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Abstract

The subject of this thesis is the design, analysis, fabrication, and characterization of in-
tegrated Bragg grating optical filters. We begin by describing the design and analysis of
three essential building blocks needed for integrated Bragg grating filters: waveguides,
directional couplers and Bragg gratings. Next, we describe and implement a flexible fabri-
cation methodology for building integrated Bragg gratings filters in two important mate-
rial systems: doped-glass channel waveguides and silicon-on-insulator ridge waveguides.
Finally, we evaluate the performance of the fabricated directional couplers and Bragg grat-
ings, comparing experimental results with theoretical predictions.
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Chapter 1

Introduction

During the past decade, the world has seen an explosive growth in optical telecommuni-

cations, fueled in part by the rapid expansion of the Internet. Not only are optical telecom-

munications systems constantly improving in their performance and capacity [1, 2], but

the deployment of optical systems is spreading deeper into the consumer market. Ten

years ago, optical systems were primarily used in point-to-point long distance links [3, 4].

In the future, fiber-optic networks will be routed directly into neighborhoods, households,
and even to the back of each computer [5, 6]. In the more distant future, it is possible that

even the signals bouncing between the different components inside the computer will be

transmitted and received optically [7]. As optical fiber gradually replaces copper cables, it

will become necessary for many of the electronic network components to be replaced by

equivalent optical components: splitters, filters, routers, and switches.

In order for these optical components to be compact, manufacturable, low-cost, and

integratable, it is highly desirable that they be fabricated on a planar surface. The in-

tegrated circuit revolution of the 1960s (which continues today) clearly demonstrated the

tremendous potential afforded by planar lithographic techniques. Bragg gratings offer one

possible solution for constructing integrated optical filters [8].

This thesis concerns the design, construction, and measurement of integrated optical

filters based on Bragg gratings. The general objective of this thesis is to better understand

how Bragg gratings work, to develop a flexible fabrication scheme for building Bragg grat-

ings filters, and to evaluate the performance of fabricated devices.

Figure 1.1a depicts the structure of an integrated Bragg grating filter. A fine-period

corrugation etched into the surface of an otherwise uniform waveguide creates a coupling

11



CHAPTER 1. INTRODUCTION

between the forward- and backward-traveling light in the structure. The Bragg grating is

analogous to the dielectric stack mirror depicted in Fig. 1.1b. The grating reflects light in a

narrow wavelength range, centered at the so-called Bragg wavelength. As such, the Bragg

grating forms a convenient implementation of an integrated optical bandpass filter.

Fiber Bragg gratings are widely used in optical telecommunications systems, for appli-

cations ranging from dispersion compensation to add/drop filtering. The integrated Bragg

gratings considered here offer several advantages over their fiber counterparts. First, the

integrated Bragg gratings described in this work are formed by physically corrugating a

waveguide, and therefore they do not rely upon a photorefractive index change. This al-

lows us to build Bragg gratings in materials which are not photorefractive (e.g. Si or InP),

and it potentially allows stronger gratings to be constructed since the grating strength is

not limited by the photorefractive effect. Second, the integrated Bragg gratings can be

made smaller, and packed closer together than fiber-optic devices. Third, the planar fabri-

cation process gives better control over the device dimensions. For example, the beginning

and end of the Bragg grating can be sharply delineated rather than continuously tapered,

abrupt phase shifts can be introduced at any point in the grating, and precise period control

can be achieved - the integrated Bragg grating can be engineered on a tooth-by-tooth ba-

sis. Finally, multiple levels of lithography can be combined, with precise nano-alignment

between them, allowing the Bragg gratings to be integrated with couplers, splitters, and

other electronic or photonic components.

Figure 1.2 illustrates schematically the hierarchy of integrated optical devices which

will be discussed in this thesis, beginning with the simplest structure: the integrated wave-

guide.

Figure 1.2b depicts a slightly more complicated device: the integrated directional cou-

pler, which is designed to transfer power from one waveguide to another. Figure 1.2c

depicts a more advanced version of the integrated directional coupler, which provides

wavelength-, and polarization-insensitive performance.

Figure 1.2d depicts the simplest form of an integrated Bragg grating filter. In this struc-

ture, the filtered signal is reflected back into the input port of the device. Figure 1.2e depicts

a more sophisticated Bragg grating filter, in which the grating is apodized, or windowed in

order to provide a more optimal spectral response. One drawback of this topology is that

further processing is required to separate the reflected filtered signal from the input signal.

This can be accomplished using an optical circulator [9], but the circulator is an expensive

device which cannot be easily integrated.

12
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Integrated Waveguide

(a)

n, n. n, n. n. n. n, n, n,

(b)

Figure 1.1: (a) Diagram of an integrated optical Bragg grating. The fine-period
corrugation introduces a coupling between the forward and backward traveling
modes of the waveguide. (b) The dielectric stack mirror depicted here is analogous
to the integrated Bragg grating. (figs/1/grating-dielectric-stack.eps)
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Waveguide
(a) -

Directional Coupler

(b)

Improved Coupler

(c)

Bragg Grating
(d) R nnnnnnunnn

Apodized Grating

(e) R I

Integrated Add/Drop Filter

Apodized Add/Drop Filter

(g) ~hHIHI~HuHIuu
R---

Figure 1.2: A hierarchy illustrating the type of devices which will be considered
in this work, ranging from simple waveguides to complex combinations of direc-
tional couplers and gratings. (figs/1/device-types.eps)
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By combining Bragg gratings and directional couplers, as depicted in Fig. 1.2f, it is

possible to construct an integrated device which separates the reflected signal from the

incident signal. This device can be further improved by replacing the gratings with higher-

performance apodized gratings, and replacing the directional couplers with broadband

polarization-insensitive couplers, as depicted in Fig. 1.2g.

Designing, building, and testing all of the structures depicted in Fig. 1.2 is an ambitious

task, some of which will be carried out by future students. It is my hope that this thesis

will lay the groundwork for this effort. Specifically, the analytical techniques described in

this thesis will cover all of the devices depicted in Fig. 1.2. Additionally, the fabrication

techniques described should provide the basic tools for constructing any of the devices

depicted in Fig. 1.2, in more than one material system. Finally, we will describe completed

measurements of waveguides, directional couplers, and integrated Bragg gratings of the

type depicted in Fig. 1.2a-d.

This thesis is separated into three principal chapters describing respectively the design,

fabrication, and measurement of Bragg gratings filters.

Chapter 2 will detail the design and analysis of waveguides, directional couplers and

Bragg gratings filters. The purpose of this segment of the work will be to (1) illustrate

the types of filters that can be constructed using Bragg gratings, and (2) describe how

such grating filters can be designed, specifically how the waveguide and grating geometry

should be selected in order to achieve a desired spectral response.

Chapter 3 will describe the development and implementation of a flexible fabrication

technique for building Bragg gratings on integrated optical waveguides. The principal

contribution from this portion of the work will be to identify the critical fabrication chal-

lenges presented by Bragg grating structures, and to develop fabrication techniques specif-

ically designed to address these challenges.

Finally, in Chapter 4, measurements of integrated waveguides, directional couplers,
and Bragg gratings are described. By comparing the spectral response with theoretical

predictions, we will assess the device performance and the integrity of the fabrication tech-

niques utilized.
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Chapter 2

Theory and Analysis

This chapter is devoted to a theoretical analysis of integrated waveguides and Bragg grat-

ings. There are entire textbooks written on this subject of integrated waveguides [10, 11, 12,

131, and this work is not intended to replace those excellent sources. Instead, this chapter

is intended to provide a practical and relatively comprehensive summary of the theoreti-

cal and numerical techniques which are necessary for designing and building integrated

Bragg grating devices.

We will begin in Section 2.1 by deriving the basic equations which describe the eigen-

modes of dielectric waveguides. Since most integrated optical waveguides of interest have

modal solutions which cannot be expressed analytically, we will describe flexible numeri-

cal techniques for computing the eigenmodes of integrated waveguides.

In Section 2.2, we turn to the topic of coupling between proximate waveguides. This

section will describe how to accurately and efficiently model the transfer of power which

occurs when two waveguides are brought close together.

In Section 2.3, we extend the coupled-mode theory to model the interaction between a

forward-propagating mode and a backward-propagating mode in the presence of a Bragg

grating. Included here is a description of a technique for modeling non-uniform gratings,

including apodized gratings and chirped gratings.

The final portion of the chapter describes the transfer matrix method, a powerful tech-

nique which allows one to model arbitrary sequences of gratings and couplers by simply

multiplying the transfer matrices of each constituent segment.

17



CHAPTER 2. THEORY AND ANALYSIS

2.1 Modal Analysis of Waveguides

The dielectric waveguide is the most essential connective element in integrated optics: the

waveguide is to optics what the wire is to electrical circuits. All of the theory presented

in the remainder of this chapter is built up from an analysis of a simple dielectric wave-

guide. Therefore, this first portion of the chapter describes methods for computing the

electromagnetic modes and propagation constants of dielectric waveguides.

2.1.1 Eigenmode Equations for Dielectric Waveguides

Loosely speaking, a dielectric waveguide is formed when a region with high index of re-

fraction is embedded in (or surrounded by) a region of relatively lower index of refraction.

Under these conditions, light can be confined in the central region by total internal reflec-

tion at the boundary between the high and low index materials.

Waveguides come in many shapes and sizes, but any dielectric waveguide can be math-

ematically described by a refractive index profile (often simply called the "index profile"),

n(x, y). The index profile is related to the dielectric constant 6 by:

E (x, y) = Eon2(X, y), (2.1)

where Eo is the permittivity of free space. In this work, we will assume that the refractive

index profile is real everywhere. Materials which have gain or loss can easily be modeled

by adding an imaginary component to the refractive index profile. As indicated in Fig. 2.1,

we have chosen to orient our coordinate axes such that the waveguide points in the z direc-

tion, and therefore the index profile depends only upon the two transverse coordinates x

and y, or equivalently upon r and <5. The index profile n(x, y) can be a piecewise-constant

function, as depicted in Fig. 2.1, or it can be a smoothly-varying function in the x-y plane.

Throughout this thesis we restrict our attention to dielectric waveguides, i.e. we assume

that the materials comprising the waveguide are non-magnetic:

P (X, y) = po . (2.2)

The eigenmodes of an optical waveguide are found by applying Maxwell's Equations, with

appropriate boundary conditions, to the index profile specified by Eq. 2.1.

18
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Index Profile

n(x,y):

y

n:0

.4...

Figure 2.1: Schematic diagram of an optical waveguide. The waveguide is de-
scribed by a refractive index profile n(x, y). The coordinate axes have been ori-
ented such that the waveguide points in the z-direction. In this example, the
waveguide is comprised of homogeneous regions such that n(x, y) is piecewise-
constant. Other waveguides have smoothly-varying index profiles. (figs/2/waveguide-
diagram.eps)
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CHAPTER 2. THEORY AND ANALYSIS

Maxwells equations for a dielectric waveguide are expressed as:

V x E =-po H (2.3)

V x H nco E (2.4)
at

V - (n2 E) = 0 (2.5)

V - (H) = 0 (2.6)

The above equations govern the electric and magnetic fields in an optical waveguide with

no current sources or free charge (J = - = 0). The boundary conditions which must be

satisfied at the interface between two different dielectric materials, designated 1 and 2, are

summarized below:

(E1 - E 2 ) x fn 0

(H1 - H 2 ) x i 0

(n1E, - 2tE2 ) -n = 0

(H1 - H 2 ) - n = 0

In words, all components of the magnetic field are continuous across a dielectric inter-

face, as are the tangential components of the electric field. The normal components of the

electric field are discontinuous, in such a way that (n 2 e - i) is continuous.

Next, we assume that all field components have a time-dependence of eJ",

E(x, y, z, t) = Re{_E(x, y, z)ejw} (2.8)

H (x, y, z, t) = Re{H (x, y, z)ejw} (2.9)

and we rewrite Eq. 2.3-2.6 in terms of the complex field quantities E and H.

V x E = -jkjoH (2.10)

V x H = jk -n2E (2.11)
770

V . (n2 E) = 0 (2.12)

V - (_H) = 0 (2.13)

'Throughout this work, we shall use the following typeface conventions: (1) Real-valued electromagnetic
vector fields are symbolized by bold, capital letters (e.g., E). (2) Complex vector fields which have an assumed
time dependence of ejwt are denoted with an underbar (e.g., E). (3) Complex vector fields which for which the
spatial z-dependence has been factored out, are symbolized by lowercase boldfaces letters (e.g., e). These con-
ventions can be summarized by the following equation: E(x, y, z, t) = Re{E(x, y, z)ejwt} = Re{e ej(wt-z) I.

20



2.1. MODAL ANALYSIS OF WAVEGUIDES 21

In the above equations, k denotes the free-space wave vector, which is proportional to the

optical frequency and has dimensions of inverse length,

k -(2.14)
C

and qo is the free-space wave impedance,

77 = -0- ~377Q . (2.15)
Mo

The full-vector eigenvalue equation can be derived from Maxwell's equations, as de-

scribed in [14]. First, one computes the curl of Eq. 2.10

V x V x E = -jkoV x H = k 2n 2 _E (2.16)

which can be simplified via the vector identity,

V x V x E = V(V - E) - V 2 _E . (2.17)

Then we rewrite the divergence equation as

V . (n 2 E) = V(n 2 ) - E + n 2 V - E =0 (2.18)
1

V - E = 2 V(n 2 ) . E (2.19)
n

Combining Eq. 2.17 and Eq. 2.19 yields the full vector wave equation for the complex

electric field E:

V 2 _E + V ( V(n2) .E + n 2 k 2 _E = 0 (2.20)

Note that only two components of the electric field are required. If the transverse com-

ponents e. and ey are known, the longitudinal component may be calculated by applying

Eq. 2.12. Therefore, it makes sense to separate the electric field into transverse and longi-

tudinal components, and assume a z-dependence of e-Oz.

E(x, y, z) (et + iez)e-joz (2.21)

H(x, y, z) (ht + 2hz)e-jz (2.22)

with this substitution, the full-vector wave equation can be written in terms of the trans-
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verse components, et,

V 2 et + V V(n2) - et + n2 k 2et =3 2 et (2.23)

As mentioned above, the longitudinal component e, can be computed from et using the

divergence relation:

1
j3e- = V -et + 1 2 V( 2 ) . et (2.24)

Eq. 2.23 can be written more succinctly if we express it in terms of the two transverse field

components e. and ey. After some algebra, Eq. 2.23 becomes [15, 16],

PXX PXY ex 1 2 ex (2.25)
PYX Py e I ey

where Pxx ... Pyy are differential operators defined as:

8 F I(n 2 ex)1 + ( 2(.
Pxe 2 + 2 + n k ex (2.26)

82 n 0 - (2e)- 2

P e = + 9+ n 2 k2ey (2.27)

Pye = 9 1n 2 e 1 2 e (2.28)Ox n Oy _ Oxay

Pye = 1n 2 e 2 e(2.29)
a y n2 OX ayox

Notice that although the transverse components of the electric field need not be contin-

uous across dielectric interfaces, each of the differentiated terms in Eq. 2.25 is continuous.

Eq. 2.25 is a full-vector eigenvalue equation which describes the modes of propaga-

tion for an integrated waveguide. The two coupled transverse field components ex and

ey taken together are the eigenfunction, and the corresponding eigenvalue is 3 2. The four

remaining field components can be easily derived from these two transverse components

by applying Maxwell's equations. The non-zero diagonal terms Pxy and Pyx reveal that

the two field components ex and ey are coupled, that is, the eigenvalue equation cannot be

divided into two independent eigenvalue equations which can be solved separately for ex

and ey. Because of this coupling, the eigenmodes of an optical waveguide are usually not

purely TE or TM in nature, and they are often referred to as hybrid modes [11]. Neverthe-

less, often one of the two transverse field components is much larger than the other, and
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the mode can be treated as approximately TE or TM in nature.

As with most eigenvalue equations, there can be more than one eigenpair which satis-

fies Eq. 2.25. For this reason, the eigenvalue equation is often written with subscripts on

ex, ev, and 0, but we have chosen to omit the subscripts here for clarity. Most integrated

optical devices are designed to be "single-mode" waveguides, meaning that Eq. 2.25 has

only one eigenmode for each polarization state.

Eq. 2.25 describes the eigenmodes of a waveguide in terms of the transverse electric

field et, however it is important to realize that equivalent eigenvalue relations can be de-

rived for the other field components. In particular, some prefer to express the eigenvalue

equations in terms of the two longitudinal components h, and e, [14]. Likewise, a set of

equations similar to Eq. 2.25 can be derived for the transverse magnetic field ht[16]. In any

case, only two components of the electromagnetic fields are required to completely specify

the optical mode; the remaining components can be derived from Maxwell's equations.

2.1.2 Normalization and Orthogonality

One of the characteristics of eigenfunctions is that they can only be determined up to a

scalar multiplicative constant, i.e. if the modal solutions e, and ey are scaled by any fac-

tor they will still satisfy the eigenvalue equation. To remove this ambiguity, it is often

convenient to normalize the mode so that it it has unity power. The time-averaged elec-

tromagnetic power transmitted by a propagating mode of a waveguide is described by the

Poynting vector, integrated over the x-y plane,

P = I (e x h* + e* x h) - 2 dx dy . (2.30)

Thus, if we require that P = 1, we can easily determine the magnitude of the constant

which multiplies ex and ey. Note however that the phase of this constant remains unde-

termined, because the field components enter Eq. 2.30 in complex-conjugate pairs. This

ambiguity is resolved by arbitrarily choosing the transverse components et to be purely

real quantities. It can be seen from Maxwell's equations that this choice of phase implies

that the two longitudinal components hz and e, are purely imaginary, and the transverse

magnetic field components are likewise real quantities. Of course, the complex nature

of the electromagnetic fields is nothing more than a ramification of the ej't time depen-

dence assumed in Eq. 2.8. The fact that the transverse field components are real and the

longitudinal components are imaginary should therefore be understood to mean that the

longitudinal components lead (or lag) the transverse components in time by 7r/2.
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One further ambiguity is that the propagation constant 3 is only determined up to a

sign. This is to be expected, because the waveguide can support forward- and backward-

traveling modes. We adopt the convention that positive values of 3 correspond to forward-

traveling modes, while negative values correspond to backward-traveling modes.

Another characteristic of eigenvalue equations is that eigenfunctions which correspond

to different eigenvalues are in orthogonal. For optical waveguides, the orthogonality con-

dition between two discrete modes labelled m and n can be stated as:

1 (e, x h* + e* x h,) 2 dx dy = 6m, (2.31)

where 6
mn is the Kroneker delta function, and we have assumed unit-power normalization

for the modes, as described above.

2.1.3 Weakly-Guiding Waveguides

For many waveguides, the refractive index profile varies by only a small fractional amount

over the waveguide cross-section. That is, often the index of refraction for the central core

region is only slightly higher than that of the surrounding cladding region. For example, in

a standard optical fiber the difference in refractive index between the core and cladding is

only about 0. 3 %. These types of waveguides are often referred to as weakly-guiding wave-

guides. The term weakly-guiding does not mean that the light leaks out of the waveguide

(indeed, optical fiber has replaced copper as a transmission medium precisely because

light does not leak out); rather it means only that the relative refractive index contrast is

small.

For weakly-guiding waveguides, the modal analysis can be greatly simplified by re-

placing the full-vector eigenvalue equation by a simple scalar eigenvalue equation for a

single field component. Examining the differential operators in Eq. 2.25, we see that when

the refractive index profile is constant, the off-diagonal terms Pzy and Py. vanish, leading

to decoupled eigenvalue equations for e, and ey:

PX 0 ex ex (2.32)
0 Pyy ey ey

Eq. 2.32 is known as the semivectorial eigenvalue equation. The polarization-dependent

continuity relations for the two transverse field components are maintained in this equa-

tion, but the coupling between the two transverse components is ignored.
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The semivectorial eigenmode equation can be further simplified by replacing the dif-

ferential operators P, and Py with a simplified second-order Laplacian operator:

a2 a2
Pxx ~ Pyy ~P = + + ± (2.33)

P(x, y) = # 2q(x, y) (2.34)

Where #(x, y) can represent either transverse field component. Again, this simplification is

only valid for weakly-guiding waveguides for which variations in the refractive index are

small. The field q(x, y) in Eq. 2.33 is assumed to be continuous at all points, even across

dielectric interfaces. The scalar eigenmode equation described in Eq. 2.33 does not ac-

count for any polarization-dependence, and therefore cannot distinguish between TE and

TM polarized modes. However, for many weakly-guiding waveguides the polarization-

dependence arises primarily because of stress and strain in the material layers comprising

the device, and not because of modal birefringence. The scalar mode equation is often

sufficiently accurate for modeling weakly-guiding waveguides.

One way to think about the scalar approximation is to imagine light trapped inside of

the waveguide core by total internal reflection. Recall that in order for light to be totally

internally reflected the angle of incidence must exceed the critical angle. The critical angle

for total internal reflection depends upon the index difference between the internal and

external layers and when the index contrast is small, only light at grazing incidence will

be totally internally reflected. Thus, for weakly-guiding waveguides, the confined light

may be regarded as approximately TEM in nature.

2.1.4 Finite Difference Methods

Now that we have established the eigenmode equations for dielectric waveguides, we

turn to the more practical matter of how to calculate the electromagnetic modes for an

integrated waveguide. There are a few waveguides for which the eigenmodes can be com-

puted analytically. For example, when the index profile consists of stratified layers of

homogeneous dielectric materials, the eigenmode equations can be reduced to a simple

one-dimensional problem which can be solved analytically by matching boundary condi-

tions at all of the dielectric interfaces. The cylindrical optical fiber is another example of a

problem which can be solved exactly; because of its cylindrical symmetry, the problem can

be reduced to an equivalent one-dimensional eigenvalue equation.

Integrated waveguides, by contrast, are usually rectangular structures which confine
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the light in both transverse directions. Because they do not have planar or cylindrical

symmetry, the eigenmodes of these structures cannot be computed analytically. Instead,

numerical techniques must be used to solve the eigenvalue equations. There are many

different numerical techniques for solving partial differential equations, including finite

element methods [17, 18], finite difference methods [15, 19, 20, 16, 21], and boundary inte-

gral techniques [22]. Each of these techniques has its own advantages and disadvantages.

In this section and in Appendix A, we will describe a finite-difference technique for dis-

cretizing the eigenvalue equation.

In the finite difference technique, differential operators are replaced by difference equa-

tions. As a simple example, the first derivative of a function f (x) could be approximated

as

f'(W) f(x + Ax) - f(x) (2.35)
AX

This is a very intuitive approximation. In fact, most elementary calculus textbooks define

the first derivative of a function to be just such a finite-difference in the limit that Ax -- 0.

As we will show later, similar finite-difference equations can be developed to approximate

higher-order derivatives and mixed derivatives. Of course, Eq. 2.35 fails entirely if the

function f (x) is discontinuous in the interval x -> x + Ax. Moreover, Maxwells equations

predict that the normal components of the electric field are discontinuous across abrupt

dielectric interfaces. Therefore in order to develop an accurate model for the eigenmodes

of an optical waveguide, we must construct a finite difference scheme which accounts for

the discontinuities in the eigenmodes. We will later show how such a finite difference

scheme can be derived.

Once the difference equations have been described, the partial-differential equation

can be translated into an equivalent matrix equation. The functions ex(x, y) and ey (x, y)

are replaced by vectors representing the value of the functions at discrete points. The

differential operators Pxx, Py, Pxy and Pyy, are replaced by sparse, banded matrices which

describe sums and differences between adjacent samples. With this substitution, Eq. 2.25

becomes a conventional matrix eigenvalue equation.

Figure 2.2 illustrates a typical finite difference mesh for a ridge waveguide. The re-

fractive index profile has been broken up into small rectangular elements or pixels, of size

Ax x Ay. Over each of these elements, the refractive index is constant. Thus, discontinu-

ities in the refractive index profile occur only at the boundaries between adjacent pixels.

Because the index profile is symmetric about the y-axis, only half of the waveguide needs

to be included in the computational domain. The computational window must extend far
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y

Ax

~Ay

Figure 2.2: A typical finite difference mesh for an integrated waveguide. The re-
fractive index profile n(x, y) has been divided into small rectangular cells over
which n(x, y) is taken to be constant. For symmetric structures, such as this one,
only half of the waveguide needs to be included in the computation window.
(figs/2/fdmesh.eps)

enough outside of the waveguide core in order to completely encompass the optical mode.

The finite-difference grid points, i.e., the discrete points at which the fields are sam-

pled, are located at the center of each cell. Some finite difference schemes instead choose

to locate the grid points at the vertices of each cell rather than at the center. This approach

works well for finite-difference schemes involving the magnetic field h which is continu-

ous across all dielectric interfaces [20, 19]. However, the normal component of the electric

field is discontinuous across an abrupt dielectric interface, which leads to an ambiguity if

the grid points are placed at the cell vertices.

It is worth pointing out that the finite difference method described here can also be

used to develop beam-propagation models. The structure of the sparse matrices remains

unchanged, but the problem becomes one of repeatedly solving a sparse system of linear

equations to simulate mode propagation, rather than computing eigenvalues [16, 23, 24,
25].
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Scalar Finite Difference Equations

We will begin by deriving the finite difference equations for the scalar eigenmode approx-

imation. Recall that in this approximation the coupled full-vector eigenmodes equations

(Eq. 2.25) have been replaced by a single scalar eigenmode equation for one of the trans-

verse field components denoted q(x, y) (Eq. 2.33). This approximation is valid for so-called

"weakly-guiding" waveguides in which the refractive index contrast is small. We repeat

the scalar eigenvalue equation here for reference:

{ 2 + 2 n2(x y)k2 3 2 (x,y) (2.36)

In order to translate this partial differential equation into a set of finite difference equa-

tions, we must approximate the second derivatives in terms of the values of #(x, y) at

surrounding gridpoints. We shall use the subscripts N, S, E and W, to indicate the value

of the field (or index profile) at grid-points immediately north, south, east and west of the

point under consideration, P. This labeling scheme is illustrated in Fig. 2.3.

One of the most straightforward techniques for deriving finite difference approxima-

tions is Lagrange interpolation[261. The Lagrange interpolant is simply the lowest order

polynomial which goes through all of the sample points. The derivatives can then be easily

computed from the polynomial coefficients of the interpolating function. For example, to

approximate the second derivative of # with respect to x at point P, C p, we simply fit a

quadratic equation to the three points OE, op, and Ow:

(x) = A + Bx + Cx 2, (2.37)

Where the three coefficients A, B and C are determined by the matching the function O(x)

at the three adjacent gridpoints, i.e.,

0(-AX ) = OW, 0(0) = OP, 0(+ Ax) = OE -(2.38)

Notice that for convenience we have arbitrarily chosen to place the origin of our local

coordinate system (x = 0) at point P. The second derivative is related to the x 2 coefficient,

X -Ox 2 = 2C . (2.39)

Solving the three equations of Eq. 2.38, we arrive at the following finite difference approx-
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NW N NE

W P E --Ay+ + +

SW S SE

H*-Ax -- P

Figure 2.3: Labeling scheme used for the finite difference model. The subscripts
P, N, S, E, W, NE, NW, SW and SE are used to label respectively the grid
point under consideration, and its nearest neighbors to the north, south, east, west,
north-east, north-west, south-west, and south-east. (figs/2/nsew-Iabel.eps)
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imations:

024

9X2 p Ax)2 (Ow - 20p + OE) (2.40)

8#1
P I (E - w) .

(2.41)

These approximations can also be derived by performing a second order Taylor expansion

of the field about the point P. However, we have chosen to derive the finite-difference

equations via polynomial interpolation because this approach is easily adaptable to non-

uniform grid sizes, and more importantly it can be extended to account for predictable

discontinuities in the field #. Similar finite difference approximations apply in the vertical

direction:

024

P (Ay) 2 (OS - 2 0p + ON) (2-42)

P (ON - S) (2.43)
Oy 2Ay

With these approximations, the differential operator P may be replaced with its finite dif-

ference representation to arrive at the following discretized difference equation:

OW O'JE ON OS 2 2_ 2 2 '\2OTA+ + (ri-k + ___ + (n (2.44)
(Ax) 2  (Ax) 2  (Ay)2  (Ay) 2  (Ay) 2  (AX) 2

The finite difference operator, which we shall denote P, can be more conveniently repre-

sented by the following diagram which illustrates the coefficients which multiply each of

the adjacent sample-points.

(2.45)

As we will describe in Appendix A, the finite difference equations must be slightly

modified for points which lie on the boundary of the computation window. If we apply

Eq. 2.45 for each point in the computation window, we obtain an M-dimensional eigen-

value problem, where M is the total number of grid-points, i.e., M = nny. Figure 2.4

illustrates the structure of the eigenvalue equation for a simple grid with nr = 4 and

ny = 3. As is customary, we have chosen to number of grid points from left to right and

1
0 (A) 2  0

1 2 2 1

(AX) 2  k (Ay) 2 - (AX) 2  (AX) 2

1
0 (A) 2 0
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bottom to top, which results in a block tridiagonal matrix structure as shown in the lower

portion of Fig. 2.4.

Vector Finite Difference Equations

As noted earlier, the scalar eigenvalue equation is only applicable in cases where the re-

fractive index contrast is small. The polynomial interpolation process seems reasonable

for describing continuous functions, but not all components of the electric field are con-

tinuous at dielectric interfaces. When the refractive index differences are small, the fields

may be treated as continuous without significantly affecting the accuracy of the solution.

For problems which do not meet this criterion, a more accurate finite difference model is

required. Appendix A describes how the finite-difference equations can be modified to

account for such index discontinuities.

Computation of Eigenvalues

As described above, the finite difference method essentially translates a partial differential

eigenvalue equation into a conventional matrix eigenvalue equation. The partial differen-

tial operators have been replaced by large sparse matrices, and the eigenfunctions have

been replaced by long vectors representing a sampling of the eigenfunctions at discrete

grid-points.

Once we have set up this matrix equation, we must solve for the eigenvalues and eigen-

vectors. Naturally, since the matrix is of dimension M = nrny, there should be M eigen-

pairs. However, we are only interested in computing the largest few eigenvalues. The

smaller eigenvalues correspond to unphysical eigenmodes.

There are many routines available for computing a few selected eigenvalues of large

sparse matrices. The most common technique is the shifted inverse power method [27].

Unfortunately, this technique proves to be relatively slow and it is only capable of comput-

ing one eigenfunction at a time. A complete review of the available routines for computing

eigenvalues of sparse matrices is given in [28]. One of the most promising algorithms is

the implicitly restarted Arnoldi method [291. This method allows one to simultaneously

compute a few of the largest eigenvalues of the sparse matrix. For this work, we used the

built-in Matlab function eigs, which implements a variant of the Arnoldi method.
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Figure 2.4: Structure of the eigenvalue equation for the finite difference problem,
applied to a simple 4 x 3 index mesh. The partial differential operator P has been
replaced by its finite difference matrix equivalent, and the eigenfunction #(x, y) is
replaced by samples at discrete grid points. The grid points are numbered sequen-
tially from left to right, and bottom to top, which results in the block tridiagonal
matrix structure shown. The 9's in this equation represent nonzero elements of the
matrix. (figs/2/matrix-shape.eps)
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2.1.5 Computed Eigenmodes for Optical Waveguides

The two types of dielectric waveguides considered in this work are illustrated in Fig. 2.5.
The first is a doped-glass channel waveguides, whose index profile and mode shape are

designed to match well with that of an optical fiber [30, 31]. The second type of waveguide

that will be analyzed is a silicon-on-insulator (SOI) ridge waveguide [32, 33].

The doped-glass waveguide consists of a rectangular core region surrounded by a
cladding region with slightly lower index of refraction. The lower cladding layer is fused

silica (SiO2). By doping the core region with phosphorus or germanium, the index of re-

fraction can be raised slightly with respect to the underlying silica. The top cladding layer
is co-doped with both boron and phosphorus in order to match the refractive index of the

lower cladding. The index contrast for this type of waveguide typically ranges from 0.3%
to 0.8%, and can be adjusted by varying the dopant concentration in the core layer. Fig-
ure 2.6 plots the calculated mode profile for a Ge-doped glass channel waveguide with

an index contrast of 0.8%. The waveguides measure six microns on each side, which in-

sures that the structure only supports one bound mode for each polarization state. Notice

that because of the rectangular symmetry of the structure, only one quadrant of the mode

needs to be included in the calculation.

In the silicon-on-insulator ridge waveguide, the light is confined in the silicon ridge
structure which sits on top of an oxide separation layer. Provided the oxide layer is thick
enough, the light will remain confined in the silicon layer without escaping into the silicon

substrate. By choosing the ridge height appropriately, the structure can be made to have
only one bound mode per polarization state, even for relatively large mode sizes [34, 35].
Because the structure requires no top cladding layer (the air above the waveguide forms

the top cladding), this structure avoids some of the challenging problems of material over-
growth. Figure 2.7 plots the calculated mode profiles for an SOI ridge waveguide. For this
structure, the core height is 3 gm, and the ridge width is 4 [tm.

2.2 Coupled Waveguides

In the preceding section, we described techniques for describing the modes of propagation

for an optical waveguide. In analyzing the waveguide, we assumed that the structure can

be described by a z-invariant refractive index profile n(x, y) which extends infinitely in

the transverse directions. Such a waveguide performs no real optical function except to
transmit a light signal from one point to another. In this section, we investigate a slightly
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(b)I

rh

Si02

Si(usrate)

Figure 2.5: The two types of waveguides considered in this work. (a) A glass
channel waveguide, of the type described in references [30, 31]. The core is doped
with phosphorus (P) or germanium (Ge) to increase the refractive index relative to
that of the underlying undoped silica. The upper cladding is co-doped with boron
and phosphorus to match the refractive index of the lower core. (b) Silicon-on-
insulator (SOI) ridge waveguide. The optical mode is guided in the silica ridge,
and confined by the oxide layer below and air above [32]. (figs/2/waveguide-types.eps)
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9

Sio 2  TE Mode (ex plotted)
8 n= 1.46 n.ff = 1.46645

Parameters:

Xo = 1560 nm
6 Ax = Ay=0.05 PM

nx = 180, ny =1806
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Figure 2.6: Mode profile for an integrated channel waveguide in silica. For the
simulation, the index contrast was taken to be 0.8%, which could be achieved by
doping the core of region with germanium. The dimensions of the waveguide
are 6 grm x 6 gm. Plotted here is the transverse electric field component e, for the
fundamental TE mode. The orthogonal field component ey (not plotted) is approx-
imately 30-40 dB lower than e,. Note that because of the rectangular symmetry of
the waveguide, only one quadrant was included in the computational window.
The fundamental TE and TM modes are degenerate, because the waveguide is
perfectly square. (figs/2IgIass-wg-modeprofile.eps)
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TE Mode (ex plotted)
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Figure 2.7: Mode profile for an integrated silicon-on-insulator (SOI) ridge wave-
guide. The upper portion of this plot depicts the principal field component e.
for the fundamental TE mode of the structure, and the lower portion of the plot
depicts the principal field component e. for the TM mode of the structure. oigs/2Isoi-
wg-modeprofile.eps)
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Input * L0 P

P2

Figure 2.8: The structure of a typical integrated directional coupler. Two wave-
guides, initially separated, are brought together so that power may transfer from
one to the other. The path of approach and length of interaction must be carefully
engineered to achieve the desired amount of power transfer. (figs/2/simple-coupler-

schematic.eps)

more complicated structure consisting of two (or more) interacting waveguides in close

proximity. Such a structure, which we call a waveguide coupler, performs the important

task of transferring light from one waveguide to another. Waveguide couplers are impor-

tant components in Mach-Zehnder interferometers, power splitters, and a variety of other

integrated optical devices.

Figure 2.8 illustrates schematically the type of structure which we wish to describe.

Two waveguides, labeled 1 and 2, which are initially separated are slowly brought close

to one another over some interaction length L. The waveguide separation and interaction

length must be selected in order to achieve the desired amount of power transfer.

2.2.1 Variational Approach

We begin by simplifying the problem to the analysis of two parallel waveguides, as de-

picted in Fig. 2.9, ignoring for the moment the gradual approach and separation at either

end of the device. We shall denote the electromagnetic modes of waveguides 1 by e I and

hl, and those of waveguide 2 by e 2 and h2 -

ni(x, y) - ei(x, y), hi(x, y) (2.46)

n' (x, y) -+e2 (X, y), h2 (X, Y)
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where ni (x, y) denotes the index profile of waveguide 1 in the absence of waveguide 2,

and n2 (x, y) is the index profile of waveguide 2 in the absence of waveguide 1.

Next, we attempt to describe the electromagnetic fields of the coupled waveguide sys-

tem as a superposition of the modes of waveguides 1 and 2.

E(x, y, z) = a(z)e1(x, y) + a2 (z)e 2 (x, y)

H(x, y, z) = a,(z)hi(x, y) + a2 (z)h 2 (x, y)

In the above equation, a1 (z) and a2 (z) are scalar functions of z which represent respectively

the mode amplitude in waveguide 1 and the mode amplitude in waveguide 2. When the

two waveguides are very far apart, i.e. when d is large compared to the mode size, the

two optical modes should propagate independently without interaction as described in

Section 2.1. In this case, the solution for ai(z) is:

ai(z) = a1 (0) exp(-jO,1z) (2.48)

a2 (z) = a2(0) exp(-jO2z)

Eq. 2.48 can be viewed as the solution to the following differential equation:

d ai(z) -j 1F a,(z) (2.49)

dz a2(Z) - I# a2(Z)I

The goal of this section is to derive a new differential equation which describes the evolu-

tion of a1 (z) and a2 (z) when the two waveguides are brought close together. Essentially,

we seek to replace Maxwells equations by a system of two coupled differential equations

for the scalar mode amplitudes. This analysis comes under the rubric of coupled mode

theory[36].

Before proceeding, we should point out that the mode expansion of Eq. 2.47 is only

a convenient approximation. While for a single isolated waveguide, the electromagnetic

fields may be accurately described as a superposition of the orthogonal modes, the modes

of the two constituent waveguides in a coupler do not comprise an orthonormal basis set.

Nevertheless, it seems reasonable to use the expansion of Eq. 2.47 as a trial function. A

more rigorous analysis of the waveguide coupler will be presented in Section 2.2.2.

One of the most complete methods for analyzing coupled waveguides is the variational

approach described in reference [37], which we summarize here. The variational method

38



2.2. COUPLED WAVEGUIDES

n 2(x,y) - d-

(a)
2n2(x,y)

(b)

2
n2(x.y

(c)

Figure 2.9: (a) Cross-sectional diagram of two parallel waveguides (ridge wave-
guides in this example) separated by a center-to-center distance d. (b) Refractive
index profile for waveguide 1 in the absence of waveguide 2. (c) Refractive index
profile for waveguide 2 in the absence of waveguide 1. (figs/2/paralleI-waveguides.eps)
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begins with an integral expression for the propagation constant 3.

JJ (Vt x h - k2e) . e* - (Vt x e - jkoh) - h* dx dy
# = 7 0 '(2.50)

f (et x h* + e* x ht) .2 dx dy

In the above equation, the integration is performed of the entire x-y plane, and n 2 refers

to the complete refractive index profile, including both waveguides. The fields e and h

and propagation constant 3 likewise refer to the eigenmodes of the coupled waveguide

system considered as a whole. (Note that we have assumed a z-dependence of e ~j,3 for

the field quantities of Eq. 2.50.) Of course, we could apply the techniques of Section 2.1

to rigorously solve for the modes of the aggregate structure, but for now, we will treat the

quantities e, h and 0 as unknown eigenmodes which we wish to approximate in terms of

the modes of the constituent waveguides considered separately.

As shown in [37], Eq. 2.50 is a variational expression for the propagation constant 3.

This means that if the electromagnetic fields e and h are perturbed slightly, i.e.,

e - e + 6e
(2.51)

h -+ h + 6h

the value of the integral of Eq. 2.50 changes only to second-order in 6e and 6h.

/3 --->+ 1 + [a 2 e 2 1+ _Y2 k1h12] dxdy (2.52)

Therefore, one way to determine the two fields e and h is to find the two vector functions

which minimize the value of the integral given in Eq. 2.50. 2

Clearly, it is unreasonable to minimize Eq. 2.50 over all continuous vector functions of

x and y. In the variational approach, we instead perform a constrained minimization in

which we assume that the fields e and h are described by the superposition of the isolated

waveguide modes.

6(x, y) = aie,(x, y) + a2 e2 (x, y)
(2.53)

h(x, y) = aihi(x, y) + a2h2(x, y)

The above equation is idential to Eq. 2.47 except that we have factored out the e-j 3 z de-

pendence from E, H, and ai (z). We have added a tilde to the fields 6 and i to distinguish

2In fact, a similar minimization principle forms the basis for all finite-element mode solvers [17, 38].

40



2.2. COUPLED WAVEGUIDES

them from the exact solutions e and h. Rather than minimizing Eq. 2.50 over the space of all

continuous functions, we instead minimize over a two-dimensional subspace consisting of

all possible linear combinations of the two isolated waveguide modes.

We shall use # to denote the minimal value achieved by Eq. 2.50 under the linear

superposition constraint. This optimal value should closely approximate the real prop-

agation constant 0 of the coupled waveguide structure. Likewise, the fields which mini-

mize Eq. 2.50 should closely approximate the actual electromagnetic mode of the aggregate

structure:

,3-~0, 6 ~ e, h ~ h (2.54)

In fact, the error between the actual fields e and h and the optimal linear superposition 5

and h can easily be shown to be orthogonal to any function in the subspace over which the

minimization is performed. (By "orthogonal", we refer to the inner product described in

Eq. 2.31.)

If the trial functions of Eq. 2.53 are substituted into Eq. 2.50, the resulting integral ex-

pression for / can be cast into the following form:

atHa (2.55)
atPa

where a is a two-dimensional vector of mode amplitudes and H and P are Hermitian

matrices defined below.

a a, (2.56)
a2

PIJ J (ej x h* + e* x hj) 2 dx dy (2.57)

Hjj = Pijj + k (n _2 - n 2)e - e*'] dx dy (2.58)

All of the integrals in the above equations are taken over the entire x-y plane. However,

notice that the integrand involved in Hij vanishes for points outside of waveguide i and

therefore the range of this integral may be restricted to waveguide i.

Minimizing Eq. 2.55 with respect to the two components of a leads to the following

equation:

/3Pa=Ha (25
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The above equation can be seen to be a generalized eigenvalue equation, with eigenvectors

a. Because we know that / describes the propagation constant of the fields, we can obtain

the coupled mode equations by simply replacing 3 with j d in Eq. 2.59:

P11 P12 d a1(z) .j Hil H12 a, (z) (.0
P2 1 P2 2 I dz [ a2 (z) H 2 1 H 2 2  a 2 (z) (

Eq. 2.60 is a coupled two-dimensional linear differential equation which describes the

evolution of the coefficients a1 (z) and a2 (z) for the parallel waveguide system. The diag-

onal elements of P represent the modal power carried by each of the two isolated wave-

guide modes separately. The off-diagonal elements of P describe the extent to which the

two isolated waveguide modes are not orthogonal to each other.

We will now examine the solution to this system of equations, in the case where the two

waveguides under consideration are identical (we shall let 1 = /32 /00). For identical

waveguides, Eq. 2.60 can be cast into the following form:

I XI d al1(z) .j [1 x 3o 0 1 + y1 a,1(z) (.1
x 1 dz a2 (Z) X 1 0 #30 p A a2 (Z)

where the constants x, A, and p are defined by,

4P (ei x h + e* x hi) - 2dxdy (2.62)

1k k
A k -- e .e*dx dy (2.63)

4P r70 f
guide 2

I cad JJ2 el e2 dx dy (2.64)
P Pocore clad) if05

guide 1/2

By inverting the matrix on a left-hand side of Eq. 2.61, the coupled mode equations sim-

plify to:

d a,(z) .j /3 ' a,(z)

dz a2(z) P' 130 a2(z)
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where the quantities /6 and p' are given by

0 =0+ X 2  (2.66)
P - XA

X2 (2.67)

Notice that the diagonal elements of the Jacobian matrix in Eq. 2.65 are not equal to o,

the propagation constant of the isolated waveguides. This means that the presence of the

nearby waveguide in fact changes the propagation constant slightly

Eq. 2.65 can easily be solved by eigenvalue decomposition. The solution for a, (z) and

a 2 (z) can be written as a transfer matrix:

ai(z) 1-eiz cos(p'z) -j sin(p'z) al(O) 1
a2(z) e 0 -j sin(p'z) cos (p'z) a 2 (0) (2.68)

If, at z = 0 light is launched into waveguide 1, the relative power in the two waveguides

as a function of z is:

a2(Z) sin 2 (P 'z), a,(z) cos2 (_,'z) . (2.69)
a,1(0) a,1(0)

The above equation illustrates the fact that for two coupled identical waveguides the

power slowly sloshes back and forth between them at a rate described by P'. Interestingly,

full power transfer from waveguide 1 to waveguide 2 can be achieved even for weakly

coupled waveguides (with arbitrarily small p'), provided the interaction length z is suffi-

ciently long.

Henceforth, we will drop the prime from the quantities 06 and p' in Eq. 2.68. We refer

to p as the "coupling constant" for the structure. It has dimensions of inverse length, and

describes the spatial rate at which power transfers between the two waveguides.

2.2.2 Exact Modal Analysis

In Section 2.2.1, we described a variational technique in which we approximated the elec-

tromagnetic fields of the parallel waveguide system in terms of a linear superposition of

the modes of each constituent waveguide. In principle, it is possible to rigorously com-

pute the electromagnetic modes for the coupled waveguide system using the techniques

described in Section 2.1.
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The variational technique gives valuable insight into the structure of the eigenmodes

for the coupled waveguide system. If we consider the case of identical waveguides, the

eigenvalue equation (Eq. 2.59) simplifies to:

p y a2 a , (2.70)[2 AJ a2 ] [a]

where the quantities /30 and yt are defined in Eqs. 2.66 - 2.67 and '3 represents an eigenvalue

of the system of equations. The eigenvalues and corresponding normalized eigenvectors

of this equation are,

1 +1i
O3 =i + i', a, =J(2.71)

vf2 +1I

1 +1
Oa =0 - [, aa = (2.72)

,\f2 -1I

Thus, the approximate eigenmodes of the coupled waveguide system are symmetric and

antisymmetric linear combinations of the isolated waveguide modes. 3 The symmetric

mode has a propagation constant which is slightly higher than the antisymmetric mode.

This gives rise to another physical interpretation of the coupling constant p: /- describes the

splitting between the symmetric and antisymmetric modes of propagation for the parallel

waveguide system.

P = (3s - /3a) (2.73)
2

In fact, a more rigorous way to analyze the coupling between parallel waveguides is

to directly compute the symmetric and antisymmetric modes. Figure 2.10 illustrates the

symmetric and antisymmetric TE modes for two coupled SOI ridge waveguides, of the

type depicted in Fig. 2.7.

The coupled mode theory presented earlier agrees very well with the more rigorous di-

rect solution method described here, especially when the waveguide separation becomes

large [39]. Moreover, the coupled mode approach has a few advantages over directly solv-

ing for symmetric and antisymmetric modes. One limitation of the direct solution method

is that the simulations must be repeated if the waveguide separation changes. For the

31f the two waveguides comprising the coupler are not identical, then the eigenmodes of the coupled sys-
tem will not have definite symmetry. Nevertheless, the two lowest order modes may be approximated by
linear combinations of the isolated waveguide modes according to the eigenvalue equation.
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Figure 2.10: Symmetric and antisymmetric TE modes for an SOI ridge waveguide.
Note that because of the symmetry, only half of the structure needs to be included
in the computation. (figs/2/symmetric-antisymmetric.eps)
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coupled mode approach, the isolated waveguide mode only needs to be computed once

- different waveguide separations can be analyzed by simply changing the regions of in-

tegration for the calculation. Also, the direct calculation of symmetric and antisymmetric

modes proves to be numerically challenging as the waveguide separation increases. The

method relies on accurately computing the difference between two similar propagation

constants (#, and 0,a), which leads to numerical inaccuracies when the two numbers are

subtracted. By contrast, the coupled mode approach computes the coupling constant 1t by

way of an overlap integral which is not susceptible to these problems.

2.2.3 Real Waveguide Couplers

Thus far, we have discussed the problem of parallel waveguides without considering the

gradual approach and separation of the two waveguides at the input and output of the

coupler. Because most waveguides cannot be bent at a sharp angle without incurring sig-

nificant loss, any realistic coupler must include a gradual approach and separation. In

order to design a coupler with the desired splitting ratio, one must account for the power

transfer which occurs in these curved regions.

If the bending of the waveguide is very gradual in comparison to the coupling rate,

i.e., if the waveguide separation changes slowly over a length scale of 1/, the effects

of bending may be modeled by simply replacing A by p(z) in Eq. 2.68. This condition

is known as the adiabatic condition. In this case, the solution to the coupled system of

differential equations is:

a,(z) e 3z cos#(z) -jsinO(z) 1 (0) (2.74)
a2(z) -jsinO(z) cos#(z) a 2((0)

A(z) p(z) dz (2.75)

The above equation is identical to Eq. 2.68, with the exception that pz has been replaced

by an integral over the length of the coupler.

A more rigorous analysis of the problem of nonparallel waveguides is given in refer-

ences [40, 41, 42]. The authors show that when the waveguide dimensions or separation

change with position, the couple mode equations of Eq. 2.60 should be replaced by the

following modified differential equation:

da 1ldP
P + a = -jHa (2.76)

dz 2 dz
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x
4

do

- -

I -44 - No

I

slope = tan(O)

d(z) .z

Figure 2.11: Schematic of a more realistic directional coupler, in which two identi-
cal waveguides approach each other over a curved path with radius R. (figs/2/real-

coupler-schematic.eps)

where the matrices P and H are the same as those described earlier, but they are now

understood to be slowly varying functions of z. Most couplers have a plane of symmetry

such that with the proper choice of origin the elements of P and H are even functions of z.
In this case, the ! terms are odd functions of z and therefore integrate to zero when the

entire coupler is considered. Therefore, provided the structure is symmetric, Eq. 2.74 can

be used to describe the coupling.

Figure 2.11 depicts the geometry of a typical integrated waveguide coupler. Two wave-

guides initially approach each other along a sloped path. The waveguides gradually be-

come parallel as they traverse an arc of radius R and angle 0, and remain parallel for a

length Lo. Then, the waveguides gradually separate, following a symmetric path. Fig-
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d(z)

-Zi -zo

.--- do+ 2R (1 - cos 0) ---------

do

zo ZZi

Figure 2.12 Waveguide center-to-center separation as a function of z for the cou-
pler depicted in Fig. 2.11. (figs/2/d-vs-z.eps)

ure 2.12 plots the waveguide separation as a function of separation d for this structure.

The waveguide separation can be described mathematically by the following piecewise

function:

do |z| < 2

d(z) do + 2R -2 R2 - (|z _ ) 2  < Iz < L+ R sin 0 (2.77)

do + 2R(1 - cos 0) + 2 (Iz - - R sin 0) tan LQ + R sin 0 < jz

For the purposes of this analysis, we assume that d(z) continues to grow linearly to 00

outside of the coupling region. In practice, the coupling constant A becomes negligibly

small as the waveguide separation increases and therefore the exact functional form of

d(z) outside of the principal coupling region is unimportant.

One way to treat the structure depicted in Fig. 2.11 is to simply compute the integrated

coupling numerically, using Eq. 2.75 along with the calculated coupling constants as a

function of d. For example, the coupler may be divided into short segments over which

the coupling is approximately constant, and then the integral of Eq. 2.75 could be approx-

imated by a discrete summation.

However, as described below, by making a few simplifying assumptions, one can de-
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rive a simple analytical approximation for the total integrated coupling.

In most cases, the coupling constant p falls exponentially with increasing waveguide

separation d. This occurs because the electromagnetic mode decays exponentially outside

of the core, and therefore so does the overlap integral of Eq. 2.64. It is often very accurate

to model this relationship with the following simple functional form [39, 30]:

p(d) =A exp , (2.78)

where the coefficient A represents the extrapolated coupling at d = 0, and d represents the

1/e decay length.

Next, we assume that the waveguide separation in the non-parallel regions can be mod-

eled as a quadratic function:

d(z) { z L I < 2 (2.79)
d R + (z 2 < |z|

The above equation can be derived by simply performing a Taylor expansion of Eq. 2.77.

When this approximation is combined with the exponential decay approximation of Eq.

2.78, the total integrated coupling can be computed analytically:

] p(z) dz = p(do) (Lo + rdR) (2.80)

Thus, under certain conditions, the coupling between the two non-parallel waveguides

can be treated as if the coupler were comprised of two parallel waveguides separated by

do with an effective coupling length given by

Leff = Lo + (2.81)

as described in [39], this approximation is valid under the following condition:

Rsin2 O >> 1 (2.82)
d

2.2.4 Results of Coupled Mode Analysis

Figure 2.13 plots the coupling constant p as a function of waveguide separation d for the

doped-glass channel waveguide structure considered in this work. Notice that the rela-
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tionship between p and d is approximately exponentially decreasing, as evidenced by the

linear slope of the curves when plotted on semilogarithmic axes. There is a slight deviation

from the exponential decay when the waveguides are very close together.

Also, it is worth pointing out that there is a slight discrepancy between the TE and TM

coupling constants, but the difference is too small to be visible in Fig. 2.13.

Figure 2.14 plots the coupling constant p as a function of waveguide separation for the

silicon-on-insulator ridge waveguide considered in this work. Notice that because of the

stronger index contrast between the core and cladding, the SOI waveguide has a much

more severe polarization dependence than the doped-glass channel waveguide.

2.2.5 Design of Insensitive Couplers

So far, we have described the coupling between parallel waveguides, and explained how

to accurately treat the coupling between nonparallel waveguides. Together with the eigen-

mode analysis of Section 2.1, these techniques allow one to design an integrated coupler

with the desired power splitting ratio. However, these calculations can only accurately

predict the coupling at one specific wavelength and for one polarization state. If the

wavelength and polarization change, the eigenmodes of the waveguides also change, and

therefore so does the coupling constant y. It is often impossible to achieve broadband

polarization-insensitive performance, especially in planar integrated devices.

Figure 2.15 depicts the calculated power splitting ratio for an integrated glass wave-

guide coupler, as a function of wavelength. This particular coupler was designed to have

a power splitting ratio of 50% at a free-space wavelength of 1550 nm, but over a span of

100 nm the calculated coupling varies from 40 to 60%.

Even in applications where the wavelength and polarization are well-defined and care-

fully controlled, small deviations or nonuniformities in the fabrication process, material

properties, or device operating conditions can significantly alter the power splitting ratio.

We now describe an improved design for a directional coupler which yields a power

splitting ratio that is insensitive to wavelength, polarization, and fabrication parameters.

Others have achieved wavelength-insensitive performance by using tapered wave-

guide couplers [43, 44] or asymmetric waveguide couplers [45, 46, 47]. Although these

approaches can greatly reduce the wavelength dependence, they do not explicitly account

for polarization and fabrication uncertainties. Another approach to achieving insensitive
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Figure 2.15: Calculated splitting ratio as a function of wavelength for an integrated
doped-glass waveguide coupler. The coupler was designed to have a power split-
ting ratio of 50% at a free-space wavelength of 1550 rim. (figs/2/coupler-dispersion.eps)
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20

Figure 2.16: Structure of a parameter-insensitive directional coupler: two con-
ventional couplers are cascaded in a Mach-Zehnder configuration, with a relative
phase shift introduced between them. (figs/2/mz-coupler-structure.eps)

performance is to use adiabatic couplers [48], but this approach can require very long

structures, and the application to couplers with arbitrary splitting ratio is not obvious.

Another method for achieving wavelength insensitive performance is to use a cascade

of two similar couplers in a Mach-Zehnder configuration [49, 50, 51]. Using numerical opti-

mization techniques in combination with empirically determined wavelength-dependence

data, researchers at NTT have employed this technique to build broadband 20% couplers

[51]. By contrast, we describe here a simple set of universal design rules for constructing

parameter-insensitive cascaded couplers with any desired splitting ratio.

Figure 2.16 depicts the structure of the parameter-insensitive coupler. The device con-

sists of a cascade of two conventional couplers, with an intervening phase shift. The di-

mensionless quantities #1 and #2 represent the total integrated coupling of the two con-

stituent directional couplers,

#1 i p(z) dz, 02 p p(z) dz (2.83)

(1) (2)

and 20 is the relative phase difference between the two arms of the structure. This phase

shift can be achieved by making one arm slightly longer than the other, or through some

other thermo-optic or electro-optic effect.

The cascaded coupler depicted in Fig. 2.16, can be analyzed using a transfer matrix

approach, which will be described completely in Section 2.4. For now, we will simply give

the result for the power splitting ratio. The splitting ratio, defined as the fractional amount
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of power transferred from guide 1 to guide 2, is given by [52, 51]:

S = cos2 0 sin 2 (0 1 + 02) + sin2 0 sin 2 (01 -52) (2.84)

each of the three parameters used in Eq. 2.84 implicitly depends on the wavelength, polar-

ization, material properties and dimensions of the device. However, the deviations in 91

and 02 are usually highly correlated with each other. By connecting the couplers with an

appropriate phase shift, these variations can be made to counteract each other such that

the resulting power splitting ratio remains unchanged.

Compared with other methods of achieving wavelength-insensitive performance, this

approach has the advantage that it is easily adaptable to any waveguide geometry. Rather

than attempting to numerically model the coupling dispersion or polarization dependence,

as was done in reference [51], this technique instead treats all potential variations as frac-

tional changes in 91 and 92. Accordingly, the device should be capable of compensating

for any uncontrolled variation (structural or optical) which affects both constituent cou-

plers proportionately. The variations in #1 and 92 tend to be more severe than variations

in 6 because of the evanescent nature of the waveguide coupling.

As described in a previous work [52], insensitive performance can be achieved by

choosing the three parameters in the following way:

#1 = 37 1+- , 02= 37 -- (2.85)
8 ( N 8 N

cos2 6= sin (N) [N + sin 2N (2.86)

where N is a dimensionless real parameter larger than 3 which can be chosen to give any

desired splitting ratio as described in (2.84). Figure 2.17 shows how to select the three

parameters in order to achieve a prescribed splitting ratio. In the particularly important

case where 50% splitting is desired, we choose #1 = r/2, 02 = /4, and 6 = 7r/3.

Figure 2.18 illustrates how the coupler compensates for fractional changes in #1 and

#2. For these calculations, 01, 92 and 0 were nominally chosen so as to give 50% splitting.

Along the y-axis, we plot the actual power splitting ratio as a function of the fractional

change A#/0. Clearly, for the cascaded Mach-Zehnder structure, the first order depen-

dence of splitting ratio on A#/# has been eliminated.

Having specified #1, 92 and 0, the device structure must be selected to achieve the

desired accumulated coupling and phase shift. This task is no more complicated than the
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Figure 2.17: Plot describing how the three dimensionless parameters 1, #2 and 6
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design of a conventional directional coupler.

2.3 Bragg Gratings

In the previous section, we developed a theory to describe the interaction between two

copropagating modes of adjacent waveguides. We now turn to the problem of contradirec-

tional coupling, the coupling between forward-traveling and backward-traveling modes.

By introducing a periodic modulation in a waveguide, it is possible to create an interaction

between the otherwise decoupled forward-traveling and backward-traveling modes of an

optical waveguide.

Wave propagation in a periodic medium is a well studied phenomenon in the field of

solid-state physics. The electronic bandgap which exists in semiconductors arises because

the electrons move in a periodic medium defined by the crystal lattice. The diffraction of

x-rays by a crystal lattice is another example of wave propagation in a periodic structure

[53]. The problem of electromagnetic propagation in a periodic waveguide is a similar

phenomenon, with the exception that the light is confined in the transverse directions so

that the interactions occur only in one dimension.

There are many ways to induce a periodic modulation in an integrated waveguide. In

some cases, it is possible to directly modulate the refractive index of the guiding layer,

by illuminating the waveguide with ultraviolet light[54, 55, 56], or by utilizing acousto-

optical or electro-optical effects. These techniques, however, can only be used in materials

which have photorefractive, acousto-optic, or electro-optic properties. A more flexible way

of introducing a periodic modulation is to physically corrugate the waveguide structure

using the techniques of lithography and pattern transfer. This is the approach considered

in this thesis.

Before proceeding, let us clarify the relationship between forward-traveling modes and

backward-traveling modes. Recall that the eigenmode equation for an optical waveguide,

derived in Section 2.1, has eigenvalues which are /2, the propagation constant squared.

Positive values of # correspond to forward-traveling modes, while negative values cor-

respond to backward-traveling modes. That the eigenvalue equation depends only upon

32 seems to indicate that the electromagnetic mode profiles are identical for forward- and

backward-traveling modes. However, the eigenmode equations derived earlier only gov-

ern two components of the transverse electromagnetic field. The remaining four field com-

ponents can be derived from these two transverse components, but the resulting expres-
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sions depend upon the sign of 0. The relationship between the nth forward-traveling mode

and corresponding backward-traveling mode can be expressed as:

e-nt = ent -hnt (2.87)

e-nz = -enz h-nz = z . (2.88)

We conventionally use negative subscripts to indicate backward-traveling modes and pos-

itive subscripts to indicate forward-traveling modes. It is easy to verify that although the

transverse electric field components are identical for the forward and backward modes,

the two modes are orthogonal,

JJ(e* x h + e x h*) . dx dy = 0 . (2.89)

2.3.1 Bragg Grating Basics

Figure 2.19 depicts the type of structure which we seek to analyze. For most of the exam-

ples presented in this chapter, we will consider rectangular grooves etched into the surface

of an optical waveguide 4, although the analytical techniques can be applied to any peri-

odic modulation.

The Bragg grating may be thought of as a one-dimensional diffraction grating which

diffracts light from the forward-traveling mode into the backward-traveling mode. The

condition for diffraction into the reverse traveling mode is called the Bragg condition. In

order for light to be efficiently diffracted in the opposite direction, the reflections from

subsequent periods of the grating must interfere constructively. This means that the Bragg

period A must be related to the free space wavelength AO by:

A0A = ,O (2.90)
2neff

where neff is the effective index of refraction of the structure, which depends upon the

materials comprising the waveguide. Generally speaking, for fiber-optic networks the de-

sired operating wavelength is approximately 1550 nm. Table 2.1 lists the appropriate Bragg

grating periods for a few common waveguide materials.

Eq. 2.90 assumes that the phase accumulation between reflections from adjacent grat-

4Most lithographic techniques produce gratings with such a rectangular profile, because of the directional
etching processes used.
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Figure 2.19: A diagram illustrating the type of Bragg grating considered in this
work. A grating, with spatial period A is formed by physically corrugating one
surface of the waveguide. The Bragg grating acts as a one-dimensional diffrac-
tion grating which reflects light from forward-traveling mode into the backward-
traveling mode. (figs/2/rectangular-grating.eps

Material Si InP/InGaAsP SiO2 I

Table 2.1: Bragg periods A for some common waveguide materials, assuming a
free-space operating wavelength of 1550 nm.

n (refractive index) 3.5 3.17 1.46
Bragg grating period A 220 nm 245 nm 535 nm
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ing teeth is precisely one wavelength. This is the condition for a first-order Bragg grating.

It is also possible to utilize higher-order diffraction to couple to the forward and backward

modes. The more general condition for constructive interference is that the phase accu-

mulation between subsequent reflections must be an integral number of wavelengths. The

Bragg condition for an mth-order Bragg grating is:

A = .mA (2.91)
2neff

In this work, we consider only first-order (m = 1) Bragg gratings, because the diffraction

efficiency (and hence the contradirectional coupling strength) is generally strongest for the

first diffracted order. Nevertheless, some people build higher-order Bragg gratings simply

because the required grating pitch is substantially larger, which simplifies the fabrication

process.

2.3.2 Contradirectional Coupled Mode Theory

We now turn to the practical question of how to theoretically model a Bragg grating. The

most common way of analyzing Bragg gratings is to use a coupled mode formulation [57,
8, 36, 58]. In this approach, the grating is modeled as a small perturbation which produces

a coupling between the forward and backward modes of an unperturbed waveguide. It

is important to realize, however, that Bragg grating structures do not have characteristic

eigenmodes in the same way that a waveguide does. A better description of the physics

of Bragg gratings is to describe the electromagnetic fields as Bloch waves or Floquet modes,

a technique similar to that used to describe electron propagation in a crystal lattice. A
few authors have used this approach to describe wave propagation in a Bragg grating

[59, 60, 61]. The analysis of B. E. Little et al. clarifies the relationship between the Floquet

analysis and the more simple coupled mode analysis [60]. There are others who have

analyzed Bragg gratings using a rigorous full-wave numerical analysis.

Often the periodic modulation in the waveguide can be accurately treated as a small

perturbation of an otherwise z-invariant structure. Figure 2.20 illustrates how a corrugated

waveguide can be separated into a z-invariant structure with well-defined modes plus a

periodic perturbation. The goal of coupled mode theory is to express the electromagnetic

fields of the complete structure as a superposition of the fields of the unperturbed wave-

guide.

To begin, we shall denote the refractive index profile for the complete structure by

n 2 (x, y, z), and the refractive index profile of the unperturbed waveguide by n2(x, y).
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Figure 2.20: The Bragg grating corrugation may be modeled as a perturbation of an
otherwise z-invariant waveguide, as shown in this diagram. n2 (x, y, z) represents
the full refractive index profile of the structure, n2 (x, y) represents the unperturbed
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2.3. BRAGG GRATINGS 63

n2(x, y, z) and n2(x, y) are related by

n2(X, Y, z) = n2(x, y) + & (x, y, z) , (2.92)

where the quantity &(x, y, z) is a periodic function of z which represents the corrugation.

This function is nonzero only within the grating cross-section.

Likewise, we denote the electromagnetic fields of the complete structure by E(x, y, z)

and H(x, y, z), and the electromagnetic fields of the unperturbed waveguide by Eo (x, y, z)

and HO(x, y, z):

n2(x, y, z) - Eo (x,y,z),H(x,y,z) (2.93)

n2(x, y, z) - E(x,y,z),H(x,y,z) . (2.94)

The fields E, H Eo, and Ho, satisfy Maxwells equations in their respective index profiles,

i.e.,

V x E = -jkqoH V x Eo = -jkqoHo (2.95)

V x H = jk-n2_E V x _Ho = jk. (2.96)
970 77o

Now consider the vector quantity S, defined as

S -- E x H + E x H . (2.97)

Computing the divergence of S, using Eqs. 2.95-2.96 gives

V - S =jk & E - _E (2.98)
770 0

If we integrate Eq. 2.98 over a volume V, and apply the divergence theorem to the left-hand

side, we obtain,

S -dA = - j &E*-EdV . (2.99)

aVV

This relationship is known as the Lorentz reciprocity theorem. The integral on the left-hand

side is a surface integral, where dA points in the outward direction. If we take the volume

V to be an infinitesimally thin slab of width dz which spans the entire x-y plane, Eq. 2.99
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becomes:

JJS-2dA =II E0-_EdA , (2.100)

where now both integrals are taken over the x-y plane. To simplify the subsequent analy-

sis, we shall use brackets to indicate integration over the x-y plane:

(f(x,y)) ff(y)dxdy . (2.101)

At this point, no approximations have been made. The Lorentz reciprocity theorem de-

scribed in Eq. 2.100 forms the basis for coupled-mode theory, as we shall describe below.

Now, we attempt to express the electromagnetic fields of the complete structure as a

linear superposition of the modes of the unperturbed waveguide.

E(x, y, z) = A+(z)e+(x, y) + A (z)e_ (x, y) (2.102)

H(x, y, z) = A+ (z)h+ (x, y) + A- (z)h_ (x, y) (2.103)

The electromagnetic fields e± (x, y) and h± (x, y) represent the modes of the unperturbed

waveguide at the optical frequency of interest. The goal of coupled mode theory is to

replace Maxwells equations for E and H by a set of coupled ordinary linear differential

equations which describe the evolution of the scalar coefficients A± (z). The Lorentz reci-

procity relation of Eq. 2.100 provides the necessary link between the electromagnetic fields

and the expansion coefficients.

First, let us take E0 (x, y, z) and Ho (x, y, z) in Eq. 2.100 to be the forward-traveling mode

of the unperturbed waveguide, i.e.,

E0(x, y, z) = e+(x, y)eijoz, Ho(x, y, z) = h+(x, y)e-j 3oz . (2.104)

Substituting these fields into Eqs. 2.100, along with the mode expansion of Eqs. 2.102-2.103,

leads to the following differential equation for A+ (z):

d F k 1jk
dz A+(z =-j L)3o + (SE e+ - e+) A+(z) - jk (6E e+ - e) A_(z) , (2.105)

where P denotes the time-averaged power carried by the forward-traveling mode,

1
P ((e+ x h* + e* x h+) 2) (2.106)
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A similar equation may be derived for A - (z) by taking E (x, y, z) and _Ho(x, y, z) to be the

reverse-traveling mode. We omit the details and merely present the result:

dA_(z) = +j 00 + (6c e* - e_) A (z) + (6Ee* e+)A+(z) . (2.107)
dz 4Pqo Ie4PLAO

Eq. 2.105 and Eq. 2.107 constitute a pair of coupled linear differential equations which

relate the forward- and backward- mode amplitudes. The terms inside angle brackets are

simple overlap integrals of the mode with the grating perturbation 6E. Note, however, that

even though these integrals are taken over the x-y plane, the integrand is proportional to

6E, which is a periodic function of z.

The coupled-mode equations can be simplified by expanding &e(x, y, z) as a Fourier

series in z. The Fourier series expansion for c is:

66(x, y, z) = .m(x, y)e-J2 mz/A . (2.108)
m

Each Fourier coefficient in Eq. 2.108 is a function of x and y only. Eq. 2.108 can be inverted

to obtain an expression for the Fourier coefficients in terms of &(x, y, z):

1 zo+A
6Em(X, Y) = j 6e(x, y, z)ej2 myrz/A dz . (2.109)

Azo

Provided the periodic perturbation is real-valued, the Fourier coefficients are related by

6E-_n = 6e* .

Substituting the expansion of Eq. 2.108 into the coupled mode equations yields:

dA+(z) -j [3o + 4 (eo e* - e+) A+(z)

dzjkI Pq -27z - (2.110)
k ( e-'-)e 2 z/AA_(z) +...

+A_(z) =+j ±3 + (co e* - e_) A_ (z)
dz j I 4?70 j27r/A 1(2.111)

+ 4k (6E-1 e*- e+)e i 2 cz/AA+(z) + ...

In the above equation, we have only retained those terms which are phase-matched. Specif-

ically, we have omitted terms from the Fourier expansion which have a spatial periodicity

much different from the accompanying terms in the equations. For example, when the

function A (z) is multiplied by the m = 1 Fourier coefficient, 66i, the resulting product
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has roughly the same periodicity as A+ (z). Likewise, when the function A+ (z) is multi-

plied by the m = -1 Fourier coefficient the resulting function has the same spatial peri-

odicity as A- (z). The omitted Fourier expansion terms do not meet the phase-matching

condition, meaning they oscillate with spatial frequencies which are much different from

e~jz/A. When the coupled-mode equations are solved by integrating over z, these rapidly-

oscillating terms quickly average to zero, whereas the retained terms do not.

As shown in Eq. 2.110, for a first-order Bragg grating only the m = 0 and m = ±1

Fourier coefficients enter into the coupled-mode equations. The m = 0 term induces a

change in the propagation constant, i.e. it modifies the diagonal elements of the coupling

matrix, while the m = ±1 terms couple the forward and backward modes. We may cast

the coupled mode equations into a simpler form by defining two parameters 3 and r,, each

involving overlap integrals between the unperturbed waveguide modes and the grating

perturbation:

k
3 i ± + (6Eo e* . e±) (2.112)0 0+4PTIO

r = - jk(E e* - e-) . (2.113)
4Pyqo

With these definitions, the coupled mode equations can be summarized in matrix form:

A+(z) 1 -j/3 ner-j2 z/A ~ A+(z)d A+(z) j, e 7r A ( . (2.114)
dz A_(z) J *e+j2wz/A jo I [ A(z) I (

The magnitude of the complex coupling constant K describes the rate at which power trans-

fers between the forward and backward modes. r, is often described as the "reflectivity

per unit length" of the grating. The phase of r, is directly related to the phase of 6E 1. For

a grating which is symmetric about z = 0, all of the Fourier coefficients will be real, and

therefore , will be purely imaginary. Even for gratings which do not have this symmetry,

the coupled mode equations are of the form given in Eq. 2.114, provided the refractive

index perturbation is real. 5

By choosing the unperturbed waveguide appropriately, the m = 0 Fourier coefficient

can be eliminated. This is accomplished by choosing n2 (x, y) to be the z-averaged value of

51f the grating includes a modulation in the optical gain or loss, the perturbation can no longer be modeled
by a real-valued function, and the coupled mode equations will be different from those given in Eq. 2.114.
[62,63, 64]
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n2 (X, y, z):

no(x, y) = n2(X, Y, z)d . (2.115)

It is easy to verify that with this choice, 66o (x, y) = 0, and there is no change in the propa-

gation constant as a result of the perturbation.

If we consider the limit as , -- 0, the equations decouple and the solutions for A ± (z)

are of the form e-Fj)z, as expected. Often, it is more convenient to factor out these rapid

oscillations from A± (z) to obtain coupled-mode equations for the slowly-varying envelope

functions. The rapid oscillations are removed by making the following change of variables:

A±(z) = a±(z)eFjz/A (2.116)

With this substitution, the coupled mode equations simplify to

d a(z) -j6 1 a+(z)1
dz a (z) * j6 I a (z) (2.117)

where 5 is a measure of the deviation from the Bragg condition, given by

6 = 1 - I- (2.118)

2.3.3 Spectral Response of Bragg Grating

Bragg gratings are useful because of their frequency-dependent nature. We will now ex-

amine this frequency dependence by solving the coupled mode equations which were de-

veloped in the previous section.

In the analysis presented earlier, we tacitly assumed that all field quantities were os-

cillating at the same optical frequency w = kc. The quantity Oo and the associated fields

ei, and h± were understood to be the propagation constant and electromagnetic modes

for the unperturbed waveguide at the optical frequency w. We now asked the question, what

happens when the optical frequency changes?

Strictly speaking, the eigenfunctions and propagation constants must be recomputed

using the new value for k. Then, the overlap integrals in Eqs. 2.112 - 2.113 must be re-

computed using the new modes. In order to numerically compute the spectral response

for a Bragg grating, this process must be repeated for each optical frequency to be consid-
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ered. While this is possible for simple one-dimensional problems, it becomes impractical

for more realistic waveguides. Fortunately, in most cases the mode profiles do not change

substantially over the bandwidth of interest. Thus, it is usually sufficient to neglect the

small change in the electromagnetic modes and simply treat the change in frequency as a

change in the propagation constant /. If we Taylor-expand the propagation constant 3(w)

to first order about a central frequency w, we obtain 6.

/0(w) = /o(wc) + d/3 ( - WC)dw (2.119)

= /o(PC) + -(P - we)V9

where v 9 is the group-velocity of the unperturbed waveguide. Using this relationship,

the quantity 6 may be expanded to first-order in terms of the deviation from the central

frequency w,:

7r 1
6(w) =/3(wc) - -+ -(w - w) . (2.120)

A v9

In the above equation, we have assumed that the unperturbed waveguide geometry has

been selected as described in Eq. 2.115 so that there is no first-order change in the prop-

agation constant. Usually, the center frequency w, is chosen to coincide with the Bragg

frequency, i.e. /(wc) = ir/A, which leads to

1
6(w) = I( - wc) . (2.121)

V
9

The expression for the coupling coefficient K also depends upon w, both through the

electromagnetic fields which appear in the overlap integrals and through a proportionality

constant which depends on k(= w/c). However, these variations are small and can usually

be neglected over the bandwidth of interest. Therefore, we shall take r, to be a frequency-

independent parameter which is calculated at the center frequency w.

Thus, we can calculate the spectral response of the Bragg grating by solving the coupled

mode equations, treating 6 as a variable which measures the deviation from the Bragg

condition as described in Eq. 2.121.

The pair of coupled mode equations in Eq. 2.117 comprise a 2 x 2 system of linear

6Notice that to avoid confusion, we had used the subscript c to refer to the central frequency (the optical
frequency at which the electromagnetic modes were computed.) In contrast, the subscript 0 refers to the
unperturbed waveguide geometry.
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homogeneous differential equations. The standard technique used to solve such a system

of differential equations is eigenvector decomposition [65]. Applying this technique, the

solution to the coupled mode equations is:

[a+0(z) eyz 0 1 a+(0)
a -(z) 0 eY2 a_(0) I ,0 (2.122)

where vi and v2 are the eigenvectors of the coupling matrix and 71i and 7y2 are the corre-

sponding eigenvalues. The eigenvalues and associated eigenvectors are given by:

-Y1 = + ,Vi ,

72 = -, V2 =,

~yi=-Vj,

(2.123)

(2.124)

where the quantity 7 is defined as:

, = /_2 _52 .

Substituting the eigenvalues and eigenvectors from Eq. 2.123

analytical solution to the coupled mode equations:

into Eq. 2.122, we obtain an

cosh(z) - j A sinh(yz)

ly sinh(-yz)I ! sinh(-yz)y
cosh(-yz) + j6j sinh(-yz)

The above equation gives the solution to the coupled mode equations in transfer matrix

form. If the forward and backward mode amplitudes are known at z = 0, they can be

calculated at any other location z by simply multiplying by the transfer matrix given an

Eq. 2.126.

Often, the boundary conditions on a+ and a_ at z = 0 are not simultaneously known.

Consider, for example, a grating which begins at z = 0 and extends to a length L. Now

imagine injecting light into the left-hand side of the grating. We wish to calculate the re-

flection and transmission of the grating. We further assume that no light enters the grating

from the right hand side. Substituting these boundary conditions into the transfer-matrix

equation gives:

SI cosh(L) - jA sinh(-yL)
0 sinh(- L)

sinh(yL) 1

cosh(-yL) + j sinh(yL) r

a+ (z)

a-(z)

(2.125)

a+(0)

a_ (0) I (2.126)

(2.127)
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where r and t represent the reflection and transmission coefficients of the Bragg grating.

The second equation in Eq. 2.127 can be directly solved for r, giving:

- tanh(yL)

" 6 = (2.128)
1 +j-tanh(yL)

where -y is a function of 6 as described in Eq. 2.125. Similarly, the amplitude transmission

function t can be shown to be7 :

t(6) sech(yL) (2.129)
1 + j- tanh(yL)

The peak reflectivity of a uniform Bragg grating occurs when 6 = 0,

Rmax = jr(6 = 0)12 = tanh2 (L) . (2.130)

Figure 2.21 plots the calculated reflection spectral response for five different Bragg grat-

ings with increasing lengths. From this figure, we can identify two different operating

regimes. When the product iL is small compared to 1, the spectral response of the Bragg

gratings can be accurately approximated as the Fourier transform of the grating shape.

Since the grating begins and ends abruptly and extends for a length L, the spectral re-

sponse has a characteristic "sinc" shape whose bandwidth is inversely proportional to the

grating length L. In this limit, the spectral response can be shown to approach:

r(6) = sin(6L) . (2.131)

We refer to gratings with rL < 1 as weak Bragg gratings, because in general they only

reflect a fraction of the incident light. The peak reflectivity in this regime depends upon

the value of r, but the overall spectral shape and bandwidth is determined only by the

grating length.

A weak Bragg grating does not make a suitable add/drop filter, because it only par-

tially reflects the input signal. However, there are cases where the "sinc"-shaped spectral

response of a weak grating is desirable. In many binary communications systems, the en-

coded signal has precisely at the same "sinc"-shaped spectral response. Thus, the weak

71f the transmission function is defined in terms of A± instead of the slowly-varying envelope functions
a±, there is an additional phase term in the expression for t(6)
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Bragg grating provides a convenient implementation of an all-optical matchedfilter, which

should provide the optimal signal-to-noise ratio for detecting the signal in the presence of

white background noise [66, 67, 68].

For gratings where the product nL exceeds 1, the spectral response has a plateau-like

shape, as shown in the lower portion of Fig. 2.21. In this regime, the grating has a very

high reflectivity within a band of frequencies called the stopband. The spectral width of the

stopband is proportional to the grating strength K:

Af = , (2.132)
7rng

where Af is the bandwidth and c/ng is the group velocity. Outside of the stopband, the

spectral response shows a series of ripples or sidelobes. The sidelobes quickly decay as

we move away from the Bragg condition until the structure is effectively transparent 8.

If the grating is made longer without changing the value of i', the bandwidth remains

unchanged, but the peak reflectivity rises closer to 1, the spectrum becomes more square,

and the sidelobes get closer together.

2.3.4 Calculation of Grating Strength

In the previous section, we solved the coupled mode equations to obtain the spectral re-

sponse for a Bragg grating. The grating strength r, defines the so-called stopband of the

Bragg grating, which (for strong gratings) is directly related to the bandwidth of the spec-

tral response. We now turn to a more detailed discussion of how this grating strength is

calculated for typical waveguide structures.

As described earlier, we choose the unperturbed waveguide structure such that there

is no 0 th Fourier coefficient in the grating perturbation. For a grating comprised of rect-

angular teeth with a fixed duty cycle, this means that when constructing the unperturbed

waveguide, the grating should be modeled as a homogeneous slab whose index lies some-

where in between the core and cladding indices. We define the duty cycle D to be the

fraction of the grating period which is occupied by a tooth of core material. This geometry

is illustrated in Fig. 2.20. With this definition, the refractive index profile of the unper-

81n fact, it can be shown that for points well outside of the stopband, the reflectivity of the grating can again
be approximated by Eq. 2.131.
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turbed waveguide is:

Dn 2ore + (1 - D)n2ad in the grating region
n 2(X, Y) = .la (2.133)

n2(x, Y) elsewhere

With this choice, it can easily be verified that oE (x, y) = 0, as desired. The remaining

Fourier coefficients can be computed using Eq. 2.109,

6E& (X, Y) (core - clad) in the grating region (2.134)
0 elsewhere

Note that we have arbitrarily chosen the position of the z = 0 origin to coincide with the

center of a grating tooth, and consequently all of the Fourier coefficients are real. For first-

order Bragg gratings, we are only interested in the first Fourier coefficients. Substituting

the m = 1 coefficients from Eq. 2.134 into Eq. 2.113, we obtain following equation for the

coupling constant r,:

r = _ (nore - n2 ad) sin(irD) e* e- dx dy . (2.135)47rP?7o oe cli
(grating)

In the above equation, we have omitted the arbitrary phase of r, recognizing that the phase

is determined by the relative position of the z = 0 origin.

The integrand in Eq. 2.135 can be expanded using the relationships between the for-

ward and backward traveling modes given in Eq. 2.87:

e - = let12 
- lez12 (2.136)

The finite difference techniques described in Section 2.1.4 allow one to calculate the trans-

verse electric fields et. The longitudinal field component ez and magnetic field h may be

computed from the two transverse components, using Maxwells equations. In most cases

of interest, the longitudinal field component is much smaller than the transverse compo-

nents, and the equation for , can be simplified by neglecting the ez terms. In many cases

it is also possible to neglect one of the transverse electric field components and simply

use a semivectorial technique to calculate the principal field component. In the context of

the semi-vectorial method, the overlap integrals can be re-expressed in terms of one scalar

field quantity representing the principal transverse electric field component (either e., or
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Je+ . e- dx dy ~ J#(x, y)j 2 dxdy (2.137)
(grating) (grating)

4Pro ~ 2Jf1(xy)I2 dx dy , (2.138)

where we have used the symbol q(x, y) to represent ex for TE modes and ey for TM modes.

With this simplification, the expression for the grating strength K becomes:

r.=k2(n2r-n2
= (2 ~ clad) sin (7rD)F . (2.139)

The quantity F in Eq. 2.139 is a dimensionless number less than 1 which describes the

extent to which the electromagnetic mode overlaps with the grating region.

J 0(x, y)12 dx dy

£ (grating) (2.140)

JJI(x, y)2 dx dy

Figure 2.22 plots the calculated coupling constant r as a function of duty cycle D, for

various grating depths, for the doped glass channel waveguide.

In Fig. 2.23, we plot the coupling constant as a function of duty cycle for various grating

depths for the silicon-on-insulator ridge waveguide. One interesting effect which is seen

in this plot is that the strongest grating strength occurs when the duty cycle is larger than

50%. Even though the first Fourier coefficient is maximized by choosing D = 0.5, the

mode overlap integral increases substantially with duty cycle, leading to the skewed plots

presented in Fig. 2.23. Notice that there is also a significant polarization dependence in

the data presented in Fig. 2.23 - the calculated grating strength for TM-polarized light is

substantially smaller than for TE-polarized light for the same grating edge depth and duty

cycle.

Fiber Bragg Gratings

It is instructive to evaluate the strength of a Bragg grating in a waveguide in comparison

to that of a fiber Bragg grating. In a fiber Bragg grating, the periodic modulation is cre-

ated by illuminating a photosensitive fiber with a periodic UV standing-wave. Typically,
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c vs D for TE and TM modes
(Doped-Glass Waveguide)

gh =500 nm
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Duty Cycle (D)

Figure 2.22: Calculated grating strength K vs. duty cycle D for a doped-glass chan-
nel waveguide. The results are indistinguishable for TE and TM polarizations. The
grating strength is calculated for five different grating etch depths ranging from
100 to 500 nm. (figs/2/kappa-glass.eps)
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Figure 2.23: Calculated grating strength r vs. duty cycle D for an SOI ridge wave-
guide. The upper plot applies for the TE polarization, while the lower plot corre-
sponds to TM polarization. In each case, the grating strength is calculated for five
different grating edges ranging from 50 to 250 nrm. (figs/2/kappa-soi.eps)
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the fiber core is photorefractive, meaning that its index of refraction can be permanently

changed by exposing the fiber to UV radiation. In contrast to the integrated Bragg grat-

ings discussed so far, a fiber Bragg grating has no physical corrugation - there is simply

a small modulation in the refractive index of the core. The amount by which the index of

refraction can be changed via UV illumination depends upon the composition of the core

and the wavelength of exposure. Many techniques have been developed for enhancing

the photosensitivity of fibers[69], but generally the maximum attainable refractive index

change in an untreated fiber seldom exceeds 1 x 10-3 [70].

The coupled mode analysis described earlier can also be applied to fiber Bragg gratings.

The periodic perturbation 6E(x, y, z) for a fiber Bragg grating with a peak-to-peak refractive

index modulation of An is:

(X, y, z) = non cos(27rz/A), inside core (2.141)
0, outside core

where we have assumed that An/n is small. For the fiber Bragg grating, the periodic

perturbation is a pure sinusoid 9 which means that the Fourier decomposition of 6(x, y, z)

only has two nonzero coefficients:

nAn
inside core

& = 2 '.(2.142)
0, outside core

We can now apply the same procedure described earlier for corrugated Bragg gratings,

using Eq. 2.142 for the first Fourier coefficient of the grating. The resulting expression for

K is:

r = nAnF, (2.143)
4/3

where F is, as before, a dimensionless number less than 1, but it now describes the fraction

of the modal power which resides in the waveguide core. (In comparison with the cor-

rugated Bragg grating, the fiber Bragg can achieve a larger value for IF because the index

modulation covers the entire core region.)

For the sake of comparison, we shall evaluate Eq. 2.143 using some values which are

9The sinusoidal index approximation assumes that the UV-induced refractive index change is proportional
to the intensity pattern formed by a superposition of two plane waves of equal amplitude. This is only a con-
venient approximation of what really occurs when a fiber Bragg grating is fabricated. Reference [71] describes
a technique for measuring the actual refractive index modulation in a fiber Bragg grating.
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typical for the strong fiber Bragg gratings. Specifically, we assume that the peak-to-peak

index modulation amplitude is An = 1 x 10-3, the free-space wavelength is taken to be 1550

nm, and the overlap factor F is taken to be 90%. With these numbers, the equivalent grating

strength is approximately K = 18 cm- 1. If we assume that the group index is approximately

1.46 (typical for fiber), this corresponds to a stopband spectral width of approximately 120

GHz.

2.3.5 Apodized and Chirped Bragg Gratings

So far, we have assumed that the Bragg grating is a perfectly periodic structure which

has a sharply-defined beginning and endpoint. Often, either by design or because of the

fabrication techniques used, the Bragg grating will deviate somewhat from this perfect pe-

riodic structure. If the pitch of the Bragg grating changes slowly along the length of the

grating, we say that there is a chirp. More generally, even when the grating is perfectly

periodic, if the waveguide itself has some slow variation in its propagation constant across

the length of the device, the structure will exhibit chirp-like properties. When the ampli-

tude of the grating constant n changes with position, we say that the grating is apodized.

In both of these cases, the coupled mode equations must be modified to account for the

nonuniformity in the periodic structure. We now describe how to generalize the coupled

mode equations to treat apodized and chirped gratings.

First, we recall the coupled mode equations for A± (z) derived earlier for uniform grat-

ings. The relevant equations are repeated here for reference:

d A+(z) -j13 Ke-jkg A+(z) (2.144)
dz A- (z) * e+jkgz jo A-_(z)

where kg is the grating spatial frequency, defined by:

27r
kg - , (2.145)

Now imagine that the grating slowly changes with z. Strictly speaking, the Fourier analy-

sis of the grating perturbation no longer applies when the grating is aperiodic. Neverthe-

less, provided the grating changes slowly with z, the coupled-mode analysis can still be

applied locally.

The effect of grating apodization can be included by simply letting K in Eq. 2.144 be a

slowly varying function of z. The way to account for grating chirp is to replace the product
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kg z by a more general integral f kg (z) dz. 10 Thus, the generalized coupled mode equations

for nonuniform gratings are:

d A+(z) [ -j(z) ,zo(z)e-j(z) ~ A+(z) 1
dz A_(z) [ o(z)*e+jO(z) j3(z) A-(z)

where O(z) -j kg(z') dz' . (2.147)

Note: in the above equation, we have also allowed the propagation constant 3 to vary

with z, to account for any slow change in the structure or composition of the waveguide

itself, which is indistintuishable from grating chirp. We shall assume that the function r'o

is a real-valued function which describes the magnitude of the grating perturbation. The

grating phase O(z) includes all of the information about the chirp and phase of the Bragg

grating. For a uniform Bragg grating, this term is a linear function of z, but for nonuniform

gratings it not a strictly linear function. The first derivative of O(z) is the local k-vector of

the grating.

As before, we often wish to rewrite Eq. 2.146 in terms of the slowly-varying amplitude

functions a± (z). But now, since there is no well-defined grating periodicity to factor out of

the equations, we simply choose an arbitrary reference point, 13 ,

A±(z) = a±(z)egjez , (2.148)

Substituting the above equation into the coupled mode equations leads to the following

set of differential equations for the slowly-varying amplitude functions:

d a+(z) -j6(z) ](z) a+ (z) (2.149)

dz a_- (z) K(z)* j6(z) a_ (z)

where the functions i,(z) and 6(z) are defined as:

6(z) = O(Z) - Or (2.150)

,(z) = ro(z) exp [j(2,3,z - #(z))] . (2.151)

Eq. 2.149 is identical to Eq. 2.117, with the exception that the matrix elements are slowly-

varying functions of z. The effect of grating chirp it is to introduce a slow variation in

the phase of i'(z). And the effect of apodization is to introduce a slow variation in the

100ne might be tempted to account for grating chirp by simply replacing kg in Eq. 2.144 by a slowly-varying
function of z, but this leads to an inconsistent interpretation of kg as the local spatial frequency of the grating.
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magnitude of 1i(z).

Because the coefficients of the coupling matrix are no longer constants, the coupled

mode equations for nonuniform gratings can no longer be solved in closed form. The

differential equation can be solved numerically by simple integration. Again, we are faced

with the problem that the boundary conditions are not completely specified at either end

of the structure. For light incident from the left-hand side of the grating, the easiest way to

compute the reflection and transmission coefficients is integrate backwards from right to

left. At the right hand side of the grating, we assume that there is no light impinging from

the right, and we arbitrarily choose the output amplitude to be 1. Therefore, the boundary

conditions at the end of the grating are:

a(L) [ L) . (2.152)
a- (L) 0

With this as our starting point, we integrate the differential equation from z = L back to

z = 0,

a(0) = a(L) + j M(z) a(z) dz , (2.153)

where M(z) is the 2 x 2 coupling matrix in Eq. 2.149. The reflection and transmission

coefficients are then given by:

a_(0) 1
a (0) t =. (2.154)
a+(0)' a+_ (0)

In Section 2.4, we describe how the numerically computed reflection and transmission

coefficients can be used to construct the full 2 x 2 transfer matrix for the nonuniform

grating.

If only the reflection coefficient is sought, the problem may be simplified by deriving a

new differential equation for the local amplitude ratio r(z), defined as

r(z) =a(z) (2.155)
a+ (z)

Computing the derivative of Eq. 2.155 with respect to z and using the coupled mode equa-
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tions, we obtain the so-called Ricatti differential equation:

d 1 da_ a2da+

dz a+ dz a+ dz (2.156)
= ,*(z) + 2j6(z)r(z) - i,(z)r 2 (z)

As before, this equation can be numerically integrated from right to left to obtain the re-

flection coefficient of the Bragg grating.

A simpler approach to the analysis of nonuniform gratings is to simply divide the grat-

ing into short segments, over which 6, K, and A are approximately constant. The transfer

matrix for the entire structure can then be obtained by simply multiplying the transfer ma-

trices for each short segment. Essentially, this technique amounts to performing a prim-

itive numerical integration of the differential equations. Transfer matrix methods will be

further discussed in the following section.

Example 1: Apodized Bragg Grating

As an example of how these techniques can be applied, we demonstrate how the spectrum

of an apodized grating is computed. As illustrated in Fig. 2.21, the reflection spectrum

from a Bragg grating typically has a series of sidelobes on either side of the stopband.

Were we to use such a grating to filter one wavelength channel from a multi-wavelength

system, the sidelobes could lead to crosstalk if they overlap with the adjacent wavelength

channels. The sidelobes can be substantially reduced by apodizing the grating [72, 73]. As

a simple example, we consider a Bragg grating where the grating strength r, has a raised-

cosine profile:

K(z) = K cos2(7r) , (2.157)

where the grating extends from -L/2 to +L/2. Figure 2.24 plots the computed spectral

response for such an apodized Bragg grating. In computing this spectrum, the indices of

refraction were taken to be 1.46, the peak value of , was chosen to be 2 cm-1, and the to-

tal length of the structure is 5 cm. For comparison, we also plot the reflection spectrum

from an equivalent uniform Bragg grating with the same length and peak reflectivity. No-

tice that the apodized structure exhibits greatly reduced sidelobes levels, and a broader

bandwidth.
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Apodized Grating:
r, = ;cos2 (zL)
;= 2 cm 1,L = 5cm

Unapodized Grating:
1C=1cm', L=5cm

-15 -10 -5

unapodized

apodized

(Linear Plot)

0 5 10 15 20

(Semilog Plot)

('\ f
10 15 20

Figure 2.24: Calculated reflection spectrum from an apodized Bragg grating, with
a raised-cosine apodization profile, in comparison to a uniform Bragg grating with
the same peak reflectivity. The following parameters were used in calculating the
spectra presented here: neff = ng = 1.46, f (z) dz = 5, Ko = 2 cm-1 (peak r, for the
apodized structure), and Kunifor = 1 cm-1. (figs/2/apodized-spectrum.eps)
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Example 2: Linearly-Chirped Bragg Grating

In the previous example, we investigated the effect apodization. We now provide an ex-

ample which illustrates how to calculate the spectral response of a linearly chirped grating.

To begin, we assume that the grating period A is a linear function of z:

A(z) = Ao + Az , (2.158)

where A is a dimensionless constant (typically given in units of pm/cm) describing the

rate of chirp. The grating phase O(z) is computed by integrating the k-vector over z:

z

7(z) J dz' (2.159)OW Ao + Az'
0

2r/ Az'
- ln1 + . (2.160)

A Ao]

Provided the term Az/Ao is small compared to one, we can accurately approximate Eq.
2.159 with a Taylor series:

OW = 2 7r 7rA (Az\ 3
Ao A + (Ao,/ (2.161)

The linear term in the above equation corresponds to the linear phase progression of a

uniform grating with period Ao. The quadratic term arises because of the grating chirp. If
we choose r = -r/A 0 in Eq. 2.150, the linear term drops out and we obtain the following

coupled mode parameters:

S -(2.162)
Ao

r,(z) =_ ro exp +j FA z . (2.163)

Notice that a linear chirp in the grating period gives rise to a quadratic term in the grating

phase O(z).

One application of chirped Bragg gratings is to compensate for signal dispersion (pulse

spreading) which occurs during transmission over a long distance of fiber [74, 75]. How-

ever, for the types of filters discussed in this work, grating chirp adversely affects the de-

vice performance. Figure 2.25 plots the calculated reflection and transmission functions for

a chirped Bragg grating with , = 1 cm- 1, L = 5 cm, and A = 10 pm/nm. Notice that the

chirp significantly broadens the spectral response, raises the sidelobe levels, and changes

83



CHAPTER 2. THEORY AND ANALYSIS

the peak rejection ratio from -37 dB to -15 dB.

2.4 Transfer Matrix Methods

The previous two sections describe how Maxwells equations can be simplified to a set of

coupled differential equations which govern the mode amplitudes. When solving coupled

mode equations, the solutions have always be expressed in the form of a transfer matrix.

That is, the mode amplitudes at some position z are written as a linear combination of the

mode amplitudes at z = 0 or some other reference location. Although it might seem coin-

cidental that the solutions can always be expressed in this form, it is a direct consequence

of the linearity of the differential equations.

Eq. 2.68 gives the transfer matrix for a codirectional coupler, and Eq. 2.126 the transfer

matrix for a Bragg grating. The transfer matrix for a more complex structure can easily

be computed by simply multiplying the transfer matrices for its constituent parts. Section

2.4.4 gives an example of how this is done.

2.4.1 Multi-Waveguide Systems

There is one important difference between the transfer matrix of a directional coupler and

the transfer matrix of a Bragg grating. In the case of a directional coupler, the transfer

matrix given in Eq. 2.68 only applies to the forward-propagating mode amplitudes of the

two waveguides. In contrast, the transfer matrix of a Bragg grating describes the forward

and backward mode amplitudes of a single waveguide.

We must recognize, however, that if the directional coupler is operated in the reverse

direction, it also provides coupling between the two backward-traveling modes. Because

there are two waveguides in a directional coupler, a simple 2 x 2 coupling matrix cannot

completely describe the system. A more complete transfer matrix solution for the direc-

tional coupler would be:

a,+(z) cos(#) -jsin(#) 0 0 a,+(0)

a2 +(z) -jsin(#) cos(0) 0 0 a2+(0) (2.164)
a1-(z) 0 0 cos(0) +j sin(#) a,- (0)

a2_ (z) 0 0 +j sin(#) cos(q) a2- (0)

#= pAz . (2.165)
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chirped

unchirped Grating Parameters
= 1 cm 1,L = 5 cm

n= 1.46 (ie, glass)
chirp= 10 pm/nm

-10 0
frequency(GHz)

10 20

Figure 2.25: Calculated spectral response from a chirped Bragg grating with the
following parameters: K = 1 cm- 1, L = 1 cm, and A = 10 pm/cm. (figsl2inear-chirp-

spectrum.eps)
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In the above equation, we have stacked all 4 mode amplitudes into a single vector. The

transfer matrix consists of block 2 x 2 matrices, and there is no interaction between the

forward-traveling modes and backward-traveling modes. 1

Generally, for a system consisting of N waveguides, the mode amplitudes will form a

vector of length 2N, and the transfer matrices will be 2N x 2N. Conventionally, the first

N elements of the amplitude vector are taken to be the forward-traveling mode ampli-

tudes, while the last N elements represent the corresponding backward-traveling mode

amplitudes. The general form of a transfer matrix is:

a+(z) Til T 1 2  a+(0) (2.166)
a_(z) T 2 1 T 2 2  a(0)

where a± are each length-N vectors, and T1I ... T 22 are N x N matrices.

2.4.2 Transfer Matrices and Scattering Matrices

When we solved for the spectral response of a Bragg grating in Section 2.3.2, we pointed

out that in most cases the forward and backward mode amplitudes are not simultaneously

known at z = 0. In treating this kind of problem, it is often more useful to express the

solution in terms of a scattering matrix. Whereas a transfer matrix describes the mode

amplitudes at z > 0 in terms of the mode amplitudes at z = 0, a scattering matrix relates

the light emerging from a structure to the light impinging on the structure. The general

form of a scattering matrix is given below:

a- (0) S11 S 1 2  a+ (0) (2.167)
a+(z) S21 S 2 2  a- (z)

where the quantities a± are, as before, length-N vectors, and the Sij are N x N matrices.

With a little algebraic manipulation, it is possible to relate the elements of the scattering

matrix to the elements of the corresponding transfer matrix:

S1 S 1 2  T2-1T 2 1  T2 1 (2.168)
S21 S22 (Tl - T 12T-lT 21 ) T 12T2 1

Similarly, it is possible to write the transfer matrix elements in terms of the scattering ma-

"is also possible to expand the transfer matrix approach to include both orthogonal polarization states and
higher-order modes (if they exist).
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trix elements:

T 11  T 12 (S 2 1 - S 2 2 S2 S ) (2 2 .161
T21  2 2  J . (2.169)T21 T22 -- 's S

Because the scattering matrix describes the outputs in terms of the inputs, one might

ask why transfer matrices are used at all. The benefit of the transfer matrix is that complex

structures can be analyzed by simply multiplying the transfer matrices of each segment.

Needless to say, scattering matrices cannot be cascaded in this manner.

Lossless Systems

For structures which do not have any optical gain or loss, there are additional constraints

placed on the transfer matrix and scattering matrix by the requirements of power conser-

vation and time reversal symmetry. Power conservation simply means that the net amount

of power flowing into the device must be 0. Time reversal symmetry means that for every

valid solution to Maxwell's equations, another solution may be obtained by replacing t by
-t, 0 by -- 3, E by E* and H by -H*[76]. This time-reversed solution is similar to playing

a movie of the system backwards. Clearly, systems with loss do not have the same time

reversal symmetry since the backwards-running solutions would exhibit gain.

Consider first the scattering matrix for a lossless linear system with inputs x and out-

puts y:

y =Sx . (2.170)

Power conservation means that the magnitude of the vector on the right hand side is the

same as the magnitude of the vector on the left-hand side. Thus, for lossless systems,

multiplication by a scattering matrix is a norm-preserving operation. Mathematically, the

requirement of power conservation can be stated as:

xfx = yty = xfStSx . (2.171)

This equation can only be satisfied if:

Sts=I (2.172)

where St is the complex-conjugate transpose of the scattering matrix. Matrices with this
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property are referred to as unitary matrices.

For lossless systems, time reversal symmetry provides a similar relationship between

the matrix elements. The time reversed solution to a problem is obtained from the forward-

running solution by making the following substitutions:

x + y* , y x* (2.173)

a+ (0) a* (0) a_ (0) a* (0) 1
a_ (z) a*+ (Z) a+ (z) a* (Z)

By taking the complex conjugate of Eq. 2.170, and substituting a the time-reversed solu-

tions of Eq. 2.173, we arrive at the following additional constraint on the scattering matrix:

S*S=I . (2.175)

Eq. 2.175, when combined with Eq. 2.172, can only be satisfied if the scattering matrix S is

symmetric:

Sz=ST . (2.176)

Similarly, by taking the complex conjugate of Eq. 2.166, and substituting the time-

reversed solutions of Eq. 2.174, we obtain the following relationships between the the ele-

ments of the transfer matrix:

T22 = T*1 , T 2 1 = T*2  . (2.177)

Therefore, only two elements of the transfer matrix are needed to completely describe

a lossless system. It is easy to verify that the transfer matrices given earlier for Bragg

gratings and directional couplers satisfy Eq. 2.177 12.

2.4.3 Useful Transfer Matrices

We now present a summary of useful transfer matrices for integrated optical devices.

12For directional couplers, Eq. 2.177 applies to the complete 4 x 4 transfer matrix of the system, i.e. that
given in Eq. 2.164. It does not apply to the simple 2 x 2 submatrix describing only forward-traveling modes.
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Uniform Waveguide (with Loss)

The transfer matrix for a lossless waveguide with propagation constant 3 is simply:

T = -jIz 0 (2.178)0 e+jozI

The above equation expresses what we learned earlier in Section 2.1, forward traveling

waves propagate with wavevector 3 and backward traveling waves propagate with wave-

vector -3. If the waveguide has loss or gain, the appropriate transfer matrix is:

T e-(c+j,3)z 0 ) 219
0 e+(a+j)z '(2.179)

where positive values of a correspond to loss and negative values correspond to gain.

Partial Reflector

When an integrated waveguide reaches the end of a chip, and the light emerges into free
space, there will be some reflection at the chip facet simply because of the refractive index

change. More generally, anytime there is an abrupt change in the waveguide, some reflec-
tion can occur. If the electromagnetic modes are reasonably well matched on both sides of

the discontinuity, the effect can often be modeled using the simple Fresnel reflection equa-

tions. The transfer matrix describing Fresnel reflection at a dielectric interface between two

materials with indices n1 and n 2 is:

T- 1 [ fl+n2 n2-l 1T = I .2fll ri (2.180)
2Vgnin2 In2 - ni ni + n2_

This transfer matrix relates the mode amplitudes immediately to the right of the interface

to those immediately to the left.

More generally, the transfer matrix for a partially reflecting surface (such as a beam-

splitter) can be always be cast in the following form:

T = V r2[I r 1 (2.181)

where r a real number representing the amplitude reflection coefficient.
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Directional Coupler

The complete transfer matrix for a symmetric directional coupler is given by:

0

M* 1~ (2.182)

where the submatrix M is a simple 2 x 2 matrix described by:

M - e-j z Cos #
-jsin4

(2.183)-j sin 0 z p(z') dz'.
Cos# 0

Note: to simplify the mathematics, the ejOz phase terms are often omitted, as was done

in Eq. 2.164. This simplification is valid as long as the two waveguides which make up

the coupler are mirror images of each other. If the two waveguides differ, the transfer

matrix must be modified to keep track of the phase difference between the two guides.

Also, if the coupler is placed within a Fabry-Perot cavity (for example, a cavity formed by

the polished facets of the chip), the spectral response of the complete structure cannot be

calculated without including this phase term.

Bragg Grating

The transfer matrix for a Bragg grating of length L and grating strength , is:

0 cosh(yL) - jl sinh(-yL)

e+jkgz K [ sinh(yL)

sinh(yL)

cosh(yL) + j sinh(yL)

where the quantities n, 6, and -y are defined in Section 2.3.2. Again,the phase

of Eq. 2.184 can often be omitted.

term in front

In Section 2.3.5, we also describe how to calculate the reflection and transmission from

a nonuniform Bragg grating, that is, a grating which has chirp and/or apodization. The

complete 2 x 2 transfer matrix for such a nonuniform grating can be expressed in terms of

the numerically calculated reflection and transmission coefficients r and t:

(2.185)

The above equation can be derived from the time-reversal symmetry properties of transfer

T [
0 I , (2.184)
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Identical Gratings
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Figure 2.26: A diagram of the Michelson interferometer, as an integrated optical
device (a) and as a free-space structure (b). The integrated device depicted in (a)
is functionally equivalent to the free-space device depicted in (b). The integrated
directional coupler takes the place of the beam splitter, and the integrated Bragg
gratings act as wavelength-selective mirrors. (figs/2/micheison-schematic.eps

matrices given in Eq. 2.177.

2.4.4 The Integrated Interferometer

The transfer matrix techniques described above provide all of the tools needed to analyze
almost arbitrary combinations of couplers and gratings. We now describe how to use these
techniques to analyze an integrated form of the Michelson interferometer.

Figure 2.26a depicts schematically the structure which we wish to consider. On the
left-hand side is a conventional directional coupler which is nominally designed to pro-
vide 50% power splitting between the upper and lower waveguides. On the right hand
side, there are two identical Bragg gratings formed in opposite arms of the interferometer.
Fig. 2.26b depicts the equivalent free-space Michelson interferometer. In the integrated
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aj+(0)-- | a,+(z)
4 a1_(z)

a2+(O)+ +- ayl(z)
a2_() -4- a 2_(z)

TC T 9

Figure 2.27: The transfer matrix method can be applied to the Michelson interfer-
ometer by simply multiplying the transfer matrices for each segment of the device.
We depict here the shape of the transfer matrices for the directional coupler and
for the identical Bragg gratings. (figs/2/michelson-matrices.eps)

device, the directional coupler serves the same purpose as the beam splitter, and the Bragg

gratings serve as wavelength-selective mirrors.

Figure 2.27 illustrates how the transfer matrix approach can be applied to the integrated

Michelson interferometer. Because there are two waveguides in the device, each of which

can support a forward and backward mode, four mode amplitudes are needed to describe

the system. As described earlier, the mode amplitudes are collected as a vector of four

quantities:

ai+(z)

a(z) a2(Z) (2.186)

a2-(z)

The 4 x 4 transfer matrix representing the directional coupler is given in Eq. 2.182, but

repeated here for reference:

T M 0, M = e-jLc [ 0 -j 1 . (2.187)
0 M* -jsin# cos#
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where L, is the total path length of either arm of the directional coupler. The 2 x 2 matrix

M is a symmetric, unitary matrix which has the following properties:

M* t=M = M 1  . (2.188)

The 4 x 4 transfer matrix representing the identical Bragg gratings can be expressed in

the following general form:

Ty = i -t (2.189)
9 Vt -t*rI t*I

where I is the 2 x 2 identity matrix and the quantities r and t represent respectively the

reflection and transmission coefficients of the Bragg gratings when light is incident from

the left-hand side. For a uniform grating, these quantities would be given by Eqs. 2.128 and

2.129. For a nonuniform grating, they can be numerically computed using the techniques

described in Section 2.3.5.

The complete transfer matrix for the integrated Michelson interferometer is found by

simply multiplying the 4 x 4 transfer matrices for each portion of the device, in the reverse

order:

T T9 Tc (2.190)

1 a -tr*I M 0 (2.191)
V~t -t*ri t*1 0 M*

I tM -tr*M* (2.192)
V~t -t*rM t*M*

Using Eq. 2.168, this transfer matrix can be converted into an equivalent scattering matrix.

The resulting scattering matrix for the structure depicted in Fig. 2.27 is:

rM 2  tM
S = t . (2.193)

Of particular interest is the case where no light is launched into the waveguides from

the right hand side. Using the scattering matrix given in Eq. 2.193, it is easy to solve for

the reflected and transmitted mode amplitudes. For example, the signal emerging from
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the left edge of the device is given by:

a- (0) = rM2 a+ (0) (2.194)

a_(0) 1 j2 L c cos 20 -j sin 20 ai+(0) (2.195)
a2 -(0) re -j sin2# cos20 a 2 +(0)

The factor r in the above equation is no more than the reflection spectral response of the

identical Bragg gratings. The 2 x 2 matrix (with the phase term) is equivalent to the trans-

fer matrix for a directional coupler with twice the effective length of the original coupler.

Signals which enter the device from the left pass once through the directional coupler and

are then reflected by the Bragg gratings. The reflected signals once again pass through the

coupler. Thus, the result of Eq. 2.194 could almost be predicted without using the transfer

matrix methods: the signal passes through the directional coupler twice (which accounts

for the factor of 2 in the matrix terms of Eq. 2.194), and the filtering action of the Bragg

grating is contained entirely in the first factor.

Usually, the directional coupler is designed so that after two passes the light is com-

pletely transferred from one waveguide to the other. (This is accomplished by selecting

# = 7r/4.) With this choice, if light enters the device in the upper waveguide, the reflected

signal will emerge from the lower waveguide. In this way, the Michelson interferometer

provides a way of spatially separating the incident input light from the reflected output

light.

Any light which is not reflected by the Bragg grating emerges in the two waveguides

on the right side of the device:

a+(z) = tMa+ (0), (2.196)

a,+(z) =tej 3 Lc cos -j sin0 a,+(0)

a2+(z) = [ -j sin 0 cos # a2+(0) (2.197)

Notice that in transmission, the light only passes through the coupler once, and therefore

the emerging light is typically divided between the two waveguides.

Mach-Zehnder Interferometer

The transmitted light can be recombined by adding an additional coupler to the structure,

as depicted in Fig. 2.28. The structure is the integrated form of a Mach-Zehnder interfer-

ometer. The analysis described above can be extended to obtain the transfer matrix for the
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a2 (a)+

a2_( I)

aa()+
as(I)_

* T 0

+ al.(z)
- a1-(z)

-+ a2,(z)

-o- a2 (z)

* 03
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Figure 2.28: Diagram of an integrated Mach-Zehnder interferometer. This device
is similar to the Michelson interferometer, but a second coupler has been added
on the right hand side to recombine the signals transmitted by the Bragg gratings.
(figs/2/mach-zehnder-matrices.eps)

Mach-Zehnder interferometer. The transfer matrix for the device is now the product of the

3 transfer matrices representing the right coupler, the gratings, and the left coupler:

1T M ItI

-t*rI

-tr*I

t*I
(2.198)

M

0

which simplifies to:

tM 2

-t*rI

-tr*I1

t* [ M*]2
(2.199)

As before, we can use Eq. 2.169 to compute the corresponding scattering matrix:

rM2
S tM2

tM2

_ r* M2 .
t*

(2.200)
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When there is no light entering the device from the right hand side, the signals reflected

out the left-hand side can be written as,

a_ (0) = rM2 a+(0), (2.201)

a, -(0) =re j 2 LF cos 2# -jsin 2 1 (2.202)
a2-(0) -jsin2# cos2 J

and signals transmitted to the right hand side are given by,

a+(L) = tM 2 a+(0), (2.203)

ai+(L) tej 2 Lc cos 2 -j sin2# 1 (2.204)

a 2 +(L) = -j sin 2 cos 20 (

If the directional couplers are designed appropriately (with # = r/4), the Mach-Zehnder

interferometer provides full power transfer from one waveguide to the other in both re-

flection and transmission.

Interferometer with Imbalanced Arms

The interferometer devices considered in this section are, like all interferometers, phase-

sensitive. That is, they require that the optical path lengths be equal in the upper and

lower arms of the device. If there is some difference in path length, the signals which are

reflected by the Bragg gratings will not properly recombine in the desired port. We will

now show how the effect of unequal path lengths can be easily calculated using transfer

matrices.

Figure 2.29 depicts the structure of an imbalanced Michelson interferometer. The struc-

ture is identical to that of Fig. 2.27, with the exception that the upper arm of the device has

been made longer by an amount AL. (Of course, a phase imbalance could also be achieved

by changing the refractive indices in one arm of the device.) The phase imbalance between

the upper and lower arms can be modeled with the following transfer matrix:

To = D o], D -- o 0 (2.205)
0 D* 0 1

where 0 represents the total phase difference between the two arms. If the phase imbalance

is achieved by making one arm longer than the other, as illustrated in Fig. 2.29, 0 is given
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AL

ai*(*)-|p a1.(z)
a*(0)+-+ a1_(z)

a2 ()-1 + a 2+(z)
a2_()+ +a2-(z)

-4.--- -- - 4 ----- a-- -(z)--

C To Tg

Figure 2.29: A diagram of a Michelson interferometer with mismatched arms. The
effect of differing arm lengths can be included in the model by inserting a third
transfer matrix which represents the phase difference between the upper and lower
arms. (figs/2/mismatched-michelson-matrices.eps)
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by:

0 = OAL . (2.206)

The transfer matrix for the imbalanced Michelson interferometer is found by multiply-

ing three transfer matrices for the grating, phase discrepancy, and coupler:

T = TgToTc (2.207)

1 tI -tr*I D 0 M 0
~ L ~ l~ ~~]['~ M*J(2.208)V~t -t*rI t*1 0 D* 0 M*

1 ~tDM -t*D*M*
= [ tDM -tr*D*M* (2.209)
V~t -t*rDM t*D*M*

The corresonponding scattering matrix is,

rMDDM tDM
S [= MDM t . (2.210)

As before, we can use the scattering matrix to compute the reflected mode amplitudes in

terms of the incident mode amplitudes (again, assuming no light enters the structure from

the right hand side.)

a_(0) = rMDDMa+(0) (2.211)

Once again, this result could almost be deduced by inspection. The incident signal passes

through the coupler once, and then through the phase shift twice (once forward and once

backward), and then goes back through the coupler again. This accounts for the matrix

factor MDDM in Eq. 2.211. The reflectivity of the Bragg grating is entirely encompassed

in the first factor r. Expanding Eq. 2.211 gives:

E, -(0) re-j(20LL+0) cos 20 cos 0 - j sin 0 -- j sin 20 cos i a,+(0)

a2-(0) -j sin 20 cos 0 cos2# cos6 +jsinO a 2+(0)

(2.212)

If we further assume that light is launched into the upper waveguide (waveguide 1), then

the relative power reflected in the lower waveguide is described by:

a2-(0) 2 = Ir12 sin2 2# COS2 . (2.213)
al+(0)



2.5. SUMMARY

The above equation shows that in order to completely divert the reflected signal to the

lower waveguide, two conditions must be satisfied: (1) the directional coupler must pro-

vide 50% coupling, i.e., 4 = 7r/4, and (2) the optical path lengths must be matched, or

mismatched by an integral number of half-wavelengths, i.e., 6 = n7r.

2.5 Summary

The design of integrated optical devices is a hierarchical process, and the organization of

this chapter was meant to follow this hierarchy. We began with Maxwells equations, and

derived some of the fundamental properties of propagating electromagnetic modes. From

there, we proceeded to describe how Maxwells equations can be simplified using coupled

mode theory Coupled mode theory replaces Maxwells equations by a set of coupled dif-

ferential equations for the mode amplitudes. The electromagnetic analysis of waveguide

modes is critical to coupled mode theory, because the coupling coefficients depend upon

the electromagnetic modes through overlap integrals. The solution to the coupled mode

equations can always be expressed in terms of transfer matrices. In the final portion of this

chapter, we described how to analyze interconnected waveguides, gratings, and couplers

using transfer matrices.
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Chapter 3

Fabrication

The previous chapter provided all of the theoretical background needed to understand, de-

sign, and analyze waveguides, couplers, and Bragg gratings. This chapter marks a turning

point from theory to practice. The following sections describe the fabrication techniques

which we have developed to build integrated Bragg grating devices described in Chap-

ter 2.

Many of the fabrication techniques commonly used in building integrated optical de-

vices are borrowed, or adapted from the semiconductor industry. Indeed, many inte-

grated optics research group specifically select materials, waveguides, and processing

techniques which are compatible with existing semiconductor-processing equipment, and

many groups cite compatibility with current processing techniques as a selling point for

their technology [30, 31]1. As we will show, the fabrication of integrated optical devices

presents several unique challenges that are quite different from those encountered in elec-

tronic devices. Throughout this chapter, we hope to illuminate these challenges and de-

scribe some innovative solutions.

Section 3.1 begins by describing waveguide technology. We will summarize prior work

on passive integrated optical devices and describe the processing techniques developed to

build waveguides and couplers.

In Section 3.2, we will shift our focus from waveguides to Bragg gratings, for which

the feature sizes are generally about one order of magnitude finer. We will describe and

demonstrate a host of lithographic techniques which can be used to pattern the fine-period

'Often this equipment is handed down from semiconductor facilities after upgrades, as is the case with
many of the tools used to build the devices described in this work.
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Bragg gratings required for this work, and discuss the benefits and shortcomings of each

method.

Section 3.3 addresses the question of how waveguides and gratings can be combined

to build integrated Bragg gratings. Specifically, we will describe the implementation of a

flexible lithographic technique for patterning gratings atop relatively tall waveguides. Ad-

ditionally, we will describe techniques for ensuring accurate alignment of the waveguides

and gratings. Finally, we will discuss the critical problem of maintaining the grating in-

tegrity during subsequent overgrowth steps.

3.1 Fabrication of Waveguides and Couplers

This section is devoted to the fabrication techniques for waveguides and directional cou-

plers. We have grouped waveguides and couplers together because the lithographic tech-

niques used to build them are almost identical. Generally, a waveguide or coupler can

be built using a single patterning step, i.e., only one layer of photolithography is needed.

Alignment, if it is needed at all, can easily be accomplished using standard lithographic

alignment techniques. We will first provide a summary of the many different waveguide

compositions, structures, and fabrication techniques reported in the literature. Next, we

will specifically describe the techniques which were used to build integrated waveguides

and couplers in doped-Si0 2, and silicon-on-insulator (SOI) ridge waveguides.

3.1.1 Integrated Waveguide Technology

There are a number of candidate material systems for building integrated optical wave-

guides, each with advantages and disadvantages. One might be led to believe, from the

analysis of Section 2.1, that the only required feature of an integrated waveguide is a high-

index core material surrounded by low-index cladding. In practice, there are many ad-

ditional criteria which determine how useful a waveguide technology is. Some of the

desirable properties of optical waveguides are:

" Single-mode operation

" Efficient coupling to optical fiber

o Low propagation loss
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" Low bending loss (or equivalently, tight bending radius)

" Low birefringence and low polarization-dependent loss

" Easy to integrate

Single-mode operation means that there is only one electromagnetic mode for the wave-

guide. In a multi-mode waveguide, each electromagnetic mode propagates with a different

speed, which leads to undesirable signal dispersion if the waveguide is used to transmit

data. For this reason, most integrated waveguides of interest support only one bound

mode for each polarization state.

Optical fiber is currently the medium of choice for transmitting optical signals. One

might argue that it is only because of the dominance of optical fiber that integrated optics

is such an active field of research. Although many people envision futuristic integrated

optical circuits consisting of complex interconnected devices, at present most integrated

optical devices are single elements inserted between optical fiber. As such, one of the most

important criteria in selecting an optical waveguide is how well one can couple light to

and from a standard optical fiber. There are two requirements for efficient coupling to an

optical fiber: (1) the optical mode of the integrated waveguide must have a similar size

and shape to that of the optical fiber, and (2) the effective refractive index of the integrated

waveguide must be close to that of the optical fiber. The coupling efficiency can be esti-

mated using a simple overlap integral between the mode of the optical fiber and that of

the integrated waveguide [11, 30, 39]:

f f 2

J] #o0(x, y)#01 (x, y) dx dy

00 (X, y) 12 dx dy - f#11 (X, Y) 12 dx dy

where #o represents the electromagnetic mode of the fiber and q$1 is that of the waveguide.

(For an optical fiber, the mode #o can be well represented by a single scalar quantity as

described in Section 2.1. This is often the case for integrated waveguides, too, especially

for integrated waveguides which are designed to match to an optical fiber.) Additionally,
many also insert a factor in front of Eq. 3.1 to account for Fresnel reflection when the re-

fractive indices are not matched. Although many researchers have developed novel tech-

niques for improving coupling efficiencies [77, 78, 79], the problem of getting light from a

fiber into waveguide remains one of the critical challenges to integrate optical devices.

Clearly, one wants to minimize the amount of propagation loss for an optical wave-

guide. Propagation loss has several sources. If the materials comprising the waveguide
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are not optically transparent, the waveguide will exhibit propagation loss. Also, even if

the materials are completely transparent, any roughness or inhomogeneity incurred dur-

ing lithographic processing can scatter light out of the waveguide, leading to additional

loss. The latter form of loss generally increases in proportion to the core-clad index dif-

ference. Of course, the amount of loss which is tolerable depends upon the overall size of

the structure. For long waveguides, the propagation loss must be kept low whereas for

tightly-confined compact microoptic devices higher propagation loss can often be toler-

ated.

Bending loss refers to the leakage of light from the waveguide as it bends in a curved

trajectory. There are many excellent models for calculating bending loss in optical wave-

guides [80, 81, 82, 83]. Generally, the amount of bending loss decreases exponentially with

increasing radius of curvature. Also, waveguides with high index contrast (core-clad in-

dex difference) exhibit lower bending loss than waveguides with low index contrast. Thus,

the desire for low bending loss often competes with the desire for high coupling efficiency

to an optical fiber.

Birefringence and polarization-dependent loss simply refer to the difference in propaga-

tion constant and loss between the fundamental TE and TM modes. Again, the desire for

low polarization dependence stems from the prevalence of optical fiber as a transmission

medium. Because the optical fiber has no preferred polarization axis, an integrated optical

device should ideally provide polarization independent performance as well.

Finally, integrability simply refers to the ease with which a waveguide can be integrated

with other optical or electronic components.

Depending upon the application, there are other desirable characteristics in addition to

those discussed here including, for example, photosensitivity and acoustooptic sensitivity.

Commonly Used Waveguide Systems

One of the earliest systems used for integrated optical devices is a combination of SiO 2

and Si3N 4. One advantage of this material system is that it can be easily integrated on

a silica substrate. The structure typically begins with a lower buffer (cladding) layer of

SiO 2, grown by high-pressure thermal oxidization, wet oxidization, or plasma enhanced

chemical vapor deposition (PECVD). The core layer of Si 3N 4 is typically deposited using

low-pressure chemical vapor deposition (LPCVD) or via nitridation of the oxide in an am-

monia atmosphere [84, 85, 86, 87]. A protective top layer of SiO 2 can be deposited, although
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it is not essential. Because of the high refractive index difference (n ~ 2 for Si3 N4, vs n =
1.46 for SiO2), the core layer must be relatively thin in order to ensure single-mode oper-

ation. Typical core thicknesses range from 100-200 nm. Longitudinal confinement can be

achieved either by directly etching a shallow ridge directly on the nitride layer, or by form-

ing a ridge in the upper oxide cap layer. The thickness of the underlying oxide buffer layer

must be large enough to ensure that the optical mode remains well confined in the oxide-

nitride layers and does not leak into the high-index silicon substrate. Waveguides based

upon this geometry have been reported with propagation losses as low as 0.3 dB/cm [85].
Unfortunately, because of the small core-thickness and high index contrast these devices

are not well matched to an optical fiber. Moreover, they exhibit significant polarization

dependence.

Many researchers have sought to build integrated waveguides in polymers [88]. Al-
though there have been reports of low-loss propagation in polymers, the minimum loss at-
tainable in polymers is typically much higher than that of dielectric waveguides. Another

significant problem with polymer waveguides is the difficulty in patterning them. Most

lithographic techniques involve coating the substrate with a photosensitive resist, and of-

ten the solvents used in the resist are incompatible with polymeric layers. To circumvent

this problem, some have actually used the photoresist itself as a waveguide which can be
conveniently patterned via lithography[89]. Other approaches include using lithographic

techniques to directly modulate the refractive index of the polymer [90].

Compound semiconductors are often used in integrated optical components, because

they can be conveniently integrated with active elements such as lasers, and photodetec-

tors. The materials most commonly used for constructing such integrated waveguides are
All - XGaXAs and In1 - XGaXAs 1 - YPY. The index of refraction can be controlled by adjust-

ing the mole fraction (x,y) of the atomic constituents. For most 111-V compound semicon-

ductors, the refractive indices range from 3.1-3.5. Because of this, it is difficult to build

III-V waveguides which couple efficiently to an optical fiber.

Lithium niobate is an attractive material for fabrication of optical waveguides because

of its acoustooptic and electrooptic properties [91]. These properties make LiNbO 3 ideal for
constructing optical modulators and switches. Unfortunately, LiNbO 3 loses these valuable

properties when it is not grown in single crystal form, which makes it difficult to integrate

LiNbO 3 on a Si substrate. Waveguides can be formed in crystaline LiNbO 3 by a process

of proton exchange, or metal diffusion, but these methods typically yield a graded-index

profile which cannot be controlled to the same degree as an etched waveguide structure.

Glass or silica (SiO2 ) are often used as the raw material for fabricating passive optical
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waveguides. One advantage of these materials is that they are very similar to the mate-

rials which make up optical fibers. Because of the close match in index of refraction, it is

possible to couple efficiently from fiber into a glass waveguide. As evidenced by the very

low propagation loss of optical fibers, glass is intrinsically low loss compared with other

waveguide materials. Although the attenuation in planar glass waveguides is still orders

of magnitude higher than for optical fiber, it is still much lower than in most other dielec-

tric, semiconductor, or polymer waveguides. Glass waveguides are typically fabricated on

Si substrates, which are readily available in large sizes and are less expensive than III-V

semiconductor substrates.

Researchers at LETI, in France, have fabricated SiO 2 channel waveguides using plasma-

enhanced chemical vapor deposition (PECVD) and reactive-ion etching [84, 92]. They be-

gin with an 8-15 pm thick lower cladding layer of SiO 2. A core layer, doped with phospho-

rus, is formed by including phosphine in the gas mixture during deposition. The refractive

index of the core can be controlled by adjusting the amount of phosphorus doping. The

maximum reported refractive index for phosphorus-doped glass was 1.53 (compared with

1.46 for undoped SiO2 .) However, in order to achieve optimal coupling to a fiber, the

core should have an index of refraction that is only 0.3-0.8% higher than the surrounding

cladding, which corresponds to a phosphorus content of less than 1% by weight. One of the

challenges to PECVD deposition is controlling the phosphorus concentration and unifor-

mity in this low An regime. Using these techniques, the LETI group achieved propagation

losses ranging from 0.1-0.2 dB/cm.

Researchers at Bell Labs, employ a similar procedure to construct glass optical wave-

guides [30, 93]. In their work, the lower cladding of SiO 2 is deposited using a high-pressure

thermal oxidization (HiPOX). This process is limited to an oxide thickness of approxi-

mately 15 jim, because the oxidation rate decreases rapidly as the SiO 2 layer gets thicker.

The core layer is formed using CVD, again with phosphorus doping to increase the refrac-

tive index relative to the underlying oxide. The typical core composition is approximately

7% P20 5 by weight, which corresponds to a refractive index contrast of 0.6%. The core

is then patterned and etched using photolithography with a tri-layer resist and reactive-

ion etching. A top cladding layer is deposited using LPCVD (TEOS) with both boron and

phosphorus dopants. This borophosphosilicate glass can be made to have a refractive in-

dex which is matched to SiO 2, but a lower glass transition temperature than the underlying

layers. This enables the top cladding to be deposited without softening the core layer. The

composition of the top BPTEOS letter is approximately 2.5% P 20 5 by weight and 5% B203

by weight.

Researchers at NTT and elsewhere developed a process for constructing glass wave-
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guides using flame hydrolysis deposition [31, 94, 95, 96, 97, 98]. The process of flame hy-
drolysis is also used to generate the glass preforms from which optical fiber is drawn. In

flame hydrolysis deposition, gaseous SiCl 4 is burned in an oxygen/hydrogen torch, while

the flame is traced over a substrate. This produces a porous layer of "soot" comprised of
fine Si0 2 particles on the substrate. When this layer is heated in a furnace, it flows to form
a solid, high-quality optical layer. The index of refraction and flow temperature of the de-
posited layer can be adjusted by introducing TiCl 4 or GeCl 4 into the gas mixture. Using
this technique, researchers at NTT demonstrated channel waveguides with propagation

losses as low as 0.01 dB/cm [99, 97], and fiber-coupling losses of only 0.05 dB [96].

Doped glass waveguides typically require relatively thick oxide cladding layers in or-

der to isolate the mode from the high-index Si substrate. One way to alleviate this prob-
lem is to use an antiresonant structure consisting of a Si/Si0 2 multilayer stack as a lower

cladding. Duguay et al. describe successful fabrication of such an antiresonant reflect-
ing optical waveguide (ARROW)[100]. Unfortunately, because this approach relies on
the polarization-dependent reflection from the Si/SiO2 interface, the waveguides are only
transparent for one polarization.

Another useful platform for integrated optical waveguides is silicon-on-insulator, or
SOI. Silicon, although reflective at visible wavelengths, is transparent to infrared light.
Moreover, it is clearly well-suited to integration with electronic devices. However, in or-
der to build a silicon waveguide, a low-index cladding material must be positioned be-
tween the waveguide and the substrate in order to prevent the optical mode from leaking
out. Fortunately, the semiconductor industry has developed many techniques for form-

ing a buried oxide insulator on a silicon substrate. The simplest technique for forming
silicon-on-insulator (SOI) involves implanting oxygen ions directly into the crystalline sil-

icon. This technique can be used to form relatively thin silicon layers. For thicker layers, a
bond-and etchback technique can be used [101], or the silicon layer thickness can be aug-
mented by epitaxy after the oxygen implant [102, 32]. Although the high index contrast

between silicon and oxide/air seems to imply a small mode size, relatively large optical

modes can be confined in silicon ridge waveguides without sacrificing single-mode oper-
ation [34]. Single-mode waveguides with propagation loss as low as 0.1 dB/cm have been

achieved using this method [33]. Although silicon-on-insulator is a relatively new plat-
form for integrated optics, there are now commercial companies which base their product
line on this promising technology [103].

107



CHAPTER 3. FABRICATION

3.1.2 Pattern Generation and Waveguide CAD

The waveguides and couplers described in this work typically consist of long, gently

curved structures which gradually approach and separate as they traverse a chip. This

type of pattern contrasts sharply with the dense patterns of horizontal and vertical lines

which define, for example, a silicon microchip. Moreover, in order for a device to achieve

the proper coupling and phase, the waveguide separations and path lengths must be care-

fully controlled over the entire length of the device. Because of this requirement, most

lithographic CAD packages are unsuitable for generating waveguide patterns. One of the

challenges in constructing waveguide devices is to translate these complex geometrical

shapes into a sequence of simple shapes that can be written onto a photomask.

Specifically, the electron-beam lithography systems which are used to write photo-

masks require that the pattern be organized into rectangular shapes which lie on a Carte-

sian grid. The minimum addressable size is called the grid-size or address unit. In design-

ing a photomask for optical waveguides, the complicated curved and sloped waveguides

must be approximated by a series of rectangular shapes lying on this Cartesian grid.

To simplify this task, we have developed specialized flexible software routines which

will construct the quantized representation of a device based upon a high-level description

of the device geometry. We will outline the organization of the software to illustrate how

it can be used (and extended) to construct relatively complex waveguide geometries.

Figure 3.1a depicts the structure of a simple integrated coupler, with all of the relevant

dimension specified. The 7 labeled parameters, di, do, w, Lc, R, 6, and L, are sufficient

to completely specify the geometry of the structure. These parameters are provided to

the software through an input text file, along with the few general parameters such as the

desired address unit. Dimensions of length can be specified in any of the standard SI units;

when the input file is processed, the software automatically converts all dimensions into

address units. Appendix B gives an example of an input file used by the layout program.

The first level of processing that the program performs is to break down the device into

a series of primitive segments, as shown in Fig. 3.1b. Although customized segment types

can be easily designed by the user, most patterns can be adequately described in terms of

just two segment types: lines and arcs. The segments which make up each waveguide are

ordered into an array which describes where they are placed and how they are connected.

A device is described by one or more of these segment arrays.

In the final level of processing, the program sequentially steps through each segment
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T
do radius R

Figure 3.1: (a) Diagram of an integrated directional coupler, with all of the neces-
sary dimensions labeled. (b) The coupler may be broken down into a sequence of
primitive "segments". In this example, the segments are either straight waveguide
pieces or arcs. (figs/31coupier-segments.eps)
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13 Grid/Pixel Size

Figure 3.2: The quantized representation of a curved waveguide segment. The
mathematically defined arc is approximated by a series of rectangular boxes which
lie on a fixed Cartesian grid. Where possible, adjacent boxes are combined in or-
der to most efficiently describe the pattern with the minimum number of boxes.
(figs/3/quantized-coupler.eps)
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and generates a series of Cartesian boxes to approximate the mathematically-defined struc-

ture. Figure 3.2 illustrates the pattern of quantized boxes used to approximate a curved

waveguide with a width of 20 address units. Notice that where possible, adjacent boxes

are combined in order to most efficiently describe the structure with the smallest number

of boxes. The output file is formatted as a KIC/CIF file, which can be viewed and edited

by a freely-available CAD program called KIC, or converted to GDSII or MEBES format

for mask generation. To assist with the layout, the program can also optionally generate

an encapsulated PostScript (EPS) representation of the segments, which can be printed or

viewed with a number of common software products.

One benefit of this organization is that it allows the waveguide designer to easily con-

struct new device types without rewriting the core software routines. The only portion of

code which must be provided is a high-level routine which instructs the program how to

generate the appropriate series of arcs and lines based upon a few user-specified geomet-

rical parameters. It also makes it relatively easy to refine or adjust waveguide parameters

such as waveguide width or grid size without starting over.

3.1.3 Glass Channel Waveguides and Couplers

In our initial experiments with glass waveguides, we used germanium-doped SiO 2 struc-

tures deposited via flame hydrolysis. These materials are now commercially available in a

variety of core thicknesses and compositions. For our devices, the wafers provided by the

manufacturer consist of a 20 jm-thick lower cladding layer of undoped SiO 2, topped with

a 6.6 pm thick core layer of germanium doped SiO 2, as shown in Fig. 3.3a. The nominal

index difference was 0.3%, which corresponds to a Ge mole fraction of approximately 3%.

The process of flame hydrolysis only deposits glass on one side of the wafer, which can

lead to significant stress and bowing when the wafer is cooled after annealing. To mini-

mize this effect, the suppliers use 1 mm thick 4" silicon wafers. (Quartz substrate wafers

can also be used.)

The waveguides were formed by selectively etching away the core material using re-

active-ion etching, as depicted in Fig. 3.3. In order to fully removes the core layer, a rela-

tively deep (6-7 jim) edge is needed. Although plasma etching of oxides is a well studied

process in semiconductor processing, the oxide layer's used in electronic devices are typi-

cally an order of magnitude thinner than those used for optical waveguides.

The most suitable plasma chemistries for etching SiO 2 and other doped glasses are

CHF3 or a mixture of CF4 and H 2 [104, 105, 106]. The masking material can be photoresist,
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(a) Deposit 1.1 pm Si
hardmask over core.

Si hardmask .

RIE in CHF 3 plasma, to
etch through core region
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of Si layer in Cl 2 plasma
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Figure 3.3: Outline of the process used to pattern channel waveguides and cou-
plers in doped-glass. (figs/3/glass-wg-process.eps)
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metal, or a material such as silicon [106, 30, 31].

Because of the deep etch required to form the waveguides, even thick photoresist

masks typically do not hold up well, resulting in sloped sidewalls and increased edge

roughness [106]. Researchers at Lucent use a tri-layer process to pattern the etch mask. The

initial layer consist of about 2-3 gm of photoresist which is hardened by a high-temperature

bake. Onto this a thin oxide interlayer is deposited, followed by a normal photoresist imag-

ing layer. After exposing and developing the top imaging layer, the pattern is transferred,

first to the oxide interlayer and then through the thick photoresist layer.

Metals can also be used for the etch mask, but they often prove problematic because of

the difficulty in patterning thick metallic layers. In a conventional RIE system, it is difficult

to achieve Si0 2:metal etch selectivities higher than about 20:1. Thus, the metal thickness

must be at least 300 nm in order to withstand a 7 gm SiO 2 etch. Such thick metallic layers

often have high stress which can lead to problems with adhesion. In our initial attempts at

waveguide fabrication, we used a tungsten hard mask formed via sputter deposition. The

waveguide patterns were transferred to this tungsten mask using photolithography and

wet etching. The etching selectivity was found to be 15:1, but the process of wet etching

led to poor control of the feature size and unacceptable roughness in the waveguide edges

[39].

Researchers at NTT use a silicon layer as the hard mask. Silicon has the advantage that

relatively thick silicon layers can be patterns using dry etching in Cl 2 or SF 6 plasmas. Also,

reasonably high SiO 2:Si selectivities can be obtained by etching in CHF3. For these reasons,

we chose to use silicon as a hard mask when etching the waveguides and couplers.

Returning to Fig. 3.3, a uniform layer of amorphous silicon deposited initially using

RF sputter deposition in an argon plasma. We used an MRC sputtering system with 10

mT pressure and 200 W of RF power for a duration of 90 min., which gives a silicon film

thickness of approximately 1.2 gm at the center of a 4 inch wafer, and 0.9 gm near the

wafer perimeter. Next, we spin on a layer of AZ5214 photoresist to a thickness of 1 jm and

expose the waveguide patterns using ultraviolet contact lithography. (Note, for a positive-

working resist this step requires a clear-field photomask.)

The waveguide pattern is then transferred to the silicon by reactive-ion etching in a

chlorine (Cl 2) plasma. For this process, we used a modified Perkin Elmer system with a

chamber pressure of 20 mT and an RF power of 75 W, which results in a silicon etch rate

of 50-60 nm/min.. The chlorine plasma exhibits extremely high Si:Si0 2 selectivity, hence

the patterns can be substantially over etched without significantly etching the underly-
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ing glass. This degree of tolerance is important because the silicon film thickness is not

completely uniform across the wafer, nor is the plasma etch rate. It is relatively easy to

determine whether the silicon has completely cleared using optical microscopy: when the

silicon film is etched entirely it is possible, by decreasing the working distance, to see a

second image of the silicon hard mask reflected by the silicon substrate 26 tm below.

After patterning the silicon hard mask, the sample is ready for etching the waveguides.

If desired, the residual photoresist can be removed, to obtain an unambiguous measure-

ment of the silicon film thickness. The waveguides are etched in a PlasmaTherm RIE sys-

tem, with a flowrate of 20 sccm of CHF3, a chamber pressure of 20 mT, and an RF power of

250 W. With these parameters, the DC bias voltage is observed to fall slowly over the du-

ration of the etch. As long as the bias voltage remains between 100 and 300 V, the etch rate

remains approximately 50-55 nm/min., and the SiO 2:Si selectivity is about 9-12. It is be-

lieved that the changing bias voltage is associated with the formation of a polymer coating

on the walls of the etching chamber. If the bias voltage falls below 100 V, the etch profile is

observed to degrade substantially, and the chamber should be cleaned before proceeding.

Figure 3.4 illustrates a 7 jim deep waveguide etched into doped glass using the process

described above.

After etching the waveguides, the samples are cleaned in a hot solution of 1:3 H 20 2:
H 2S0 4 (piranha) to remove the thin polymer layer deposited on the silicon. A standard

RCA clean will also remove this polymer, but it slowly etches the SiO 2 and should there-

fore be avoided if possible. The silicon hard mask is removed in a hot (80 C) solution of

tetramethyl ammonium hydroxide (20% by weight in water.) At elevated temperatures,

TMAH will etch silicon but not SiO 2. Typically, the remaining hard mask can be removed

in about 3-5 minutes, depending upon the temperature. While the silicon substrate is

slightly etched during this process, the effect is not noticeable.

After the waveguides are formed, the wafers are returned to the vendor where the final

glass cladding layer is deposited, again via flame hydrolysis deposition. Figure 3.5 is an

optical micrograph showing the cross-section of the completed waveguide. In obtaining

this micrograph, the chip was illuminated from the rear which causes the waveguides to

appear brighter as a result of the guided light from back illumination.

3.1.4 SOI Waveguides

The fabrication of ridge waveguides in silicon-on-insulator (SOI) is much more straightfor-

ward than the fabrication of glass channel waveguides. The etching techniques for silicon
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F
E

L
Figure 3.4: Scanning electron micrograph showing a doped glass waveguide
etched to a depth of 7 gm. The silicon hard mask has not yet been removed.
(figs/3/glass-wg-etch-sem.eps)

115



CHAPTER 3. FABRICATION

Figure 3.5: An optical micrograph showing the edge of a chip containing inte-
grated glass channel waveguides. The chip is illuminated from the rear, which
causes the waveguides to glow brightly when viewed in transmission. (figs/3/glass-wg-
faceteps)
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are very well-established in the semiconductor industry, the typical ridge heights required

are not prohibitively deep (0.5-1.5 gm), and no top cladding layer is needed.

There are several reported techniques for fabricating SOI ridge waveguides. Schmidt-

chen et al. start with SIMOX wafers with an epitaxially grown silicon layer and form the

waveguides by anisotropic chemical etching using an Si0 2 mask [32]. Rickman et. al. like-

wise use epitaxially regrown SIMOX, but they instead form the waveguides with reactive-

ion etching using CH 3Br with a photoresist mask[102]. Trinh at all start with bonded and

etched-back SOI (BESOI) and form the waveguides using reactive-ion etching in SF 6 /0 2
with an SiO 2 mask [107, 108]. Fischer et. al. likewise use BESQI, but describe an isotropic

wet etching procedure which uses HNO, HF, and CH 3COOH. They also report using an

evaporated Si3 N4 antireflective coating on the end facets to reduce Fresnel reflection [33].

For the SOI waveguides, which are relatively new to our repertory, we have not yet

designed an optical photomask with couplers and waveguides. Instead, we patterned a

series of prototype waveguides using a VS2A electron-beam lithography system.

The raw materials used in this work were commercially available ELTRAN SOI wafers

provided by Canon. They use a novel combination of epitaxy and selective back etching to

achieve smooth, high-quality silicon on insulator with excellent uniformity. The ELTRAN

fabrication sequence is illustrated in Fig. 3.6[109, 1101. The process begins by depositing

porous silicon and, followed by an epitaxial silicon where which will ultimately become

our waveguide core. The top surface of the silicon and is then oxidized to the desired

depth, forming the lower cladding. This structure is then flip-bonded to another wafer and

separated at the porous silicon layer. Separation is achieved either by grinding away the

top wafer or by blasting the interface with a high-pressure water jet. The remaining porous

silicon and is removed via a selective with chemical etch which stops abruptly on the

epitaxial silicon. Finally, the structure is annealed in a hydrogen environment which has

the effect of polishing the silicon to a smooth surface. This process has several advantages

for integrated optical devices. First, in comparison to SIMOX (implanted) wafers, the oxide

layer can be grown to almost any desired thickness of which allows for a high degree of

optical isolation between the waveguide and the substrate. Second, the Si/Si0 2 interface

is very sharply defined. Third, the film thicknesses (both Si and Si0 2 ) are controlled via

epitaxy and selective wet etching, rather than by chemical-mechanical polishing, which

leads to superior thickness uniformity. For the devices reported in this work, the oxide

thickness was 1 gm, and silicon thickness was 3 jim.

Figure 3.7 outlines the process steps used to pattern SOI ridge waveguides. First, a 400

nm thick layer of polymethyl methacrylate (PMMA) is deposited by a spin-coating. A thin
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Bond Wafer

Epitaxial Si

Grow porous Si,
Epitaxial Si, and SiO2

Flip Bond Epi Wafer
to Second Wafer

I
Epitaxial Si

Si02

I
Grind away top wafer
to porous Si section

Wet-etch porous Si,
H2 Anneal surface

Figure 3.6: Diagram of process used by Canon to produce ELTRAN SOI
wafers[109, 110]. (figs/lWeltran-process.eps)
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Figure 3.7: Outline of process used to form ridge waveguides in SOI.
process.eps)

(figs/31soi-wg-
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(5 nm) layer of chromium is evaporated over the surface to prevent charging during the

e-beam exposure. The waveguides were written with a beam currents of 520 pA and an

areal dose of xxx C/cm 2 . We biased the waveguides patterns down by about 200 nm to

account for anticipated feature broadening due to the finite beam size.

After removing the chromium layer via wet etching, we developed samples in a solu-

tion of 60:40 IPA:MIBK for 60 seconds. A 150 nm thick layer of nickel was next deposited

and lifted off in a heated solution of NMP. The final nickel feature width was 4 jIm.

The waveguides were etched in a PlasmaTherm reactive-ion etching system, using the

nickel as a hard mask. The etching parameters were 18 and 6 sccm of CF 4 and 02, respec-

tively, at a chamber pressure of 15 mT, an RF power of 250 W and a corresponding DC bias

voltage of 260 V. The approximate etch rate achieved with these parameters is 21 nm/min.

The waveguides could also the etched using C12, as described earlier.

Following the waveguide etch the nickel is stripped in a hot solution of 1:3 H 20 2:H 2SO4
(piranha), completing the process. Figure 3.8 is an electron micrograph illustrating a com-

pleted SOI ridge waveguides. This sample was cleaved in cross-section for microscopy,

but typically the facets are die-sawed and polished in order to more accurately define the

facet orientation.

3.2 Lithographic Techniques for Bragg Gratings

The previous section described the methods for constructing integrated waveguides and

couplers. We now turn to the more challenging task of fabricating Bragg gratings. As

shown in Table 2.1, the periodicity of Bragg gratings ranges from 220 - 530 nm, which

places them just beyond the reach of conventional photolithography. The purpose of this

section is to summarize high-resolution lithography techniques which are suitable for pat-

terning Bragg gratings.

3.2.1 Interference Lithography

Interference lithography is the cornerstone for most integrated Bragg gratings devices. The

principle behind interference lithography is simple and appealing: two coherent plane

waves which overlap in space form a standing wave which is recorded in a photoresist or

other photosensitive material, as depicted in Fig. 3.9. It is relatively easy to compute the
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Figure 3.8: Scanning electron micrograph showing the cross-section of a ridge
waveguide in silicon-on-insulator (SOI). (figs/31soi-wg-sem.eps)
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substrate
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sAstanding wave 2 si(O)

Figure 3.9: In interference lithography, two plane waves (or more accurately large-
radius spherical waves) intersect forming a region of standing wave. This standing
wave can be used to expose a photosensitive material on the substrate. The period
of the resultant standing wave is related to the illuminating wavelength and the
angle of intersection. (figs/3/interfering-plane-waves.eps

periodicity of the standing wave:

A AIL
2 sill (3.2)

where AIL is the lithography wavelength of the illuminating source (not to be confused
with the infrared free-space wavelength at which the device operates) and 6 is the half-
angle between the two interfering plane waves. In principle, the standing wave should
form a perfectly periodic pattern which is spatially coherent. By spatial coherence we mean
that by knowing the position of one local maximum in the standing wave, one could pre-
dict the positions of all the other peaks. The spatial coherence of the standing wave is of
course related to the spatial and temporal coherence of the interfering beams, which is in
turn related to the bandwidth and spatial character of the illuminating source.

Figure 3.10 illustrates the structure of one of the interference lithography systems used
at MIT[111, 112]. The illumination source is an argon ion laser operating at a wavelength
of 351 nm. The beam is split into two arms, focused through a pinhole spatial filter, and
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BEAMSPLITTER

MIRROR MIRROR

SPATIAL SPATIAL
FILTER FILTER

20

SUBSTRATE

Figure 3.10: Diagram of the conventional interference lithography system used at
IT. Two beams from an Ar ion laser are interfered on the substrate to create a

standing wave interference pattern. The lens and spatial filter assembly create a
diverging beam which can be approximated as a spherical wave. Not depicted:
there is a fringe-locking feedback mechanism which guarantees that the interfer-
ence pattern remains stationary even over relatively long exposure times. figsii-

conventional.eps)

interfered on the surface of the sample to be exposed. Similar systems have been used to

expose Bragg gratings in photosensitized optical fiber [113, 114]. When exposing optical

fiber, a series of lenses are typically used to expand and collimate the beam before it reaches

the fiber. A cylindrical lens is also used to concentrate the illumination on the fiber core.

Figure 3.11 depicts a variant of this system, which is based upon a Lloyd's mirror.

In this system there is only one arm, but a mirror mounted perpendicular to the sample

folds half of the beam back onto itself creating a region of interference. For the Lloyd's

mirror system, the illuminating source is a He:Cd laser with wavelength of 325 nm. Similar

Lloyd's mirror systems are used for exposing Bragg gratings in optical fiber [115, 116].

Under certain assumptions, the Lloyd's mirror system can be thought of as functionally
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VIRTUAL
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Figure 3.11: (a) A variant of the conventional interference lithography system,
based on a Lloyd's mirror. The mirror is mounted perpendicular to the surface
of the substrate, which causes half of the expanded beam to fold back on itself
creating a standing wave at the substrate. (b) The Lloyd's mirror system can be
thought of as equivalent to the conventional two-beam interference lithography
system. The effect of the mirror can be modeled by placing a virtual point source
opposite to the pinhole behind the mirror. (figs/I3ll-Iloyds-mirror.eps)
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equivalent to the conventional two-beam interference lithography system, as shown in

Fig. 3.11b. If we regard the spatial filter as an idealized point source and we further assume

that the mirror is perfectly flat, then the effect of the mirror can be likened to having to

point source placed symmetrically with respect to the mirror plane.

One important limitation faced by both of these systems is that the interfering waves

are not plane waves; they are more accurately described as spherical waves [117]. Al-
though interfering spherical waves produce a predictable (and hence spatially coherent)

interference pattern, the resultant grating will not have a perfectly periodic structure. As

we will discuss in Chapter 4, these distortions can easily affect the performance of a Bragg

grating device. One way to fix this problem is to use lenses to collimate the illuminating

beams to form plane waves (or more specifically, extremely wide beams with virtually flat

wavefronts.) [113, 114] Another promising approach is to instead focus the beam to a small

spot on the substrate while scanning the substrate on a precision controlled stage.

One of the potential problems with interference lithography (and with all other forms

of photolithography) is that the light reflected by the wafer from the interfering beams can

create another standing wave in the orthogonal direction. This can lead to undesirable

ripples in the resist edges after development, and poor linewidth control. To minimize

this effect, we typically use an antireflective coating beneath the resist to suppress the

unwanted reflection from the substrate.

Figure 3.12 illustrates an example of a grating exposed in resist using interference li-

thography. The underlying antireflective coating layer is designed to reduce substrate

reflection, and the thin oxide interlayer allows one to reliably transfer the grating pattern

through the ARC using a simple two-step reactive-ion etching process. The complete pro-

cess for transferring this pattern to the substrate will be discussed in Section 3.3.

3.2.2 X-ray Lithography

Although interference lithography is in many ways an ideal system for making Bragg grat-
ings, it has some limitations. One disadvantage is that it is difficult to achieve alignment

between the interference fringes and existing patterns on the substrate. Moreover, the

presence of existing features on the substrate (e.g. metal layers under the resist) could in-
terfere with the exposure. Perhaps most seriously, the distortion map of an interference

lithography exposure depends sensitively upon how all of the optics in the system are

aligned with respect to the surface. Consequently it is difficult to achieve exactly the same

distortion map between two samples.
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Figure 3.12: A 220 nm period grating exposed in resist using interference litho-
graphy. The underlying antireflective coating (ARC) is needed to suppress unde-
sirable reflections from the substrate. (figs/3/grating-trom-il.eps)
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Figure 3.13: Diagram of an electron-bombardment x-ray source. (figs/3/x-ray-schematic.eps)

These problems can be mitigated by combining interference lithography with x-ray

lithography. In this approach, interference lithography is used once to pattern an x-ray
mask, which can be used repeatedly to transfer the patterns to substrates.

Figure 3.13 depicts the x-ray lithography system used at MIT [118]. The x-rays are gen-

erated by focusing a beam of electrons onto a copper target. The electrons are boiled off
of a tungsten filament and deflected to a high-voltage copper anode (which is held at 8 kV
with respect to the filament and chamber walls.) The impinging electrons generate x-rays

characteristic of the copper-L transition, with energy of 933 eV. Also, there is a broadband
background of bremstrahlung x-ray emission associated with the deceleration of the elec-
trons. The emitted x-rays typically emerge from the vacuum system through a thin nitride

membrane window and illuminate the mask and sample.
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Figure 3.14: Diagram of an x-ray mask. A pattern of gold lines on a silicon nitride
membrane defines a Bragg grating which can be transferred to the substrate via
x-ray lithography. (figs/3/x-ray-mask-detal.eps)
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Figure 3.15: Scanning electron micrograph of a 244 nm period grating exposed in
PMMA using x-ray lithography. (figs/3/grating-from-xray.eps)

Figure 3.14 depicts the structure of an x-ray mask. A 1 gm thick membrane (which is

50% transparent to the 933 eV x-rays) supports a pattern of 200 nm thick gold lines which

define the Bragg grating (or other pattern.)

In addition to its superior resolution, x-ray lithography benefits from the very different

way that x-rays interact with materials. In contrast to optical and ultraviolet light, which

is easily reflected by metal and dielectric surfaces, almost all materials are absorbing at

x-ray wavelengths. For the x-ray wavelengths typically used in lithography, the indices of

refraction for most materials lie slightly below 1. Consequently, x-rays are not reflected,

except at grazing incidence. This greatly simplifies the lithographic processing, because

antireflective layers are not needed, and the process of exposing gratings is not sensitive

to the presence of underlying patterns. As an example, Fig. 3.15 shows a grating exposed

in PMMA using x-ray lithography. Notice that in comparison with the structure shown in

Fig. 3.12, this exposure did not require the use of an antireflective coating.
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3.2.3 Electron-Beam Lithography

One of the most flexible high-resolution lithography tools is scanning-electron-beam li-

thography, which we alluded to earlier when we described pattern generation for photo-

masks. In an electron-beam lithography system, a focused e-beam is traced over a surface

to define almost any prescribed pattern. A combination of electromagnetic beam deflec-

tion and interferometrically controlled stage motion allows one to write patterns over a

relatively large area.

One of the limitations of e-beam lithography is throughput. Because each pixel com-

prising the pattern must be exposed separately and sequentially, direct e-beam exposures

are typically time-consuming. For this reason, e-beam lithography is primarily used for

building prototype devices and for generating masks which can be used repeatedly in a

higher throughput system such as optical photolithography or x-ray lithography.

A more serious limitation of e-beam lithography is the difficulty in achieving accurate

pattern placement. In most e-beam systems, large area patterns are formed by stitching

together a mosaic of small fields or stripes. The area within each field is accessed by de-

flecting the focused beam, while successive fields are written by moving the substrate.

Accurate placement of patterns requires very well controlled stage motion in tandem with

well-calibrated field deflection. Many factors, including for example thermal expansion,

charging, beam current and focus drift, conspire to make this a difficult task. Often, there

are small abrupt discontinuities, called stitching errors, at the boundary between adjacent

fields. Sometimes the field deflection itself acquires distortion, especially at the edges and

corners of the field.

Distortion and stitching errors are especially problematic for Bragg grating devices.

Even relatively short Bragg grating devices typically span several electron-beam fields,

and therefore it is impossible to avoid the problem of field stitching. Reflection from a

Bragg grating is a coherent effect in which the small reflections from each period interfere

constructively to create a high reflectivity over a narrow bandwidth. Stitching errors and

distortion in the Bragg grating spoil the coherence of the device. Even relatively small

random stitching errors can quickly degrade the optical performance of a device [119].

One approach to solving this problem is to somehow place a pattern on the substrate

prior to writing which will act as a guide for pattern placement. An ongoing project in

the NanoStructures Lab called spatial-phase-locked electron-beam lithography (SPLEBL)

seeks to implement this technique using interference-lithography-generated gratings or

grids on the substrate [120]. In SPLEBL, the sample to be exposed is first exposed in in-
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terference lithography, which generates a spatially-coherent reference pattern that can be

viewed or sampled by the e-beam system. Then, as the e-beam system writes the desired

patterns, the reference grating is periodically (or even continuously) viewed in order to as-

sess the beam position. By "locking" the electron beam deflection to the reference pattern,

stitching errors and field distortion can be significantly reduced [121, 122].

3.2.4 Phase Mask Interference Lithography

One of the most common techniques for patterning Bragg gratings is to use a variant of

interference lithography based upon a diffractive phase mask[123, 124]. Figure 3.16 de-

picts the most common configuration for phase mask photolithography. Light impinging

normally from above the phase mask is diffracted into three (or possibly more) orders.

The phase mask is carefully designed to suppress the 0th diffracted order. The +1 and -1

diffracted orders interfere, leading to a standing wave pattern. It is relatively easy to verify

that the periodicity of the resulting standing wave is half the period of phase grating on

the mask.

P
A =_ . (3.3)

2

This result applies regardless of the wavelength of illumination (provided the illumi-

nating wavelength is short enough to produce ±1 orders.) This means that, in contrast to

the interference lithography systems discussed earlier, phase mask lithography does not

require narrowband conherent illumination to produce a grating.

Furthermore, phase mask lithography systems are typically more stable than conven-

tional interference lithography systems. In a conventional interference lithography sys-

tem, the split beams traverse two relatively long paths before interfering on the substrate,
whereas in a typical phase mask system the mask is usually held rigidly against the sub-

strate (e.g. by vacuum contact.) Provided the phase mask and substrate are rigidly con-

nected, the illuminating source can be scanned over the phase mask to expose the desired

area. For these reasons, phase mask lithography is the method of choice for patterning

fiber Bragg gratings.

One disadvantage of phase mask lithography is that the period of the exposed grating

cannot be changed without replacing the phase mask. That is, the system is not tunable.

Furthermore, phase mask lithography does not solve the problem of how to construct

the phase mask itself. Typically, phase masks are either made using e-beam lithography

131



CHAPTER 3. FABRICATION

I phase
mask

0 th order
(suppressed)

A=

Figure 3.16: Diagram of a phase-mask interference lithography system (sometimes
also called near-field holography.) Light incident on the phase mask is diffracted
into at least three orders (0, ±1). The phase mask is designed to minimize (as much
as possible) the 0th diffracted order. The ± 1 orders interfere, creating a stand-
ing wave whose period is half the period the phase mask grating. The standing
wave can be used to expose a resist or other photosensitive material (not depicted.)
(figs/3/phase-mask-l.eps)
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(which is often prone to stitching errors) or one of the interference lithography techniques

described in Section 3.2.1. Another limitation is that it is difficult to completely eliminate

the 0th order.

3.2.5 Other Techniques for Producing Bragg Gratings

The methods described above are the most common ways of patterning Bragg gratings.

However, there are many other nanolithography techniques which could be used, two of

which we briefly mention here.

Deep UV contact photolithography is a technique in which a 1 x flexible mask is pulled

into intimate contact with a surface and exposed with UV illumination. If the mask and

resist structures are designed appropriately, near field optical effects enable one to pattern

features which would normally lie beyond the resolution limit of the illuminating optics

[125].

Nanoimprint lithography is another novel technique which can be used pattern Bragg

gratings. In nanoimprint lithography, the grating patterns would be pressed or stamped

into a polymer coating on the substrate, forming a relief structure [126]. There are vari-

ants of this method which use UV curable polymers and various combinations of flexible

substrates and flexible stamps.

Both of these techniques require a 1 x grating mask, which must be patterned with one

of the other methods described in this section.

3.3 Multilevel Lithography: Waveguides with Gratings

In Section 3.1 we described the techniques of making integrated waveguides and in Sec-

tion 3.2 we described the lithographic techniques for patterning Bragg gratings. In this

final section, we focus on the problem of combining waveguides and gratings to build a

functional Bragg grating filter.

3.3.1 Challenges to Building Integrated Bragg Gratings

One of the principal challenges to building the integrated Bragg gratings required for this

work is that the devices call for fine-period Bragg gratings patterned over relatively tall
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uneven resist
coverage

Substrate with topography

Figure 3.17: Schematic diagram illustrating the problem with performing litho-
graphy over topographic features. When the features are substantially taller than
the desired thickness of the photoresist, achieving uniform resist coverage is prob-
lematic. Moreover, when patterning fine-period structures the resist cannot be
made arbitrarily thick. (figsI3/uneven-resist.eps)

waveguides. For the doped-glass waveguides, the Bragg grating period is 10x smaller

than the desired waveguide height. For the silicon-on-insulator ridge waveguides, the
grating period is 2-5x smaller then the ridge height. The nanolithography techniques
described in Section 3.2 often rely upon a planar substrate. Figure 3.17 illustrates schemat-
ically the difficulty in patterning resist over a waveguide structure; conventional spin-
coating techniques lead to extremely uneven resist coverage. Although it is sometimes
possible to pattern gratings in such uneven resist [87], it becomes more difficult for taller

waveguides.

Another challenge to building integrated Bragg gratings is ensuring that the Bragg

grating is properly aligned to the underlying waveguide. Microelectronic devices often
have dozens of lithographic layers, all of which must be aligned to one another. However,
microelectronic devices are typically manufactured entirely with projection photolithog-

raphy; alignment can be easily achieved by placing complementary alignment mark sets

on each of the photomasks. The specialized high-resolution lithography techniques de-
scribed in Section 3.2 are not all amenable to such simple alignment schemes. Moreover,
the feature size of Bragg gratings are far too small to be seen with the alignment optics in

an optical lithography system.

Figure 3.18a depicts a single waveguide with a misaligned grating. In this figure the

grating lines are not oriented perpendicular to the waveguide. The first effect of misalign-
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(a) R --- T

Figure 3.18: (a) Diagram of an integrated waveguide with a misaligned grating.
The angle of the grating is not properly aligned perpendicular to the waveguide
axis, which leads to a lengthening of the effective period seen by the waveguide.
(b) Diagram of an integrated Michelsen interferometer with angularly misaligned
gratings. In this case, the angular misalignment can cause the reflected light to be
directed to the wrong output port. (figs/3/angular-misalignment.eps

ment is that the grating period seen by the devices increased by a trigonometric factor:

Ao 1 2
Ao(1 + 102) (3.4)

Cos 0 2

where 6 is the angular misalignment. This is a second-order effect which can slightly mod-

ify the Bragg frequency. If the misalignment is too severe, the grating may actually diffract

light out of the waveguide core leading to radiation.

The requirements of angular alignment are more stringent for the Michelson interfer-

ometer device illustrated in Fig. 3.18b. Recall from the analysis of Section 2.4.4, in order

for this device to completely transfer the reflected signal from one waveguide to the other,

the optical path length must be matched in the opposing arms of the device. More specif-

ically, the optical path length mismatch must be an integral number of half-wavelengths.

Since the Bragg grating period is precisely 1/2 wavelength, this condition can be conve-

niently restated that the arms must be matched to within an integral number of Bragg
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periods 2. This will always be satisfied if the gratings are angularly aligned with respect to

the waveguides. Even if one arm has a few more grating teeth then the other, the device

should function correctly provided the k-vector of the grating is angularly aligned to the

waveguide axis.

3.3.2 Prior Work on Integrated Bragg Gratings

One of the earliest places where integrated gratings have been used is in distributed feed-

back (DFB) and distributed Bragg reflector (DBR) semiconductor lasers [127, 128, 129].

Loosely speaking, in DFB and DBR lasers the reflective facets or mirrors which provide

feedback into the laser cavity have been replaced with Bragg gratings. A conventional

diode laser with a Fabry-Perot cavity typically lases over several longitudinal modes,

whereas in a DFB/DBR laser the Bragg gratings have a wavelength-dependent reflectiv-

ity which favors one mode. The true benefit of a Bragg grating in semiconductor lasers

is that it allows for single-mode oscillation 3. The linewidth of the light emerging from

a DFB/DBR laser is governed more by the peak reflectivity of the Bragg grating than its

spectral width. Consequently, DFB lasers typically use a much higher grating strength r

than one would find in a passive filter. The Bragg gratings in lasers are often patterned

over a large area of substrate and overgrown with guiding active regions, as in reference

[129]. Sometimes the Bragg corrugations are chemically etched to form smooth sawtooth-

shaped gratings which are better suited to overgrowth [127].

Researchers at Bell laboratories have fabricated Bragg gratings on SiO 2 /Si 3 N 4 rib wave-

guides [57, 131]. In this work, the waveguide was formed by etching a 8 nm ridge into the

Si3N 4 core prior to depositing the top cladding layer of SiO 2 . Bragg gratings were then

etched to a depth of about 60 nm into the top air-SiO 2 interface. Because of the almost

planar geometry of the waveguide, they could use conventional interference lithography

techniques to pattern the grating. Members of our group at MIT later developed a process

for patterning Bragg gratings on similar rib waveguides [87]. In this work, the layer struc-

ture is identical but the waveguides were formed by a rib etched into the top SiO 2 layer.

We described a self-alignment procedure that automatically confines the Bragg gratings to

the top of the rib waveguides. Because of the relatively shallow waveguide features, the

gratings could be patterned over the waveguides via x-ray lithography.

2This argument applies only when the waveguides comprising the device are mirror-images of one another.
3For uniform grating structures, there are actually two degenerate lasing modes placed symmetrically with

respect to the Bragg stopband. This degeneracy can be lifted by placing a A/4 phase shift in the Bragg grating,
whereupon the lasing mode will be shifted to the center of the stopband [130].
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Motivated by the tremendous success of fiber Bragg gratings, many groups have

sought to construct similar photorefractive gratings in integrated glass channel wave-

guides. Maxwell et al. report one of the earliest demonstrations of a photo-induced Bragg

grating in an integrated Ge:SiO 2 Channel waveguide[132]. Since then, several groups have

reported similar results, and much research has been devoted to achieving increased pho-

tosensitivity in doped-SiO2 and other types of glass waveguides [133, 55, 134, 135, 136]. In

all of these cases, the process of forming the Bragg grating is essentially identical to that

used to construct fiber Bragg gratings: typically phase mask interference lithography is

used to expose a grating through the transparent cladding of the completed waveguide.

Kashyap et al. were the first to apply this technique to form matched gratings in op-

posite arms of an integrated Mach-Zehnder interferometer [137]. Again, the gratings were

photo imprinted in the core using phase mask lithography. Because of the difficulty in

aligning to gratings they used a post-exposure laser trimming procedure to balance the

arms of the interferometer. Hibino et al. from NTT described a similar device which uses

heating elements placed above the waveguides to balance or imbalance the path lines in

the two arms [56, 138]. Researchers at Bell Labs were the first to construct an integrated

Mach-Zehnder interferometer with identical Bragg gratings in the arms without any post-

exposure trimming or adjustment [54, 139]. In part because of the difficulty in achieving

angular alignment, they were unable to completely transfer power from one waveguide to

the other. As pointed out in this work, another challenge to successfully implementing the

integrated Mach-Zehnder interferometer is achieving perfectly matched gratings.

Our group in MIT has developed a dual-hardmask process for constructing integrated

quarter-wave-shifted Bragg gratings on InP/InGaAsP channel waveguides [140]. In the

following sections, we will describe a similar technique which has been developed for

glass waveguides and silicon waveguides.

3.3.3 Bragg Gratings on Glass Waveguides

Figure 3.19 outlines the process we have developed to form Bragg gratings on glass wave-

guides. This sequence, which we call the dual-hard-mask process, effectively solve the

problem of patterning gratings over relatively tall waveguide features. We will later de-

scribe each of these steps in detail, but first we will summarize the process in general terms

in order to clearly identify the advantages of the process.
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Figure 3.19: Overview of the process used to form Bragg gratings on integrated
glass waveguides. The gratings are patterned first, but etched last. The sequence
ensures that all lithography steps are performed over a surface free of significant
topography. (figs/3/dual-hardmask-glass.eps)
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Overview of Process

We begin with an optical substrate consisting of a lower cladding and core layer. Onto the

core, we pattern the fine-period Bragg gratings using one of the lithography techniques

described in Section 3.2. The gratings are not yet etched into the core, rather they are pat-

terned in a thin metallic masking layer which sits on top of the core layer. The second

masking layer defining the waveguides is then formed on top of the gratings, using the

techniques described in Section 3.1.3. After the waveguide hard mask is patterned, the

device is formed by a series of etching steps. First, the excess grating is removed from the

regions outside the waveguides. Next, the waveguides are etched to the desired depth,

and the waveguide hard mask is stripped, revealing the underlying grating mask. Finally,

the gratings are etched and the grating mask removed. The device is completed by confor-

mally depositing a top layer of cladding over the structure.

The first benefit of this process is that the most critical nanolithography step (that in

which the Bragg gratings are formed) is performed over an essentially planar surface. Be-

cause the grating hard mask can be made relatively thin, the second level of lithography

likewise has very little surface topography to contend with. A second benefit is that the

gratings can be made wider than the waveguides, allowing for relaxed placement toler-

ance when patterning the waveguides: when the excess grating is stripped, the remaining

grating lines are automatically confined to the tops of the waveguides.

Lithographic Alignment

So far, we have not specifically described the lithographic sequence used to pattern the

Bragg gratings and waveguides. Three lithographic exposures are required to pattern the

two hard masks. The three lithographic masks are depicted in Fig. 3.20. The first mask is

an optical photomask which defines large rectangular regions where the gratings should

be placed. The second mask is an x-ray mask covered with fine-period Bragg gratings, and

the third mask is an optical photomask defining the waveguides. All of these layers must

be aligned with respect to one another.

It is relatively straightforward to include alignment marks on the two optical masks in

order to allow for alignment of the grating windows with the waveguides. The x-ray mask

is fabricated using a combination of interference lithography and e-beam lithography, as

shown in Fig. 3.21 [117]. Interference lithography is used to pattern a 535 nm period grat-

ing on an x-ray mask. However, before the grating pattern is developed a second optical
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(a) Grating Window Mask
(optical)

Defines the regions
over the waveguides
where the gratings
are to be.

(b) Grating Mask
(x-ray)

A uniform grating
generated with
interferometric lithography

(c) Waveguide Mask
(optical)

Defines the optical
waveguide patterns.

Figure 3.20: An overview of the three masks used to pattern the Bragg gratings
and waveguides. The first mask defines rectangular regions where the gratings
will reside. The second mask contains fine-period Bragg gratings, and the third
mask contains the waveguide features. (figs/3/mask-overview.eps)
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exposure is performed, exposing two large areas at the top and bottom of the mask. After

the x-ray mask is developed and the pattern transferred through the antireflective coat-

ing, a gold absorber is electroplated. In this way, the areas which were exposed optically

become opaque regions on the mask. The x-ray mask is then replicated (or daughtered)

onto a second x-ray mask, a process that reverses the polarity of the pattern. After the

daughter mask is developed and electroplated, it has two transparent regions at the top

and bottom. It is in these regions that the alignment marks are to be written. The daughter

mask is recoated with PMMA and loaded into an electron-beam lithography system. The

e-beam system is then used to examine the grating pattern and write a pair of alignment

marks at the top and bottom of the mask which are precisely aligned with the grating. It

is possible to follow a single grating line over several centimeters on the mask in order

to accurately achieve angular alignment between the alignment marks and the grating.

The PMMA is then developed and electroplated. It should be pointed out that in order

for the e-beam system to write alignment marks which are lined up with the grating, it is

necessary to scan the e-beam over a portion of the gratings, which will cause the PMMA

in these regions to be exposed. We have developed a process which allows us to protect

these exposed regions during the subsequent electroplating step so that the gratings are

not affected.

The procedure described above places a pair of conventional alignment marks on the

x-ray mask which are angularly aligned to the grating. Later, when the waveguide mask is

used it can be aligned with these marks, ensuring that the grating lines are perpendicular

to the waveguide direction. Based upon the distance between the alignment marks and

the accuracy with which we can align lithography layers, we estimate that the waveguides

are angularly aligned to the gratings to within 0.006 deg.. If the arms of the interferometer

are separated by 75 gm, this means that the optical path lengths in the opposite arms of

the interferometer should be matched to within about 7 nm. This figure is more than

five times better than the best reported results in the literature for lithographically aligned

Mach-Zehnder interferometers[139]. Moreover, this figure could be further improved by

increasing the separation between the alignment marks or by decreasing the separation

between the waveguides.

Patterning the Two Hard Masks

The gratings are transferred to the substrate with a double-exposure lithography process.

First, the substrate is coated with 250 nm of PMMA. The grating windows are then exposed

and developed using UV contact photolithography. The grating window mask is transpar-
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Interference Optical Exposure
Lithography

After interferometric and optical exposures.
mask is developed and electroplated. This
Forms a master mask with opaque
regions at top and bottom

Master mask is "daughtered" or replicated,
with an x-ray exposure in PMMA onto a

second similar mask. The replication
process reverses the polarity of the mask

Electron beam lithography is then used
to write a pair of alignment marks on
the daughter mask. These marks are
angularly aligned with the grating on
Sthe mask.

Figure 3.21: Procedure for adding alignment marks to an interferometrically gen-
erated x-ray mask. This process combines the advantages of interference litho-
graphy with the flexibility of electron-beam lithography. The resulting mask
has an interferometrically generated grating which is free of stitching errors,
with precisely-placed alignment marks that are angularly aligned to the gratings.
(figs/3/add-marks-to-mask.eps)
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Figure 3.22: A series a scanning electron micrographs illustrating the results of the
dual exposure process. We used two sequential exposures (one optical, one x-ray)
to confine Bragg gratings to well-defined rectangular regions. (figs/3lgrating-window-sem.eps

ent outside of the grating region, so that after development the PMMA only remains in the
regions designated for gratings. The x-ray mask is then used to expose gratings in the
remaining PMMA. The grating window mask and x-ray mask are designed with a pair

of complementary alignment marks which allow them to be aligned with respect to each
other. After the double exposure and development, 40 nm of chromium is evaporated and
lifted off in a heated NMP solvent. Figure 3.22 is a series of top-down micrographs show-
ing the completed grating patterns. Since the resist must be developed twice, this process
cannot be used with chemically amplified photoresists that require post-exposure baking
or flood exposure prior to development. However, the process can be easily modified by
simply performing two liftoff steps rather than just one.

After the gratings are formed, the waveguide mask is patterned using the techniques

described in Section 3.1.3. First, an amorphous silicon hard mask layer is deposited via
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RF sputtering, and this layer is patterned via conventional contact photolithography and

reactive-ion etching. A second pair of complementary alignment marks are included on

the x-ray mask and the waveguide mask allowing for alignment between the waveguides

and gratings. We have found that it is not necessary to protect the alignment marks on the

substrate when the amorphous silicon layer is deposited. Because the sputter deposition

process does not produce a completely conforming layer, it is usually possible to see the

alignment marks as relief patterns in the top surface of the deposited silicon. Figure 3.23 is

a micrographs showing the waveguide hard mask pattern on top of the grating hard mask.

Etching Sequence

Next, the excess grating outside of the waveguid is removed. Initially, we used a wet

chemical etch to remove the chromium, but we found that this approach had problems

with undercutting. In order to entirely remove the large areas of unpatterned chrome, the

gratings had to be severely overetched, leading to undercutting. We solved this problem

by instead removing the chrome by reactive ion etching. The chrome was etched in the

same systems used to etch the silicon layer. We used a mixture of 34 sccm of Cl 2 and 6

sccm of 02, with a chamber pressure of 20 mT, at an RF power of 100 W. With this process,

the chromium layer can be removed in approximately 3 min.. Unfortunately, this dry

etching process is not very efficient, and it partially transfers the grating pattern into the

underlying oxide via physical sputtering. However, the undesired grating features are

smoothed out during the subsequent deep waveguide etch.

The waveguides were next etched using RIE as described in Section 3.1.3. After etch-

ing the waveguides, the silicon mask is removed in hot TMAH. Figure 3.24 is a scanning

electron micrograph showing an etched waveguide after the silicon hard mask has been

removed. As shown in this figure, the chromium grating lines are not affected by the

TMAH. Finally, the gratings are etched to the desired depth using the chrome as a mask,

and the chrome is removed using a wet etch. Figure 3.25 depicts the completed structure

with gratings over waveguides.

Overgrowth

One of the most challenging tasks to forming Bragg gratings on channel waveguides is

the deposition of the top cladding layer. There are three requirements for this deposition.

First, the top layer must conform to the underlying structure, completely filling the gaps

between grating teeth and the spaces between waveguides without forming voids (often
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Figure 3.23: Scanning electron micrographs showing a patterned amorphous sili-
con hard mask on top of a thin chromium grating pattern. (figsI3/si-over-cr-sem.eps)
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Figure 3.24: Scanning electron micrograph showing an etched waveguide after the
amorphous silicon masking layer is removed in TMAH. Notice that the fine-period
chromium lines remain intact under the silicon layer. (figs/3/cr-over-wg-sem.eps)
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Figure 3.25: Micrographs depicting an almost-completed structure, immediately
prior to overgrowth. The dual-hard-mask process described in this section allows
us to pattern the fine-period gratings on top of relatively tall waveguides, as shown
here. (figs/3/gr-on-glass-wg-sem.eps)
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called keyholes because of their distinctive shape.) Second, the shape of the underlying fea-

tures must be preserved through the deposition and annealing of the top layer. Third, the

index of refraction (at infrared wavelengths) of this top layer must be very well matched

to that of the lower cladding. If the index of the top cladding layer is too large, even by a

fraction of a percent, the waveguide will lose its ability to confine the light. Conversely, if

the index is slightly too low, the waveguide can easily become multimode.

In our first attempt at overgrowth, we sent our samples to a commercial supplier (PIRI

Inc.), who deposited the top layer by flame hydrolysis. From prior work with integrated

waveguides and couplers, we knew that the deposition process used by the supplier could

conformally cover large waveguide patterns and that the index of the top layer was well

matched to the lower cladding (cf. Fig. 3.5.) In order to test the overgrowth process on

fine features, we patterned the wafer with a large area of uniform grating. Specifically,

we etched a 511 nm-period grating into the core layer to a depth of 250 nm (such that the

teeth had an aspect ratio of approximately 1:1.) To allow for easier inspection, we did not

include waveguides beneath the gratings. After overgrowth, we inspected the overgrown

gratings using several techniques.

First, we visually inspected the wafer with an intense white light source, looking for the

rainbow diffraction pattern usually produced by gratings of this period. This test failed to

confirm the presence of a grating. We postulated that because of the small refractive index

difference, the diffraction might be too difficult to see with the naked eye. Therefore, we

next tried to detect a grating by carefully measuring the diffraction of a He:Ne laser. In this

experiment we mounted an un-cladded grating next to the overgrown grating and mea-

sured the relative intensity of the diffracted beam with a lock-in detector. Unfortunately,

we were unable to detect any diffracted beam from the overgrown sample. As a further

test, we polished the samples to a smooth facet parallel to the grating lines and coupled

light into the edge of the sample directly from a cleaved optical fiber. The opposite edge

was observed on an infrared CCD camera while the wavelength of the input light was

slowly tuned over the accessible 1.55 pm band. In this test, we were looking for a dark

spot in transmission indicating reflection of the incident light at certain well-defined an-

gles, but again we were unable to see any evidence of a Bragg grating. Finally, we cleaved

and polished the sample in the direction perpendicular to the gratings and examined the

cross-section using atomic force microscopy and scanning electron microscopy. A short

HF etch was performed in an attempt to differentiate between the three layers. After this

test, we concluded that the Bragg grating had been destroyed during the overgrowth or

annealing process.

The flame hydrolysis process used by PIRI in the final cladding layer uses at least two
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dopants (Ti and Ge) to control the refractive index and glass transition temperature Tg of

the layer. Our experiments indicate that although the deposition process does not destroy

the waveguides, the fine-period structures are smoothed out. For most single-level wave-

guide devices, this smoothing of the underlying features is beneficial, because it removes

any undesired roughness from the edges of the waveguide which would otherwise lead to

scattering loss.

Another possible explanation of our observations is that during the deposition and

anneal, some of the dopant species interdiffuse at the junction between the two layers.

Depending upon the temperature and duration of the anneal, the diffusion depth could

be significantly larger than the Bragg grating features. Finally, we point out that the high-

temperature anneal used in flame hydrolysis deposition serves the dual purpose of consol-

idating the deposited glass "soot" and annealing the consolidated film. It is possible that

this process requires a higher temperature and longer duration than would be required for

films deposited by other means (e.g. sputter deposition or CVD.)

For our second attempt at achieving overgrowth on top of Bragg gratings, we sought

the assistance of the silica waveguide fabrication team at Bell Labs. As discussed earlier

in Section 3.1.1, the Bell Labs group uses CVD techniques rather than flame hydrolysis to

deposit the waveguide layers. The bottom layer is a thick SiO 2 deposited by high-pressure

steam oxidization (HiPOX), and the core layer is P-doped SiO 2 deposited to a thickness of

6.6 gm by CVD. The top cladding layer is co-doped with B and P to reduce the flow tem-

perature and match the index of the bottom HiPOX layer. As before, we patterned a series

of 535 nm period gratings into the core layer in order to test the final overgrowth step.

Figure 3.26 shows the structure of the grating immediately before and after overgrowth.

(The scanning electron micrograph of the overgrown sample was taken in cross-section

after a brief stain-etch in diluted HF.) As shown in Fig. 3.26, there is some residual grating

remaining after the final cladding layer is deposited, but the grating has been greatly di-

minished and smoothed. For this experiment, the top cladding layer was deposited in two

steps, with an intermediate anneal, in order to avoid formation of voids in between the

teeth. We are uncertain whether the distortion of the grating profile occurs during the first

or second anneal. Additionally, because of transient uncertainties in the flow parameters

used in the cladding deposition, the precise composition of the initial 100 nm of cladding

is not well-known.

Changing the composition and deposition parameters for the top cladding layer is a

potentially time-consuming process, because there are two separate dopant species which

must be controlled, and there is a tight constraint on the refractive index which must be

maintained. Therefore, we initially focused our efforts on increasing the softening temper-
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Figure 3.26: (a) Cross-section of test gratings prior to overgrowth. The gratings
were etched to a depth of approximately 250 nm using the reactive-ion etching
process described in Section 3.1.3. (b) Cross-section of gratings after overgrowth.
(figs/3/p-glass-avergrowth.eps)
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ature of the core layer. For our next experiment, we changed the core composition from

P-doped SiO 2 to Ge-doped SiO 2, because the glass transition temperature for Ge-doped

glass is significantly higher than that of P-doped glass. The top cladding layer remains

B-P-TEOS glass. The goal of this experiment is therefore to increase the Tg differential be-

tween the core and upper cladding layer. This experiment has not been completed at the

time of writing.

Another possible solution to this problem is to pattern the grating in the lower cladding

layer before the core is deposited. In this scheme, the core would conformally fill the

grating during deposition. In principle, the pure SiO 2 should have a significantly higher

softening point than all of the subsequent layers.

3.3.4 Bragg Gratings on Silicon Waveguides

The dual-hard-mask process depicted in Fig. 3.19 can also be adapted for use with silicon-

on-insulator ridge waveguides. The masking layer materials must, of course, be modified

to provide suitable masks for etching silicon. Figure 3.27 outlines the slightly modified

procedure which we implemented for SOI ridge waveguides. As with the glass waveguide

process, all lithography steps are performed over almost-planar surfaces.

Patterning the Two Hard Masks

The gratings were patterned in a thin (40 nm) layer of oxide, using interference lithography

and reactive-ion etching. The samples were first coated with a uniform layer of 40 nm SiO,,

using e-beam evaporation. Next, a 165 nm-thick layer of ARC was spun on, to eliminate

back-reflection. A second oxide layer, 30 nm thick, was e-beam evaporated on top of the

ARC, and finally the imaging photoresist layer was spun on to a thickness of 200 nm.

Figure 3.28 depicts the complete layer structure before exposure. The top layer of resist

is where the grating pattern will be exposed. The ARC thickness is carefully chosen to

minimize the back-reflection into the resist. The top oxide layer is used as a mask for

transferring the grating to the ARC. The bottom oxide layer will be used as a mask for

transferring the grating to the silicon.

Figure 3.29 illustrates how the patterns are transferred from the exposed resist into the

oxide masking layer. First, the sample was exposed with interference lithography and

developed. The grating is then transferred to the oxide interlayer using a CHF 3 plasma.

With the oxide interlayer as a mask, the pattern is then easily transferred through the

151



CHAPTER 3. FABRICATION

(a)

Silicon

(C)

Figure 3.27: The dual hardmask process used to pattern fine-period Bragg gratings
on top of silicon ridge waveguides. The process is similar to that described earlier
for glass waveguides, with smaller feature sizes and different masking materials.
(figs/3/dual-hardmask-si.eps)
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Figure 3.28: Layer structure used for patterning Bragg gratings in Si with interfer-
ence lithography. The top photoresist layer is used to record the standing wave
interference pattern. The thin interlayer is used as a mask for transferring the
pattern through the ARC. The ARC is designed to minimize reflections from the
substrate, and the bottom oxide layer will ultimately form the mask for etching the
silicon. (figs/3/holo-layers-si.eps)
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ARC using an 02 plasma. Finally, the bottom oxide layer is etched, again using reactive-

ion etching in CHF3, which stops at the underlying silicon. Generally, each step of this

process is monitored immediately before processing a batch of samples, to determine the

etch rates. Table 3.1 lists the etching processes used for each step, along with representative

etch durations.

Process Step Etch Depth Recipe Duration

Etch oxide interlayer 30 nm 20 sccm CHF3 at 10 mT, 175 W 2:30
Etch ARC 165 nm 10/5 sccm 02/He at 10 mT, 250 W 5:00
Etch bottom oxide layer 40 nm 20 sccm CHF3 at 10 mT, 175 W 2:30

Table 3.1: Etching processes used to transfer Bragg gratings from a
interferometrically-patterned resist layer into the underlying oxide and ARC lay-
ers. Each of the steps was performed in a PlasmaTherm reactive-ion etching sys-
tem. The etch times indicated here are representative figures; actual etch times
must be adjusted based upon monitor runs.

Once the gratings were etched all the way through the oxide, all of the other layers

are stripped in a hot solution of 1:3 H 20 2:H 2SO 4. Because this step does not always fully

remove the ARC, the samples were then cleaned in an 02 plasma asher prior to further

processing.

For the SOI devices, we didn't confine the gratings to windows using a double ex-

posure as we did for the glass waveguides. Instead, we let the gratings fill a substrate,

choosing to define the grating regions at a later point.

Section 3.1.4 completely describes the process used to pattern the waveguide hard

mask, and therefore we will not repeat the details here. The waveguides were written

directly into PMMA using e-beam lithography, and a nickel hard mask was then lifted off.

The one critical modification is that the patterns written by e-beam had to be aligned with

the existing gratings on the substrate. We initially attempted to use the e-beam to scan the

existing grating prior to writing the waveguides, as described earlier. However, we found

that it was too difficult to image a shallow grating in oxide through 200 nm of PMMA. One

solution to this problem is to add a photolithography step which would selectively remove

PMMA from a portion of the substrate, allowing the e-beam an unobstructed view of the

grating. For our initial experiments with SOI waveguides, we adopted a simpler scheme.

When exposing the gratings, we used the Lloyds mirror system, which leaves a clearly vis-
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Figure 3.29: Trilayer process for patterning Bragg gratings. (a) The grating pat-
terns exposed into the top layer of resist and developed. (b) After etching through
the oxide interlayer, the patterns transferred through the ARC. (c) The pattern is
then transferred into the final oxide layer using the ARC as a mask. (d) All of the
imaging layers are removed leaving only the patterned oxide grating. (figs/3trilayer-

process.eps)
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ible edge on the sample marking the point of contact between the mirror and the substrate.

Furthermore, this edge should be well aligned with the direction of the grating lines. By

marking two points on the edge with a scribe, we created a pair of approximately aligned

features to which the e-beam could register. Although this process is not as accurate as the

technique described earlier for glass devices, we calculated that it is sufficiently accurate

to achieve our initial goal of building simple Bragg gratings on waveguides. In order to

build integrated an Michelsen interferometer, a more accurate alignments process would

be needed.

Figure 3.30 is a micrograph showing a nickel waveguide mask patterned via liftoff

directly on top of a SiOx grating pattern.

Etching Sequence

After the waveguide mask was patterned, the excess grating was removed in a short CHF 3
etch. Prior to etching the waveguides, the samples were cleaned in an oxygen plasma in

order to remove any polymer which may have formed on the exposed silicon. Figure 3.31

depicts the nickel masking layer after the excess oxide has been removed. The waveguides

were next etched to the desired depth, using the process described in Section 3.1.4. Before

removing the nickel hard mask, we deposited a 40 nm thick protective layer of chromium,

by e-beam evaporation. The nickel was then stripped in 1:3 H 20 2:H 2S0 4, which lifts the

chrome off the tops of the waveguides but leaves a thin layer outside of the waveguides

to protect these areas from further etching. Figure 3.32 is a scanning electron micrograph

showing an oxide grating on top of a silicon ridge.

Before etching the gratings, we performed a simple photolithography step to define the

grating regions. We coated the sample with a 1.5 ptm thick layer of photoresist. The grating

windows were then exposed into this resist and developed, revealing the oxide grating

underneath. We intentionally used a resist coating which was somewhat thicker than the

ridge height, in order to avoid problems with incomplete resist coverage. Although this

process does not yield a completely uniform resist thickness, the nonuniformity does not

appreciably affect the exposure.

The gratings were etched into the top of the waveguide ridge using the oxide as a hard

mask. The regions outside of the waveguides were protected by the chromium liftoff layer,

and the areas outside of the grating windows are protected by the thick photoresist layer.

To etch the gratings, we used a plasma with 40 sccm of Cl 2 at a chamber pressure of 20

mT and a power of 75 W. Figure 3.33 shows the profile of a deep grating etched with these
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Figure 3.30: Scanning electron micrograph depicting a nickel waveguide pattern
directly on top of an oxide grating. (In this picture, the nickel line is lifting slightly
at the edge because of a nonoptimal resist profile during liftoff.) (figs/3/ni-on-oxide-grating.eps)
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Figure 3.31: Scanning electron micrographs showing the waveguide mask with the
grating buried underneath. The excess grating has been removed from the regions
outside of the waveguide. There is a very shallow grating modulation in the silicon
which was formed when the oxide mask is etched. (figs/3/ni-after-ox-removal.eps)
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Figure 3.32: Scanning electron micrograph showing an oxide grating pattern on
top of a silicon ridge waveguide. This micrograph was taken before we had added
the chrome liftoff step to the procedure. (figsI3/ox-on-si-wg.eps)
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Figure 3.33: Deep grating etched into silicon using chlorine reactive-ion etching
with an oxide mask. Although there is some rounding of the oxide features, the
mask remains mostly intact. (figs/l3deep-grating-in-si.eps

parameters, illustrating the excellent selectivity to SiO 2. 4

Finally, the oxide grating mask is removed using reactive-ion etching in CHF3. The

sample is once again cleaned in an oxygen plasma, and lastly the protective chrome layer

is removed in a wet chemical etch. Figure 3.34 shows a completed structure with gratings

patterned on top of the waveguides.

3.4 Summary

In this chapter, we described the fabrication techniques for building integrated wave-

guides and Bragg gratings. Although we have specifically concentrated on two types of

4This high selectivity can often lead to "grass" formation in the large exposed areas in between waveguides.
The grass is formed by small amounts of SiO 2 which are sputtered away from the mask and redeposited in
the open areas. The protective chrome layer described earlier prevents this grass from forming.
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Figure 3.34: Scanning electron micrograph of a silicon ridge waveguide with inte-
grated Bragg grating. (figs/3/si-ridge-with-gr.eps)
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waveguides, doped-glass channel waveguides and silicon-on-insulator ridge waveguides,

the processes describe here can be easily adapted to other systems.

The fabrication of integrated Bragg gratings involves two lithographic steps: one which

defines the relatively coarse waveguides features, and one which defines the fine-period

gratings features. This chapter began by describing the techniques for forming waveguides

and couplers. While the waveguides can be patterned using conventional optical pho-

tolithography, high-resolution nanolithography must be used to print the Bragg gratings.

Therefore, we next described several high-resolution lithographic techniques which are

suitable for patterning Bragg gratings. Finally, we addressed the problem of combining

these two lithographic techniques to form gratings over waveguides.



Chapter 4

Measurement

Thus far, we have described how to design and construct integrated waveguides, couplers

and Bragg gratings. In this chapter we discuss the measurement of the devices we have

built. The goal of this segment is to (1) provide a practical description of the measurement

techniques used and (2) present the results of our work. First, we will focus on integrated

glass waveguides and couplers, describing the results of our work on an improved direc-

tional coupler which has a power-splitting ratio that is insensitive to wavelength, polariza-

tion, and fabrication parameters. Next, we will describe our measurements of integrated

Bragg gratings on silicon-on-insulator ridge waveguides.

4.1 Glass Waveguide Measurements

As mentioned in Section 3.3.3, we have not yet perfected the deposition of glass cladding

over fine-period Bragg gratings. Nevertheless, glass waveguides provide an ideal platform

for investigating directional couplers. We describe here the measurement techniques and

performance of a set of directional couplers made with doped-glass waveguides.

4.1.1 Summary of Device Design

We designed and fabricated a set of directional couplers, using the analytical and litho-

graphic techniques described earlier. Figure 4.1 depicts schematically the structure of the

directional couplers, with all of the relevant dimensions labeled.
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Figure 4.1: (a) Top-down diagram (not to scale) of an integrated directional cou-
pler, with all of the dimensions labeled. (b) Cross-sectional view of the wave-
guides at the point of minimum separation. The couplers were fabricated in in-
tegrated germanium-doped glass channel waveguides, with a nominal refractive
index contrast of 0.3%. (figs/4/coupler-geometry.eps)
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The coupler is comprised to two identical square-cross-section channel waveguides,

with a nominal width and height of 6.6 gm. These dimensions were chosen to yield single

mode operation and efficient coupling to a standard optical fiber. The materials used were

Ge-doped SiO 2 waveguides with an index contrast of 0.3%, as specified by the supplier.

Based upon the calculated mode profile of this waveguide and that of a standard optical

fiber, we estimate that the transition loss due to mode mismatch at the fiber-waveguide

interface should be less than 0.15 dB.

The radius of curvature was chosen to the 35 mm for all of the devices constructed,

and maximum bend angle was approximately 3 degrees. The bending loss for these wave-

guides was modeled using a conformal transformation method described elsewhere [83,

39]. This bending radius is predicted to yield negligible loss (< 0.5 dB) for the structures

considered. Other researchers who have worked with similar waveguides report using

similar or slightly larger bending radii [30, 96].

The minimum waveguide separation (center-to-center) was fixed at 10.5 jm, which

leads to an inner-wall separation of 3.9 gm. The on-chip and off-chip waveguide separa-

tion was designed to be 250 gm, which allows us to potentially couple light into or out of

both waveguides with commercially available fiber v-groove arrays.

In addition to conventional directional couplers, we also fabricated a set of improved

insensitive couplers, using the design rules described in Section 2.2.5. Figure 4.2 illustrates

the structure of the insensitive directional coupler. The relevant device dimensions are the

same as those specified in Fig. 4.1. The target power splitting ratio for these devices was

50%, although the design could easily be modified to accommodate any desired power-

splitting ratio. The phase delay was achieved by making the upper arm of the device

slightly longer than the lower arm. The path length difference between the two arms was

approximately 350-360 nm. We did not include a range of coupling lengths (01 and #2)
in our design, rather we simply used our best estimate for these parameters based upon

coupled-mode calculations. We did, however, include a range of phase shifts (0) above

and below the nominal design.

4.1.2 Measurement Technique

After the devices were fabricated and over-cladded, the samples were cut into small chips

using a die saw. The facets were then polished using a Bueler Ecomet tabletop polishing

system. Initially, we polished with a minimum grit-size of 0.1 pm, but we later found that

generally a 0.3 jim grit pad provides a sufficiently smooth surface. The input facets were
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Figure 4.2: Schematic diagram of an improved directional coupler, formed by cas-
cading two conventional couplers in a Mach-Zehnder configuration, with an in-
tervening phase shift. The three parameters 01, #2 and 0 were chosen to yield
a coupler with 50% splitting ratio, as described in Section 2.2.5. Specifically, we
chose #1 = 7r/2, 2= 7r/4, and 0 = -r/3. (figs/4/insensitive-coupler-diagram.eps)

polished normal to the waveguide direction to enable coupling to a cleaved optical fiber,

and the output facets were polished at an angle of 10 degrees from the vertical to eliminate

unwanted reflections into the waveguide. This polishing scheme causes the light to emerge

from the facet at a small downward angle (out of the plane of the chip).

Figure 4.3 illustrates the setup of our measurement system for characterizing direc-

tional couplers. We measured the performance of the couplers using an external cavity

tunable diode laser. The attainable wavelength range for the source is approximately 1480-

1590 nm.

Light from the laser is first directed through a polarization controller, which allows us

to polarize the output light in any desired direction. (The method of polarization control

will be described later.) Next, a fused-fiber coupler is used to tap off a fraction of the input

light. This tapped-off signal provides a monitor power against which other measurements

are compared. This allows one to eliminate the effects of drift in the output laser power.

The light is butt-coupled into the waveguide directly from the cleaved facet of the op-

tical fiber, using an index-matching gel to suppress reflections at the facet. If the index-

matching gel is not used, there is generally a small air gap between the input fiber and the

polished waveguide facet which leads to undesirable Fabry-Perot effects. Even though the

free spectral range of such a thin air gap is typically very large, the measured power will

change substantially if the air gap increases or decreases by a fraction of the optical wave-

length. When using an index-matching gel, the input coupling efficiency is insensitive to
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Figure 4.3: Measurement system used for characterizing integrated couplers. (a)
Light from a tunable external cavity diode laser is passed through a polarization
controller, 10/90 splitter, and then launched into the device. (b) Light is coupled
directly from the fiber into the waveguide facet, using an index matching gel. The
signal emerging from the output facet is imaged onto a photodetector (through a
linear polarizer.) (figs/4/coupler-measurement-diagram.eps

Optical Chip
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the size of the gap between the waveguide and fiber.

At the output facet, the light emerges from the chip into free space, where it is captured

by a microscope objective which forms an image of the chip facet on a detector. An iris is

used to selectively measured the light emerging from one waveguide.

The input fiber and a microscope objective are both mounted on 3-axis translation

stages, allowing accurate, stable alignment of the input fiber and imaging optics. The

optical chip is likewise mounted on a translation stage, but this stage is typically kept

stationary except when moving from one device to the next.

Initially, the detector is replaced with an infrared camera in order to align the input

fiber and focus the microscope objective on the facet. After the system is aligned, the

infrared camera is replaced with a detector, and each of the alignment stages is adjusted to

maximize the detected power.

As shown in Fig. 4.3b, a linear polarizer is inserted immediately before the iris in order

to determine the polarization state of the light emerging from the waveguide. The input

fiber used in this experiment is not polarization-maintaining, which means that using the

polarization controller alone we cannot accurately predict the polarization state of the light

entering the waveguide. However, by placing a linear polarizer before the detector, it is

possible to fix the polarization state using an empirical approach. First, the linear polarizer

is oriented in the vertical (TM) direction. Then, the polarization controller is adjusted to

minimize the detected power. This guarantees that the light emerging from the waveguide

is TE-polarized 1. Wherever possible, the fiber path between the polarization controller

and the input waveguide is clamped to the table to prevent any twisting or bending which

might alter the polarization state. After the polarization is adjusted in this manner, the

linear polarizer can be removed (or rotated by 90 degrees). Provided the input fibers are

relatively stationary, this technique provides fairly stable polarization control.

There is unfortunately no easy way to insert a linear polarizer between the input optical

fiber and the chip. We therefore make the assumption that when the light emerging from

the output facet is TE-polarized, the input light is likewise TE-polarized, and similarly for

TM. This assumption is quite reasonable for most integrated waveguides. (In fact, if one

could build an integrated device which rotates the polarization state from TE to TM, it

might solve many of the problems which currently plague integrated optical devices.)

'It is easier in practice to zero the detected power with polarizer in the TM position that it is to maximize
the power with the polarizer in the TE position.
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The directional couplers are measured by scanning the input laser wavelength while

measuring the output power. More specifically, we measure the ratio of the output power

to the monitor power in order to account for any drift or variation in the laser power. The

microscope objective is then translated in order to image the second output port on the

detector, and wavelength scan is repeated.

4.1.3 Measurement Results

Before measuring the devices, the output of the optical fiber was focused directly onto the

detector in order to quantify the power entering the device. When the device was inserted

into the light path, the total power transmission decreases by approximately 1.5 dB. This

total insertion loss figure includes fiber-coupling loss at the input facet, bending loss, and

intrinsic waveguide loss.

Figure 4.4a shows the measured splitting ratio for our initial set of directional couplers.

These devices were designed to have a power-splitting ratio of 50% at A = 1550 nm. As

shown, the coupler achieves a splitting ratio which is higher than the desired value of

50% for all wavelengths measured and for both polarization states. We attribute this to

uncertainty in the indices of refraction used in our calculations when designing devices,

and structural and material deviations from the nominal design, which may occur dur-

ing the various fabrication steps. In principle, this bias can be removed by performing a

more exhaustive empirical investigation of the material properties and by more carefully

controlling and characterizing each step of the fabrication process. However, in addition

to this offset, the splitting ratio for the conventional coupler exhibits a sloped wavelength

dependence which is characteristic of directional couplers and cannot be flattened without

using a different design.

More importantly, the conventional coupler also exhibits significant polarization de-

pendence: the splitting ratio is consistently about 5% higher for TM- than for TE-polarized

light at all of the wavelengths we measured. This discrepancy cannot be accounted for

unless we assume that the index profile of the waveguide is different for TE and TM po-

larizations. This can occur if there is birefringence in the deposited glass films, especially

the top cladding layer which fills the region between the waveguide.

Figure 4.4b plots the measured power-splitting ratio for an improved directional cou-

pler, designed using the techniques described in Section 2.2.5. In spite of the polarization

dependence and the apparent uncertainty in material and fabrication parameters, the im-

proved coupler achieves a splitting ratio between 45 and 50% (within 5% of the targeted
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Figure 4.4: (a) Measured splitting ratio for the initial set of integrated directional
couplers. The achieved power splitting ratio is uniformly higher than the target
value of 50%, for both polarization states. (b) The improved directional coupler
exhibits a wavelength-flattened response which is much closer to the desired split-
ting ratio. (figs/4/coupler-comparison-orig.eps)
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value) over the entire wavelength range from 1475 to 1595 nm, with very little polarization

dependence.

We fabricated approximately 12 such cascaded Mach-Zehnder devices, all of them with

identical couplers but with different phase shifts. In principle, it should be possible to pre-

cisely control the phase shift (ie, 6) through the photolithographic process. One of the

most prevalent integrated optical devices available today, the waveguide-grating-router

[141], relies for its operation on a path-length difference which must be lithographically

defined to the sub-wavelength level. In order to fabricate such a lithographically-defined

phase difference in the opposing arms of a Mach-Zehnder interferometer, one must: (1)

accurately know the effective index of propagation for the waveguide, and (2) use a pho-

tomask that is generated using a grid size that is sufficiently small to properly describe the

waveguides.

In order to help reduce the cost of the photomask set, and to minimize the number of

electron-beam field boundaries spanned by the device, we used a relatively large grid size

of 1/8 tm for these initial devices. Moreover, when designing the photomask set, we had

performed no prior experimental measurements of the effective index for the waveguides.

Thus, we simply relied on our best estimate for the effective index, based upon vendor-

supplied data. We included a range of phase shifts in the design in order to allow for the

uncertainties.

Unfortunately, our measurements indicate that the range of phase shifts (0) which we

actually obtained with these devices was significantly lower than the target value of ir/3.

Only one of the 12 devices was relatively close to 7r/3. The data plotted in Fig. 4.4b was

obtained from this device.

In order to address this problem, we fabricated a second set of couplers using our

own e-beam lithography to directly write the patterns. For these devices, the grid size

was approximately 24 nm, which allows us to more accurately describe the pathlength

difference. Furthermore, we adjusted the directional couplers in an effort to center the

splitting ratio at the desired value of 50%.

Figure 4.5 presents the measured splitting ratio for the second set of devices. As shown

in Fig. 4.5a, the power splitting ratio for the conventional directional coupler is now cen-

tered on 50%, but, as expected, the sloped wavelength dependence has not been removed,

nor has the polarization-dependence been eliminated. Figure 4.5b presents the measured

power-splitting ratio for the insensitive directional couplers. As before, the insensitive

couplers achieve a power-splitting ratio that is close to the desired value of 50% for both
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polarization states.

Unfortunately, although the insensitive coupler provides a reduced wavelength-de-

pendence, the achieved power-splitting ratio seems to be slightly higher than the desired

value of 50%. Recall that the analysis presented in Fig. 2.18 predicts that the insensitive

directional coupler should be able to correct for relatively large fractional changes which

proportionately affect each of the constituent directional couplers. The reason for the ap-

parent discrepancy is that the two constituent directional couplers in the device are not

centered at the same wavelength. That is, the two directional couplers which make up the

device achieve their nominal values for #1 and 02 at two different wavelengths. Our mea-

surements indicate that the first directional coupler of the structure, which should nom-

inally provide full-power transfer, achieves its target value of k1 = 7r/2 at A = 1518 nm

for the TE polarization, whereas the second directional coupler achieves its nominal value

of 02 = 7r/4 at A = 1547 nm. Because of this, the power-splitting ratio achieved is not as

insensitive as it would otherwise be. Although the structure can compensate for fractional

changes in #1 and 02, it cannot correct for a miscalibration or design flaw which only af-

fects one of the directional couplers and not the other. In spite of this limitation, the device

does provide improved performance over the conventional directional coupler. Moreover,

we believe that this problem can be solved by performing more exhaustive experimental

measurements of the waveguide coupling rate.

For the second set of devices, we also investigated the effect of changing the intervening

phase shift 0 above and below the nominal value of r/3. Figure 4.6 presents the measured

power-splitting ratio for the insensitive couplers when the phase shift 0 is changed by

±2 and ±4'. These plots demonstrate that the device performance is relatively insensitive

to the phase shift 0.

Finally, we looked at how the device response changes when the waveguide width

is increased or decreased with respect to its nominal value. We intentionally fabricated

couplers which were identical to those described earlier, but with the waveguides made

uniformly wider or narrower in order to simulate the effect of an unintended feature size

bias in the fabrication process. Note that the center-to-center waveguide separations were

held constant while the waveguide width was changed. Figure 4.7 plots the achieved

power-splitting ratio for the conventional and improved directional couplers when the

waveguide width is increased and decreased by 0.2 gm. As shown in Fig. 4.7b, the insensi-

tive directional couplers retain their wavelength-flattened response when the waveguide

width is changed. There is, however, a small change in the power-splitting ratio as a result

of the change in waveguide width. Again, this change can be ascribed to the miscalibration

of the constituent directional couplers described earlier.
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Figure 4.6: Measured performance of the insensitive directional coupler, when the
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of .7r/3. (figs/4/coupler-vary-theta.eps)

174

Su

0 0 + 4*0
I "

V-



4.1. GLASS WAVEGUIDE MEASUREMENTS

(a) Conventional coupler

--- ----- ---- ---- -------- ---- - - - --- -----

o + 0.2 pm
&~~~ -0 w .2 pm

CO M 0 N LO t)~ U 0 1- CD 0)
Cr R 0 U) LO LO 10 In LO LO LO Ln )

70

65

60

55
0

50

45

40

35

30

70

65

60

55

.
50

45

40

35

o 0 0 e 0 0 o 0 -0 0 0
e - U) UO U) U) U) In In UO U) U)

Wavelength (nm)

Figure 4.7: Measured performance of the insensitive coupler, when the waveguide
width is biased above and below its nominal value of 6.6 gm. (figs/4/wider-narrower.eps)
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4.2 Silicon-on-Insulator Waveguide Measurements

4.2.1 Loss Characterization

Before fabricating integrated Bragg gratings, we first constructed a set of conventional

waveguides in order to evaluate the propagation loss for the structure. In order for a

Bragg grating to function as desired, the linear loss coefficient (denoted by a) must be

significantly smaller than the grating strength K. In other words, the rate of reflection

into the counter-propagating mode must be greater than attenuation rate in order to build

working Bragg grating devices. Moreover, the propagation loss is an important figure-of-

merit for any integrated waveguide. In order to characterize the loss, we fabricated a set

of simple straight ridge waveguides of approximately 5 mm length using the techniques

described in Section 3.1.4.

The samples were cut with a die saw and polished using the technique described earlier

for glass waveguides. However, because of the smaller mode size, and higher refractive

index relative to glass, the samples were polished with a minimum grit-size of 0.05 [im.

Prior to dicing, a thick photoresist layer was spun over the waveguides to protect them

from damage during subsequent sawing and polishing. Both chip facets were polished

normal to the waveguide to facilitate loss measurement via a Fabry-Perot technique[142],

which we describe next.

When the chip facets are polished normal to the waveguides, the waveguide forms a

Fabry-Perot cavity, because of the internal reflection at the air-silicon interface. By measur-

ing the spectral response of this cavity, it is possible to infer the waveguide propagation

loss. The spectral transmission of a Fabry Perot cavity can be calculated using transfer

matrices as described in Section 2.4 [76]. We shall omit the derivation and simply provide

the result:

T(/3)T(O) =TO 2 (4.1)
1 - rir2 e 2jO)L 2

where To is a constant which represents what the power transmission would be in the

absence of any internal reflections, r1 and r 2 are the internal amplitude reflectivities at the

two opposing chip facets, L is the facet-to-facet waveguide length, / is the propagation

constant, and a is the amplitude loss coefficient. This function can be rewritten in the
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Figure 4.8: Diagram of theoretical Fabry-Perot transmission spectrum, calculated
for the case where A = Irir2 exp(-2aL) = 0.2. (figs/4/fabry-calculated.eps)

following simple form:

T(O) = +0)12 ,(4.2)
11 - A exp(-2j3L + 2))

where A is a scalar constant, less than 1, which is related to the facet reflectivities and loss

coefficient by,

A -- rir2 |e- 2aL (4.3)

and # is a phase constant which allows for the possible nonzero phase of the complex

amplitude reflection coefficients ri. Figure 4.8 plots the calculated power transmission for

the case where A = 0.2.
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From Eq. 4.2, the ratio of the maximum to the minimum transmission is:

Tmax I + A 2

Tmin 1 - A)

This equation can be readily inverted to obtain an expression for A in terms of the maxi-

mum and minimum transmission.

A Tmax - Tmin (4.5)
/Tmax + VTmin

Thus, A may be viewed as a measure of the contrast in the Fabry-Perot spectrum.

The internal reflection coefficient at the chip facet can be approximated using the stan-

dard Fresnel reflection equation for normal incidence:

Irl = . (4.6)
n +

For the waveguides discussed here, because the mode is almost entirely confined in the

silicon core region, one can use n = nsi ~ 3.5 in the above equation.

After measuring the contrast in the Fabry-Perot fringes and inferring the internal reflec-

tion from Eq. 4.6, it is possible to estimate the propagation loss using Eq. 4.3 and Eq. 4.5.

Figure 4.9 illustrates the experimental set up used to perform the Fabry-Perot loss mea-

surement. As for the glass waveguide measurements described in Section 4.1, the illu-

minating source was a tunable external cavity diode laser connected through a polariza-

tion controller and 10/90 power splitter. Light was coupled into the waveguides using a

conical-shaped lensed fiber, which has a minimum spot size of approximately 5 pm and a

focal length of approximately 15 gm. Light emerging from the waveguides was focused

onto a detector through a linear polarizer. Figure 4.10 depicts a representative measured

spectrum for one of the devices considered. Using the equations given above, the propa-

gation loss for the sample is calculated to be about 4 dB/cm.

One of the limitations of this technique is that the loss estimate relies upon an accurate

estimate of the internal reflectivity at the two facets. For perfect facets, this reflectivity

should be reasonably described by Eq. 4.6. However, if the facet is scratched, damaged,

or misoriented, the internal reflectivity might deviate significantly from this estimate. In

practice, we have noticed that there can be significant device-to-device variation in the

loss estimate, even for adjacent waveguides on the same chip. In comparison to the buried

the glass channel waveguides described earlier, the facets of these air-cladded ridge wave-
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Figure 4.9: Experimental setup used to perform Fabry-Perot measurements of
ridge waveguides. Light is launched into the waveguide facet using a lensed fiber,
while the output facet is imaged onto a photodetector with a microscope objective.
The illuminating source (not depicted) was a tunable infrared laser. (figs/Moss-

measurement-diagram.eps)
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Figure 4.10: A representative Fabry-Perot transmission spectrum for an integrated
silicon-on-insulator ridge waveguide. The total waveguide length for the sample
was 4.88 mm. The propagation loss inferred from these measurements is approxi-
mately 4 dB/cm. (figs/4/fabryloss.eps)
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guides are more susceptible to damage during the process of polishing because the guiding

layer is not as well protected. This uncertainty limits the accuracy with which we can es-

timate the propagation loss. We point out that this uncertainty would also apply for more

conventional cutback loss measurement techniques.

Based upon our measurements, we estimate a propagation loss of approximately 4± 2

dB/cm. This corresponds to an amplitude loss coefficient 2 of a = 0.5 ± 0.2 cm-1, which

is significantly lower than the anticipated grating strengths r of 3-4 cm-1 . The measured

propagation loss is approximately equivalent (within the measurement uncertainty) for TE

and TM polarizations.

4.2.2 Measurement of Integrated Bragg Gratings

After establishing that the propagation loss for the SOI ridge waveguides was sufficiently

low, we next constructed a set of integrated Bragg gratings. Figure 4.11 summarizes the

relevant geometrical parameters for these devices.

The waveguide width was 4 tm, and the silicon ridge layer was 3 [tm thick at its center.

The ridge was etched to a depth of 800 nm. The Bragg gratings were etched to a depth of

about 150 nm, with a duty cycle of 45-50%, and a period of approximately 223 nm. The

grating length for the initial set of devices was approximately 4 mm, and the complete chip

length was 17 mm.

In contrast to the couplers described earlier, these devices must be angle-polished on

both facets in order to avoid forming Fabry-Perot cavities between the grating and facets.

Figure 4.12 illustrates three possible ways to prepare the chip facets to eliminate internal

reflection. The first approach, depicted in Fig. 4.12a refracts the light out of the plane of

the chip, which makes measurement of the device difficult 3 . The second method, depicted

in Fig. 4.12b corrects this problem but the devices in the set must be staggered. We chose

to use the scheme depicted in Fig. 4.12c, in which the waveguides are bent to an angle of

six degrees at the edges of the chip. With this approach, the facets can be cut and polished

normally The bending radius was chosen to be 15 mm, which is predicted to yield a

negligible bending loss for the waveguides considered.

Figure 4.13 depicts the measurement set up for the integrated Bragg gratings. Notice

2The amplitude loss coefficient a is related to the loss in dB per unit length by a = 1 x (dB/length)
3 20

3We were able to use this technique for the glass channel waveguides because the refraction is significantly
weaker for lower-index glass waveguides.
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Figure 4.11: Geometry of the silicon-on-insulator ridge waveguides with Bragg
gratings. (a) Top-down diagram illustrating overall device dimensions. (b) Wave-
guide and grating cross-section. (figsta/soi-grating-geometry.eps)
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Figure 4.12: When measuring integrated Bragg gratings, it is important to elimi-
nate internal reflections at the chip facets. This can be achieved by orienting the
facets at an angle with respect to the waveguides. This figure illustrates three dif-
ferent ways of angle-polishing the waveguides facets. We have chosen to adopt
the scheme depicted in (c), in which the waveguides are bent slightly at either end
of the chip. (figst4/angle-polilsing-schames.eps)
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that the chip must be rotated by 21 degrees in order to account for the refraction at the input

and output facets. Light was coupled into the device using a lensed fiber, and imaged at

the output facets using a microscope objective.

Prior to measuring the devices, the output of the lensed fiber was focused directly onto

the detector in order to quantify the relative amount of light entering the device. After

the device was inserted and all of the elements aligned, the detected power decreased by

12.3 dB for the TE polarization and 13.6 dB for the TM polarization. These insertion loss

figures include mode mismatch at the input facet, waveguide propagation loss, possible

grating induced loss, Fresnel reflection loss at both facets, and bending loss. The theoreti-

cally calculated Fresnel reflection loss is 2.9 dB for TE and 3.5 dB for TM4 . From our prior

measurements of the waveguide propagation loss for similar structures without gratings,

the waveguide themselves account for 3-10 dB of loss. Because of this uncertainty in our

estimate of the waveguide propagation loss, it is difficult to quantify the excess loss asso-

ciated with the grating. However, as we will describe in Appendix C, we also measured 8

mm-long Bragg gratings in addition to the 4 mm gratings described here. The measured

insertion loss did not increase measurably when the grating was made longer, indicating

that the Bragg gratings introduce very little additional loss.

Figure 4.14 depicts the measured TE transmission spectrum for a 4 mm-long integrated

Bragg grating. A similar spectrum is seen for the TM polarization. There are four distinct

dips in the transmission spectrum (and there might be more at shorter wavelengths which

our laser could not reach.) The first three dips at 1510, 1525, and 1537 nm are caused

by coupling of the forward traveling mode to radiation modes. The final dip at 1543 nm

corresponds to the anticipated coupling from the forward to the backward guided mode.

We associated the short-wavelength transmission dips with radiation loss after measuring

the device in reflection using a circulator. Whereas there is no measured reflected signal at

the wavelengths corresponding to the first three transmission dips, we saw a peak in the

reflected signal at wavelengths corresponding to the transmission dip at 1543 nm.

The radiation loss on the blue side of the spectrum is a well studied phenomenon for

fiber Bragg gratings [143]. As in the case of fiber Bragg gratings, this loss can be identi-

fied with grating-assisted coupling between the forward-traveling mode and backward-

traveling cladding modes. The spectrum of the cladding modes can be computed using

the beam propagation method, as described in reference [143].

To illustrate the physical mechanism of this radiation mode coupling, consider the sim-

4 Because the waveguide are illuminated at an angle to the facet, the reflection is different for TE and TM,
which is why the computed Fresnel reflection loss differs between the two polarization states.
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Figure 4.13: (a) Experimental setup used to measure the transmission spectral re-
sponse for integrated Bragg gratings in silicon-on-insulator ridge waveguides. (b)
Enlarged diagram depicting the light path at the input facet. Because the wave-
guides approach the facet at an angle of six degrees from the normal, the entire
chip must be rotated by 21 degrees to allow for refraction as the light enters the
chip. (figs/4/grating-measurement-diagram.eps)
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Figure 4.14: Measured transmission spectral response for a 4 mm long Bragg grat-
ing on a silicon-on-insulator ridge waveguide. The spectral response shows four
distinct dips in transmission. The three peaks on the blue side of the spectrum
are attributed to radiation loss, whereas the narrow dip at 1543 nm corresponds to
Bragg reflection into the backward-traveling bound mode. (figs/4/radiationmodes.eps)
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air n=

S10 2  n= 1.46

Figure 4.15: The nature of the radiation losses seen in Fig. 4.14 can be explained by
considering this simplified structure consisting of a simple SiO2:Si:air slab wave-
guide whose dimensions are chosen to be similar to the ridge waveguide which
we actually measured. (figs/4/simple-slab-model.eps)

plified problem of a silicon slab waveguide, whose dimensions are chosen to be similar to
the ridge waveguide which we actually measured. Specifically, we let the silicon guiding
layer be 3 gm thick and we assume that the lower cladding is SiO 2 (n = 1.46) and the up-
per cladding is air (n = 1), as depicted in Fig. 4.15. The propagation constants, 0h, can be
computed exactly for each of the modes of this structure[14]. Figure 4.16 depicts the calcu-
lated dispersion relation (0 vs. A) for the first four TE modes of the structure. Notice that
we have also plotted the negative propagation constants which correspond to the lowest
four backward-travelling modes. The Bragg grating creates a coupling between the modes
wherever the difference in propagation constants is equal to the k-vector of the grating:

27r
A(A) - Om(A) = - (4.7)

The four arrows drawn in Fig. 4.16 illustrate the four wavelengths at which light from the

forward-traveling fundamental mode can couple to a backward traveling mode. The posi-

tion and relative spacing of these four wavelengths agrees qualitatively with the measured
data presented in Fig. 4.14, in spite of the simplified approximations made (i.e., replacing

the ridge with a slab.)

Of course, the ridge waveguide was designed to have only one bound mode (for each

polarization state), which raises the question of why we measure these extraneous dips

in the transmission. The explanation is that although the waveguide only supports one

bound mode, there are several leaky modes associated with the higher-order slab modes of

the structure. For these leaky modes, the mechanism of power loss is that the light escapes

by leaking out into the silicon slab on either side of the ridge. By contrast, the fundamental
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Figure 4.16: Calculated dispersion relation (0 vs. A) for the first four modes of the
slab waveguide structure depicted in Figure 4.15. The corresponding backward-
traveling modes (with negative values for 0) are also plotted. Coupling can occur
between modes wherever the difference in propagation constants matches the spa-
tial frequency (k-vector) of the Bragg grating. The four vertical lines in this figure
indicate the four wavelengths at which light from the forward-traveling funda-
mental mode can couple to one of the four backward-traveling modes. (figs/4eaky-slab-

simulation.eps)
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mode is completely confined by the ridge, meaning that the fields decay evanescantly to

either side of the ridge.

Figure 4.17 is an expanded plot of the fundamental Bragg transmission spectrum. We

have included both TE and TM spectra for comparison. The separation between the TE

and TM peaks is approximately 50 GHz, or 0.4 nm. The theoretically predicted modal

birefringence for the structure is 43 GHz, or 0.35 nm. Another effect seen in Fig. 4.17 is that

the TE-polarized mode experiences a stronger Bragg reflection than the TM mode. Based

upon the depth of the transmission response, we estimate that the grating strength (r) is

4.5 cm-1 for the TE mode and 2.1 cm-1 for the TM mode. The TE grating strength agrees

well with calculations based on coupled mode theory. (cf Fig. 2.23), while the TM result is

somewhat lower than the value of 3.7 cm-1 predicted by coupled mode theory.

Figure 4.18 plots a comparison between the measured theoretical spectral response (for

TE polarization) and the calculated spectral response, assuming n = 4.5 cm-1 . The inferred

peak reflectivity of this structure is approximately 90%, and bandwidth (at half-maximum)

is approximately 15 GHz. Although the reflectivity of this structure is not high enough to

compete with fiber Bragg gratings or other currently used high-performance WDM filters,
this represents to our knowledge the first experimental demonstration of an integrated

Bragg grating in an SOI ridge waveguide.

As discussed in Section 2.3.3, when extracting a modulated data signal from a noisy

background, the optimal filter is not a flat bandpass filter but a matched filter. The length

of the gratings considered here were chosen to yield a spectral response which is approxi-

mately matched to a 10 Gb/s on-off encoded optical signal.

4.3 Summary

We have described in this chapter the measurement and characterization of integrated

waveguides, couplers, and Bragg gratings. Specifically, we investigated a series of direc-

tional couplers, fabricated in glass channel waveguides, and we demonstrated an inte-

grated Bragg grating filter fabricated on a silicon-on-insulator ridge waveguide.

For the glass waveguide devices, we presented a comparison between conventional

single-stage directional couplers and a more sophisticated cascaded coupler. We demon-

strated that by connecting two dissimilar directional couplers with an intervening phase

shift, one can obtain a power-splitting ratio that is insensitive to wavelength, polariza-

tion, and fabrication parameters. Others have recognized that wavelength insensitivity
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Figure 4.17: Transmission spectrum for the 4 mm-long Bragg grating. For compar-
ison, both TE and TM polarizations are plotted. The TM data has been offset by -2
dB in order to more clearly differentiate the two spectra. The separation between
the TE and TM peaks indicates that the birefringence for the structure is approxi-
mately 50 GHz, or 0.4 nm. The estimated grating strength for the TE polarization
approximately 2 x larger than for the TM polarization. (figs/4/tetmcompare4.eps)
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Figure 4.18: A comparison between the measured spectral response for the 4 mm-
long Bragg grating, and that predicted from coupled mode theory. The grating
strength used in the theoretical model was 4.5 cm-1. (figs/4/grating-spectrum-it-4.eps)
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can be achieved using such a Mach-Zehnder structure, but their design technique in-

volves numerical optimization based upon measured wavelength-dependence data [51].

This approach does not explicitly account for polarization dependence or other fabrication

uncertainties, and it cannot be easily extended to other waveguide systems. Our mea-

surements show, by direct comparison with a similarly fabricated directional coupler, that

wavelength-insensitive and polarization-insensitive performance can be achieved using

the relatively simple analytical design rules described in Section 2.2.5. The couplers which

we constructed achieved close to 50 percent power splitting over the entire wavelength

range from 1475-1590 nm, for both polarization states.

For the silicon-on-insulator devices, we measured and analyzed the spectral response

of a set of integrated Bragg gratings. Our measured spectral response shows reasonable

agreement with that predicted by the coupled mode theory described in Section 2.3. The

filters achieve a bandwidth of 15 GHz, for a 4 mm-long grating, with a peak reflectivity

of 90% for the TE polarization and 50% for the TM polarization. Furthermore, we de-

scribed a simple model which explains the origin of the radiation loss which we observed

on the blue side of the spectrum. To date, most of the integrated filters fabricated in SOI

are resonator-based structures, based on sub-micron size silicon channel waveguides[144].

The Bragg grating structures demonstrated here operate on a completely different princi-

ple. Although it is somewhat misleading to compute a Q (quality factor) for these devices,

we can point out that for a resonator-based device to have the same bandwidth as the

Bragg grating filter described here, would require a Q of 13,000.
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Chapter 5

Conclusions

5.1 Summary

This thesis has sought to provide a thorough description of my research in integrated

Bragg grating filters. The work was grouped into three principal chapters describing, re-

spectively, the design, fabrication and measurement of devices. This ordering, while log-

ical, doesn't necessarily describe the actual or even the optimal sequence of events: most

successful device development projects involve many cycles of iteration and prototyping.

The design of integrated optical devices begins with an electromagnetic analysis of

dielectric structures. To this end, I developed and implemented a set of finite difference

routines which accurately predict the electromagnetic modes of integrated waveguides.

These routines are crucial not only in designing such structures, but in understanding

their observed behavior. Once the electromagnetic modes are well-characterized, the be-

havior of more complicated systems consisting of multiple waveguides and gratings can

be simulated using coupled mode theory. In coupled mode theory, Maxwells equations are

replaced by a set of coupled linear differential equations in which the coupling coefficients

are related to overlap integrals involving the electromagnetic modes of the waveguide.

I describe how the coupled mode equations can be applied to directional couplers and

Bragg gratings, including the case where the gratings are apodized or chirped. Finally, the

solution to the coupled differential equations can be expressed in the form of a transfer

matrix. Complicated aggregate devices can be easily modeled by simply multiplying their

respective transfer matrices.

The fabrication of integrated photonic devices presents several unique problems which
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have not been adequately addressed by the microfabrication community. I implemented

specialized software routines for generating the long, slowly curved waveguide patterns

required in waveguides and directional couplers. I described a flexible fabrication method-

ology for patterning integrated waveguides, couplers, and Bragg gratings in two differ-

ent material systems: integrated glass channel waveguides and silicon-on-insulator ridge

waveguides. The relevant lithographic tools used to build these devices include conven-

tional optical lithography, scanning-electron-beam lithography, interference lithography,

and x-ray nanolithography. The goal of our fabrication efforts has been to bring together

all of these techniques in an efficient and robust process.

Finally, the measurements of fabricated devices were presented, along with a descrip-

tion of the measurement techniques. For the glass waveguide system, I demonstrated an

improved directional coupler that shows reduced sensitivity to wavelength and polariza-

tion. In the silicon-on-insulator system, I measured and characterized a series of integrated

Bragg gratings. A simple physical model was presented to explain the anomalous loss in

transmission which was observed in the blue side of the spectrum. The measured spectral

response agrees well with theoretical predictions based upon coupled mode analysis.

5.2 Future Work

No one enjoys writing a document about the things they didn't do. Nevertheless, inte-

grated optics is an exciting research field and like every exciting field there is an endless

supply of challenging problems to consider. Although my work in this field has allowed

me to design, fabricate and measure integrated photonic devices, there is much room for

improvement, and there are many stones which have been left unturned.

The finite difference routines which I described are adequate for many devices, but

there exist more advanced numerical techniques for simulating waveguides. In particular,

the routines which I describe have a numerical accuracy (grid quantization error) which is

proportional to the grid size AxzAy. Most commercially available numerical mode solvers

use a similar set of routines with the same accuracy order. The design and analysis of inte-

grated photonic structures could benefit significantly from routines which converge more

rapidly with decreasing grid size. For example, if the numerical accuracy were propor-

tional to Ax2 Ay2 , one wouldn't need to use as fine a grid size to accurately compute the

mode structure[145, 146]. Another improvement which could be made would be to mod-

ify the existing program to implement the beam propagation method. This would enable

one to numerically model structures like tapers, bends, and y-branches.
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The coupled mode analysis for integrated Bragg gratings seems to accurately predict

the coupling coefficient r, for the TE polarization, but overestimates the coupling coefficient

for the TM polarization. This discrepancy might be caused by the fact that we neglected

the longitudinal field component e, when computing the grating strength overlap integral.

More attention should be devoted to the problem of calculating the coupling coefficient

K, especially for high index contrast systems where there can be significant polarization

dependence.

Interference lithography is an extremely powerful tool for building integrated Bragg

gratings, but more work is needed to characterize and eliminate the phase distortion pro-

duced by these interference lithography systems. In particular, because the systems cur-

rently used in the NanoStructuresLab employ spherical waves, the gratings produced have

an inherent chirp which limits the usable grating length in practical applications. In order

to construct longer Bragg grating filters, it will be necessary to either use some other litho-

graphic means, or renovate the interference lithography systems to eliminate this chirp.

For the glass waveguide devices, we have not yet solved the problem of maintain-

ing the grating structure during the cladding overgrowth process. One potential solution

would be to etch the grating into the lower cladding layer before depositing the core. Since

the bottom SiO 2 base layer should have the highest glass transition temperature in the sys-

tem, presumably this approach would not suffer from the same problems of reflow. As

the integrated optics community becomes more interested in smaller, high-index-contrast

waveguides, the problem of maintaining the structural fidelity of the structure during

overgrowth will become even more important.

The silicon-on-insulator devices could be improved in several ways. First, we have not

been careful in our initial experiments to minimize the birefringence of the devices. More

experimental and theoretical investigation of these devices could lead to a design which

has little or no birefringence. Another significant limitation of this material systems is the

polarization-dependence in the grating strength r,. One potential solution to this problem

would be to corrugate the sidewalls of the structure in addition to the top surface, in order

to balance the TE and TM feedback. The devices which we measured had a mode size

which was slightly too small to allow efficient butt-coupling to an optical fiber. While the

structure could be made larger without sacrificing single-mode operation, it becomes hard

to achieve a sufficiently high grating strength , for a large waveguide. Again, there might

be a way to improve the grating strength by corrugating the sidewalls and the other silicon

regions outside of the ridge.

The coupling to leaky modes on the blue side of the spectrum is another effect which
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deserves further investigation. Although radiation loss is an undesirable effect for add/

drop filters, it might be possible to exploit this effect for other applications such as gain

equalization.

Having demonstrated integrated directional couplers and integrated Bragg gratings

separately, the next task will be to assemble these two building blocks into an integrated

Mach-Zehnder interferometer, in order to separate the reflected signal from the input sig-

nal. The ability to integrate directional couplers and gratings in this way without the need

for any post-fabrication trimming or adjustment could prove to be the strongest selling

point for integrated Bragg gratings filters.

Finally, much can be done to optimize the spectral response of a Bragg grating by in-

tentionally introducing chirp and apodization. The theoretical framework presented in

this thesis describes how to analyze and design such a structure, but the devices which

we have built to date have not taken advantage of these degrees of freedom. One way

to achieve apodization is to adjust the lateral extent of the grating, by making the grating

only cover part of the waveguide rather than the entire waveguide. Another way would

be to adjust the depth of the grating across the device. For Bragg gratings formed by phys-

ical corrugations, the process of apodization invariably changes the effective index of the

waveguide. For this reason, apodization and chirp are inextricably tied together. There are

two ways to construct a filter with pure apodization. One way is to modify the waveguide

width in tandem with the apodization profile such that the effective index of the wave-

guide remains constant. Another approach would be to intentionally chirp the grating in

addition to apodization in order to compensate for the change in effective index induced

by the apodization.

I have mentioned here a few of the possible directions for future research, but the pos-

sible applications of integrated Bragg gratings are limited only by the imagination. It is

my hope that this work provides enough theoretical and experimental information to en-

courage others to develop new creative ideas and applications.
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Appendix A

Finite Difference Modesolver

Section 2.1.4 introduced the topic of finite difference methods by describing an approxi-

mate solution method for the scalar eigenvalue equation. The scalar eigenvalue equation

is valid whenever the index contrast of the waveguide is small. The derivation presented

in Section 2.1.4 assumes that the scalar field and its derivative are continuous at all points

and the transverse planes. However, Maxwells equations clearly state that some of the

transverse field components are discontinuous across abrupt dielectric interfaces. This ap-

pendix details how the finite difference equations can be modified to account for these

predictable discontinuities in the electromagnetic fields. The reader should refer to Section

2.1.4, which defines the geometry of the finite difference mesh and introduces the notation

used to label grid points.

A.1 Vector Finite Difference Method

First, consider the differential operator P, which operates on e. in the full-vector eigen-

mode equation (Eq. 2.25):

& F 1 &(ri2e, 1 - 2 e
PXe= a + +n 2k2 ex . (A.1)

Lz jn 8 _ y2

Now suppose that we wish to approximate this differential operator with a finite difference

scheme. As before, we shall use the subscripts P, N, S, E and W to label the point under

consideration and its closest neighbors to the north, south, east and west respectively. If the

refractive index is the same for all five of these points, we may simply use the scalar finite
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difference scheme described in Eq. 2.45. Also, because ex is continuous across horizontal

interfaces, the &2 ex term may be approximated with the simple three point difference of19Y2

Eq. 2.42. However, when there is an index discontinuity between W and P or between P

and E, the finite difference equations must be modified to account for the discontinuity

in ex. To accomplish this, we use a modified interpolation procedure in which we fit the

points exw, exp and exE with a piecewise quadratic polynomial.

Aw+Bx+Cx2 incellW

Ox Ap + Bx + Cx 2  in cell P (A.2)

AE+Bx +Cx 2  in cell E

The interpolating function O(x) is identical to Eq. 2.37 except that it allows for a possible

discontinuity at the edge of each cell. We have further assumed that the first and second

derivatives (or equivalently the polynomial coefficients B and C) are continuous across

cell boundaries.

As before, we require that the interpolating function passes through the three points

exw, exp and exE:

exw Aw - BAx + C(Ax) 2

exp Ap (A.3)

exE AE + BAx + C(Ax) 2

But we now add additional constraints that describe the continuity of n 2ex at x = A:

nw 2Aw - 'BAx + 'C(Ax) = n2 Ap - 'BAx + 'C(Ax)2

2 {A 2 (A.4)

n 2 Ap + BAx + 'C(Ax ) 2= n2 AE + 'Bx + C(x) 

Eq. A.3 and Eq. A.4 together give five linear equations which can be solved for the five un-

known polynomial coefficients. (Actually, B and C are the only two coefficients of interest

because they describe respectively the first and second derivatives of ex.) For brevity, we
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shall omit the algebraic steps, and simply summarize the results.

_(n2wn2 + 3n 2 n2+
- B I_ -(W7 + E74iW

ax Ax n4 + 2n2 n2 + 2n 2wn2 + 3 n2n2 xw+

3(n2 _ n2 )n2i

nP + 2n2 nP + 2n7wp + 3n 2 rn2 exp + (A.5)

(n 2 n 2 + 3n 2 n 2w(474 2 2P E2 ) 2 '1x
nP + 2ni~n2 + 2n2 n2 + 3n27n2 exE

a2- 2C 1 24(w4 n+ n 2 

ax2 - (Ax) 2 n4 + 2n2 n2 + 2n2n 2 + 3n 2 n2x

4(n2 n2 + n2 n 2 + 2n2 n2)
n74 + 2n2 n2 + 2n 2wn2 + 3 n2 2 p + ( A.6)

4(n 2 n2 + n2 n 2w)

nr4 + 2n2 n2 + 2n2wn 2 + 3n2 n2 xE

Eq. 2.42 and Eq. A.6 can be combined to yield the finite difference representation of the

operator Pxx.

1
0 (0

_ _ _ n 2 k 2 _ 2 2 a p a E

(Ax) 2  (Fy)2  (AX) 2  (Ax) 2

1
0 (Ay) 2  

o

Where the constants aw, ap and aE are dimensionless ratios defined by:

4(n2 n2 +4 n2w)
n4 = 4+ 2n2 n2 + 2nr2 n2 + 3n2 n 2

2(2n4 + n22 +n2 n2
n74 + 2n2 n2 + 2n2wn2 + 3 n2 n2

4(n2 n2 + n2 n2)
aE 2 2 4 224 ± 2 274±2 P 74± 3 E W

(A.7)

(A.8)

(A.9)

(A.10)

A similar analysis applied to ey leads to the following finite difference representation
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of PYY:

(A.11)

Where the constants yS and 7yN are dimensionless ratios defined by:

4(n n2 + n 2 nA)
S 4 + 2n + 2n ± 2 n(

2(2n 4 +n2 n2+n2n2
2(2n p + 2  

2 ) (A.13)
n 4 + 2n2 n2 + 2n2n2 + 2n 2

4(n2N 2 2+ n2n2)
'YN N 2N 2 (A.14)

The finite difference approximations for Pxy and Py are slightly more complicated

because these differential operators involve mixed partial derivatives in both directions.

However, the framework described above can be used to compute a mixed partial deriva-

tive by simply applying the finite difference approximations for L and 2 separately. We

will illustrate this technique for the simple case where we wish to approximate a for

a continuous function f(x, y). To approximate Xj| p we first use the three point finite

difference approximations to obtain !Iw and fIE,

wf ~ -- (fNW - fSW) (A.15)
Oy 2Ay

E 1 - NE - fSE) (A.16)
ay 2Ay

(A.17)

Notice that we have now introduced the new subscripts NW, SW, NE and SE to label the

points northwest, southwest, northeast and southeast respectively. Now, we simply apply

a similar finite difference equation in horizontal direction, giving,

P I E - W (A.18)
Pxay 2Ax y WY

aA~ 2f{ fNEfSE fNw +fSW} (A.19)

""N
0 (A)2 0

1 2 k2 2-p 2 1

(Ax) 2  
- (Ay)2  (AX) 2  (AX) 2

7o
0 (AY)2 0
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Thus, the finite difference representation of the differential operator 9 is

a2

201

(A.20)

It is easy to to verify that for continuous functions, the finite difference representation

of a2 is the same as for .2 The discretized operators corresponding to Py, can beOyeax axay
derived by applying a similar analysis with the modified finite-difference model described

in Eq. A.6. This yields the following finite difference representation of Pyx:

(A.21)

Where the constants aNE, aNW, YSE and asw, are again dimensionless ratios which be-

come 1 in the absence of dielectric interfaces.

C'NE = 4
N

CNW= 4
nN

2(n2E N NE NW)

N E N NW N NE NW

2(NW N N E NW)

+ 2n2En2 + 2n2wm n2 +n2nSN E N NW N NE NW

2(n2 n2 + 3n2E n2W ).qE 2 24
sE-n 2n2n2 + 2n2 n2 + 3 nSEn2W

(S nSE S SW S SESW

(n2 wn2 +3n2 n2w
aSW = n4+22n+2nn2+322

nS + 2nSi + 2nSnf + 3TSE ?SW

Likewise, the finite difference representation of Py is:

1 - 7YNW 0NE -1

4AxAy 4AxzAy

3(-ysw - 7Nw) 3(7NE - -SE)
P'Y4AxAy 04Axdy

YSw -1 1- YSE
4AxzAy 0 4AxAy

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

1 1
4AxAy 0 +4AA

0 0 0

1 1
0 ~y4AxZy

l-CtNW 3(CeNE - QNW) CNE-

4AxZAy 4AxAy 4AxAy

0 0 0

asw -1 3(o'sw - aSE) _-_SE

4AxAy 4AxAy 4AxAy
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where the four constants 7NE, 7/NW, TYSE and ysw are given by:

'YNE 2(nNE E 3E NE2SE) 7
NE=E NE E SE E NE SE

2(n 2En2 + 3n 2 E 2E
4E E NE SE (A.28)n4 + 2(2 nr2 + 2 (A2+328)n
E 2rNE E SE E NE SE

2(n 2Wnr 2± 3n 2 n 2)
YNW 4 2NW2 W 2NW 2 W) 2 2(.9)

n w + 2n±NWW 2W2W NWnSW

2(n 2 n 2 + 3n2Wn 2
7YSW =W + NW SW) (A.30)

n4w + 2n2 n 2 2n2 n27 + 3n nnw + nNW 2W S uW 2W 4 NW SW

Examination of Eq. A.21 and Eq. A.26 reveals that the matrix elements of the finite dif-

ference operators fPY and PXY vanish except for points which are located next to dielectric

interfaces. Thus, it is the presence of dielectric interfaces which couples the two transverse

field components.

For reference, I have summarized the finite difference implementation of the full-vector

eigenmode problem in Tables A.1 and A.2.

To summarize, we have described a technique for developing finite difference approxi-

mations which can be applied even in the presence of abrupt dielectric interfaces where the

field is discontinuous. The technique described here involves fitting a piecewise-quadratic

polynomial to three adjacent grid points. Other authors have developed similar techniques

for accounting for the field discontinuity. Most notably, Stern [21] describes a technique

for modeling field discontinuities using only two adjacent grid points. For simple one-

dimensional problems which can be solved exactly, I have found that the discretization

presented here yields a solution which is 3-4 x more accurate for the same grid size.

A.2 Finite Difference Boundary Conditions

Thus far, we have concentrated on developing finite difference representations of partial

differential equations, without regard to the edges of the computation window. The finite

difference approximations given in the previous section can be applied without modifica-

tion to all internal points in the computation window. But for points which lie on the edge

of the computation window, boundary conditions must be considered. We will describe

here three different boundary conditions: symmetric, antisymmetric, and absorbing.

By "absorbing", we mean that the field is assumed to be zero at grid points immediately
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[1 O(n2e ) 2 6+2k
[2 ax J + y2

1
0 (AY) 2  0

aw n2 k2 2 2ayp aE

(Ax) 2  k (Ay) 2 (Ax) 2  (Ax) 2

1
0 (Ay) 2  0

[ 1 &n 2 ex 1 2ex

P iy n2 ax I DyOx

l-aNW 3(aNE - aNW) aNE - I
4AxAy 4AxAy 4AxAy

0 0 0

asw - 3(aSw - aSE) -- aSE
4AxAy 4AxAy 4AxAy

1 - 7YNW 0NE - I

4AxAy 4AxAy

3(-ysw - -yNW) 3(-NE - -YSE)
4AxAy 4AxAy

-SW-1 0 1 -SE
4AxAy 4AxAy

&2ey + - I (n2eY) 1 2
P xe 2  + - - 0 J+ri k2e098X2 cgy I2 ay I

YN
0 (Ay) 2  0

1 2 27 2 1

(Ax) 2  k (Ay) 2 (Ax)2  (Ax)2

o (Ay) 2 0

Table A.1: A summary of full-vector finite difference equations for the transverse
e fields. Each of the finite difference operators is represented by a 3 by 3 table
which describes the finite difference coefficients for the point under consideration
and the neighboring eight points. For example, the upper left-hand element of the
Pyx table represents the coefficient which multiplies e.NW in the finite difference
approximation of Pyxex. The constants {a,} and {'y,} are dimensionless ratios,
tabulated in Table A.2. Each of these constants evaluates to 1 in the absence of
dielectric interfaces.

ax -1 Oin2e -

n2 OY ] _x yae gY

1

C0

X x
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(A

k

4(n22 +n2 n2+
np + 2n2n2 + 2n2 n2 + 3n2n2n

2(2E4 + 2 n2 +2 n 2

2(n ±E P NE NW
nNE -N + 2n2E + 2nW + 3 NENW

2(W 2 PNE NW)
aNW 4 n E + n + n2 NE2NW

S- +2(nn n + 3SE SW

pSE 2PWEn SWnS SE SW

2(n2n 2 + 3nSE SW
cSW n4+ 2n2nE 2 W 2n + 3 2SEn2SW

Table A.2: A summary of the dimensionless constants used in the finite difference
scheme given in Table A.1. Notice that each of the constants defined here becomes
1 when there are no index discontinuities.
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4n 2n + 2 n2 )2)

2(2nS P nN S
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4(n2r -2+F n 2i)
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-E NE E SErE + 3 NEnSE
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outside of the computation window. In this case, the finite difference approximations only

require a slight modification: we simply omit those matrix elements which would other-

wise refer to points outside of the computation window. For example, suppose we wish

to approximate the scalar eigenvalue equation for a point P located on the leftmost edge

of the computation window with absorbing boundary conditions. Eq. 2.45 describes the

appropriate finite-difference discretization for internal grid points. The modified finite-

difference discretization for a point on the leftmost absorbing boundary would be:

(A.31)

Now consider the case where instead we assume that the field is symmetric at the left

boundary of the computation window. For a point P located on the left boundary, Ow can

be related to Op by:

Ow = oP (A.32)

When this relation is combined with the previously developed finite difference represen-

tations of Eq. 2.45, the effect is to simply add the Ow coefficient to the #p coefficient as

illustrated below:

(A.33)

Likewise, an antisymmetric boundary condition on the left edge can be accommodated by

simply subtracting the Ow coefficient from the #p coefficient.

We have described how the three different boundary conditions can be treated in the

finite difference method. Although we have used the scalar finite difference equation for

illustration purposes, these techniques work just as well for the full-vector finite difference

equations. In the full-vector treatment, it is important to realize that the two transverse

electric field components have opposite symmetry. That is, if e. is symmetric at the left

1
0 2 0

2 2 1
S Pk2 (A) 2 (Ax) 2  (Ax)2

1
0 (A 2 0

1
0 (Ay) 2  0

2 1 1
0 n 2 k 2- - 1o(Ay) 2  , AX (Ax)2

o (,Ay) 2 0
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boundary, ey should be antisymmetric and vice versa. Also, even though we have focused

on the left/west boundary, these techniques can be easily applied to the other three edges

of the computation window.

The boundary conditions described here assume that the fields are either symmetric,

antisymmetric, or zero immediately outside of the computation window. In reality, the

electromagnetic fields usually fall exponentially at points outside of the core. Therefore,

the assumption that the fields reach zero at the edges of the computation window is merely

a convenient approximation. In practice, one must ensure that the computation window

is large enough that the fields are sufficiently small at the edges. Another solution is to

modify the boundary conditions to account for the exponential falloff of the mode away

from the core. However, one must know how rapidly the fields are decaying in order to

implement this boundary condition. For this reason, the exponentially decaying boundary

condition is usually implemented iteratively [147, 19]: first, one solves for the modes with

absorbing boundary conditions, then the boundary conditions are modified according to

the computed decay rate near the edges of the computation window, and the solution is

then refined using the modified boundary conditions. After several iterations, the solution

converges to an exponentially decaying mode. One limitation of this procedure, is that

the exponential falloff rates can be different for each mode of the structure. Therefore, this

technique cannot be used to calculate several eigenmodes simultaneously.

A.3 Finite Difference Equations for Transverse H Fields

From the preceding discussion, it appears that the finite difference equations would be

simple were it not for the discontinuity of the field components across dielectric interfaces.

Based upon this observation, one may ask why we do not formulate the eigenmodes equa-

tion in terms of the transverse magnetic field ht, rather than the transverse electric field

et. After all, the magnetic field should be continuous across dielectric interfaces even if the

electric field is not.

In fact, it is possible to express the eigenmode equations in terms of the transverse mag-

netic fields, which are continuous everywhere. However, the slope of the magnetic field is

not necessarily continuous across dielectric interfaces. Because of this limitation, the sim-

ple scalar finite difference equations cannot be used with the magnetic field. As with the

transverse electric field, a modified set of finite difference equations must be derived for

the transverse magnetic field. The analysis is almost identical to that presented above, with

the exception that the quadratic interpolating function has a discontinuous slope rather
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than a discontinuous offset. Rather than presenting the complete analysis (which is quite

similar to the one presented above), the resulting finite difference discretization for trans-

verse magnetic fields is summarized in Table A.3 and Table A.4.

One argument in favor of using magnetic fields is that the magnetic field should be

well behaved at dielectric sharp corners. By contrast, consider the continuity of the electric

field component e. at a corner. e_ should be continuous across the horizontal interface,

but discontinuous across the vertical interface; these two requirements seem to be at odds

in the vicinity of a sharp corner. Rigorous analyses show that the electric field has a singu-

larity at such sharp corners [148]. In practice, the corner is never perfectly sharp, and this

singularity can usually be neglected.

A.4 Semivectorial Finite Difference Method

In many cases when the full vector finite difference equations are used, one of the trans-

verse field components is found to be orders of magnitude smaller than the orthogonal

component. In these cases, the finite difference method can be simplified by neglecting

the small transverse field component and instead solving the finite difference equations

for the one remaining field component. This approach is equivalent to neglecting Pxy, PYX,
and either Pxx or Pyy in the full vector treatment described earlier. With this simplifica-

tion, the finite difference problem requires the same storage and computational time as the

scalar problem. However, some of the vectorial properties of the electromagnetic fields are

retained in the solution through the boundary conditions which are applied in the finite

difference discretization. For this reason, this approach is called the semivectorial finite

difference method.

The following three Matlab scripts implement a finite-difference semivectorial mode

solver. The first program, rib. m is used to construct a discretized matrix representation

of the refractive index profile. The second program, svbui ldmtx . m, constructs the finite

difference matrix for the semivectorial mode solver, and the last program, sveigenmodes

simply calculates and formats the eigenmodes of the finite difference matrix. There are

a few additional routines (not presented here) which can be used to plot the calculated

eigenmodes.
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0 (Ay) 2  0

a2 h 2 [a Iah)]
Pyx hx - n2 n 2 a

UNW 1 1- NE

4AxAy 4AxAy

USW - UNW 0NE - JSE
4AxAy 4AxAy

1 - USW 0 9SE - 1
4AxAy 4AxAy

I1Ah Y
W2 ax )]

(NW - (NE -- (NW 1 - (NE
4AxAy 4AxAy 4AxAy

0 0 0

-Sw (S w-(SE (SE-l
4AxAy 4AxAy 4AxAy

aY +n 2 
[x (2 O) +nkYh

0 (Ay) 2  0

W 2 k _2 2p 2 E

(Ax) 2  (Ay) 2 (Ax)2  (Ax) 2

0 (Ay) 2 0

Table A.3: A summary of full-vector finite difference equations for the transverse
h fields. Each of the finite difference operators is represented by a 3 by 3 table
which describes the finite difference coefficients for the point under consideration
and the neighboring eight points. For example, the upper left-hand element of the
Pyx table represents the coefficient which multiplies hxNW in the finite difference
approximation of Pyx h. The constants {a,} and {(,} are dimensionless ratios,
tabulated in Table A.4. Each of these constants evaluates to 1 in the absence of
dielectric interfaces.
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2n 2
(W =2 p2np + nw

2n 2
(E = 2

np + nE

(P ((E + (W)

2 n

_NE 2nNn2N + nNE

_ 2n 2N
(NW =2 N2nN + NW

_2n 2
(SE = 2 2iS + nSE

2n2
(SW =2 i2

ns + nSW

2n2
US 2 2rip + ris

2n2

U P ± pN2

U~P I (N + U'S)

2E

2n2
'NE 2 2

E + TNE

2nW
~NW 2 2

TW ± nNW

2n2
USE = 2 E 2

2n2
0~SW 2 2

nw + nsW

Table A.4: A summary of the dimensionless constants used in the finite difference
scheme given in Table A.3. Notice that each of the constants defined here becomes
1 when there are no index discontinuities.
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File: rib.m

This Matlab program constructs an index mesh for a generalized rib waveguide. The script

is presented here only to give an example of how to construct the index mesh for a finite

difference problem. This routine may be customized or replaced to accommodate any de-

sired waveguide geometry; the only required output parameters are the two-dimensional

matrix eps, and the quantities specifying the grid size dx and dy.

1 function [x,y,xc,yc,nx,ny,eps] = rib(nl,n2,n3,hl,h2,h3,rh,rw,side,dx,dy);

This function creates an index mesh for the finite-difference

mode solver. The function will accommodate a generalized three

layer rib waveguide structure. (Note: channel waveguides can

also be treated by selecting the parameters appropriately.)

% USAGE:

IU % [x,y,

% INPUT

% nl -

15 % n2 -
% n3 -

% hl -

% h2 -

% h3 -

20 % rh -

% rw -

% side

% dx -

% dy -

25 %
% OUTPU

c,yc,nx,ny,eps] = rib(nl,n2,n3,hl,h2,h3,rh,rw,side,dx,dy)

index of refraction for substrate

index of refraction for core

index of refraction for top cladding

height of substrate region

height of core region

height of top cladding region

height of rib ( <= h2)

half-width of rib

- excess space to the right of waveguide

horizontal grid spacing

vertical grid spacing

T

x,y - vectors specifying mesh coordinates

xc,yc - vectors specifying grid-center coordinates

nx,ny - size of index mesh

eps - index mesh (n^2)

ihl =

ih2 =

35 ih3 =

irh =

irw =

iside

round (hl/dy);

round (h2/dy);

round (h3/dy);

round (rh/dy);

round (rw/dx);

= round (side/dx);

40 nx = irw+iside+l;

ny = ihl+ih2+ih3+1;

210
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xc = (1:(nx-1))'*dx - dx/2;

yc = (1:(ny-1))*dy - dy/2;

45 x = (O:(nx-1))'*dx;

y = (0:(ny-1))*dy;

eps = zeros(nx-1,ny-1);

50 iy = 1;

for i = 1:ihl,

eps(:,iy) = n1^2*ones(nx-1,1);

iy = iy+1;

55 end

for i = 1:(ih2-irh),

eps(:,iy) = n2^2*ones(nx-1,1);

iy = iy+1;

60 end

for i = 1:irh,

eps(:,iy) = [[n2^2*ones(irw,1)];[n3^2*ones(iside,1)]1;

iy = iy+1;

65 end

for i = 1:ih3,

eps(:,iy) = n3^2*ones(nx-1,1);

iy = iy+1;

70 end

nx = length(xc);

ny = length(yc);

File: svbuildmtx.m

This Matlab function lies at the heart of the semivectorial modesolver. Based upon the

specified index mesh (obtained, for example, from rib. M), the program builds the sparse

matrix A representing the finite-difference equations. Notice that the matrix elements are

calculated in vectorized form rather than with nested "for" loops - this greatly increases

the speed of the routine by making use of Matlab's optimized vector algebra routines. The

matrix elements are first calculated in lines 58-103, ignorning boundary conditions at the

edges of the computation window. The sparse matrix is actually assembled in line 120,

and boundary conditions are implemented in lines 124-164. We have also developed a

similar routine for building the matrix associated with the full-vector problem. However,

the semivectorial routines are usually sufficient for most problems, and the extension to

full-vector routines is straightforward.
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1 function A = svbuildmtx (lambda, dx, dy, eps, boundary, field);

% This function constructs the finite difference matrix for

% the semivectorial mode solver. Using the index mesh specified in

5 % the matrix eps (= n^2) and the boundary conditions specified in

% 'boundary', this function generates a sparse matrix A

% representing the differential operator for the eigenmodes.

% USAGE:

10 %
% A = buildmtx (lambda, dx, dy, eps, boundary, field);

% INPUT:

15 % lambda - optical wavelength

% dx - horizontal grid spacing

% dy - vertical grid spacing

% eps - index mesh (= n^2(x,y))

% boundary - 4 letter string specifying boundary conditions to be

20 % applied at the edges of the computation window.

% boundary(l) = North boundary condition

% boundary(2) = South boundary condition

% boundary(3) = East boundary condition

% boundary(4) = West boundary condition

25 % The following boundary conditions are supported:

% 'A' - field is antisymmetric

% 'S' - field is symmetric

% '0' - field is zero immediately outside of the

% boundary.

30 % field - can be 'EX', 'EY', 'HX', 'HY', or 'scalar'

% OUTPUT:

% A - sparse matrix representing differential operator for the

35 % eigenvalue problem.

[nx,ny] = size(eps);

% now we pad eps on all sides by one grid point

40 eps = [eps(:,l),eps,eps(:,ny)];

eps = [eps(l,:); eps ; eps(nx,:)];

% compute free-space wavevector

k = 2*pi/lambda;

45
en = ones(l,nx*ny);

es = ones(l,nx*ny);

ee = ones(l,nx*ny);

ew = ones(l,nx*ny);

50 ep = ones l,nx*ny);

en(:) = eps(2:nx+l ,3:ny+2);

es(:) = eps(2:nx+l ,1:ny);
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ee(:)

55 ew(:)

ep(:)

= eps(3:nx+2 ,2:ny+1);

= eps(1:nx ,2:ny+1);

= eps(2:nx+1 ,2:ny+1);

switch lower(field)

case 'ex'

60 alphaw = 4*(1 + ep./ee)./(3 + 2*ep./ee + 2*ep./ew + ep.^2./(ew.*ee));

alphap = 2*(ep./ee + ep./ew + 2*ep.^2./(ee.*ew))./ ...

(3 + 2*ep./ee + 2*ep./ew + ep.^2./(ew.*ee));

alphae = 4*(1 + ep./ew)./(3 + 2*ep./ee + 2*ep./ew + ep.^2./(ew.*ee));

65 an = ones(1,nx*ny)/dy^2;

as = ones(1,nx*ny)/dy^2;

ae = alphae/dx^2;

aw = alphaw/dx^2;

ap = ep*k^2 - 2*alphap/dx^2 - 2*ones(1,nx*ny)/dy^2;

70
case 'ey'

gammas = 4*(1 + ep./en)./(3 + 2*ep./en + 2*ep./es + ep.^2./(en.*es));

gammap = 2*(ep./en + ep./es + 2*ep.^2./(en.*es))./ ...

(3 + 2*ep./en + 2*ep./es + ep.^2./(en.*es));

75 gamman = 4*(1 + ep./es)./(3 + 2*ep./en + 2*ep./es + ep.^2./(en.*es));

an

as

ae

80 aw
ap

case

an

85 as
ae

aw

ap

90 case

an

as

ae

aw

95 ap

case

an

as

100 ae
aw

ap

end

105

gamman/dy^2;

gammas/dy^2;

ones(1,nx*ny)/dx^2;

ones(1,nx*ny)/dx^2;

ep*k^2 - 2*gammap/dy^2 - 2*ones(1,nx*ny)/dx^2;

'hx'

= 2*ep./((ep+en)*dy^2);

= 2*ep./((ep+es)*dy^2);

= ones(1,nx*ny)/dx^2;

= ones(1,nx*ny)/dx^2;

= ep*k^2 - an - as - 2*ones(1,nx*ny)/dx^2;

'hy'

= ones(1,nx*ny)/dy^2;

= ones(1,nx*ny)/dy^2;

= 2*ep./((ep+ee)*dx^2);

= 2*ep./((ep+ew)*dx^2);

= ep*k^2 - ae - aw - 2*ones(1,nx*ny)/dy-2;

'scalar'

= ones(1,nx*ny)/dy^2;

= ones(1,nx*ny)/dy^2;

= ones(1,nx*ny)/dx^2;

= ones(1,nx*ny)/dx^2;

= ep*k^2 - 2*ones(1,nx*ny)/dx^2 - 2*ones(1,nx*ny)/dy^2;

ii = zeros(nx,ny);

ii(:) = (1:nx*ny);

213
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iall = zeros(l,nx*ny);

is = zeros(l,nx*(ny-1));

110 in = zeros(l,nx*(ny-1));

ie = zeros(l,(nx-l)*ny);

iw = zeros(l,(nx-l)*ny);

iall(:) = ii;

115 is(:) = ii(l:nx,l:(ny-l));

in(:) = ii(l:nx,2:ny);

iw(:) = ii(l:(nx-1),l:ny);

ie(:) = ii(2:nx,l:ny);

120 A = sparse ([iall,iw,ie,is,in],

[iall,ie,iw,in,is], ...

[ap(iall),ae(iw),aw(ie),an(is),as(in)]);

% now we must account for the boundary conditions.

125
% north boundary

ib = zeros(l,nx);

if (b == 'S')

elseif (b == 'A')

130 elseif (b == '0')

end

for i = ib,

A(i,i) = A(i,i)

end

135
% south boundary

ib = zeros(l,nx);

if (b == 'S')

elseif (b == 'A')

140 elseif (b ='')

end

for i = ib,

A(i,i) = A(i,i)

end

145
% east boundary

ib = zeros(l,ny);

if (b == 'S')

elseif (b == 'A')

150 elseif (b == '0')

end

for i = ib,

A(i,i) = A(i,i)

end

155
% west boundary

ib = zeros(l,ny);

if (b == 'S')
elseif (b == 'A')

b = boundary(l); ib(:) = ii(l:nx,ny);

sign = +1;

sign = -1;

sign = 0;

+ sign*an(i);

b = boundary(2); ib(:) = ii(l:nx,l);

sign = +1;

sign = -1;

sign = 0;

+ sign*as(i);

b = boundary(3); ib(:) = ii(nx,l:ny);

sign = +1;

sign = -1;

sign = 0;

+ sign*ae(i);

b = boundary(4); ib(:) = ii(1,1:ny);

sign = +1;

sign = -1;
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160 elseif (b == '0') sign = 0;

end

for i = ib,

A(i,i) = A(i,i) + sign*aw(i);

end

File: sveigenmodes.m

This last routine simply calls the Matlab function eigs (in line 33) to compute the eigen-

values and associated eigenvectors of the finite difference matrix A. The remainder of the

script simply formats the nrny x 1 eigenvectors into two-dimensional arrays of size n., x ny
so that they can easily be plotted.

1 function [phi,neff] = sveigenmodes(A,guess,nmodes,lambda,nx,ny);

% This function calculates and formats the eigenmodes for the

% semivectorial finite difference mode solver. It uses the MATLAB

5 % function eigs to calculate a few eigenvalues of the matrix A.

% USAGE:

% [phi,neff] = sveigenmodes(A,guess,nmodes,lambda,nx,ny)

10 %
% INPUT:

% A - sparse matrix containing the finite-difference

% representation of the differential operator for the

15 % full-vector mode solver, generated by svbuildmtx.m

% guess - scalar shift to apply when calculating the eigenvalues.

% This routine will return the eigenpairs which are closest

% to this guess in magnitude

% nmodes - number of modes to calculate

20 % lambda - wavelength

% nx,ny - dimensions of finite difference mesh

% OUTPUT:

25 % phi - three-dimensional vector containing the field for each

% calculated mode, phi(:, :,k) = k^th eigenmode

% neff - vector of modal effective indices,

% neff(k) = effective index of k^th eigenmode

30 shift = (2*pi*guess/lambda)^2;

options.tol = le-8;

options.disp = 0; % suppress output

[v,d] = eigs(A,speye(size(A)),nmodes,shift,options);

neff = lambda*sqrt(diag(d))/(2*pi);

35
phi = zeros(nx,ny, nmodes);
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temp = zeros(nx,ny);

for k = 1:nmodes;

40 temp(:) = v(:,k)/max(abs(v(:,k)));

phi(:,:,k) = temp;

end;



Appendix B

Waveguide Pattern Generation

Software

In this appendix, we provide an example which illustrates how to use the waveguide pat-

tern generation software. The file listed below contains a description of a series of coupler

devices, of the type described in Section 2.2.5. When the pound character # is encoun-

tered in the input file, the remainder of the line is treated as a comment. Dimensions of

length can be specified in almost any of the standard SI units, and angles may be specified

in either degrees or radians. The settings for each device type are "sticky", meaning that

unless they are changed they will automatically apply to subsequent devices of the same

type. This makes it easy to construct an array of similar, but slightly different devices.

Figure B.1 illustrates the corresponding patterns generated by the layout program.

1 kicfilename = "testchip.kic";

epsfilename = "testchip.eps";

rptfilename = "testchip.rpt";

5 epsscalex = 5;

epsScaleY = 5;

lambda = 0.1 um;

10 DeviceSeparation = 400 um;

device CouplerPair

Name = "mzcl";

Ltotal = 20 mm;

15 DeviceLayer = "WG";

DrawText = false;

x0 = 10 um;

#

#

kic output filename

eps output filename

report filename

# x scale factor for eps output
# y scale factor for eps output

# grid size / address unit

# optional device separation

#*
#*

Name of device

total length of device

layer on which device resides

do not draw text label

starting position (left)
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yo = 0;
Width = 6.0 um;

20 RadiusA = 20 mm;

RadiusB = 20 mm;

RadiusC = 20 mm;

Thetal = 2.5 deg;

Theta2 = 2.5 deg;

25 WidthA = 6.0 um;

WidthB = 6.0 um;

WidthC = 6.0 um;

OffsetA = 0;

OffsetB = 0;

30 OffsetC = 0;

Dminl = 10.0 um;

Dmin2 = 10.0 um;

Dmaxl = 250 um;

Dmax2 = 120 um;

35 Lcl = 1213 um;

Lc2 = 2757 um;

LArmUpper = 100 um;

dyLower = 7.7 um;

Center true;

40

45 #

starting position (bottom)

waveguide width

radius of curvature A

radius of curvature B

radius of curvature C

bend angle (on left side)

bend angle (on right side)

width of bend section A

width of bend section B

width of bend section C

offset of bend section A

offset of bend section B

offset of bend section C

minimum waveguide c-c separation

minimum waveguide c-c separation

maximum waveguide c-c separation

maximum (arm) waveguide c-c separation

length of first coupler segment

length of second coupler segment

length of grating arm segment

vertical path difference in arms

whether to center device horizontally

Note: multiple devices may be defined in a single input file.

When constructing a set of similar devices, you only need to

specify which parameters are different from the most recently

defined device.

device CouplerPair { Name = "mzc2"; dyLower =

device CouplerPair { Name = "mzc3"; dyLower =

device CouplerPair { Name = "mzc4"; dyLower =

50 device CouplerPair { Name = "mzc5"; dyLower =

device CouplerPair { Name = "mzc6"; dyLower =

device CouplerPair { Name = "mzc7"; dyLower =

device CouplerPair { Name = "mzc8"; dyLower =

device CouplerPair { Name = "mzc9"; dyLower =

7.8

7.9

8.0

8.1

8.2

8.3

8.4

8.5

um;
um;

um;

um;

um;

um;

um;

um;
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20 mm

E-
Ca

C-1

400 pm

250 pm

Figure B.1: Waveguide patterns generated by the layout program, with the input
file given in this appendix. In this figure, the vertical scale has been expanded by
10 x in order to better illustrate the devices. (figs/B/test-chip-pattern.eps)
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Appendix C

Phase Distortion in Bragg Gratings

C.1 Evidence of Chirp in Bragg Gratings

In Section 4.2.2, we presented the measured spectral response for 4 mm-long Bragg grat-

ings, and compareed the results to theoretical predictions. Although the measured re-

sponse agrees well with a theoretical model, a closer inspection of the data plotted in

Fig. 4.18 reveals that the measured spectral response is slightly broader than that predicted.

One possible explanation for this discrepancy is simply that the grating length is somewhat

shorter than 4 mm, or that the group index is slightly smaller than our estimate. However,
the grating length can be measured unambiguously to a high degree of accuracy, and the

discrepancy in group velocity required to explain the observed bandwidth change is too

large to be supported by theory.

The theoretical spectral response plotted in Fig. 4.18 assumes that the Bragg grating

is a uniform, perfectly periodic structure which begins and ends abruptly. Under these

conditions, the transmission spectrum is given by Eq. 2.129. When these criteria are not

satisfied, the spectral response cannot be expressed in closed form, and it must instead

be computed by numerically solving the coupled mode equations, as described in Section

2.3.5. Because of the fabrication techniques used to form the gratings, we know that the

grating regions begin and end abruptly, but we cannot rule out a distortion in the grating

pattern. To first-order, such a distortion can be described by simple linear chirp:

A(z) = Ao + Az , (C.1)

Figure C.1 compares the measured and calculated transmission spectrum, when we allow
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for a linear chirp in the grating. The chirp rate A used in this model was ±27 pm/nm1 , and

the grating strength (r) was 4.5 cm-1. Because the spectral response of the chirped grating

must be numerically calculated for each frequency point plotted, is not easy to extract the

theoretical parameters by a least squares fitting algorithm. (Each spectral response takes

approximately two minutes to compute on a 400 MHz computer.) Therefore, the chirp rate

of ±27 pm/cm was determined by simple trial and error method. Nevertheless, we believe

this technique can determine the chirp rate to within 2 pm/nm. The excellent agreement

between theory and experiment shown in Fig. C.1 supports our hypothesis that there is a

chirp in the system.

The effect of grating chirp can be seen more clearly for longer Bragg gratings. Fig-

ure C.2 shows the measured spectral response for an 8 mm-long Bragg grating, for both

polarization states. For these devices, the spectral response shows two distinct dips in

transmission. Figure C.3 presents a more detailed picture of the measured TE spectral re-

sponse, along with a theoretically computed spectrum. For this device, the inferred chirp

rate is ±56 pm/cm, and the grating strength is 4.0 cm-1. Also shown for comparison in

Fig. C.3 is the theoretically calculated spectral response that the Bragg grating would have

in the absence of chirp. As for the 4 mm devices, the measured spectral response is very

accurately modeled by including a linear chirp in the grating. The deviation between the-

ory and measurements could arise if the grating distortion has a more complicated form

than a simple linear chirp.

When the linear chirp rate is 56 pm/cm over 8 mm (as it is for the data plotted in

Fig. C.3), the grating period is 45 pm longer or shorter at the end of the grating than it is

at the beginning. For a 223 nm period grating, this corresponds to a change in period of

only 200 parts per million over the length of the grating. Although this seems like a small

change, it corresponds to a change in the free-space Bragg wavelength of about 0.3 nm,

which is equivalent to a 40 GHz frequency shift.

Another way to quantify the distortion is in terms of the equivalent in-plane distortion

of the grating. Imagine comparing the chirped grating to a uniform unchirped grating,

whose period is chosen to correspond to the that of the chirped grating at z = 0, (i.e., A o.)

The two gratings would be identical at the z = 0, but the distorted grating would slowly

walk off with respect to the uniform grating as one moves away from z = 0. This walk-off

'Because we have measured only the amplitude of the spectral response (and not the phase), we can deter-
mine the magnitude of the chirp rate, but not the sign.
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spectrum
-2 (TE pol.)

S-4
Calculated spectrum:

0 lic=4.7cmi
Lg =4mm

A(z) = A z +iAz
-6 A0 =223 nm

A =27 pm/cm

-8

-10

-40 -30 -20 -10 0 10 20 30 40
frequency(GHz)

Figure C.1: A comparison between the measured transmission spectral response
for a 4 mm Bragg grating and the theoretically calculated response, when we allow
for a possible linear chirp in the grating. The measured spectrum is well described
by a linear chirp of 27 pm/cm. (figs/C/grating-chirp-fit-4.eps
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relative frequency (GHz)

160 120
1 1 80 40 0 -40

Ii I I
-80 -120

1542.5 1543 1543.5 1544
wavelength(nm)

1544.5 1545

Figure C.2: Transmission spectrum for an 8 mm-long integrated Bragg grating in
SOI. For comparison, both TE and TM polarizations are plotted. The TM data
has been offset by -2 dB in order to more clearly differentiate the two spectra.
(figs/C/tetmcompare8.eps)
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Figure C.3: A comparison between the measured and calculated transmission
spectra for an 8 mm-long Bragg grating. The measured spectrum is well described
by a linear chirp of 56 pm/cm. For reference, we have also plotted the predicted
spectral response for a similar grating without chirp (dashed line.) (figs/C/grating-chirp-fit-

8.eps)
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can be simply related to the grating phase O(z), which was introduced in Section 2.3.5.

A z = #(z -7 z ,(C.2)
27 ( Ao)

where #(z) represents the phase of the chirped grating and 27rz/Ao is the phase of the

unchirped grating. Using the Taylor series expansion given in Eq. 2.161 for O(z), we obtain

following expression for the in-plane distortion:

A 2Az A z2 (C.3)
2Ao

Thus, for a linearly chirped grating, the in-plane distortion grows quadratically. For the

data plotted in Fig. C.3, if A0 is chosen to be the period of the grating at its midpoint, the

ends of the grating will be displaced from their unchirped positions by 200 nm, almost one

full period.

C.2 Sources of Distortion

The analysis of the previous section provides fairly strong evidence that there is a chirp

in the devices, but it does not unambiguously identify the source or sign of this chirp.

There are many effects which could explain the observed chirp, and they can be broadly

classified in two categories: either the grating itself is chirped, or there is some equivalent

change in the medium of propagation. Even for a uniform grating, if the effective index (or

equivalently, the propagation constant, i) of the guiding medium changes over the length

of the device, the structure will behave as if the grating were chirped.

One potential source of grating distortion is the interference lithography technique

used to generate gratings. As described in Section 3.2.1, the interfering waves in the

interference lithography systems used at MIT are not plane waves but diverging spher-

ical waves formed by focusing a laser beam through a small pinhole. The standing wave

pattern formed by interfering spherical waves can be accurately described as a family of

hyperbolas, as described in reference [117]. Figure C.4 depicts the calculated grating dis-

tortion for the Lloyd's mirror interference lithography system used to form the gratings on

the devices which we measured. Figure C.4a shows contours of constant grating period

and Fig. C.4b depicts the calculated local grating chirp 2 . The calculated chirp grows to

either side of the plane of symmetry of the system, and depends weakly on the vertical

2 The local grating chirp is proportional to the second derivative of the grating phase at each point.
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position y. In the Lloyd's mirror system, the plane of symmetry (z = 0) corresponds to

the plane of the mirror. When lithography is completed, the mirror edge makes a clearly

visible boundary in the grating which marks the plane of symmetry of the system. For the

device reported in this work, we were careful to position the gratings within 1 cm of the

plane of symmetry in order to minimize the hyperbolic distortion. Based upon the theory,

the observed grating chirp is too large by a factor of 4-5 to be explained entirely by the nat-

ural hyperbolic phase distortion of the grating. For comparison, we have also calculated

the theoretical distortion map for the conventional two-beam interference lithography sys-

tem, also used at MIT. In this system, the arm length is slightly smaller and therefore the

distortion is predicted to be more severe.

Another effect which could lead to a physical chirp in the grating is if the wafer or

mirror were not flat. Most wafers are not completely flat, even when held on a vacuum

chuck. However, it is important point out that the flatness only matters over a small, 4-8

mm portion of the wafer where the gratings reside. The mirror must likewise be flat over

a similar length scale. Furthermore, because the gratings are essentially one-dimensional

structures that are periodic in the z direction, the critical figure is the flatness in the z

direction and not the flatness in the y direction. To lowest order, the nonflatness can be

described by a simple linear height variation in the z direction. This type of distortion

is equivalent to making the wafer and mirror nonperpendicular. The diverging spherical

wave approximation mentioned earlier can easily be extended to account for this type of

angular misalignment. For the system used to expose the gratings, the mirror and wafer

would have to be nonperpendicular by about 2 degrees in order to explain the observed

chirp. This corresponds to a wafer height variation of 280 pm over 8 mm. This level of

nonflatness would have been visible to the naked eye during the setup of the system.

Another possibility is that after the grating is formed on the substrate, subsequent pro-

cessing of the sample causes the surface to distort. For example, perhaps when the sample

is released from the vacuum chuck which holds it during the exposure, the surface relaxes

to some distorted shape. Another place where distortion may occur is when the sample is

polished and mounted prior to measurement. The samples are mounted onto metal tabs

using a heated epoxy prior to measurement. It is possible that the sample distorts dur-

ing cooling because of the potentially different thermal expansion coefficients of the epoxy

and the sample. In order for these effects to explain the observed chirp, the type of induced

distortion must be more complex than a simple linear expansion or contraction: a linear

chirp in the grating requires that the in-plane surface distortion has a quadratic profile.

As mentioned earlier, it is also possible for the chirp to arise because of a variation in

the guiding medium, even if the grating itself is perfectly periodic. To understand this
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Figure C.4: Calculated distortion map for the Lloyds mirror interference litho-
graphy system used to generate the Bragg gratings which we measured. The fol-
lowing parameters were used in these calculations: the illuminating wavelength
was 325 nm, the central period of the grating was 223 nm, and the distance from the
center of the sample to the pinhole was 165 cm. (a) Contours showing the change
in grating period (the period at the center is 223 nm.) (b) Contour plot of the local
grating chirp. The contour labels have dimensions of pm/cm. (figs/C/hypermap-325.eps
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C.2. SOURCES OF DISTORTION
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Figure C.5: Calculated distortion map for the conventional two-beam interference
lithography system used at MIT. The following parameters were used in these cal-
culations: the illuminating wavelength was 351 nm, the period of the grating at the
center was 223 nm, and the distance from the center of the sample to the pinhole
was 100 cm. (figs/C/hypermap-351.eps)
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effect, it is necessary to return to the coupled mode equations for a nonuniform grating:

d A+ (z) 1 j(z) Koe-(z) i A+(z) 1
dz A(z) J [ e+j$(z) JA(z) Az)

where O(z) = kg (z') dz' . (C.5)

In this equation, we assume that the grating strength t has a constant magnitude, but we

allow for both grating chirp (through the function O(z)) and waveguide chirp (through the

function /3(z)). Of course, the waveguide chirp function O(z) will change with frequency

w. When this problem was treated in Section 2.3.5, we made a slowly-varying-amplitude

approximation by factoring out the rapid oscillations which have spatial frequency near

some arbitary reference point 3,. We now take a slightly different approach in order to

clearly show the equivalence of waveguide chirp and grating chirp. Imagine evaluating

the waveguide chirp function O(z) at some reference frequency Wr:

Or (Z) = (Z)_ .w=L (C.6)

Next, we define a slowly-varying envelope functions a± (z) in terms of this reference chirp

function /r(z),

A± (z) = a+ (z) exp -:Fj fz or(Z') dz' .(C.7)

By substituting Eq. C.7 into Eq. C.4, we arrive at the following coupled mode equations

for the envelope functions a± (z):

d a+(z) j (Z) a+(z) , (C.8)
dz a- (z) K(Z)* j6 a_ (z)

where the K(z) and 6 are defined as:

5(z) = (z) - Or(Z) (C.9)

K(z) = Ko exp -j z [kg (z') - 2/r (Z')] dz . (C.10)

Notice that 6 is now the difference between two functions of z, however the difference

between the two should be relatively independent of z over the bandwidths of interest. To

first-order, the difference between the two functions is simply proportional to the deviation
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from the reference frequency Wr:

1
S (WWr) , (C.11)

V
9

where v 9 is the group velocity. Notice that when the coupled mode equations are cast in

this way, grating distortion and waveguide distortion are indistinguishable through the

relation described in Eq. C.10.

There are several geometrical and optical parameters that could give rise to a variation

in the waveguide over the length of the device. One possibility is that the silicon core

thickness changes slightly from one end to the other. Another possibility is that the duty

cycle, or grating etch depth changes across the device. Also, the ridge height or ridge

width could vary systematically across the device. We have investigated each of these

effects separately, using metrological tools where possible to characterize the samples and

analytical tools to compute the effect of small changes in these parameters. Based upon

our observations and calculations, the observed chirp cannot be explained by a variation

in any of these geometrical parameters. Furthermore, it is unlikely that these parameters

could change substantially without also affecting the magnitude of the grating strength I ,
which would lead to additional effects in the transmission spectrum. Another possibility

is that the refractive index of the silicon guiding layer changes slightly from one end of

the device to the other. This could occur either because of compositional nonuniformity or

because of nonuniform stress/strain in the sample. The required change in refractive index

is approximately 0.001 over 8 mm in order to account for the observed chirp. Currently,

our metrological tools are not able to measure the refractive index with sufficient spatial

resolution and measurement accuracy to diagnose this type of change.

C.3 Measurements of Distortion

In the preceding section, we discussed various things which could give rise to a chirp in

the Bragg grating. Based upon spectral measurements alone, it is impossible to determine

whether there is a chirp in the grating, or some other systematic variation in the waveguide

composition or structure. This ambiguity could be removed if there were some metrologi-

cal tool for accurately measuring the grating distortion.

One way of measuring the grating distortion is to measure the diffraction angle when

light is incident on the grating from above. By viewing the position of the diffracted beam

on a distant screen, it should be possible to experimentally measure the distortion map
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similar to that presented in Fig. C.4a. This technique requires that the grating area be

larger than the size of the incident beam, and the spatial resolution of this technique is

similarly limited by the beam size.

Another way to characterize the distortion in a grating is to examine the grating in

an electron-beam-lithography system. In an e-beam lithography system, the sample sits

on a movable stage whose position is measured and controlled by an interferometer feed-

back system. The electron-beam-lithography system can be used as a scanning-electron-

microscope to view the grating as the stage moves to precisely defined locations.

Figure C.6 depicts the technique for characterizing the grating distortion using e-beam

metrology. A scanning e-beam system is used to capture a series of images of the grating

at evenly spaced point on the sample. The technique relies upon a feedback-controlled

interferometer system to accurately position the stage prior to capturing each image. The

total image area is typically chosen to be 2-4 gm, in order to avoid undesirable image

distortion that can occur for larger field deflections.

After the images are captured, they can be analyzed using off-line image processing to

determine the relative position of the grating lines in each of the images. Consider first the

case of a perfectly periodic, undistorted Bragg grating. If the displacement d is precisely

an integral number of periods, then all of the images should appear almost identical to

one another. In the more likely case that the displacement d is not an integral number

of periods, the captured images will "walk off" as one proceeds across the sample. It

is relatively easy to show that for an undistorted grating, the images will walk off in a

linear progression. The rate of this progression is an arbitrary figure which is related to the

precise value of the displacement d in relation to the grating period A. If the grating is not

uniform, e.g. if there's a systematic chirp, the relative position of the grating lines within

each image will follow a non-linear progression as shown in Fig. C.6b. For a grating with a

simple linear chirp, the relative position should have a quadratic shape, where the second

derivative is proportional to the chirp rate A.

Figure C.7 plots the measured relative grating position vs. z for a grating produced by

the Lloyd's mirror interference lithography system. The approximate grating period for

the sample was 223 nm, and the adjacent sample points were spaced at 250 pim intervals

over a total length of about 2.6 cm. There is a pronounced curvature in the data plotted

in Fig. C.7, which is indicative of the chirp in the grating. The data were fitted with a

quadratic polynomial to extract the chirp rate. The quadratic polynomial coefficient in-

dicates this grating is chirped by about 53 pm/cm, a figure which is consistent with the

observed spectra from other samples. The discrepancy at the left edge of the plot is likely
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Figure C.6: Diagram illustrating the technique for characterizing the distortion in a
Bragg grating using an e-beam metrology technique. (a) The grating is imaged at a
series of evenly spaced places on the sample. (b) The relative position of the grating
lines in each image can be used to infer the distortion in the grating. (figs/C/chirp-measure-

method.eps)
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caused by scattered light from the edge of the Lloyd's mirror (the left edge of the data plot-

ted in Fig. C.7 is very close to the boundary of the grating region, where the Lloyds mirror

contacts the wafer.)

These preliminary measurements suggest that the distorted spectra of the integrated

Bragg gratings is caused by a real chirp in the grating pattern and not by a nonuniformity

in the waveguide. However, the level of chirp which we measure is inconsistent with a

simple spherical-wave model of the interference lithography system. Further investigation

will be needed to conclusively identify (and hopefully eliminate) the source of this chirp.

More measurements are needed to quantify the accuracy of this technique. A more

comprehensive study of the distortion in grating's produced by both interference litho-

graphy systems could provide valuable information about the fidelity and spatial coher-

ence of interference-lithography-produced gratings.

C.4 Summary

The measured spectra of the integrated Bragg gratings shows strong evidence of a linear

chirp in the grating pattern. This effect is more pronounced for longer Bragg gratings

than for short Bragg gratings. The chirp could be explained by a number of different phe-

nomena both in a lithographic system used to produce the gratings and in the waveguide

itself. We describe the experimental technique, based on e-beam metrology for measuring

the grating distortion. Our measurements point towards a real chirp in the grating, but

further work is needed to determine the exact source of this chirp.
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Figure C.7: Measured phase distortion for a grating produced in the Lloyds mirror
interference lithography system. The grating is sampled at 250 gm intervals and
the relative grating position is plotted as a function of z. The curvature in the data
presented here indicates that the grating is chirped by approximately 53 pm/cm.
The discrepancy at the left edge of the plot is believed to be caused by scattered
light from the edge of the Lloyds mirror. (figs/C/chirp-measure.eps)
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