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Abstract

In recent years, synthetic aperture radars (SARs) have been used to detect man-made
targets and to distinguish them from naturally occurring background. The purpose of
this thesis is to assess target classification performance of a SAR-based automatic tar-
get recognition (ATR) system - starting from a foundation of rigorous, physics-based
signal models developed from electromagnetic scattering theory - without incurring
the restrictive assumptions made in previous work.

Targets consist of a repertoire of geometrically-simple reflectors, and the per-
formance discrepancy of a conventional full-resolution processor with respect to a
multi/adaptive-resolution processor is discussed. The analytical computation of tar-
get classification performance is generally demanding due to the dense correlation
between the likelihood values of different targets. Thus most of our attention is de-
voted to obtaining upper and lower bounds on probability of correct classification
(PCC). Three types of target conditions are investigated: (1) targets consisting of a
known constellation of reflector components at known absolute locations; (2) targets
consisting of a constellation of known reflector components which are located at ran-
dom positions within some limited, prescribed uncertainty regions; and (3) targets
consisting of a constellation of known reflector components with known centroid lo-
cation but unknown rotation about that centroid. For settings 1 and 2, we obtain
a lower bound on PCC from the performance of a recognition processor that makes
component-wise reflector decisions, and we obtain an upper bound on PCC by assum-
ing that the returns from a target's reflector components have known relative phases.
Computer simulations show that the lower bound is very close to the exact result.
For setting 3, we use the Laplace approximation to obtain an approximation to PCC
that is valid at high signal-to-noise ratios.

Thesis Supervisor: Professor Jeffrey H. Shapiro
Title: Julius A. Stratton Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background

In recent years, synthetic aperture radars (SARs) have been rapidly gaining promi-

nence in applications such as remote sensing, surface surveillance, and automatic tar-

get recognition (ATR). SAR is a microwave radar imaging system usually mounted

on an airborne or spaceborne craft, capable of imaging terrain and targets at a fine

resolution by artificially synthesizing a large aperture antenna. Advantages of us-

ing microwave radar over optical imaging techniques include the ability to penetrate

cloud cover, and to image terrain at night. Microwave imaging systems are at a disad-

vantage, however, in that they require an impractically long antenna to produce the

narrow beamwidth required to achieve the same imaging resolution as optical systems.

SAR systems overcome this limitation by emulating a sufficiently long "synthetic" an-

tenna aperture by obtaining multiple measurements of the terrain's reflectivity as the

SAR platform moves across the terrain. The multiple returns are then coherently pro-

cessed as measurements from an array of sensors phased as a beamformer antenna,

thus providing a high imaging resolution. A SAR can be interpreted either as a radar

system with a phased-array antenna, or as a radar system in which the radar return

contains a frequency chirp along the cross-range direction due to its time-dependent

propagation delay [1]. From both perspectives, the enhanced spatial resolution is

obtained via appropriate signal processing.
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A SAR-based ATR system requires a fast and effective discriminator to suppress

natural clutter, to detect the presence of a target, and to classify the type of target

from its radar return [2]. Such a system relies on models for the different components

of the radar return, namely, the returns from different types of man-made targets,

natural clutter, and background noise.

One typical approach is to model the target return as a parametrized deterministic

signal pattern, and the clutter and noise as stochastic processes characterized by their

statistics. In [3], the clutter and noise are modeled as Gaussian random processes

with given covariance matrices, and the target return is modeled as a pre-specified

spatio-temporal pattern multiplied by complex-amplitude parameters. In [4], the

target return is composed of the contributions from several scattering centers. Each

scattering-center component contains an amplitude and phase which are determined

by the radar's carrier frequency and look angle plus the scattering centers' positions.

The unwanted part of the radar return, i.e. the noise, is assumed to be a white-

Gaussian process. In [5], the target signal is taken to be a Gaussian intensity function,

the clutter a sinusoid with random phase, and the noise a Gaussian process.

Another approach to radar-signal modeling assumes that the target return and

the unwanted part (clutter plus noise) are random processes characterized by different

statistics. In [6], the target return consisted of a deterministic part and a random part,

with the latter coming from scattering-amplitude and scattering-center uncertainties.

In [7], the radar signal is a target return multiplied by an uncorrelated speckle noise;

the covariance matrices of the target return and the speckle noise are estimated by

principal-component analysis. This approach also implies that different clutter types

have different statistics. The work in [8] models the full polarimetric radar clutter as

a product of a gamma-distributed textural variable and a Gaussian random vector

whose covariance matrix is determined empirically. The numerical values for the

covariance-matrix elements calculated from real SAR data are different for trees,

shadows, grass, and mixed scrub.

Recent studies on multiresolution radar images have revealed a promising potential

to enhance target classification performance. In [9] it is shown that, based on the
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different variation-vs. -resolution patterns of targets and clutter, discrimination can

be accomplished via adaptive multiresolution processing.

None of the above works is founded on a rigorous, physics-based theory which

relates the radar return from targets and clutter to their respective physical charac-

teristics in terms of an electromagnetic scattering model. This thesis work is based

on the physics-based modeling of SAR imagery, taking into account the effects of the

transmitter pulse shape, antenna beam pattern, and free-space wave propagation, pre-

viously developed in [10]. Radar return signals from target and from clutter sources

are modeled via electromagnetic scattering theory, and as for the signal processor

models, a conventional processor, an adaptive-resolution processor, and an optimum

whitening-filter processor are presented.

The operational conditions cover two-dimensional imaging, using chirp-pulse wave-

forms, and full polarimetric data collection. To reflect real SAR operation, targets of

interest are assumed to have a repertoire of geometrically simple smaller reflectors.

For these physics-based signal and processor models, it is worthwhile to analyze the

performance of a SAR-based target classifier. Prior work [10] has given a preliminary

assessment of classification performance but was limited to target configurations in

which target component locations are known and known to satisfy an orthogonality

condition. Thus, this thesis work concentrates on the problem of performance as-

sessment of SAR-based ATR system under less restrictive conditions, comparing the

performance of full physics-based signatures to more conventional imaging based on

the signal models previously developed by Yeang [10].

1.2 Thesis Outline

This thesis is organized as follows. In chapter 2, the basic principles and geometry of

a SAR system are briefly introduced. Then, we present the radar signal models and

SAR processor models. With these models, we show how optimum multi-component

target classification is done, based on a maximum aposteriori probability rule.

In chapter 3, we focus on a target setting in which each target component can

13



be located anywhere consistent with the orthogonality condition. It is impractical or

even impossible to obtain a direct analytic form of probability of correct classification

(PCC) for this case, mainly because the statistics of likelihood values of different

targets needed to calculate the PCC are, in general, densely correlated. Therefore,

we get around this problem of obtaining PCC by deriving lower and upper bounds

on PCC. A valid PCC lower bound can be obtained by finding PCC for any sub-

optimal target classifier. We use a "component-wise target recognizer" for a sub-

optimal target classifier. It is learned that this sub-optimal classifier performs almost

as well as the optimal one. The PCC upper bound is obtained by finding PCC

for the case in which we have complete knowledge about the relative phase of each

target component, which was assumed to be uniformly random otherwise. Since we

have more information for target classification, the classification performance will

be improved, thus offering a valid PCC upper bound. Given the complete phase

information, the classification task collapses to the problem of M-ary detection of

signals in an additive Gaussian noise channel. Still there is no closed-form formula

for the probability of error for this problem; thus, we use another weaker inequality

to upper bound PCC.

In chapter 4, we deal with a case in which the target components can be located at

uniformly-distributed random positions within a given uncertainty area. The classifi-

cation process entails the usage of a "maximization operation" over the component-

location uncertainty region; for the non-random position case, we would have sampled

at the known component positions. Due to this maximization, the statistical struc-

ture of the likelihood ratios, is complicated and difficult to formulate in an analytic

form. We introduce 1-D and 2-D level crossing theory to cope with this problem

of expressing the probability densities of the likelihood-ratio-related values, that are

needed to calculate PCC. Once the probabilistic structure of these likelihood ratios

is specified, the approaches to obtain upper and lower bound on PCC parallel those

in chapter 3.

In chapter 5, we investigate the target setting in which the target components form

a fixed constellation that is randomly rotated around its center. The likelihood ratios

14



for this target-component condition depend on the pose angle, and integration over

pose angle can be evaluated only by numerical methods. We use the Laplace method

to obtain an approximation to PCC that is valid at high signal-to-noise (SNR) ratio.

In chapter 6, a brief summary of this thesis and the further research possibilities

are discussed.
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Chapter 2

System Models

2.1 Principles of SAR

The scenario for a two-dimensional stripmap-mode and spotlight-mode SAR is sketched

in Figure 2-1. The radar antenna and receiver are mounted on an aircraft flying with

velocity 47 = ,'v at an altitude L m. Thus the position of the aircraft can be described

by the vector ft = I vt + iL.

L

xL -

L

Figure 2-1: Flight geometry for a 2-D stripmap-mode (left) and spotlight-mode SAR
(right)

The purpose of SAR is to improve the radar's spatial resolution. The fundamen-
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tal principle of a 1-D CW synthetic aperture operation can be explained as follows

[11]. For a continuous-wave down-looking radar imager, the Doppler-shift time his-

tory associated with the return from a point scatterer is a frequency chirp of rate

VD = -2v2 /AL. The time duration of the chirp, T, is the length of time during

which the scatterer lies within the radar antenna beam; we shall presume far-field

diffraction-limited operation, so that T = AcL/vd. Compressing this chirped radar

return through a matched filter then yields a time-domain output waveform of dura-

tion Xres/V, where

Xres v d AL
r VDT 2 d , (2.1)

thus providing along-track (cross-range) spatial resolution that is much better than

the diffraction-limited beamwidth of the real antenna aperture. For extended targets,

the chirp duration is determined by the target's scattering pattern; a large specular

reflector will have a chirp duration much smaller than the dwell time, a fact which

an optimum receiver for that target will exploit.

For stripmap-mode operation, the normal direction of the antenna aperture, -2' =

-2 sin(4') + cos(V)), is on the plane perpendicular to the velocity vector 1 and tilted

downward from the horizontal direction with angle 0, making L' = L/ sin(*) the

range to the ground. As the aircraft flies, the footprint of the antenna beam swept

along the ground is an elongated strip at distance L/ tan 0 from the projection of

aircraft trajectory with width AcL/dsin(O), where d is radar's effective antenna di-

ameter and A, is its wavelength. The only difference between the stripmap- and

spotlight-mode operations is the normal direction of antenna aperture.

For spotlight-mode operation, the normal direction of antenna aperture is adjusted

along the flight path to constantly point toward the region centered at (x, y, z) -

(0, Lcot(V)), 0). The principal advantage of spotlight-mode SAR over conventional

stripmap-mode SAR is its enhanced resolution thanks to the fact that the duration

that a region of interest is illuminated can be arbitrarily long in principle.

18



2.2 Radar Signal Model

In [10], Yeang used a first-principles approach to set up signal models of SAR imagery

via electromagnetic scattering theory. Since we are interested in quantifying, from

a fundamental-principles viewpoint, the target-classification performance advantage

of multiresolution/adaptive-resolution processors as compared to conventional SAR

imagers, the multi-component target models do not have to be as complicated as a

real-world object, such as a tank or truck. They could be simple, but embody the

characteristics that highlight the performance differences between conventional SAR

full-resolution processing and multiresolution/adaptive-resolution processing.

In this thesis the targets consist of a repertoire of geometrically-simple reflectors,

such as a specular mirror (a square flat plate with a perfectly conducting surface), and

a dihedral reflector (two perfectly-conducting rectangular plates whose edges meet at

a right angle). The PCC bounds that we develop can, for the most part, be easily

extended to treat other reflectors, such as trihedrals and dielectric volumes.

In addition to the target return, clutter needs to be modeled. Clutter typically

refers to the radar return from anything other than the desired target. It is assumed

to be reflection from an infinite-extent rough ground surface.

The final element in the radar signal model is receiver noise. Typically, this is

thermal noise, and has a white spectrum. The receiver noise is assumed to be a

zero-mean, circulo-complex, vector-Gaussian stochastic process that is white in all its

domains.

2.3 SAR Processor Models

2.3.1 Adaptive-resolution Processor

In this thesis work, two types of SAR image processing systems are considered: an

adaptive-resolution processor and a whitening-filter processor. An adaptive-resolution

processor is a conventional SAR processor with adjustable processing durations. Fig-

ure 2-2 illustrates an adaptive-resolution processor for stripmap-mode operation; the
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incoming radar return is passed through chirp compression filters in both the cross-

range and range domains, and then is video detected to form a radar intensity image.

A conventional 2-D stripmap SAR processor uses chirp-compression filters that are

matched filters for the radar return from a point scatterer. An extended target can

have a very different return duration than that from a point scatterer. Thus our

adaptive-resolution processor will optimize the processing durations to achieve best

detection performance for such an extended target.

Chirp Chirp
Compression Compressio> Video Threshold
Filter Filter Detector Test

Radar hl [m] h2 (T) . SAR m=O
Return Imager) c=o

-------------------------------------

Target
Detection
Block

Figure 2-2: Block diagram of adaptive-resolution stripmap-mode SAR processor for
detecting a single reflector at a known location

In spotlight-mode operation, a standard interpretation of the radar return is to

conceive it as a convolved form of the 2-D Fourier transform of the terrain reflectivity

profile, namely, the tomographic rendition of the terrain-reflectivity distribution [12].

An adaptive-resolution spotlight-mode SAR processor first dechirps the radar-return

signal along the range and cross-range directions, then samples the de-chirped signal.

The sampled signal, after rearrangement by a polar formatter, then undergoes a 2-D

discrete Fourier transform operation as shown in Figure 2-3. In this processor, the

cross-range processing duration and the range processing duration are variables which

determine the resolution.

20



Polar Fourier Video Threshold
Sampler- Formatter Transfor- Detector Test

Radar c [m, n] _ | SAR M=O
Return Imager) n=O

r (mr) I- -- -- --- --- .. -
q(m,5) Target

Quadratic-phase (m) Detection

and De-chirp (t) Block
Compensation

Figure 2-3: Block diagram of adaptive-resolution spotlight-mode SAR processor for
detecting a single reflector at a known location

2.3.2 Whitening Processor

Whereas the adaptive-resolution schemes just described can enhance SAR image reso-

lution, they do not, in general, represent optimum receivers. The optimum Neyman-

Pearson processing scheme uses a filter to whiten the clutter plus noise, followed

by a matched filter corresponding to the target-return waveform passed through the

whitening filter, followed in turn by video detection, sampling, and a threshold test.

Essentially, the whitening processors for stripmap- and spotlight-model are the same

except that for the spotlight-mode we need a time-shifter at its front end in order

to compensate the parabolic time-shift of the IF complex envelope of radar return.

Figure 2-4 illustrates the whitening-filter optimum processor for spotlight-mode op-

eration.

The whitening-filter processor is seldom as practical as the adaptive-resolution pro-

cessor because it requires exact knowledge of the clutter and noise statistics and the

waveforms scattered from the target types of interest. Nevertheless, the whitening-

filter processor is conceptually important in that it is the optimum processor for target

classification. As such, its performance in terms of probability of correct classification

bounds the performance of any realizable processor. By comparing the classification

performance of an adaptive-resolution processor with that of a whitening processor,

21
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Radar Time Whitening Matched Video Threshold

Return Shifter Filter Filter Detector Test

T=o

Target
Detection
Block

Figure 2-4: The whitening-filter optimum processor for detecting a single reflector at
a known location

we can have a better idea about how far the adaptive-resolution processor's classifi-

cation performance is from the ultimate theoretical limit. By comparing the perfor-

mance of the optimized adaptive-resolution processor with its conventional-processor

limit, we can learn how important it is to treat extended targets differently from point

scatterers.

2.4 Multi-component Target Classification

A multi-component target is a collection of simple reflectors located at different po-

sitions. The radar-return signal from a multi-component target is the sum of the

contributions from all its individual scatterers, because multiple scattering between

different reflectors is neglected. A multi-component target classification problem is

dealt with in the following manner. Let s(m, r) be the radar return from a multi-

component target after passing through a whitening filter, thus, having the unwanted

clutter-plus-noise component whitened to unity spectral density. We will use the bold-

face symbol to denote the fully polarimetric return signal (HH, VV, and HV where

the vertical polarization aligns with an aircraft flight direction, 1 and horizontal po-

larization, with Q', orthogonal to i and the antenna's nominal direction '). Then, if

Hi denotes target i present among all N possible targets, s(m, T) can be written as

22
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I'

I -----
Radar I target
Return detector 1

rgMax 'k
* k

target
detector N

N

Figure 2-5: Block diagram of a multi-component target classifier. Each individual
detector will depend on the specific target scenario.

follows:

under H:

under Hk

under HN

MI
s(mT ) = 1 ei P1sP1(m - m1P, T - rp1) + W(M, T),

p'=1

Mk
s(m, T) =J: e PPk sPk (M -TnP k, T - Tpk) + w(m, T),

P k=1

MN

s (m, T) e ioPN s PN (Tn -- P 'tiN7 T - TpN) + w ('rT, T ).

P N=1

Here w(m, T) is the vector clutter-plus-noise complex envelope after the whiten-

ing filter. By construction it is white in the cross-range-time (m), range-time (T)

and polarimetric (vector) domains. Likewise, sp k (M k, Tk) corresponds to the post-

whitening-filter radar-return complex envelope from the p-th component of the k-th

23
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target when it is located at the scene center. The time delays m k, Tpk for this

component are determined by its actual location. The phases #pk are independent

random variables that are uniformly distributed within [0, 2-); they represent the

incoherence of each target-component with respect to other components as well as

the noise. When the spatial separations between the individual target components

are large enough, the following orthogonality condition will prevail:

dT st(m - i, - Ti) -sj (m - mj, T - Tr) ~ 0 (2.2)
m -o

for any two components located at different positions.

We can develop a target classifier for a repertoire of multi-component targets based

on single-target detectors. Based on a maximum aposteriori probability (MAP) rule,

a single-target detector can be constructed by passing the radar-return signal through

a bank of matched filters (matched to each target reflector) and then combining filter

outputs. Specifically, the likelihood ratio for a MAP target detector is

Pr rr, .. r H M
li(r) | , 2, -rmH T= exp[-Em]Io(2jrm|I). (2.3)

PrjHo(rT2, -,rM IHo) m-1

where hypothesis HO means target is absent, H1 means target is present, Em is the

energy of the m-th component return, and 1 is the zeroth-order modified Bessel func-

tion. r here is the vector of matched filter outputs sampled at the proper times; it

has complete information about the whole radar return signal needed for the classifi-

cation operation. At the output stage of a target detector, a real-valued level, which

is equal or monotonically related to the likelihood ratio, is compared with a threshold

level in order to decide on the absence or presence of that target. When there can be

more than one possible target type, we can pass the radar return through a bank of

target detectors, one for each target type. As in Figure 2-5 the resulting real-valued

output levels li, ... , IN are the likelihood ratios of conditions H 1, ..., HN with respect

to condition HO (clutter and noise only). To carry out classification, we select their

maximum value; if the p-th detector has maximum output, then the classifier decides

24



the target to be type p.

The evaluation of multi-coniponent target classification performance is computa-

tionally intensive, because the likelihood values of different multi-component targets

will, in general, be correlated. Yeang presents the performance analysis for a specific

target-repertoire example, in which upper and lower bounds on the probability of cor-

rect classification can be analytically obtained [10]. These bounds on PCC turn out

to depend only on the signal-to-noise-plus-clutter ratio (SNCR) values for specular

and dihedral reflectors, and, not surprisingly, turn out to decrease monotonically as

the noise level increases.

A conventional SAR target classifier can be similarly constructed by paralleling

the conventional SAR target detectors associated with the target types of concern. By

following the procedures similar to those used in an optimum classifier, we also have

an upper bound and a lower bound for the conventional SAR classifier's performance

for the previous target setting.
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Chapter 3

General Target Setting

3.1 Classification Scheme

It was noted that the computation of target classification performance is, in general,

demanding due to the dense correlation between the likelihood values of different

targets. Although Yeang's prior work has given preliminary bounds on PCC, it was

limited to a specific target scenario in which the formulation for PCC can be signif-

icantly simplified. In addition, it was assumed that target component locations are

known and known to satisfy an orthogonality condition. The rest of the thesis, hence,

focus on the assessment of the comprehensive classification performance for a general

target condition.

A general target setting, within the scope of this thesis, is one in which each

target component can be located anywhere consistent with the orthogonality condi-

tion (2.2). For the PCC upper bound developed in section 3.2, and the PCC lower

bound developed in section 3.3, the target components are assumed to be fixed at

known positions, but the phase of the target signal from each component is randomly

distributed in a uniform fashion. The random phase represents the unavailability

of accurate relative phase information between the various components of a multi-

reflector target. The radar return model under this target condition is specified by

(2.1) and the time delays corresponding to the target component locations (mPk, Tk)

are presumed known. The block diagram of the likelihood-ratio target detector is
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Figure 3-1: Block diagram of likelihood-ratio detector for the target with unknown
phases

shown in Figure 3-1. To build a target classifier we employ a bank of likelihood-ratio

(LR) detectors with one slight modification. After each Bessel function operation in

a target detector, we need to normalize the output value by exp(-Epi) where Epi is

the output energy of target i's component p'. The product of the normalized output

values is a likelihood ratio, ij, of condition Hi with respect to condition Ho. To carry

out classification, we do not pass the {lk} through individual threshold comparators,

but select their maximum value.

3.2 Upper Bound on PCC

Obtaining an upper bound on PCC is equivalent to finding a lower bound on error

probability. If component phase information were exactly known and optimally em-

ployed, error probability will not be any higher than when the component phases

are random. Given exact phases, the classification problem simply becomes M-ary

detection of signals in an additive Gaussian noise channel. In general the error proba-

bility for detection of M signals over the additive white Gaussian noise channel is not

available in a closed form. Thus, we again use a lower bound on this error probability.
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To get a lower bound on probability of error for M-ary signals with additive white

Gaussian noise, one could simply take the maximum error probability for binary de-

tection (3.5), but this tends to be a loose bound, especially when there are two or

more relatively-similar signals:

PCC
N

= P(say H I Hi true)P(H)
j=1
N

- 11 - P(error IHi true)}P(Hi)

(3.1)

(3.2)

P(error I Hi true) > P(error | Hi true, phase information given)

- P(U iij I Hi true, phase information given)
aiHi

> max P(823 j IHi true, phase information given)

Here E&j = {IIr' - sj|| < IIr' - siIl} and r' is a matched-filter-output vector, matched

to all distinct target-components, and properly normalized to make the noise part

circulo-complex Gaussian with unit-variance. si is the mean of r when the target i is

present. The prior probability of target i, P(H), will be assumed to be 1/N, i.e., all

targets will be assumed equiprobable.

Instead of taking the maximum over all possible binary error probabilities, de

Caen's inequality (3.6) can be used to get a tighter lower bound on the probability

of a union.

de Caen's inequality:

N

P(U Aj) >
j41

E
j

(3.6)
EkP(Aj n Ak)

Applying this inequality to the probability of error [13], we obtain

P(error I Hi true) E Q2 (dij/2)
j gi 4- TPjk, dij/2, dik/2)
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where

dij = lisi - sj1,

K< Si - Sj, si - sk >
Pjk =- s - ssi - skl'

Q(x) = f exp(-y 2 /2)dy,

XF(pjk, dij/2, dik/2) = 1 f exp(- 2PjkXYH+y 2 dxdy.
21r - Pk di /2 dik/2 2(1 - Pjk)

This inequality deals with only two joint Gaussian random variables, and we have all

constants needed for the calculation, namely, the distances between all signal points.

The error probability is, hence, easy and straightforward to calculate. It can be shown

that this bound is almost always tighter than the maximum binary-error-probability

bound for non-trivial cases.

This method of obtaining an upper bound on PCC can be applied to all pro-

cessor models we are dealing with, namely, a conventional full-resolution imager, an

adaptive-resolution imager, and a whitening filter processor, and to both operational

modes, which are stripmap- and spotlight-mode.

3.3 Lower Bound on PCC

A lower bound on the PCC can be calculated by finding a PCC for any sub-optimal

classifier. For a sub-optimal classifier, we will use a component-wise detection rule.

Suppose that each component is orthogonal to the others, and that only two reflectors

- specular and dihedral - are considered as valid reflectors. Then, we can decide either

specular or dihedral reflector for each component separately, and use these component

decisions as inputs to a (sub-optimum) maximum aposteriori probability (MAP) M-

ary decision rule. We can view the decision for each target component as a binary

discrete memoryless channel (DMC), with transition probabilities calculated from

the model in Figure 3-2. Combining the transition probabilities of the DMC with an

M-ary decision rule based on the DMC outputs, an error probability is then easily

30



Cii DMC
M-ary

Target i = Ci = C2> DMC > Say Ci
Decision

41 _Cai. DMC

-Es
e

S*specular Io(21.l)

Radar return Whitening Choose specular
larger or

dihedral
Sdihedral I o (21.) d

Ed

Figure 3-2: Upper panel represents a target classifier for three-component targets
based on component-wise detection. Lower panel shows a model for a discrete mem-
oryless channel.

calculated.

Like the upper bound on PCC previously presented, this lower bound can be ap-

plied to all processor models and both operation modes. However, for an operational

mode we will only consider the spotlight-mode for our examples, because the change

of modes does not affect our analysis of classification performance.

For the following example and on, we will use the radar geometries and parameters

specified by Table 3.1. Although these parameters are not based on any real SAR

imaging system, they are not far from the specification of such a system. Figure 3-

3 compares the bounds on the PCC of the conventional classifier to those for the

PCC of the optimal whitening-filter classifier for the particular 3-component target

constellation in Table 3.2. PCC values are plotted with respect to clutter-to-noise

ratio (CNR). The quantity 1/CNR measures the intensity of the noise with respect

to a fixed clutter level. As the noise level increases, both lower bounds converge

asymptotically to 1/3, which is a desirable result: when noise intensity is very high,
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Flight Parameters Radar Parameters Reflector Parameters
aircraft altitude antenna radii target radii

L = 5000m ax = ay = 1m pt = 1.5m
aircraft speed Tx and LO powers relative permittivity
v = 100m/s PT = PLO = 1W , = 10 + i5
slant angle radar frequency HV clutter strength

45' -fc Qc/27r = 10 GHz E = 0.2
pulse-repetition period HHxVV correlation

T, = 10ms p = 0.57
pulse width
To = 0.05 ps

chirp bandwidth
Wo = 100 MHz

Table 3.1: Parameter values for SNCR calculations

Target 1 Target 2 Target 3
Component 1 type specular specular specular

Component 1 (Az, AY) (0 m, 0 m) (0 m, 0 m) (0 m, 0 m)
Component 1 orientation 00 00 0

Component 2 type specular specular dihedral
Component 2 (Ax, Ay) (-7 m, -3 m) (-7 m, -3 m) (-7 m, -3 m)

Component 2 orientation 00 00 450
Component 3 type specular dihedral dihedral

Component 3 (A\, Ay) (5 m, -5 m) (5 m, -5 m) (5 m, -5 m)
Component 3 orientation 00 450 450

Table 3.2: Specification of target constellation for the example in section 3.3. Notice
the orientation angle of a specular reflector refers to the angle between the slant range
and the normal direction of the plate, the orientation angle of a dihedral reflector
means the angle between the SAR flight path direction and the dihedral axis.
The side lengths, pt, of all target components are 0.5 m.
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PCC vs. CNR, 3targets, Spotlight
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Figure 3-3: PCC for whitening filter processor and conventional processor

the classification operation simply becomes a blind guess. The PCC results from a

5000-trial computer simulation are also plotted. The simulation results turn out to

be very close to the lower bound. We can see that the optimal classifier has about

6 dB of gain in terms of PCC. There are three factors that lead to the whitening-

filter processor's performance advantage over the conventional SAR processor: the

effect of the whitening filter, the polarimetric effect, and the adaptive-resolution ef-

fect. Since the conventional processor makes use of only single polarization (HH)

whereas the whitening-filter processor takes full advantage of all polarimetric values,

the whitening-filter processor enjoys a 3 dB enhancement of its SNCR value. The

additional (approximately) 3dB gain of the whitening-filter processor comes from the

adaptive-resolution effect and the whitening of clutter plus noise.

To highlight the difference between the PCC lower bound developed in this thesis

and the one in previous work by Yeang [10], we first compare his PCC lower bound
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for this example shown in Fig 3-3,

PCC > 1(Q + Q1Q2 + Q). (3.8)3

to our PCC lower bound

1
PCC > I{max(Q2, Q2) + Q1Q2 + min(Q1, Q2)}, (3.9)

for this example. Here, Qi - P(say specular I specular is true), and Q2

P(say dihedral I dihedral is true) are the transition probabilities of the DMC. It is

easy to note that the PCC lower bound developed in this thesis (3.9) is always tighter

than the previous Yeang's lower bound (3.8). These PCC lower bounds are plotted

in Figure 3-4 along with the Yeang's upper bound, our upper bound and results from

a 5000-trial computer simulation. We see several things from Fig 3-4. First, the

new lower bound (derived in this thesis) converges to the true PCC value of 1/3

as CNR - 0, whereas Yeang's lower bound is substantially lower in this high-noise

regime. Second, Yeang's upper bound is tighter than the upper bound from this

thesis. We must note, however, that Yeang's upper and lower bounds rely on special

symmetries that are present in the example being considered here, whereas our bounds

can be applied to any target setting which obeys the orthogonality condition. In a

following example we will obtain lower and upper bounds on PCC of a whitening-

filter-based classifier for a certain target component setting which can not be dealt

with the previous approach.

3.4 Example

The upper and lower bound previously introduced can be readily applied to a general

target structure. In this example, Target 1 has the three specular reflectors but Target

2 has a dihedral reflector and a specular reflector and Target 3 has two dihedral

reflectors as specified by Table 3.3. For this target constellation, the computing of

the probability of error by the direct evaluation, would be exorbitant because not all
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Figure 3-4: Yeang's PCC bounds and new bounds

targets share the same components, thus, making the computation of the probability

of error involve high-dimensional integration. For a component-wise decision rule, a

ternary discrete memoryless channel is employed to incorporate an additional "null"

reflector. The detection scheme for three target reflectors is similar to that shown

in Figure 3-2 except we have one additional value, 1 to be compared with the two

other outputs from matched filters, i.e., those matched to the dihedral and specular

reflectors.

The transition probabilities are easily calculated by similar fashion to that used

in the binary case. Figure 3-5 plots the upper and lower bounds for the PCC and

two versions of simulation with respect to 1/CNR using a whitening filter classifier.

For the computer simulation, 5000 iterations were run.

We can observe the lower bound is very tight, compared to the simulation, and the

upper bound is somewhat loose. By the proposed method of obtaining lower bound,

we can now handle target setting where not all targets share the same reflectors,
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Target 1 Target 2 Target 3
Component 1 type specular dihedral

Component 1 (Ar, AY) (0 m, 0 m) (0 m, 0 m)

Component 1 orientation 00 00
Component 2 type specular specular dihedral

Component 2 (AX, Ay) (-7 m, -3 m) (-7 m, -3 m) (-7 m, -3 m)
Component 2 orientation 00 00 450

Component 3 type specular dihedral
Component 3 (Ax, Ay) (5 m, -5 m) (5 m, -5 m)

Component 3 orientation 00 450

Table 3.3: Specification of target constellation for the example in
side lengths, pt, of all target components are 0.5 m.

the section 3.4. The

and the bound itself is very close to the true value. From the simulated result with

known phases, compared to that with random phases, having exact phase information

significantly improves classification performance in the intermediate noise strength

regime.

Figure 3-6 plots the upper and lower bounds on PCC for the optimum processor

and the lower bound for the conventional processor. We see that in the low noise

region the optimal classifier has about 3 dB of gain in terms of PCC with respect to

the conventional classifier.
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Figure 3-5: Lower, upper bounds on PCC for a complex target structure
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PCC vs. CNR, Hybrid targets, Spotlight
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Figure 3-6: Lower, upper bounds on PCC for an optimum processor and PCC lower
bound for a conventional processor
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Chapter 4

Target with Unknown Positions

4.1 Classification Scheme

In this chapter, we will deal with the classification of targets with unknown reflector

positions in addition to the uniform random phases of its reflector components. In-

corporating the position uncertainty of the reflector components, the radar return for

each hypothesis is modeled as follows:

M 1

under H 1 : s(m,T ) = E e ' spi(m - m,1, T - Trl) + w(m, T),

Mk

under Hk : s(m, r) =E eoPk Sk (M - r Pk , T - Tpk) + w(r, T),
P =1

MN
under HN s(M, _F elpN spN '(M - 'rpN , T - rpN) + W('M~, T ).

P N=1

(4.1)

This is the same model as (2.1) except the center locations (mpk, Tpk) of the

target components are no longer fixed and known to us. The random variables mk,
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T k are assumed to be mutually independent and each random variable is uniformly

distributed within m k - Mpk/2, m% + Mpk/2J for mpk and [{Tk - T~k/2, T -+ Tyk/l2

for Tpk. The position randomness models the variability or unavailability of exact

knowledge about some aspects of a real-world target reflector constellation.

Because the delay times in (4.1) are uniform random variables, it is difficult to

write down the likelihood ratio of two different hypotheses. We can, however, for-

mulate the generalized likelihood ratio and develop a target classifier on that basis.

For a specific realization of the delay times, one can formulate the likelihood ratio of

hypotheses Hk (target k) with respect to the null hypotheses Ho (clutter plus noise

only):

lk (r; mi, ..., mk, Ti,..., TMk)

_ PrIHk (T , T2, ..., Mk Hk; ,..., Tpk , T1, ...,TMk)
PrIHo(T1, r2, ... ,MkIH; 1, ..mpkTi, ...,TMk)
Mk0

= ]7exp [- J dTs> (m, T) - s k(m, r )

xIo 2 JEO sk(r n, -- Tk) -(mir) . (4.2)

For a given radar return r(m, T), the likelihood ratio is a function of m1 ,... ,mMk ,i ,. ... ,TMk

One can obtain the maximum-likelihood estimate of these parameters from the radar

return:

mMk
= arg max

m1 E[m -[M/2,m +M//2],...,TiE[T10-T12,-rO+T/2],...

. SMk .

Mk

M exp K z d'rs> (M, T) - s8k (i, T)

X 0 (2 dTsk (M - Mk T -- rk) -r(mI T) (4.3)
-o70o PP
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where in1 , ..., mrknu, Ti, ... , TMk are the maximum-likelihood estimates. The general-

ized likelihood ratio is defined as the likelihood ratio when the maximum-likelihood

estimates as though they were the true values of the unknown parameters. Plugging

(4.3) into (4.2), we have that:

GLR =lk(r; ri,., nMk, 1, ., Mk)

Mk o
- max 1 exp- drsk(n, r) - sk (n, T)

pk=1 
m

x1 0 (2 zf drs( m - Mnk, 7T - T k) - r(mi T) (4.4)

where the maximum is over mi E [in - M 1 /2, mO + M 1 /2], ..., Inm, [imo -

MMk /2, mk + MMk/2 and T1 E [ 1
0 - T/2, T/2 , , C k - TMk/2,Tk +

TMk/2]. The generalized-likelihood-ratio detector based on (4.4) can be written in

the following form:

say Hk

Mk

max 7Il [10 (2 Zf drS~k (Mn-M k IT- Tpk) - r mT))]/ (4.5)

say HO

where # is the threshold and the maximum is over the same domain as in (4.4). Fur-

thermore, since the zeroth-order modified Bessel function is monotonically increasing

and mi, ..., inmk, Ti, ... , TMk are mutually independent variables, maximizing the

overall product of IO's in (4.5) is equivalent to maximizing the individual 10's in the

product. Hence the generalized-likelihood-ratio detector becomes

say Hk

M max Io (2 Z dsk(m--nMT --Tpk)-r(r)) > 3 (4.6)

P k=1 m -

say HO

The form of the GLR detector is similar to the LR detector discussed in the
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previous chapter except that in the GLR detector the value used to compare the

threshold is maximized over the region of delay-time uncertainty. This operation can

be achieved by inserting a duration-limited peak detector after video detection of the

output from each individual matched filter. Figure 4-1 sketches the block diagram of

the generalized-likelihood-ratio detector. A target classifier can be built as discussed

in the previous chapter, by employing a bank of target detectors, incorporating the

energy corrections, and choosing the largest output level.

I..........................

Radar
Return

r(m,tC)

0iWhitenin
Filter

Video Max over
-+ Sl( -M, )-De tec toz --- Uncertaint]L_*

21.1| Region 1 0

S(M, )Threshold

Videc, Max over
-0+ *(-M, _) --- Detecto -Uncertaint L10

21.1 Region 1Target
Detection
Block

Matched
Filter Bank - - - - - - - - - - - - - ~ - -

Figure 4-1: Block diagram of generalized-likelihood-ratio detector for the target with
unknown phases and positions

In order to calculate PCC for the M-ary target recognition problem, we need to

obtain the statistical structure of the generalized likelihood ratio, as will become more

evident later in this chapter. As implied by (4.6), to obtain the statistics of the GLR

we must solve the following general level-crossing problem: for a complex 2-D random

process with a given covariance function and a fixed real-valued threshold level, what

is the probability that this random process is smaller than the threshold level within

a given area. When the target is absent or all its components are mismatched to

the detector's filters, then this random process is approximately stationary; when at

least one of the target components is matched to the detector's filters, this process is
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non-stationary. As a result we ought to consider the level-crossing problems for HO

and Hk (k k 0) separately.

4.2 Level Crossing Theory

Since the level-crossing theory for a 1-D stationary random process has been actively

studied, we will begin with 1-D level crossing theory, and then extend the result to

the 2-D case which we need for our PCC analysis. The problem is to obtain an

analytic form of following probability: for a real 1-D random process r(t) with a

given covariance function u(t) and a fixed threshold level a, what is the probability,

P(T; a), that r(t) is smaller than a for all the t within [0, T]. For a real Markov

process or a complex-valued Gauss-Markov process with mutually independent real

and imaginary parts, analytical expressions for the level crossing probability can be

obtained from Siegert's theory [14] [15]. However, in general the analytical solution

for the level crossing probability of a non-Markov stationary process is not available.

Among a few possible methods of obtaining the approximate form of this probability,

we will use the resolution-bin model.

In the laser radar literature, it is a common practice to apply the resolution-bin

model to calculate level-crossing probabilities [16]. The basic idea is to divide the

interval of concern, [0, T], into a sequence of N resolution bins with center locations

t 1 , t2, ... , tN, where the bin size is on the order of the correlation time for the random

process under consideration. Then it is reasonable to approximate the probability that

the real random process r(t) is smaller than a within the whole interval [0, T] by the

joint probability that r(ti) < a, r(t 2 ) < a, ..., and r(tN) < a. Furthermore, if the bin

size is not significantly smaller than the correlation length, then the random variables

r(ti), r(t2 ), ... , r(tN) can be taken, approximately, to be statistically independent.

The joint level-crossing probability is then the product of level-crossing probabilities

for each individual sample point. For a stationary random process, r(ti), r(t 2 ), ..., and

T(tN) have the same probability density function. The resulting joint level-crossing

probability is then the Nth power of a sample point's level-crossing probability. In
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other words,

P(T; a) =Pr{r(t) < a; 0 < t < T} = Pr{r(ti) < a & r(t 2 ) < a & .... & r(tN) < a}

N

f Pr{r (ti) < a} = [Pr{r(ti) < a}]N (47)

For a zero-mean circulo-complex Gaussian process z(t) with covariance function

u(t), the approximate probability P(T; a) that Iz(t)I < a within [0, T] can also be

obtained from the resolution bin model via (5.48). To calculate the probability that

lz(ti)l < a, the chi-squared distribution is applied. The result for the probability

P(T; a) is

P(T; a) ~i{I - exp tbin (48)

where tbin is the bin duration.

If we extend the 1-D resolution-bin model to the 2-D case, we find that:

P(X, Y; a) {1 -- exp - Ybin (4.9)
1U (0, 0)

is the probability that a zero-mean circulo-complex Gaussian random process, z(x, y),

will satisfy Iz(x, y)| < a for 0 < x < X and 0 < y < Y. Here, Xbin and ybi, are bin

sizes along the x and y directions, and u(x, y) is the 2-D covariance function of z(x, y).

4.3 Lower bound on PCC

Paralleling the work in the last chapter, a component-wise detector can be exploited

to obtain a lower bound on PCC for the random position case. Any sub-optimal clas-

sifier will be inferior in its classification performance to an optimum one. Thus, the

PCC for a sub-optimal target recognizer is a valid PCC lower bound for an optimum

classifier. Figure 4-2 depicts the block diagram of a component-wise detector. This

detector can be seen as an optimum target detector for two targets with single reflec-

tor (specular or dihedral). We do a binary detection for each reflector component,
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Figure 4-2: Block diagram of component-wise detector

gather results from each component-wise detectors to make maximum aposteriori

probability M-ary decision. This is a valid classification scheme but not necessar-

ily an optimum one. For our general target setting, the component-wise detector

incorporates a null reflector by choosing the largest output among i (specular), ld

(dihedral) and 1 (no reflector). To obtain PCC for this sub-optimal classifier, we

only need to know the transition probabilities for the component-wise detector. Let's

assume the true target component is specular and find the transition probability,

Q1 -- P(say specular | specular is true).

Q1 = P[ls > ld I specular]

= P[Io(2xs)e--Es > 10 o(2Xd)e-E specular]

1
= P[, > -Il(eE-E o(2Xd)) specular]

2

S 1- P[x5 < -I1I(eEs--EdO(2Xd)) specular]
2

1 -- jdXdpXdIspecular(Xdlspecular)P[x, < -y I specular]

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

where y = 1j1l(eEs-E0(2Xd)).

To evaluate the last term, we need to know the probability structure of x, and

Xd. We treat p(X, I specular) and p(Xd I specular) separately since their statistical

behaviors are quite different. For x5, the radar return is passed through a filter

which is matched to that of the specular return signal. The maximization process
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will pick up the peak value of the magnitude of post-matched-filter signal within the

uncertainty region. If we chop up the uncertainty region into resolution bins and

assume that each bin is statistically independent of the others, we ca- formulate the

cumulative distribution function of x, as follows:

P[x, < - I specular] = Pf-1 (Y)P 2 (7) (4.15)

where N is the number of bins, P1 (y) is the probability that the magnitude of sta-

tionary and noisy signal is always less than -y for a given bin area, and P 2(7Y) is the

cumulative distribution function (CDF) of the output value from a perfectly matched

signal sampled at the correct position. P1 (7) can be calculated by applying 2-D

level-crossing theory, and P 2(7y) can be obtained analytically.

Now as for Xd, this is the case in which the radar return from a specular reflector

is matched to dihedral signal. Thus, Xd will be stationary over the whole uncertainty

region. We can, again, apply 2-D level crossing theory to obtain the CDF of Xd. Since

we know the statistics of x, and Xd, we can now evaluate the transition probability

Q1:

Qi 1 dXdpxdlspecular(Xdlspecular)P[x, < 7 1 specular] (4.16)

- 1 - j dXdpxdIspecular (Xdspecular)Pl'--1()P 2 (y) (4.17)

Q2 = P(say dihedral dihedral is true) can be calculated in a similar way. Having

both the transition probabilities, Q, and Q2, we can make a M-ary decision based

on MAP rule and obtain our component-wise lower bound on PCC for the case of

position uncertainty.

4.4 Upper bound on PCC

To get an upper bound on PCC we assume that we have the exact phase information.

Since this means we have more information for the classification task, the PCC for
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the optimum receiver for this case will be a valid upper bound on PCC for the

random phase case which we are interested in. If we assume all target components

are orthogonal, we can set the phases to be zero for all target component signals

without loss of generality. The radar return signal for each target is now formulated

as follows:

MI
s(m,Tr) = S s(M

p1 =1

Mk

s(mT) = spk(M

P k=1

- MP1k, T - Tp) + w(m, T),

- M Pk7T - yk ) +w(n,r T)

MN

s(m, T) s(mpN '- mpN, T - TpN) + w(m, T).

P N=1

(4.18)

Using this return signal model, the likelihood ratio for the target k with respect

to target 0 (the null hypothesis) is:

1k (r; ml, ... , MMk, T1, ... ,TMk)

Mk

= (exp -Ek + 2R{J dTs;>(M -- mrkIT - Tk) -r(m,}T)} (4.19)

where Epk is the energy of pkth component of kth target. It is similar to (4.2) but

does not involve a Bessel function. The generalized log likelihood ratio (GLLR) for

the target k is expressed as:

GLLRk (4.20)
Mk m)

=(ex p -Epk+ 2 max R{E dTsik (Tri - mik , T -Tp) -.r (rni T)} (4.2 1)
P k=1 M ~- 0
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Mk

= . exp (-Epk - 2yk).
pk=1

(4.22)

Here the statistics of ypk are easily calculated via level crossing theory. The probability

of correct classification can be, then, evaluated as:

PCCH, = 1 - P(error I Hi is true)

< 1 - P(error I Hi is true, phase information given)

- 1 - P( U GLLRi < GLLR I Hi is true, phase info given)
VjaAi

< 1 - max P(GLLRi < GLLRj Hi is true, phase info given)
j~2

(4.23)

(4.24)

(4.25)

(4.26)

In the previous chapter we used de Caen's inequality (3.6) to obtain a tighter lower

bound on the probability of a union, which involves the joint probability distribution

of two Gaussian random variables. However, for this target setting, we can not apply

de Caen's inequality in (4.26) because the statistics of GLLR are complicated. (4.26)

can be calculated in a straightforward way since we have statistics for GLLR's.

y

i i iIi i i i I I I I
x

3)

Figure 4-3: Specifications for the uncertainty-region geometries. Notice that (0, 0) is
the scene center of the antenna footprint area. The aircraft flies along the x direction.
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Since we have analytic forms available for both the lower and upper bounds devel-

oped in this chapter, a specific example is presented here. Figure 4-3 illustrates the

uncertainty-region geometries for the example. The center locations for the target

components are shown as dots, and (uniformly distributed) uncertainty regions are

rendered shaded. The target component structures are the same as in Table 3.3. In

Figure 4-4, PCC upper, lower bounds and simulation are plotted versus 1/(clutter-to-

noise ratio). For the simulation, we generated random variables (x, and Xd) according

to the statistics discussed in the previous section, then used an optimum classifier

based on the whitening-filter processor, that is, a bank of generalized-likelihood-ratio

detectors (Figure 4-1). 100000 trials were performed for the simulation. The lower

bound calculated with the given data, showed an anomalous feature: it was not mono-

tonically decreasing in the high noise region. We believe that this anomaly was due to

numerical errors, so we corrected our lower bound by extending the lowest PCC value

to the higher noise region. The upper and lower bounds decrease asymptotically to

one third as the noise (1/CNR) level increases. This is a desirable feature for the PCC

bounds, because when the noise level is very high, classification is no better than a

blind guess. We can observe that the lower bound is close to the simulation over the

entire CNR region shown. The upper bound is generally somewhat loose compared

to the lower bound, but is tight in the low-noise region. Figure 4-5 compares the

lower/upper bounds for the unknown-position case to those for known-position case.

Exact position information is seen to have the effect of about a 3 to 10 dB decrease

in noise level.
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PCC vs. CNR, random position

- x lower bound
-x- upper bound
0 simulation

- -. x-- - -

9 ~ -

10

Figure 4-4: Lower and upper bounds on PCC for target components with unknown
positions
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PCC vs. CNR, random position

-D- lower bound (known position)
-0- upper bound (known position)
-x lower bound
+ upper bound

10 
3 100

1/CNR

Figure 4-5: Lower and upper bounds on PCC for unknown positions compared to
those for known positions
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Chapter 5

Target with Unknown Pose

In this chapter we will deal with the classification performance assessment for targets

with random pose. In this setting, the individual target components rotate around a

pose center on the ground with a common random rotational angle.

5.1 Laplace Method

Thus far, we have done classification tasks based on a (generalized) likelihood-ratio

test. The statistical structure of the necessary likelihood ratios were either available

or approximated for the target conditions in the last chapters. For the targets with

unknown pose that we are discussing in this chapter, although it is possible to obtain

likelihood ratios in closed form, they will depend on the rotational angle, making the

evaluation of PCC based on them unwieldy. Hence we turn to another approach to

evaluate the classification performance.

The likelihood ratios involve the pose angle, and integration over pose angle is

cumbersome and, in general, obtainable only by numerical methods. The Laplace

method can be used for evaluating integrals for Bayesian inference [17] in the high

signal-to-noise ratio (SNR) regime. The Laplace method is useful for calculating

integrals of the form:

F ) = g (0) exp (- 2O )d2 (5.1)-fmi 2o-2
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which often appear in the likelihood expressions needed to evaluate the Bayesian

decision rule. If h(O) is positive in the interval [Ominr, max], then we can use the Laplace

approximation to asymptotically evaluate F(u2 ) in the limits U 2 
-* 0. The idea

behind the approximation is that most of the integral is contained in a neighborhood

of the 0 value where h(O) is a minimum, O0 arg mino h(O). If we replace h(O)

with a two-term Taylor-series expansion about 0 0 00, we have the Laplace-method

approximation:

F(a 2 ) g(OO) exp( 2h(Oo)\ 4"(2 as o2 --+ 0. (5.2)
2a 2  h"l(00) as1 *. 52

In [18], the single-pixel return signal from a forward-looking infrared (FLIR) in-

tensity image is modeled as xij(O) = x* (0) + nij, where x* (0) is the noise-free value

at the target orientation angle 0 and nij is a zero-mean unity-variance Gaussian ran-

dom variable. It turns out that the distance measure between two targets (k = 1, 2),

Ek(O,01) Eij,(Xk,ij(0) - x1,25(O 1 ))2 plays a key role in calculating the probability

of detection/recognition error via the Laplace method. Specifically, when the true

target is fixed as H 1 at true pose 01, the conditional probability of error P(eIHi, 01)

is approximated by:

P(e| H1 , 01) ~ Q(K) j exp(P/2) dt (5.3)

where
D u E1 (01)

K= -- -log ..
2a 2D E2 (c)

The error probability only depends on r, value and is monotonically decreasing as K

increases. The parameters we need to obtain in order to calculate K, thus the error

probability are:

D = min flx2(0) - x1(01)11, (5.4)

0=2
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k 2 (C) = ( 2 X2(0) - (O1) 2 (5.6)

c = arg min IIx2() - XI(01) 1. (5.7)

5.2 Conditional Probability of Error

For this section, we restrict the true target to be H1 at pose 61. Previous work,

via electromagnetic theory [10], modeled the raw SAR return signal from specular

reflector as follows:

PTPLOQ C Y4 P 2 A,2 02
r(m, r; O)specular - 22L 2  P ,) exp(-4(T/TO)

1

xsinc[Qcaxb(O)pt/c] sinc[Qcayb(9)pt/c) 1 . (5.8)

0

where

2(mvT8 - Az)
axb(0) = L' sin(#sb - 0) - 2 cos(O) cos(#sb - 0),

2(mvT, - A.)
ayb (0) - , cOS(Ob) CoS(4sb-O)+2 cos(4/) cOS(Osb) sin(Osb-)±2 sin(4) sin(Osb),

0 is a pose angle, b is the slant angle, and 0 sb, #sb are polar and azimuthal angles.

We will consider specular reflector only for targets with unknown pose, because the

SAR return signal from a dihedral reflector for arbitrary pose angle has not been

developed.

The signal, r(m, T) is continuous in T(range), circulo-complex and polarimetric.

To apply the method of analyzing the performance for FUR imagery to the SAR

case, the raw signal is sampled in the range domain with period equal to the range

resolution:

xj (0) = r(i, jTres; 0). (5.9)

We now have a signal model similar to the one for the FUR case, assuming we have
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only additive Gaussian noise as a source of radar-return corruption:

xi3 (0) = xg (0) + njJ . (5.10)

Since xij is a polarimetric complex vector, we define the squared distance measure as

follows:

Ek(0, 01) = lxk(0) - x1(01) 2 - (Xk,ij (0) - x1,ij (01))(xk,ij (0) - x1,i (01)). (5.11)
i~j

Table 5.2 and Figure 5-1 specify the target constellation for an example we will

discuss. Note that all target components are specular. When target 1 is at pose

01 = 0, it has a substantial target return that is due primarily to its component 2,

in that this component is perpendicular to the radar line-of-sight. Because target

2 consists of four speculars, each giving very narrow-angle returns which peak at

their specular (Snell's law) directions, E2(0, 0) is flat except where one of target 2's

components is close to perpendicular to the radar line-of-sight. As can be seen in

Figure 5-2, these features appear at 0 = 8', 105', 166', 285 , consistent with the

azimuthal angles of target 2's components. The minimum E 2(0, 0) is at 0 = 2850,

where target 2's component 3 is normal to the radar line-of-sight.

Figure 5-3 shows the conditional probability of error, P(eIH1, theta1 ), with respect

to SNR. The preceding approximation for the conditional error-probability can be

extended to obtain the unconditional error-probability Pr(elH 1 ). If we assume a

uniform pose prior, we can obtain:

pOma x

Pr(ejHi) = Pr(eH1 , 01)7r(01)dO1  (5.12)

4o.2 1ol- 1

./ D(5.13)
D(O*)3/2VD(*

56



[ Target 1 Target 2

Component 1 (A., Ay) (3.0 m, 0 m) (2.8 m, -0.3 m)
Component 1 pt 0.5 1.0
Component 1 Ob 0.00 15.00
Component 1 Osb 45.00 40.00

Component 2 (AX, Ay) (0.0 m, 3.0 m) (0.3 m, 3.5 m)
Component 2 pt 0.5 0.6
Component 2 #,b -90.0 -82.00
Component 2 0 ,b 45.00 48.00

Component 3 (Ax, Ay) (-3.0 m, 0.0 m) (-2.5 m, 0.6 m)
Component 3 pt 0.5 0.35
Component 3 Ob 180.0 195.00
Component 3 Ob 45.00 45.00

Component 4 (Ax, Ay) (0.0 m, -3.0 m) (-0.3 m, -3.7 m)
Component 4 pt 0.5 0.7
Component 4 #,b 90.00 76.00

Component 40,b 45.0' 47.00

Table 5.1: Specification of target constellation for the example in section 5.2

Radar line-of-sight

I

Dmponent 2

Component 3

_ Component 1 X

Component 1

Component 4

Component 4

Figure 5-1: Target constellations: target 1 (left) and target 2 (right)
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E2(0) when 0 =0
x 10_'
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0
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Figure 5-2: Plot of E2(0) vs. 0 when the true pose of target 1, 01 0
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Pr(eIH1, 0 vs. SNR
0
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Figure 5-3: Plot of P(ejHj, 01) vs. SNR when the true pose of target 1, 01 0

59



60



Chapter 6

Conclusion

6.1 Summary

This thesis has developed methods for assessing the target-classification performance

of a SAR-based ATR for specific target-constellation conditions. The contribution of

this study is not one of new efficient or powerful processing schemes for real radar data

or complicated target signatures generated from CAD models. Instead, it seeks to

theoretically quantify the target-recognition performance improvement of adaptive-

resolution, polarimetric, or whitening-filter processing. In particular, we have focused

on performance analysis for three types of target conditions: (1) targets consisting

of a known constellation of reflector components at known absolute locations; (2)

targets consisting of a constellation of known reflector components which are located

at random positions within some limited, prescribed uncertainty regions; and (3) tar-

gets consisting of a constellation of known reflector components with known centroid

location but unknown rotation about that centroid. For settings 1 and 2, we ob-

tained a lower bound on PCC from the performance of a recognition processor that

makes component-wise reflector decisions, and we obtained an upper bound on PCC

by assuming that the returns from target components have known relative phases.

Computer simulations showed that the lower bound is very close to the exact result.

For setting 3, we used the Laplace approximation to obtain an approximation to PCC

that is valid at high signal-to-noise ratios. On the whole, the optimum whitening-
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filter processor has approximately 3 to 6 dB gain in terms of SNCR compared to

the conventional full-resolution processor, for the examples we considered. A major

contribution of this thesis work is that the proposed approximation / bounds on PCC

do not incur restrictive target constellation conditions.

6.2 Suggestions for Future Work

Thus far, we have assumed that the target return signals from different target com-

ponents are orthogonal (2.2). By this assumption we restricted the target setting to

be one in which each target reflector is far apart from the others. Removing this

restriction is a significant open problem.

The major object of this thesis work was to analyze target classification perfor-

mance on the foundation of rigorous, physics-based signal models developed from

electromagnetic scattering theory and to highlight the performance improvement of

a multi/adaptive-resolution processor with respect to a conventional full-resolution

processor. Thus, geometrically-simple reflector models (specular and dihedral) suffice

for our task. Adding more realistic reflector models in the repertoire can be worth-

while. For example, including trihedrals and dielectric volumes should be possible,

as well as performing PCC-bound calculations for target geometries containing many

more components than the three or four that we used in our examples.

Our coverage on the performance assessment for targets with unknown rotation

angle was limited in that we assumed that each reflector is a specular, all compo-

nent phases are known. We ignored the clutter as a possible source of radar-return

contamination. Also, only conditional probability of error was discussed, and even

that discussion was limited to binary recognition. All of these restrictions should be

removed in future work.
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