
A Remote, Versatile Interface Between the Physical World
and a Network Connected Controller BARKER

By MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Michael T. DePlonty APR 2 4 2001

B.S. Electrical Engineering LIBRARIES
University of Michigan, 1998

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the
Massachusetts Institute Of Technology

February 2001

© 2001 Massachusetts Institute Of Technology.
All rights reserved.

Signature of Author: *......
Department o'f Electrical EngineeriW and Computer Science

January 19, 2001

C ertified by: v -

a an M. Cooke
Principle Research Engineer, Lecturer

Department of Electrical Engineering and Computer Science
Thefis Supef..or

A ccepted by: ^t
Arthur C. Smith

Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

A Remote, Versatile Interface Between the Physical World
and a Network Connected Controller

By

Michael T. DePlonty

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2001 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science

Abstract

Computerized devices that collect data and control processes are not new. Many
such devices exist, often with the computer performing both the collecting and
controlling functions. Examples occur in a wide range of applications and include
adaptive controllers, hydraulic network controllers and ion accelerator controllers.

However, these devices often are application specific, require hands-on, local
operation, and combine data collection with primary control. A generalized device, when
properly designed, offers the opportunity to make implementation easier, simplify remote
operation to extend the system's capabilities, and isolate historical data collection from
primary control.

This thesis develops a process controlling / data collection device and calls it a
concentrator. A concentrator is a general device that can be customized for specific
applications, is intended to operate remotely, and separates data collection from primary
control. In general, a concentrator interfaces the physical world with a network
connected controller. To formalize this concept, this thesis defines a concentrator's
properties, determines specific ideal features, and then tests a specific example.

The concentrator concept was tested with an oil dielectric strength test developed
at the MIT High Voltage Research Laboratory. To physically implement a concentrator,
custom software was developed, modeling it after the concentrator's ideal features. This
software was then loaded onto a microprocessor, which in turn runs the oil dielectric
strength test. Specifically, the microprocessor controls the oil tester, reads and processes
the tester's results, then posts the data to a web server. Results indicate that the software
adequately implements a concentrator, however long-term reliability and responding to a
primary controller need further development.

Thesis Supervisor: Chathan M. Cooke
Title: Principle Research Engineer, Lecturer

Department of Electrical Engineering and Computer Science

3

Acknowledgments

First I would like to thank my advisor, Dr. Chathan Cooke, for giving me a
chance and allowing me to achieve my degree. Thanks for giving me the freedom to
succeed and fail; for being there to reign me in when needed; and for giving me direction
and support.

Financial support for my thesis came from two main sources. First, Entergy
Service, Inc. provided financial support for this research. Thank you for making my
research possible and for supporting other forms of advanced work. Second, MIT
provided a teacher's assistantship and a fellowship that allowed me to attend school and
find this research project. Thank you for making it financially feasible for me to be here.

A special thanks goes to fellow lab members Tim Cargol and Will Johnson. As
mentioned in the thesis, my device has limited value without a functional system. Tim
and Will helped create this system and offered programming advice, computer help, and
other random tips that aided my project.

Finally, many friends supported, prodded, and questioned me as I completed this
degree. Mere words cannot express the gratitude I have and how much I feel I owe you
for your friendship. So, thanks to:

* My parents John and Teri DePlonty
* Professor Alan Willsky
* Patrick Maurer
* Professor Paul Gray
* Francis Carr
* Andy Wang
* Carol Frederick

5

Contents

Abstract

Acknowledgments

Contents

List of Figures

List of Tables

1 Introduction
1.1 Motivation
1.2 Past Approaches to Process Monitoring and Data

1.2.1 Implementation Schemes

1.3
1.4
1.5

1.2.2 Local Control Limitations .
Observer-Concentrator System . .
Thesis Focus
Thesis Overview

. A.
Acquisition

2 Desired Concentrator Properties
2.1 Introduction
2.2 Global Properties
2.3 Input / Output Requirements

2.3.1 Physical World Input / Output
2.3.2 Observer Input / Output

2.4 Security Constraints
2.5 Conclusion

3 Ideal Concentrator
3.1 Introduction
3.2 Physical World Modules .

3.2.1 Capture Raw Data .
3.2.2 Implement Physical
3.2.3 Sensor Stamp

3.3 Network Modules
3.3.1 Concentrator ID ...
3.3.2 Fault Handler
3.3.3 Listener
3.3.4 Send Information .

3.4 Internal Modules
3.4.1 Delete Data

.

.
.
World Commands .
.
.
.
.
.
.
.
.

3.4.2 Error Check ...

7

3

5

7

10

11

13
13
15
16
18
20
23
23

25
25
26
28
28
30
30
31

33
33
34
36
37
38
39
39
40
43
43
44
44
45

.

.

.

.
.
.
.

3.4.3 Local Control ... 46
3.4.4 Observer Message Processor 47
3.4.5 Process Data .. 47
3.4.6 Retrieve Data .. 48
3.4.7 Store Data .. 48
3.4.8 Time-Date Stamp .. 49
3.4.9 Update ... 49

3.5 Conclusion .. 50

4 Concentra
4.1 Introd
4.2 Test R

4.2.1
4.3 HardwN
4.4 Softw

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5

tor Demonstration
ti~J

uec
eq
P
ar

ar
C
F
C
E
S

4.5 Results
4.5.1 1
4.5.2 1
4.5.3 1
4.5.4 1
4.5.5 1
4.5.6 S
4.5.7 T
4.5.8 D
4.5.9 L
4.5.10 T

4.6 Discussi
4.6.1 P
4.6.2 N
4.6.3 C
4.6.4 D
4.6.5 T

V"
juirem ents
roposed Test
e Set-up
Structure

oncentrator Software
ault Handler Configuration File
oncentrator Configuration File
rror Log
oftware Data Buffer

ime Needed to Get Time-Date Stamp
ime Needed to Capture Raw Data
ime Needed to Perform A/D Conversion
ime Needed to Toggle DS2405
ime Needed to Prepare Data for Posting
ize of Posted Data
ime Needed to Post Data and Receive Confirmation .
ata Buffer Size
ong Term Operation
otal Time Needed to Capture, Prepare, and Post Data
on
hysical World Connection
etwork Connection
oncentrator Software
ata Buffer File
INI as a Concentrator

5 Conclusions and Future Work
5.1 Concentrator Theory
5.2 Concentrator Demonstration
5.3 Future W ork

A Initialization and Set-Up of TINI
A. 1 PC Installations and Configurations
A.2 Loading TINI firmware

8

51
51
51
52
52
55
58
59
60
60
61
61
62
63
64
65
65
67
68
69
70
70
71
72
73
74
76
77

81
81
82
83

85
85
86

A.3 Setting Network Configurations

B Compiling Programs for TINI
B.1 Steps to Compile and Convert Single Class File
B.2 Steps to Compile and Convert Multiple Class File
B.3 BuildTini.BAT ..
B.4 BuildTinil.BAT ..

C JavaKit Batch File
C .1 JavaK it.BAT ...

D DOS Program that Allows Keyboard Input During Batch File Execution

E Concentrator Configuration File

F Concentrator Software
F. 1 Concentrator.java

F. 1.1 Code Description......
F.1.2 ActualCode

F.2 CaptureRawData.java
F.2.1 Code Description......
F.2.2 ActualCode

F.3 ConcentratorlD.java
F.3.1 Code Description......
F.3.2 Actual Code

F.4 ConfigureTest.java
F.4.1 Code Description......
F.4.2 Actual Code

F.5 DeleteData.java
F.5.1 Code Description......
F.5.2 Actual Code

F.6 DS2450Lib.java
F.6.1 Code Description......
F.6.2 ActualCode

F.7 FaultHandler.java
F.7.1 Code Description......
F.7.2 Actual Code

F.8 FindiButtonsConsoleCon.java
F.8.1 Code Description......
F.8.2 Actual Code

F.9 IButtonContainer05.java
F.9.1 Code Description......
F.9.2 Actual Code

F. 10 IButtonContainer20.java
F. 10.1 Code Description......
F.10.2 Actual Code

9

86

89
90
90
91
92

93
93

95

97

99
99
99
99

112
112
112
113
113
114
115
115
116
120
120
120
122
122
123
126

.126

.126

.128

.128

.128

.130

.130

.131

.136
.136
.138

.

.

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

.................

.................
.................
.................

F.11.1 Code Description .. 153
F.11.2 Actual Code .. 153

F.12 LoadConfigFile.java .. 155
F.12.1 Code Description .. 155
F.12.2 A ctual Code .. 156

F.13 PostDataLib.java .. 161
F.13.1 Code Description .. 161
F.13.2 Actual Code .. 161

F. 14 ProcessData.java .. 164
F.14.1 Code Description .. 164
F.14.2 Actual Code .. 164

F.15 RetrieveData.java .. 165
F.15.1 Code Description .. 165
F.15.2 Actual Code .. 166

F. 16 SendInformation.java ... 171
F.16.1 Code Description .. 171
F.16.2 Actual Code .. 171

F.17 SensorStamp.java .. 173
F.17.1 Code Description .. 173
F.17.2 Actual Code .. 173

F. 18 StoreData.java. ... 176
F.18.1 Code Description .. 176
F.18.2 Actual Code .. 176

F.19 TimeDateStamp.java .. 179
F.19.1 Code Description .. 179
F.19.2 Actual Code .. 180

F.20 TimiData.java .. 187
F.20.1 Code Description .. 187
F.20.2 Actual Code .. 187

F.21 TiniDataPoint.java. ... 190
F.21.1 Code Description .. 190
F.21.2 Actual Code .. 191

Bibliography 197

Biography 199

10

F. I ImIrplementPWorldCmds.java15 3

List of Figures

Historical Control / Collection System
Classical Feedback Control
Classical Data Collection
Borer's Three Level Distributed Control System
Basic Observer - Concentrator Relationship
General Observer - Concentrator Network

2.1 Typical Concentrator, Physical World, and External Network

Ideal Concentrator
Physical World Modules
Network Modules
Internal Modules

Hardware Set-Up
TINI Software Flow Chart
Time to Get Time-Date Stamp
Time to Capture Data
Time to Prepare Data for Posting
Size of Posted Data
Time to Post and Receive Confirmation
Buffer Size
Total Time to Capture, Prepare, and Post Single

.
.
.
.
.
.
.
.
Data Point . .

D. 1 Screen Shot of Creating GETKEY.COM

11

1.1
1.2
1.3
1.4
1.5
1.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

15
16
16
19
20
21

25

34
35
39
45

53
56
62
63
66
67
68
69
71

96

List of Tables

2.1 Concentrator Properties 32

3.1 Allowed Commands from Observer 47
3.2 Internal Commands, Data and their Required Format 50

4.1
4.2
4.3
4.4

Test Requirements
Equipment List
Subroutines for TINI Software Flow Chart
Satisfied Concentrator Properties

12

. 5 2

. 5 3

. .. 5 7

. 7 8

Chapter 1

Introduction
1.1 Motivation

Computerized devices that collect data and control processes are not new. Many

such devices exist, often with a computer performing both the collecting and controlling

functions. Wilkinson and Rees use this approach in their adaptive controller [1]. Jager,

et al., also use this approach in their rule-based controller [2].

However, performing both data collection and process control on the same

computer is not always best. Consider data intensive applications. Here, collecting and

processing data may hog processor time, effectively eliminating all control capability. Or

consider a complex process. Simply breaking up this complex process by having a

separate computer monitor each part may provide the best solution. But this too creates a

problem. A single computer would not have access to all the data, thus rendering it, or a

human, incapable of making an informed decision.

Masmoudi and Vansteenkiste encountered this problem simulating a complex

hydraulic network. To do this, they divided the process into smaller parts, but

incorporated these divisions into a multi-level control process. This process uses "a

higher level coordinator [that] has a global view of the system" and a local controller that

interfaces controlled components with the high-level controller [3]. Their solution

successfully separates data collection from primary process control by allowing the

higher level coordinator to make informed decisions.

Bauman, et al., developed a similar system to control an electrostatic ion

accelerator. They called the local controller a concentrator and they called the higher

level coordinator a user interface application (UIA). The UIA is a graphical user

interface and is completely human controlled. The concentrator can collect data, control

a local process, respond to UIA commands, and share data with other concentrators [4].

Combine these devices and one has a remote, computerized device on a network

that separates data collection from primary control. With this versatility, many more

13

applications that once were unreachable by a computer can motivate further

developments. For example, consider the application that drove this research.

Power companies need a way to remotely test oil dielectric strength. Oil is an

important component in an electric power transformer's tap changer as it electrically and

thermally insulates the tap changer's components. If the oil goes bad, the tap changer

will fail and force an expensive maintenance and a disruption in power. So to prevent

this, a power company routinely sends maintenance people out to test the oil.

This on site oil test involves retrieving an oil sample from the transformer.

However remote and inaccessible transformers make this test very inconvenient so the oil

does not get tested often [5]. To reduce this inconvenience, Cargol explored a test,

originally developed by Cooke and Hagman, that does not require drawing an oil sample

[5, 6]. But to make this truly useful, such a test must be conducted remotely and display

the results without requiring a technician's presence at the transformer.

Of the three devices previously encountered, the concentrator seems to work best.

It is can be remote, which is good for the remote transformers, and separates data

collection from primary control, which is good for the reasons discussed above. The

concentrator can control the external devices necessary for conducting Cargol's test and

can be controlled by humans through the UIA. But though the concentrator possesses

these qualities, it is still designed specifically for controlling an electrostatic ion

accelerator. As a standard structure does not exist, this concentrator must be redesigned

to fit the oil dielectric strength test.

Clearly there is a need for a well-defined device that is remote and separates data

collection from primary control. An early attempt by McCabe [7] began the concept of

an observer - concentrator pair, in which acquisition and some control are divided

between two machines. This thesis develops the front-end device of such a pair and calls

it a concentrator, borrowing Bauman et al.'s device name. It is a remote, versatile

interface between the physical world and a network connected controller. It is also an

important cog in the observer - concentrator system [7]. But before delving into the

concentrator and the observer - concentrator system, consider other approaches to the

problem of process monitoring and data acquisition.

14

1.2 Past Approaches to Process Monitoring and Data

Acquisition

Many applications require a process controlling / data collection system. Figure

1.1 shows how a historical system takes physical world measurements. Such a system

converts the measurements to a desirable format, manipulates the conversions, and acts

on the results. This action could involve making control decisions, displaying the data,

saving the data, or doing any combination of these three.

SSensors

Data

Physical Acquisition
World

Act on Data
Results Processing

Figure 1.1
Historical Control/Collection System

For example, consider the classical feedback control loop shown in Figure 1.2. A

little thought shows that this system is basically the same as Figure 1.1, only arranged

and labeled differently. The control processor in Figure 1.2 performs both the data

acquisition and data processing functions while the controllers act on the results.

Or consider the classical data collection system shown in Figure 1.3. Even

though this system has no feedback to the physical world, Figure 1.1 still represents this

system. The "data storage or display" box now performs the acquisition, processing (if

any), and actions. Here, actions may include saving data or graphing data on a computer

monitor.

15

--- + Sensors

Physical Control
World Processor

Controllers 4-

Figure 1.2
Classical Feedback Control

--- + Sensor

Physical Data Storage
World or

Display

Figure 1.3
Classical Data Collection

Now before the development of computers, humans had to perform everything in

Figure 1.1 except creating the measurements (actual devices such as voltmeters or

pressure gauges performed this part). This human system was, understandably, error

prone. Complex instruments, wrong inputs, incorrect recording, and improper data

presentation were some error sources [8].

So with the development of computers came the development of computerized

controlling / collection systems. Ideally these systems reduce human error by performing

most, if not all of the repetitious tasks. So rather than a human implementing Figure 1.1,

computer controlled hardware acquires data, the computer's software processes data, then

software and/or a human acts on the results.

1.2.1 Implementation Schemes

There are basically two different computerized controlling / collection systems:

plug-in cards and standalone systems. Plug-in cards, also referred to as data acquisition

boards, place the A/D converter on a card connected directly to the computer's

motherboard [9]. In such a system, the measuring devices' output must be connected

16

directly to the computer and all interfacing between the analog and digital domains is

implemented inside the computer. For example, various bus protocols developed to

facilitate communication between the computer's microprocessor and the data acquisition

board include STD (IEEE 961), STE (IEEE P1000), VME bus (IEEE1014), Futurebus

(IEEE896.1) [10].

While the plug-in card system has the A/D converter inside the computer, the

standalone system places the A/D converter outside the computer. Now the physical

processes' output, after going through the A/D converter, can be connected to any

computer. Thus the name "standalone system." This approach is particularly useful for

processes that are remote or otherwise inaccessible, such as monitoring and controlling a

missile's flight path [11].

Once an analog signal in a standalone system has been measured and digitized, it

still must reach the computer. To do this, standalone systems transmit data over a

communication channel using the channel's associated standards. Examples include

radio and other wireless protocols; EIA serial bus standards such as RS-232-E, RS-423,

RS-422, and RS-485; GPIB (General Purpose Interface Bus) standards such as IEEE-

488.1, IEEE-488.2, and SCPI (Standard Commands for Programmable Instrumentation);

VXI bus; optical Ethernet; and finally TCP/IP [4, 10, 12].

Once the data reaches the computer, it must be processed. There are three

different data processing approaches. First, use software that comes with the specific

devices such as a plug-in card. Second, develop custom software for a specific lab or

company. Third, select software from a rich source of commercial programs such as

LabView, LabWindows, or WorkBenchMac [8, 9, 10].

Finally, there are numerous ways this system can act on the data. Programs such

as Labview or Microsoft Excel could graph it. Custom software could be programmed to

make decisions and operate external controllers, which in turn control the physical

process. Or a human could print the data, store the printout in a binder, then walk over

and control the physical process manually. Taylor presents additional examples, ranging

from reading the data to a file to fitting an equation to the measured data [10]. The

possibilities are endless.

17

1.2.2 Local Control Limitations

Yet, a system modeled after Figure 1.1 and using these implementation schemes

does have limitations. For example, suppose a remote device wishes to perform data

acquisition and make control decisions without having to report to a master controller.

The classical system discussed above does not allow this "local control."

Now before designing a new system, one should stop and think. Should the data

acquisition stage even be allowed to control the physical process? Or as discussed above,

should all of the control be placed in the primary controller. Well the answer, of course,

depends on the application and available hardware. Consider three separate systems that

illustrate the local control's range.

First, an example from personal experience and illustrates zero local control. The

goal is to measure the engine temperature over an extended period of time.

Thermocouples attached to the engine block output voltages that are measured by

voltmeters, which are then connected to a computer via GPIB. A human then sits at the

computer, tells the computer to retrieve the voltages, and if the results are undesirable,

the human walks over and adjusts the engine. The voltmeters, which both measure and

acquire data, understandably have no control over the engine's temperature.

The second system is the missile example mentioned above and illustrates a

moderate level of local control. Here, the onboard data acquisition module controls the

missile flight path through preprogrammed values. These values locally control the

missile but are static, thus why this system illustrates a moderate level of control. Real-

time control is reserved for the data processing module that is human controlled back at

the control center [11, 12].

18

Sensors, Local Central
Physical Transmitters, Control Control
World & Room Room

Controllers

Figure 1.4
Borer's Three Level Distributed Control System

Third, Borer's distributed control system illustrates a high level of local control.

This approach was discussed in section 1.1 and is shown in Figure 1.4. Layer one

consists of devices that measure data and transmit it to the local control room. Layer two

is the local control room and consists of the data gathering systems that gather, process,

and transfer data to the central control room. Additionally, this layer regulates external

processes in real time, thus the high level of local control. Layer three is the central

control room, consisting of additional data processing systems and computers with a

graphical user interface [13].

In summary, a process controlling / data collection system is straightforward.

Humans have been implementing it for some time. Introducing computers into this

system reduces some errors but creates other problems, such as designing and

implementing a data acquisition module or deciding how to process data. One issue not

addressed by classical approaches is local control. Borer presents one solution. Bauman

et al., mentioned in section 1.1, presents another solution. The next section will introduce

a third approach called an observer-concentrator system.

19

1.3 Observer - Concentrator System

The observer-concentrator system is a new method of combining data collection

and physical process control into one system. Note, this section refrains from fully

developing this system. Rather it introduces the observer-concentrator system so that the

concentrator can later be discussed in the proper context.

Observer

Concentrator

Physical
World

Figure 1.5
Basic Observer - Concentrator Relationship

Figure 1.5 shows the basic observer-concentrator relationship. To begin, an

observer is a network connected controller that receives data from a concentrator and

transmits commands to a specific concentrator. An observer can be an independent,

intelligent machine making its own decisions or a standard user interface relying on

human decisions. In Borer's approach, his central controller has some attributes similar

to an observer.

Some important observer properties include:

1. Independence from other observers
2. No direct access to raw data
3. Active and passive interaction with concentrators
4. Only receives error messages or data from concentrators
5. Knowledge of each concentrator's function
6. Can control concentrator actions [71

20

As mentioned and shown in Figure 1.5, a concentrator interfaces an observer with

the physical world. Basically, a concentrator can control and/or collect data from

multiple events in the physical world, put this data into desired units, then report the

results to the observer. As a data collector, a concentrator "... is an independent entity

that captures, stores, processes and forwards data to a host computer" [14]. In this system

the host computer is the observer. As a controller, a concentrator can make its own

decisions and control physical processes locally, wait for observer commands and serve

as a remote controller, or do both knowing that any observer decisions overrule its own

decisions.

Now for this system to work an observer must have at least one concentrator and

each concentrator must have an associated observer. As a single observer - concentrator

pair will not always be sufficient to solve a particular problem, an observer can control

multiple concentrators. The transformer monitoring application mentioned in section 1.1

illustrates this problem. Remember, one concentrator just cannot physically be at

multiple transformers.

Observer Observer

Concentrator n r
Concentrator Concentrator Concentrator

,.........jConcentrator

Physical
World

Figure 1.6
General Observer - Concentrator Network

Or suppose the physical world process is so complicated that multiple observers

are necessary. And to properly control this process as discussed above, observers must

share information. Therefore observers and concentrators must have networking

21

capability. Figure 1.6 shows a general observer-concentrator network. Notice that

observers can share data and communicate directly between other observers while

concentrators cannot directly link to other concentrators. This is done for two reasons.

One, it makes defining a concentrator clear. And more importantly two, it keeps the

concentrators isolated and thus independent from each other. It is still possible for one

concentrator's data to "influence" another, but this data must go through at least one

observer first.

Also notice that while an observer can control multiple concentrators, multiple

observers do not control one concentrator. This too makes defining a concentrator clear.

Now a concentrator does not have to prioritize commands from separate observers. It

also does not have to resolve conflicting commands or decide which observer should

receive data. A concentrator simply knows one and only one observer exists.

This requirement also helps define an observer. If multiple observers monitor a

complex application, each observer can easily monitor a specific subset of the

application. Each observer would be specified for its subset, employing the necessary

number of concentrators. Since an observer can control only the concentrators in its

subset, the unique division is maintained. The observers can thus interact at a higher

level and not be burdened by unrelated concentrator information.

In summary, an observer - concentrator system is a new approach to combining

data collection and external process control. The observer acts as the master controller

and, if needed, user-interface. The concentrator interfaces the observer with measurable

events in the physical world. If needed, multiple observers and concentrators can be

networked together to monitor and control complex processes or collect data in data

intensive applications. Overall, this section introduced the observer-concentrator system

only to reference further discussion about the concentrator. It omitted much of the details

as exploring and formalizing the observer could constitute another thesis. On the other

hand, the concentrator will be further defined in Chapter two.

22

1.4 Thesis Focus

This thesis develops a remote process controlling / data collection device and calls

it a concentrator. The goal is to establish a versatile device that can be customized for

specific applications. In this spirit, this thesis will not develop new error handling

routines, require a certain network protocol for the device, or provide other specific

implementation requirements. Rather, this thesis will establish a model concentrator by

defining its properties, determining specific ideal features, and then testing an example.

1.5 Thesis Overview

Chapter one motivates the need for a concentrator and presents various

approaches to designing a process controlling / data collection system. Chapter two

establishes concentrator properties, laying out the requirements a device must fulfill to be

considered a concentrator. Chapter three presents specific features for an ideal

concentrator. Chapter four presents an implemented concentrator and discusses the test

results. Finally, chapter five touches upon a few future improvements not addressed in

this thesis.

23

Chapter 2

Desired Concentrator Properties
2.1 Introduction

As seen in Chapter one, there is a need for a link between the physical world and

an observer that desires to quantify physical world features. A possible device to help

perform this link is the concentrator. This concentrator obtains quantified information

from the physical world and passes that information on to a network accessible observer.

Figure 2.1 shows a typical concentrator located between the physical world and an

external network. On the physical world side, a concentrator monitors and in some cases

controls a physical process. A process could be a microprocessor's temperature variation

or a refrigerator's changing contents. It may be complex or simple. In general, a process

is an event, or series of events, producing data that a human or computer wishes to see.

Local Control
Commands

1 dai_

lo- Housekeeping

t
Data External

Storage Network

Master Control
Commands

Figure 2.1
Typical Concentrator, Physical World and External Network

To effectively monitor a process, a concentrator must have data collection

capability and control capability. Data is produced by the process and may take the form

of discrete points or continuous signals. Similarly, control signals result from observer

instructions or local decisions and may take the form of digital instructions or continuous

signals. So to monitor a process, the concentrator collects data from the process, makes

25

oSensors

World

Controllers

local decisions, and then issues control instructions. Or it collects data, processes and

reports it to the observer, receives the observer's instructions, then issues control

instructions. Or it collects data, processes and reports it to the observer, then collects

more data without controlling the process. The combinations are too numerous to

include.

On the network side, a concentrator sends data to the observer and receives data

from the observer. Transmitted data are the processed points that were read from the

physical world. Received data are instructions, software, and parameters. This way the

observer receives the desired information and controls the concentrator.

Now this elucidates a concentrator's functions but only alludes to its properties.

Specifically, a concentrator's properties can be broken up into three general areas: global

properties, input / output requirements, and security constraints. Global covers all of the

concentrator's important requirements and limitations, including its relationship with the

observer. Input / output discusses just that, how a concentrator deals with input to and

output from itself. Finally, security explores a fairly new issue due to the distributed

nature of networks.

2.2 Global Properties

There are four important global properties. First, one observer via a general

network connection controls a concentrator. As discussed in Section 1.3, only one

observer controls a concentrator. If multiple observers could control a single

concentrator, then the concentrator would need an established protocol that handles

command priority, conflict resolution, command authorship, etc. Rather than address this

complexity, and to make a concentrator more versatile and modular, this limitation is

imposed.

To be controlled by an observer, a concentrator must have the following abilities:

1. Uniquely identify itself so that the observer can recognize it
2. Report information to the observer
3. Receive information from the observer

26

A little thought shows that requiring a unique identity makes sense. As also

discussed in section 1.3, an observer may control multiple concentrators. Each

concentrator monitors different processes or different parts of one process, thus each

concentrator performs unique functions. Since an observer needs to keep track of each

concentrator, this unique identity is necessary.

Reporting information and receiving information are best described as input /

output requirements. They are mentioned here to complete the "controlled by observer"

requirement but will be elaborated in section 2.2.

Second, a concentrator is remotely accessible and remotely configurable. This

requirement follows directly from the problem stated in Chapter one. As discussed, a

remote concentrator extends the observer - concentrator system and allows this system to

cover a wider range of applications.

Accessing a remote concentrator is done through the observer via the general

network connection. By design, this is the only way to access the concentrator short of

physically going to it. This way only the observer sends instructions to the concentrator,

ensuring the observer knows what the concentrator should be doing.

To be remotely configurable, a concentrator needs to easily receive and

implement new parameters and software. Ideally the concentrator's software uses

parameter files. These parameter files should be easy to change, thus allowing a user, or

the observer, to easily tweak the concentrator's actions.

Additionally, a concentrator needs to accept and update new software so that it

maintains its flexibility and ensures it is a remote device. As new software is developed,

there must be an easy way to update the concentrator. Physically accessing the

concentrator is undesirable as this may be time consuming. But more importantly, this

also contradicts the "remote device" requirement. Consequently a concentrator must be

able to remotely accept and update new software.

Third, a concentrator can simultaneously run separate programs. Each program

can share data and is responsible for a specific physical process. This allows a single

concentrator to collect data from multiple physical processes and form one data point. It

also allows a concentrator to control a complex process by breaking it up into

manageable chunks.

27

Finally fourth, a concentrator needs an internal, real-time clock. This allows

time-date stamping of the raw data and enables code scheduling. Basically, the

concentrator will know when to run a specific routine and when a specific data point was

taken.

2.3 Input / Output Requirements

Since a concentrator can accept input and output from both the observer and the

physical world, this section is divided into two main areas. First the input / output

relationship between a concentrator and the physical world will be discussed. Then the

input / output relationship between a concentrator and the observer will be discussed.

2.3.1 Physical World Input / Output

To handle input from the physical world, a concentrator must perform three

actions. First, it needs to put a time-date stamp on the raw data. As discussed in section

2.1, this stamp uniquely specifies the data point's capture time. Furthermore, it, along

with other stamps, uniquely identifies the data point at the observer.

Second, a concentrator needs to process the raw data by converting them to

conventional values. These values are application dependent and should be specified by

the observer. SI values are one example of conventional values; slugs would be another

example.

Now processing the raw data is necessary. To begin, sensors are the only way a

concentrator can receive data from the physical world. Since the overall monitoring

system is electrical in nature, the sensors must convert their readings into an electrical

signal before transmitting them to the concentrator. The electrical signal may be

meaningful for the sensor and the concentrator, but it is usually meaningless to the

observer. As the observer is a high-level device, it needs to receive data relevant to the

process, not the electrical signals relevant to the sensor. It also must be isolated from the

28

raw data per the requirements mentioned in section 1.3. Consequently, the concentrator

must convert the raw data into observer defined units.

Third, a concentrator needs to check the physical world data for errors and know

how to correct errors once they are discovered. This too adds to the concentrator's

versatility and semi-independence. For one, error checking can help the concentrator

make control decisions. It can also help the concentrator make diagnostic checks on the

sensors and controllers. And finally it can help the concentrator make diagnostic checks

on itself in case the data processing function became corrupted.

Now a concentrator's output to the physical world are control commands. When

a concentrator actually issues these commands stems from previous discussions and

definitions. As mentioned, the concentrator can operate as the observer's remote

controller or operate as a local controller. Therefore the concentrator will output control

commands at two specific instances.

First, a concentrator will output commands in response to observer commands.

By design, the observer has no direct connection to a physical process. If the observer

wants to control the process, like any device it will issue control commands. Only these

commands are issued to the concentrator instead of the physical world controllers. So by

design and definition, the concentrator must be able to accept and act upon observer

commands.

Second, a concentrator will output commands in response to data and serve as a

local controller. As shown in section 1.2, this maintains the concentrator's versatility.

But this requirement also makes sense. Suppose the observer does not want to make

control decisions all the time, or the observer's communication link is broken and a

process needs immediate control. Without some amount of local control, a remote

process would be stuck, potentially never recover, and may produce catastrophic results.

Therefore, a concentrator should be able to make local decisions. It is important to note,

however, that the observer's commands will always override concentrator decisions.

29

2.3.2 Observer Input / Output

As one side of a concentrator communicates with the physical world, the other

side communicates with the observer. And just like the physical world side, the observer

side handles input and output. Input from the observer is comprised of two types.

The first input type a concentrator receives from the observer is new parameters

and software. As discussed in section 2.1, this ensures that the concentrator remains a

versatile, remote device. But not only must the concentrator receive new parameters and

software, it must safely and seamlessly update the old parameters and software.

Otherwise the concentrator's monitoring actions might fail or be interrupted, neither of

which is desirable.

The second input type is control commands from the observer. All the discussion

prior to this dealt with commands destined for the physical world. However, these

general control commands also include specific concentrator commands. For example,

the observer can instruct the concentrator to take a data point, retrieve and transmit a

stored data point, or transmit identification information. And as previously discussed, the

observer can send specific commands for the physical world controllers. So due to this

variety of commands, a concentrator must be able to discern each command and then

properly act upon it.

A concentrator's output to the observer includes error messages, data, and status

information. Error messages and data are self-explanatory. Status information includes

concentrator identification, processor status, and other such information. Together, these

three output forms provide information that allows the observer to control the

concentrator.

2.4 Security Constraints

The concentrator's network nature requires three security constraints. One, a

concentrator needs a nonvolatile data storage buffer. To begin, all data the concentrator

processes must eventually arrive at the observer. Suppose the concentrator is too busy to

30

transmit data or the network connection to the observer is unavailable. The buffer allows

the concentrator to transmit data at a convenient time, when the network connection has

been re-established, or when any other problem has been resolved.

But not only must there be a buffer, the buffer must be nonvolatile. Suppose the

concentrator loses all temporary memory, as could happen if it loses power or is forced to

reboot. Data stored in the nonvolatile buffer will still exist and will still be available to

be transmitted to the observer. Consequently the processed data will still arrive at the

concentrator as desired.

Now it is important to point out that the nonvolatile buffer is a buffer. The

concentrator does not store data once it has reached the observer; this is not its

responsibility. Rather it is the observer's responsibility to store data, or pass it along to

the proper entity, as it is the master controller.

Now two, a concentrator needs to be robust with self-recovery mechanisms. This

constraint arises from the remote device requirement. Since the concentrator can be

remote, it is important for it to rarely fail and to be able to recover if it does fail.

Otherwise a human would have to go service it, which reduces the concentrator's

usefulness as a remote device.

Finally three, a concentrator must use encrypted data to communicate with the

observer. This allows the concentrator to be used for secure purposes, for proprietary

purposes, or when anybody just doesn't want other people to know what is being sent

over the observer - concentrator connection.

2.5 Conclusion

This chapter defined the concentrator to be a secure, remote device that interfaces

a network connected controller with the physical world. Overall, the concentrator's

properties can be divided into three categories: global properties, input / output

requirements, and security issues. The global properties specify general concentrator

requirements, the input / output requirements specify how the concentrator communicates

with the physical world and the network connected controller, and the security constraints

31

ensure that the concentrator remains safe and reliable. Table 2.1 summarizes all of the

properties discussed in this chapter.

Table 2.1
Concentrator Properties

Global Properties
Controlled by a single observer
Unique identification
Report information
Receive information
Remotely configurable
Run simultaneous programs
Possess real-time clock

Security Constraints
Nonvolatile data buffer
Robust with self-recovery mechanisms
Communicate with encrypted data

Input / Output Requirements
Input from physical world

Put time-date stamp on data
Convert raw data to

conventional values
Perform error checking

Output to physical world
Control commands in

response to observer
commands

Control commands in
response to processed
data

Input from observer
New parameters
New software
Control commands

Output to observer
Error Messages
Data
Status Information

32

Chapter 3

Ideal Concentrator
3.1 Introduction

As elaborated in Chapter two, a concentrator interfaces a network controller with

the physical world. On the network side, the concentrator can receive or send

information. Received information may be new software, new parameters, or new

commands while sent information may be data, error messages, or requests. On the

physical world side, the concentrator also can receive or send information. Here,

received information may be digital or analog raw data while sent information may be

digital or analog control instructions.

To implement this interface, a concentrator uses software modules. Now the

module group, as a whole, must implement all of the properties discussed in Chapter two.

When this is done, the concentrator becomes a computerized device and meets all the

requirements motivated in Chapter one.

Ideally all the modules act simultaneously. This requires a separate processor for

each module, but due to current technological and financial constraints, a concentrator is

designed to be a single processor device. Therefore, one must use or develop a module

coordination scheme that can be implemented on a single processor.

In addition to implementing the concentrator requirements, individual modules

must validate received information. If the module encounters invalid information, it can

either handle the problem itself or generate a fault. For example, suppose a module

receives a command requiring unavailable data. Recognizing that this command is

currently invalid, the module may choose to buffer the command until the data becomes

available or it may generate a fault message, pass the message to the "Fault Handler"

module, and let it take care of the problem.

Overall, the concentrator's modules are organized into the three groups shown in

Figure 3.1. Physical world modules interface the concentrator with sensors and

controllers, network modules interface the concentrator with the observer, and internal

33

modules do everything else a concentrator should do. The remainder of this chapter

explains each module group and describes each module's actions.

................ . .

Raw Data Information

Physical
World Internal Network

Modules Modules Modules
Control Softwaepmtes,

and commands
...............

Figure 3.1
Ideal Concentrator

3.2 Physical World Modules

The physical world modules shown in Figure 3.2 interface sensors and controllers

in the physical world with other concentrator modules. These modules handle physical

world input, output, and error messages as well as the internal modules' input, output,

and fault messages.

The internal modules' I/O is straightforward. Anything going to or coming from

the internal modules is digital. Input to the internal modules consists of data and fault

messages. Output from the internal modules consists of capture data commands and

control commands. This will be elaborated further in the module sections below.

Physical world I/O is more complicated than the internal modules' I/O. First,

input from the physical world is digital or analog raw sensor data. Since all data inside

the concentrator is digital, analog input must be digitized. Consequently, this module

group must contain an A/D converter and as discussed below, the "Capture Raw Data"

module controls this digitization.

34

Data
Sensors

AL ~ ~ ~~ -.........
Sensor ------

Data Instructions

Physical
World

Control
Instructions....--'-

Controllers 'Control
SInstructions

Capture Data

Capture Digital Commands
Digta ensorRaw

Data Raw Stamp Digital Data
Data

..... Capture Data Commands Internal
Modules

Implement
Physical Digital Control
World

Commands

,............................---........-------.....-----.......---------..

Figure 3.2
Physical World Modules

Output to the physical world is controller instructions or sensor instructions.

While sensor instructions are digital, controller instructions may be analog or digital.

And similar to analog input, desired analog instructions must be converted from digital

commands. Therefore this module group may also contain a D/A converter which, as

described below, is controlled by the "Implement Physical World Commands" module.

Error messages from the physical world fall into a special category. Technically

these messages are input generated by the sensors and controllers, but because of three

important characteristics, they are not classified as input. First, the concentrator does not

actively seek error messages like it seeks raw data. Instead, sensors and controllers

generate these messages and expect the concentrator to respond. Second, the

concentrator only accepts digital error messages. Consequently error messages do not

need to be digitized like some raw data points. And third, unlike raw data, all error

messages do not go to the "Capture Raw Data" module. Instead, a particular error

message returns to the instruction's origin. This means that sensors send error messages

to the "Capture Raw Data" module and controllers send error messages to the

"Implement Physical World Commands" module.

35

Figure 3.2 shows the three modules in this group. "Capture Raw Data" interacts

with the sensors, "Implement Physical World Commands" interacts with the controllers,

and "Sensor Stamp" labels data with sensor information.

3.2.1 Capture Raw Data

Overall, this module retrieves physical world data when instructed, digitizes it if

necessary, and passes it to the "Sensor Stamp" module. This module's input may be

sensor error messages, capture data commands, or raw data. Sensor error messages are

digital messages generated by sensors and result from faulty commands, missing data, or

general device failure. "Capture Raw Data" should detect and handle these messages.

Capture data commands arrive from the "Error Checker," the "Observer Message

Processor," or the "Local Controller," all modules located in the internal modules group.

Since data can come from many sensors, the capture command must include which

sensor this module should read from. With this knowledge, "Capture Raw Data"

converts the request into a sensor specific instruction and then sends this instruction to

the desired sensor.

Finally, raw data arrive from the sensors. If the data is analog, it is immediately

digitized and then, like digital raw data, sent to the "Sensor Stamp" module. Since this

module knows which sensors it retrieves data from, it also knows whether or not the

incoming raw data will be analog. This makes controlling the A/D converter easier. If it

expects analog raw data, this module does not need to be told there.is data waiting to be

converted. Instead it only needs to wait for the data to arrive at the A/D converter's

input.

In addition to accepting input, this module also outputs fault messages, sensor

instructions, and digital raw data. Fault messages are generated when the module creates

an error that it cannot recover from. Instead, it passes the fault message to the "Fault

Handler."

Sensor instructions are digital messages in the sensor's required format. As a

concentrator may use multiple sensors, these instructions allow data retrieval from

36

specific sensors. If there are sensors that do not receive digital instructions, these

"instructions" may be a multiplexer's channel select. There are numerous other

examples, but the main point is that these instructions allow "Capture Raw Data" to

control the sensor. And as for actually retrieving raw data, data is present at the input

only when the concentrator issues a request.

Finally, digital raw data is the data gathered from the sensors. And as discussed

above, it is immediately sent to the "Sensor Stamp" module.

3.2.2 Implement Physical World Commands

This module converts digital commands into controller specific instructions and

then sends these instructions to the appropriate controller. Input consists of controller

error messages and control commands. Controller error messages are similar to the

sensor error messages as controllers generate these messages and expect this module to

receive and act upon them.

Control commands are digital commands generated by the internal modules

"Local Control" and "Observer Command Processor." Each command contains two

fields: the desired response and the command destination. The desired response is the

desired controller response, not the physical world response. Other modules, namely the

"Local Control" and "Observer Command Processor" modules discussed in section 3.3,

are responsible for converting physical world responses into controller responses. For

example, suppose a concentrator controls an engine's throttle, which in turn controls the

engine's rpm's. The observer issues a command "speed up," "Observer Command

Processor" receives this command, converts it to a new command "open throttle." It then

sends this new command to "Implement Physical World Commands" which converts this

command into the proper format required by the throttle.

Now to properly convert and route these commands, the module must know the

command's destination. Since a concentrator can utilize multiple controllers, the

command destination informs this module which instruction format to use as well as

37

which controller is to receive the instruction. Basically, the command destination ensures

that the proper controller receives the proper instruction in the proper format.

The module's output is fault messages and controller instructions. Fault messages

were covered in the chapter's introduction and are mentioned here for completeness.

Controller instructions are controller specific commands that cause the controller to act.

Instructions may be analog or digital, so those that must be analog must first pass through

a D/A converter. Assuming the D/A converter does not have a buffer, this module should

control the D/A converter to ensure that instructions are not lost or garbled while waiting

for the conversion to finish.

3.2.3 Sensor Stamp

This module performs two tasks, stamp digital raw data with a sensor's ID and

send the result to the proper internal module. Before data reaches any other module, it

must be stamped with sensor specific information. This provides a unique match

between a data point and a sensor. For example, suppose a concentrator receives data

from two different temperature sensors. Both measure in degrees Kelvin and output

voltage, however one result is erroneous. Or suppose one sensor measures in Centigrade

while the other measures in Kelvin. Again both output voltage, but no physical world

module converts the measurements into "standard units." The sensor stamp allows the

concentrator to determine the eror source in the first example, and in the second

example, convert data into proper units.

To stamp data with the proper sensor ID, this module must receive the same

capture data command that the "Capture Raw Data" module receives. This command,

which originates from internal modules, contains the data's sensor origin. And since data

is not buffered, received data will exactly correspond to the command's sensor

information. Consequently, data points will be stamped with the correct sensor ID.

After stamping data, this module sends it to one of the following internal

modules: "Local Contror' or "Time-Date Stamp." Like embedded sensor information,

the capture data command must contain the data's destination. And by construction,

38

there is no lag between received commands and received data. Thus there is a one to one

correspondence between data and commands, ensuring the data gets sent to the proper

location.

3.3 Network Modules

Figure 3.3 shows the concentrator's four network modules: "Concentrator ID,"

"Listener," "Send Information," and "Fault Handler." Three modules facilitate

communication with the observer while the fourth provides a recovery mechanism.

Some transmit the internal modules' information to the observer while others transmit the

observer's information to the internal modules. Each module is described below.

UListener
Data,

Messages,

Internal or Requests Concentrator nd: 7: Information
Modules I. D Information

Send ID

Fault Messages Fault
HandlerFrom all Modules

Software or Parameters

Commands

InfrmaionPoObserver

Data
And Requests

Commands

Figure 3.3
Network Modules

3.3.1 Concentrator ID

Overall, this module has two responsibilities, stamp outgoing information and

describe the concentrator's responsibilities. To do this, "Concentrator ID" should handle

input and produce output.

39

Obseirver Data

.............

First, this module handles two types of input: information and commands.

Information is anything the concentrator is sending to the observer: data, error messages,

etc. Commands instruct this module to send the description mentioned above. Now

input may arrive from multiple sources, at non-sequential times, with varying priorities.

As mentioned in the beginning of the chapter, this scheduling and conflict resolution is

ideally handled in the module. However, these duties may be relegated to a "controlling"

module for ease of implementation.

Second, this module produces two types of output: stamped information and

detailed descriptions. All information the concentrator sends to the observer must be

stamped with the concentrator's ID. Since multiple concentrators may report to one

observer, this stamp ensures a unique match between information and a concentrator.

Additionally, this module provides a detailed description of the concentrator's

responsibilities. Such a description may mention the processes the concentrator controls

or the data it reads, including a listing of sensors and controllers the concentrator uses.

As a guide, the description should be detailed enough such that the observer can be self-

sufficient. This way, a concentrator can be added to an existing system with minimal

amount of human intervention.

3.3.2 Fault Handler

This module provides a recovery mechanism from general system faults. A fault

is basically a flaw in a hardware or software component, and if left undetected, will

eventually lead to a system failure. The fault may be a permanent, transient, or

intermittent event that affects either a specific component or multiple components.

Further, a fault may or may not be time invariant [15].

Now to satisfy the concentrator's robustness property, the software should be able

to detect and reconfigure faulty components. In this context, reconfiguration means the

software will eliminate the faulty entity from the system and restore the system to an

operational condition [15]. An operational condition may imply the system is fully

functional, especially if the fault is simple and can be easily corrected. But in general,

40

this means the concentrator simply continues working with limited capabilities and will

need further help, either human or observer, to restore full functionality.

To properly perform this reconfiguration, the software must perform four tasks
[15].

1. Fault Detection: Recognize a fault occurred.
2. Fault Location: Determine where a fault occurred.
3. Fault Containment: Isolate the fault and prevent its effects from propagating

through the system.
4. Fault Recovery: Restore system to an operational condition.

By design, each module performs the first three tasks. When a module detects a

fault, it ceases operation (thus containing the fault) and passes a message to "Fault

Handler." And since each module performs a unique task, "Fault Handler" knows

exactly where the fault occurred. So to complete the reconfiguration, "Fault Handler"

must perform task four.

For "Fault Handler" to perform fault recovery, it must receive fault messages

from all the modules and communicate with the observer. Fault messages give this

module necessary information that allow it to determine the correct action. Therefore,

the fault message must specify whether the fault occurred in a hardware component or in

a software module.

Hardware faults are relatively easy to detect as only these nine modules interact
with hardware.

1. Capture Raw Data
2. Delete Data
3. Fault Handler
4. Implement Physical World Commands
5. Listener
6. Retrieve Data
7. Send Information
8. Store Data
9. Update

With "Capture Raw Data" and "Implement Physical World Commands," actual

devices may produce an error message or simply not respond. With "Fault Handler,"

"Listener," "Send Information," and "Update," network connections may be noisy or

unavailable. And with "Delete Data," "Retrieve Data," and "Store Data," memory may

41

be inaccessible, illegally accessed, or full. However these modules are designed to detect

these faults, thus making this task that much simpler. Now if the microprocessor fails,

well, nothing is perfect.

Software faults, unlike hardware faults, are relatively difficult to detect and
handle. Logic, design, and implementation errors can be subtle, escaping even the best
human's detection. So it is tempting to assume the software is designed and implemented
properly. Tempting, but this doesn't fully specify a robust system. Now according to
Pradhan, there are three methods of handling faulty software.

1. Robustness: Software handles invalid inputs.
2. Temporal Redundancy: Software re-executes a program after encountering

an error.
3. Software Diversity: Software detects all fault conditions and provides

backup routines for critical routines [15].

The modules are designed to be robust, and any reasonable implementation

incorporates diversity concepts. Therefore, "Fault Handler" simply performs temporal

redundancy.

Now if "Fault Handler" cannot restore full functionality, it must be able to

communicate with the observer. Assuming the network is available, "Fault Handler" will

transmit the known faults and rely on an outside entity, be it observer or human, to fix the

problem. It will then await instructions and data from the observer while "removing" the

faulty module from the system. In this fashion, the concentrator will still maintain some

functionality and hopefully regain full functionality once the observer, or human,

responds.

For example, suppose the concentrator reads from only one sensor and has

collected and stored twenty data points without sending them to the observer. But when

it attempts to read the twenty-first data point, the sensor does not respond. "Fault

Handler" cannot repair a defective sensor, so it informs the observer and prohibits the

concentrator from using the "Capture Data" module. Since the concentrator cannot take

any more readings, it transmits the twenty data points it did capture and then waits for

further instructions. Now the observer cannot fix a defective sensor, so it notifies a

technician. After repairing the sensor, the technician instructs the observer, which then

instructs the concentrator, to resume capturing data. "Fault Handler" receives this

42

instruction and enables the "Capture Data" module. The concentrator then regains full

functionality and the problem has been solved.

In summary, "Fault Handler" allows the concentrator to recover from hardware

and software faults. All of the concentrator modules can pass detailed fault messages to

"Fault Handler," which then uses them to decide on an action. In most cases "Fault

Handler" simply removes the faulty module, notifies the observer, and then waits for

observer instructions. In some cases "Fault Handler" may simply re-execute the faulty

module in case the fault was transient. If the fault persists, "Fault Handler" removes the

faulty module, notifies the observer, and then waits for observer instructions.

3.3.3 Listener

This module handles observer generated communication requests. The only time

the observer initiates communication with the concentrator is when it wants to send

physical world commands, new software, new parameters, or concentrator commands.

And since these have to be routed to the proper module, this module simply receives the

observer's information, passes it to the "Observer Message Processor" for routing, and

then closes the connection.

3.3.4 Send information

This module receives information from "Concentrator ID" and sends it to the

observer. Since the observer may require a different format for each information type,

this module must know what is to be sent and how to properly format it. For example,

suppose the observer expects encoded data points but does not expect encoded requests.

Then this module must know that if it receives a data point, it must be encoded before

transmission but if the module receives a request, it is to be sent directly.

In addition to properly formatting information, this module must handle the actual

communication protocols and transmission results. The communication protocols depend

on the network and only affect this module. On the other hand, the transmission results

43

affect both this module and the "Delete Data" module. As described in the "Delete Data"

section, the concentrator clears the buffer once the observer receives the data. As the

transmission result signifies whether or not the concentrator received the data, the "Send

Information" module should make decisions based on this result. If the transmission

succeeded, this module issues a delete data command. If the transmission failed, this

module generates a fault and lets the "Fault Handler" determine the proper course of

action.

3.4 Internal Modules

The internal modules perform a majority of the concentrator's functions. They

manage the buffer, interpret observer commands, and perform local control and error

checking routines. In general, they satisfy and implement all the 11O requirements listed

in Table 2.1. These modules are illustrated in Figure 3.4 (notice the similarity to Figure

2.1) and explained below.

3.4.1 Delete Data

This module deletes data from the temporary data buffer and should be capable of

deleting multiple data points or single data points. The only time data should be deleted

from the concentrator's memory is when the observer confirms it received the data.

Therefore the "Fault Handler" is the only module to issue a delete data command. And to

ensure deletion of the correct data points, this command should include both the number

of points and the specific points to delete.

44

P1

M

Capture Data Commands Processed
4 _... _ ..._ _ _ _ __ _ _ _....._ _ _. _ _...-...-.. a a

. D igital Control

Error

DigitalMessagesDigital Data Time-data Process Error
Stamp Data Check

RetrieveR
Data I Processed

Data

Store Delete Retrieve

Retrieve

ysical Data
Local Network

World -- etMemrk
Control Modules

odules

Send ID

Digital Control Observer Commands
.........--...g............- -- -- - - - - - - . O b se rv er ... - - - --- - -- ------- ----....

Message
Capture Data Commands Processor Observer Data

Software and
Parameters File

Requests
Software and Parameters - -..............

UpdateSafety
To all modules Self-UpdateNe

Files

Figure 3.4
Internal Modules

3.4.2 Error Check

This module checks for data errors and data consistency. Now once a new data

point arrives from the "Process Data" module, it is checked for consistency. To check for

data consistency, this module uses a priori knowledge, which is gained from the sensor

45

stamp, to compare the data point to its known limits. It also can use the sensor stamp as a

redundancy check, making sure the raw data was converted into the proper units.

Checking statistical errors requires more than a single data point. Therefore, this

module can issue a retrieve data command and receive data from the "Retrieve Data"

module. With multiple data points, the desired error checking routine can be properly

implemented.

If an error is discovered, this module may do three things. One, it may send a

capture data command to the "Capture Raw Data" module, then use this new data point

for further error checking. Two, this module may send a control command to the

"Implement Physical World Commands" module, produce an expected response, then

check if the result equals the expected response. And three, this module may send an

error message to "Concentrator ID" and let the observer handle the problem.

3.4.3 Local Control

Overall, this module accepts raw data, performs control routines, then outputs

digital control commands. Before performing any control routines, this module must

receive data from the "Sensor Stamp" module. Now data may originate from multiple

sensors, which in turn produce readings from multiple processes that require separate

control routines. The sensor stamp allows this module to match sensor data with the

appropriate control routine.

Next, this module performs the proper routine. The actual control routine

depends on the application and is performed independent of the observer. As the

concentrator may monitor multiple processes, so there are multiple control routines.

Each routine, when completed, creates a control command for the associated controller

(or a series of control commands for a group of associated controllers).

Finally, this module sends the derived control command to the "Implement

Physical World Commands" module. "Local Control" does not need to know the

command format the controllers expect. Rather, it must produce a command that exists

in the "Implement Physical World Commands" command library. The generated

46

command must also include the command's destination. As discussed in section 3.1.3,
the command destination aids the "Implement Physical World Commands" module and

ensures that the command reaches the proper controller.

3.4.4 Observer Message Processor

This module receives observer messages and routes them to the appropriate

module. Input from the observer consists of data and commands. Received data is

simply new software or new parameters and is destined for the "Update" module. Table

3.1 lists the allowed commands and their destined modules.

Table 3.1
Allowed Commands from Observer

Command

Capture data
Physical world control

Retrieve data
Send ID and/or

detailed description
Update

Module Destination

"Capture Raw Data"
"Implement Physical World
Commands"

"Retrieve Data"
"Concentrator ID"

"Update"

As this module simply routes the data or commands to the appropriate module,

the output is exactly the same as the input. But if this module cannot route the input

because it lacks information, it generates a fault explaining what it needs and then waits

for the "Fault Handler" to provide the missing information.

3.4.5 Process Data

This module receives raw data, converts it to user defined "standard" units, then

outputs the processed data. Raw data first arrives from the "Time-Date Stamp" module

containing the following information: the sensor stamp, time-date stamp, the destination

47

stamp, and the data value. Next, raw data is processed, using the sensor stamp to match

data with the correct units. If a data point arrives with an unrecognizable sensor stamp,

this module should generate a fault and pass it to the "Fault Handler." Then after

completing the conversion, this module reads the destination stamp and sends the

processed data to the "Error Check" module, the "Concentrator ID" module, or the "Store

Data" module.

3.4.6 Retrieve Data

This module, when commanded, retrieves data from the data buffer and sends it to

an appropriate module. A command may originate from "Error Check," "Observer

Message Processor," or "Fault Handler" and should include three fields. One, the

command should include the number of points to retrieve. Two, the command should

include which point, or points, the module should receive. And three, the command

should include the data's destination.

After retrieving data, this module utilizes the command's destination field to

determine which module should receive data. Allowable destinations are the "Error

Check" module and the "Concentrator ID" module.

3.4.7 Store Data

This module receives processed data from the "Process Data" module and

immediately stores it in the nonvolatile data buffer. Since "Process Data" may be

implemented with a temporary buffer and thus pass multiple data points, this module

should be capable of saving both single and multiple data points.

48

3.4.8 Time-Date Stamp

This module receives data from the "Sensor Stamp" module, uses the real-time

clock to stamp data with the current time and date, then sends the data to the "Process

Data" module. Ideally, this stamping occurs simultaneously with capturing data.

However this timing may be difficult, forcing the user to measure and account for this

lag.

3.4.9 Update

This module updates a module's software and parameter files. Update commands

arrive from "Observer Message Processor" and contain which module to update as well

as what is being updated. This basically informs "Update" which file to rewrite. So an

example command may be "Update Process Data's parameter file."

The new software and the new parameter files also originate from "Observer

Message Processor" and are sent at the same time as the update command. If "Update" is

replacing software, it communicates with the desired module and stops it at a convenient

time. Once stopped, "Update" rewrites its software. If "Update" is replacing parameter

files, it simply rewrites the file, relying on the module to check for the new parameters.

"Update" also contains two safety features. The first feature is the "Safety Self-

Update" (SSU) submodule. SSU updates the "Update" module but exists in the

concentrator's ROM so that it can never be remotely updated. This way, the concentrator

cannot corrupt the "Update" module and prevent future remote updates.

The second safety feature is observer communication. In case the network

modules are corrupted with an update, this module can notify the observer and receive

new software. This too maintains a concentrator's remote configuration ability.

49

3.5 Conclusion

This chapter defined an ideal concentrator to consist of physical world modules,

network modules, and internal modules. These groups implement the physical world -

network interface required from Chapter two and satisfy all of the concentrator properties

listed in Table 2.1. Table 3.2 summarizes all commands, data, and required formats

encountered in this chapter.

Table 3.2
Internal Commands, Data, and their Required Format

Commands

Digital Control Commands:

Capture Data Commands:

Retrieve Data:

Send ID:
Update:

Data

Digital Raw Data:

Format

Desired controller, desired controller
response
Desired sensor, data's module
destination
Number of points, which points, data's
module destination
ID or description flag
Module to update, software or
parameters flag

Format

Value, sensor ID, data's module
destination

50

Chapter 4

Concentrator Demonstration
4.1 Introduction

A technique to remotely test oil dielectric strength in a power transformer's tap

changer has been a research topic at the MIT High Voltage Research Laboratory and has

been sponsored by Entergy Service, Inc. The MIT method for this test can be separated

into three components: a DSI tester, an observer, and a concentrator. The DSI tester tests

the oil's dielectric strength and produces a voltage that indicates the amount of oil

degradation [5]. The observer receives results from the concentrator and displays them in

a user-friendly format. And as defined, the concentrator joins the two together.

Entergy's problem provided an excellent test for the concentrator. Chapter four

introduces this test and presents the test results. Section 4.1 specifies the test

requirements imposed on the concentrator. Section 4.2 describes the set-up. Section 4.3

presents the test results. Finally, section 4.4 discusses these results.

4.2 Test Requirements

In addition to meeting the theoretical requirements presented in Chapter three, this

test imposed four additional requirements. One, the concentrator must read three analog

voltages produced by the DSI tester. Two, the concentrator must use three switches to

control the DSI tester. Three, the concentrator must convert raw data into units of

voltage. And four, the concentrator must be robust, capable of recovering from either

self-generated or non self-generated faults. Table 4.1 summarizes these requirements.

51

Table 4.1
Test Requirements

1. Read three analog voltages.
2. Control three switches.
3. Convert units to voltage.
4. Recover from faults.

4.2.1 Proposed Test

Before proposing the test, a couple definitions are necessary.

Taking a shot: Firing the DSI tester, reading the voltages, processing these
voltages, and storing the results in a buffer.

Group: Result of taking one shot.
Sequence: Collection of n groups.

Now the proposed test contains four steps. The concentrator should

1. Take a twenty shot sequence with specified time intervals between each shot.
2. Post the twenty shots to a web server after the sequence is complete.
3. Wait a specified time.
4. Repeat steps one through three a specified number of times.

4.3 Hardware Set-up

Table 4.2 lists the equipment used to conduct the test.

Items one through seven are the physical equipment used to conduct the test.

Figure 4.1 illustrates the equipment layout. In this test, TINI, together with the TINI

Socket Plus development board, serve as the concentrator. TINI is a mini computer

programmed with the concentrator's functions and is basically responsible for firing the

DSI tester, reading its voltages, and posting the processed data to a web page.

52

Table 4.2
Equipment List

1. Dallas Semiconductor's TIN, Revision C
2. TIM Socket Plus development board, Revision A
3. DSI test apparatus
4. Dallas Semiconductor One-Wire Sensors

" One DS2450 - Four channel A/D Converter
" Three DS2405's - Addressable Switch

5. Web server that accepts TIM's data
6. Existing Ethernet
7. Standard PC
8. TIM 1.01 firmware for TIM's flash memory
9. JavaKit
10. Sun's Java Communications API, javax.comm
11. Sun's JDK 1.3 API
12. Dallas Semiconductor's TINT API

DS2450 AfD Converter
Ch. Ch. Ch. Ch. Digital
A B C D I/O

TIN
De)

DS2405 DS2405 DS2405
Switch Switch Switch

#1 #2 #3

Fire Reset Arm
Tester Tester High Voltage

[with Socket Plus
velopment Board

One-Wire
Data Bus

Ethernet Web

Server

Serial Cable PC

Figure 4.1
Hardware Set-Up

53

DSI
Tester

As mentioned in the introduction, the DSI Tester measures the oil's dielectric

strength. To make this measurement, the tester must perform three actions.

1. Arm High Voltage: Turn on the high voltage supply.
2. Fire Tester: Discharge a high voltage pulse.
3. Reset Tester: Reset the fire detector so that subsequent firings can be

detected.

Now the tester was designed such that a switch can perform each action. TINI

uses three DS2405 switches to control these actions, and as depicted in Figure 4.1, each

switch performs the following:

* Switch 1 -Fire Tester
" Switch 2 - Reset Tester
" Switch 3 - Arm High Voltage

While measuring the oil's dielectric strength, the DSI Tester produces three

analog voltages.

1. Charge voltage: Pulse voltage the DSI Tester uses to conduct the oil
dielectric strength test.

2. Check-fire voltage: Voltage that determines if the pulse fired.
3. Result voltage: Result of the oil dielectric strength test.

To measure and digitize these voltages, the concentrator uses the DS2450 analog

to digital converter. The four channels shown in Figure 4.1 measure the following:

" Channel A - not used
" Channel B - charge voltage
" Channel C - check-fire voltage
" Channel D - result voltage

TINI communicates with the A/D converter and the switches by using Dallas

Semiconductor's one-wire bus protocol. Each one-wire device has specification sheets

detailing the necessary steps that facilitate one-wire bus communication. For further

information, please see the appropriate specification sheet.

54

Once TINI has processed the data, it must post the results to a web server. The

web server functions as a basic observer in Chapter two's concentrator - observer

concept. From the TINI's point of view, it simply receives data and returns a

confirmation.

Finally, a standard PC is used to interact with TINI. First, the PC initializes TINI,

loading the TINI 1.01 firmware over a serial connection. JavaKit is a Java application

that facilitates PC serial communication with TINI and requires javax.comm.

javax.comm "allows Java applications to send and receive data to and from the serial and

parallel ports of the host computer" [16]. Please refer to Appendix A for further

information on setting up and configuring TINI.

Second, a PC is used to create TINI's software. Sun's JDK 1.3 API, a Java

development platform, and Dallas Semiconductor's TINT API provide Java class files

used to compile TINT's code. Please refer to Appendix B for a more detailed description

of building TINT's applications.

4.4 Software Structure

As previously mentioned, TINT's software performs the concentrator tasks

outlined in Chapter three. And since TINT should also meet the concentrator properties

discussed in Chapter two, the software uses two configuration files. It also produces two

output files, one for diagnostic purposes, one that serves as the data buffer.

55

Initialize

Check Bounds QUIT

No

Arm
High Voltage

Wait for voltages
to stabilize

Disarm Yes Check Limits
High Voltage

SLNo

Post Data Wait for time
between shots

Wait for time Yes Increment
between groups Check Fire Self-Fire

No

Fire Tester

Fie No IncrementCheck Fire ss-Fire

Yes

Get and Increment
Save Result Good-Fire

Figure 4.2
TINI Software Flow Chart

56

Table 4.3
Subroutines for TINI Software Flow Chart

Check Fire

1) If number of groups limit, then
return "Yes"

2) Else return "No"

Arm High Voltage

1) Set "Fire" switch to high
2) Set "Arm High Voltage"

switch to low
3) Set "Check Fire" switch to high,

then low, then high

Check Limits

1) If number of Good-Fires > 20,
then return "Yes"

2) If number of Self-Fires 20,
then return "Yes"

3) If number of Miss-Fires > 20,
then return "Yes"

4) Else return "No"

1) Read channel C
2) Set "Check Fire" switch to high,

then low, then high
3) If result of read is logic high,

then return "Yes"
4) Else return "No"

Fire Tester

1) Set "Fire" switch to low, then high

Get and Save Result

1) Read channel D
2) Stamp and save data

57

Check Bounds

4.4.1 Concentrator Software

The concentrator software consists of one program that controls all the modules'

scheduling and routing issues. Basically, it performs the four steps mentioned in section

4.1. It first fires the DSI Tester, gets the raw data and creates a data point. A data point

consists of the following fields:

1. Date
2. Time
3. Result
4. Units
5. Sensor ID
6. A/D Channel Number
7. TINI ID (the concentrator ID)
8. Software Version
9. Test Type ID
10. Sequence Number
11. Group Number

After creating twenty data points, each point is posted to the web server. Then the

software waits for a specified duration and repeats this process a specified number of

times. Figure 4.2 presents a more detailed flow chart of this program and Table 4.3

specifies subroutines represented in Figure 4.2.

Now for this program to correctly work, it must implement the modules presented

in Chapter three. In this program, the main routine uses separate class files that represent

most of these modules. Below is a list of the modules that fall into -this category.

" Capture Raw Data
" Concentrator ID
* Delete Data
* Fault Handler
" Implement Physical World Commands
" Process Data
" Retrieve Data
" Send Information
" Sensor Stamp
" Store Data
* Time-Date Stamp

58

The following modules do not exist as separate class files. Rather the main

routine incorporates their functionality.

" Error Check
" Listener
* Local Control
* Observer Message Processor

Finally, the main routine uses the following class files for implementation

purposes. A brief summary of their functionality is included.

" Configure Test:

* DS2450 Library:

* Find iButtons Console:

* iButtonContainer05:
* iButtonContainer20:
* Load Configuration File:

* Post Data Library:

* TINI Data:

* TINI Data Point:

Uses "Load Configuration File" to read the
configuration file and store results in class
variables.
Library encapsulating useful actions and properties
associated with the DS2450 A/D converter.
Dallas Semiconductor class file that lists all one-
wire devices (iButtons) on the one-wire bus. Used
in "Concentrator ID" to list TINI's controllers and
sensors.
The DS2405 device driver.
The DS2450 device driver.
Driver set up to read the concentrator's
configuration file and write to specified locations.
Driver that first formats data for the web server and
then posts it via the Ethernet port.
Creates and manipulates a vector of TINI Data
Points.
Creates and manipulates a vector that contains the
eleven data fields.

4.4.2 Fault Handler Configuration File

faultnum.cfg configures the "Fault Handler" module and only contains the

number of faults the module has handled (fault number). Each time a fault is passed in,
"Fault Handler" reads this file. If the fault number is within an acceptable range, "Fault
Handler" writes the fault to an error log, increments the fault number, then writes the new
fault number to faultnumncfg. If the fault number is too big, "Fault Handler" first zeros

59

the fault number, erases the error log, and then proceeds as if the fault number were

acceptable.

4.4.3 Concentrator Configuration File

concentrator.cfg configures the entire concentrator and allows users to easily

change operating parameters. Below is a list of chosen operating parameters that are

customizable.

1. Arm High Voltage Switch address
2. Reset Switch address
3. Fire Tester Switch address
4. A/D Converter address
5. Test Type ID
6. Number of shots to take
7. A/D converter's channel test result appears on
8. Time between shots
9. Time between sequences
10. Number of sequences to take
11. Sequence number

Please see Appendix E for more details.

4.4.4 Error Log

ErrorLog.txt logs a maximum of twenty faults passed to the "Fault Handler." As

mentioned above, this file is erased when the twenty-first fault occurs. This fault then

begins a new log file.

60

4.4.5 Software Data Buffer

buffer.txt serves as the nonvolatile data buffer required in Chapter two. Each

line in the file is one data point and consists of the following tab separated values:

1. Date stamp
2. Time stamp
3. Result voltage
4. Result's units
5. Sensor ID
6. A/D channel result came from
7. TINI (Concentrator) ID
8. Software version
9. Test Type ID
10. Sequence number
11. Group number

An example data buffer line follows (formatted for readability):

Sensor ID

96000000011F7C20

A/D Channel

D

TINT ID

0:60:35:0:64:ac

Group Number

1

4.5 Results

Software Version

1.1

Test Type ID

108

Sequence Number

14975301491400

TINI successfully controlled the DSI Tester, took readings, processed the raw

data, and posted results to the web server. This section presents additional results to help

quantify how well TINI actually performed as a concentrator.

61

Date

11/27/2000

Time

5:6:24

Result

4.26

Units

Volts

4.5.1 Time Needed to Get Time-Date Stamp

To measure the time required to get the time-date stamp data into memory, the

following experiment was conducted:

1. Stamp dummy data and get time in hundredths of seconds
2. Stamp dummy data and get new time in hundredths of seconds
3. Write results of steps one and two as TAB separated values on one line in a

text file.

Figure 4.3 plots this time as a function of the shot number. Following this figure

is the maximum, minimum, and average time of one thousand fifty points, as calculated

in Microsoft Excel.

Figure 4.3
Time to Get Time-Date Stamp

120

100
80

0
8 60
S40-
E 20 -

0
CO) CJ 0)M CD CO) 0N- 'Iht V m0br

N N~ M' C Itt 14t 0 fO CW CO

Shot Number

Max Time:

Min Time:

Ave Time:

110

10

24.4

M- W. M~ C D 0)

milliseconds

milliseconds

milliseconds

62

4.5.2 Time Needed to Capture Raw Data

To measure the time TINI needs to capture raw data, the following experiment

was conducted:

1.
2.
3.
4.
5.

Stamp dummy data and get time in hundredths of seconds
Issue controller instructions
Perform A/D conversion and read result
Stamp dummy data and get new time in hundredths of seconds
Write results of steps one and four as TAB separated values on one line in a
text file.

This measures the time elapsed between TINI issuing a controller instruction and

TINI receiving the raw data. Figure 4.4 plots this time as a function of the shot number.

Following this figure is the maximum, minimum, and average time of one thousand fifty

points, as calculated in Microsoft Excel.

Max Time:

Min Time:

Ave Time:

310

140

170

Ms.

Ms.

Ms.

63

Figure 4.4
Time to Capture Data

0.3-
,,0.25-

c0.2
0
CO 0.15

U) 0.1
0.05

0
LO f'- M Mqt D N-~- WO M'i MN MO~ -O N- W '

LO'-~~~ WC))~C W'~ C rLO- 00 0C') MOC)

Shot Number

4.5.3 Time Needed to Perform A/D Conversion

Normal one-wire communication speed is 16.3k bits per second. Now to perform

A/D conversions using the DS2450, one must first write to its memory, tell it to convert,

then read from the memory buffer. Reading from memory is a crucial step as the

DS2450's buffer is replaced with new values upon each conversion. Accounting for the

number of bytes that must be sent to and received from the DS2450, the times for each of

the three steps are calculated below.

Write Memory

Send first 12 bytes: (8 bits/byte) * (12 bytes) * (16.3 * 10^3 bits/sec)Al = 5.89 ms
Receive confirmation: (8 bits/byte) * (3 bytes) * (16.3 * 10^3 bits/sec)A- = 1.47 ms
Send last byte: (8 bits/byte) * (1 bytes) * (16.3 * 10^3 bits/sec)A- = 0.49 ms
Receive confirmation: (8 bits/byte) * (3 bytes) * (16.3 * 10A3 bits/sec)Al = 1.47 ms
Total: 9.32 ms

Perform Conversion

Send 12 bytes: (8 bits/byte) * (12 bytes) * (16.3 * 10A3 bits/sec)Al 5.89 ms
Receive confirmation: (8 bits/byte) * (3 bytes) * (16.3 * 10^3 bits/sec)A1 = 1.47 ms
Hold Power: 1.00 ms
Total: 8.36 ms

Read Memory

Send 12 bytes: (8 bits/byte) * (12 bytes) * (16.3 * 10^3 bits/sec)A = 5.89 ms
Receive confirmation: (8 bits/byte) * (3 bytes) * (16.3 * 1OA3 bits/sec)Al = 1.47 ms
Total: 7.36 ms

Total time for one conversion: 25.04 ms

The DS2450 does support an "overdrive" mode where the one-wire

communication speed is boosted to 142k bits per second. Performing the calculations

above with this new speed produces the following results:

64

Total time to write memory:

Total time to convert: 1.84 ms

Total time to read memory: 0.84 ms

Total time for one conversion: 3.75 ms

4.5.4 Time Needed to Toggle DS2405

The DS2405 uses normal one-wire communication speed (16.3k bits per second)

and does not support overdrive mode.

Toule Switch

Send 10 bytes: (8 bits/byte) * (10 bytes) * (16.3 * 10^3 bits/sec)A- = 4.91 ms

4.5.5 Time Needed to Prepare Data for Posting

To measure the time TIM needs to prepare data for posting, the following

experiment was conducted:

1. Stamp dummy data and get time in hundredths of seconds
2. Stamp with time and date
3. Process Data
4. Stamp with units
5. Stamp with sensor ID
6. Stamp with A/D channel information
7. Stamp with TINI's ID
8. Stamp with software version
9. Stamp with test type ID
10. Stamp with sequence number
11. Stamp with group number
12. Stamp dummy data and get new time in hundredths of seconds
13. Write results of steps one and four as TAB separated values on one line in a

text file.

65

1.07 ms

Figure 4.5 plots this time as a function of the shot number. Following this figure

is the maximum, minimum, and average time of one thousand fifty points, as calculated

in Microsoft Excel.

Max Time:

Min Time:

Ave Time:

2.22

0.89

1.13

seconds

seconds

seconds

66

Figure 4.5
Time to Prepare Data for Posting

2

1.5

0,1

0.5

0
C0 0) CO r- CD L> v CO CJ - 0) CD N- to L> I
C - N- C M) LA T- N- MO C) W 0 CO CI C > 0

V 7 C C CO L4* 1, LO N NCO CO 0 O

Shot Number

4.5.6 Size of Posted Data

To measure the size of the data TINI posts to the web server, the following

experiment was conducted:

1. Capture raw data
2. Process raw data and stamp it with all the data fields
3. Measure size of data and data fields
4. Write results to text file

Figure 4.6 plots this size as a function of the shot number. Following this figure

is the maximum, minimum, and average size of one thousand fifty points, as calculated in

Microsoft Excel.

Figure 4.6
Size of Posted Data

200

150

m 100

50

0
~-C% C) * O O N Wa 0 M- M' ~)* LO ONa

Shot Number

Max Size: 192 Bytes

Min Size: 152 Bytes

Ave Size: 169 Bytes

67

4.5.7 Time Needed to Post Data and Receive Confirmation

To measure the time TINI needs to post data and receive a confirmation, the

following experiment was conducted:

1. Stamp dummy data and get time in hundredths of seconds
2. Get point to post
3. Post data point
4. Receive confirmation from web page
5. Stamp dummy data and get new time in hundredths of seconds
6. Write results of steps one and four as TAB separated values on one line in a

text file.

Figure 4.7 plots this time as a function of the shot number. Following this figure

is the maximum, minimum, and average time of one thousand twenty-six points, as

calculated in Microsoft Excel.

Figure 4.7
Time to Post and Receive Confirmation

W-C LO NM
U) i-C\1

WD M'O C>1 r-I - M LO)
WO ItaLO - N W~C
N~ M~ It) 0 W CO

N M) W M

Shot Number

Max Time:

Min Time:

Ave Time:

U)

0

25

20

15

10

5

0
- I*. [1kb A a. .Aa I. h a -~ m m

24

2

3

seconds

seconds

seconds

68

4.5.8 Data Buffer Size

To measure the data buffer's file size, the following experiment was conducted:

1. Take twenty shots
2. Get file size
3. Write result to a file

Figure 4.8 plots buffer size as a function of the file number. Following this figure

is the maximum, minimum, and average size of fifty-four files, as calculated in Microsoft

Excel.

(D

Figure 4.8
Buffer Size

2100 -
2050

2000-

1950-

1900-

1850-

1800-

File Number

2050

1885

1961

Max Size:

Min Size:

Ave Size:

Bytes

Bytes

Bytes

69

- ------- - - - -- ---------- --- - ----- ------------- - ---- - ---- - - - - - - - -------...

19t rC)nWMN LOW
V_ T__ Ir- T_ C\j C\j C\j

q0I r- C) M W M CIj

M M Itt 'Ift II;jI It LO

4.5.9 Long Term Operation

Long term operation seems limited at this time. Sometimes, an unknown error

disrupts TINT's ability to communicate over the network. When TINT attempts the next

data post, the operating system generates an error message, the software catches this

error, then forces TINT to reboot. This usually solves this problen

However, another unknown error, potentially related to the first, sometimes

prevents TINI from executing the concentrator software after a reboot. When the

software catches an error, it executes the Fault Handler routine, which in turn reboots

TINI. Ideally, TINI executes a startup routine that will restart the concentrator software.

Yet during this process, sometimes an error occurs and TINI will reboot and just not

execute the concentrator software. As this error occurs when the software has been

terminated, it is not detected. So with these two known errors, the software has not run

longer than two consecutive days.

4.5.10 Total Time Needed to Capture, Prepare, and Post Data

Figure 4.9 displays the total time a concentrator requires to capture raw data,

prepare it for posting by processing it and stamping it with the appropriate labels, post an

average of 170 bytes of data to the observer, and then receive a confirmation. In

summary, this time measures the following steps:

1. Capture Data: Send fire command, digitize, then read into
TINT's RAM

2. Get Time-Date Stamp: Create time-date data in TINI's RAM
3. Prepare Data for Posting: Process data point, stamp data point with

time-date data created in step 2, then create
and associate all remaining stamps discussed
in section 4.5.5

4. Post and Receive Confirmation: Post data point to observer then receive
confirmation from observer

The charted data are results calculated and presented in the previous sections.

70

24

23

4

3

Figure 4.9
Total Time to Capture, Prepare, and Post

Single Data Point

C
0

Cl)

min ave

2

1

0

Max Time:

Min Time:

Ave Time:

max

26.64

3.04

4.32

seconds

seconds

seconds

4.6 Discussion

Except for long-term stability, TINI adequately served as a concentrator,

interfacing the physical world and the network controller with minimal problems.

71

* Time to Post and
Receive Confirmation

* Time to Prepare Data
for Posting

* Time to Get Time-Date
Stamp

U Time to Capture Data-4 ------- ---------------- rr-t-Ir t i I- - -

-Ti

EH14-4-

LLFQ

W

4.6.1 Physical World Connection

As already shown, TINI connects to the physical world by using one-wire

devices. One-wire devices, in this thesis, are Dallas Semiconductor iButtons that

communicate over a one-wire bus. Now many one-wire devices either have available

software drivers or are simple enough to create custom drivers. Additionally, the TINI

API provides well-developed classes that are devoted to one-wire communication and

can be used to create these drivers. Together, this cuts down on necessary programming.

Throw in a relatively small cost, small size, and general availability, these devices are

attractive options.

However, the one-wire devices used in this test exhibit two drawbacks. One, they

are not suited for applications requiring times faster than tens of milliseconds. The

DS2450, at a normal bus rate, requires about 25 milliseconds to convert data, 4

milliseconds using the overdrive rate. The DS2405 requires about 5 milliseconds to

toggle the switch. Note that these rates do not include the processor time TINI uses to

implement the appropriate commands. Include this time and one learns that TINI takes

an average of 146 milliseconds to fire the DSI Tester and read the result (calculated by

subtracting the average time to time stamp data from the average time to capture raw

data).

Even though these times appear slow, it did not hamper this test. First, the DSI

Tester, by design, holds the desired voltages long enough for them to be converted.

Second, the DSI Tester has built in safety mechanisms that prevent damaging racing

conditions. Consequently the tester, and thus this test, did not rely on one-wire devices to

detect and react to rapidly changing signals.

However, the second drawback did prove problematic. The one-wire devices, in

particular the DS2405 addressable switches, are susceptible to noise. Firing the high

voltage pulse generates transient noise and often causes both the A/D converter and the

switches to enter unknown states. Basically, this means the A/D converter returns

unreasonable values and the switches do not return their switch state when asked by

TINT.

72

This proved annoying, but not insurmountable. To begin, both the one-wire

devices and the one-wire bus were shielded from the noise. With this shielding, the A/D

converter provides reliable data and TINT can poll the switches for their current state.

Yet two problems still remain. One, TINT still has to wait for the noise to dissipate

before it can ask for the switch's current state. And two, the noise still causes the

switches to change state.

So to accommodate these problems, the software uses two methods. One, it

accepts that it can not determine a switch's state immediately after a pulse fire. So, it

simply waits. And two, it assumes the switches change state after each shot. So before

the next shot, the program re-initializes each switch to the proper state.

Overall, TINI has little trouble connecting to the physical world. The one-wire

devices seem slow, but the DSI Tester compensates for this. Noise disturbs the one-wire

devices, but shielding and software compensate for this. Therefore, TINI can reliably

communicate with the physical world and thus meets the concentrator's physical world

requirements.

4.6.2 Network Connection

Unlike the physical world connection, TINI has no problems connecting to a

network. Using TCP/IP protocol, TIM takes three seconds, on average, to post an

average of 169 bytes to the web server (the spikes in Figure 4.7 can be attributed to the

randomness in the network connection). This may seem slow, but from the

concentrator's point of view, posting is not time-critical. If another operation must be

performed before all the data points are posted, posting can cease as long as the

remaining data points are stored in the buffer. Then when there is available time, the

concentrator can read from the buffer and pick up where it left off.

Now if the server is down or there is a problem transmitting and receiving

information, the "Send Information" module generates a fault that is handled by the

"Fault Handler." Once this problem is resolved, posting can continue since, like above,

the data is stored in the buffer. Therefore TIM successfully connects to the network.

73

4.6.3 Concentrator Software

TINI's software does not exactly match Chapter three's suggestions. Most of the

modules were implemented as suggested and work quite nicely. These modules are listed

in section 4.3.1. However, certain circumstances arose that forced a re-adaptation of

some modules. These four adaptations are described below.

First, to make implementation easier, the concentrator software uses a central

controlling program. This program schedules modules and controls data flow. It also

operates with a defined command set. Therefore, a module technically neither passes

data to other modules nor receives commands from other modules. A module also does

not check for command validity since the control program uses only pre-defined

commands.

Second, the "Listener," "Observer Message Processor," and "Update" modules

were not fully developed due to observer limitations. Now the input from the observer is

limited as it only sends a confirmation that the data arrived. Since only a confirmation

arrives, the "Listener" module was best implemented in the "Post Data Library" class.

Here, the class simply posts data, awaits a reply, and passes the result to the control

program. The control program then determines how to best proceed, thus eliminating the

need for the "Observer Message Processor" module.

Since the "Observer Message Processor" module does not exist, other

concentrator functions are reduced. For one, TINI does not issue capture data or digital

control commands based on observer messages. Consequently this limits the

functionality of "Implement Physical World Commands" and "Capture Data." TINI also

does not retrieve data or send its detailed description upon command, thus limiting the

"Retrieve Data" and "Concentrator ID" functionality.

The final observer imposed limitation occurs in the "Update" module. TIM does

not receive new software, new parameters, or update commands, so the "Update" module

is not needed. But unlike the previous limitations, the remote update functionality still

exists. Currently, one must use ftp to place new software and parameter files on TINT. If

only new parameter files are loaded, the software will automatically use these files when

it reconfigures itself. But if new software is loaded, then the user must open a telnet

74

session and start the new software. Since this interrupts the test and is less than ideal, this

should be fixed in future revisions.

Third, in addition to the "Listener," "Observer Message Processor," and "Update"

modules, the "Error Check" and "Local Control" modules were not implemented as

separate entities. Where the observer imposed limitations on the first three modules, it

did not limit these two modules. Rather specific features of the DSI test rendered them

unnecessary. "Error Check" was not implemented as a separate module because the

DS2450 provides a basic error checking capability called Cyclic Redundancy Checks

(CRCs). The DS2450 generates a CRC number with each memory read and write. This

result is then read by the DS2450 device driver and used to check data validity. Although

the current software version does not utilize this feature, simple error checking is

available.

"Local Control" was not implemented as a separate module because the DSI Test

was simple. The test used one sensor, three simple controllers, and a very simple control

routine. This routine does not have to differentiate between multiple sensors, which

makes implementation easier, and only uses simple comparison checks at appropriate

times. So instead of using a separate module, the software simply incorporates the

control routine into the master program.

Finally fourth, the "Fault Handler" exists as a separate module but is not fully

developed. Currently, any generated fault is passed to the "Fault Handler," just as it

should. However, this module simply ensures the log file's size stays finite, logs the

fault, and then reboots TINI. Now when TINI reboots, it automatically restarts the

concentrator software, so when a fault occurs, TINI is able to recover and continue.

But this recovery is awkward. "Fault Handler" simply halts the software instead

of gracefully terminating it. "Fault Handler" also does not determine what caused the

fault, so upon rebooting, the fault source may still exist. If TINI reboots every time and

the faults are not fixed with the reboot, the software could enter an infinite loop. Clearly

this is not ideal and should also be fixed in future revisions.

75

4.6.4 Data Buffer File

TINI implements the temporary buffer by writing data to a file. This file is

located in TINI's nonvolatile memory, thus meeting one of the concentrator's desired

properties. Originally, the buffer was to hold a week's worth of data. In this scenario,

TINI would take twenty shots per hour, twenty-four hours a day, seven days a week.

Now when the buffer file contains twenty shots, the average file size is about 2 kBytes.

After performing the math, one finds that the buffer file would require, on average, 336

kBytes. TINI currently has 512 kBytes of nonvolatile RAM, expandable to 1 MByte.

Without expanding TINI's memory, storing this much data leaves 176 kBytes for the

concentrator software and configuration files. The current software version requires

about 22 kBytes while the configuration files require about 1 kByte. Given this, TIM

can safely store a week's worth of data.

However, this feature was not implemented primarily for debugging purposes.

While debugging the system, the number of shots and the number of sequences per hour

varied. So instead of only taking twenty shots once an hour, one could take one shot per

minute for the entire day. The next day, one could take one shot every thirty seconds

during one hour then return to taking one shot per minute for the rest of the day.

Consequently, one could not predict the buffer's size after operating TINI for a week.

So currently the buffer holds the defined number of shots. If the shots are

successfully posted to the web page, the file is deleted. But if the shots are not

successfully posted to the web page, TINI reboots and keeps the file. The next time TIM

tries to post data, it should post both the newly gathered data and the old data in the

buffer. However, the current software version simply posts the new data, and if

successful, deletes the old. But if the posting is not successful, the new data is added to

the buffer and TINI reboots.

Now this elucidates a previously unknown bug. Suppose TINI collects a

sequence but fails to post them to the web server. TIM reboots, collects another

sequence, but again fails to post them. If TIM continually fails to post data, this loop

will continue ad nauseum. Since TINI neither checks the buffer's size nor checks for

available memory, the buffer will continue to grow. Once the buffer exceeds the

76

available memory, TINI chokes and ungracefully halts the program. Although the

chances of this happening are rare, it should be fixed to ensure long term reliability.

4.6.5 TINI as a Concentrator

Although the software does not implement all the modules exactly as outlined in

Chapter three, TINI successfully implements a concentrator. It can retrieve data from the

physical world and control processes without observer input. TINI can properly stamp

and process raw data, storing it in the temporary buffer if necessary. And TINI can

communicate with the observer by posting data and receiving confirmations. Table 4.4

restates the concentrator properties in Table 2.1 and includes how TINI satisfies each

property.

77

Table 4.4
Satisfied Concentrator Properties

1. Global Properties

" Controlled by a single observer:

" Unique identification:

" Report information:

" Receive information:

" Remotely configurable:

" Run simultaneous programs:

* Possess real-time clock:

2. Security Constraints

" Nonvolatile data buffer:

" Robust with self-recovery mechanisms:

" Communicate with encrypted data:

3. Input / Output Requirements

e Input from physical world:

Satisfied by definition. Posts to and
receives information from one web
server.

Satisfied by TINI's unique Ethernet
address.

Satisfied by software module "Post
Information."

Partially satisfied by communication
contract with web server. After each
post, web server sends confirmation.

Partially satisfied. User must place new
configuration files on TIM using ftp.
Currently does not accept new files from
web server.

Satisfied by TINI's operating system.

Satisfied by TINI's peripheral chips.

Satisfied by TINI's ROM that stores the
buffer file.

Partially satisfied by "Fault Handler."

Not satisfied by current software.

Partially satisfied by software. Current
version puts time-date stamp on data,
converts raw data to conventional
values.

78

Table 4.4 (continued)
Satisfied Concentrator Properties

* Output to physical world:

" Input from observer:

* Output to observer:

Partially satisfied by software. Current
version sends control commands in
response to processed data but not in
response to observer commands.

Partially satisfied by software. Current
version accepts posting confirmation that
is used as a concentrator control
command, but does not accept new
software or new parameters.

Partially satisfied by software. Current
version sends data automatically and is
capable of sending status information
but does not send data when
commanded.

79

Chapter 5

Conclusions and Future Work

5.1 Concentrator Theory

A concentrator successfully implements a well-defined, remote device that helps

separate primary control from data collection. As a well-defined device, the concentrator

possesses clearly defined properties and attributes that are logically grouped into global

properties, input / output requirements, and security constraints. These attributes led to

well-defined software modules with clearly defined input / output requirements,

acceptable failure modes, and failure contingency plans. Together these modules

implement a concentrator.

The concentrator also operates as a remote device due to carefully specified

properties. To ensure the concentrator succeeds as a remote device, it must be robust

with self-recovery mechanisms so that a human would not have to service it. The

concentrator also has a nonvolatile data buffer so that data would not be lost. It has a

unique identification so that the primary controller can identify it in a network. And

finally the concentrator can accept new software, parameters, and commands that ensure

it is remotely configurable.

Finally, the concentrator helps separate primary control from data collection

because it is a member of the observer - concentrator system. The observer is the

primary controller. It transmits commands, new software, and new parameters to the

concentrator while expecting the concentrator to transmit data, status information, and

error messages. The concentrator performs the data collection. It retrieves data from

sensors, processes it, then transmits the results to the observer.

However, the concentrator is designed to be much more than a simple data

collector. It can also operate as a controller. The concentrator can issue instructions for

the physical world controllers either when instructed by the observer or after

81

implementing its control routine. In this fashion, the concentrator serves as the

observer's remote controller and as a local controller.

As mentioned many times, the concentrator interfaces the physical world with a

network connected controller. It operates as a data collector, local controller, and remote

controller and helps separate data collection from primary control. Specific properties

define a concentrator while software modules implement it. Overall, the concentrator

expands computerized control and data collection.

5.2 Concentrator Demonstration

As shown in Chapter four, the physical demonstration concentrator satisfies some

of the defined requirements and adequately works as a data collector and local controller.

It can retrieve data and control processes without observer input. It can properly stamp

and process raw data then safely store the results in a nonvolatile buffer. And it can send

data to the observer.

However, certain requirements were not addressed. For one, the physical

concentrator is not very robust. After the concentrator's software runs for a few hours, it

loses Ethernet capabilities with rebooting the device the only way to exit this state. As

this interferes with the concentrator's abilities to communicate with the observer, this

should be further explored.

In addition to not being very robust, the developed software uses a very basic self-

recovery method. Once the "impaired Ethernet state" occurs, the device simply detects

this state, forces a reboot, then restarts the concentrator software. An improvement

would be gracefully terminating the program then restarting the software at the point in

the routine where the error occurred.

The physical concentrator also has limited remote configuration capability.

Currently the software uses parameter files that can be updated remotely and seamlessly.

Unfortunately, the software itself can be updated remotely but not seamlessly. Currently

all the modules' software is compiled into one program, so to update one part of the

82

software, the concentrator must replace the whole program. This requires that the old

software first quit running. Obviously this is far from seamless.

Finally, the physical concentrator does not respond to observer commands. This

feature was not explored in this demonstration and should be developed in future

versions.

5.3 Future Work

Forcing concentrators to remain isolated from other concentrators may be too

restrictive. True, this requirement helped define a concentrator and make it more

versatile, but to be a true local controller, concentrators should be able to share

information. Again revisit the complex process used throughout this thesis. Suppose an

observer uses multiple concentrators to monitor this process and wants them to mainly

operate as local controllers. If one concentrator must make a local decision but first must

get data from another concentrator, it has to wait for the data to leave the second

concentrator, arrive at the observer, and then arrive at the appropriate module. With a

small number of concentrators, this time may be comparable to the amount of time used

in concentrator to concentrator communication. But with hundreds or thousands of

concentrators, the observer can quickly become overwhelmed with requests. The time to

correctly implement a local decision quickly rises, and limits the system's usefulness.

Also, the observer should be carefully defined. The concentrator is only useful if

an observer - concentrator network exists and without a well-defined observer,

implementing and using a concentrator becomes difficult.

Finally, the demonstration's software improvements mentioned above, as well as

the shortcomings mentioned in Chapter four, should be addressed. The existing

demonstration is a basic proof of concept but is far from complete. A few bugs exist,

such as the potential for the data buffer to run out of memory and the potential for the

software to enter an infinite loop and never terminate. Also some requirements were not

met, such as long term reliability, responding to observer commands, and configuring

83

remotely. Overall, there are many remaining tests that will help explore the physical

concentrator.

Earlier attempts at the concentrator concept [7] used a full size desktop computer,

but this is the first attempt to reduce the concentrator's hardware requirement to a small,

diskless system. This work successfully demonstrates the capability to achieve an

efficient, easy to use, low-cost concentrator structure.

84

Appendix A

Initialization and Set-Up of TINI

Appendix A highlights steps that set up and configure Dallas Semiconductor's

TiNI. This assumes the reader has:

" A TINI board
" A board that at least connects TINI to a power supply, an RS-232 connection, and

an Ethernet connection. Dallas Semiconductor currently provides a TINI Socket
Eurocard 72-pin Revision C board for development work.

* A PC with RS-232 serial output

The TINI web page http://www.ibutton.com/TINI/index.html, Dallas

Semiconductor's home page http://www.dalseni.com/, and Sun's Java home page

http://www.iavasoft.com/ are valuable sources to find additional information and locate

the files mentioned below. Also, please consult the README.txt file (see step 3) for a

more detailed description of the installation procedure.

A.1 PC Installations and Configurations

1. Install Sun's Java Development Kit (JDK). This thesis installed JDK 1.3 into the
c:\jdkl.3 directory (<jdk>) and the c:\Program Files\JavaSoft (<jdk-prog>)
directories

2. Install Sun's Java Communications API, javax.comm. This thesis installed
javacomm2O-win32.zip into the c:\commapi directory (<comm>)

3. Install the TINI software package. This thesis installed tinilO1.tgz into the
c:\tinil.01 directory (<tinil.01>). <tinil.01> contains the README.txt file
mentioned above

4. Place <comm>\win32com.dll in <jdk>\jre\bin and <jdk prog>\JRE\1.3\bin
5. Place <comm>\comm.jar in <jdk>\jre\lib\ext and <jdk prog>\JRE\1.3\lib\ext
6. Place <comm>\javax.comm.properties in <jdk>\jre\lib and

<jdkprog>\JRE\1.3\lib
7. Edit the AUTOEXEC.BAT file so that the tini.jar and commnjar files are in the

classpath. This thesis entered the following paths into the classpath:
* <tinil.01>\bin\tini.jar;
* <jdk>\jre -cp <jdk>\jre\lib\ext\comm.jar;

85

8. Create the JavaKit.BAT file (or equivalent) found in Appendix C (optional)

A.2 Loading TINI Firmware

Before proceeding, make sure TiNI is powered and connected to the PC with a

reliable serial cable.

1. Start JavaKit
2. Make sure baud rate is set to 115200
3. Select desired PC serial port
4. Press the "Open Port" button
5. Press the "Reset" button
6. Make sure TINI has the latest bootstrap loader (see the README.txt file referenced

above)
7. Load tini.tbin

* Select "Load File" from the File menu
" Choose <tinil.01>\bin\tini.tbin

8. Clear the heap
* Type b18 (changes to bank 18)
" Type f) (fills bank 18 with O's)

9. Load slush.tbin
" Select "Load File" from the File menu
" Choose <tini.101>\bin\slush.tbin

Congratulations. TINI's firmware has been loaded. However, any previous files

on TINT, as well as TINI's past configurations, have been lost. This includes network

configurations. So until the network configurations are reset, TINI's ftp and telnet

services will not work.

A.3 Setting Network Configurations

1. Start JavaKit
2. Select desired PC serial port
3. Press the "Open Port" button
4. Press the "Reset" button
5. Type E and press Return
6. Login to TINI

86

This enters slush, TINI's operating systen. Now use the "ipconfig" command to

set the network configurations. For further information, type "help ipconfig" at the slush

prompt.

87

Appendix B

Compiling Programs for TINI

This assumes the reader has some familiarity with Java and Java programs. Also,

the reader must install the TINI software as outlined in Appendix A. In particular, the

tini.jar file must be included in the classpath or placed in the c:\jdkl.3\JRE\1.3\lib\ext

directory. For this thesis, the tini.jar file was included in the classpath. Please read

BuildingApplications.txt located in the TINI install directory under the docs directory

for further information.

To begin, TINI applications must be compiled and converted into a .tini format.

Since TINI applications are written in Java, the Java compiler will successfully convert

them into a .class format. However, TINI's operating system, which is Java based, does

not use Java's entire standard API, so all TINI applications must be compiled with TINT's

API.

There are multiple ways to accomplish this. For this thesis,- applications were

compiled by specifying Java's bootclass path. Assuming the TINI software was installed

in a directory referred to as <TINI Install Dir>, typing the following command at a DOS

prompt would convert Concentrator.java into a .class format using TINI's API.

javac -bootclasspath <TINI Install Dir>\tiniclasses.jar Concentrator.java

Now the class file must be converted into TINI's format. This is done using the

TINIConverter tool included in the tini.jar file. To convert Concentrator.class to

Concentrator.tini, type the following at a DOS prompt:

java TINIConvertor -f Concentrator.class -o Concentrator.tini -d <TINI Install

Dir>\bin\tini.db

If multiple class files must be converted, all the files must first be placed into a

directory before the whole directory can be converted. So if compiling

89

Concentrator.java, as above, creates more than one class file, each file must be placed

into one directory. This directory can then be converted into a single .tini program. For

example, to convert the directory called mydir into Concentrator.tini type the following:

java TINIConvertor -f mydir -o Concentrator.tini -d <TINI Install Dir>\bin\tini.db

Repeatedly typing these lines quickly becomes cumbersome and time consuming.

So to make this task easier, the following batch files were created. Each batch file uses

the DOS program GETKEY, explained in Appendix D, to get keyboard input. These

batch files can either compile and convert a single .java file that produces one .class file

or compile and convert a single .java file that produces multiple .class files. If the

application produces multiple .class files, the user must manually place all the files into

the desired directory.

B.1 Steps to Compile and Convert Single Class File

1) Type "BuildTini myfile" at DOS prompt (without quotation marks and

substituting desired file name for myfile)

2) Type "Y" (It must be a capital Y. Anything else will cause the program to

quit.)

3) Type "1"

B.2 Steps to Compile and Convert Multiple Class Files

1) Type "BuildTini myfile mydir" at DOS prompt (without quotation marks and

substituting desired file name for myfile and desired directory for mydir)

2) Type "Y" (It must be a capital Y. Anything else will cause the program to

quit.)

3) Place all .class files that were just created into the mydir directory

90

4) Type "2"

B.3 BuildTini.BAT

ECHO OFF

REM ***
REM * *
REM * This takes two parameters specified at the command line: *
REM * 1) File name to compile (no extenstions) *
REM * 2) Directory to build (if you are building *
REM * a directory) *

REM* *
REM * Example: You want to compile foo.java and then build the *
REM * entire directory bar (which is located in the *
REM * same directory as foo.java) *

REM* *
REM * So you would type (at the DOS prompt): *
REM * buildTini foo bar *
REM* *
REM ***

CLS

ECHO %1

javac -bootclasspath <TINI install dir>\bin\tiniclasses.jar %1 .java

ECHO Do you want to build a TIM executable file (Y/N)?
GETKEY
IF ERRORLEVEL 78 IF NOT ERRORLEVEL 79 ECHO N WAS PRESSED

IF ERRORLEVEL 89 IF NOT ERRORLEVEL 90 buildTinil %1 %2
REM ECHO Y WAS PRESSED

91

B.4 BuildTinil.BAT

ECHO OFF
CLS

ECHO %I

ECHO Enter:
ECHO (1) to build a single class
ECHO (2) to build a directory

GETKEY

IF ERRORLEVEL 49 IF NOT ERRORLEVEL 50 java TINIConvertor -f % 1.class -o
%1.tini -d <TINT install dir>\bin\tini.db

IF ERRORLEVEL 50 IF NOT ERRORLEVEL 51 java TINIConvertor -f %2 -o %1.tini
-d <TINI install dir>\bin\tini.db

IF ERRORLEVEL 50 IF NOT ERRORLEVEL 51 ECHO %2 %1

92

Appendix C

JavaKit Batch File

This appendix assumes the reader has successfully followed the installation steps

in Appendix A and placed the files in the directories used for this thesis. If using

different directories, please make the appropriate changes in the following code.

TINI's serial connection provides a "fail-safe" connection, is used to load TINI's

operating system, and offers another development platform. In development work, the

serial connection can potentially be used regularly. So to facilitate easy communication

between the PC's serial port and TINI's serial port, Dallas Semiconductor provides a

program called JavaKit.

JavaKit is a Java program that serves as a user interface with TINI's serial port.

But in order for it to run on a PC, the Java program executor must have its classpath point

to two files: tini.jar and tiniclasses.jar. Typing the following line at a DOS prompt can do

this:

C:\JDK1.3\bin\java -classpath C:\TINI1.01\BIN\tini.jar;

C:\TINI1.01\BIN\tiniclasses.jar JavaKit

However, this is too cumbersome to type frequently. So to provide a quick way

to start JavaKit, the following DOS batch file was created.

C. JavaKit.BAT

@ECHO OFF

C:\JDK1.3\bin\java -classpath C:\TINIl.01\BIMtini.jar;

C:\TINIl.01\BIN\tiniclasses.jar JavaKit

93

Appendix D

DOS Program that Allows Keyboard Input

During Batch File Execution

Typical DOS configurations do not allow keyboard input, which limits most batch

files. GETKEY.COM lets these files use keyboard input [17]. Follow these steps to

create GETKEY.COM.

1. Bring up a DOS prompt
2. Change to the directory GETKEY.COM will be located in (<desired directory>)
3. Enter DEBUG <desired directory>\GETKEY.COM
4. Type:

" A100
* MOV AI,1
" INT 21
" MOV AH,4C
" INT 21
" (press RETURN)
" RCX
. 8
e W
-Q

Figure D. 1 shows a screen shot where the user created GETKEY.COM in the

directory C:\tini.

95

C:\tini>DEBUG C:\TINI\GETKEY.COM
File not found

-A100
OADC:0100 MOV AH,1
OADC:0102 INT 21
OADC:0104 MOV AH,4C
OADC:0106 INT 21
OADC:0108
-RCX
CX 0000
:8
-W
Writing 00008 bytes
-Q

C:\tini>

Figure D.1
Screen Shot of Creating GETKEY.COM

96

Appendix E

Concentrator Configuration File

concentrator.cfg configures the concentrator to conduct the DSI experiment.

Below is the configuration file used in this thesis; the line numbers are added for

discussion purposes. Note, any line that begins with the pound sign, #, is treated as a

commented line by the software and thus has no effect on the concentrator.

1. #number of uncommented lines in configuration file
2. #this determines the length of the array which stores configuration data
3. 14
4. #number of addresses present
5. 4
6. #Address for Arm High Voltage Switch
7. F50000000C252605
8. #Address for Reset Switch
9. C70000000C42D605
10. #Address for Fire Tester Switch
11. 820000000C77D805
12. #DS2450 (A/D converter) address
13. 12000000012A0120
14. #Test Type ID Number
15. 108
16. #number of groups to take
17. 20
18. #Channel number on the DS2450 (A/D converter) that result appears on
19. 3
20. #Time between groups (in seconds)
21. 60
22. #Time between sequences (in minutes)
23. 1
24. #number of sequences to take (enter 0 if desire infinite number)
25. 0
26. #sequence number (this must be the last item in the configuration file)
27. 1

97

Most of the lines are self explanatory with the following definitions.

" Group: One data point, including all the proper identification tags
" Sequence: A collection of m groups.
" The three channels used on the DS2450 (A/D converter) in this

implementation are specified in the compiled code and are not configurable by
concentrator.cfg

A few lines, though apparently self-explanatory, need some elaboration. As the

comment suggests, line three initializes an array in the software. This array contains the

values on all the uncommented lines, except for this number, and is used to initialize

specific variables in the software.

Line five tells the software how many one-wire device addresses follow. It is

important that all the one-wire device addresses follow this line else the software will

crash.

Originally, lines three and five were intended to make adding parameters and

devices easier. These lines do achieve this goal under certain qualifications. The user

must still change the software by adding the appropriate variable and matching it with the

appropriate array position. Also, new one-wire devices can be added as long as the

variables, with the appropriate drivers, exist in the code. So the user can add devices and

parameters to the code and not worry about the initialization array's length, as long as

they update the code and change the appropriate numbers in the parameter file. This

makes software changes a little easier and less susceptible to human forgetfulness.

Finally, line twenty-seven must be the last line in the parameter file. The software

updates the sequence number internally, then rewrites it to the parameter file. Rather

than rewriting the entire parameter file, the software simply jumps to the appropriate

location in the file and rewrites the number. This location is at the end of the file for one

reason. The sequence number can continually grow, and storing a variable that uses more

and more bytes in a file forces the software to rewrite everything after the sequence

number, otherwise other data will be overwritten. So the only place in the file that does

not have data after the sequence number is the end of the file.

98

Appendix F

Concentrator Software

F.1 Concentrator.java

F.1.1 Code Description

This program implements the flow diagram depicted in Figure 4.2. It configures

variables using the concentrator.cfg file and is implemented with two loops: the "Big
Loop" and the "Inner Loop." The "Big Loop" takes the specified number of groups,
posts the results, reconfigures the variables, and then checks to see if it should loop again.
The "Inner Loop" operates the DSI tester, captures processes data, then stamps and saves
the results. Each loop number is specified in the configuration file.

F.1.2 Actual Code

/******* ********* ** ****************** ** * *** * ** ** * *** ******************

*

* Concentrator:
*

*

* Author: Michael T. DePlonty
*

* Date: November 30, 2000

* * *** * *** * ** **************** ** * ** ** ** ** **** ** * * ** ** ** ********* ** **** */
import comnibutton.iButtonException;
import com. ibutton.adapter.*;

class Concentrator
{

private static final String BUFFERFILENAME
private static final String DEFAULTURL =

"http://192.168.0.2/entergy/listen4datafull.asp";

= "buffer.txt";

private static final double FIRELIMIT = (double) 2.5;

99

private static final int

private static final int

private static final int

CHRGVLTCHNL = 1;

CHK_FIRE_CHNL =2;

RSLTVLTCHNL 3;

/channel B on A/D
/converter will read
//the charge voltage
/channel C on A/D
/converter will read
//the check fire voltage
/channel D on A/D
/converter will read
//the result voltage

static ImplementPWorldCmds
static CaptureRawData
static ConcentratorlD
static ConfigureTest
static DeleteData
static ImplementPWorldCmds
static TiniDataPoint
static ProcessData
static ImplementPWorldCmds
static RetrieveData
static SendInformation
static SensorStamp
static
static
static

StoreData
TimeDateStamp
TiniData

private static String[]

static String
static String
static String
static String
static String
static String
static String

static long
static long

static double
static double
static double

armingSwitch;
captureData;
concentratorID;
configureTest;
deleteData;
fireSwitch;
onePoint;
processData;
resetSwitch;
retrieveData;
sendInformation;
sensorStamp;
storeData;
timedateStamp;
vectorDataPoints;

command;

a2dConverteraddress;
armHVaddress;
fireDSIaddress;
lapsedMillisecondsString;
resetswitchaddress;
resultOfPosting;
sequenceNumberString;

groupNumber;
sequenceNumber;

charge..voltage;
check_fire;
resultvoltage;

num_missfires;
num_selfifires;

static int
static int

100

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

private
private
private
private
private
private
private

private
private

private
private
private

private
private

private static int
private static int
private static int
private static int
private static int
private static int
private static int
private static int
private static int

private static byte

numseqlimit;
numseqjlimitnew;
numshotslimit;
numAddresses;
resultChannel;
shotRestTime;
tempBuffer;
testTypeID;
timebetween.sequences;

posting-flag;

public static void main(String args[])
{

try
{

System. out.println("Welcome to the concentrator.");
configureo;
init(;
System.out.println("Done initializing.");
num_seqjimit = numseqjimit-new;
int tempCounter = 0;

/* ***

*

* Run the test
*

do
{

*

* Initialize these at the start of every sequence, which is the begining of this
* do loop (one iteration of the do loop corresponds to one sequence).

* ** * ** *** ** * ** ** ** ** **** ** * ** ** ** ** * ********************* ** * *** ** ** */

num_selffires = 0;
nummissfires = 0;
postingflag = (byte) 0; /init. flag such that it is not set
vectorDataPoints = new TiniDatao;

lapsedMillisecondsString =
Long.toString(timedateStamp.getLapsedMilliseconds();

/gets time in milliseconds elapsed since Jan. 1., 1970. Used to create unique
sequence number

101

sequenceNumberString = Long.toString(sequenceNumber);
sequenceNumberString =

sequenceNumberString.concat(lapsedMillisecondsString);

System.out.println("Starting Big Loop number " + tempCounter);
System.out.println(" ");

groupNumber = (long) 1; //reset group numbers for a new sequence

Systemout.println("Parameters the test is operation on:");
System.out.println("test type id = " + testTypeID);
Systemout.println("num groups limit = " + numshotsjlimit);
System.out.println("resultChannel = " + resultChannel);
System.out.println("Shot Rest time = " + shotRestTime);
System.out.println("Time Between Sequences = " + timebetween-sequences);
System.out.println("number seqences limit = " + num seqjimit);
System.out.println("Sequence Number = " + sequenceNumber);

/*** *************************** ** ** ** ** * * *** ************ *********** * *

*

* Arm HV
*

**/

fireSwitch.initializeSwitch("open");
armingSwitch.initializeSwitch("closed");
resetSwitch.initializeSwitch("open");
resetSwitch.initializeSwitch("closed");
resetSwitch.initializeSwitch("open");
Systemnout.println("Armed the high voltage");

*

* Wait for voltages to stabalize
*

try
{

Systemout.println("Starting to sleep for 30 secs.");
Thread.sleep(1000*30); /wait 30 seconds between runs

}//try

102

catch (InterruptedException e)
{

System.out.println("Interrupted Exception");
}//catch

/* ** ** ** * *** ** * ****************** ** ** ** ** ** ** ** ** ** ** * ***************

*

* Take a specified number of shots
*

**** *************************** * **** * *** ** ** ** ** * *** ** * ******** * *** */

System.out.println("Number of shots = "+ num_shotsjlimit);

for(int num shots=O; numshots < numshotslimit; numshots++)
{

Systemout.println("Top of inner loop");
System.out.println(" ");
System-out.println("Loop Number " + (num shots+1));
System.out.println(" ");

initSwitcheso; /put switches into known state

try
{

Systenout.println("Sleeping for " + shotRestTime + " sec.");
Thread.sleep(1000 *shotRestTime); /wait between runs

}//try
catch (InterruptedException e)
{

System.out.println("Interrupted Exception");
}//catch

charge yoltage
processData.convertToStandardUnits(captureData.retrieveData(CHRG VLTCHNL));

System.out.println("charge voltage " + charge voltage);
checkfire =

processData.convertToStandardUnits(captureData.retrieveData(CHKFIRECHNL));
Systemout.println("check fire = " + check-fire);

***** * ** **
*

* Device did self fire
*

** * ** * ** ******************* * * **** ** ** * ** **** * ** * ** ** ** ** * **** ** ** ** */

103

if (FIRE-LIMIT < check_fire) /device did a self-fire as
/result was above the threshold

{
System.out.println("Device did a self-fire");
++numselffires; /increment number of self fires
if (numselffires > numshotslimit/2)
{

/signify test failed

for (int index=0; index < vectorDataPoints.sizeo; index++)
{

System.out.println("Changing Test Type ID.");
onePoint = vectorDataPoints.getDataPoint(index);
onePoint. setTestTypeID(1 1010);
vectorDataPoints.setElementAt(onePoint, index);

}//for

onePoint = null; /free up this object for future use
System.out.println("test failed because of self-fire");
break;

}//if (numselffires > numshotslimit/2)

else /reset fire flip-flop and continue
{

/to reset, resetSwitch must go Low, then High. resetSwitch
/is already High, so we only need to toggle twice.

System.out.println("Resetting switch cause number of self fires is not too
big");

resetSwitch.initializeSwitch("open");
resetSwitch.initializeSwitch("closed");
resetSwitch.initializeSwitch("open");

}//else
}//if(FIRELIMIT < checkfire)

/to fire, fireSwitch must go Low, then High. fireSwitch
/is already High, so we only need to toggle twice.

fireSwitch.initializeSwitch("closed");
fireSwitch.initializeSwitch("open");
checkfire =

processData.convertToStandardUnits(captureData.retrieveData(CHK FIRECHNL));
Systenout.println("check fire = "+ check-fire);

sensorStamp.acceptCommand(command);
resultvoltage =

processData.convertToStandardUnits(captureData.retrieveData(RSLT VLT_CHNL));

104

timedateStamp.stampo;

/***** **************************** ******************* ****************

*

* Test fired as desired
*

********************************* *** ** * ** * ** * ** *** * ** * ***** * ** ** *** */

if (FIRE LIMIT < check-fire) //test fired as desired
{

System.out.println("Test fired as desired");
System.out.println("result = "+ resultvoltage);
resetSwitch.initializeSwitch("open");
resetSwitch.initializeSwitch("closed");
resetSwitch.initializeSwitch("open"); /reset the fire flip-flop
createTiniDataPointo;

/* * ** *** ************************ ** * **** ** * ** ** ** ** * **** * ** ** ** ** * *** *

*

* Saving Data
*

** ** ** ** * ************************* * *** * ** ** ** ** * ** ** * *** ** ** * * ***** */

Systemout.println("Saving data point");
storeData.writeData(onePoint, true);
System.out.println("Saved data point");
onePoint = null; //free up object for future use

++groupNumber;
}//if (FIRELIMIT < checkfire)

/* ** * **** *********************** * ** *** * *** ** ** ** * ** *** * ** *** * ** ** *** *

*

* Test didn't fire (misfire)

else if (checkfire <= FIRELIMIT) /test didn't fire
{

System.out.println("Test didn't fire.");
++nummiss_fires; /increment the number of miss fires
if (num missfires > num_shotslimit/2)
{
//signify test failed - voltage too low

105

for (int index=0; index < vectorDataPoints.sizeo; index++)
{

System.out.println("Changing Test Type ID.");
onePoint = vectorDataPoints.getDataPoint(index);
onePoint.setTestTypeID(11001);
vectorDataPoints.setElementAt(onePoint, index);

}//for
onePoint = null; /free up this object for future use
Systemout.println("test failed - voltage too low");
break;

}//if (nummissfires > numshotslimit/2)
numshots--; /make sure we take another point and not count this loop

iteration
Systemout.println("Resetting switch cause number of misfire");
resetSwitch.initializeSwitch("open");
resetSwitch.initializeSwitch("closed");
resetSwitch.initializeSwitch("open");

}//else if (0 <= checkfire < FIRELIMIT)
}/for

/* ** ************************** ** **** * * *** ** ** ** ** ** * ** * *** * ** ********

*

* Dis-arm HV
*

*** ** ** * ******* ********* * *** ** * ** ** *** * ** ** *** ** * **** ** * ** * ******** */

armingSwitch.initializeSwitch("open");
Systemout.println(" ");

System.out.println(" ");
Systemout.println("Turned off HV");
System.out.println(" ");

Systemn.out.println("***"1);
System.out.println(" ");

sequenceNumber = sequenceNumber + (long) 1;

*** ***
*

* Post data
*

* ** ** ** ** * *** * ** * ** * ***** ** * ** *** ** ** ** * *** * ** *** * ** ** ** ** *** ** ** ** */

106

for (int index=O; index < vectorDataPoints.sizeo; index++)
{

Systemout.println("Trying to post the data");
onePoint = vectorDataPoints.getDataPoint(index);
try
{

sendInformation = new Sendlnformation(DEFAULTURL);

Systemout.println(" ");

Systemout.println("Posting this data point: "+ index);
System.out.println(" ");
System.out.println(onePoint.getDateo);
Systemout.println(onePoint.getTime();
Systemout.println(onePoint.getValueAsString();
Systemout.println(onePoint.getUnitso);
System.out.println(onePoint.getSourcelDO);
Systemout.println(onePoint.getChannel());
System.out.println(onePoint.getTinilDo);
Systemout.println(onePoint.getSoftwareVersionAsStringo);
Systemiout.println(onePoint.getTestTypelDAsStringo);
System.out.println(onePoint.getSequenceNumberAsStringo);
Systemout.println(onePoint.getGroupNumberAsString());
System.out.println(" ");

Systemrout.println("***");
System.out.println(" ");

resultOfPosting = sendlnformation.sendData(onePoint.getDateo,
onePoint.getTimeo,
onePoint.getValueAsStringo,
onePoint.getUnitso, onePoint.getSourceIDO,
onePoint.getChannel(), onePoint.getTiniID(,
onePoint.getSoftwareVersionAsStringo,
onePoint.getTestTypelDAsString(,
onePoint.getSequenceNumberAsString(,
onePoint.getGroupNumberAsStringo);

sendInformation = null; /free up this object for future use

if (resultOfPosting.compareTo(" ") == 0) /implies no confirmation from
observer that data was received

{
posting-flag = (byte) 1; /observer didn't get data, so set flag

}//if observer didn't get data
}//try

107

catch(Exception e)
{

/flag that posting didn't work
posting-flag = (byte) 1;

}//catch

if (postingfag == 0) //flag is not set, so observer got the data, so clear the
buffer

{
deleteData.deleteAllPointso;

}//if
}//for posting data

vectorDataPoints.removeAllElementso;
vectorDataPoints = null;

++tempCounter;

/create a new object in case the config file has been updated.

System.out.println("writing the sequence number");
configureTest.writeValues(sequenceNumber);

System.out.println("Reading the configuration file");
configureo;

System.out.println("Read, configured, and just closed the configuration file.");

if (numseq_limitnew == num seqjimit) /no change in the limit

{
if (num seqjimit == 0) //we want to run indefinately
{

tempCounter = 0; /since we run indefinately, need to keep this counter finite

System.out.println("OK, now will run indefinately. To change, enter");
Systemout.println("a nonzero number for the sequence limit in the

configuration file.");

}//if run infinitely

else /not running infinitely, so check to see if reached the limit
{

if (tempCounter >= numseqjimit) /reached (or exceeded) the limit, so quit

{
System.out.println("Reached the sequence limit, so I'm stopping.");

108

System.gco; /run garbage collector to free up memory
break;

}//if reached (or exceeded) the limit
}//else not running infinitely

}//if no change in limit

else /sequence limit has changed
{

System. out.println("Sequence Limit has changed.");
if (num seq_limitnew <= tempCounter)
{

if (num seq~jimit-new != 0) //don't wish to run infinitely, so quit
{

System.out.println("Changed the sequence limit, and it's a finite limit,");
System.out.println("so I'm stopping.");
System.gco; /run garbage collector to free up memory
break;

}//if wish to quit
else
{

/do nothing so that we can loop again

}
}//if new sequence limit is less than tempCounter

}//else sequence limit has changed

try
{

System.gco; /run garbage collector to free up memory
System.out.println("Sleeping for " + timebetween_sequences + "minutes.");
Thread.sleep(1 000*60*time_between-sequences); /wait for

timebetween-sequences minutes
}//try
catch (InterruptedException e)
{

System.out.println("Interrupted my sleep.");
}//catch
num seqjimit = numseqjimit-new; /update old sequence limit to the new one

}//do
while (true);

}//try the whole thing

109

catch (Exception e)
{

FaultHandler fh = new FaultHandlerO;
fh.handleFault(e.toStringo);

}//catch
} /main

private static void configure()
throws Exception, iButtonException, OneWireIOException

{
configureTest = new ConfigureTesto;
configureTest.readValueso;
armHVaddress = configureTest.getARMHVADDRESSo;
resetswitchaddress = configureTest.getRESET SWITCHADDRESSO;
fireDSI_address = configureTest.getFIREDSIADDRESSO;
a2dConverteraddress = configureTest.getA2DCONVERTERADDRESSO;
sequenceNumber = configureTest.get sequenceNumberO;
testTypelD = configureTest.get testTypeIDO;
resultChannel = configureTest.get resuitChannel();
numshotslimit = configureTest.get numshotslimito;
shotRestTime = configureTest.get shotRestTimeo;
timebetweensequences = configureTest.get time_betweensequencesO;
num_seqjimit-new = configureTest.get-numseqiimito;

configureTest = null;

System.out.println("this is what I have:");
System.out.println("test type id = " + testTypeID);
System.out.println("num groups limit = " + numshotslimit);
System.out.println("number seqences limit " + numseqjimit-new);

}//configure()

private static void inito
{

command = new String[2];
command[O] = a2dConverteraddress;
command[l] = "time-date stamp";

captureData
processData
armingSwitch
resetSwitch
fireSwitch
timedateStamp
storeData
deleteData

= new CaptureRawData(a2dConverter address, testTypeID);
= new ProcessDataO;
= new ImplementPWorldCmds(arm_ HVaddress);
= new ImplementPWorldCmds(reset switchaddress);
= new ImplementPWorldCmds(fireDSI address);
= new TimeDateStampo;
= new StoreData(BUFFER FILENAME);
= new DeleteData(BUFFER FILENAME);

110

retrieveData = new RetrieveData(BUFFER FILENAME);
concentratorlD new ConcentratorIDO;
sensorStamp new SensorStampo;

armingSwitch.initializeSwitch("open");
resetSwitch.initializeSwitch("open");
fireSwitch.initializeSwitch("open");

}//init

public static void createTiniDataPointO throws Exception
{

onePoint = new TiniDataPointO;
onePoint.setDate(timeqdateStamp.getTotalDateString();
onePoint.setTime(timejdateStamp.getTotalTimeString();
onePoint. setValue(result-vo itage);
onePoint.setUnits(processData.getUnits(a2dConverter address));
onePoint.setSourceID(sensorStamp.getSensorStamp();
onePoint.setChannel(captureData.getChannel(RSLTVLTCHNL));
onePoint.setTiniID(concentratorID.getConcentratorID();
onePoint.setSoftwareVersion(1.1); //THIS IS HARDCODED IN AND SHOULD

BE FIXED
onePoint.setTestTypeID(testTypeID);
onePoint.setSequenceNumberString(sequenceNumberString);
onePoint.setGroupNumber(groupNumber);
System.out.println("Created data point");
vectorDataPoints.add(onePoint);
System.out.println("Added data point to vector of data points");

}//createTiniDataPointo

private static void initSwitcheso throws Exception
{

armingSwitch.initializeSwitch("open");
resetSwitch.initializeSwitch("open");
fireSwitch.initializeSwitch("open");
armingSwitch.initializeSwitch("closed");

}//initSwitcheso
} //Concentrator

111

F.2 CaptureRawData.java

F.2.1 Code Description

This program retrieves raw data from the DS2450 (A/D converter) and returns

this data point to Concentrator.java. It also returns the DS2450's channel letter

associated with the passed channel number. Available routines include:

" retrieveData: Retrieves raw data from the DS2450 using the DS2450Lib

class.

" getChannel: Returns the alphabetic representation of the passed channel

number.

F.2.2 Actual Code

/** * *** * ** *** ** ** ** * ** ** ** ** *** ** ** ** * ** ** ****************************

*

* Capture Raw Data:
*

* Author: Michael T. DePlonty
*

* Date: November 20, 2000
*

* * * **** * *** ** ** ** ** *** **** * ** ** ** * ** ** ** ** * ** ** ********************* */

import comibutton.iButtonException;
import com.ibutton.adapter.*;
import com.ibutton.utils.Address;
import com.dalsemi.tininet.TININet;

class CaptureRawData
{

private DS2450Lib adConv;

CaptureRawData(String passedib20Address, int passedTestTypeID)
{

adConv = new DS2450Lib(passedib20Address, passedTestTypeID);
}//CaptureRawData

112

public int retrieveData(int resultChannel)
throws iButtonException, OneWireIOException

{
return adConv.getRawData(resultChannel);

}//retrieveData()

public String getChannel(int channetNumber)
{

return adConv.getChannel(channelNumber);
}//getChannel(int channelNumber)

public void cleanUpObjectso
{

adConv = null;
}//cleanUpObjects(

} //CaptureRawData

F.3 ConcentratorlD.java

F.3.1 Code Description

This program returns TINI's Ethernet address as a string and is set up to return a

detailed description of TINI's responsibilities. Available routines include:

" stampData: Places TINI's Ethernet address into the passed data

vector, effectively stamping the data.

" getConcentratorID: Retrieves and returns TINI's Ethernet address.

" getDetailedDescription: Returns a vector containing two elements. One, all

the one-wire devices TINI uses. Two, a hardcoded

description of TINI's role in the DSI test.

113

F.3.2 Actual Code

/*********** ** * ** **** * ** ** * ** * ** ************************** ** * ** *******

*

* ConcentratorID:
*

* Author: Michael T. DePlonty
*

* Date: November 21, 2000
*

import com.dalsemi.tininet.TININet;
import java.util.Vector;

class ConcentratorlD
{

private Vector description;
private FindiButtonsConsoleCon findiButtons;

ConcentratorIDO
{

}//ConcentratorIDO

public Vector stampData(Vector data)
{

data. addElement(TININet.getEthernetAddresso);
return data;

}//stampData(Vector data)

public String getConcentratorID()
{

return TININet.getEthernetAddresso;
}//getConcentratorlDo

*

* Returns a detailed description of the concentrator's responsibilities. Includes what
* sensors it receives data from and what controllers it controls. Also includes a
* summary of what it does. For the DSI application, this summary would be
* "Measure the dielectric strength of a transformer's oil."
*

* ** ** * ** ** *** * ** *** * ** * ** *** * ** ** **** ** * ** ** *** *** ** * *** * ** ******** */

114

public Vector getDetailedDescription(
{

description = new VectorO;
findiButtons = new FindiButtonsConsoleCono;
description = findiButtons.listiButtonso;
description.addElement("Measure the dielectric strength of a" +

"transformer's tap changer oil.");

return description;
}//getDetailedDescription()

public void cleanUpObjects()
{

description = null;
findiButtons = null;

}//cleanUpObjects()
} //ConcentratorID

F.4 ConfigureTest.java

F.4.1 Code Description

This program reads concentrator.cfg and stores the results in the class variables.

It also provides access methods that allow other classes to retrieve the results of reading

the configuration file. Available routines include:

" ConfigureTest: Constructor that reads the configuration file.

" readValues: Initializes the class variables with the results from

ConfigureTest.

" writeValues: Writes to the configuration file.

" Routines to access each of the class variables.

115

F.4.2 Actual Code

*

* ConfigureTest:
*

* Author: Michael T. DePlonty
*

* Date: November 20, 2000
*

***************************** *************************** ************ */

import com.ibutton.adapter.*;
import java.io. *;
import comibutton.iButtonException;
import com.dalsemi. systemTINIOS;

class ConfigureTest
{

private static
private static
private static
private static

private static
private static
private static
private static

private static
private static
private static
private static
private static
private static
private static
private static
private static
private static

String ARMHV_ADDRESS;
String RESETSWITCHADDRESS;
String FIREDSIADDRESS;
String A2DCONVERTERADDRESS;

LoadConfigFile
String
long
long

int
int
int
int
int
int
int
int
int
String[]

loadConfig;
configFileName;
sequenceNumber;
startPosition;

testTypeID;
resultChannel;
num_shotslimit;
num seq limit-new;
shotRestTime;
numAddresses;
timebetween-sequences;
numseqjimit;
num config-values;
configValues;

public ConfigureTesto
{

configFileName = "concentrator.cfg";
loadConfig = new LoadConfigFile(configFileName);
loadConfig.openConfigFileo;
loadConfig.read number-of linesO;

116

numconfig-values = loadConfig.get numberof linesO;
System.out.println("Trying to initialize configValues array.");
System.out.println("Number of lines = " + numsconfig-values);
configValues = new String [numconfig-values];

Systemiout.println("Reading config values.");
configValues = loadConfig.readFileo;

System.out.println("Length of configValues array = "+ configValues.length);

System-out.println("Closing configuration file");
loadConfig.closeInputFile(;
startPosition = loadConfig.getTallyOfBytes(;

}//ConfigureTest(

public void readValueso throws Exception, iButtonException, OneWireIOException
{

Systemtout.println("Stuff that is passed:");
for (nt i=0; i<configValues.length; i++)

System.out.print(configValues[i]+ ");
System.out.println(" ");

numAddresses = loadConfig.convertStringTolnteger(configValues[O]);

/get address of arm HV switch
ARMHVADDRESS = configValues[1];

//get address of the reset switch
RESETSWITCHADDRESS = configValues[2];

/get address of the fire switch
FIREDSI_ADDRESS = configValues[3];

/get address of the A/D converter
A2D_CONVERTERADDRESS = configValues[4];

/get int value of the test type ID
testTypeID = loadConfig.convertStringTolnteger(configValues[numAddresses+1]);

//how many shots/groups we are to take (a loop constraint)
numshotslimit =

loadConfig.convertStringTolnteger(configValues[numAddresses+2]);

117

/get int value of the channel the result will appear on
resultChannel =

loadConfig.convertStringTolnteger(configValues[numAddresses+3]);

//how long we sleep between shots (in seconds)
shotRestTime =

loadConfig.convertStringTolnteger(configValues[numAddresses+4]);

/get time to sleep between sequences
timebetween-sequences =

loadConfig.convertStringTolnteger(configValues[numAddresses+5]);

/get number of sequences to run
num seqjimit =

loadConfig.convertStringTolnteger(configValues[numAddresses+6]);

/get the sequence number
sequenceNumber =

loadConfig.convertStringTolnteger(configValues[configValues. length-I]);

}//readValueso

public static void writeValues(long passed-sequenceNumber)

{
sequenceNumber = passedsequenceNumber;
Systemout.println("Opening the configuration file");
loadConfig = new LoadConfigFile(configFileName);
System.out.println("Opening the configuration file");
loadConfig.openConfigFileo;
System.out.println("Writing to configuration file");
loadConfig.writeToFile(Long.toString(sequenceNumber), startPosition);
System out.println("Closing the configuration file");
loadConfig.closelnputFileo;

}//writeValues()

public String getARMHVADDRESS()
{

return ARM_HV_ADDRESS;
}//getARM HVADDRESS()

public String getRESET SWITCHADDRESS()
{

return RESETSWITCHADDRESS;
}//getRESETSWITCHADDRESS()

118

public String getFIREDSIADDRESS()
{

return FIREDSIADDRESS;
}//getFIREDSI_ADDRESS()

public String getA2DCONVERTERADDRESS()
{

return A2D_CONVERTERADDRESS;
}//getA2DCONVERTERADDRESSO

public long get-sequenceNumber()
{

return sequenceNumber;
}//getLsequenceNumber()

public int get testTypeID()
{

return testTypeID;
}//get testTypeID()

public int get-resultChannel()
{

return resultChannel;
}//getjresutChannel()

public int get-num shotslimit()
{

return numshots-limit;
}//get-num shotslimit()

public int get-shotRestTime()
{

return shotRestTime;
}//get-shotRestTime()

public int get time between-sequences()
{

return timebetween-sequences;
}//getctime between-sequences()

public int get-num seqjlimit()
{

return num seqlimit;
}//getnumseq-jimit()

} /ConfigureTest

119

F.5 DeleteData.java

F.5.1 Code Description

This program provides routines to delete data from the buffer file. It assumes the

buffer file has one line for each data point. With this assumption, this program can delete

specific lines from a specified file. Available routines include:

* deleteAllPoints: Deletes the entire buffer file.

" deleteFirstPoint: Deletes the first line in the buffer file.

* deleteLastPoint: Deletes the last line in the buffer file.

" deleteSpecificPoint: Deletes the specified line and moves all subsequent

lines up by one.

F.5.2 Actual Code

/* * *** ** ** ** ** * *************************************** ******** ********

*

* DeleteData:
*

* Author: Michael T. DePlonty
*

* Date: November 24, 2000
*

* * *** ** ** ** * *** ** * ** *** * * *** *** ** * ** *** ** ** * ** *** ** ** ** * ** ********** */

import java.io.*;

class DeleteData
{

private RetrieveData retrieveData;
private StoreData storeData;
private File outputFile;
private String fileName;

DeleteData()
{

this("buffer.txt");
}//DeleteDatao

120

DeleteData(String passedFileName)
{

fileName = passedFileName;
}//DeleteData(String passedFileName)

public void deleteAllPoints()
{

outputFile = new File(fileName);
outputFile.deleteo;

}//deleteFileo

public void deleteFirstPoint()
{

retrieveData = new RetrieveData(fileName);
storeData = new StoreData(fileName);
String[] result = retrieveData.getAllPointso;
deleteAllPointso;
Systenout.println("reult length "+ result.length);
for (nt i = 1; i < result.length; i++)
{

Systemout.println(i);
storeData.writeData(result[i], true);

}//for /store all but the first data point.
}//deleteFirstPoint()

public void deleteLastPoint()
{

retrieveData = new RetrieveData(fileName);
storeData = new StoreData(fileName);
String[] result = retrieveData.getAllPointso;
deleteAllPointso;
for (int i=O; i < (result.length - 1); i++)
{

storeData.writeData(result[i], true);
}//for /store all but the last data point.

}//deleteLastPointo

public void deleteSpecificPoint(int pointToDelete)
{

retrieveData = new RetrieveData(fileName);
storeData = new StoreData(fileName);
String[] result = retrieveData.getAllPoints(;

if (pointToDelete < result.length)
{

deleteAllPointso;

121

int index = 0;
while (index != pointToDelete)
{

storeData.writeData(result[index], true);
++index;

}//while we read the points prior to the point to delete

for (int i=(pointToDelete + 1); i < result.length; i++)
{

storeData.writeData(result[i], true);
}//for /store the rest of the points.

}//if want to delete a point index in the buffer length

else /point index beyond buffer length
{

/currently, do nothing
}//else

}//deleteSpecificPoint(int pointToDelete)

public void cleanUpObjectso
{

storeData = null;
retrieveData = null;
outputFile = null;
fileName = null;

}//cleanUpObjects()
} //DeleteData

F.6 DS2450Lib.java

F.6.1 Code Description

This program provides a device library for the DS2450 (A/D converter).

Available DS2450 actions include:

9 getRawData: Digitize input signal, read result, then retu

0

S

rn the

digitized value.

convertToStandardUnits: Convert passed raw data from microVolts to Volts.

unitsLabel: Returns units associated with processed data, which

for the DSI test is Volts.

122

" getSensorID:

" getChannel:

" getTestTypeID:

Returns DS2450's one-wire address.

Returns DS2450's representation of the passed

channel number.

Returns the test type ID initialized when this class

was instantiated.

* channelNumberToString: Converts the numeric representation of the DS2450

channel to a alphabetic representation found on the

data sheets.

F.6.2 Actual Code

*

* DS2450Lib:
*

* Author: Michael T. DePlonty

* Date: November 24, 2000
*

** * ** ** ** ** ** ** ** ** ** ** ** * *** ** * **** ** * ** ** * ** * ******************* ** */

import com.ibutton.utils.Address;
import com.ibutton.iButtonException;
import com.ibutton.adapter.*;

class DS2450Lib
{

private iButtonContainer20 ib20;

private int[]

private static int
private double
private String

DS2450Lib()
{
}//DS2450Libo

rawData;

testTypeID;
convertedData;

channelString;

123

DS2450Lib(String passedib20Address)
{

ib2O = new iButtonContainer20(passedib2OAddress);
}//DS2450Lib(String passedib20Address)

DS2450Lib(String passedib20Address, int passedTestTypeID)
{

testTypeID = passedTestTypeID;
ib2O = new iButtonContainer20(passedib2OAddress);

/represents a container for the DS2450 A/D converter
}//DS2450Lib(String passedib20Address, passedTestTypeID)

public int getRawData(int resultChannel)
throws iButtonException, OneWirelOException

{
ib20.writeToMemory(resultChannel, 1); //write channel's data to page 1
ib20.converto;
rawData = ib20.readConvertedData(resultChannel);
return rawData[resultChannel];

}//getRawData(int resultChannel)

public double convertToStandardUnits(int passedRawData)
{

convertedData = (double) passedRawData/1000000;
return convertedData;

}//convertToStandardUnits(int passedRawData)

*

* unitsLabel(): This routine simply returns the units the DS2450
* measurements occur in.
*

** ** ** * *** ** * *** * ** * *** ** * ** ** * *** *** ** * ** ** ** ** ** ** * ** ********** ** ** */

public String unitsLabel()
{

return "Volts";
}//unitsLabel()

public String getSensorID()
{

return Address.toString(ib20.getROMId(); //get DS2450 A/D converter unique ID
}//getSensorIDO

124

public String getChannel(int passedChannelNumber)
{

channelNumberToString(passedChannelNumber);
return channelString;

}//getChannel(int passedChannelNumber)

public int getTestTypeID()
{

return testTypeID;
}//getTestTypeID()

*

* channelNumberToString(int passedChannel) converts the numeric representation
* of the DS2450 channel to a alphabetic representation found on the data sheets.
*

* **************** ** * ** ** ** *** ** * * ********** ************************* */

public void channelNumberToString(int passedChannel)
{

switch (passedChannel)
{

case 0:
channelString = "A";
break;

case 1:
channelString = "B";
break;

case 2:
channelString = "C";
break;

case 3:
channelString = "D";
break;

default:
channelString = "INVALID";

}//switch
}//channelNumberToString(int passedChannel)

125

public void cleanUpObjectso
{

ib20 = null;
}//cleanUpObjectso

} //DS2450Lib

F.7 FaultHandler.java

F.7.1 Code Description

This program handles all faults that are passed to it by other classes. Available

actions include:

* handleFault: Reads the number of previous faults that were generated. If the

number is less than twenty, this routine writes the passed error

message to a log file ErrorLog.txt then reboots TIM. If the

number of previous faults is greater than or equal to twenty, the

routine first deletes the log file, writes the passed error message

to the log file, and then reboots TINI.

F.7.2 Actual Code

/* ** ***** ** ** **** **** ** ***** **** *** ***** ***** *** ***** *** **** ** *** ** ** *

*

* FaultHandler:
*

* Author: Michael T. DePlonty

* Date: November 30, 2000
*

* * ** ** * ** *** * **** ** * ** ** ** *** ************************************* ** */

import com.dalsemi. system.TINIOS;

class FaultHandler
{

private static final imt num_Fault_limit = 20;

126

public StoreData faultNumFileStore;
public StoreData errorLogFile;
public RetrieveData faultNumFileRetrieve;
public DeleteData errorLogFileDelete;

FaultHandlero
{

faultNumFileStore = new StoreData("faultnum.cfg");
errorLogFile = new StoreData("ErrorLog.txt");
faultNumFileRetrieve = new RetrieveData("faultnumicfg");

}//FaultHandler()

/read number of times error generated
/if not too big, write error to log file and time and reboot
/else start at top of file, write error to log file, and reboot

public void handleFault(String fault)
{

Systenout.println("Rebooting Tini.");
System.out.println("Error, handling fault.");
/produces a radix 10 integer from the string read from the file
int numFaults = Integer.parseInt(faultNumFileRetrieve.getFirstPoint();
numFaults++;

if (num_Faults < numFault-limit)
{

errorLogFile.writeData(fault, true);
errorLogFile = null;

}/if we haven't exceded the number of faults limit
else
{

num_Faults = 0;
errorLogFileDelete = new DeleteData("ErrorLog.txt");
errorLogFileDelete.deleteAllPoints(; /for now, just delete the entire file

/and start over
errorLogFileDelete = null;
errorLogFile.writeData(fault, true);
errorLogFile = null;

}//else generated too many faults so start at the top of the file

faultNumFileStore.writeData(Integer.toString(num Faults), false);
T1MOS.rebooto;

}//handleFault
} /FaultHandler

127

F.8 FindButtonsConsoleCon.java

F.8.1 Code Description

This program is a modified version of Dallas Semiconductor's

FindiButtonsConsole.java. It determines and lists all of the one-wire devices connected

on the one-wire bus. Available actions include:

* listiButtons: Returns a vector containing all the present one-wire devices.

Each vector entry contains the devices name, which port it is

connected on, its part name, its address, and its description.

F.8.2 Actual Code

// FindiButtonsConsoleCon.java
/*---
* Copyright (C) 1998 Dallas Semiconductor Corporation, All Rights Reserved.
*

* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*

* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*

* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT.
* IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY

CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.

128

*

* Except as contained in this notice, the name of Dallas Semiconductor
* shall not be used except as stated in the Dallas Semiconductor
* Branding Policy.

*/

import java.util.*;
import conibutton.*;
import comLibutton.adapter.*;
import corn. ibutton.container.*;

//........--
/* FindiButtonsConsole is a console application to view all of the iButtons
* on the currently available adapters.

* @version 0.00, 1 January 1999
* @author DS

class FindiButtonsConsoleCon
{

Vector presentiButtons;
FindiButtonsConsoleCono
{

}//FindiButtonsConsoleCon()

public Vector listiButtons()
{

presentiButtons = new VectorO;

// enumerate through each of the adapter classes
for(Enumeration adapter-enum = iButtonAccessProvider.enumerateAllAdapterso;

adapter enum.hasMoreElementso;)
{

// get the next adapter DSPortAdapter
DSPortAdapter adapter = (DSPortAdapter)adapter-enumnnextElemento;

// get the port names we can use and try to open, test and close each
for(Enumeration port-nameenum = adapter.getPortNameso;

port nameenum.hasMoreElementsO;)
{

// get the next packet
String port-name = (String)port name enum.nextElemento;

/* You could check to make sure that it is a valid TINI port here */

129

try
{

// select the port
adapter. selectPort(port-name);

// verify there is an adapter detected
if (adapter.adapterDetected()
{

// clear any previous search restrictions
adapter. setSearchAlliButtonso;
adapter.targetAllFamilies(;

// enumerate through all the iButtons found
for(Enumeration ibuttonenum= adapter. getAlliButtonso;

ibuttonenum.hasMoreElementso;)
{

// get the next ibutton
iButtonContainer ibutton = (iButtonContainer)ibutton enum.nextElemento;
presentiButtons.addElement(adapter.getAdapterName() + "\t" +

port-name + "\t" +
ibutton.getiButtonPartName() + "\t" +
ibutton.getAddressAsString() + "\t" +
ibutton.getDescriptiono.substring(0,25) +
i ...);

}//for enumerate through all iButtons found
}//if adapter is detected
// free this port
adapter. endExclusiveo;

}//try
catch(Exception e) {};

}//for opening all port names
}//for enumerate through all adapter classes

return presentiButtons;
}//listiButtons()

}//FindiButtonsConsoleCon

F.9 iButtonContainerO5.java

F.9.1 Code Description

This program is the device driver for the DS2405 addressable switch. Available

actions include:

130

" findSensor:

" toggleSwitch:

" determineSwitchState:

" initializeSwitchState:

Finds the first DS2405 on the one-wire bus, either

looking for any switch or looking for a specified

address. If the switch is found, this routine returns its

one-wire address. Else it notifies the software that the

switch was not found.

Causes the switch to change state, either from open

to closed or from closed to open. Does not check the

switch's current state.

Determines and returns the switch's current state,

either open or closed.

Initializes the switch to a defined state. Calling

routine must specify if the switch is to be open or

closed.

F.9.2 Actual Code

/***** ** * ** ***************** ** ** * ** ******* *********** ** ** ** * ** *** ** ** **

*

* iButtonContainer05 contains methods designed to communicate with the
* DS2405 addressable switch (family code 05 hex).
*

* Author: Michael T. DePlonty
*

* Date: August 24, 2000
*

***** * ** * *** * *** ** ** * *** ** * *** * *************************** ** ** * *** ** */

import com.ibutton.adapter. *;
import comibutton.container.*;
import com.ibutton.iButtonException;
import java.lang.*;

class iButtonContainer05 extends iButtonContainer
{

private static final byte DS2405_FAMILYCODE = (byte) 0x05;

private static final byte MATCHROM = (byte) 0x55;
private static final byte SEARCHROM = (byte) OxFO;
private static final byte CONDITIONALSEARCH = (byte) OxEC;

131

private TINIAdapter ds2405;
private byte[] romld;
private byte[] block = new byte[9];
private byte[] switchstate = new byte[5];

public iButtonContainer05()
{

ds2405 = new TINIExternalAdaptero;
findSensoro;

}//iButtonContainer05()

public iButtonContainer05(String address)
throws iButtonException, OneWirelOException

{
ds2405 = new TINIExtemalAdaptero;
findSensor(address);

}//iButtonContainer05(String address)

public boolean findSensoro
{

boolean foundDS2405 = false;
romId = null;

try
{

int resetStatus = ds2405.reseto;
if(resetStatus == 1)
{

if(ds2405.findFirstiButtono)
{

boolean first = true;
iButtonContainer ib;

do
{

if (first)
{

ib = ds2405.getFirstiButtonO;
first = false;

}//if(first)
else
{

ib = ds2405.getNextiButtono;
}//else
Systemout.println(ib.getAddressAsString();

132

romId = ib.getAddress(;
if(romld[O] == DS2405_FAMILYCODE)
{

foundDS2405 = true;
break;

}//if(romID)
}//do
while(ds2405.findNextiButtono);

} //if(findFirstiButtono)
}//if(reset)
else

System.out.println("Still not ready, now leave me alone");
}//try

catch(Exception e)
{

e.printStackTrace(;
return false;

}//catch
return foundDS2405;

}//findSensor(

public boolean findSensor(String address)
throws iButtonException, OneWirelOException

{
int resetStatus = ds2405.reseto;
boolean foundDS2405 = false;
iButtonContainer ib;

if(resetStatus == 1)
{

if (ds2405.isPresent(address))
{

ib = ds2405.getContainer(address);
romId = ib.getAddresso;
System.out.println(ib.getAddressAsStringo);
foundDS2405 = true;

}//if
else
{

System.out.println("Device with Specified address is not present.");
foundDS2405 = false;

}//else
}//if(resetStatus == 1)

133

if(resetStatus == 0)
{

Systemout.println("DS2405 not present.");
foundDS2405 = false;

}//if
if(resetStatus == 2)
{

Systemout.println("DS2405 is in alarm status.");
foundDS2405 = false;

}//if
return foundDS2405;

}//findSensor(String address)

public void toggleSwitcho throws iButtonException, OneWireIOException
{

int resetStatus = ds2405.reseto;
if(resetStatus == 1)
{

block[0] = MATCHROM;
Systemarraycopy(romld, 0, block, 1, romld.length);
ds2405.dataBlock(block, 0, 9);

}//if
if(resetStatus == 0)

System.out.println("DS2405 not present.");
if(resetStatus == 2)

Systemout.println("DS2405 is in alarm status.");
ds2405.reseto;

}//toggleSwitcho

public String determineSwitchState() throws iButtonException, OneWireIOException
{

String switchstate string = null;
switch(switch-state[0])
{

case 0:
{

switchstate-string = "closed";
break;

}//case 0

case -1:
{

switchstate-string = "open";
break;

}//case 1

134

default:
{

switchstatestring = "invalid";
break;

}//else
}//switch
return switchstate-string;

}//determineSwitchStateO

public void initializeSwitchState(String switchstatedesired)
throws iButtonException, OneWireIOException

{
Systemout.println("entered initState");

byte[] currentswitchstate = new byte[1];
boolean[] tempRomID = new boolean[2];
byte buffer;

if (switch statedesired.compareTo("open") == 0) //passed in "open"
switch state[0] = (byte) -1;

else if (switch statedesired.compareTo("closed") == 0) //passed in "closed"
switch-state[0] = (byte) 0;

int resetStatus = ds2405.reseto;
if(resetStatus == 1)
{

block[0] = SEARCHROM;
ds2405.putByte(block[0]);

for (int j = 0; j < romId.length; j++)
{

for (int i = 0; i < 8; i++)
{

tempRomID[0] = ds2405.getBito; /get bit
tempRomID[1]= ds2405.getBito; /get bit's complement
buffer = (byte) (romIdU]>>> i);
buffer = (byte) (buffer & (byte) OxO1);
if (buffer == 0)

ds2405.putBit(false); II bit is a zero
else

ds2405.putBit(true); // bit is a one
}//for (i)

}//for (j)
ds2405.getBlock(current-switchstate, 0, 1);

Systemout.println("current switch state = " + currentswitchstate[0]);

135

if (current switchstate[O] != switch state[O])
toggleSwitcho;

}/if
if(resetStatus == 0)

System.out.println("DS2405 not present.");
if(resetStatus == 2)

System out.println("DS2405 is in alarm status.");
ds2405.reseto;

************ ** ** ** ** * ** *** ** * *** ** * ** ************* ** ** * ** *** ** ** ** **

determine what the switch should be set at
determine what the switch is currently set at
if current and should are equal, do nothing
else toggle switch

currentswitchstate = null;
tempRomID = null;

}//initializeSwitchStateO
} //iButtonContainer05

F.10 iButtonContainer2O.java

F.10.1 Code Description

This program is the device driver for the DS2450 A/D converter. Available

actions include:

* getROMId: Returns DS2450's one-wire address.

" getiButtonPartName: Returns the A/D converter's name in iButton

" getAlternateNames:

" getDescription:

" iButtonContainer20:

" init:

terminology. Namely, returns "DS2450."

Returns colloquial name of DS2450.

Returns description of the device, as hardcoded in.

Instantiates an iButtonContainer20 object and

initializes all important variables.

Initializes the memory array that corresponds to

the DS2450's memory pages.

136

* findSensor:

* readMemory:

* writeMemory:

* convert:

* scaleValue16:

* getResolution:

* setResolution:

* readConvertedData:

Finds first DS2450 and returns its one-wire

address.

Reads the values stored in the DS2450's memory.

It starts at a given address, reads that byte, reads

the sequentially next byte, and stores the result in

an array.

Writes a byte to the specified memory location,

then writes the next byte in the sequentially next

memory location. The data to write must first be

stored in an array with the first byte stored as the

array's first element and the second byte stored as

the array's second element. Also must previously

specify which channel the data is associated with.

Digitizes the analog signal at the previously

specified channel. The result is stored in the

DS2450's memory.

Converts the sixteen bit result of the A/D

conversion into microVolts. The sixteen bit result

must first be stored in the memory array. Returns

an array with each element corresponding to a

specific channel's result.

Returns the DS2450's bit resolution used to

perform the A/D conversion. This resolution is

read from the memory array. Use readMemory to

find out the resolution the DS2450 has in its

memory.

Sets the DS2450's bit resolution in the software's

memory array. Use writeMemory to set the

resolution at the DS2450.

Uses readMemory and scaleValue 16 to read a

conversion result.

137

" niakeAnalogOutputHigh:

" makeAnalogOutputLow:

* disableAnalogOutput:

" getlnputVoltageRange:

* setlnputVoltageRange:

" getuSecConversionTime:

" setuSecConversionTime:

* writeToMemory:

Forces the specified input channel to behave as an

output channel with a logic high as its output.

Forces the specified input channel to behave as an

output channel with a logic low as its output.

Forces the specified channel that was behaving as

an output channel to behave as an input channel.

Returns voltage range the DS2450 will tolerate as

input, as stored in the memory array.

Sets the allowable input voltage range for a

specified channel and stores this range in the

software's memory array. Use writeMemory to

make this specification on the DS2450.

Calculates and returns the number of

microSeconds needed to perform an AID

conversion.

Sets the microSecond converstion time used for

the specified channel.

Writes the values of the memory array to the

corresponding locations in the DS2450's memory.

F.10.2Actual Code

/* ** **

*

* iButtonContainer2O contains methods designed to communicate with the
* DS2450 A/D converter (family code 20 hex).
*

* Author: Michael T. DePlonty
*

* Date: July 14, 2000
*

import com. ibutton.adapter.*;
import corn. ibutton.container.*;

138

import com.ibutton.utils.CRC16;
import com.ibutton.iButtonException;

class iButtonContainer20 extends iButtonContainer
{

private static final byte DS2450_FAMILYCODE = (byte) 0x20;

private static final byte
read conversion results

private static final byte
write to memory pages 1

private static final byte
start A/D conversion

private
private
private
private
private
private
private

private
private
private
private
private

static
static
static
static
static
static
static

static
static
static
static
static

final
final
final
final
final
final
final

final
final
final
final
final

byte
byte
byte
byte
byte
byte
byte

READMEMORY

WRITEMEMORY
and 2 (to set channel control and
CONVERT

READROM
MATCHROM
SKIPROM
SEARCHROM
CONDITIONALSEARCH
OVERDRIVE_SKIPROM
OVERDRIVE_MATCHROM

byte INPUTRANGEMASK
byte OUTPUTCONTROLMASK
byte RESOLUTIONMASK
byte ALARMHIGHMASK.

= (byte) OxAA; //used to

=(byte) 0x55; //used to
alarm settings)

= (byte) Ox3C; //used to

(byte)
(byte)
(byte)
(byte)
(byte)
(byte)
(byte)

(byte)
(byte)
(byte)
(byte)

0x33;
0x55;
OxCC;
OxFO;
OxEC;
Ox3C;
0x69;

Oxfe;
Ox3f;
OxOF;
Oxdf;

byte ALARMHIGHENABLEMASK = (byte) Oxf7;
private static final byte ALARMLOWMASK
private static final byte ALARMLOWENABLEMASK
private static final byte PORFLAGMASK

private static final byte OUTPUTHIGHENABLE
private static final byte OUTPUTLOWENABLE

private static final byte[] [] CHANNELADDRESSES

private static final int BASECONVERTTIME
needed and

private static final int CONVERTTIMEPERBIT
needed to do an A/D conversion (in micro seconds)

private static final int[] UVOLTRANGES

private static int resolution;
private static int uSecConversionTime;

private int startChannel;

= (byte) Oxef;
= (byte) Oxfb;
= (byte) Ox7f;

= (byte) OxCO;
= (byte) 0x80;

= new byte[3][8];

= 160; //max offset time

= 80; //max time per bit

= {2560000, 5120000};

139

private
private
private
private
private
private
private
private
private

int startPage;
byte startAddress;
byte input-selectmask;
byte readoutcontrol byte;
int[] scaledValue;
int range; //range of voltages the DS2450 handles (in uVolts)
byte[] romId;
byte[] block = new byte[14];
byte[] [] memory = new byte[4] [10];

private TINIAdapter ds2450;

* ** * ** * * ********************** **** * ************************************
*

* Informative methods, used to give user information about DS2450.
*

public byte[] getROMld()
{

return romld;
}//getROMld()

public String getiButtonPartName()
{

return new String ("DS2450");
}//getiButtonPartName()

public String getAlternateNames()
{

return new String ("1 -wire Quad A/D Converter");
}//getAlternateNames()

public String getDescriptiono
{

return new String("1-Wire Quad A/D Converter to measure four" +
"high impedence inputs with a user selectable " +
"range of 2.56V and 5.12V with a resolution " +
"of I to 16 bits.");

}//getDescriptiono

/ ************************************ ***

*

* Initialization methods, used set-up iButton object.
*

* ** ** ** * ** ** * ** */

140

public iButtonContainer20()
{

inito;
try
{

ds2450 = new TINIExternalAdaptero;
startAddress = CHANNELADDRESSES[0][6]; /Arbitrarily chosen
resolution = 8; //Arbitrarily chosen 8 bit resolution
range = (int) 5120000; //range in uVolts to give us more precision
startChannel = 0; //Default start at Channel A
startPage = 0; //Default start at page 0 of DS2450 memory, which is

the result of the A/D conversion
inputselectmask = (byte) 0x08; //select only channel D
readoutcontrol-byte = (byte) 0x80;
uSecConversionTime = BASECONVERTTIME +

CONVERTTIME_PERBIT*resolution;
scaledValue = new int[4];
findSensoro;

}//try

catch(Exception e)
{

e.printStackTraceo;
}//catch

}//iButtonContainer20()

public iButtonContainer20(String address)
{

inito;
try
{

ds2450 = new TINIExternalAdaptero;
startAddress = CHANNELADDRESSES[0][6]; //Arbitrarily chosen
resolution = 8; /Arbitrarily chosen 8 bit resolution
range = (int) 5120000; //range in uVolts to give us more precision
startChannel = 0; //Default start at Channel A
startPage = 0; //Default start at page 0 of DS2450 memory, which is

the result of the A/D conversion
inputselectmask = (byte) OxOE; //select channels B, C, and D
readoutcontrol byte = (byte) OxOO; //preset all channels
uSecConversionTime = BASECONVERTTIME +

CONVERTTIME_PERBIT*resolution;
scaledValue = new int[4];
findSensor(address);

}//try

141

catch(Exception e)
{

e.printStackTraceo;
}//catch

}//iButtonContainer20()

public void setupContainer(DSPortAdapter adapter, byte[] iBId)

{
super. setupContainer(adapter, iBId);
inito;

}//setupContainer

public void initO
{

/init memory array to power-on values corresponding to memory pages
/in the DS2450's memory.

for (int i= 0; i<8; i += 2)

{
memory[0][i] = (byte) OxOO;
memory[I][i+1] = (byte) OxOO;
memory[1][i] = (byte) 0x08;
memory[I][i+1] = (byte) Ox8d;
memory[2][i] = (byte) OxOO;
memory[2][i+1] = (byte) Oxff;
memory[3][i] = (byte) OxOO;
memory[3][i+1] = (byte) OxOO;

/* ** * ** *********************** * *** * ** ** * ******************** ** *** * *** ** *

*

* Now to initialize the Memory address numbers.
* General format is: CHANNELADDRESSES[memory page][row number] = address
* Since the loop variable is incrementing by two, this initializes
* two rows per page. And since there are eight rows per page, starting
* at zero, there is an offset of eight between pages.
*

* * ** ** ** *** * ** *** * ** ** ** ** * * ***** * ** *** * *** * ** ***************** ** ** ** */

CHANNELADDRESSES[O][i] = (byte) (OxOO + i); //these are hex numbers
CHANNELADDRESSES[0][i+1] = (byte) (OxOl + i); /not decimal numbers
CHANNELADDRESSES[1][i] = (byte) (0x08 + i);
CHANNELADDRESSES[1][i+1] = (byte) (0x09 + i);
CHANNELADDRESSES[2][i] = (byte) (OxlO + i);
CHANNELADDRESSES[2][i+1]= (byte) (Oxl 1 + i);

}//for

142

/init CRCs
memoryO][8]
memory[O][9]
memory[1][8]
memory[1][9]
memory[2][8]
memory[2][9]
memory[3][8]
memory[3][9]

}//init

(byte) Oxdc;
(byte) 0x25;
(byte) 0x66;
(byte) Oxe8;
(byte) 0x94;
(byte) 0x94;
(byte) Oxff;
(byte) Oxff;

public boolean findSensoro
{

boolean foundDS2450 = false;
romId = null;

try
{

int resetStatus = ds2450.reseto;
if(resetStatus == 1)
{

if(ds2450.findFirstiButtono)
{

boolean first = true;
iButtonContainer ib;

do
{

if (first)
{

ib = ds2450.getFirstiButtonO;
first = false;

}//if(first)
else

ib = ds2450.getNextiButtonO;

romId = ib.getAddresso;
if(romld[O] == DS2450_FAMILYCODE)
{

foundDS2450 = true;
break;

}//if(romID)
}//do
while(ds2450.findNextiButtono);

}//if(findFirstiButtono)
}//if(reset)

143

else
System.out.println("Still not ready, now leave me alone");

}//try

catch(Exception e)
{

e.printStackTraceo;
return false;

}//catch
return foundDS2450;

}//findSensoro

public boolean findSensor(String address) throws iButtonException,
OneWirelOException

{
int resetStatus = ds2450.reseto;
boolean foundDS2450 = false;
iButtonContainer ib;

if(resetStatus == 1)
{

if (ds2450.isPresent(address))
{

ib = ds2450.getContainer(address);
romId = ib.getAddress(;
foundDS2450 = true;

}//if
else
{

Systemout.println("Device with Specified address is not present.");
foundDS2450 = false;

}//else
}//if(resetStatus == 1)
if(resetStatus == 0)
{

Systemout.println("DS2450 not present.");
foundDS2450 = false;

}//if
if(resetStatus == 2)
{

System.out.println("DS2450 is in alarm status.");
foundDS2450 = false;

}//if
return foundDS2450;

}//findSensor(String address)

144

*

* readMemoryo: Reads the values stored in the DS2450's memory. This starts at a
* given address and reads two bytes of data, the byte at the given address and
* the byte at the next address (value of the address + 1). These results are
* then stored in an array memory[][].

* Needed to run this routine -
* romId - the unique ID of a DS2450
* startAddress - the address of the first byte of
* data in memory to be read
* startPage - page of memory to start read at
* startChannel - the channel the desired info corresponds to.

public void readMemory() throws iButtonException, OneWirelOException
{

byte[] databuffer = new byte[10];
int resetStatus = ds2450.reseto;
if(resetStatus == 1)
{

block[O] = MATCHROM;
Systentarraycopy(romld, 0, block, 1, romId.length);
block[9] = READMEMORY;
block[10] = startAddress;
block[11] = (byte) 0x00;

ds2450.dataBlock(block, 0, 12);
ds2450.getBlock(data buffer, 0, 2);

//2 bytes of data
//the offset option for this command does not work

memory[startPage][2*startChannel] = data buffer[O];
memory[startPage][2*startChannel+1] = datajbuffer[1];

//2*startChannel since there are two rows per channel

}//if
if(resetStatus == 0)

System.out.println("DS2450 not present (in readMemory).");
if(resetStatus == 2)

Systenout.println("DS2450 is in alarm status (in readMemory).");
ds2450.reseto;

}//readMemoryo

145

*

* writeMemoryo: Writes bytes to a specified memory location on the DS2450.
* The data to write needs to be stored in the memory array before
* running this rountine. It then writes the two bytes associated with the

* desired channel.
*

* Needed to run this routine -
* romId - the unique ID of a DS2450
* startAddress - the address of the first byte of data in memory
* to be read
* startPage - page of memory to start read at
* startChannel - the channel the desired info corresponds to.
*

******************* ** ** ** ** ** * *************************************** */

public void writeMemoryo throws iButtonException, OneWireIOException

{
byte[] databufferi = new byte[10];
byte[] data_buffer2 = new byte[3];
int resetStatus = ds2450.reseto;
if(resetStatus == 1) //device present

{
block[O] = MATCHROM;
Systemarraycopy(romld, 0, block, 1, romId.length);
block[9] = WRITEMEMORY;
block[10] = startAddress; /CHANNELADDRESSES[1][2*startChannel];
block[1 1] = (byte) OxOO;
block[12] = memory[startPage][2*startChannel]; /data to write to the control

register
block[13] = memory[startPage] [2*startChannel+1]; /data to write to

D_Control_H_Address

//make highest possible range 5.1 OV
ds2450.dataBlock(block, 0, 13);
ds2450.getBlock(data bufferl, 0, 3); //2 bytes of CRC16, 1 byte of data written to

memory
ds2450.putByte(block[13]);
ds2450.getBlock(data.buffer2, 0, 3); //2 bytes of CRC16, 1 byte of data written to

memory
for(int index = 0; index <3; index++)

databufferi [3+index]= data buffer2[index];
}//if
if(resetStatus == 0)

Systemout.println("DS2450 not present (in writeMemory).");

146

if(resetStatus == 2)
Systemiout.println("DS2450 is in alarm status (in writeMemory).");

}//writeMemory()

/* ** *** * ** ** ** * ** ****************** ******************************** ** ** *

*

*

*

*

*

*

*

*

*

*

*

*

*

converto: Converts the analog data at the desired channel to digital data.
The result is stored in the DS2450's memory. To retrieve the result,
call readMemory() routine.

Needed to run this routine -
romld - the unique ID of a DS2450
input_selectmask - selects which channel(s) participate in the

conversion process
readoutcontroL byte - presets selected channels to all O's or l's

or leaves as is. Used to distinguish between
previous result and new value.

* * ** ** * ****** * ** ** ** ** * * *** ** * ** ***************** ** ** ************** ** */

public void converto throws iButtonException, OneWireIOException
{

try
{

int resetStatus = ds2450.reset(;
if(resetStatus == 1)
{

block[O] = MATCHROM;
System.arraycopy(romld, 0, block, 1, romld.length);
block[9] = CONVERT;
block[10] = input-select-mask;
block[1 1] = readoutcontrol byte;

ds2450.dataBlock(block, 0, 12);
ds2450.getBlock(block, 0, 2); /receive CRC16

ds2450.setPowerDuration(5); //deliver power till told to stop
ds2450. startPowerDelivery(0); //deliver power now!

Thread.sleep(1); /delay for 1 ms

ds2450.setPowerNormal(); //turn off power delivery

ds2450.resetO;
}//if

147

if(resetStatus == 0)
System.out.println("DS2450 not present (in convert).");

if(resetStatus == 2)
System.out.println("DS2450 is in alarm status (in convert).");

}//try

catch (InterruptedException e)

{
System.out.println("interrupted Exception");
ds2450.setPowerNormal();

}//catch
}//convert

/* ** * ** * ***** ** ** * **** * * ** ** ** * *** ** ** ** * *** * ****** ** *******************

*

* scaleValuel6(): Converts the 16 bit result of the A/D conversion into a "normal"

* result in microVolts. The result of the A/D conversion must be stored
* in the memory array before running this routine. Returns an integer array,
* with each array entry corresponding to a specific channel's result.

* Needed to run this routine -
* memory[][] - array of data; each element corresponds to an
* element on a specific memory map page found
* on the DS2450.
* resolution - bit resolution of the A/D conversion.
* range - output range of the DS2450, in microVolts.
* Either 2550000 or 5100000 microVolts.
* startChannel - the channel the desired info corresponds to.
*

* * *** * *** ** * ** ** * ** *** * *** ** ** ** ** * *** ** ** ** * ** ****************** **** */

public int[] scaleValue16()
{

int value16 = ((memory[0][2*startChannel+1] & Oxff) << 8)
+ (memory[0][2*startChannel] & Oxff);

scaledValue[startChannel] = value16 >>> (16 - resolution);
scaledValue[startChannel] = (int)(((long)scaledValue[startChannel]

* range) / (1 << resolution));
return scaledValue;

}//scaleValue 16

148

/**** ****** *********************** ******* * ** **** ************************

*

* The following two routines retrieve current A/D resolution and allows the resolution
* to be set. IMPORTANT, if 16 bit resolution is desired, then resolutionToSet
* must equal 0.
*

* * ** ** ** ** ***** * *** ** ** * ** * *** ** ** * ** ********************* *********** */

/**** ***************************** ************************* ** * * ** ** ******

*

* getResolution(: Returns the bit resolution used to make the A/D conversion as
* stored in the memory[][] array. To get the resolution stored on the
* DS2450, readMemory() needs to be called.

* Needed to run this routine -
* channel - desired channel number
*

* * ** *** * *** ** * ************ * * *** */

public int getResolution(int channel)
{

resolution = memory[1][2*channel] & RESOLUTIONMASK;
if(resolution == 0)
{

resolution = 16;
}//if
return resolution;

}//getResolution(

/* * ***************** ** * ********** * *************************** **** *******

*

* setResolutionO: Sets the bit resolution used to make the A/D conversion, stored
* in the memory[][] array. To set the resolution on the DS2450,
* writeMemory() needs to be called.

* Needed to run this routine -
* channel - the channel on the DS2450 who's
* resolution that is being set

* resolutionToSet - the value the resolution will be set at

* * ** * ** * *** ********************** * ** * ** * ** * ********************** ** ** */

public void setResolution(int channel, int resolutionToSet)
{

if (resolutionToSet == 16)

149

resolutionToSet = 0;
memory[1] [2*channel] = (byte) ((memory[1][2*channel] & (byte) OxFO)

|(resolutionToSet & RESOLUTION_MASK));
}//setResolution(

* * * * * ******************************** ****** *************************** *
*

* Buffer to give user access to converted data stored on D52450.

* Channel
*

*

*

*

*

A
B
C
D

Associated Integer
0
1
2
3

* *************************** ************** * ** ************************ */

public int[] readConvertedData(int channel)
throws iButtonException, OneWirelOException

{
startChannel =
startPage = 0;

startAddress =

readMemory();
scaleValue 16()
return scaledV

channel;
/read data on memory page 0

//hardcoded since the results always appear there.
CHANNELADDRESSES[startPage][2*startChannel];

//Multiply channel by 2 since
//there are two rows per channel

//Read the DS2450's memory and store in array
/Convert result to useful number

flue; /pass back the usefull number

}//readConvertedData0

/***** *************************** *** **** * ** * *** ** * ** ** * ** * *** **** *******

*

The following three methods control the four channels' output capabilities. The first
two cause the DS2450 input channels to act as outputs. IMPORTANT, the routine
getResolution() must have been called sometime before these methods are called
else incorrect data will be written to the memory registers. The third method
restores the channels to their regular input capabilities.

public void makeAnalogOutputHigh(int channel)
throws iButtonException, OneWireIOException

{
startChannel = channel;

150

*

*

*

*

*

startPage = 1; //this will always be memory page 1
startAddress = CHANNELADDRESSES [startPage][2*startChannel];
memory[startPage][2*channel] = (byte) (OUTPUT_HIGHENABLE I resolution);
writeMemory(;

}//makeAnalogOutputHigh()

public void makeAnalogOutputLow(int channel)
throws iButtonException, OneWirelOException

{
startChannel= channel;
startPage = 1; //this will always be memory page 1
startAddress = CHANNELADDRESSES[startPage][2*startChannel];
memory[startPage][2*channel]= (byte) (OUTPUTLOWENABLE I resolution);
writeMemoryo;

}//makeAnalogOutputLowo

public void disableAnalogOutput(int channel)
throws iButtonException, OneWirelOException

{
startChannel = channel;
startPage = 1; //this will always be memory page 1
startAddress = CHANNELADDRESSES[startPage][2*startChannel];
memory[startPage][2*channel] = (byte) (OxOO I resolution);
writeMemoryo;

}//disableAnalogOutputo

/*** ********************** ** ** ******* *** * ** * ** ** ************************

*

* getInputVoltageRange(:
*

*************************** *** ** * *** * * *** ** * * ************************ */

public int getlnputVoltageRange(int channel)
{

return memory[1][2*channel + 1] & (byte) OxOl;
}//getInputVoltageRange(int channel)

1* * ***** ***** * ** * ******* * ***** * **** *** **** *** *** *** * * ***** ** * *** * *** *** *

*

* setlnputVoltageRangeo:

* * **** * *** ** ** * ** * **** ** * ** ** ** * * *** ** *** * *************************** */

public void setlnputVoltageRange(int channel, int rangeToSet)
{

memory[1][2*channel + 1] =

151

(byte) ((memory[I][2*channel + 1] &
(byte) 0x00) (rangeToSet & OxO1));

}//setlnputVoltageRangeo

/******** ** ** * ** * ************* ** *** * **************************** * ** *****

*

* getuSecConversionTime() calculates and returns the number of microSeconds needed
* to perform an A/D conversion.
*

********* ******************* ***** ******************* ***************** */

public int getuSecConversionTime()
{

return uSecConversionTime;
}//getuSecConversionTime()

public void setuSecConversionTime(int channel)
{

uSecConversionTime = BASECONVERTTIME +
CONVERTTIMEPERBIT*resolution;

}//setuSecConversionTimeo

/* * ** ** ** * ******************** ** ** ** ** ** * *******************************

*

* writeToMemoryo: Sets up necessary variables before calling writeMemoryo. The
* data to be written must be stored in the memory[][] array before
* calling this routine.
*

* Needed to run this routine -
* channel - channel corresponding to the data that is to be written
* page -specifies which memory page to write to

* * * *** **** * ** * ** ** * *** ** ** * *** ** * *** ** ** *** ** * ** ** ******************* */

public void writeToMemory(int channel, int page)
throws iButtonException, OneWirelOException

{
startChannel = channel;
startPage = page;
startAddress = CHANNELADDRESSES[startPage][2*startChannel]; //memory

address to start writing at
writeMemory(;

}//writeMemoryBuffer
} //iButtonContainer20

152

F.1 1 ImplementPWorldCmds.java

F.11.1 Code Description

This program accepts physical world control commands and then operates the

DS2405 switch accordingly. Available actions include:

" ImplementPWorldCmds: Constructor that creates an object of the switch's

device driver. The switch's address must be

specified.

" toggleSwitch: Causes switch specified in ImplementPWorldCmds

above to switch state from open to closed or from

closed to open.

* initializeSwitch: Forces switch specified in ImplementPWorldCmds

above to be in a specified state. Must pass in switch

state, either open or closed.

F.11.2 Actual Code

/* ** ** * ** *** ** ** ** ** * ** *** ** * ** ** ** ** * *** ** ** * *********************** *

*

* ImplementPWorldCmds: Accepts commands from the concentrator and
* converts them to controller instructions. For the DSI test, the only controllers
* are the iButton switches.
*

* Author: Michael T. DePlonty

* Date: November 30, 2000
*

** ** *** ** * * **** * ** ** * **** ** * * *** **** ** * ** ** * **** * * ** * *** * ** ********* */

class ImplementPWorldCmds
{

private iButtonContainerO5 switch2toggle;

ImplementPWorldCmds(String address)
{

153

try
{

switch2toggle = new iButtonContainer05(address);

I//try

catch (Exception e)
{

Systemout.println("Exception in ImplementPWorldCmds(String address)");
System.out.println(e.toStringo);

}//catch
}//ImplementPWorldCmds()

*

* toggleSwitch(String address, int numToggles):
* Toggles the DS2405 iButton a specified number of times.
*

* address: the address of the DS2405 iButton
* numToggles: the number of times the switch should toggle
*

* ** ** *** ** ** ** * ** **** * ** ** * ** ** * ** *** * ** *** ** * ** ** *** ** ** ** * ******* */

public void toggleSwitch(int numToggles)
{

try
{

for (int index = 0; index < numToggles; index++)
{

switch2toggle.toggleSwitcho;
}//for

}//try

catch (Exception e)
{

System.out.println("Exception in ImplementPWorldCmds.");
Systemout.println(e.toString();

}//catch

System.out.println("Toggled " + numToggles + " times.");

}//toggleSwitch(int numToggles)

154

public void initializeSwitch(String switchState)
{

try
{

switch2toggle.initializeSwitchState(switchState);
}//try

catch (Exception e)
{

Systemout.println("Exception in initializeSwitch(String switchState)");
System-out.printn(e.toStringo);

}//catch
}//initializeSwitch(String switchState)

} //ImplementPWorldCmds

F.12 LoadConfigFile.java

F.12.1 Code Description

This program reads a configuration file and passes results in an array. Elements

in the array are ordered in the order they appear in the configuration file. It also provides

a method to write to the configuration file at a specified location. Available actions

include:

" LoadConfigFile:

" openConfigFile:

* closeInputFile:

* readFile:

* convertStringToInteger:

* writeToFile:

* getTallyOfBytes:

Constructor that initializes the file name.

Opens the configuration file.

Closes the configuration file.

Reads the configuration file and stores results into

an array.

Converts passed string into an integer.

Writes passed data to the specified file location.

This location represents the number of bytes in the

file the software will skip over.

Returns the total number of bytes this class has read

from the configuration file.

155

Determines the number of uncommented lines in

the configuration file and stores the result in a class

variable.

* getunumber oflines: Returns the number of uncommented lines in the

configuration file. readnumber_oflines

determines this number.

F.12.2Actual Code

/* * ** *** ** * **** * ** * * *** ** ** ** ** *** * *** * ** ** ** *************************

*

* LoadConfigFile: Reads a configuration file and passes results in an array.
* Elements in array are ordered in the order they appear in the configuration file.
* Also provides a method to write to the configuration file at a specified location.

* Author: Michael T. DePlonty
*

* Date: August 23, 2000
*

*************** ** * *** ***** * ** *** * ** ** * ** ** ** * *********************** */

import java.io.*;

class LoadConfigFile
{

private String [] data;
private String fileName;
private RandomAccessFile configFile;
private long tallyOfBytes;
private int numberoflines;

public LoadConfigFileo
{

tallyOfBytes = (long) 0;
fileName = "testl.cfg";

}//LoadConfigFile()

public LoadConfigFile(String passedFileName)
{

tallyOfBytes = (long) 0;
fileName = passedFileName;

}//LoadConfigFile(String passedFileName)

156

* read number of lines:

public void openConfigFile(
{

try
{

System.out.println("In the open file routine");
configFile = new RandomAccessFile(fileName, "rw");
Systemout.println("configFile length = " + configFile.lengtho);

}//try
catch (IOException exception)
{

Systemnout.println("IO error");
}//catch

}//openlnputFile()

public void closelnputFileo
{

try
{

configFile.closeo;
}//try
catch (IOException exception)
{

System.out.println("IO error");
}//catch

}//closelnputFileo

public String[] readFileo
{

String dataString = null;
int index = 0;
int fileLinePointer = 0;
int testSeqLnNumber = 0;
long runningTally-ofBytes = (long) 0;
long temp-junningTally-ofBytes = (long) 0;
numberoflines = 0; /represents the number of uncommented lines in the

configuration file

try
{

configFile.seek(0); /start at the begining of the file
while (true)
{

dataString = configFile.readLine(;
if (dataString == null) /no more left, reached end of the file
{

break;

157

}//if
temprunningTallyofLBytes = (long) dataString.length() + 2; //2 for carriage

return and line feed
runningTally-ofLBytes = runningTallyoLBytes + temp-unningTallyofBytes;
dataString = dataString.trimo;
if (dataString.startsWith("#"))
{

continue; /we don't care what follows since it is commented out
}//if
else
{

++fileLinePointer;
if (fileLinePointer == 1) //we are reading the first two lines and wish to

configure the length of the array
{

System. out.println("Reading the number of lines.");
numberoflines = convertStringTolnteger(dataString);
Systemout.println("Number of lines = " + numberoflines);
data = new String[number ofjlines];
testSeqLnNumber = numberoflines+1;

}//if (fileLinePointer == 1)
else if (fileLinePointer == testSeqLnNumber) /we have read the test sequence

number and reached the end of the file
{

System.out.println("Reading the sequence number");
tallyOfBytes = runningTally-oLBytes - tenprunningTally-ofBytes;
//subtract what we just read since we want to write over it
data[index] = dataString;
index++;

}//else if
else //we are beyond the test sequence number
{

data[index] = dataString;
index++;

}//else we are beyond the test sequence number
}//else
dataString = null;

}//while
closelnputFileo;

}//try
catch (IOException exception)
{

System.out.println("IO error");
}//catch
return data;

}//readDatao

158

public static int convertStringToInteger(String passed-data)
{

Integer bufferIntegerObj;

bufferIntegerObj = Integer.valueOf(passed data);
return bufferlntegerObj.intValueo;

}//convertStringTolnteger(String passed-data)

public void writeToFile(String dataToWrite, long startPosition)
{

try
{

Systemout.println("File Pointer "+ configFile.getFilePointerO);
configFile.seek(startPosition); /skip to this position in the file
System.out.println("start position = " + startPosition);
configFile.writeBytes(dataToWrite); //write the data
Systemout.println("made it here, and finished writing the data.");

}//try
catch (IOException exception)
{

System.out.println("IO error");
}//catch

}//writeToFile(String dataToWrite, long startPosition)

public long getTallyOfBytes()
{

return tallyOfBytes;
}//getTallyOfBytes()
public void readnumberoflinesO
{

numberoflines = 0; /represents the number of uncommented lines in the
configuration file

String dataString = null;
int fileLinePointer = 0;
try
{

System.out.println("File Pointer = " + configFile.getFilePointerO);

catch (IOException exception)
{

Systenout.println("IO error in reading number of lines");
}//catch

159

try
{

while (true)
{

dataString = configFile.readLineo;
if (dataString == null) //no more left, reached end of the file

{
closelnputFileo;
break;

}//if
dataString = dataString.trimo;
if (dataString.startsWith("#"))
{

dataString = null;
continue; /we don't care what follows since it is commented out

}//if
else
{

++fileLinePointer;
if (fileLinePointer == 1) /we are reading the first two lines and wish to

configure the length of the array
{

numberoflines = convertStringTolnteger(dataString);
dataString = null;
closelnputFileo;
break;

}//if (fileLinePointer == 1)
else /error and return a value that will cause an exception
{

number_of_lines = 0;
dataString = null;
closelnputFileo;
break;

}//else we have an error
}//else line did not begin with #

}//while
}//try

catch (IOException exception)
{

System.out.println("IO error");
}/catch

}//readnumber of lines()

160

public int get-number oflinesO
{

return numberoflines;
}//getunumber oflinesO

} //LoadConfigFile

F.1 3 PostDataLib.java

F.13.1 Code Description

This program is a library for posting data to a web page. Available actions

include:

" PostDataLib:

" postDataPoint:

" buildQueryString:

" postDataPointGET:

Constructor that initializes the url that TINI will

post to.

Returns the result of posting the passed data point to

the web page.

Builds string that will be posted to the web page.

Posts passed data point to the web page.

F.13.2Actual Code

*

* PostDataLib:
*

* Author: Will Johnson, Michael T. DePlonty
*

* Date: November 28, 2000
*

import java.io.*;
import java.net.*;
import com.dalsemi. system.TINIOS;

public class PostDataLib
{

private static String url2post;

161

public PostDataLib(String s) throws Exception
{

url2post = s;
}//PostDataLib(String s)

public String postDataPoint(String date-stamp, String time-stamp, String dataval,
String datajunit, String sensor-id, String channel id,
String concentratorid, String sw_ver, String testtypejid,
String seq-num, String groupnum) throws Exception

{
return postDataPointGET(date-stamp, time-stamp, dataval, dataunit, sensorid,

channelid, concentrator id, swver, test typejid,
seq-num, group-num);

}//postDataPoint(filler)

private String buildQueryString(String datestamp, String timestamp, String dataval,
String data unit, String sensor id, String channel id,
String concentrator id, String sw ver, String test typejid,
String seq-num, String group-num) throws Exception

{
String s =
s = "datestamp=" + URLEncoder.encode(date-stamp);
s = s + "×tamp=" + URLEncoder.encode(time&stamp);
s = s + "&data_val=" + URLEncoder.encode(data val);
s = s + "&dataunit=" + URLEncoder.encode(dataunit);
s = s + "&sourceid=" + URLEncoder.encode(sensor id);
s = s + "&channelid=" + URLEncoder.encode(channel-id);
s = s + "&tiniid=" + URLEncoder.encode(concentrator-id);
s = s + "&sw_ver=" + URLEncoder.encode(swver);
s = s + "&testtype_id=" + URLEncoder.encode(test typeid);
s = s + "&sessionnum=" + URLEncoder.encode(seq-num);
s = s + "&groupnum=" + URLEncoder.encode(group-num);

return s;
}//buildQueryString(filler)

private String postDataPointGET(String date-stamp, String time-stamp,
String data val, String data unit, String sensorid,
String channelid, String concentrator id, String sw ver,
String testtypejid, String seq-num, String group-num)
throws Exception

{
String inputLine;
String returnval=
URL url;

162

URLConnection urlConn;
BufferedReader in;

try
{

Systemout.println("Entered PostDataPointGET");

url2post = url2post.concat("?");
url2post = url2post.concat(buildQueryString(date stamp, timestamp, data val,

dataunit, sensorid, channelid,
concentrator-id, swyver, test typejid,
seq-num, group-num));

url = new URL(url2post);
System-out.println("Trying to open URL connection.");
urlConn = url.openConnectiono;

System.out.println("Now trying to read from the Input Stream.");
in = new BufferedReader(new InputStreamReader(urlConn.getlnputStreamo));

Systen.out.println("Reading from the input stream");
while ((inputLine = in.readLine()) != null)

{
Systemout.println("inputLine "+ inputLine);
returnval = returnval + inputLine;

}//while

Systemout.println("Closing the buffered reader.");
in.closeo;
in = null;
url = null;
urlConn = null;
inputLine = null;
Systemtgco;
return returnval;

}//try

catch (Exception e)
{

System.out.println(e.toStringo);
System.out.println("Doing a system reboot");
FaultHandler fh = new FaultHandlero;
fh.handleFault(e.toStringo);
return returnval;

}//catch
}//postDataPointGET(filler)

}//PostDataLib

163

F.1 4 ProcessData.java

F.14.1 Code Description

This program uses the DS2450 library to convert raw data into the specified units.

Available actions include:

* ProcessData: Constructor that creates an object of the DS2450

library.

* convertToStandardUnits: Converts passed raw data into Volts and returns

result in the double format.

0 getUnits: Returns the units the DS2450 associates with the

processed raw data.

F.14.2 Actual Code

/*************** ** * *** ** * * *** ** * **** ** ** ** * ** *** * ** ** ** ** ** ** * ********

*

* ProcessData: Ideally, this would look at sensor stamp, look on a table to find
* what units it needs to convert the data to, then do the conversion. Right now it
* just does the DSI test's conversion.
*

* Author: Michael T. DePlonty
*

* Date: November 24, 2000
*

* * ** ** * *** *** ** *** ** ** ** ** * ** * *** ** ** ** * *** * *** ** ** ** * ** ** * ********* */

class ProcessData
{

private DS2450Lib ds2450_lib;

ProcessDataO
{

ds2450_lib = new DS2450Libo;
}//ProcessData()

164

ProcessData(String sensorID)
{

//this is where this module would get the proper sensor object based
/on the sensor ID that was passed.

ds2450_lib = new DS2450Libo;

}//ProcessData(String sensorID)

public double convertToStandardUnits(int passedRawData)
{

return ds2450_lib.convertToStandardUnits(passedRawData);
}//convertToStandardUnits(int passedRawData)

public String getUnits(String sensorID)

{
return ds2450_lib.unitsLabel();

}//getUnits(String sensorID)

public void cleanUpObjects()
{

ds2450_lib = null;
}//cleanUpObjectso

} //ProcessData

F.1 5 Retrieve Data.java

F.15.1 Code Description

This program retrieves data from the buffer. The buffer must have each data

point on separate lines. Available actions include:

* getFirstPoint:

" getLastPoint:

* getSpecificPoint:

Retrieves first data point by reading the first line

in the buffer.

Retrieves last data point in the buffer.

Retrieves specific data point. The desired index

passed to this routine corresponds to the line

number in the buffer, index at 0.

165

" getFirstNPoints:

* getLastLN_Points:

* getBlockPoints:

" getAllPoints:

" displayAllBufferContents:

* openFile:

* closeFile:

" readFile:

Retrieves first N points in the buffer, where N is

passed to this routine.

Retrieves last N points in the buffer, where N is

passed to this routine.

Retrieves a block of data points, where the

beginning and ending indices are passed to this

routine.

Retrieves all the data in the buffer.

Displays the buffer's contents.

Private routine that opens the buffer file.

Private routine that closes the buffer file.

Private routine that reads the buffer file.

F.15.2Actual Code

/* *** * * *** * *** ** * * *************** ** * *** ** * *** * ** ** ** ** ****************

*

* RetrieveData:
* Retrieves data from the buffer. The data in the buffer is assumed to have been
* written on separate lines in the buffer file. Thus the index refers to the line in
* the file, starting at line 0.
*

* Author: Michael T. DePlonty
*

* Date: November 25, 2000
*

import java.io.*;
import java.util.Vector;

class RetrieveData
{

private RandomAccessFile
private Vector
private String
private int

bufferFile;
result;

fileName;
number_of_lines;

166

RetrieveData()
{

this("buffer.txt");
}//RetrieveData()

RetrieveData(String passedFileName)
{

result = new Vector(20);
fileName = passedFileName;

}//RetrieveData(String passedFileName)

public String getFirstPoint()
{

result = readFileo;
return (String) result.firstElemento;

}//getFirstPoint()

public String getLastPoint()
{

result = readFileo;
return (String) result.lastElement(;

}//getLastPointo

public String getSpecificPoint(int index)
{

result = readFileo;
if (index > result. sizeo) //want a point that does not exist
{

Systenout.println("Index for specific point too big.");
return null;

}//if
return (String) result.elementAt(index);

}//getSpecificPoint(int index)

public String[] getFirst N_Points(int limit)
{

result = readFileo;

if (limit > result.sizeo) /if desire more points than exist in buffer
{

Systemout.println("Limit larger than number of points in buffer.");
limit = result.sizeo;

}//if

String[] dataPoints = new String[limit];

167

for (int i = 0; i < limit; i++)
{

dataPoints[i] = (String) result.elementAt(i);
}//for
return dataPoints;

}//getFirstN_Points(int limit)

public String[] getLast N_Points(int desiredNumber)

{
result = readFileo;

if (number-oflines < desiredNumber) /desire more points than exist
/in buffer

{
System.out.println("Desired number too big.");
desiredNumber = numberoflines; /just return all the points in the buffer

}//if starting point larger than number of lines in the file

String[] dataPoints = new String[desiredNumber];

for (int i = (numberoflines - desiredNumber); i < numberoflines; i++)

{
dataPoints[i-numberoflines+desiredNumber] = (String) result.elementAt(i);

}//for
return dataPoints;

}//getLastN_Points(int startPoint)

public String[] getBlockPoints(int startIndex, int endIndex)

{
result = readFileo;

if (endIndex < startIndex)
{

System.out.println("Invalid, end index must be larger than start index");
String[] dummy = new String[1];
dummy[0] = null;
return dummy;

}/if

if (startIndex > result.sizeo) /desired to get a block of points outside the buffer

{
System.out.println("Invalid, must start within the buffer. Start index too large.");
String[] dummy = new String[1];
dummy[O] = null;
return dummy;

}//if

168

if (endIndex > result.sizeo) //desire to end outside the buffer
{

System.out.println("Invalid, wish to end outside the buffer. End index too large.");
endIndex = result.sizeo;

}//if

String[] dataPoints = new String[endIndex - startIndex];

for (int i = startIndex; i < (endIndex); i++)

{
dataPoints[i-startlndex] = (String) result.elementAt(i);

}//for
return dataPoints;

}//getBlockPoints(int startIndex, int endIndex)

public String[] getAllPoints()
{

result = readFile();
String[] resultString = new String[result.sizeo];
for (nt i=O; i<result.sizeo; i++)
{

resultString[i] = (String) result.elementAt(i);
}//for
return resultString;

}//getAllPoints()

public void displayAllBufferContents()
{

String data[] = getAllPointso;

for (nt i=0; i < data.length; i++)
{

Systenout.println(data[i]);
}//for

}//displayAllBufferContents()

private void openFile()
{

try
{

bufferFile = new RandomAccessFile(fileName,"rw");
}//try

169

catch (Exception e)

{
System.out.println(e.toString() + "in Retrieve Data");

}//catch
}//openFile()

private void closeFileo
{

try
{

bufferFile.closeo;

}//try

catch (Exception e)

{
System.out.println(e.toString() + "in Retrieve Data");

}//catch
}//closeFileo

private Vector readFileo

{
String buffer;
numberoflines = 0;

openFileo;

try
{

bufferFile. seek(0);

while ((buffer = bufferFile.readLineo) ! null) //while we haven't reached the end

of file
{

result. addElement(buffer);
numberoflines++;

}//while not at end of file

}//try

catch (Exception e)
{

Systemout.println(e.toStringo);
}//catch

closeFileo;
return result;

}//readFile()

170

public void cleanUpObjectso
{

bufferFile = null;
fileName null;
result.removeAllElementso;
result = null;
Systemgc();

}//cleanUpObjectso
} //RetrieveData

F.1 6 SendInformation.java

F.16.1 Code Description

This program sends processed data, with all appropriate stamps, to the observer.

It uses PostDataLib. Available actions include:

. SendInformation: Constructor that initializes the url to which TINI will post.

0 sendData: Uses PostDataLib to post data to the specified web page.

F.16.2 Actual Code

/* ** ** **************************** * *** ** * ************************** ** *

*

* SendInformation sends concentrator information to the observer.
* Information is a String.
*

* Author: Michael T. DePlonty
*

* Date: November 21, 2000
*

* ** * ** ************** * ** *** * ** *** * * ** *** ************** ** ************* */

import java.io.*;
import java.net.*;

class SendInformation
{

private static String url2Open; //this is static as a concentrator
/can report to only one ovserver

171

private String resultOfPosting;

*

* Default Constructor, observer's url (location) passed in.
*

** ** * ** ** * * **** ** ** *** *** * * * *** ** ** ** ** * *********************** ** ** ** */

SendInformation(String desiredURL) throws Exception

{
url2Open = desiredURL;

}//Sendlnformation()

public String sendData(String dateStamp, String timeStamp, String dataValue,
String dataUnit, String sensorID, String channelID,
String concentratorlD, String concentratorsw ver,
String test typeID, String sequenceNum, String groupNum)

throws Exception
{

PostDataLib pd;
pd = new PostDataLib(url2Open);
resultOfPosting = pd.postDataPoint(dateStamp, timeStamp,

dataValue, dataUnit, sensorID,
channelID, concentratorlD, concentrator_sw ver,
test typeID, sequenceNum,
groupNum);

System.out.println(resultOfPosting);
pd = null;
return resultOfPosting;

}//sendDatao
public void cleanUpObjectso
{

resultOfPosting = null;
System.gco;

}//cleanUpObjects()
} /SendInformation

172

F.1 7 SensorStamp.java

F.17.1 Code Description

This program stamps data with the appropriate sensor ID. Available actions

include:

acceptCommand: Accepts a Capture Data Command that contains the desired

sensor address and the data's module destination.

0 getSensorStamp:

0 stampData:

Uses the DS2450 library to retrieve the DS2450's one-wire

address.

Adds sensor ID to the data vector, effictively stamping the

data. This routine is available for future expansion and is

not used in the current software version.

F.17.2Actual Code

/* ************ * * *** ** ** ** * **** * *** * ** ** ** ** ** ** * ***************** * * ***

*

* SensorStamp:
* Stamps data with the sensor ID it came from. Ideally, one passes in address
* of sensor, this module looks in a table for the object representing the sensor,
* returns that object, then uses it to retreive the desired ID. Currently, the only
* "sensor" is the A/D converter, so no table is used.
*

* Author: Michael T. DePlonty
*

* Date: November 24, 2000
*

* ** * ** *** * ** ** **** * *** ** ** * ** * ********************************** **** */

import com.ibutton.utils.Address;
import java.util.Vector;

class SensorStamp
{

private static DS2450Lib ds2450;
private String sensorAddress;
private String dataDestination;

173

SensorStampo
{

sensorAddress = "";

dataDestination
}//SensorStamp()

/* ** * ** ************** ** ** ** ** ** ** * ** ** * ** ** *************** * ** ** * *** ** * **

*

* acceptCommand(String[] command):
* This routine accepts a "Capture Data command" and stores the sensor's
* address and the data's destination in the appropriate fields.
*

* ** ** ** ************* * ** * *** *** ** * *** ** * *** ** ** ** ** * ** ** ** *** ******** *1

public void acceptCommand(String[] command)

{
if (command.length != 2) //passed in an illegal command

{
Systenout.println("Illegal command.");

/currently, do nothing
}//if passed in illegal command
else
{

sensorAddress = command[O];
dataDestination = command[1];

}//else passed a legal command
}//acceptCommand(String[] command)

public String getSensorStamp()
{

if (sensorAddress.equals(""))
{

System.out.println("Did not receive a sensor address.");
return "";

}//if didn't receive a sensor address
else
{
/get sensor's ID, add it to the end of the vector, then return
//the new vector

ds2450 = new DS2450Lib(sensorAddress);
return ds2450.getSensorIDO;

}//else did receive a sensor address
}//getSensorStamp()

174

public Vector stampData(Vector data)
{

/ideally, this would match the sensor address with a sensor object
/and get the sensor's ID from that object.

if (sensorAddress.equals(""))
{

System.out.println("Did not receive a sensor address.");
data.addElement(null);
return data;

}//if didn't receive a sensor address
else
{
/get sensor's ID, add it to the end of the vector, then return
/the new vector

ds2450 = new DS2450Lib(sensorAddress);
System.out.printIn("Created ds2450");
System.out.println("Adding sensor ID");
data.addElement(ds2450.getSensorIDo);
return data;

}//else did receive a sensor address

}//stampData(Vector data)

public void sendDataOutO
{

/*
look at data destination, create new object of destination module,

then pass this object the vector of data. Currently, this is not
necessary as the stampData method returns the data vector.
*/

}/sendDataOut()

public void cleanUpObjectso
{

ds2450 = null;
}//cleanUpObjectsO

} /SensorStamp

175

F.1 8 StoreData.java

F.18.1 Code Description

This program accepts passed data and writes it to the buffer file. Available

actions include:

* writeData: Writes data to the buffer file. Data may be a

TiniDataPoint, a string, or an array of Strings. Calling

routing must also specifiy if the data will be appended to

the buffer or if the data will overwrite data already present

in the buffer.

" openOutFile:

" closeFile:

Private method that opens the buffer file.

Private method that closes the buffer file.

F.18.2Actual Code

/******* **************************** ** * ** ** ** ***************** ********

*

* StoreData accepts passed data and writes it to a file. Data may be a
* Tini Data Point or it may be a string.
*

* Author: Michael T. DePlonty
*

* Date: November 24, 2000
*
* * *** ************************* ** ** * *** ** *** ** ** ** * ** *** * ** ** * ******* */

import java.io. *;

class StoreData
{

private String
private String
private File

fileName;
dataString;

outputFile;
private FileWriter out;

private static final String TAB =
private static final String RETURN

"\4";

176

StoreDatao
{

this("buffer.txt");
}//StoreDatao

public StoreData(String passedFileName)
{

fileName = passedFileName;
dataString = null;

}//StoreData(String fileName)

public void writeData(TiniDataPoint thingToWrite, boolean append)

{
dataString = thingToWrite.getDateo + TAB;
dataString = dataString.concat(thingToWrite.getTimeo).concat(TAB);
dataString = dataString.concat(thingToWrite.getValueAsStringo).concat(TAB);
dataString = dataString.concat(thingToWrite.getUnitso).concat(TAB);
dataString = dataString.concat(thingToWrite.getSourcelDO).concat(TAB);
dataString = dataString.concat(thingToWrite.getChannel()).concat(TAB);
dataString = dataString.concat(thingToWrite.getTinilDo).concat(TAB);
dataString =

dataString.concat(thingToWrite.getSoftwareVersionAsString).concat(TAB);
dataString =

dataString.concat(thingToWrite.getTestTypeDAsString).concat(TAB);
dataString =

dataString.concat(thingToWrite.getSequenceNumberAsString).concat(TAB);
dataString =

dataString.concat(thingToWrite.getGroupNumberAsStringo).concat(RETURN);
try
{

openOutFile(append);
out.write(dataString);
dataString = null;
closeFileo;

}//try
catch (IOException exception)
{

closeFileo;
System.out.println("IO error");

}//catch
}//writeData(TiniDataPoint thingToWrite)

177

public void writeData(String thingToWrite, boolean append)
{

try
{

openOutFile(append);
out.write(thingToWrite.concat(RETURN));
closeFileo;

}//try

catch (IOException exception)
{

Systemout.println("IO error");
closeFileo;

}//catch
}//writeLine(String thingToWrite)

public void writeData(String[] thingToWrite, boolean append)
{

try
{

openOutFile(append);
for (nt i=O; i<thingToWrite.length; i++)
{

out.write(thingToWrite[i].concat(RETURN));
}//for
closeFileo;

}//try

catch (Exception e)
{

Systemiout.println("StoreData: " + e.toString());
closeFileo;

}//catch
}//writeData(String[] thingToWrite)

private void openOutFile(boolean append)
{

try
{

outputFile = new File(fileName);
out = new FileWriter(fileName, append); /open fileName and allow appending of

data
}//try
catch (IOException exception)
{

System.out.println("IO error");

178

}//catch
}//openOutFile()

private void closeFileo
{

try
{

out.closeo;
}//try
catch (IOException exception)
{

Systemout.println("IO error");
}/catch

}//closeFileo

public void cleanUpObjectso
{

fileName = null;
dataString = null;
outputFile = null;
out null;

}//cleanUpObjectso
} /StoreData

F. 9 TimeDateStamp.java

F.19.1 Code Description

This program puts a time-date stamp on the data. IMPORTANT, this only works

for the years 2000 to 2099 and should be fixed in the future. Available actions include:

" stamp: Retrieves time and date values from TINI's internal

clock.

* convertDay: Converts integer day of week representation into

string representation.

* convertMonth: Converts integer month representation into string

representation.

" convertYear: Converts year that is modulus 100 into a yyyy

format.

179

" getTotalDateString:

" getTotalTimeString:

" getLapsedMilliseconds:

" addStampToData:

Produces string for date in mm/dd/yyyy format.

Produces string for time in hh:mm: ss format.

Gives the number of milliseconds since Jan. 1,

1970.

Adds time-date stamp to passed data vector.

* Access methods to retrieve the time-date stamp fields. Fields include: day,

month, year, date, hout, minute, second, hundreth of a second.

F.19.2Actual Code

/* ** ** ************************* ** ** * ** *** ** ** * ************************

*

*

*

*

TimeDateStamp puts a time/date stamp on the TINI readings.
This only works for 2000 to 2099.

* Author: Michael T. DePlonty
*

* Date: July 25, 2000
*

* * ** ** ** * ********************* ** ** ** * ** * **** ** * ** * *** *************** *

import com.dalsemi. system.*;
import java.util.Vector;

class TimeDateStamp
{

private Clock
private String
private String
private int
private long

timeDateStamp;
day;
month;
year;
lapsedMilliseconds;

TimeDateStamp()
{

timeDateStamp = new Clocko;
}//TimeDateStamp()

180

/* **

*

* stampo: Reads TINI's real time clock values from hardware clock and places
* them into Clock instance fields. After stamping, available fields include:
* date - day of month
* day - day of week
* hour -hour
* hundredth - hundreths of seconds
* isI2Hour - 12/24 hour flag
* minute - minute
* month - month
* pm - PM/AM flag
* second - second
* year -year mod 100
*

******************************* ** * *** * * ***** * * *************** ** ** ** ** */

public void stampo
{

timeDateStamp.getRTCO;
}//stamp()

/* * ** ** ** *****************

*

* convertDayo: converts integer day of week into string representation
*

** * ******************* ************ ******************** *************** */

public void convertDay()
{

switch (timeDateStamp.day)
{

case 1:
{

day = "Sun";
break;

}//case 1
case 2:
{

day = "Mon"
break;

}//case 2
case 3:
{

day = "Tues";
break;

181

}//case 3
case 4:
{

day = "Wed";
break;

}//case 4
case 5:
{

day = "Thr";
break;

}//case 5
case 6:
{

day = "Fri";
break;

}//case 6
case 7:
{

day = "Sat";
break;

}//case 7
}//switch (day)

}//convertDay()

** * *** * ** * ** ** ** ** * ** * **** ** * **** * ** * *** ** * * ***************************

*

* convertMontho: converts integer month into string representation
*

* ** * **** * *** * **** ** * *** ** * ** *** * *** * ** ** ** ** * ************************ */

public void convertMonth()
{

switch (timeDateStamp.month)
{

case 1:
{

month = "Jan";
break;

}//case 1
case 2:
{

month = "Feb";
break;

}//case 2

182

case 3:
{

month = "Mar";
break;

}//case 3
case 4:
{

month = "Apr";
break;

}//case 4
case 5:
{

month = "May";
break;

}//case 5
case 6:
{

month "Jun";
break;

}//case 6
case 7:
{

month ="Jul";
break;

}//case 7
case 8:
{

month = "Aug";
break;

}//case 8
case 9:
{

month ="Sep";
break;

}//case 9
case 10:
{

month ="Oct";
break;

}//case 10
case 11:
{

month = "Nov";
break;

}//case 11

183

case 12:
{

month = "Dec";
break;

}//case 12
}//switch (day)

}//convertMonth()

*************** ************* ** ** * *** ** ** * ** ** ** * ************** * *** ** ** **

*

* convertYearo: converts year mod 100 into a yyyy format. timeDateStamp.year
* returns a number between 0 and 99, so this routine only gives years
* between 2000 and 2099 then will loop back to year 2000.
*

* KNOWN BUG HERE. NEEDS TO BE FIXED TINI ONLY ALLOWS
* YEARS UP TO 2099, SO ONCE THIS IS IMPROVED, THIS BUG WILL
* EXIST.
*

****************************** ** * * *** ** ** * ***************** ** ** ** * *** */

public void convertYearo
{

year = timeDateStamp.year + 2000;
}//convertYearo

public String getDayo
{

convertDayo;
return day;

}//getDayo

public String getMonth()
{

convertMontho;
return month;

}//getMontho

public int getYearo
{

convertYearo;
return year;

}//getYear()

184

public int getDateo
{

return timeDateStamp.date;
}//getDateo

public int getHouro
{

return timeDateStamp.hour;
}//getHouro

public int getMinute()
{

return timeDateStamp.minute;
}//getMinuteo

public int getSecondo
{

return timeDateStamp.second;
}//getSecond()

public int getHundredtho
{

return timeDateStamp.hundredth;
}//getHundredtho

/* * ** * *** *** ** ** * * *** *** * *** * *** ** ** ** * **************************** *****

*

* getTotalDateStringo: produces string for date in mm/dd/yyyy format.
* Note, day may be a single integer (5 instead of 05).
*

* **** ** * * *** * *** ** *** * ** * ******* ** * ***************************** * **** */

public String getTotalDateString()
{

String currentDateStamp = timeDateStamp.month + "/"
+ timeDateStamp.date
+ "/" + getYearo;

return currentDateStamp;
}//getTotalDateString()

*

* getTotalTimeString(: Produces string for time in hh:mm:ss format.
* Note, hour is in 24 hour format, so 1pm is 13 (no am/pm ID).

* * *** ** ** ** ** ** ** ** ** ** ** * ** ** * ************************************ ** */

185

public String getTotalTimeString()
{

String currentTimeStamp = timeDateStamp.hour + ":"
+ timeDateStamp.minute +
+ timeDateStamp.second;

return currentTimeStamp;
}//getTotalTimeString()

/* * ** ** * ************ *********** ******************* **** * ** ** * ** *** ** ** ** *

*

* This method gives the number of milliseconds since Jan. 1, 1970

****************************** ********************* ************ ** ** ** */

public long getLapsedMilliseconds()
{

lapsedMilliseconds = timeDateStamp.getTickCounto;
return lapsedMilliseconds;

}//getLapsedMillisecondso

/* ** ** ** * ****** ** ** *

*

* This method assumes the time and date has already been stamped into this modules
* variables. This is done so that the stamp can be formed as close as possible to the
* time the data is taken from the sensor.
*

public Vector addStampToData(Vector data)
{

data.addElement(getTotaDateStringo);
data.addElement(getTotalTimeStringo);
return data;

}//stampData(Vector data)

public void cleanUpObjects()
{

timeDateStamp = null;
day = null;
month = null;

}//cleanUpObjectso
} //TimeDateStamp

186

F.20 TiniData.java

F.20.1 Code Description

This program creates a vector of TiniDataPoints and usefull methods to

manipulate this vector. Available actions include:

" add: Adds TiniDataPoint at a specified location or at the end

of the vector.

" removeElementAt: Removes vector element at the specified location.

* removeAllElements: Removes all elements from the vector.

" getDataPoint: Retrieves and returns TiniDataPoint at specified index.

" setElementAt: Replaces the vector element at the specified index with

the passed TiniDataPoint.

" size: Returns the vector's size.

" printContents: Displays the vector's contents to the computer monitor.

F.20.2Actual Code

/* ** ** ** ** ** ** ** ** * *** * *** ** * ** * ********************* * *** ** * **********

*

* TiniData creates a vector of TiniDataPoints and usefull methods to manipulate
* this vector. Each TiniDataPoint is a vector that contains 10 identifying fields,
* such as Date, Time, value, etc.
*

* Author: Michael T. DePlonty
*

* Date: July 21, 2000

* * *** ** * ** * ****************** * * ***************************** ******** */

import java.util.Vector;

class TiniData

private static final int VECTORCAPACITY = 0; /how much the vector can initially
hold

private static Vector dataPoints;

187

/****** * *** ** * * ***************** *************** ************ ***** *** ** **

*

* class constructor
*

* *** ** * *********************** ****************** ********* ***** * *** ** */

public TiniDatao
{

dataPoints = new Vector(VECTOR CAPACITY);
for (nt i=0; i<VECTORCAPACITY; i++)

dataPoints.addElement(null);
}//TiniData()

/*************** * ** * ********************************* *** * ** ** ** * *** * ***

*

* add(TiniDataPoint thingToAdd) appends a TINI data object to the
* end of the vector of TINI data objects.
*

* * * *** ** * **** * **** * * *** ** ** * ** ** ** ** ** ** * *** ** ********* ** ** *** * ** *** */

public static void add(TiniDataPoint thingToAdd)

{
dataPoints.addElement(thingToAdd);

}//addo

*

* add(TiniDataPoint thingToAdd, int index) inserts a TINI data object
* into the vector of TINI data objects at the location index.
*

public static void add(TiniDataPoint thingToAdd, int index)

{
dataPoints.insertElementAt(thingToAdd, index);

}//addO

*

* removeElementAt(int index) removes a TINI data object at the
* location specified by index.
*

* * ** ** ** ** ** ** * *** ** ** ** *** **** * ** ** * ** ** * ************************** */

188

public static void removeElementAt(int index)
{

dataPoints.removeElementAt(index);
}//removeElementAto

public static void removeAllElements()
{

dataPoints.removeAllElementso;
}//removeAllElements()

public static TiniDataPoint getDataPoint(int index)

{
return (TiniDataPoint) dataPoints.elementAt(index);

}//getDataPoint()

/**** ****************** ***** * *** ** ********************* * **************

*

* setElementAt(TiniDataPoint thingToAdd, int index) replaces a TINI
* data object at the index with the passed TINI data object.
*

****** ******* *********** ** ** * **** * ** ** * ***************** * ** *** ** * *** */

public static void setElementAt(TiniDataPoint thingToAdd, int index)

{
dataPoints.setElementAt(thingToAdd,index);

}//setElementAt(int index)

*** **************************** ** ** * ** ****************** ** ** ** * *** ***

*

* size() returns the number of TINI data objects in the vector
*

* *** * ** ** ** ************ ** * ** ** * ************************ *** * *** * *** ** */

public static int sizeO
{

return dataPoints.sizeo;
}//size()

public void printContentso
{

for(int i=0; i<sizeo; i++)
Systemout.print(dataPoints.elementAt(i) + "\t");

System.out.println(" ");
}//printContents()

} //TiniData

189

F.21 TiniDataPoint.java

F.21.1 Code Description

This program creates a vector that contains the processed data point plus all the

necessary identification tags. It also creates usefull methods for manipulating the vector.

Available actions include:

* Routines used to set and retrieve specific values in the vector. The following

vector indicies contain the specified data field.

Vector Index Data Field

0 Date

1 Time

2 Processed Data Value

3 Units

4

5

6

7

* size:

" printContents:

8

9

10

Returns the vector's size.

Displays the vector's contents

DS2450 ID

Channel Letter

TIM ID

Software Version

Test Type ID

Sequence Number

Group Number

to the computer monitor.

190

F.21.2Actual Code

*

* TiniDataPoint creates a vector dataPoint that contains the value plus nine
* other fields. Each element in the vector is a String.
* dataPoint(0) = Date
* dataPoint(1) Time
* dataPoint(2) = Value
* dataPoint(3) = Units
* dataPoint(4) = Source (chip ID of DS2450 A/D converter)
* dataPoint(5) = Channel
* dataPoint(6) TINI ID
* dataPoint(7) = Software Version
* dataPoint(8) = Test type ID
* dataPoint(9) = Sequence Number
* dataPoint(10) = Group Number
*

* Author: Michael T. DePlonty
*

* Date: July 25, 2000
*

** ** ***************

import java. lang.*;
import java.util.Vector;

class TiniDataPoint
{

private static final int VECTORCAPACITY 11; //how much the vector can initially
hold

private Vector dataPoint;

/* ***************************** ** ************ ********** * **************

* class constructor
*

* *********** ** * ************* */

public TiniDataPointo
{

dataPoint = new Vector(VECTOR CAPACITY);
for (nt i=0; i<VECTORCAPACITY; i++)

dataPoint.addElement(null);
}//TiniDataPointo

191

public String getDateO
{

return (String) dataPoint.element At(O);
}//getDate()

public void setDate(String date)

{
dataPoint.setElementAt(date, 0);

}//setDateO

public String getTime()
{

return (String) dataPoint.elementAt(1);
}//getTime()

public void setTime(String time)

{
dataPoint.setElementAt(time, 1);

}//setTime()

public double getValueAsDoubleo
{

Double buffer = Double.valueOf((String) dataPoint.elementAt(2));
return buffer.doubleValueo;

/this converts the String representation to a double and returns the value as a double
}//getValueAsDouble()

public String getValueAsStringo
{

return (String) dataPoint.elementAt(2);
}//getValueAsStringo

public void setValue(double value)
{

dataPoint.setElementAt(Double.toString(value), 2);
}//setValue()

public String getUnits()
{

return (String) dataPoint.elementAt(3);
}//getUnitso

192

public void setUnits(String units)

{
dataPoint.setElementAt(units, 3);

}//setUnits()

public String getSourceID()
{

return (String) dataPoint.elementAt(4);
}//getSourceIDO

public void setSourceID(String sourceID)

{
dataPoint.setElementAt(sourcelD, 4);

}//setSourceID()

public String getChannel()
{

return (String) dataPoint.elementAt(5);
}//getChannel()

public void setChannel(String channel)

{
dataPoint.setElementAt(channel, 5);

}//setChannel()

public String getTiniIDO
{

return (String) dataPoint.elementAt(6);
}//getTiniID()

public void setTinilD(String tiniID)

{
dataPoint.setElementAt(tinilD, 6);

}//setTiniIDO

public double getSoftwareVersionAsDoubleo
{

Double buffer = Double.valueOf((String) dataPoint.elementAt(7));
return buffer.doubleValueo;

//this converts the String representation to a double and returns the value as a double
}//getSoftwareVersionAsDouble()

public String getSoftwareVersionAsStringo
{

return (String) dataPoint.elementAt(7);
}//getSoftwareVersionAsString()

193

public void setSoftwareVersion(double softwareVersion)
{

dataPoint.setElementAt(Double.toString(softwareVersion), 7);
}//setSoftwareVersiono

public int getTestTypeIDAsInt()

{
return Integer.parselnt((String) dataPoint.elementAt(8));

}//getTestTypeIDAsInt()

public String getTestTypelDAsString()
{

return (String) dataPoint.elementAt(8);
}//getTestTypeID()

public void setTestTypeID(int testTypeID)

{
dataPoint.setElementAt(Integer.toString(testTypeID), 8);

}//setTestTypeID()

public long getSequenceNumberAsLong()
{

return Long.parseLong((String) dataPoint.elementAt(9)); //takes string
representation, converts it to an int, then returns this value

}//getSequenceNumberAslnto

public String getSequenceNumberAsStringo
{

return (String) dataPoint.elementAt(9);
}//getSequenceNumberAsStringo

public void setSequenceNumber(long sequenceNumber)

{
dataPoint.setElementAt(Long.toString(sequenceNumber), 9);

}//setSequenceNumbero

public void setSequenceNumberString(String sequenceNumber)

{
dataPoint.setElementAt(sequenceNumber,9);

}//setSequenceNumberString()

194

public long getGroupNumberAsLong()
{

return Long.parseLong((String) dataPoint.elementAt(10)); //takes string
representation, converts it to an int, then returns this value

}//getGroupNumberAsLong()

public String getGroupNumberAsString()
{

return (String) dataPoint.elementAt(10);
}//getGroupNumberAsString()

public void setGroupNumber(long groupNumber)

{
dataPoint.setElementAt(Long.toString(groupNumber), 10);

}//setGroupNumber(long groupNumber)

public int sizeO
{

return dataPoint.sizeo;
}//size()

public void printContentso
{

for(int i=0; i<sizeo; i++)
Systemout.print((String) dataPoint.elementAt(i) + "T");

System.out.println(" ");
}//printContentso

public void cleanUpObjectso
{

dataPoint = null;
}//cleanUpObjectso

} //TiniDataPoint

195

Bibliography

1. Wilkinson, B. and Rees, D. "Performance Evaluation of a 'Pattern Recognition'
Adaptive Controller." Intelligent Process Control and Scheduling: Discrete Event
Systems: Proceedings of the 1990 European Simulation Symposium. Ed. Ghislain C.
Vansteenkiste, et al. San Diego: Society for Computer Simulation, 1990. 85-90.

2. Jager, R., Verbruggen, H. B., Bruijn, P. M., and Krijgsman, A. J. "Direct Real-Time
Control Using Knowledge-Based Techniques." Intelligent Process Control and
Scheduling: Discrete Event Systems: Proceedings of the 1990 European Simulation
Symposium. Ed. Ghislain C. Vansteenkiste, et al. San Diego: Society for Computer
Simulation, 1990. 101-105.

3. Masmoudi, M. and Vansteenkiste, C.G. "Netman: An Integrated Environment for
Hydraulic Networks Management." Intelligent Process Control and Scheduling:
Discrete Event Systems: Proceedings of the 1990 European Simulation Symposium.
Ed. Ghislain C. Vansteenkiste, et al. San Diego: Society for Computer Simulation,
1990. 51-55.

4. Bauman, R., et al. "The Control and the Command of the Vivitron, a System
Managed with an OODBMS." IEEE Transactions on Nuclear Science. 45.4 August
1998: 2020-2025.

5. Cargol, Timothy L. "A Non-Destructive Transformer Oil Tester." Master's Thesis.
MIT 2000.

6. Cooke, Chathan M and Hagman, Wayne H. A Non-Destructive Breakdown
Measurement for Oil Dielectric Strength Testing: Final Technical Report. Cambridge
MA: MIT Laboratory for Electromagnetic and Electronic Systems and Electric Utility
Program, 1994.

7. McCabe, Aaron R. "Event-Driven, Asynchronous Control and Monitoring."
Master's Thesis. MIT 1998.

8. Polak, T. A. and Pande, C. Engineering Measurements: Methods and Intrinsic Errors.
Suffolk, UK: St. Edmundsbury Press Limited, 1999.

9. Task Committee on Data Acquisition Systems of the Hydraulics Division of the
American Society of Civil Engineers. Guidelines for PC-Based Data Acquisition
Systems for Hydraulic Engineering. New York: American Society of Civil
Engineers, 1993.

10. Taylor, H. Rosemary. Data Acquisition for Sensor Systems. London: Chapman and
Hall, 1997.

197

11. Young, R. E. Telemetry. London: Temple Press, 1963.

12. Gruenberg, Elliot L., ed. Handbook of Telemetry and Remote Control. New York:
McGraw-Hill, 1967.

13. Borer, J. Microprocessors in Process Control. London: Elsevier Applied Science,
1991.

14. Cohen, Jonathan. Automatic Identification and Data Collection Systems. London:
McGraw-Hill, 1994.

15. Pradhan, Dhiraj K. Fault-Tolerant Computer System Design. Upper Saddle River,
New Jersey: Prentice Hall PTR, 1996.

16. Harold, Elliotte Rusty. Java I/O. Sebastopol, California: O'Reilly, 1999.

17. Jamsa, Kris. DOS: Secrets, Solutions, Shortcuts. Berkeley: Osborne McGraw-Hill,
1988.

198

Biography

Michael T. DePlonty was born in Escanaba, Michigan in 1975. He received a
Bachelor of Science degree in Electrical Engineering from the University of Michigan,
Ann Arbor in 1998.

During his undergraduate studies he held four separate summer internships. In
1995 he worked for Electronic Data Systems (EDS) documenting dataflow for General
Motors' Small Car platform. From 1996 to 1998 he worked for Delphi - Delco
Electronics. He verified assembly code for the Audio Electronics Software group in
1996, developed software for the Power Electronics Advanced Development group in
1997, and characterized analog to digital (A/D) converters for the Audio Systems
Advanced Development group in 1998. During his graduate studies he served as a
teaching assistant in the MIT Department of Electrical Engineering and Computer
Science from the Fall of 1999 to the Spring of 2000 and served as a Research Assistant in
the Summer and Fall of 2000.

199

