng, Matsumoto,

and Imai [145]. The attack involves the involutory properties of the exclusive-or operator.

While we could extend the attack to generic algebraic structures for specific values of i, j,

and k, we were unable to solve the general case. We leave this as an open problem.

Similarly, many of our attacks on the above ciphers required specific axioms, such as

associativity or commutivaty of the underlying algebraic structure. It would be interest-

ing to come up with attacks that work over non-associative or non-commutative algebraic

structures. Or, more interestingly, prove that the schemes are secure in this setting.

7.2.3 Round Security of Other Constructions

In chapter 5, we introduced a new notion of security for symmetric-key primitives. The hope

was to gain better insight into what makes these constructions secure. We successfully

analyzed the Luby-Rackoff construction under this new model, and gained a number of

interesting insights. We also successfully analyzed universal hash function based message

authentication codes (Wegman-Carter MACs) in this model. One area for future research

would be to apply this model to other constructions. For example, trying to cryptanalyze

some of the AES finalist block ciphers (or idealized versions of them where some of the

round functions are replaced with pseudorandom functions). There is much work to be

done in this area.
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7.2.4 Theory of Substitution-Linear Transformation Block Ciphers

This dissertation focused on ciphers that involve the Feistel ladder - indeed many ciphers

seen in practical use fall into this category. Another design, known as the substitution-linear

transformation network (SLN), has become fashionable recently. In fact Rijndael [41], which

was named by the National Institute of Standards to be the advanced encryption standard

(AES), is one such example. Also, Serpent [7] which, together with Rijndael, was one of

the five finalists for the AES, is also a substitution-linear transformation network.

In a substitution-linear transformation network, essentially every operation is a permu-

tation. Contrast this with a Feistel cipher in which the round function is usually not a

permutation, though the Feistel ladder builds a permutation around it. In an SLN, the

substitution portion usually involves an S-box that is invertible. The linear transformation

portion typically involves one or more affine functions which are applied in a given round.

It would interesting to come up with a theory of secure SLNs. To do so might require

a new approach. In particular, with Feistel ciphers, we made the assumption that the

round function is pseudorandom, and proved that the entire cipher is a pseudorandom

permutation. For an SLN, assuming that an entire component is pseudorandom would be

too strong, since every component is already a permutation, which would leave nothing

more to prove. To make this approach work, one might have to start with an assumption

that is not too strong. With the advent of SLNs, and the dearth of good theoretical results

about them, there are a number of viable research possibilities.

7.2.5 Design of Fast Universal Hash Functions

In chapter 6 we introduced the square hash which involves two novel ideas in the construction

of fast universal hash functions. The natural question to ask is whether we can develop

something faster. One effort along these lines is the UMAC construction [24]. It was

developed after we developed square hash, and it is geared primarily towards the task of

message authentication. In particular, the UMAC is not length preserving, and its statistical

properties are not as good as those of square hash. Consequently, it cannot be immediately

used for block cipher design. The UMAC construction, is however, extremely fast, so it may

be possible to develop a new function, which involves several calls to U MAC, but is able to

achieve the properties we need.
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Appendix A

Description of the Data Encryption

Standard

We now describe the Data Encryption Standard (or DES) [108]. It is perhaps the most

widely used symmetric-key encryption algorithm. DES has been heavily studied, and even

though it was first submitted for public comment in 1975, the only practical attack on DES

is via a brute-force search over the entire key space. In this chapter we give a brief history

of the development of DES, as well as a technical description.

A.1 History

In the early 1970s IBM was asked by one of its banking customers to design an algorithm for

encrypting data sent between automatic teller machines (ATM) and a central server. IBM

formed a team which consisted of people at its Kingston and Yorktown heights sites. The

following people were on the team, among other consultants: Roy Adler, Don Coppersmith,

Horst Feistel, Edna Grossman, Alan Konheim, Carl Meyer, Bill Notz, Lynn Smith, Walt

Tuchman, and Bryant Tuckerman. Around this same time, the National Bureau of Stan-

dards (NBS), now known as the National Institute of Standards (NIST), issued an initial

call for submissions for an encryption algorithm that would protect unclassified data.

Unfortunately, this initial call for submissions was not terribly succesful. Thus in August

1994, the NBS reissued its call for submissions, and the IBM team proposed an algorithm

called Lucifer [136], that it had designed. The National Security Agency (NSA) became in-

volved with this process to ensure that the chosen algorithm would be secure. Subsequently,
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IBM, in consultation with the NSA designed DES, which was based around Lucifer. DES

was made available for public comment in 1975, and it was published in the Federal Regis-

ter [108] as an official standard in 1977. Although the technical specification of the algorithm

was made public, the original design criteria was not. As a result, people suspected that

the NSA had embedded some type of hidden "trap door" so they could easily invert the

algorithm. This claim was never validated. In 1994, Coppersmith, a member of the original

DES design team, published an article that dispelled this notion [38]. His article described

the various design considerations surrounding DES, and how it was, in fact, strengthened

to prevent an attack technique known as differential cryptanalysis, which was known to the

NSA at that time, but was discovered by the academic community much later [23].

A.2 Technical Description of DES

Having given some of the history of DES, we move on to a more technical description of the

algorithm. DES is a block cipher that operates on 64-bit blocks, and has a 56-bit secret key.

We first give a high level overview of DES, and then provide more details. DES encryption

involves the following steps:

1. The 56-bit secret key k is expanded into 16 round keys ki, ... , k16 . Each round key is

48-bits long, and is computed by permuting a particular subset of the bits in k.

2. The 64-bit plaintext message block P is subject to an initial permutation IP which

simply changes the order of the individual bits. The initial permutation is a fixed

function. We write P = IP(P) to denote the value of P after the initial permutation

is applied.

3. The value PO is subject to 16-rounds of a particular transformation, which works as

follows. The input is divided into two halves PO = LO - RO where LO and RO are both

32-bits long. Now, for 1 < i < 16, the values Li and Ri are computed as follows:

Li = Ri1

Ri = Li_1 e f(Ri_1, ki).

Here f is a round function which we will specify later. This computation is known as
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a Feistel permutation, and is named after Horst Feistel, who was on the original DES

design team.

4. Finally we apply the inverse of the initial permutation to the string R16 - L16 . The

ciphertext C is then defined by C = IP 1 (R1 6 - L16).

We now describe how the round function f works. It takes two arguments: a 32-bit

message block Ri_ 1, and a 48-bit key ki. First, it applies an expansion function E to Ri_1

to obtain a 48-bit quantity. Next, it takes the bit-wise exlusive-or of this quantity with the

round key ki. Let T denote the resulting value. That is

T = E(Ri_1 ) E ki.

Now, Ti, which is a 48-bit value, is broken up piecewise into eight 6-bit values T 1, . . . , T .

Next, a substitution box (S-box) is applied to each piece. In DES, there are eight substi-

tution boxes, S1 , .. . , S8 , which map 6-bit inputs to 4-bit outputs. For 1 < j 8, we let V

denote S3 (Tj). Thus V = V1 ... V8 is a 32-bit quantity. Now, the bits in this 32-bit quantity

are permuted according to a fixed permutation P.

We now describe the details of the individual functions used in DES, and then go on to

discuss the key scheduler. First, we describe the initial permutation IP. It can be described

according to the following table:

The table can be interpreted as follows. The 5 8 th bit of the plaintext P becomes the first

bit of IP(P). The 5 0 th bit if P becomes the second bit of IP(P), and so on. The inverse

of IP is the described by the following table:
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Initial Permutation IP

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7



We now describe the details of the round function f. To begin with we must specify the

expansion function E. It can be described by the following table:

Expansion Function E

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

The S-boxes S1,..., Ss will described according to the following 4 x 16 tables, which can

be interpreted as follows. Suppose the input to the S-box is b = b, ... bb, where for each

1 < j 6, bj is a single bit. We use the pair of bits bi, b6 to determine a row of the table

via the binary representation. That is, 00 would index the top-most row, (0, 1) would index

the second row from the top, 10 would index the third row from the top, and 11 would

represent the bottom row. Now, we use the middle bits b2 b3b4 b to represent a column via

the binary representation. Thus, 0000 would index the leftmost column, and 1111 would

index the rightmost column. Now to compute the value specified according to the S-box, we

merely break the string up, and locate the value in the appropriate row and column. The

output of the S-box is the binary representation of this value. As an example, the string

011000 would get mapped to top-most row, and the 1 3 th column from the left (note that
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Initial Permutation Inverse IP- 1

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25



1 3 th column is specified by the binary representation of 12 since the leftmost column starts

at 0). Thus, the value attained if 011000 were given to the first S-box as input would be

0101, which is the binary representation of 5.

S-box Si

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-box S2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S-box S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S-box S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S-box S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
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S-box S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S-box S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S-box S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

In order to finish our specification of the f function, we must describe the permutation P

which is applied to the output of the S-box. The following table describes P:

P Permutation

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

The only remaining component left to discuss is the DES key scheduler. This algorithm

takes as input a 56-bit key k, and produces 16 round keys k,,...,k 1 6 , each of which is

48-bits. The first step is expanding the 56-bit key into a 64-bit key by inserting 8 parity
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check bits. The bits are inserted into positions 8, 16, 24, ... , 64. They are defined so that

after each extra bit is added, the corresponding.8-bit block will have an odd number of

ones. For example, if the initial 56-bit string is

0100100

0111001

0100100

0101010

1111001

0001110

1111110

1110011

then, after the parity check bits are inserted, the new string will be

01001001

01110011

01001001

01010100

11110010

00011100

11111101

11100110.

These extra bits are primarily used for error detection, and are ignored by the key scheduler.

We have included them here since they were a part of the original DES specification [108).

Now, given the 64-bit key k, the first step is to ignore the parity bits, and compute the

following fixed permutation PC1 on the remaining bits.
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We write Co -Do = PC1(k) where Co denotes the leftmost 28 bits pf PC1(k), and Do denotes

the rightmost 28 bits. Now, for 1 < i < 16, we compute values Ci = LROTi(Ci_ 1 ) and

Di = LROTi(Di_ 1 ). The function LROT denotes a left rotation (cyclic shift) of the its

input. For i = 1,2,9, and 16, LROTi rotates its argument to the left by one bit. For all

other values of i, LROTi rotates its argument to the left by two bits.

Finally, the round key ki is computed as ki = PC2(Ci - Di), where PC2 is a fixed

permutation defined according to the following table:

Permutation PC2

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

We have described all the necessary components for encrypting a message with DES. To

decrypt a message, all can utilize the same algorithm, but with the round keys in reverse

order: k16 , k 1 5,... , k1 . This approach works since the initial permutation and final per-

mutation are inverses of each other, and computation of the inverse in a single round of

DES, which is a Feistel permutation, looks identical to the computation associated with the

forward direction of the permutation.
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Permutation PC1

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4
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