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Abstract
The recent trends towards global networking and mobile computing have led to the proliferation of
wireless networks which enable users to remain connected to the global web without being tied
down to a fixed, wired link. The portable nature of these applications requires the development of
energy-efficient hardware that is capable of providing a wide range of functionality in an energy-
constrained environment that exhibits time-varying quality requirements. This work proposes uti-
lizing an adaptive, energy-scalable approach that exposes the systems' energy source to the hard-
ware so that it can dynamically adjust its operating point in order to satisfy the current system
operating requirements. Thus, the energy consumption of the system is based on the average-case
as opposed to the worst-case, leading to substantial improvements in the system's operating life-
time from a finite energy source. These results are verified through the development of an Energy
Scalable Encryption Processor (ESEP) that features a high-efficiency embedded variable-output
power converter. In addition, the lack of a coherent wireless network security architecture has
resulted in many different types of cryptographic primitives being used, requiring some form of
algorithm agility in order to maximize the portable systems' utility. Existing solutions are found to
be inadequate: software is flexible but energy-intensive, hardware is energy-efficient but not algo-
rithm agile, and programmable logic incurs too much overhead to be considered energy-efficient.
This work proposes a restricted form of reconfigurability, denoted domain-specific reconfigurabil-
ity, that enables the required range of functionality (i.e., asymmetric cryptography) to be imple-
mented without incurring the high overhead associated with conventional programmable logic-
based solutions (e.g., FPGA's). The benefits of this approach are verified through the development
of the Domain Specific Reconfigurable Cryptographic Processor (DSRCP) which provides all of
the flexibility of a software-based solution, while achieving, and in some instances surpassing, the
energy efficiency of a dedicated hardware-based solution in the domain of interest.

Thesis Supervisor: Anantha Chandrakasan
Title: Associate Professor of Electrical Engineering
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The sun was now just above the tallest spires, and the flooding light that turned
the dusty pavement to red gold made me feel philosophical. In the brown book in
my sabretache there was the tale of an angel (perhaps one of the winged women
warriors who are said to serve the Autarch) who, coming to Urth on some petty
mission or other; was struck by a child's arrow and died. With her gleaming robes
all dyed by her heart's blood, even as the boulevards were stained by the expiring
life of the sun, she encountered Gabriel himself His sword blazed in one hand, his
great two-headed axe swung in the other; and across his back, suspended on the
rainbow, hung the very battle horn of Heaven.

"Where wend you, little one," asked Gabriel, "with your breast more scarlet than
the robin's?"

"I am killed," the angel said, "and I return to merge my substance once more with
the Pancreator"

"Do not be absurd. You are an angel, a pure spirit, and cannot die."

"But I am dead," said the angel, "nevertheless. You have observed the wasting of
my blood -- do you not observe also that it no longer issues in straining spurtings,
but only seeps sluggishly? Note the pallor of my countenance. Is not the touch of
an angel warm and bright? Take my hand and you will imagine you hold a horror
new dragged from some stagnant pool. Taste my breath -- is it not fetid, foul, and
nidorous?" Gabriel answered nothing, and at last the angel said, "Brother and
better; even if I have not convinced you with all my proofs, I pray you stand aside.
I would rid the universe of my presence."

"I am convinced indeed," Gabriel said, stepping from the other's way. "It is only
that I was thinking that had I known we might perish, I would not at all times have
been so bold."

- Shadow of the Torturer by Gene Wolfe
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Chapter 1

Introduction

Arguably the two most significant trends in computing today are the push towards global network-

ing and the increasing migration towards mobile computing. The popularity of the Internet is a

prime example of the drive towards a global network that allows users to communicate and share

information with other systems located around the globe. At the same time the utility of these glo-

bal networks is being enhanced by the prevalence of portable, battery-operated computing termi-

nals that allow users greater mobility than ever before. The direct result of these two trends is the

growing popularity of wireless networks as people strive to remain connected to the global web

without having to be tied down to a wired link. In fact, market research indicates that for future

high-speed network applications, the number of wireless users will surpass their wired counter-

parts by the year 2004 (Figure 1-1).

Unfortunately, wireless networks are notorious for their inherent susceptibility to tampering

and eavesdropping, due largely to the fact that wireless networks utilize the air itself as the trans-

Forecast of Users With Wireline Versus Wireless High-Speed
(Individual) Access, North America, 1998-2003
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Figure 1-1: Estimates of the number of wired and wireless network users.
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Figure 1-2: Estimates of the number of wired and wireless network users.

mission medium, so there is no inherent physical security that accompanies the use of wires that

can be shielded from malicious parties. Instead, anyone with a simple radio receiver can eavesdrop

on the line, leading to widespread fraud and invasion of privacy. Proof of these security issues

arises in the North American cellular phone network, where the CRTC reports that annual losses

due to fraud are over a half billion dollars a year.

To make matters worse, the use of e-commerce and electronic banking is just now beginning

to become popular over the Internet, a trend that will invariably migrate to wireless networks. Esti-

mates predict that the total revenues due to e-commerce in wireless applications will be over $200

billion within the next 4 years (Figure 1-2), making it a very lucrative target for malicious adver-

saries. In addition to the monetary risks, wireless service providers and e-commerce retailers must

also address the growing concerns of end users who have reservations regarding the migration

from conventional to Internet-based retail commerce. A 1998 poll conducted by Mastercard

revealed that the two primary concerns holding users back from utilizing e-commerce over the

Internet were fraud and data privacy (Figure 1-3). However, these privacy and fraud concerns can

be addressed through the use of various cryptographic primitives such as data encryption and user/

message authentication, which can be used with the appropriate protocols in order to construct

secure and trusted wireless systems.

Unfortunately, there is a lack of agreement within the networking community as to what cryp-

tographic algorithms and protocols should be used to perform the required encryption and authen-

tication functions. To make matters worse, as more and more conventional applications are

integrated into a single network structure, their existing security architectures are brought with
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Barriers to Retail Commerce on the Internet
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Figure 1-3: Survey results for determining barriers that prevent people from using
the Internet for retail commerce.

them, leading to even more incompatibilities as each was designed with little or no consideration

towards inter-operability. As a result, a multitude of incompatible systems exist that are based

upon different cryptographic algorithms and their associated mathematics. In the past, system

developers have had to utilize software-based techniques in order to achieve the algorithm agility

that is required to maintain compatibility in the presence of all of these standards. However, a soft-

ware-based solution is flawed in two ways. Firstly, as demonstrated in this dissertation, software

implementations are extremely energy/computationally inefficient for certain cryptographic algo-

rithms, particularly the asymmetric algorithms that are responsible for establishing trust between

parties in an inherently untrustworthy environment. In the past, the energy/computational ineffi-

ciencies of software could be ignored as the typical user operated from a fixed-location system,

such as a desktop computer, which had a great deal of memory, processing power, and an effec-

tively limitless energy budget. However, with the migration to portable battery-operated nomadic

computing terminals, these assumptions break down, requiring us to re-evaluate the use of a soft-

ware-based implementation due to both the energy and processing power constraints in a portable

battery-operated environment. The other problem with software-based solutions is that software

running in an open environment is untrustworthy as both the code and secrets used to implement

cryptographic algorithms must be stored in memory external to the processor, making it suscepti-

ble to a variety of security attacks. In addition, as has been demonstrated in the past, it is possible

to "trick" the code into revealing the secrets by altering it (e.g., [26]) -- the processor that performs

the operation knows nothing of the code's intended function and will execute it without question.

One possible solution to this problem is to perform "on-the-fly" verification of the instruction

stream, signalling an interrupt to the processor if it appears to have been tampered with. Unfortu-
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nately, besides requiring a great deal of overhead to perform the verification, this too can be cir-

cumvented as the verifier is also external to the processor and hence susceptible to tampering. It is

possible to keep the secrets from being exposed by storing them in unflushable cache entries.

However, this is volatile memory that can be purged/cleared leading to possibly catastrophic con-

sequences from a security perspective (what do you do when your identification is erased?!).

A much better approach, and some would argue the only truly trustworthy approach, is to uti-

lize tamper-resistant hardware for performing cryptographic operations. With hardware the afore-

mentioned attacks become much more difficult (but not impossible [8]) as the secrets can be

contained within the processor using nonvolatile memory that is externally inaccessible. In addi-

tion, the "code" (i.e., the sequence of operations required to perform various cryptographic algo-

rithms) can be programmed into the hardware to ensure that nothing short of physical alteration of

the underlying hardware can cause incorrect operation. Dedicated hardware implementations can

be made very energy-efficient, thereby making them very attractive for energy-constrained appli-

cations such as the aforementioned portable terminals. The use of a dedicated cryptographic hard-

ware coprocessor also offloads the heavy computational demands of cryptographic algorithms

from the embedded general purpose processor, freeing it to perform other tasks to which it is better

suited.

Unfortunately, the single-purpose nature of existing cryptographic hardware means that multi-

ple hardware implementations are required to achieve algorithm-agility; otherwise the user will be

restricted to communicating securely only with systems using compatible algorithms. This access

restriction goes against the main advantage of wireless networks: the portability and convenience

of having access to the global web without having to be tied to a single access point and service

provider. Hence, it is advantageous, and one of the goals of this dissertation, to develop a hardware

based solution that is capable of providing algorithm-agility in an efficient manner so that it can be

used in the energy-constrained environments inherent in portable applications.

In addition to the desire for algorithm-agility, another goal of this dissertation is to provide a

general-purpose means of improving the energy efficiency of wireless systems. We accomplish

this by exploiting the fact that wireless systems exhibit time-varying qualityl requirements which

1. From the perspective of this dissertation, "quality" refers to both the level of security used for
encrypting the wireless data stream, and the rate or throughput at which the encryption is per-
formed (e.g., the highest quality corresponds to using strong encryption at high rates).
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allow us to dynamically adjust the system's operating parameters such as the clock rate and supply

voltage in order to minimize the average energy consumption. We call this technique energy scal-

able computing and demonstrate its usefulness in an energy-efficient data encryption application.

1.1 Introduction to Cryptography
Cryptography is the science of encoding messages in such a way that unauthorized parties cannot

decipher the encoded information in a reasonable amount of time. In the past, the field of cryptog-

raphy was primarily the regime of the military, who used it for providing secure communication

channels in hostile environments. Most of the resulting encoding techniques were based on ad-hoc

methods that had no quantitative measure of security in either a practical or theoretical sense. In

the last 30 years though all of this has changed and cryptography has become more of a public sci-

ence due to its increased use in digital communications to provide security. Today, many important

results are being developed in the public domain, and formal methods have been developed and

refined for both the construction and analysis of cryptographic algorithms.

Unfortunately, cryptography has often been considered a black art, and the required mathemat-

ical foundations upon which it is built tend to dissuade most people from learning more about the

field. However, as digital communication channels continue to be trusted with more and more

valuable information such as financial transactions and electronic commerce, the science of cryp-

tography is beginning to become more mainstream due to the increasing awareness of security

issues. As a result, several excellent and easily accessible references for modern cryptography

have been developed and are currently available to the reader (e.g., [116] and [84]). This section

attempts to provide a brief introduction to the field, and highlight the main ideas in order to moti-

vate the work presented in this dissertation.

1.1.1 A Simple Example

Figure 1-4 depicts a simple scenario for a wireless cryptographic system. In the scenario, Alice

and Bob are attempting to (unsuccessfully) conduct a private conversation over a wireless network

in the presence of an unauthorized third party, Eve. In order to ensure their privacy, Alice and Bob

can use various cryptographic techniques to ensure their privacy by performing several basic func-

tions:
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The code is The code is
710125. 710125.

Eve

The code is
7110125.

Alice Bob

Figure 1-4: Alice and Bob trying to conduct a private conversation over wireless
channels and failing miserably as Eve listens in.

- User Authentication: Alice and Bob must first verify to the others' satisfaction that
they are indeed who they say they are, and not just Eve impersonating either party.

- Key Agreement: Once Alice and Bob have verified their identities then they must be
able to agree on some form of secret information that is known only to them and not
Eve. This secret information can then be used to construct a common secret key.

" Data Encryption/Decryption: With a shared secret key, Alice and Bob can then utilize
data encryption algorithms to encode their communication in such a way that Eve can-
not decipher the message, even though she has full access to the encoded messages.

- Data Integrity Check and Signature: Ideally, Alice and Bob would like to be able to
guarantee that the encoded messages they receive are the same as those sent, and that
they were in fact sent by the other party and not Eve.

Cryptography enables techniques that can perform the above functions, utilizing two types of

algorithms (asymmetric and symmetric) which have distinctly different properties. Asymmetric

cryptographic algorithms get their name from the fact that they do not require any secret informa-

tion to be shared between Alice and Bob. Asymmetric algorithms rely on the existence of mathe-

matical functions that have the property that they can be computed efficiently (i.e., in polynomial

time), but are computationally infeasible to invert without knowing some secret piece of informa-

tion. The formal name for a function displaying these properties is a trapdoor one-way function;

one-way due to the asymmetry in computational complexity between the forward and inverse

paths, and trapdoor due to the existence of a secret piece of information that allows for efficient

inversion 2 . The asymmetry is exploited to form cryptographic algorithms which utilize two keys:

the public key, which is used to compute the forward function to encode the data, and the private

key (i.e., trapdoor) which enables the function to be inverted, thereby recovering the data that has

2. It is interesting to note that the existence of trapdoor one-way functions has yet to be proven. As
it stands there are several functions such as integer factorization and discrete logarithms which
are used in practical public key cryptography and appear to be good approximations.
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been encoded. Asymmetric algorithms are commonly referred to as public key algorithms.

The separation of the key into a public and private component enables Alice and Bob to per-

form both user and data authentication by reversing encoding and decoding procedures: instead of

applying the public key to encode data and then the private key to decode, authentication primi-

tives use the private key to encode and public key to decode. Since the two operations commute,

the result is the same regardless of the order of application of the keys. Given that the private key is

known only by the user who generated it (e.g., Alice or Bob), Eve cannot impersonate either party

without guessing the correct key which is assumed to be computationally infeasible. Thus Alice

and Bob can authenticate their identities by agreeing on a message (e.g., "Hi, my name is Alice/

Bob"), encoding it with their private key, and then sending the encoded message along with the

public key to the other party, which can then decode using the public key to verify that the

expected message was received. Similarly, message authentication can be performed by having the

transmitter of the message encode a digital representation of the message using their private key to

form a digital signature of the message. The signature is then appended to the encoded message

and transmitted to the receiver. The receiver decodes the message, extracts the expected digital

representation from the message and then decodes the signature to ensure that it matches the

expected value. Any corruption of the transmitted message will result in the two values not match-

ing, thereby ensuring data authentication. In addition, since only the intended transmitter knows

the secret key value used to encode the signature, a successful decoding also validates the owner-

ship of the message.

Asymmetric techniques enable Alice and Bob to also generate a shared secret in the presence

of Eve by having each encode a randomly generated message using the others' public key, and

then exchanging the two messages. Alice and Bob can then decode the others' random message

and combine it in some pre-determined way with their own random message to generate a shared

secret key. Eve will only see the two encoded messages which, assuming the intractability of

inverting the public key encoding, doesn't allow her to derive the same shared secret value. Hence,

Alice and Bob have performed key agreement as well.

Unfortunately, asymmetric algorithms derive their security from the hardness of the number

theoretic problem upon which they are built. This in turn limits the degree of optimizations that

can be applied to improve performance of the associated functions required to implement the

asymmetric algorithms. Hence, asymmetric algorithms tend to be very computationally inefficient,
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and thus not a good choice for encrypting large amounts of data. Symmetric algorithms on the

other hand derive their security from a secret piece of information that is shared by the encoder

and decoder, commonly referred to as the secret key, which is why symmetric algorithms are typi-

cally referred to as secret key cryptography. The primary benefit of using secret key cryptography

is that the shared secret can be exploited to create algorithms that operate very efficiently in terms

of their computational complexity. For example, the encryption/decryption speeds (Table 1-1) for

the recent Advanced Encryption Standard finalists are on the order of tens of megabits per second

using conventional microprocessors [14]. In comparison, asymmetric key algorithms typically

operate at speeds on the order of 10's of kilobits per second.

AES Candidate Algorithm

Processor Architecture RC6 [108] MARS [221 Rijndael [31] Serpent [7] Twofish [117]

Pentium Pro (200MHz) 42.4 63.6 14.4 17.0 15.0

Pentium 11 (450 MHz) 95.4 138.8 33.2 47.7 33.9

UltraSPARC 11 (300 MHz) 18.3 27.8 37.5 28.8 36.0

SGI Octane 57.9 47.8 43.8 32.0 43.9

Table 1-1: Encryption/decryption speeds for symmetric algorithms (Mbit/s) [14]

When these cryptographic techniques are used, the conversation between Alice and Bob takes

on a decidedly more personal tone (Figure 1-5) as they have managed to ensure the integrity of

both their identities, as well as setting up a shared secret key that enables them to encrypt/decrypt

their messages. As a result Eve can't understand anything of what is said. Hence, Alice and Bob

can conduct a private, and secure conversation.

8#$KC@HO
+GN!$!##&

The code is
710125.

be

A' The code is
c0125.

E ve ........

8#$KC@H0
+GN!$!##&

Alice Bob

Figure 1-5: Alice and Bob using cryptography to encode their communications.
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1.1.2 Secret Key Algorithm Types
The family of secret key algorithms can be divided into two separate classes of algorithms known

as block and stream ciphers. As the name implies, block ciphers are symmetric key algorithms that

operate on blocks of data, n bits at a time, to generate a m-bit output that forms the encrypted mes-

sage. Obviously m > n so that there will be an invertible mapping that can be decrypted, and typi-

cally m = n to avoid any data expansion. As a result, a block cipher can be thought of as a

memoryless n-bit permutation of the inputs under the influence of the secret key.

Stream ciphers on the other hand contain internal state that makes their output a time-depen-

dent function, thereby avoiding the replay weakness that haunts block ciphers. In addition, a

stream cipher operates on a data stream, typically a single bit wide, rather than a block of data. The

simplest model for a stream cipher is as a pseudo-random bit stream generator whose internal state

is a function of the secret key, and whose output can then be combined, typically via XOR, with

the data stream to form the encrypted data stream.

1.1.3 Public Key Algorithm Types
The family of public key algorithms can be partitioned by classifying the various public key algo-

rithms based on the hard number theoretic problem upon which they are based and from which

they derive their security. There are a variety of problems available to the public key algorithm

designer, but by far the most common are Integer Factorization (IF), Discrete Logarithms (DL),

and Elliptic Curve Discrete Logarithms (ECDL). An in depth description of these three problems

is deferred until Section 5.1, but a brief description of each is provided in Table 1-2.

Problem Description [84] Primary Operations

Integer Factorization (IF) Given a positive inte er n, find its prime factorization; modular
(e.g., RSA [107] and Rabin- that is, write n = p ..1  p where the p are pair- exponentiation

Williams [134]) wise distinct primes and each ej > 0. (e.g., ab mod n)

Discrete Logarithm (DL) Let G be a finite cyclic group of order n. Let x be a gen- finite field
(e.g., Diffie-Hellman [36], erator of G, and let P e G . The discrete logarithm of exponentiation

ElGamal [41], and DSA [47]) to the base ot, denoted loga#, is the unique integer x, (e.g., integers modulo
0 x s n - 1 , such thatP = ,x a prime, or GF(q))

Elliptic Curve Discrete Let E be the finite cyclic group of order n formed by the elliptic curve point
Logarithm (ECDL) points on an elliptic curve. Let point P generate E, and let addition, doubling,

point Q e E. The elliptic curve discrete logarithm of Q and multiplication
is the unique integer x, 0 5 x n - 1 , such that Q = nP.

Table 1-2: Brief description of number-theoretic problems upon which
popular public key algorithms are based [84]
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1.1.4 Security Estimates for Asymmetric Cryptographic Algorithms
The security of asymmetric algorithms is expressed in terms of the computational complexity of

inverting the hard number-theoretic problem upon which they are based. As a result, security is

expressed in terms of asymptotic running times and big-oh notation (i.e., O(.)), which is a relative,

rather than absolute measure of security. What this means is that given the actual time required to

solve an m-bit instance of a problem which is assumed to have complexity O(f(m)), one can esti-

mate the amount of time required to solve a n-bit instance of the same problem using the relation:

T(n) T(m) - Of(n)) (1-1)
0(f (M))

Note that this is just an estimate, and as such it can be quite inaccurate. However, it is the most

widely accepted means of quantifying the security of asymmetric algorithms.

1.2 Previous Work
The work described by this dissertation spans a wide array of research areas, ranging from hard-

ware-related fields such as low power circuit/system design and reconfigurable computing archi-

tectures, to the algorithms, mathematics, and implementation issues associated with various public

key cryptography schemes. As such there is a great deal of previous work that has been done in

regards to these areas and we attempt to provide a brief overview of each in order to put the work

described within this dissertation into context.

1.2.1 Low Power and Energy Efficient CMOS Design

The limited power budgets and energy reserves of portable, battery-operated computing devices

has made low power and energy efficient digital design methodologies an essential part of CMOS

VLSI design [24]. These methodologies attempt to reduce the power/energy consumption of inte-

grated circuits by minimizing the various components of the total power/energy consumption:

Ptotal = switching + Pstatic + Pleakage + Pshort -circuit (1-2)
= CVDD 2 f + IstaticV DD + IleakageVDD + Ishort -circuit VDD

where cx is the activity factor of the circuit being switched, C is the total switched capacitance, f is

the frequency at which the circuit is switched, and {Istatic, 'leakage, Ishort-circuit} are aggregate terms

corresponding to the sum of each currents' components. In static digital CMOS design styles, such

as those used in this dissertation, the dominant term is the switching component (i.e., Ptotal ~
2

cLCVDD J). Hence, low power and energy efficient design methodologies attempt to minimize this

term through a variety of techniques and optimizations at all levels of the design hierarchy includ-

ing algorithm definition, architecture definition, and circuit design. A good comprehensive over-
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view of the subject is presented in [25].

1.2.2 Energy Efficient Reconfigurable Architectures

In the past research with regards to reconfigurable systems has largely ignored the issue of energy

efficiency, focusing only on the flexibility of the architecture in order to maximize its utility. In

commercial applications power/energy consumption is only a concern in respect to the thermal

effects that it introduces which are beginning to cause system failures. As a result, commercial

vendors have started to address power in a limited fashion through the use of low power (i.e., low

operating voltages of 1.8 or 2.5V) revisions of existing products (e.g., [9] and [136]). However, the

power/energy consumption of these devices is still significantly higher than what is required in the

energy-constrained environments discussed within this dissertation.

Academically, the issue of energy-efficient reconfigurable architectures is being addressed pri-

marily by Rabaey's group at UC Berkeley with their Ultra Low-Power Reconfigurable Computing

project (i.e., Pleiades [102]). Rabaey's group is attempting to develop energy-efficient reconfig-

urable architectures by quantifying the energy consumption within conventional programmable

architectures [75], and then developing both architectural and circuit-based techniques [50] to

minimize the energy consumption. The initial results appear to be quite promising, and they have

extended their work to the development of embedded reconfigurable logic cells in more conven-

tional signal-processing architectures in order to increase the utility of the overall system design

[141]. However, the limited size of their solutions precludes their use from public key cryptogra-

phy algorithms and thus work remains to be done regarding the design and implementation of

energy efficient reconfigurable cryptographic hardware.

1.2.3 Public Key Cryptographic Software

Many existing software implementations of public-cryptography can be found both in the com-

mercial and academic domains. Numerous companies such as RSA Security [111] and Certicom

[23] provide complete software implementations that can be purchased for use in commercial

applications. In addition, both shareware and freeware solutions exist as well such as PGP [142]

and Dai's Crypto++ [32] packages. A comprehensive list of available shareware and freeware

implementations of RSA and Diffie-Hellman based public key cryptography can be found at

ht tp: / /www. homeport .org/ -adam/ crypto /. The site also provides hypertext links to

the various packages for easy downloading.

In the late 70's and early 80's there was considerable work done on developing fast techniques
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and algorithms for implementing common algorithms based on modular exponentiation such RSA

[107] and Diffie-Hellman [36] in software. A very good summary of these methods as they pertain

to implementing RSA, and by extension Diffie-Hellman, is given by Koc in [68]. Several of these

techniques such as Montgomery's method [87], the Karatsuba-Ofman algorithm [63], and

Comba's Method [29] are used to improve the performance of the software implementation

described within this dissertation. In addition, Gordon [51] provides a comprehensive overview of

optimizations for the modular exponentiation operation that dominates the performance of these

cryptosystems.

The recent popularity of Elliptic Curve Cryptography, and its extensive use of Galois Field

theory has led to several recently published works regarding fast software implementations of both

the underlying Galois Field arithmetic and the elliptic curve algorithms (e.g., [12], [15], [34], [35],

[52], [54] and [118]). These operations utilize arithmetic over both GF(2") and GF(p"), where p is

a prime of special form (e.g., Mersenne primes) that allows for very fast modular multiplication to

be performed as demonstrated by the work on Optimal Extension Fields by Bailey and Paar [12].

Arithmetic over GF(2") can be performed using either conventional extension fields of order n

(e.g., [118]), or composite fields of the form GF((2k)l) where k-l = n (e.g., [15], [34], and [54]).

Composite fields provide certain computational advantages to conventional extension fields in that

various table-lookup methods can be utilized to speed up the computation. However, the additional

structure introduced by the composition of fields may ultimately prove to allow for faster attacks in

elliptic curve applications, as was discovered for conventional Diffie-Hellman type applications

[3]. Many of the techniques for RSA and Diffie-Hellman type algorithms have direct analogs in

elliptic curve cryptography (e.g., Karatsuba-Ofman algorithm applied to composite field arith-

metic [52]), and hence much of that work can (and has) be applied here as well.

In all of the above implementations, all quantitative analysis focuses entirely on the speed at

which the arithmetic can be performed. There is no mention of the energy efficiency of these oper-

ations, and how they relate to their hardware counterparts. As such, there is still work that must be

done to characterize this aspect of the implementation in order to determine the suitability of soft-

ware-based solutions in energy-constrained environments.

1.2.4 Public Key Cryptographic Hardware

From a hardware perspective, the RSA public key cryptography algorithm is by far the most

widely studied, due in large part to the algorithm's widespread industrial acceptance. All of the
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reported work for RSA-type modular exponentiations hardware feature similar architectures using

some form of repeated modular square-and-multiply exponentiation algorithm. These architec-

tures feature either a single modular multiplier to perform the required operations serially, or two

modular multipliers to compute the modular squaring and multiply operations concurrently using

two explicit modular multiplication units, or a single pipelined unit with the operations inter-

leaved. The modular multiplication operation is performed using either conventional concurrent

multiply-and-divide type algorithms ([1], [59], [95], [113], [119], [121], and [128]), or Montgom-

ery's method ([40], [57], [77], [94], [110], [131], [138], and [139]). An alternative approach uti-

lizes systolic arrays for modular multiplication/exponentiation ([28], [53], [61], [114], [127], and

[130]), though they are not typically used due to their large area and latency requirements. High

performance is typically achieved by using a redundant internal representation to eliminate time-

consuming carry propagation chains within the multiplier, although one novel implementation

[113] utilizes a very fast binary adder architecture (which is also used within this dissertation) that

enables a non-redundant internal format.

Koc provides a comprehensive, though somewhat dated overview of various hardware tech-

niques and architectures for implementing fast modular exponentiation in hardware in [69]. In

addition, Beth and Gollmann also provide an overview of hardware implementation alternatives

for modular exponentiation functions in [17].

Hardware implementations for Discrete Logarithm based public key cryptography overlap

substantially with those of RSA-based implementations due to the fact that they both may be

implemented using modular exponentiation over integer fields. In DL-based systems the modulus

must be prime, while RSA-based systems utilize a composite modulus. However, in both cases the

modulus is odd and the same hardware can be used. Hence, all of the aforementioned references

apply for DL-based systems as well.

A small number of systems for DL-based systems over GF(p'") have also been reported for p =

2, though for the most part their small field sizes (GF(211 7 ) [140] and GF(2 59 3) [5]) preclude their

use from modern applications where security requirements dictate the use of extensions on the

order of 1000. Mastrovito Ph.D. Thesis [80] provides a very comprehensive overview of efficient

hardware VLSI architectures for performing arithmetic over GF(2") using bit-serial implementa-

tions that are applicable to the large field sizes required by cryptographic applications. Beth and

Gollmann's overview also discusses various implementations of GF(2") arithmetic using very
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area-efficient bitsliced implementations that map well to cryptographic applications. In addition,

Geiselmann and Gollmann [49] describe efficient architectures for implementing GF(24) exponen-

tiation in both Normal and Standard bases for cryptographic applications.

The small field sizes required for implementing elliptic curve cryptography have led to effi-

cient software-based implementations, and as a result there has been little reported work regarding

hardware implementations of elliptic curve cryptography systems. The main work that has been

reported was done by Agnew [6] in which a GF(215 5 ) ALU is used to perform elliptic curve oper-

ations. Their work utilized the existence of an optimal normal basis (ONB) over GF(215 5) in order

to perform multiplication in a very efficient manner using a modified Massey-Omura ONB multi-

plier [91]. The work of Agnew is essentially duplicated in the work of Sutikno in [123] (and [124]

where they duplicate their own work using FPGA's). Paar and Soria-Rodriguez describe an effi-

cient hardware architecture for GF(2n) in [96] that utilizes the composite decomposition of the

field GF(2") = GF((2k)l) to develop what is essentially a linear-feedback shift register over GF(21)

with all component-wise multiplications and additions are performed over GF(2k). The resulting

implementation is general in that the value of 1 can be changed, leading to a limited degree of flex-

ibility.

However, in all previous work the resulting hardware implementations are specific to a single

type of arithmetic/public key algorithm; no previous example of a dedicated hardware-based solu-

tion that is capable of performing conventional, modular integer, GF(2n), and elliptic curve arith-

metic could be found.

1.3 Thesis Overview and Contributions
This dissertation begins with an overview of the required number theory in Chapter 2 which serves

as the foundation upon which much of the subsequent chapters are built. The intention is to pro-

vide enough detail to make the work that follows decipherable, without getting bogged down in

the mathematics. Hence, only material that is directly relevant to the subsequent discussions is

described.

The first contribution of this dissertation is presented in Chapter 3, with the development and

implementation of optimized software-based libraries of different families of public key cryptog-

raphy algorithms. Both the performance and energy-efficiency of the resulting implementations

are quantified and compared. In addition, a modified multiplier architecture is proposed that
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requires only a small modification to the processor's existing integer multiplier which yields an

order of magnitude better performance for GF(2")-based cryptographic algorithms implemented in

software.

The first thesis of this dissertation is presented in Chapter 4:

Energy Scalability: The time-varying data rates and quality requirements that are
inherent in wireless communications can be exploited to significantly reduce the
energy consumption of the system by exploiting energy scalable architectures to
dynamically trade-off the energy being dissipated as a function of the desired level
of quality and throughput.

The chapter begins by introducing the notion of energy scalable computing, motivates its use, and

describes a design example involving the design and implementation of an energy scalable encryp-

tion processor that features a high-efficiency, embedded programmable DC/DC converter. The

chapter concludes with a presentation of experimental results that validate the thesis of energy

scalability, and a comparison to conventional software-based solutions.

Chapter 5 addresses the second thesis of this dissertation:

Domain Specific Reconfigurability: For the application of public key cryptogra-
phy, one can define a domain of required functions and utilize limited reconfig-
urability to develop a domain specific reconfigurable hardware implementation
that combines the algorithm-agility of a software-based solution and the perfor-
mance and energy efficiency of a hardware-based solution, without the high over-
head costs typically associated with generic programmable logic
implementations.

The chapter starts with a discussion of the need for algorithm agility in public key cryptography

and a description of the recent IEEE P 1363 Standard for Public Key Cryptography. The problems

with general purpose programmable logic solutions are then described, and the notion of domain

specific reconfigurability is introduced. The remainder of the chapter describes the design and

implementation of a reconfigurable processor for public key cryptography that provides all of the

required algorithm-agility for implementing the primitives of P1363. The chapter concludes with

the presentation of experimental results and a comparison to both conventional programmable

logic-based solutions, and the software-based solutions developed in Chapter 3. These results vali-

date the thesis of domain specific reconfigurability as it pertains to public key cryptography.

The dissertation concludes in Chapter 6 with a discussion of the results of this work. Future

research activities are also proposed for furthering both the work described within this dissertation,

and the field of hardware implementations of cryptography in constrained environments.
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Chapter 2

A Primer in Number Theory and
Elliptic Curves

The work described in this dissertation describes various aspects of implementing cryptographic

algorithms which requires some form of mathematical overview in order to properly define terms

and concepts that will be used extensively in subsequent chapters. However, it is easy to become

lost in the math, which would render the dissertation unusable. Hence, care has been taken to only

discuss and define those topics that are absolutely necessary, and the reader is referred to any of the

multitude of excellent references on number theory (e.g., [67], [78], [79], and [11]) for additional

material that is considered beyond the scope of this dissertation.

2.1 Groups, Rings, and Fields
The primary mathematical constructs used in public key cryptography are those of a finite group,

ring, and field. Each of these constructs consists of a non-empty set of elements together with one

or more functions which operate on elements of the set to generate other elements of the set. The

most general, and hence least constrained, of these structures is that of an abelian group, which is

formally defined below.

Definition 1: An abelian group, G, is a non-empty set of elements together with a binary operator
- which exhibit the following properties:

1. a e b e G for all a, b e G (i.e., G is closed under the operation-)
2. a e (b * c) = (a * b) e c for all a, b, c e G (i.e., - obeys the associative law)
3. There exists an identity element e e G for all a e G such that a * e = e e a = a
4. For all a e G, there exists an inverse element a e G such that a * a = e
5. a e b = b o a for all a, b E G (i.e., - is commutative)

An example of an abelian group would be that of the integers under the addition operation,
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with the identity element e = 0, and inverse a-] = -a. In cryptography the groups used typically

have a finite number of elements, the number of which is referred to as the order of the group. A

finite group G is said to be cyclic if all elements of the group can be generated by repeated applica-

tions of the group operation "-" to an element a e G which is denoted as a generator of the group

G. The order of an element a of a finite cyclic group G is the smallest positive integer b such that

a * a a...a a,= e (2-1)

b applications of "-"

and is denoted as ord(a) = b. Hence, the order of a generator of G will be the order of the group,

and the order of any element a e G will always divide the group order. Thus ord(G) = c-ord(a) for

some positive integer c.

The finite abelian group serves as the basic structure upon which cryptographic systems can be

constructed. The definition of a group can be enhanced by adding an additional operator and prop-

erties, in which case it becomes a ring:

Definition 2: A ring, R, is a non-empty set of elements together with two binary operators, + and-
(commonly denoted as "addition" and "multiplication" respectively), which exhibit the following
properties:

1. R is an abelian group under the operation +.

2. R is closed under the operation -.
3. - obeys the associative law over R.
4. Forall a,b,cce R, a * (b+c) = a eb+a oc and (b+c) ea = boa+cea (i.e.,dis-

tributivity applies)

The most common, and in some sense most powerful, mathematical structure is that of the

field, which is essentially a ring with additional properties that guarantee the existence of an iden-

tity and inverse element under both addition and multiplication. In a more formal sense, a field

exhibits the following properties:

Definition 3: Afield, F, is a non-empty set of elements together with two binary operators, + and-,
which exhibit the following properties:

1. F is an abelian group under the operation +.
2. The non-zero elements of F form an abelian group under the operation.
3. Distributivity over (+, -) applies.

Given a finite field with q elements, we commonly refer to it as a Galois Field, denoted as

GF(q), which can be shown to be unique and to exist for all q = p'", p prime [79]. Furthermore, it

can also be shown that the set of integers modulo a prime p (i.e., Z,) is a field [79].
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The characteristic of a field GF(q) is defined to be the smallest positive integer k for which

k - a = 0, for all a e GF(q) . In the case of GF(p'), p prime, the characteristic will be p.

2.1.1 Field Polynomials and Extension Fields

Given a field GF(q), it is possible to construct a polynomial over GF(q) of the form:

m

f(x) = fmXm + ... + f x + fo = f x (2-2)
i= 0

where f1 e GF(q). The degree of ftx) is the largest value of i for which fi is non-zero, and the

polynomial is said to be monic if it's degree is maximal (e.g., m in EQ 2-2).

Addition, multiplication, and division of polynomials over GF(q) is performed using conven-

tional polynomial addition (e.g., component-wise), multiplication (e.g., convolution), and division

(e.g., long-division) techniques, with the component addition/multiplication being performed over

GF(q). The resulting set of polynomials will form a polynomial ring denoted F[x]GF(q).

Definition 4: A polynomial f(x) e F[x]GF(q) is said to be irreducible if it is only divisible by
either af(x), or a.1 for some a e GF(q).

Definition 5: A monic irreducible polynomialf(x) of degree m over GF(q) is said to be primitive if

the smallest positive integer k for which ftx) divides xk - I evenly without remainder is q' - 1.

Given a polynomial ring F[x] and an irreducible polynomial f(x) of degree m over GF(q), the

residue class formed by the polynomials modulo-f(x) of F[x] (i.e., F[x]/f(x)) 3 forms an extension

field of GF(q), denoted GF(qm ). The field GF(q') has order qm , and its elements can be interpreted

as the set of polynomials of degree k < m over GF(q). For example, the irreducible polynomial

f(x) = x2 + x + 1 over GF(2) generates the residue class {0, 1, x, x + 1}, which constitutes the

extension field GF(2 2).

2.1.2 Composite Fields

A similar construction to an extension field is a compositefield which is formed by composing an

extension of an extension field (e.g., GF((pk)l)). The first extension of GF(p) to GF(pk) is per-

formed using the irreducible polynomial N(x) of degree k over GF(p), and the second extension

from GF(pk) to GF((pk)l) is performed using the irreducible polynomial M(x) of degree I over

GF(pk).

3. Modular reduction by the irreducible polynomialf(x) is performed using standard polynomial
long-division techniques with all component-wise operations performed over GF(q).
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The benefit of using composite fields is that, while being isomorphic to GF(p") for n = k-0, the

complexity of their associated field operations can differ substantially from that of GF(pn) depend-

ing on the choices of k and / (e.g., [37], [96]). However, the additional structure that is imposed by

the composite nature of the field also allows for accelerated attacks on composite fields for crypto-

graphic systems built upon the Discrete Logarithm assumption [3], rendering them unusable in

these situations. However, the use of composite fields for constructing elliptic curves doesn't seem

to introduce similar problems for the Elliptic Curve Discrete Logarithm problem. However, it's

reasonable to assume that the additional structure of the composite field will likely detract from its

security, rather than enhance it. Hence, the decision was made for the course of this dissertation to

utilize only fields of the form GF(p'), p prime.

2.1.3 Basis Representation

The extension field GF(p') can be interpreted as a vector space of dimension m, which introduces

an additional degree of freedom during implementation in terms of selecting the basis used to rep-

resent elements of the field. The two most common types of bases used in conventional hardware

and software implementations are the standard and normal bases. Other, less commonly used bases

such as the dual [16] and triangular bases [55] have advantages in certain implementations but are

considered outside the scope of this dissertation.

In a standard basis the elements of GF(p') are represented as linear combinations of the basis

set { c, 2,..., n-2, am-1}, where a is a root of the irreducible polynomial used to construct the

field GF(p") from GF(p). Hence, given an element a e GF(p'), it can be expressed as

a = a 0 + a iI + ... + ar 2 +na _ O M-i (2-3)

In a standard basis the basis vectors a are represented by the polynomials xi, and thus any element

of GF(p'm) can be expressed as a polynomial of degree < m. This interpretation of elements of

GF(p'") as polynomials is why the standard basis is also commonly referred to as a polynomial

basis.

A normal basis (NB) is formed by selecting an element P e GF(pm ), such that the m ele-

ments of the set

2 m-2 M-{, @, PP , P .. P.$ PP (2-4)

are linearly independent. The primary advantage of using a normal basis is that exponentiation by
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p is a linear operation requiring only a circular right shift of the coefficients. Hence, operations that

require repeated exponentiations by p, such as exponentiation and inversion, can be implemented

very efficiently. The cost of using a normal basis is that multiplication is much more complex

operation than in a standard basis, though for certain values m an optimal normal basis [89] can be

constructed to minimize the multiplication complexity.

2.2 Elliptic Curves
One of the primary mathematical constructs used in contemporary public key cryptography is the

Elliptic Curve. Elliptic Curve Cryptography (ECC) was initially proposed by both Koblitz [65] and

Miller [85] in 1985, and has recently become very popular due to its apparent security advantages

over more conventional approaches (e.g., RSA [107] and Discrete Logarithm based approaches).

This section attempts to discuss the primary mathematical results in regards to Elliptic Curves that

are used in ECC systems.

Definition 6: Given a field F, an elliptic curve E, is defined to be those points (X,YZ),
{ X, Y, Z} e F satisfying the general projective form of a homogeneous Weisterass Equation:

E: Y2 Z+a 1 XYZ+a 3 YZ2 = X3 +a 2 X2Z +a 4 XZ2+a 6Z3 (2-5)
where {a,, a 2, a3, a4 , a6 } e F. The resulting set of points, plus an additive identity defined as the
point at infinity (0) which has the value (X,YZ) = (0,1,0), together with a point "addition" opera-
tion form an additive group.

2.2.1 Affine vs. Projective Co-ordinates

An alternative representation for the curve E utilizes the change of variables y = (Y/Z), x = (X/Z), in

which case EQ 2-5 becomes:

E: 2 3 + aIxyZ3 + a 3 YZ3 =X 3Z 3 + a2x2 Z 3 + a 4xZ 3 + a 6 Z 3  (2-6)

Removing the common Z3 term yields the affine form of the Weisterass Equation:

E:y 2+aixy+a 3y = X3+a 2x 2+a 4 x+a 6  (

Unlike its projective counterpart, in affine co-ordinates the point at infinity (0) doesn't have a

corresponding co-ordinate value. Instead the point at infinity is commonly mapped to the point

(X,Y) = (0,0), an invalid curve point for a 6 # 0, which simplifies the implementation of point

validity checking and eliminates the need for a special symbol designation.

The decision regarding whether to use projective or affine co-ordinates is based primarily on

implementation aspects regarding the availability of memory for storing temporary values and the

relative performance of the field inversion and multiplication algorithms used to implement the
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group operations of point addition and doubling. In affine co-ordinates, on a curve constructed

over the field GF(2"), point addition and doubling can be implemented in one inversion, two mul-

tiplications, and one squaring over GF(2') using EQ 2-27 and EQ 2-28 respectively. A projective

implementation can perform the same operations using 15 multiplications and five squarings for a

point addition (EQ 2-8), and five multiplications and five squarings for a point doubling (EQ 2-9).

In terms of memory requirements the affine implementation requires two temporary variables for

both point addition and doubling, while a projective implementation requires either nine or four

temporary variables for point addition and doubling respectively.

PI + P2 = (X 3, Y3, Z 3 ) (2-8)

x1 = 2~z
2= 2

= X+

5  2

7 + 3

X8 = .X 2 + X7 Y 2

Z3 = 72

X9 = X6 + Z3

Xy =X a +X x 2+
3= 9X+3 8

2PI = (X3 , Y3 , Z3 ) (2-9)

Z3 = X 1

=(X +a 6Z1)

x =Z 3 +Xi+Y 1 Z1
Z +X2XXy3= 1+ A

The benefit of using projective co-ordinates is that the group operations do not require field

inversions which can be very slow operations if they are not implemented correctly. If Tinvert >

13-Tmult + 4 .Tsquare then projective point addition is faster, and similarly, if Tinvert > 3 -Tmuit +

4-Tsquare then projective point doubling is faster. However, for the implementation of GF(2") arith-

metic described within this dissertation, inversion can be implemented quite efficiently in both

hardware and software so there is no need to incur the high storage and computation overhead of

projective co-ordinates. Hence, only affine co-ordinate representations will be discussed for the
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remainder of this dissertation.

2.2.2 Supersingular vs. Non-supersingular Elliptic Curves

Given a particular elliptic curve E, and its associated parameters {ao, a,, a2, a3 , a4 , a5 , a6 }, two

curve parameters denoted as the discriminant (A) and j-variant (j(E)) can be derived. Depending on

characteristic of the base field over which the curve is defined (i.e., 2 or some prime > 3), the

resulting values of A and j(E) categorize the curve as being either supersingular or non-supersingu-

lar. From a cryptographic standpoint, supersingular curves should be avoided as they allow for a

transformation that maps the ECDL problem upon which the security of ECC is built, to a conven-

tional DL problem (the MOV attack [82]) which is much less secure in terms of the asymptotic

time complexity required to break the system. Hence, the security of the system is compromised.

To ensure that a non-supersingular curve is chosen, one can use the following curve selection/

construction criteria:

- characteristic = 2: given the simplified affine Weisterass Equation y 2 + ax - x3 +
a2x2 + a6 , ensure a I # 0 (typically a, = 1 is chosen to simplify the arithmetic).

- characteristic > 3: given the simplified affine Weisterass Equation of y2 _ X3 + ax + b,
ensure that 4a3 + 27b2 #0.

A discussion of both the discriminant and j-variant, as well as how to compute their values is

deemed beyond the scope of this dissertation, and the reader is referred to any of the excellent ref-

erences on Elliptic Curves such as [18], [66], and [81].

2.2.3 Point Addition and Doubling

Given the general affine form of an elliptic curve (EQ 2-7), one can define the group operation of

adding two points together. Given two distinct points, P1 = (x 1 ,y1 ) and P2 = (x2 ,Y2 ) lying on E, their

sum, assuming xI # x 2 , is defined as that point P3 = P1 + P2 which is the reflection about the x-

axis of the point of intersection of the line containing P1 and P2 , and the curve E (e.g., Figure 2-

1(a)). If the two points have the same x ordinate, then the resulting line containing the points will

be vertical, and have an ill-defined intersection point to the curve. In these cases the line is said to

intersect the curve at the point at infinity. Given a single point, P1 = (x1 ,y1 ), the sum of that point

with itself (i.e., the doubling of the point), can be defined as the point P3 = 2P, which is the reflec-

tion about the x-axis of the point of intersection of the line tangent to E at point P1 , and the curve E

(e.g., Figure 2-1(b)).
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P1
P2 3

P3

P3 -P 1 + P2  P P
P3 =2PI

(a) (b)

Figure 2-1: Graphical interpretation of elliptic curve point (a) addition, (b) doubling.

In both cases, the ordinates of the resulting point can be determined by solving for the inter-

section of the line y = Xx + g and the curve E, and then reflecting this point about the x-axis to find

the final solution. The reflection operation is defined as the negation of a point, so to find the nega-

tive of a given point P, one must find a point -P with the same x-ordinate, but different y-ordinate

that still satisfies the characteristic equation of the curve (EQ 2-7). To solve this problem we

exploit the fact that only the LHS of EQ 2-7 depends on the value y. Hence, it is sufficient to find

two values of y for which the LHS is the same. Consider the value y = -y - ajx - a3 , and substitute

y. into the LHS of EQ 2-7:

LHS = (- y - ax - a3)2+ a Ix(- y - ajx - a3)+ a3(- y - GaI 3) (2-10)
2 2 2 2 2 2 2= y +aIx +a 3 +2aIxy+2a3 y+2aia3x-aIxy-aIx -2aia 3x-a 3 y-a 3
2= y +axy+a

3y

= original LHS

Hence, y- and y yield the same LHS and thus, if P = (x, y) e E then:

-P = (x,-y-aIx-a 3 )E E (2-11)

The desired intersection point can be found by substituting (kx + p) for y in EQ 2-7, yielding a

cubic equation in x:

2 3 2
(Xx+ ) + aIx(x+ )+ a3 (x+ -)-x -a 2x -a4X -a 6 = 0 (2-12)

x3 - ( 2 + al?, - a2)X2 + (a 4 - 2g - a, - ka 3)x + (a 6 - a 3 - p 2 ) = 0

EQ 2-12 can be solved using the fact that two of the three solutions for x are already known; x1 and

x 2 in the case of the addition of two distinct points, or a repeated root at the tangent point x1 in the

case of the doubling of a single point.
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Consider first the case when two distinct points are added together. Given that the points x1 , x2 ,

and x3 all lie at intersection points, the solution to EQ 2-12 can be expressed in factored form:

(x-x 1 )(x-x2)(X-X 3 ) = X3 -(x 1 +x 2 +x3 )x 2 +(xIx2+xIx3 +x 2x 3 )X-x 1x 2X 3  (2-13)

Equating coefficients of the quadratic terms of EQ 2-12 and EQ 2-13 gives the value of x3 directly:

X2 + a,X-a 2 =X +x2+x3 (2-14)

-=> X3 = X2+ aIX-a2 -XI~X2

In the case of a point doubling, the root x, will be repeated and the solution to EQ 2-12 can be

expressed in factored form as

2 3 2 2 2
(x-x 1 ) (x-x 3 ) = x -(2x,+x 3)x2+(x,+2xix3 )x-xX 3  (2-15)

which yields:

x3 = X2 +a 1X-a 2 -2x, (2-16)

Note that EQ 2-16 is identical to EQ 2-14 with the substitution x2 = X1 -

The y-ordinates can then be derived using the result of EQ 2-10, and the fact that along the line

of intersection y = Xx + g:

y3 = -y-ax 3 -a 3  
(2-17)

= -(0x 3 +g)-aIx3 -a 3
= -(X+a,)x3 - a3 -

Given the above expressions for point addition/doubling, the only unknowns remaining are the

slope (X) and intercept (g) values of the intersection line. In the case of two distinct points P1 and

P2 , the values of X and g can be derived from solving the simple system of two equations with two

unknowns to get:

X Y2 -Y (2-18)
x 2 -XI

X2y 1 - x 1y 2  (2-19)
x 2 - X)

If P1 = P2, then X can be determined by implicitly differentiating EQ 2-7 to get:

2y +aIy+ax +a4 = 3x2 +2a 2 x+a 4  (2-20)
dx dx Ax

dv 3x 2 +2a 2 x+a 4 -agy

dx 2y+ax+a 3
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and [t can be determined using the relation R = y - x:

3x 2 + 2a 2 x + a42- x (2-21)
2y + a I x + a3

2 3 2
2y +2axy+a 3y-3x - 2a2x -a 4 x

2y + aix + a3
23 2

2(y +aixy+a3 y)-3x-2a 2X2-a 4 x-a 3 y
2y + a Ix + a3

23 2
but y2+a xy+a 3 y x + a 2X+ a4 x + a6 , so:

3 2 3
2(x + aix + a4 x + a6 ) - 3x - 2a 2 x -a 4x - a3 y

2y+ax+a3 (2-22)

- x3 + a4 x + 2a 6 - a3 y
2y + aix + a3

The above equations can be further simplified by exploiting isomorphisms that exist depend-

ing on the characteristic of the field over which the Elliptic Curve is being implemented.

Curves in fields of characteristic p > 3: If p > 3, an isomorphism exists that enables EQ 2-6 to be

simplified to:

E: y2 = x3 + ax + b (2-23)

which is equivalent to setting a, = a2 = a3 = 0, a4 = a, and a6 = b. These simplifications yield the

following expressions for point addition and doubling:

P I + P2 = (X3 , Y3 ) (2-24)
2

x3 = X -X 1-X 2

y3 = (xI -x 3)-y 1

= (y 2 -y 1 )/(X 2 -X I )

2P1 = (x 3 ,y 3) (2-25)
2

X3 = X _2xI

y3 = (xI-x 3 )X-y

X = (3x +a)/2y1

Curves in fields of characteristic p = 2: In fields of characteristic 2, an isomorphism exists that

simplifies EQ 2-6 to:

2 32
E : y +xy = x +a~x +a 6  (2-26)

which is equivalent to setting a, = 1 and a3 = a4 = 0. These simplifications, combined with the

modulo-2 reduction of coefficients and equivalency of addition and subtraction over GF(2"), yield
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the following expressions for point addition and doubling:

Pi +P2 X3 Y3) (2-27)

x3 = X2+X +x,+X2+ a

3 (X2 +x 3)X+x 3 +y2

= (y1+y 2)/(x1+x 2)

2P = (X3, Y3) (2-28)

x3= X2 X +a

y3 =X (x+ x)X + X3+ yI

X = x1 +y1/x1

2.2.4 Point Order

As discussed in Section 2.1, the cyclic nature of the additive group formed by the points on an

elliptic curve over GF(q) implies that repeated application of the group operation to a point on the

curve will eventually result in the generation of the original point again. Mathematically speaking

this means that for some integer n, and some point P on the elliptic curve E, the following relation

will hold:

(n + l)P = P (2-29)

where the value n is called the order of point P on E, and corresponds to the number of points in

the cyclic subgroup of E of which P is a member. For cryptographic applications, n should be a

large prime at least 130 bits long.

The existence of a subgroup of E with the desired properties can be guaranteed by exploiting

the fact that the order of any subgroup (which is defined by the order of a point that generates the

subgroup) will divide the order of the curve E, denoted #E. #E can be computed using Schoof's

Algorithm [115] and then factored using conventional factoring algorithm (e.g., [76], [99]) to

determine if it has a subgroup with a sufficiently large prime factor. If not, or if the factoring oper-

ation does not complete within a reasonable amount of time, another curve E is chosen at random

and the process is repeated.

Assuming that a subgroup exists with sufficiently large enough prime order, one must still

choose a point P which generates the subgroup. Fortunately, this can be done quite easily by

selecting random points on the curve and testing if they have the correct order by using point mul-

tiplication to verify

nP = 0 (2-30)

55



56 CHAPTER 2 A PRIMER IN NUMBER THEORY AND ELLIPTIC CURVES



Chapter 3

Software Implementations of Public
Key Cryptographic Algorithms

In typical portable wireless systems, cryptographic functions are performed in software due to the

ease of implementation and flexibility that accompanies the use of software. In order to provide a

baseline for evaluating the efficiency of the hardware architectures proposed in this dissertation we

first characterize the energy-efficiency and performance limitations of an equivalent software

implementation. The resulting implementation and analysis also serves as a comparison between

the energy-efficiency of various cryptographic functions, a feature that hasn't been quantitatively

analyzed in the existing literature. In addition, a by-product of this research is the development of

a small architectural enhancement for existing processors that enables over an order of magnitude

improvement in GF(2") arithmetic performance. The analysis described in this chapter is con-

ducted using the StrongARM SA-1 100 microprocessor as the target processor architecture due to

its status as the most energy-efficient commercial processor available at the time the experiment

was conducted.

3.1 Multi-precision Arithmetic
The various public key cryptography schemes (i.e., IF, DL, and ECC) require the use of arithmetic

algorithms that operate on operands that are much larger than the microprocessor's word size (e.g.,

512-bit operands on a 32-bit architecture). Handling these operands, and performing the required

mathematical functions upon them in an efficient manner requires the use of both multi-precision

integer arithmetic and multi-precision GF(2') arithmetic.

In multi-precision integer arithmetic, each n-bit operand is stored on a w-bit processing archi-
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I

I

A = an-lan-2-ajao n-bit binary representation

k(- 1  2 2  2 + + A1)2 + A se- m = Fn/k digitA = m-12 + nF..2 +A,.' + 0 Ibase-2k representation

MSW LSW

A[m-1] A[m-} AH A -Jf ([1l A[O] jm word array

w-biLS wr
w-k unused ak(i+ I)-I ok(i+ I) -2...ak+ Ilalk w-bit word

.44 k-bit digit No

Figure 3-1: Multi-precision mapping of n-bit integers to a w-bit processing
architecture using base-2k representation.

tecture as a m = [n/kl word array, where k w in order to ensure that each word fits within the

w-bit word of the processor. For example, a 512-bit operand can be stored as either thirty-two 16-

bit words, or sixteen 32-bit words on a conventional 32-bit processor. In general, this representa-

tion can be thought of as a base-2k representation with k-bit digits, as illustrated in Figure 3-1.

Once the operands are represented in this form various arithmetic operations such as addition, sub-

traction, multiplication, and division can be performed using the same techniques taught to school

children for performing base-10 arithmetic. Hence, n-bit arithmetic is reduced to k-bit digit arith-

metic which can be performed using the processor's w-bit ALU. The only problem that may arise

is the fact that k x k -bit multiplication generates 2k-bit results which, depending on the proces-

sor's Instruction Set Architecture (ISA) and the programming language that is used, may result in

a truncation of the result to w bits, resulting in corrupted results. If truncation does occur then the

programmer has no option other than to ensure that 2k w so that the product fits within the word

size of the processor. Unfortunately, the dominant operation performed in public key cryptography

using multi-precision integer arithmetic is multiplication/squaring which has an expected running

time that often increases quadratically with the number of digits of the operands. Hence, reducing

the digit size by a factor of two results in a quadrupling of the expected running time, and energy

consumption.

In addition to multi-precision integer arithmetic, the public key algorithms described within

this dissertation also require the use of multi-precision arithmetic over binary Galois Fields of the

form GF(2"), where n is again much larger than word-size of the processor. With the polynomial

basis that is used within this dissertation, the operands can be thought of as binary coefficient poly-
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A E GF(2), A (x) = an - X 1 +a 2 xn 2 + ... +a 0x degree < n+ binary polynomial

[an an - 2, a-- a ] n-bit binary vector

MSW LSW

A[m-l[m-[m-2] A[i] - A[1 A[O] m = [n/wi word array

[a +1)-1, a i + 1) - 21 -- wi+ I awiL w-bit word

Figure 3-2: Multi-precision mapping of n-bit elements of GF(2n) to a w-bit
processing architecture.

nomials of degree < n, which can in turn be represented as m = [n/wi arrays using the mapping

shown in Figure 3-2. The accompanying multi-precision GF(2n) arithmetic is then implemented

using the techniques described within the following sections.

3.2 Assembly Language vs. C-Based Software Implementations
Conventional software implementations utilize high level programming languages such as C or

C++ due to their ease of use. However, when these high level languages are used certain aspects of

the processor's ISA, such as the StrongARM's 64-bit multiply-accumulate functionality, cannot be

accessed. This leads to significantly lower performance (approximately 4x slower), which in turn

corresponds to a significant reduction in energy efficiency. Thus, the decision was made to use

highly optimized assembly code for implementing the operations described in this chapter. Unfor-

tunately, the use of assembly language makes the resulting software implementation largely

incompatible with other architectures. However, the decision to restrict ourselves in this way was

necessary as the energy efficiency of these software implementations will be used as a baseline for

evaluating the efficiency of our proposed hardware solutions in subsequent chapters. For the

resulting comparisons to be meaningful, care must be taken to ensure that this baseline is efficient,

otherwise any gains could simply be the result of inefficiencies in the software.

3.3 Experimental Setup
All arithmetic operations described in the subsequent sections of this chapter are targeted for

implementation on the StrongARM instruction set as described in the ARM Architectural Refer-

ence Manual [60]. All software development is performed and debugged using the ARM Software

Developer's Toolkit v2. 11 [4], which is also used for code compilation with all performance opti-
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Figure 3-3: StrongARM SA-1 100 "Brutus" evaluation platform.

mization flags enabled.

The execution time of the various operations is captured from timing experiments run on an

Intel Brutus EBSA- 1100 Evaluation Platform (Figure 3-3) which features a 206 MHz StrongARM

SA-1 100 processor and its associated peripherals. The SA-1 100 is a low power implementation of

the ARM 7 architecture with embedded instruction and data caches of 16KB and 8KB respec-

tively. The SA- 1100 also features a writeback buffer, and embedded 32 x 32 + 64 bit Multiply-

Accumulator (MAC). With the exception of the MAC instruction, the ISA of the SA- 1100 is a con-

ventional load/store RISC ISA with extensions that allow any instruction's execution to be condi-

tional on the current state of the condition codes of the processor. This conditional execution turns

out to be a very useful feature that eliminates many short jumps and branches that typically occur

in structures such as IF/THEN.

Individual operation timings are computed by performing anywhere from several thousand to

several million iterations of each operation using randomly generated input operands. The number

of iterations is selected to provide at least three digits of significance for an individual operation's

timing. All time measurements are conducted using calls to the built-in real-time clock of the SA-

1100. The resulting execution time is then divided by the number of operations performed to yield

an estimate of the execution time of each operation. For the operations of interest, the execution

times are sufficiently long (e.g., 100's s to 100's ms) that the overhead associated with the timing

loop is negligible.
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The energy consumption of the various software operations is measured using the fact that

energy is the product of the operations' execution time and the power consumption of the proces-

sor during execution. The execution time is measured using the methodology described in the pre-

ceeding paragraph. The processor's power consumption is measured via a small modification to

the EBSA-1 100 that allows the SA-1 100's core power supply to be isolated and driven by a Kei-

thley SourceMeter. The SourceMeter combines the functionality of a power supply and a multime-

ter such that it can be used as the voltage supply that powers the SA- 1100 core, while providing a

readout of the current being drawn. Given the output voltage and current drawn one can compute

the power, which can be multiplied by the execution time to give the operation's energy consump-

tion.

Both the instruction and data caches, as well as the write buffer are enabled to maximize per-

formance while minimizing the number of external memory references. Minimization of the exter-

nal memory references is crucial due to their large latencies and high energy consumptions. Note

that enabling the caches increases the power dissipation of the SA- 1100 by approximately a factor

of 4, but the resulting reduction in execution time is on the order of 30-50x (Table 3-1). Hence, the

energy consumption of the processor actually decreases when the caches are enabled by approxi-

mately an order of magnitude.

Execution Time (ps per operation)

64b 128b 192b 256b 320b 384b 448b 512b

w/o cache 359 536 734 956 1209 1434 1804 2143

w/cache 7.8 14 20 30.6 39.6 49.2 59.2 74

Table 3-1: Execution time for various sizes of modular squaring operations
on StrongARM SA- 1100 with caches enabled and disabled.

3.4 Multi-precision Modular Integer Arithmetic
The operations required for implementing IF-based schemes, as well as DL and ECC-based

schemes over fields of odd prime characteristic are implemented over the multiplicative subgroup

of Z,, Z, *, where n is either the product of two primes, or a prime number itself (in which case it is

common to change the nomenclature to use p instead of n). The basic operations required for these

cryptographic schemes are modular addition, subtraction, multiplication, squaring, inversion, and

exponentiation.

The following subsections describe the development and implementation of the required
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multi-precision modular arithmetic package. Initially the basic non-modular arithmetic is

described, followed by a description of its modular forms. Optimizations are also proposed and

their effects on performance are quantified.

3.4.1 Notation

The notation that is used in this section follows that illustrated in Figure 3-1, and re-stated here for

convenience:

" A,B, C,...: multi-precision n-bit operands

" n: number of bits in the operand

* w: number of bits in the processors word-size (e.g., 32-bits for the StrongARM)

" k: number of bits used to represent each digit, given the StrongARM's access to 64-bit
wide products and accumulations, k can be chosen to be the full 32-bit width of the pro-
cessor (i.e., k = w)

- m: number of words in the array used to store a multi-precision operand (m = [n/k~1)

" A[i]: word i of the array used to store the multi-precision operand A (used in pseudo-
code descriptions of functions)

" A : the ith digit of the base-2k representation of the multi-precision operand A (equiva-
lent to A[i], used in mathematical formulae and illustrations)

" a;: the ith bit of the multi-precision operand A

" (xy): denotes the concatenation of two variables of any type (used in assignments in
which the result overflows a single variable such as the product of two words being
assigned to a double-word result, or the result of an adding two words being assigned to
a word and carry-flag).

3.4.2 Addition/Subtraction

Multi-precision addition and subtraction are performed using the standard pen-and-paper method

which utilizes digit-wise accumulation/subtraction. The resulting implementations are described in

ALG 3-1 and ALG 3-2.

Input: A,B: non-negative operands represented using m word arrays
cin: a single bit representing the carry-in.

Output: P = A + B + cin, an m word array
cout = single bit carry-out

Algorithm: (carry, P[0]) = A[0] + B[0] + cin
for (i = 1; i < m; i = i + 1)

(carry, P[i]) = A[i] + B[i] + carry
endfor
cout = carry

Algorithm 3-1: Multi-precision addition.
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Input: A,B: non-negative operands represented using m word arrays

Output: P = A - B, an m word array
bout = single bit borrow-out

Algorithm: (borrow, P[0]) = A[0] - B[0]

for (i = 1; i < m; i = i + 1)
(borrow, P[i]) = A[i] - B[i] - borrow

endfor
bout = borrow

Algorithm 3-2: Multi-precision subtraction.

Addition and subtraction can be converted to modular form (ALG 3-3 and ALG 3-4) using a

simple multi-precision magnitude comparison operation (ALG 3-5) that is used to determine if a

modulo-correction is required. Note that the carry-out result of addition operations is not directly

expressed; it is assumed to be handled in an appropriate manner either explicitly in the algorithm,

or implicitly via the ISA (e.g., ADDC/SUBC - add/sub with carry in the SA- I100 ISA).

Input: A,B: non-negative operands (< N) represented using m word arrays
N: modulus represented using m word array

Output: P = (A + B + cin) mod N, an m word array

Algorithm: P = ADD (A, B, cin)
if (COMPARE(P,N) >= 0)

P = SUB(P,N)

endif

Algorithm 3-3: Multi-precision modular addition.

Input: A,B: non-negative operands (< N), represented using m word arrays
N: modulus represented using m word array

Output: P = (A - B) mod N, an m word array

Algorithm: if (COMPARE(A,B) >= 0)

P = SUB(A,B)

else
P = ADD(A,N)

P = SUB(P,B)

endif

Algorithm 3-4: Multi-precision modular subtraction.
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cision multiplication/squaring examples.

A,B: non-negative operands represented using m word arrays

P = sign(A - B)e {±1, 01

for (i = m - 1; i >= 0; i = i - 1)
if (A[i] > B[i])

return(1)

elseif (A[i] < B[i])

return(-l)

endif

endfor

return (0)

Algorithm 3-5: Multi-precision magnitude comparison.

3.4.3 Integer Multiplication and Squaring

In its simplest form, multiplication/squaring requires O(m2 ) single-precision multiplications which

can become quite inefficient as the number of words per operand increases to 16 or 32. The basic

multiplication operation is illustrated in Figure 3-4(a) for m = 2, and the general case is described

in ALG 3-6. Essentially, each word of the multiplicand (i.e., B ) is multiplied by each word of the

multiplier (i.e., At), generating a word-pair denoted as (C,S). The resulting double-word product

terms are then aligned appropriately and accumulated to yield the final answer.

Input:

Output:

Algorithm:

A,B: non-negative operands represented using m word arrays

P = A-B, a 2m word product

clear P

for (i = 0; i < m; i = i + 1)
C = 0
for (j = 0; j < m; j= j + 1)

(C, S) = A[i]-B[j] + P[i+j] + C

P[i+j] = S
endfor

endfor

P[2m-1] = C

Algorithm 3-6: Multi-precision integer multiplication.
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Squaring (e.g., Figure 3-4(b)) is a special case of multiplication in that both operands are the

same so all cross-product terms of the form AAj and AjA are equivalent and need only be com-

puted once and then left shifted in order to be doubled. As a result, a m-word squaring operation

can be performed using only (m2 + m)/2 single-precision multiplications, resulting in a theoretical

speedup of almost a factor of two relative to conventional multiplication. ALG 3-7 describes an

optimized squaring operation in which the shifting operations are deferred until all of the cross-

product terms have been computed and summed. By deferring these shift operations, only a single

multi-precision 2m word shift needs to be performed, as opposed to (m2 - m)/2 single word shifts.

In addition, shifting the accumulated cross-products also eliminates the book-keeping associ-

ated with the additional bit in each cross-product that may result when it is shifted and the MSB is

initially set. The squared terms (e.g., Aj 2) are then added in to the shifted accumulation of cross-

products in order to form the final result.

Input: A: non-negative operand represented using m word array

Output: P = A 2 , a 2m word product

Algorithm: clear P array
for (i= 1; i < m; i= i + 1)

C = 0
for (j = 0; j < i; j = j + 1)

(C, S) = A[il-A[j] + P[i+j] + C

P[i+j] = S

endfor

endfor

P[2m-2] = C
LSHIFT (P)

cout = 0

for (i = 0; i < m; i = i + 1)

(C,S) = A[i] -A[i]

(cout,P[2i]) = S + P[2i] + cout

(cout,P[2i+l]) = C + P[2i+l] + cout

endfor

Algorithm 3-7: Multi-precision integer squaring.

3.4.3.1 The Karatsuba-Ofman Algorithm

The Karatsuba-Ofman Algorithm [64] utilizes a recursive divide-and-conquer approach for multi-

plying two multi-precision operands that reduces the number of single-precision multiplications

that must be performed by replacing a multiplication with several additions. Given that addition

can often be performed much faster than multiplication on conventional microprocessors such as

the SA-l 100, where a multiply can take from 2-4 cycles while addition is always a single cycle,
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the net result is an improvement in performance.

Karatsuba's algorithm computes the product A-B given two n-bit operands which we assume

can be partitioned into two n/2-bit halves: A = Ah-2n/2 + A;, B = Bh-2n/2 + B1. The product A-B is

computed using the three product values to = AhBh, t] = A1B;, and t2 = (Ah+A/)(Bh+B), which are

combined as follows:

A -B = to-2"n+ (t2 -to-ti)-.2 n/2+tI (3-1)

= (AhBh) 2n + ((Ah + A,)(Bh + B1 ) - AhBh - A B,)2 n/2 + (AB,)

= (AhB,)2" + (AhBh + AhBj + AjBh + AB, - AhBh - AB,)2n/2 + (AB,)

= (AhBh)2" + (AhBI + AjBh)2n/2 + (AB,)

EQ 3-1 computes a n-bit multiplication using two n/2-bit multiplications, one (n/2 + 1)-bit

multiplication to handle the product-of-sum term, and several multi-precision additions. The

resulting n/2 and (n/2 + 1) bit multiplications can in turn be computed using Karatsuba's algorithm

again, leading to a recursive multiplication algorithm that asymptotically approaches a minimum

number of O(n 1 ) single-precision multiplications. In practice, the number of levels of recursion

that are used will ultimately be dictated by the amount of overhead associated with a particular

implementation of the algorithm, and the relative performance of the multiplication and addition

operations (the slower the multiplier, the more recursion that should be used). In some implemen-

tations the extra bit required for the product-of-sum term may introduce difficulties/inefficiencies

that can be overcome by using an alternative implementation that utilizes the product-of-differ-

ences t2 = (Ah-AI)-(Bh-Bj):

A-B = to-2 n+(to+ti -t 2 )2 "+t (3-2)

= (AhBh)2" + (AIBh + AB, - (All - A1) - (Bh - Bl))2 n12 + (AB,)

= (Ah B h) 2 " + (AhBh + AIBI - AhBh - AIB, + AhBj + ABh)2n/2 + (AB,)

= (ABh)2 n + (AhBI + AjBh)2n/2 + (AB)

Note that care must be taken to deal with the possibility of negative differences in EQ 3-2.

The basic 2-way divide-and-conquer approach used by the Karatsuba-Ofman algorithm can be

extended to m-way partitioning to yield even lower asymptotic complexities [143] on the order of

O(nlog (2m- 1>). However, in practice the overhead of these schemes outweighs any of the perfor-

mance benefits so further partitioning is rarely, if ever, used.
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3.4.3.2 Comba's Method

In [29] Comba proposes a means of accelerating the implementation of multi-precision multiplica-

tion by minimizing the number of external memory references that are required during the course

of execution. In a conventional implementation based on ALG 3-6, each iteration requires three

memory accesses in order to read the values of BU] and P[i+j], and writeback the result to P[i+j].

Comba's method proposes to eliminate the writeback operation by changing the order of partial

product generation/accumulation such that each word of the result is computed in its entirety

sequentially, starting with the least significant word. Hence, only the values A[i] and BU] need to

be read from memory. The difference between Comba's method and the conventional algorithm is

illustrated in Figure 3-5.

Note that the benefits of Comba's method are not altogether apparent when used on modern

microprocessors that feature large data caches that minimize the average cost of memory accesses

to the point where the average latency of accessing memory is quite small (e.g., 1 cycle). In addi-

tion, the accumulation of several partial products in a row can lead to carry overflows in the pro-

cessor that need to be accounted for either through direct hardware support via the use of multi-bit

carry storage, or using software techniques.

Comba also proposes the unrolling of all loops such that the product is computed directly. By

eliminating the looping structures all branch penalties are eliminated as well, which can lead to

significant improvement in performance. However, this leads to significantly larger code size,
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which scales quadratically with operand size, and requires explicit multiplication routines for each

possible size of operands. Hence, a trade-off must be made between code size and performance

requirements to determine whether or not loop unrolling is feasible.

Significant performance benefits can be achieved by combining Comba's Method with the

Karatsuba-Ofman algorithm. The resulting hybrid scheme utilizes the Karatsuba-Ofman algorithm

to decompose large (e.g., 1024-bit) multiplications into much smaller ones (e.g., 256-bit) that are

then performed using Comba's Method with loop unrolling. The resulting implementation is on

average approximately 50% faster than the conventional approach of ALG 3-6 (Table 3-2).

Execution Time (ps per operation)

Method 128b 256b 512b 1024b

Conventional 1.7 5.3 18.9 72.2

Hybrid 0.94 3.1 15 54.6

Table 3-2: Comparison of execution times of conventional and optimized hybrid
Comba/Karatsuba-Ofman multiplication implementations on StrongARM SA- 1100.

3.4.3.3 Fast Fourier Transform (FFT) Based Multiplication

The fastest algorithms for performing multi-precision integer multiplication are attributed to tech-

niques based on the FFT [97]. By interpreting multi-precision integers as polynomials with the

indeterminate x = 2' (i.e., the word-size of the processor), long integer multiplications become

simple convolutions for which the FFT is ideally suited. The net result is a multiplication algo-

rithm with complexity O(n.log n-loglog n). Unfortunately, the high degree of overhead associated

with FFT-based approaches only makes them feasible for operands on the order of several thou-

sand bits long. Hence, they are not commonly used in asymmetric cryptography implementations

such as the work described by this dissertation. Readers are referred to Knuth's excellent discus-

sion on FFT-based multiplication algorithms in [64] for further details.

3.4.4 Integer Division

Division is by far the most difficult multi-precision integer operation to perform efficiently as there

is no inherent support for integer division on most GPP's such as the StrongARM. In some cases a

floating point divider may be exploited to provide very good performance, but no such device

exists on the SA- 1100. Conventional multi-precision division algorithms are equivalent to the pen-

and-paper long division method taught in school in which multiples of the divisor are subtracted

from the dividend repeatedly until its value is reduced to less than that of the divisor, at which

point the division is complete, and the remaining dividend value is the remainder. The quotient is
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div

D3=B7:31A

D= (R, B2)/ A

D,=(R, BI) /A

Do= (R, BO) / A

D3 D- D) D0 quotient

isor |A 3 |A 2 |A|A0  I B7 B6 B5 B4 B3 B, B B0 dividend

P=D 3 -A P4 P3 |P,|P 1 |P0

R=B7:3-P R3 R2 R1 R0 B

P =DrA P4 P3 P2 P1 P

R =(R, B2 ) - P |R3 R2| R1 R0 B| B

P = D-A - |P4 P3 P2 P1 P0

R =(R, BI) - P ----- R3R 2 R1 R B

P DO-A -P 4 P3 P2 P1 P0

R = (R, B 0) - P -- - R 3 R 2 R1 R0 remainder

Figure 3-6: Conventional multi-precision integer division example.

formed by keeping track of the multiplier values used to reduce the dividend with the divisor. This

simple technique is illustrated in Figure 3-6.

The division algorithm that is used within this dissertation features a slight modification of the

conventional pen-and-paper method shown in Figure 3-6 in that each quotient digit, which in this

case is a processor word, is initially an underestimate of the actual quotient digit which must in

turn be corrected. An estimate is used to improve performance as it only requires performing a 2-

word by 1-word division. Underestimating the quotient simplifies the correction procedure as we

know that the estimate can only ever increase, it will never decrease. Underestimating also ensures

that the reduced dividend is always non-negative, thus eliminating the book-keeping associated

with keeping track of its sign.

The performance of the resulting integer division algorithm can be improved through the use

of normalization. Normalization is essentially a left-shifting of the divisor and dividend to ensure

that the most significant word (MSW) of the divisor has its MSB set. Normalization allows more

accurate quotient estimation which reduces the number of corrections that need to be performed,

thus speeding up the division operation. Note that normalization doesn't affect the quotient as both

divisor and dividend are scaled so their ratio will remain unaffected. However, the remainder must

be de-normalized by right-shifting its value by the appropriate amount. The final implementation

of the division algorithm is shown in ALG 3-8.

3.4.5 Modular Reduction and Montgomery's Method

Modular reduction can be performed using either conventional integer division (ALG 3-8), or an

D-A + R
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Input: A: non-negative dividend represented using n word array

B: non-negative divisor represented using m word array (m < n)

Output: Q = A div B, a (n - m) word array

R = A mod B, a m word array

Algorithm: X = # leading zeroes in MSW of B // determine norm. factor

R = LSHIFT(A, X) // normalize A, store in R

B' = LSHIFT(B, X) // normalize B

x = B' [m-1]
for (i= n - m; i >= 0; i= i - 1)

if (x Oxffffffff)

qi = B' [i+m-1

else

qi = floor(R' [i+m-l:i+m-2]/(x+l)) // underestimate quotient

endif
R' = R' - qi-B'-2 // reduce remainder

while (qi incorrect) // correct qi estimate

qi++

R'= R' - B' 2 32i

endwhile
Q[i] = qi // update quotient

endfor
R = RSHIFT(R,X) /undo normalization

Algorithm 3-8: Multi-precision integer division.

ingenious method due to Montgomery [87] that performs reduction modulo-N utilizing simple

shift operations which can be implemented very efficiently on conventional microprocessors.

The basic idea behind Montgomery's method is that, given an odd n-bit modulus N and a 2n-

bit value A that is to be reduced modulo-N, A can be reduced to a n-bit value by right-shifting it n

positions. Simply right shifting A will cause its n LSB to be lost, corrupting the resulting value.

However, multiples of N can be freely added/subtracted from A without changing its value mod-

ulo-N. Hence, by adding an appropriate multiple of N, the n LSB can be zeroed such that the shift

doesn't corrupt the result, which will be A-2-4 mod N. The 2-n factor is called the Montgomery

residual factor and must be removed via post processing (e.g., modular multiplication by 2n),

which introduces an overhead penalty for using Montgomery multiplication/reduction. The impact

of this overhead varies greatly depending on the application. For example, as we'll see in Section

3.4.7, in the case of modular exponentiation the overhead is amortized across hundreds or thou-

sands of modular multiplications, effectively eliminating it altogether from any sort of perfor-

mance analysis. Whereas in the case of a symmetric cipher that utilizes modular squaring

operations the overhead effectively doubles the execution time of the algorithm, making Mont-

gomery's technique infeasible.
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The correct multiple of N (i.e., q) is found utilizing the fact that zeroing the n LSB of A

requires that the following relation be satisfied:

(A + q - N) mod 2n = 0 (3-3)

which will occur when q = (-N-1 mod 2")-A. The inverse of N mod 2n is guaranteed to exist so long

as N is relatively prime to 2 , which is always true given that N is odd for the public key algorithms

used within this dissertation. The resulting algorithm (ALG 3-9) zeroes out one digit of A at a time,

hence the value of q need only be computed modulo-2k, which can be done using ALG 3-10. The

benefit of using ALG 3-10 is that it requires only single-precision operations which enables q to be

computed very efficiently compared to common inversion techniques such as the extended binary

euclidean algorithm which require multi-precision operations. An alternative approach for per-

forming modular reduction using Montgomery's method is discussed in Section 5.5.4.

Input: A: non-negative value that is to be reduced represented as a 2m word array

N: non-negative modulus represented using n-bits in an m word array

Output: P = A-2-" mod N

Algorithm: N' = -N 1 mod 2 k // ALG 3-10
for (i =O; i < m; i = i + 1)

q = P[i]-N' mod 2w
C= 0
for (j = 0; j < m; j = j + 1)

(C,S) = P[i+j] + q-N[j] + C

P[i+j] = S
endfor
P[i+m] = P[i+ml + C

endfor

P = P / 2n

if (COMPARE(P,N) >= 0) // ALG 3-5

P = SUBTRACT(P,N) / ALG 3-2

endif

Algorithm 3-9: Montgomery reduction.

Input: N[0]: least significant word of odd modulus

Output: N' = -N[O]~' mod 2 k

Algorithm: N' = 1
for (i = 2; i <= k; i i + 1)

x = N[0]-N' mod 2

if (x > 2i~1)

N' = N' + 2 -1

endif

endfor

N' = 2k - N'

Algorithm 3-10: Computation of Montgomery modulus multiple N'.
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3.4.6 Modular Multiplication and Squaring

Modular multiplication can be performed using either a multiply-then-divide technique in which

the product is first computed and then reduced, or an interleaved multiply-and-reduce technique in

which partial products are reduced. The reduction operation can in turn be performed using either

conventional division techniques (ALG 3-8), or Montgomery's method (ALG 3-9).

Assuming that memory is plentiful, conventional multiply-then-divide algorithms (e.g., ALG

3-11) tend to be much more efficient in software as they enable the multiplication/squaring opera-

tion to be decoupled from the modular reduction operation. By decoupling these operations the

aforementioned optimization techniques such as Karatsuba's algorithm and the optimized squaring

techniques can be applied to speed up this portion of the operation. Unfortunately, these tech-

niques don't map very well to an interleaved approach, which results in slower execution times.

An improvement over the conventional multiply-then-divide modular multiplication algorithm is

given by Koc. et. at. in [71] (which is an excellent reference for implementing multi-precision

Montgomery multiplication algorithms). Koc's approach utilizes Montgomery reduction to pro-

vide significantly better performance than conventional techniques. The resulting algorithm is

denoted by Koc as the Separated Operand Scanning (SOS) method and is described in ALG 3-12.

The cost of using the SOS method is the additional memory required to hold the 2m word interme-

diate product. In addition, Koc also describes an interleaved multiply-and-divide modular multipli-

cation that Koc denotes as the Coarsely Integrated Operand Scanning (CIOS) method, which is

described in ALG 3-13.

Input: A,B: non-negative operands represented using m word arrays
N: non-negative n-bit modulus represented using m word array

Output: P = A.B mod N

Algorithm: P = MULT(A,B) // e.g., ALG 3-6

P = remainder of DIVIDE(P,N) // ALG 3-8

Algorithm 3-11: Multiply-then-divide modular multiplication.

Input: A,B: non-negative operands represented using m word arrays
N: non-negative n-bit modulus represented using m word array

Output: P = A-B-2-" mod N

Algorithm: P = MULT(A,B) // e.g., ALG 3-6
P = MONTGOMERYREDUCE(P,N) // ALG 3-9

Algorithm 3-12: Separated operand scanning Montgomery multiplication [71].
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Input: A,B: non-negative operands represented using m word arrays

N: non-negative n-bit modulus represented using m word array

Output: P = A-B.2-" mod N

Algorithm: for (i = 0; i < m; i = i + 1)
C = 0
for (j = 0; j < m; j= j + 1)

(C,S) = P[ji + A[j]-B[j] + C

P[j] = S
endfor
(C,S) = P[m] + C
P[m] = S
P[m+1] = C
C= 0

q = P[0]-N' mod 232

for (j = 1; j < m; j = j + 1)

(C,S) = P[j] + q-N[j] + C

P[j-1] = S
endfor
(C,S) = P[m] + C

P[m-1] = S
P(m] = P[m+1] + C

endfor

if (COMPARE(P,N) >= 0) // ALG 3-5

P = SUBTRACT(P,N) / ALG 3-2

endif

Algorithm 3-13: Coarsely integrated operand scanning (CIOS) Montgomery multiplication [71].

The relative performance of these three modular multiplication approaches is shown in Table

3-3. As expected, the Montgomery reduction based techniques are much more efficient, approxi-

mately two times faster than those based on conventional multi-precision division. Table 3-3 also

demonstrates a marginal improvement in performance (-20%) by utilizing the optimized squaring

routine of ALG 3-7 versus conventional multiplication. Note that the results of Table 3-3 don't

contradict the results of [71], where CIOS was found to be the faster than SOS, as their SOS

implementation does not utilize an optimized multiplication operation..

Execution Time (ts per operation)

Operation 512b 640b 768b 896b 1024b

MODMULT 83 111 163 187 280

MONTMULTSOS 34.8 59.4 83.8 112.0 122.8

MONTMULT-CIOS 36.9 63.0 89.6 120.7 155.1

MODSQUARE 74 101 125 165 235

MONTSQUARESOS 33.0 48.0 66.4 88.4 112.6

Table 3-3: Execution times of modular multiplication/squaring algorithms on the
StrongARM SA-1 100.

73



CHAPTER 3 SOFTWARE IMPLEMENTATIONS OF PUBLIC KEY CRYPTOGRAPHIC ALGORITHMS

3.4.7 Modular Exponentiation
Modular exponentiation is the basic cryptographic primitive for both IF and DL-based cryptosys-

tems. As such, there has been a large amount of research devoted to various optimization tech-

niques for improving the performance of modular exponentiation. The simplest of these technique

is known as the binary modular exponentiation method. The binary method computes A E mod N

using the binary expansion of the exponent E = (e,_;, en-2, --- e, eo), and a repeated square-and-

multiply operation to compute the required result using ALG 3-14, which requires on average n/2

modular multiplies and n modular squarings.

Input: A: non-negative operand represented using m word arrays
E: non-negative n-bit exponent represented as (e,-,, e,-2, . e1, eo)

N: non-negative n-bit modulus represented using m word array

Output: P = AE mod N

Algorithm: P = 1
for (i = n - 1; i >= 0; i = i - 1)

P = MODSQUARE(P,N) // P = P
2

if (ei == 1)
P = MOD_MULT(P,A,N) // P = P-A

endif
endfor

Algorithm 3-14: Binary method for modular exponentiation.

The binary method can be improved by scanning the exponent r = log 2m bits at a time and

using pre-computed powers of A to reduce the number of required modular multiplications. The

resulting m-ary method (ALG 3-15) requires (2r - 2) modular multiplications for the pre-comput-

ing the powers of A, (n - r) modular squaring operations, and on average (1 - 2-r)(n/r - 1) modular

multiplications. The reduction in the number of multiplications is due to the fact that no multipli-

cation is required if e; = 0, which occurs with probability 2 -r assuming the exponent bits are uni-

formly distributed with probability 1/2. Depending on the size of the exponent and the amount of

memory that is available for storing pre-computed values, an optimal value of r can be determined

via experimentation (e.g., r0 t = 5 for 1024-bit exponentiation using the implementation developed

for this dissertation).

Other more complex exponentiation techniques such as addition chains ([64], page 465-485)

and both constant and variable-width non-zero sliding windows can also be utilized. However,

they were not utilized in the modular integer arithmetic package described within this dissertation.

For further discussion of these, and other exponentiation techniques, the reader is referred to either
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Input: A: non-negative operand
E: non-negative n-bit exponent represented as a sequence of r-bit digits

(ek-1, ek-2, -. e, eo), where m = 2r

N: non-negative n-bit modulus

Output: P = AE mod N

Algorithm: for (i = 2; i < m; i= i + 1)

pre-compute and store A'

endfor

P = A mod N

for (i k - 2; i >= 0; i = i - 1)

P = MODSQUARE(P,N) // repeat until

// n P2' is

P MODSQUARE(P,N) // computed
if (ei > 0)

P = MODMULT (P, A ,N) / P = P-A

endif

endfor

Algorithm 3-15: m-ary method for modular exponentiation.

Gordon's excellent overview of exponentiation methods [51], or RSA Lab's comprehensive,

though somewhat dated, guide to fast RSA software implementation [68].

Input: A: non-negative operand
E: non-negative n-bit exponent represented as a sequence of r-bit digits

(ek-1, ek-2, - -. e, eo0
N: non-negative n-bit modulus

Output: P = AE mod N

Algorithm: A = MODMULT (A, 2n N) A = A-2 n mod N

for (i = 2; i < m; i = i + 1)
pre-compute and store A'-2n

endfor
P = Aek--1 -2 n mod N

for (i = k - 2; i >= 0; i = i - 1)

P MONTSQUARE(P,N) // repeat until

r// P is

P MONTSQUARE(P,N) // computed

if (ei > 0)

P = MONTMULT(P,A ,N)

endif

endfor // P = AE22n mod N
P = MONTREDUCE(P,N) // P = AE mod N

Algorithm 3-16: m-ary Montgomery exponentiation.

The performance benefits of utilizing Montgomery multiplication and squaring becomes very

apparent when these techniques are applied to modular exponentiation, yielding approximately a

2x performance improvement (Table 3-4). However, when using Montgomery multiplication/

squaring, care must be taken to account for the Montgomery residual factor of 2~" that is intro-
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duced during each operation. The simplest way of dealing with the residual factor is to pre-multi-

ply the values used during exponentiation by 2". The aforementioned binary and m-ary

exponentiation techniques can then be used with all modular multiplication/squaring operations

replaced by their Montgomery equivalents. The result must also be post-processed by performing

Montgomery reduction upon it. The resulting m-ary Montgomery exponentiation algorithm is

given in ALG 3-16.

The performance of both conventional and Montgomery-based modular exponentiation is

given in Table 3-4, with the optimal value of m for each operand size indicated in bold. The

improvement in performance due to the use of the m-ary method is approximately 25%.

Execution Time (ins per operation)

Operation 512b 640b 768b 896b 1024b

MODEXP (m =2) 55.4 96.2 147.0 221.6 300.6

MONTEXP (m =2) 27.0 49.8 84.0 128.8 189.8

MONTEXP (m = 4) 24.3 46.0 74.8 116.7 171.8

MONTEXP (m = 8) 23.1 43.2 70.5 109.3 159.4
MONTEXP (m = 16) 22.1 40.8 67.1 103.8 151.6

MONTEXP (m = 32) 22.3 40.5 66.5 102.7 149.8

Table 3-4: Execution times of modular exponentiation algorithms on the StrongARM SA- 1100.

3.4.7.1 Chinese Remainder Theorem

When the modulus N is the product of two primes, p and q, a significant performance improvement

can be achieved through the use of a technique known as the Chinese Remainder Theorem (CRT).

The CRT enables the computation of modular exponentiation modulo-N to be performed using

two modular exponentiations modulo p and q, which are typically half the size of N (i.e., n/2-bit

operands for n-bit moduli) [101]. Given that the complexity of modular exponentiation is 0(n3),

the half-length operands enable the exponentiation to be performed approximately 4 times faster

(e.g., 2.(n/2)3 = n3/4). Note that the CRT can only be used if the factorization of N is known, which

will only be true in the case of private key operations, though public keys tend to have smaller val-

ues (e.g., 3 or 216 + 1) to offset the fact that the CRT cannot be utilized. In addition, the modular

inversion y = p mod q only needs to be computed once for a given modulus N so it's computa-

tion time can be effectively ignored in any performance analysis.

3.5 Galois Field Arithmetic
Both DL and ECDLP-based schemes can be implemented over the extension fields of the form

GF(p"), where p is a prime and the field order n can vary greatly depending on the scheme being
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Input: A: non-negative operand
E: non-negative n-bit exponent
p,q: prime factors of the n-bit modulus N (assume they are n/2-bit values)

Output: P= AE mod N

Algorithm: y = p 1 mod q // n/2 bit inversion

ep = E mod p // n-bit reduction

eq = E mod q // n-bit reduction

x,= A e mod p // n/2-bit modexp

X2= A e mod q // n/2-bit modexp

X3= (x 2 - X1 ) mod q // n/2-bit modsub

X3= X3 p mod q // n/2-bit modmult

P =X + x3 -p / n/2-bit add & mult

Algorithm 3-17: Modular exponentiation using the Chinese Remainder Theorem.

used (e.g., n - 177 for ECC and n > 1024 for DL-based applications). For digital computers and

hardware, operations over binary fields (i.e., p = 2) can be performed very efficiently, and elements

of GF(2") can be stored very efficiently as binary vectors, so fields of characteristic 2 are com-

monly chosen for software implementations. However, recent results regarding optimal extension

fields [12] have shown that for certain, special form primes (e.g., Mersenne primes), computations

over GF(p") can be performed very efficiently in software, and the reader is referred to [12] for

additional information.

The following subsections describe the development and implementation of the required

multi-precision GF(2n) and arithmetic package. Initially basic polynomial addition/subtraction and

multiplication are described, followed by a description of a very efficient reduction method, and

then the field inversion and exponentiation methods. Throughout the discussion, the timings of the

various operations are presented to quantify their performance.

3.5.1 Notation

The notation that is used in this section follows that illustrated in Figure 3-2, and is re-stated here

for convenience:

- A,B, C,...: multi-precision n-bit element of GF(2")

" f(x): irreducible field polynomial that defines GF(2n)

- n: number of bits in the operand, degree of irreducible field polynomial fix)

" w: number of bits in the processors word-size (e.g., 32-bits for the StrongARM)

- m: number of words in the array used to store a multi-precision operand (m = [n/wi)

- A[iJ: word i of the array used to store the multi-precision operand A (used in pseudo-
code descriptions of functions)
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- A : the ith digit of the multi-precision operand A (equivalent to A[i], used in mathemati-
cal formulae and illustrations)

* a;: the ith bit of the multi-precision operand A (corresponds to the polynomial coeffi-
cient of x' in the polynomial basis representation of A)

- (x,y): denotes the concatenation of two variables of any type (used in assignments in
which the result overflows a single variable such as the product of two words being
assigned to a double-word result).

3.5.2 Field-Specific vs. Composite Fields vs. Generic GF(2") Implementations

The GF(2") arithmetic software package that is described in this chapter actually consists of two

types of routines: generic routines intended for operating on any given field defined by a primitive

trinomial, and field-specific routines designed to operate over GF(2") with n = {135, 145, 155,

167, 177}. The field-specific routines are implemented in order to achieve the maximum possible

efficiency for the given choices of fields. In addition, recent work has proposed the use of compos-

ite fields (e.g., GF((2')k) [34]) in order to significantly speed up EC-based operations as the com-

plexity of the various operations is greatly reduced with appropriate choices of (1,k) that allow the

use of table-lookup techniques in order to perform exponentiation and inversion within GF(21 ) and

GF(2k). A comparison (Table 3-5) of the relative performance of these three methods shows that,

as expected, the field-specific routines appear to be much more efficient. Hence, the field-specific

routines were used as the benchmark for the GF(2") routines.

Execution Time (s per operation)

Package Field gfadd gf-mult gfsquare gfjnvert ec add ecdouble

Generic GF(2 1 ) 0.3 7p 21.5pt 4.5t 526.Op 575.7p 576.5t

Composite [34] GF((214 ) 11 ) 1.45t 29.9t 4.2p 242.0t 314.7p 317.6t

Field Specific GF(2 155 ) 0.37t 15.0p 1.6p 83.0pt 121.4p 123.Op

Table 3-5: Comparison of different standard basis arithmetic routines for GF(2 155 )/GF(2 154

3.5.3 GF(2") Addition/Subtraction

All addition/subtraction operations over GF(20 ) are performed component-wise over the base field

of GF(2). In GF(2), addition and subtraction are equivalent operations that can be computed by bit-

wise XORing of the two operands, as per ALG 3-18.

Input: A,B: non-negative operands represented by an m word array

Output: P = A + B, an n word array

Algorithm: for (i=O; i<n; i=i+1)
P[i] = A[i] OB[i]

endfor

Algorithm 3-18: Multi-precision GF(2') addition/subtraction.
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3.5.4 GF(2") Multiplication

Polynomial basis multiplication over the field GF(2") can be interpreted as standard polynomial

multiplication followed by reduction modulo the irreducible field polynomial fix). Unfortunately,

there is no native GF(2") multiplication instruction on most conventional microprocessors4 , so an

equivalent operation must be created using repeating shifts and XORs to implement a standard bit-

serial multiplication algorithm. The resulting multiplication (ALG 3-19) is very slow, requiring

0(n2) operations to perform an n x n -bit multiplication, making it infeasible for all but the small

fields utilized in ECC.

Input: A,B: non-negative n-bit operands represented using in word arrays

Output: P = A-B, a 2m word product

Algorithm: clear P
for (i = 0; i < n; i = i + 1)

if (bi == 1)
shiftVall = i mod k

shiftVal2 = k - shiftVall

P[0] = P[0] ^ (A[0] << shiftVall)

for (j = 1; j < m; j = j + 1)
P[j] = P[j] ^ (A[j] << shiftVall) ^ (A[j-1] >> shiftVal2)

endfor

P[m] = P[m] ^ (A[m-1] >> shiftVal2)
endif

endfor

Algorithm 3-19: Multi-precision GF(2n) multiplication.

The resulting GF(2") multiplication implementation utilizes this very simple, and slow, multi-

plication technique, but optimizes it specifically for the individual field sizes in order to maximize

its performance. Once the product has been formed it is modularly reduced by exploiting the fact

that, for the field's irreducible polynomial f(x):

n-1 n-i

f(x) = x"+ If, x'+ = 0 - x" = I f -x'+ (3-4)
i=1 i=1

The result of EQ 3-4 can be used to reduce the (2n-1)-bit product via repeated substitution and

accumulation until bits (2n-2) to n are all zero, indicating that the result has been properly reduced.

This technique is demonstrated in Figure 3-7 for GF(210), and described in ALG 3-20 for a general

field GF(2n). The complexity of the reduction operation is proportional to both the number of non-

zero terms in the irreducible field polynomial, and the degree of the most significant non-zero

4. Some recent DSP's such as Texas Instruments C6x processors have included this feature.
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(x) =X10 +3 + I = 0 -- > XI1 =x3 9 8 7 6 5 4 3 2 1 )

011 -o 0 1 1:D 00 1 0 1 1 0 01
(x" + x +x" + x + x'2 +x

7 +A5+x 4 + x+ I) modtf(x)
10 1 1 1 0 1 1 0 0

=(x7+x6 + x5 + xC + x 2).(A + 1)+(x 7 +.x5 + x 4 + X +x10
=(x0 +X9 + xA + + x4 +AC3+x2+x+ 1) 1 1 1 0 0 1 1 1 1 1 1
=(1).(X3 + 1)+(x 9 + x + X5 + x 4 + X3 + _X2 + 1)
=-X + X 8 

+ A5 + X4+ A2 + X

1 1 0 0 1 1 0 1 1 0

Figure 3-7: Example reduction over GF(21 0.

power of f(x) other than x". Hence, it is desirable to utilize either irreducible trinomials or pentano-

mials (which have been shown to exist for all n < 10,000 [120]) for the field polynomialf(x). Given

multiple choices off(x), which will have either the formf(x) = x" + xk + 1 orf(x) = x" + xk2 + xk1

+ xko + 1, those with smallest values of k and k2 are more desirable.

Input: A: (2n-2) bit polynomial of the form A(x) = a2 n-x
2

"" +... + ax + a0
fix): the irreducible polynomial defining GF(2)

Output: A modfix)

Algorithm: for (i =2n - 2; i >= n; i =i - 1)
for (each non-zero term fj in fix))

a *=a e a
endfor

endfor

Algorithm 3-20: Reduction modulo-f(x) over GF(2").

The poor performance of GF(24) multiplication is evident when compared to both conven-

tional integer modular multiplication and Montgomery integer multiplication. Figure 3-8 shows

the ratio of the normalized execution times for GF(2') and integer modular multiplication. Nor-

malization is used in order to eliminate the effect of operand-size on the comparison by dividing

each result by the square of the operand size as the multiplication complexity scales quadratically

with the size of the operands. As demonstrated in Figure 3-8, conventional modular integer arith-

metic is approximately 2 to 5 times more computationally efficient and, as will be seen shortly,

energy efficient than its GF(2") counterpart.

3.5.5 GF(2") Squaring

Unlike its integer counterpart, squaring over the field GF(24) is actually a linear operation as the

doubling of the cross-product terms reduces them to zero over GF(2), removing them from the
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0.8

E GF(2)
0.6

ux -c0.4

-o -Conventional

0.2

z 0 Montgomery

512/133 640/145 768/155 896/167 1024/177

Integer/GF(2") Operand Size (bits)

Figure 3-8: Comparison of GF(2") multiplication to both conventional and
Montgomery modular multiplication.

result and leaving only those terms generated by squaring. The squaring operation is equivalent to

injecting zeros between each element of the original operand, as demonstrated in the example of

Figure 3-9. The resulting linear mapping can be implemented very efficiently using look-up table

(LUT) based approaches. Using LUTs the input operand is broken into 8-bit bytes, which are used

to address into a 256 entry 16-bit LUT whose contents are the squaring expansion of their respec-

tive address (e.g., location OxDF contains 0x4555 -- Figure 3-10). The square of the input operand

is then computed by repeated accesses to the LUT, followed by a reduction using the techniques

A 2 = (a3x
3 + a2x

2 + a1x + 1)2
=Omod2 =Omod2 =Omod2 =Omod2 =Omod2 =0 mod 2

= a32 6 + 2a47x + 2aA1 x4 + 2ac + a2
2x4 + 2 jf + 2 02 + a I2x4 + 2 A + a0

2

= a 3 2X6 + a22x4 + a 12X2 + a0 2
.. A = (1 0 1 1) =:>A2 = (1000 10 1)

jt 4z
injected zeros

Figure 3-9: Example squaring over GF(24 ).

46 1 D 180 1001 . .. IA91 FDJ 62- 341 00 0000
04n-bits 01 0001

02 0004

2n-bits - i FD 5551
1014 0151 4000 0000 . 4441 5551 1404 0510 ' FE 5554

16 FF 5555

Figure 3-10: LUT-based squaring operation w/o
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described in Section 3.5.4. The resulting LUT-based techniques are very fast, yielding approxi-

mately an order of magnitude improvement in performance compared to conventional GF(2") mul-

tiplication over the same field (Table 3-6).

Execution Time (pts per operation)

Operation 135b 145b 155b 167b 177b

GFMULT 12 13 15 18 20

GFSQUARE 1.6 1.6 1.6 1.8 1.8

Ratio 7.5x 8.lx 9.4x lox Il Lx

Table 3-6: Comparison of execution times of standard basis GF(2")
multiplication/squaring routines on StrongARM SA- 1100.

3.5.6 GF(2") Inversion

GF(2") inversion is the most computationally intensive, and hence slowest, GF(24) operation.

Unfortunately, the inversion operation is required in affine co-ordinate Elliptic Curve point addi-

tion/doubling routines, which commonly limits the performance of these operations. The inversion

operation can be eliminated from the critical path of the point addition/doubling routines by utiliz-

ing projective co-ordinates to replace the inversion operation with several multiplications. How-

ever, as discussed in Section 2.2.1, if the inversion can be performed relatively efficiently (e.g.,

Tinvert < 8-Tmuit), the affine implementation will be more efficient than its projective counterpart.

Inversion over GF(2') can be performed using two basic techniques. The first approach

exploits the cyclic nature of GF(24) and Fermat's theorem to compute the inverse a-] of

a e GF(2") using the formula:

a =a 2-, Va e GF(2 ) (3-5)

which can be computed recursively using Itoh's algorithm [58] in n squarings and approximately

log 2 (n - 1) multiplications. In the case of NB mathematics, where squarings are simply rotations,

this leads to a relatively efficient inversion operation. In standard/polynomial basis squaring is not

as efficient, so techniques based on the extended euclidean algorithm tend to be used. The most

efficient of these techniques is due to Schroeppel et. al. [118] (ALG 3-21) which defers the numer-

ous single-bit shifting operations present in the extended euclidean algorithm until the end so that

they can be performed all at once in a much more efficient manner. The output of Schroeppel's

algorithm is the "almost inverse", 2k-A-1, and the degree, k, of the scaling constant that must be

divided out to recover A-1 . The division by 2k is performed using a technique that is similar to

Montgomery's method in that multiples of the modulus, or in this case the irreducible field polyno-
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mial f(x), are added to the result in order to zero out the least significant k bits so that shifting

doesn't destroy information and corrupt the result.

The resulting GF(2") inversion performance on the StrongARM SA- 1100 (Table 3-7) is quite

good, with execution times of approximately 6-Tmult, leading to very efficient elliptic curve point

operations, that don't require the additional overhead and complexity of a projective implementa-

tion.

Execution Time ( ts per operation)

Operation 135b 145b 155b 167b 177b

GFMULT 12 13 15 18 20

GFINVERT 75 85 83 118 123

Ratio 6.3x 6.5x 5.5x 6.6x 6.2x

Table 3-7: Execution times of GF(2") multiplication and inversion routines on
StrongARM SA-1 100.

Input: A: binary vector representing element of GF(2") that is to be inverted
fix): the irreducible polynomial defining GF(2")

Output: B = 2 k -A 1: element of GF(2n) that is the inverse of A
k: degree of scaling constant that must be removed

Algorithm: B = 1
C= 0
F =A

G = fix)
loop: while (F0 = 0) // F0 = LSB of F

F = F/2

C = 2-C

k = k + 1
endwhile

if (F == 1)

return(B,k) // exit routine

endif

if (degree(F) < degree(G))
temp = F; // swap F, G

F G;
G = temp;

temp = B; // swap B, C

B = C;

C = temp;

endif

F =F + G
B =B + C

goto loop:

Algorithm 3-21: Schroeppel's almost inverse algorithm.
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3.5.7 GF(2") Exponentiation

GF(2") exponentiation is the equivalent of modular exponentiation and all of the aforementioned

techniques from Section 3.4.7 can be utilized directly, including Montgomery's techniques [70].

However, due to the lack of a native GF(2 ) x GF(2") multiplication instruction, the poor perfor-

mance of GF(2") multiplication makes exponentiation all but unusable compared to an equivalent

modular exponentiation operation. Hence, GF(2") exponentiation is not included as part of the

GF(2") arithmetic package developed in this dissertation.

3.6 Elliptic Curve Arithmetic
As described in Section 2.2, elliptic curve arithmetic is performed utilizing operations defined over

the field upon which the curve is constructed, which for the purposes of this dissertation is GF(2").

Hence, the elliptic curve operations rely on the various GF(24) operations described in Section 3.5.

The following two subsections describe the implementation of the fundamental elliptic curve

operations of point addition, point doubling, and point multiplication. Additional, auxiliary func-

tions such as point and curve generation are also implemented using the resulting elliptic curve

arithmetic functions and the algorithms provided in IEEE P1363, but not described here. The

reader is referred to [56] for further information regarding these auxiliary functions.

3.6.1 Point Addition and Doubling

The group operation for the points of an elliptic curve is addition. If two distinct points are to be

added then the addition formulae of Section 2.2.3 can be used to perform the required operation,

and if they are not then the corresponding doubling formulae can be used instead. In both cases the

formulae for curves of characteristic 2 (EQ 2-27 and EQ 2-28) should be used as the curves con-

sidered in this dissertation are constructed over GF(2"). The resulting point addition algorithm is

given by ALG 3-22, and its corresponding point doubling counterpart is described in ALG 3-23.

3.6.2 Point Multiplication

The basic cryptographic primitive in Elliptic Curve Cryptography is point multiplication, which is

the additive group analog of a multiplicative group's (e.g., ZN*) modular exponentiation operation.

Thus, elliptic curve point multiplication can be performed using the additive analogs of any of the

exponentiation techniques of Section 3.4.7. In order to convert the exponentiation techniques to

their additive equivalent, one simply replaces the squaring operations with point doublings, and

multiplications with point additions. Applying this transformation to the simple binary method of

ALG 3-14 yields the binary point multiplication method of ALG 3-24, which will require on aver-
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age n/2 point additions, and n point doublings.

Input: P1 = (x1 , yY), P2 = (X2 , Y2): curve points on elliptic curve E that are to be added together

a = curve parameter that defines the elliptic curve E over the base field GF(2)

Output: P3 = P1 + P2 = (X3, Y3)

Algorithm: if (Pi == point at infinity) // check if P, is valid

P3 22
elseif (P2 == point at infinity) // check if P2 is valid

P3 =1
elseif (xi == x 2 ) // check if P1 = P 2

P3 = EC_DOUBLE(PI) // if so, double it

else
ti = GFADD(xj,x 2 ) // t 1 = X1 + X2

t2 = GFADD (y1 , y 2 ) / t2 = y1 + y2
X = GFINV(t2) / = Y1 l + Y2)
X = GFMULT (X, tj) // X = (x 1 + x2 )/(Y1 + Y2)

t2 = GF_SQUARE(k) // t 2  2

t2 = GFADD (t 2 , k) / t 2 = + X
t2 = GFADD(t 2 , t1 ) // t 2  X2 + X + X1 + X2
t2 = GFADD(t 2 ,a) // t 2 =3 2 + X + + X2 + a
tj = GFADD(tI,x2 ) // t= x 3 + X2
ti = GFMULT(X,tj) // tl = X(x 3 + x2 )
tj = GFADD(tj, t 2 ) // ti = X(x 3 + x 2 ) + X3

Y3 = GFADD(t,y 2) / Y3 = X(X 3 + x 2 ) + X3 + y2

X3 = t2 X//x3 = X2 + X + x 1 + x2 + a

endif

Algorithm 3-22: EC point addition operation.

Input: PI = (x1 , yj): curve point on elliptic curve E that is to be doubled
a = curve parameter that defines the elliptic curve E over the base field GF(2")

Output: P3 = 2-P, = (x3, Y3)

Algorithm: if (Pi == point at infinity) // check if P, is valid

P3 = P2
else

= GFINV(xl) // X = 1/x
X = GFMULT(X,y) // = /x
X = GFADD(X,xl) // X = + y/x

t2= GFSQUARE (X) / t 2  2

t2 GF_ADD(t 2 , X) /t2 X2
+X

t2= GFADD (t 2 , a) // t 2  X3 _ X2 +X+a

t= GFADD(t2 1 ) / t =X3 + X
ti= GFMULT(X,tj) // tl = X(x3 + x1 )
t= GFADD(tj, t 2 ) // tl = X(x 3 + x) + X3

Y3= GFADD(tj,yj) // y 3 = X(X 3 + x 1 ) + X3 + y

X3= t 2  
// x3 = X

2 +X+a

endif

Algorithm 3-23: EC point doubling operation.
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A

Input: P1 = (x1 , y1 ): curve point on elliptic curve E that is to be multiplied
B: non-negative n-bit multiplier represented as (b,,-, bn-2, - . b, bo)
a = curve parameter that defines the elliptic curve E over the base field GF(2")

Output: P2 = B-P, = (x2 , Y2)

Igorithm: P2 = point at infinity

for (i = n - 1; i >= 0; i = i - 1)

P2 = ECDOUBLE(P 2 ,a) // P2 = 2-P 2
if (b1 == 1)

P2 = ECADD(P 2 , P 1 , a) // P2 = P 2 + bi-P,
endif

endfor

Algorithm 3-24: Binary method for elliptic curve point multiplication.

A much more efficient approach for performing point multiplication utilizes the fact that the

negative of a curve point can be computed very efficiently for elliptic curves of characteristic 2

using the fact that, for a given point P = (x, y), -P = (x, x E y). The simplicity of negation allows

the multiplier E to be represented using a signed-digit representation, the simplest of which is

b e { ±1, 0}. The use of signed digit representations allows the multiplier B to be encoded using

a non-adjacent form (NAF) which ensures that no two adjacent digits are non-zero (i.e., bib;_1 = 0

for all i). A NAF can be computed very quickly using the technique described in [84], and results

in a very sparse representation of the multiplier, which reduces the average number of point addi-

tions from n/2 to n/3 [10], yielding an II % reduction in the number of curve operations. ALG 3-25

describes the resulting radix-2 signed-digit point multiplication algorithm [73] that is used in this

dissertation.

A

Input: P1 = (x1, yj): curve point on elliptic curve E that is to be multiplied
B: non-negative n-bit multiplier represented as (bn-1, bn-2, - . b, bo)
a = curve parameter that defines the elliptic curve E over the base field GF(2n)

Output: P2 = B-PI = (x2, Y2)

lgorithm: nP, = ECNEGATE (P1 ) // nP, = -P,

H = LSHIFT(B) // H = 2-B

H = ADD(H,B) // H = 3-B

P2 = point at infinity
for (i = n - 1; i >= 0; i = i - 1)

P2 = ECDOUBLE(P2,a) // P2 = 2-P 2
if (hibi == "10")

P2 = ECADD (P2,P1 ,a) // P2 = P2 + P1
elseif (hibi = "01")

P2 = ECADD(P 2 ,nP 1 ,a) // P2 = P2 - P1
endif

endfor

Algorithm 3-25: Radix-2 signed-digit elliptic curve point multiplication.
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3.7 Energy Efficiency of Software-based Asymmetric Cryptography

The performance and energy consumption of the multi-precision modular integer arithmetic pack-

age are summarized in Table 3-8 and Table 3-9 respectively, for a variety of operand sizes. The

corresponding data for the field-specific GF(2") operations, and resulting elliptic curve operations

are summarized in Table 3-10 and Table 3-11.

Execution Time (s per operation)

Operation 512b 640b 768b 896b 1024b

MOD 60p 80p ll5pt 133i 167p

MODMULT 83pL Il I 163p 1874i 280p

MODSQUARE 74p 101pt 125p 165pt 235p

MODEXP 55.4m 96.2m 147.Om 221.6m 300.6m

MONTMULT 34.8g 59.4pt 83.8p 112.0p 132.8p

MONTSQUARE 33.0p 48.0p 66.4p 88.44i 112.6p

MONTEXP (k = 5) 22.3m 40.5m 66.5m 102.7m 149.8m

Table 3-8: Execution times of modular arithmetic routines on SA- 1100.

Energy Consumption (J per operation)

Operation 512b 640b 768b 896b 1024b

MOD 19.4g 26p 37.4p 43.5p 54.9p

MODMULT 27.2p 36.5p 53.9 61.9p 93.1p

MODSQUARE 24.3p 33.3p 41.3p 54.6p 76.9p

MOD_EXP 18.Om 31.4m 48.4m 73.lm 99.8m

MONTMULT 11.9p 20.4p 28.7p 38.4p 42.ljp

MONTSQUARE 11.3p 16.5p 22.8g 30.4p 38.6p

MONTEXP (k = 5) 7.6m 13.9m 22.8m 35.2m 51.5m

Table 3-9: Energy consumption of modular arithmetic routines on SA- 1100.

Execution Time (s per operation)

Operation 135b 145b 155b 167b 177b

GFREDUCE 0.45p 0.51p 0.51p 0.52p 0.56p
GFMULT 12p 13p 15p 18p 20p1

GFSQUARE 1.6p 1.6p 1.6p 1.8p 1.8p
GFINVERT 75p 85p1 83p 118p 1231

ECADD 106.2pt 115.5p 123.0p 154.8p 163.31
ECDOUBLE 106.11p 114.8pt 121.4g 152.0p 164.3p

ECMULT 19.Om 22.Om 25.4m 34.3m 38.8m

Table 3-10: Execution times of standard basis GF(2') routines on SA- 1100.
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Energy Consumption (J per operation)

Operation 135b 145b 155b 167b 177b

GFREDUCT 0.16p 0.18g 0.18t 0.18pi 0.20p
GFMULT 4.23p 4.58p 5.29p 6.35p 7.05p

GFSQUARE 0.55p 0.57p 0.57p 0.63p1 0.64p
GFINVERT 26.44p 29.96i 29.26p 41.601 43.36pt

ECADD 37.44p 40.71 p 43.36p 54.57p 57.56pt
ECDOUBLE 37.40p 40.47t 42.79g 53.58p 57.92pt

ECMULT 6.70m 7.76m 8.95m 12.09m 13.68m

Table 3-11: Energy consumption of standard basis GF(2n) routines on SA-l 100.

The energy inefficiency of asymmetric cryptographic algorithms is evident when one com-

pares the energy efficiencies of Table 3-9 and 3-11 to that of symmetric algorithms. The energy

efficiency of the RC6 encryption algorithm was computed using an optimized assembly language

implementation on the StrongARM-SAI 100 which achieved an encryption/decryption rate of 197/

213 Mb/s for an energy efficiency of 1.8/1.7 nJ/bit. In comparison, asymmetric cryptographic

primitives such as RSA, Diffie-Hellman, and Elliptic Curve techniques with a corresponding level

of security (i.e., 1024-bit modular exponentiation and 177-bit elliptic curve point multiplication)

require either 13.7 mJ/op or 51.5 mJ/op. Hence, the energy required for a single asymmetric oper-

ation is equivalent to the amount of energy it would take to encrypt either 7.6 Mb or 28.6 Mb using

a symmetric algorithm. In the case of portable applications such as web-based transactions where

the amount of data being transferred is typically quite small, and the user is required to perform

fairly frequent asymmetric operations for establishing new secure connections and performing

data/user authentication, it is quite likely that energy consumption of the asymmetric operations

will represent a significant percentage of total energy consumption required for utilizing cryptog-

raphy. In Chapter 5 this energy consumption issue is addressed through the use of flexible hard-

ware that is several orders of magnitude more energy efficient than the software-based solutions

described here.

3.7.1 Comparison of IF, DL, and EC-based Software Energy Efficiencies

The performance and energy efficiency of the IF, DL, and EC-based schemes can be compared

using the fact that modular exponentiation in the IF and DL based schemes is the analog of point

multiplication in the EC-based scheme. The operand sizes differ significantly however because of

the fact that the best known attacks on EC based schemes are exponential-time algorithms, while

those for IF and DL based schemes are subexponential. However, the operand sizes can be equated

by deriving a relation between nEC and nIF/DL (i.e., bit lengths of their respective operands) based
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Figure 3-11: Comparison of EC and IF/DL based software implementations.

on the complexity of attacking their underlying number theoretic problems. In [18] Blake et. al.

utilize this technique to derive the following relation between nEC and nIF/DL.

~EC 1/3 (2/3nEC = 4.91 n1/F/DL(log (n/D log 2)) 23(3-6)

which maps nIF/DL = {512, 640, 768, 896, 10241 to the equivalent EC operand lengths nEC = {135,

145, 155, 167, 177}.

As a result, the operands in EC based schemes can be much smaller than their IF/DL based

counterparts. The resulting difference in performance is not quite so pronounced for smaller levels

of security due to the aforementioned lack of a specific GF(2w) multiply instruction. As the oper-

and sizes increase, the difference becomes much more pronounced, a fact best illustrated in Figure

3-11, where the slope of the energy consumption of IF/DL based software implementations is

steeper than that of its EC based counterpart. This corresponds to a geometric increase in the ratio

of energy consumption between IF/DL and EC based techniques. Hence, for energy-constrained

applications requiring high levels of security, EC based techniques appear to be much better than

their IF/DL counterparts.

3.7.2 Energy Scalable Software

One inherent deficiency of utilizing a software implementation is that given a prescribed operation,

it is impossible to vary the energy consumption in software using conventional microprocessors.

This problem arises because of the fact that conventional microprocessors operate at a fixed power

supply voltage, and in some cases a fixed operating frequency. From a power perspective, the abil-

ity to adjust the clock rate is beneficial in that it provides a linear reduction in the average power

consumption due to its dependence on frequency. However, from an energy perspective the aver-
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Figure 3-12: Minimum supply voltage vs. clock frequency of the StrongARM SA- 1100.

age energy consumption doesn't change because energy is independent of operating frequency as

you operate at half the power but take twice as long so the energy remains constant:

Ehaif- rate = I P (2t) = Pt = E full-rate (3-7)

Thus, a given operation will consume the same amount of energy, regardless of the throughput

of the processor. In practical terms this means that regardless of whether you are encrypting at 106

bps or 10 bps, each of those bits will consume the same amount of energy. In fact, at low rates the

energy consumption will actually increase as power is dissipated even during periods of inactivity

due to leakage currents within the processor. Hence, the simple averaging used in EQ 3-7 will

yield an overly conservative estimate of the energy consumption.

.2

20640180

.S 0.6,

0.9

Figure 3-13: Average energy consumption per cycle of operation of the StrongARM
SA-1 100 as a function of the clock frequency and supply voltage
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On certain modem processors (e.g., Transmeta's Crusoe Processor) it is possible to vary both

the clock frequency and supply voltage. In the case of the StrongARM SA- 1100 that is used

throughout this dissertation it is possible to vary the operating frequency of the processor from 59

- 206 MHz under software control. The SA- 1100 is also designed to operate at a variety of supply

voltages, though the voltage must be generated via an external programmable power converter.

Through experimentation, the relationship between the operating frequency and the minimum sup-

ply voltage of the SA- 1100 processor has been determined (Figure 3-12), and used to characterize

the average energy consumption per instruction (Figure 3-13). Note that this characterization illus-

trates the effects of the non-zero leakage currents of the SA-1 100 as the energy consumption per

instruction actually increases at a fixed supply voltage as the operating frequency is reduced.

The resulting voltage-frequency characteristic can be used with a dynamic voltage scheduler

(e.g., [86]) to dynamically adjust the supply voltage and clock rate of the processor in order to sig-

nificantly reduce the energy consumption of the processor during periods of low activity in which

the required throughput can be maintained at a reduced clock rate.

3.8 Hardware Architectural Considerations for Software Solutions
During the course of developing the multi-precision GF(2") arithmetic package described in Sec-

tion 3.5, it became very apparent that one of the limiting factors in terms of performance for per-

forming GF(2n) arithmetic on conventional GPP's is the lack of a native GF(2') x GF(2w)

multiplication instruction. Without it the software developer must implement multiplication over

GF(2") using repeated shifts and XORs (i.e., GF(2) addition), which is extremely inefficient. For

example, the multiplication of two elements of GF(2') can be implemented as the repeated shift-

and-add of m-word vectors (m = [n/wi w-bit words). Using a simple shift-and-add algorithm,

and assuming that it takes at most (m + 1) cycles to shift the multiplicand, (m + 1) cycles to add in

the shifted value if the appropriate multiplier bit is set5 , and 1 cycle to check the appropriate multi-

plier bit to determine if a new partial product needs to be generated and accumulated, then the mul-

tiplication will require:

# of cycles = cyclesbit-test + cyclesshift + cyclesadd (3-8)
= n - I + nPbit(m + 1) + nPbit(m + 1)
= n(l + 2 Pbi,)+ 2 nmPbit

where Pbit is the probability that a given bit in the multiplier is set (hence nPbit represents the

expected number of shifts and adds that need to be performed). In comparison, if a single-cycle

5. Only the non-zero words of the shifted multiplicand need to be added into the result.
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Figure 3-14: Hardware-enabled performance improvement over conventional approaches.

GF(2w) x GF(2w) instruction exists then the simple O(m2 ) algorithm of ALG 3-6 can be used to

compute the product in 3m 2 cycles, or 3m 2 - 2m cycles if unnecessary additions are eliminated.

Comparing the cycle counts as a function of n, and assuming that the processor word-size is 32

bits, we see that a dedicated GF(2w) multiply instruction can improve performance by one to two

orders of magnitude over a shift-and-add approach (Figure 3-14). The cost of implementing this

additional multiplier on chip can also be quite small depending on the existing integer multiplier

architecture. If either a simple array or wallace-tree based radix-2 multiplier is used then the mod-

ification consists of a single transmission-gate and pull-down inserted into the carry-paths of the

full-adders used to accumulate the partial products. The transmission-gate and pull-down enable

the carry-inputs of the full-adders to be zeroed, which turns each row of the array into an accumu-

lator over GF(2v) as the sum output of each adder will be a, D bi. The overhead is three transis-

tors per cell to implement the transmission gate and pull-down, which is approximately 12% when

an optimized transmission-gate adder and NAND gate are used to implement each adder cell.

If an operand-recoding technique such as the modified Booth-encoding algorithm is used then

the functionality of the Booth encoder must be modified to a small degree to ensure correct opera-

tion. The reason for this modification is that the magnitude ordering that is implicit in a non-redun-

dant binary representation does not exist in a polynomial-basis representation of GF(2"). For

example, in integer representations bit i represents twice the value of bit i-i and thus sequential

bits can be recoded into the integer values {0, ±1, ±2} . In GF(2") bit i and i-I don't have a similar

magnitude relationship so the signed-digit recoding won't work. However, assuming that the

booth-recoder is implemented as described by Weste ([133], pp. 547-554), then the recoding can
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Figure 3-15: Modification to booth-recoding for GF(24) multiplication cell and
decoder using existing booth-recoded integer multiplier.

be modified to be a simple radix-4 operand scan in which either {0,1,2 or 3} times the multipli-

cand is accumulated depending on the value of the appropriate two bits of the multiplier (Figure 3-

15). Note that the same Booth decoder and control signals can be used, and only the Booth recod-

ing and carry-chain need to be modified. The relative overhead in this case is much less than the

standard array as the multiplier cell is more complex so the additional 2 or 3 transistors account for

a much smaller percentage of the cell total.

The cost in terms of performance is measured using the gated carry-out adder schematic of

Figure 3-17. A C2 MOS tri-state buffer is used instead of a transmission gate in order to improve

performance of the cell. In addition, unlike a conventional C2MOS gate where the gating transis-

tors are placed closest to the output, the circuit of Figure 3-17 places them nearest the supply rails

a
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Figure 3-16: Comparison of conventional, and gated carry-out adder cell performance.
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Figure 3-17: Gated carry-out adder cell schematic.

in the interest of performance. The charge sharing issues that typically dictate they be placed near-

est the output are not a concern in this application as the output is tied to ground through Mpulldown

when the gate is disabled. The resulting Hspice simulations show (Figure 3-16) that the overhead

of the carry-gating circuitry is under 10%, making it a viable implementation alternative.

Thus, we can achieve significant improvement in GF(2") arithmetic performance, and subse-

quently elliptic curve arithmetic as well, at a small additional cost (<10%) in terms of both area

and performance with only minor modifications to existing circuitry.

3.9 Summary of Contributions
In this chapter the development of an energy-efficient software implementation of public key cryp-

tographic algorithms was described and characterized in terms of both its performance and energy

consumption. The resulting implementation is approximately 5 times more efficient in terms of

both performance and energy than a conventional C-based implementation. To the best of the

author's knowledge this represents the first time that energy has been reported as a design criteria

in software implementations of public-cryptography. The resulting implementation was then used

to provide the first quantitative comparison of the energy efficiencies of the various public key

cryptography techniques.

The issue of energy-scalability in software was then addressed and the notion of energy-scal-

able software was introduced as a means of reducing the energy consumption during periods of

inactivity on the processor. For the processor used in this dissertation (StrongARM SA-1 100), the

resulting energy vs. performance curve was characterized and presented. This characteristic can be

94



3.9 SUMMARY OF CONTRIBUTIONS 95

used in conjunction with a dynamic voltage scheduler to yield a full energy-scalable software

implementation.

The chapter closed with the description of a relatively simple architectural modification to the

processor's integer multiplier that can increase the performance of GF(2")-based algorithms in

software by approximately an order of magnitude. The modification requires only a small amount

of overhead (<10%) in terms of both performance and area, making it a viable implementation

alternative for future processors.
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Chapter 4

Energy Scalable Encryption
Processor (ESEP)

One of the main contributions of this dissertation is the idea of using energy scalability as a means

to significantly reduce the energy consumption of portable systems. In this chapter, the concept of

energy scalability is first defined, and then the design of an energy scalable encryption processor

(ESEP) is introduced as a demonstration vehicle for the benefits of energy scalability. The ESEP

encrypts data streams by XORing the data with a cryptographically-secure pseudo-random key-

stream sequence that is generated using an algorithm known as the Quadratic Residue Generator.

Various aspects of the ESEPs architecture and implementation are discussed, and the experimental

results of a prototype integrated implementation are presented which verify the benefits of energy

scalability.

4.1 Definition of Energy Scalability
In conventional systems, a processor is designed to operate under worst-case conditions in terms

of the workload6 requirements in order to ensure that it can operate correctly in all foreseen situa-

tions. Typically this worst-case scenario rarely, if ever, arises and as a result the processor ends up

idling for a significant portion of the time. Assuming that the processor has shutdown capabilities,

the power consumption of the processor will scale linearly with the workload, as the processor will

shut itself down during inactive periods. Unfortunately, this work/idle binary mode approach is

less than optimal from an energy savings perspective because the wrong part of the energy equa-

6. The notion of workload incorporates both the quality and throughput requirements into a nor-
malized measure of the processor's capacity (e.g., a workload of 0.5 means the processor must
operate half of the time to support the current computational requirements).
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Figure 4-1: Fixed vs. energy-scalable implementations as a function of normalized workload.

tion (E = CVDD 2) is being minimized. Rather than attacking the quadratic voltage term, the linear

capacitance term is being reduced by varying the number of computations that are performed.

A much better approach is to exploit variations in workload to dynamically adjust the operat-

ing frequency and supply voltage of the processor. A reduction in operating frequency implies an

increase in the allowable delay. This increase in delay can be exploited by utilizing the fact that

delay scales inversely with supply voltage. Thus, the operating voltage of the circuit can be

reduced to the minimum value required to operate at this reduced rate. The reduction in supply

voltage can yield a substantial reduction in average energy consumption compared to a non-scal-

able implementation, as demonstrated in Figure 4-1.

In applications with widely varying data rates and quality requirements (e.g., encrypting com-

pressed video streams with varying security levels), energy scalability can lead to a significant

reduction in power/energy consumption. As an example, consider the case of a low power wireless

camera that utilizes data compression to minimize its bandwidth requirements, and data encryp-

tion to secure the transmitted data stream. A majority of the time the throughput of the compressed

data stream is much lower than the peak capacity due to the high correlation between video

frames. In a conventional software implementation, or fixed supply system, the energy consump-

tion per frame will scale proportionately with the number of bits that are transmitted as each bit

requires a constant amount of energy to encrypt. In an energy-scalable system the supply voltage is

varied to match the current throughput requirements, enabling the supply voltage to be lowered

when fewer bits are transmitted. As a result, the energy expended to encrypt a bit is reduced qua-
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Figure 4-2: Normalized encryption energy consumption per compressed video
frame for two image sequences.

dratically which yields significant energy savings, such as the approximately 4x reduction in aver-

age energy consumption demonstrated in two image sequences of Figure 4-2.

4.2 Quadratic Residue Generator (QRG)
The Energy Scalable Encryption Processor that is used to demonstrate the notion of energy scal-

ability utilizes a symmetric stream cipher known as the Quadratic Residue Generator (QRG). The

QRG is based on Blum, Blum, and Shub's cryptographically-secure pseudo-random bit generator

[19]. The QRG operates by performing repeated modular squarings of an initial seed value x0

xa = x 2 mod N, i = 0, 1, .. (4-1)

where the modulus N is the product of two distinct prime values p and q with the property that

p = q = 3 mod 4. The least significant log2 10g 2 N bits of each result are then extracted and serial-

ized to form a cryptographically secure pseudorandom key-stream sequence [129] that is then

XORed with a serial data stream to form an encrypted data stream. This key stream has the added

property that given the initial seed x0 , a user can access any result of the sequence (e.g., xj) by per-

forming the modular exponentiation

, mod (p - 1) (q - 1)
X= X0o p-)qi (4-2)

This indexing ability enables the QRG to recover from synchronization errors by allowing the

algorithm to be reset to a known state. Hence, if several data bits are lost and the pseudorandom

key stream sequence becomes misaligned with the data stream, the user can wait for the next syn-

chronization marker and use it to reset itself. In addition, bits received after the error and before the

next marker can be saved and then decrypted after the fact by generating the required portion of

99



CHAPTER 4 ENERGY SCALABLE ENCRYPTION PROCESSOR (ESEP)

1010

108

106

10

102

100
256 512 768 1024

Modulus Width (bits)

Figure 4-3: Estimated amount of computation required to factor n-bit moduli.

the key stream using EQ 4-1.

The security of the generator is derived from the difficulty of determining whether or not a

number is a square-root modulo-N (i.e., determining quadratic residuosity). This problem has been

proven to be equivalent to that of factoring the modulus N into its constituent prime factors p and q

[19], which is just the IF problem defined in Section 5.1.2, and restated here for convenience.

Given an n-bit modulus (n = [log 2N]), the amount of computation required to factor N can be

expressed in terms of asymptotic time complexity as

LN[v, C = ec(logN)"(loglogN) v (43)

where c and v are dependent on the factoring algorithm used, and N is the n-bit number that is to be

factored.

Figure 4-3 shows the estimated amount of computation required to factor various sizes of

moduli using the best known algorithm for factoring large integers (i.e., the general number field

sieve [76]).

4.2.1 Modular Multiplication Algorithm

The security guarantees and strong pseudo-randomness properties of the QRG come at the

cost of the complexity of the modular squaring operation required during each iteration. The per-

formance of the QRG depends entirely on the ability to perform modular multiplication operations

quickly and efficiently.

There are two primary ways to perform modular multiplication in hardware: sequentially and
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concurrently. In a sequential approach, an n x n -bit multiplication is first performed, followed by

a 2n x n -bit division, where n is on the order of several hundred bits. Unfortunately, the sequential

approach has numerous inefficiencies, such as the fact that the intermediate result requires a 2n-bit

register (more if a redundant representation is used), and generating the intermediate result

requires a time-consuming 2n-bit carry propagate addition (CPA). As a result, the sequential

approach leads to a slow and inefficient implementation. A much more efficient approach is to per-

form the multiplication and division concurrently by performing a partial modular reduction dur-

ing each step of the multiplication algorithm. Using this approach, the intermediate results require

only a few additional digits (e.g., two additional digits [125]) and the results can be kept in a

redundant form for both operations so there is no need for a time-consuming CPA. This leads to a

much more efficient implementation, a fact that is reflected in the predominant use of concurrent

algorithms for performing high-speed modular multiplication (e.g., [21], [72], [88], and [125],

[126]).

Common performance optimizations used in conventional hardware modular multipliers for

RSA-based encryption schemes are not applicable to the QRG as the high overhead costs associ-

ated with common techniques such as Montgomery multiplication (Section 3.4.6), or the Chinese

Remainder Theorem (Section 3.4.7.1) cannot be amortized efficiently in the QRG as only a single

modular multiplication is being performed.

Given the iterative nature of concurrent modular multiplication algorithms (operand sizes on

the order of 512+ bits preclude the use of array implementations), the multiplier's performance is

dictated by two factors: the number of iterations and the cycle time of each iteration.

The number of iterations required to perform an n-bit modular multiplication is [n/log2r],

where r is the radix of the multiplication algorithm used. Hence, the multiplication can be sped up

by using a higher radix algorithm. However, for radices above four, multiples of the modulus must

be pre-computed and stored. The resulting overhead and additional circuit complexity offsets any

benefits of utilizing the higher radix. Hence, a radix-4 algorithm was chosen to implement the

QRG.

The cycle time of the multiplier can be significantly reduced by the use of a redundant repre-

sentation that eliminates carry propagation chains. However, the cost of using a redundant repre-

sentation is that at some point, the result must be converted into a non-redundant binary
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Figure 4-4: Modular multiplication algorithm block diagram.

representation, which will require a CPA. To maintain high performance, this CPA must be per-

formed in such a way as to remove it from the critical path of the multiplier. In addition, intermedi-

ate results of the algorithm will be in a redundant representation that requires additional storage

elements, and possibly more complex adder structures. Despite these additional costs, the reduc-

tion in critical path proved to be sufficient to reduce the operating voltage of the ESEP such that

the resultant power/energy savings offset these inefficiencies.

The ESEP performs the required modular squaring operation of the QRG using an iterated

radix-4 modular multiplication algorithm based on work by Takagi [125]. The algorithm (Figure

4-4) is essentially a digit-serial multiplication algorithm with an additional partial modular reduc-

tion step being performed each iteration (ALG 4-1).

Input: N: n-bit binary modulus
X: n-digit redundant multiplicand
Y: n-digit redundant multiplier

Output: P: n-digit redundant product (P = XY mod N)

Algorithm: Pn/2+1= 0
for (j = floor(n/2); j > -2; j--)

recode Y<2j+1:2j> into Yj
Rj = 4Pj+1 + X-Yj
estimate Cj using 8 MSD of Rj and N

Pj = Rj - 4N-Ci
endfor
P = P_,/4

Algorithm 4-1: ESEP modular multiplication algorithm
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During each iteration, two digits of the Y operand are first recoded to form a radix-4 digit Y

that is used to select ±2, ±1 or 0 times the X operand, which is then added a shifted version of the

previous result (4.P+,1 ) to generate the intermediate result Rj. The eight most significant digits of

Rj are used to approximate its value and generate a quotient estimate C that is used to modularly

reduce the intermediate result by selectively adding/subtracting multiples (+8, 4 or 0) of the

modulus N to R and forming the new result P . In all, a total of (n/2 + 1) iterations are required to

perform a n-bit modular multiplication.

This algorithm is particularly well suited for use in the QRG as its inputs and outputs utilize

compatible redundant number formats so that each result can be fed directly back into the multi-

plier without requiring a time-consuming transformation. In addition, the algorithm maps well to

an efficient bitsliced implementation that reduces global interconnect by distributing control func-

tions and memory locally within the bit slice. A by-product of using both a redundant representa-

tion and a bit-sliced implementation is that the critical path of the multiplier is independent of the

multiplier's width. Hence, only the number of iterations performed needs to be varied as the multi-

plier width is changed.

4.3 An Energy Scalable Processor Architecture
Figure 4-5 shows the overall system architecture of the ESEP. The processor consists of two main

functional blocks: a variable-security encryption engine and an embedded variable-output DC/DC

converter. The two blocks are coupled together through the use of an external look-up table (LUT)

that is responsible for translating the current throughput and security requirements (i.e., width of

the datapath) into a digital word representing the required operating voltage of the encryption

engine. The LUT is computed apriori during a characterization phase that documents the required

Width - desired VDD attery
Throughput I

Encryption Processor (ESEP)

Width Encryption Engine DC/DC
(QRG) Converter

Keystream VDD VD PWMOUt

Data Stream ± Encrypted . T external
Data Stream LC filter

Figure 4-5: Overall system architecture of the ESEP.
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operating voltage under different operating conditions, and which can be used to compensate for

variations in temperature and process to ensure correct operation.

The DC/DC converter translates the digital output word of the LUT into the required supply

voltage with very high efficiency (e.g., >90%). This translation is accomplished using a fixed-fre-

quency, pulse width modulation (PWM) based approach in which the duty cycle of the signal out-

put by the converter, and filtered by the external LC filter, is dynamically controlled. The LC filter

then extracts the DC value of the PWM signal in order to generate the required output voltage

level.

Energy scalable computing requires the development of architectures that can be dynamically

reconfigured to allow the energy consumption per input sample to be varied with respect to the

quality. For the QRG, quality refers to the cipher's security, which is equivalent to the amount of

time required to factor the n-bit modulus

Security - O(e n"og(n/Iog 2eW (4-4)

Hence, security is a subexponential function of modulus width. The energy consumption of

the QRG varies with the number of iterations that must be performed, the width of the multiplier,

and the operating supply voltage. Assuming the supply voltage is optimized for the multiplier

width n, and using a simple first-order delay model where delays scale inversely with supply volt-

age, the energy scales according to the relationship

r4
Energy ~ O n ] ~ 0(n ) (4-5)

Llog 2n_

which is a polynomial function of the modulus width.

Providing this energy/security scalability requires the development of a scalable architecture

(Figure 4-6) that can dynamically reconfigure the width of the QRG to vary from 64 to 512 bits in

64-bit increments. The scalable nature of the architecture can be exploited in future implementa-

tions to extend the processor to larger widths with a minimal amount of effort, making it particu-

larly well suited to increasing security demands.

At the heart of this architecture is the variable width datapath which is partitioned into eight

64-bit blocks, each of which can be shut down when it is inactive to minimize the processor's
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Figure 4-6: Top-level architecture of the encryption engine (QRG).

switched capacitance. By partitioning the datapath in this manner, the energy/power consumption

of the processor can also be allowed to scale with the modulus width, and hence the security

requirements. This form of clock gating is a commonly used technique in low power design. Note

that without clock gating there would still be a reduction in energy consumption due to the reduced

activity of the datapath when it is operating at less than its full width. However, all bits of all regis-

ters would be clocked each cycle leading to a significant amount of unnecessary switched capaci-

tance. Hence, clock gating enables us to eliminate this source of wasted power.

All operands within the datapath are left-aligned on the MSD when the multiplier is operating

at less than its full width. This is a requirement of the algorithm as it handles the MSD in a special

way that requires a modified bitslice in the most significant position.

4.3.1 Global Sequencer

The overall operation of the processor is governed by the control functions contained within the

Global Sequencer (GS) block. The sequencer consists of two FSMs, multFSM and initFSM, that

are responsible for generating all of the control and enable signals within the processor. The size of

the operands that are processed, as well as the width of the datapath, is controlled using the

LENGTH<2:0> input to select any of the pre-determined widths (64, 128, 192, 256, 320, 384, 448,

and 512 bits) via the simple formula

operand size = 64 - (LENGTH<2:0> + 1). (4-6)

The length is latched at the start of each multiplication or initialization phase, so it need not be

held constant once either operation has begun.

C - C ~ ~ I

CZ C Z M ct C t C
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The multFSM generates all control and timing information required for both the modular

squaring and output conversion operations. The initFSM is responsible for loading all operands via

the serial interface of the ESEP. The serial interface consists of two parallel streams: a bit-serial

stream for the modulus N, and a digit-serial (i.e., two bit wide) stream for initial seed values x0 .

Due to the encoding scheme utilized for the QRG's redundant digit set, the digit-serial interface

can be operated as a bit-serial interface by tying the MSB low and inputting a bit-serial stream cor-

responding to a binary seed value. The digit-serial interface was kept in the interest of testing as it

allows any redundant representation to be loaded and tested.

Synchronization between the two FSMs is maintained via a semaphore that only allows one of

the two controllers to be active at any given time, with preference given to the multFSM in the

event of simultaneity.

Clock gating is used extensively within the processor in order to minimize the switched capac-

itance of the QRG. The shutdown controller utilizes the length value latched at the beginning of

the init/mult operation to form a thermometer coded enable signal that disables those portions of

the datapath that are not being used. The shutdown controller also controls the intra-multiplication

shutdown of the Y operand shift register, a technique that is fully described in Section 4.4.3.

4.3.2 Output Selector and Converter

The processor utilizes a redundant number format in order to eliminate carry-propagation chains

within the processor, which in turn enables the processor to operate at much lower power supply

voltage for a given operating point. Unfortunately, the external data stream requires a non-redun-

dant binary representation for XORing with the external data stream. Typically this would require

a time-consuming CPA to convert the internal redundant representation into the required external

non-redundant binary representation. However, since only the least significant log2lo 2 N bits (i.e.,

log2 n bits) of each result are required, only these bits should be converted in the interest of effi-

ciency.

The use of a redundant representation introduces some problems when trying to perform this

conversion as conventional redundant representations (e.g., carry-save) bound the value being rep-

resented by [0, 2N). If the result falls within [N, 2N), a subtraction of N is required to bring its

value into the required output range of [0, N). Determining when this condition exists requires a

magnitude comparison of the redundant result and the value N. Unfortunately, magnitude compar-

ison within a conventional carry-save redundant representation is a difficult operation, requiring
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one to essentially eliminate all redundancy through the use of a CPA. Obviously this isn't very effi-

cient as it will still require all n bits to be converted.

By careful selection of the multiplication algorithm and redundant representation, this ineffi-

ciency can be avoided. In Takagi's algorithm [125], an extra multiplication iteration enables the

result to be bounded by (N12, -N/2). Hence, the correction operation that is required in this case is

equivalent to determining if the result is positive or negative. If the result is positive, no correction

is required. Otherwise, the value N needs to be added to the result.

Determining if the result is positive or negative can be computed very efficiently by choosing

the proper redundant representation. By selecting the digit set to be {+1, 0, -11, the sign of an

operand represented in this digit set can be determined by the sign of the MSD. To facilitate this

computation, the binary encoding shown in Table 4-1 is used, which enables fast negation of oper-

ands using simple inversion and fast sign detection using the MSB. It should be noted that zero is a

special case that needs to be checked for, as 11 isn't a valid binary representation.

Digit Binary Value

-1 10

0 00

+1 01

Table 4-1: Binary encoding for ESEP redundant representation.

This encoding allows the sign to be computed using the log2n depth tree-based comparator cir-

cuit shown in Figure 4-7. Each node of the tree takes two redundant digits with an implied order-

P Operand Register (n bits)

MultDone

log2 n lev

I I I II I tI I I

0 0

000

00 0

els

input latch

<1>A<I: > Y<1:0>
<0>
<0>

B<0: >-0<

MSB of output is sign

Figure 4-7: Tree-based comparator circuit for determining sign of result in QRG.
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Width +
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Figure 4-8: Output converter circuit.

ing that input A is more significant than input B. The node then outputs either the value of A, if it

is non-zero, or the value of B, if A is zero. When connected in a tree-like structure the comparator

effectively propagates the sign of the most significant non-zero digit to the output. This sign can

then be used to select between outputting LSB(P) or LSB(P + N), where these values are in non-

redundant format. The non-redundant representations of LSB(P) and LSB(P + N) are computed in

parallel to the determination of the sign using the circuit shown in Figure 4-8, where the redundant

to binary converter is simply an 8-bit carry-select adder. This approach requires only those bits

actually used in the output keystream be computed, eliminating a great deal of unnecessary com-

putation (e.g., 9 vs. 512 bits). The sign detector tree is gated using input latches to isolate the tree

from the often changing P value, until it's sign needs to be determined, therefore eliminating any

unnecessary switched capacitance.

4.3.3 High Efficiency Embedded Power Supply

The DC/DC converter was designed and implemented by Abram Dancy. The converter operates in

a closed-loop voltage-regulated configuration (Figure 4-5), with the converter and QRG coupled

through an external LUT that translates the time-varying security and throughput requirements

into a digital word representing the required supply voltage. The top level architecture of the con-

verter is shown in Figure 4-9.

Scale

Vref 
Limit PWM Vout

Vout+Ts Gen.

7 y 10 -.--.. -.-.

D uty External
Deste Cycle LC Filter

Figure 4-9: Top level ESEP DC/DC converter architecture.
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The current output voltage (V,0 ,) is sensed using a 7-bit analog-to-digital converter (ADC),

and the resulting digital word is compared to the value programmed to reflect the desired supply

voltage. The comparison generates an error term that is then scaled in an array multiplier stage and

subtracted from the previous iteration's duty-cycle command to produce the next duty-cycle com-

mand. The internal representation of the duty cycle is 12 bits, of which the ten most significant bits

(MSB's) are passed to the pulse-width modulation (PWM) signal generation stage to create the

output. The compensation network forms a variable-gain integral controller. The sample rate of

this controller is fully programmable but ultimately limited by the conversion rate of the ADC,

which was designed to be 100 Ksamples/s. The output stage of the converter is that of a down con-

verter with synchronous rectification. Wide lateral NMOS and PMOS devices are used for the

power switches.

4.4 Energy Reduction Techniques
Given the application constraints, several energy reduction techniques are used to make the design

more efficient. This section describes these techniques and their benefits.

4.4.1 Concurrency Driven Voltage Scaling

Minimizing the supply voltage reduces the energy consumption quadratically [24]. Unfortunately,

propagation delays increase as supply voltages are reduced, leading to a degradation in overall per-

formance. However, by reducing the critical path of the QRG, the supply voltage can be lowered

while still maintaining the initial clock rate, and hence performance.

One way to reduce the critical path of the QRG is to exploit any parallelism in the algorithm to

overlap portions of the computation through the use of pipelining. In the modular multiplication

algorithm used, the recoding of the next iteration's radix-4 Y digit (Y 1 ) can be overlapped with the

current iteration by pipelining the Y recoding circuitry as shown in Figure 4-10.

Y compj Y comp Y

Terit comp

Y. Ter Pi

LTc'i§JTcFJ
Figure 4-10: Pipelining the Y operand recoder unit to reduce the critical path.
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Sign Generator

Figure 4-11: Optimizing and parallelizing the quotient estimation unit to reduce critical path.

The critical path can also be reduced by accelerating the determination of the quotient estimate

C. A naive approach to computing C requires three time-consuming carry-propagate additions. A

much more time-efficient approach takes advantage of the fact that only the signs of these interme-

diate results are required. Hence, a fast carry-lookahead based sign generator circuit can be used to

generate these sign bits in parallel (Figure 4-11). The sign bits are then decoded using a single

level of logic to form the quotient estimate, C.

Using these techniques, the critical path of the QRG was reduced by 27%, allowing the supply

voltage to be reduced from 2.9 to 2.5V, for a total energy reduction of 23%.

4.4.2 Self-timed Gating

A major source of unnecessary switched capacitance in a large datapath such as bit-sliced adders

and multipliers, is due to spurious transitions caused by glitch propagation. In a design such as the

ESEP, which is dominated almost entirely by a very wide datapath, spurious transitions can lead to

substantial wasted energy consumption (e.g., 20% of the total energy). Hence, it is imperative that

they be minimized.

One approach that has already been utilized in the ESEP for minimizing spurious transitions is

the elimination of carry-propagation chains through the use of redundant representations (a nice

beneficial side-effect!). Another deliberate approach is the use of self-timed techniques such as

those commonly used in memory designs for control signal generation, or multipliers for power

reduction [112]. A self-timed gating approach is used to partition each algorithm iteration into

three distinct computational phases (Figure 4-12). Tri-state buffers are inserted between each of

these phases to prevent glitches from propagating further in the datapath. The buffers are enabled,

and the computation allowed to proceed only when the inputs are ensured to be stable and valid.

This is determined by the use of a self-timed enable signal which is generated by passing the sys-

tem clock through a delay chain that models the critical path of the processor. The delay chain is
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Figure 4-12: Block diagram of the self-timed gating of the datapath.

then tapped at the points corresponding to the locations of the buffers, and the resulting signals are

distributed throughout the chip.

This technique succeeds in reducing the switched capacitance of the multiplier by approxi-

mately 20%, even including the overhead of the delay chain, gating signal distribution and buffers.

4.4.3 Clock Gating and Shutdown

Clock gating is used extensively within the ESEP to disable unused portions of the circuitry in

order to minimize the switched capacitance. The enabling/disabling of unused data paths occurs

during the multiplier setup phase as the width of the QRG is varied. In addition, the power control

block also disables portions of the circuitry as the multiplication is being performed. This intra-

multiplication power control occurs in the parallelization and systematic shutdown of the Y oper-

and shift register that is distributed throughout the data path and used in the recoding of the Y oper-

and.
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Figure 4-13: Switch capacitance reduction of the Y operand shift register.
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First, the shift register is parallelized four ways in order to reduce its clock rate from 2fruit to

fmu/ 2 , which reduces the switched capacitance, and thus the energy by a factor of four [13]. The

shift register is then partitioned into m segments. When the least significant digit of the Y operand

shifts out of a segment, the segment no longer contains useful information and may be disabled by

gating the clock to each of the segment's registers. Hence, the shift register is systematically shut

down as the multiplication progresses (Figure 4-13). Ideally, each segment should contain only a

single digit so that the minimum number of registers are clocked on any given cycle. However, the

overhead of the enable signal generation and distribution grows quadratically with the number of

signals, offsetting the benefits of having a large number of segments.

The optimal partitioning can be determined via a first-order analysis of the number of bits that

are registered and clocked during a given n-bit multiplication by using m-way segmentation. Given

the parameters m and n, the number of bits that will be clocked on any given cycle can be

expressed as:

mn-i

# of bits = 2 1 (n - n n =m2 _ n M (47)
m) 2m) 2 m

i = 0

where the factor of two accounts for the fact that each redundant digit requires 2 bits of storage.

Simulations have determined that the optimum number of segments is 32, which approximately

halves the average switched capacitance of the Y shift register (Figure 4-14).

1.0

0.9

0.8

m 0.7

Z 0.6

0.5
20 21 22 23 24 25 26 27 28

Number of Segments

Figure 4-14: Normalized switched capacitance of the Y operand shift register as a
function of the amount of register segmentation.

The net effect of these two techniques reduces the switched capacitance of the Y operand shift

register by a factor of 8 (2x from segmentation, 4x from clock frequency reduction).
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Figure 4-15: Die photograph of the ESEP.

4.5 Implementation

The ESEP was implemented using a standard 0.6gm double-poly double-metal CMOS pro-

cess. The design style is a predominantly static, edge-triggered CMOS, with some dynamic logic

styles used for structures such as the DC/DC converter's dynamic comparator. Table 4-2 outlines

some of the relevant implementation details. An annotated die photograph of the ESEP is shown in

Figure 4-15. The annotations correspond to various circuit structures and functional blocks that are

described within this section.
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bitslice architecture.

Die Dimensions

QRG Device Count

DC/DC Converter Dimensions

DC/DC Converter Device Count

PMOS Device Threshold

NMOS Device Threshold

6.2 x 7 mm 2

260,000

1.2 x 3.3

8,000

Vtp = -0.88V

VtN 0.75V

Table 4-2: Process details for the ESEP.

4.5.1 Processing Bitslice

The QRG implementation depends almost entirely on the implementation of the individual multi-

plier bitslices due to the number of bitslices used (512), and the proportion of die area that they

consume. As a result, the design and implementation of the bitslice was the overriding constraint

within the QRG section of the processor.

Each bitslice consists of four basic logic blocks (X Selector, Adder #1, Adder #2, and N Selec-

Si
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Figure 4-17: Layout of ESEP processing element.

tor), and seven register bits (2-bit redundant X/Y/P operands and the binary modulus N). The

bitslice architecture is shown in Figure 4-16 and includes the pass-gate buffers used by the self-

timed glitch reduction technique described in Section 4.4.2.

The physical layout of the bitslice is shown in Figure 4-17. Each bitslice is approximately

300 x 115 gm2 , with the layout designed such that all horizontal connections are made via abut-

ment. The density of the bitslice layout was ultimately limited by the small number of metal layers

available for routing (as well as the author's paranoia regarding power distribution), as can be seen

by the large areas containing only wiring within the bitslice.

4.5.1.1 X Selector

The X Selector is responsible for outputting the correct multiple of the X operand (±2, ±1, 0), as

selected by the radix-4 Y digit (Figure 4-18).
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Figure 4-18: X selector implementation.

4.5.1.2 Redundant Adder #1

The first redundant adder is responsible for adding the X Selector's output value (XY) to a shifted

version of the previous partial product value (Pj+1 ). The shifting of Pj+j has the same effect as

multiplication by 4. The adder formulates its output by performing a two-phase accumulation in

which the values Rtj and Ruj+1 are first computed, and then the value Ri is computed by adding Rt;

and Rug together (Figure 4-19).

4.5.1.3 N Selector

The N Selector utilizes the quotient estimate, Cj, to select a multiple of the modulus N that is sub-

tracted from the value Rj within the second redundant adder in order to perform the partial modular

reduction. In comparison, the N Selector is decidedly less complex than the X Selector as the mod-

ulus N is in a non-redundant binary representation, so its output is a simple multiplex/invert opera-

tion (Figure 4-20).
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Figure 4-19: Redundant Adder #1 implementation.

X-Yj
-Xi- (-2X)

-Xi (-X)
0

Xi (+X)

Xi. I (+2X)

yj

110 (-2)
101 (-I)
000
001 (+1)
010 (+2)

.- Rui_ I

116



4.5 IMPLEMENTATION

ci

0

31
CI _~~ + +

N Selector

- N-3

C

C Nj

Figure 4-20: N Selector implementation.

4.5.1.4 Redundant Adder #2

The second redundant adder is responsible for subtracting the multiple of the modulus selected by

the Ci from the intermediate value Rj. The subtraction is performed in a similar manner to the first

addition, using a two phase accumulation in which values Pt; and Puj+j are first computed, and

then the value Pi is computed using Pt and Pu; (Figure 4-21).

4.5.2 Output Selector and Converter

As explained in Section 4.3.2, the output selector is responsible for converting the least significant

log2n bits of the result from a redundant number format, to a non-redundant binary format. This

conversion requires the least significant 9 digits of the result (P operand). Due to the scalable

nature of the datapath, and the fact that operands are aligned on the MSD, there are 8 possible

locations in which the required LSD may be found, depending on the current value of the length

input, using the expression:
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Figure 4-21: Redundant Adder #2 implementation.
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Figure 4-22: Distributed vertical
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mnultiplexor used in the output selector/converter.

required output digits of P = P<64-(length + 1) + 8, 64.(length + 1)> (4-8)

The required LSD are selected and transported to the output converter via a vertically-routed

multiplexor that requires only a single vertical route for each bit (18 in all for the 9 LSD). The

reduction in signal wiring is accomplished at the expense of an additional 2-to-I multiplexor delay

due to the modified format of the multiplexor (Figure 4-22). Since this operation isn't in the criti-

cal path of the multiplier, the extra delay is acceptable. Another benefit of this approach is that the

vertical routing is significantly more efficient in terms of wiring capacitance than a conventional

approach where the signals are routed horizontally to the middle channel of the QRG and then

multiplexed vertically.

The output conversion is enabled after the last iteration of the current multiplication being per-

formed by the QRG. The corresponding enable signal is used to enable the tri-state buffers that

serve to isolate the sign detector and P operand multiplexor from the datapath. When enabled, the

conversion operates in parallel to the next multiplication, though the fast tree-based sign detection

and simple output converter circuit mean that the output is valid within a single cycle. The timing

of the conversion is shown in Figure 4-23.

4.5.3 Quotient Estimate Unit
The quotient estimate unit is responsible for using the 8 MSD of the intermediate value Rj to esti-
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Figure 4-23: Operation and timing of the output conversion circuit.

mate the multiple of the modulus N required to modularly reduce the intermediate value during

each iteration of the multiplication described in ALG 4-1.

To ensure efficient computation, an approximation must be made to avoid having to perform a

full division operation. This approximation introduces errors to the computation, but Takagi [125]

has shown that by utilizing the 8 MSD of Rj, and an additional iteration of the multiplication algo-

rithm, the error can be controlled to the point where the final result requires at most one extra addi-

tion to correct any error that it might have.

The quotient estimation, Cj, is formed using the functional mapping:

-2, top(R) <- top(6N)

-1,- top(6N) top(Rj) <- top(2N)

C1 = 0, - top(2N) top(Rj)< top(2 N)

1, top(2N) top(Rj)<top(6N)

2, top(6N ) top(R1 )

where top(Rj) is the non-redundant representation of the 8 MSD of R., top(2N) is the 5 MSB of 2N,

and top(6N) is the 7 MSB of 6N. The top(6N) term is formed using a bit-serial adder during the

loading of the N operand, thereby hiding the computation in its entirety.

The quotient estimator first computes top(Rj) using an 8-bit carry-select adder partitioned into

two 4-bit computations for a total delay of 5 gate delays. The carry-out of the adder forms the first

(SO) of three sign bits used to determine C. top(Rj) is then compared to both top(2N) and -top(2N)

by adding the values together using a pseudo-adder that utilizes fast carry-lookahead techniques to

compute only the sign of the result. A multiplexor is then used to select the appropriate result, as

determined by the sign output of the adder that computes top(Rj). If the sign is positive then the
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Sign Bits (S2SISo) Interpretation Ci

000 top(R4) top(6N) 010(2)

001 -top(2N) top(Rj) < 0 000(0)

010 Not possible N/A

011 -top(2N) > top(Rj) -top(6N) 101 (-1)

100 top(2N) top(Rj)<top(6N) 001 (1)

101 Not possible N/A

110 0 top(R1 ) < top(2N) 000(0)

111top(Rj) < -top(6N) 110 (-2)

Table 4-3: Quotient estimate decoding.

comparison to -top(2N) is used, otherwise the comparison to top(2N) is selected to become S1. The

same operation is performed concurrently to compare top(Rj) to +/- top(6N) and determine S2 -

Table 4-3 shows the decoding of the resulting sign bits (S2 :0 ) that is used to determine the quotient

estimate C.
I.

4.5.4 Y Recoder

The Y Recoder is responsible for recoding two digits from the radix-2 Y operand into the radix-4

Yj digit used by the X Selector circuitry of the datapath. The recoding is done in two stages: first

the intermediate values Yu and Yt are computed using the three most significant bits of the Y oper-

and shift register (i.e., bits Y<2j+1,2j,2j-J>). These values are combined to form Y using a simple

addition. As described in Section 4.4.1, the operation is pipelined to allow Y to be computed in

parallel to the multiplier iteration Y 1 . The resulting implementation of the Y Recoder is shown in

Figure 4-24.

Yti -1 0 1

-1 -1 0/-i 0
0 0 0

> 1 0 1/0 1

Yt

y2j 
eodYui+I -1 0 1 Recoded

Y.
- -1 1 -2/2 -1 YUx3

i 0 -1 0 1
>- 1 1 -2/2 -1

"x/y"= y if (Y2 I < 0), x otherwise

Figure 4-24: Y Recoder implementation.
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4.5.5 Controller Logic
The controller logic consists of the global sequencer and I/O interface control circuitry, the shut-

down controller, as well as any additional control logic used by the QRG (e.g., tapped delay line

and drivers used for the self-timed gating of the datapath). The logic is very straightforward and

consists entirely of random combinational logic, and edge-triggered flip flops.

4.5.6 Variable Output DC/DC Converter

The converter utilizes a very power and area efficient hybrid delay-line/counter-based to generate

the required PWM signal for the output power switches. In the past, PWM signal generation has

been performed in an all digital manner using either fast-clocked counters [132] or a pure delay-

line based approach [33].

Fast clocked counters partition the switching interval into 2' sub-intervals using a m-bit down

counter and zero detector (Figure 4-25). At the beginning of each switching interval, the output

flip-flop is set and the counter is loaded with the duty-cycle command word. The counter counts

down to zero, at which point the flip-flop is reset. Unfortunately, the counter clock frequency is 2 '

times the switching frequency, which implies high power dissipation (on the order of several milli-

watts [132]) and thus low efficiencies under low output power conditions.

A pure delay-line based approach (Figure 4-26) partitions the switching interval into 2 m sub-

intervals using a tapped-delay line containing 2'" variable delay elements (e.g., current-starved

inverters). The total delay of the line is made equal to the switching interval of the supply through

the use of a delay-locked loop (DLL) so that the output of the kth delay element occurs k/2mth of

the way through the switching interval. The delay-matching network is used to offset the propaga-

tion delay of the multiplexor. The disadvantage of this approach is that it requires a 2'"-to- 1 multi-

plexor in order to gate the required delay-line tap to the reset input of the output flip-flop, which

can require a substantial amount of area as m increases.

Oswitch [ Load Data

Duty Cycle Data Out R Q PWM Output
R

cnt down

ucnt = 2"-prswitch

Figure 4-25: Fast-clocked counter based approach for PWM signal generation.
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0 tdelay =": mux

*switch Q - PWM Output

Duty 24-to-I Multiplexor

Cycle1

Figure 4-26: Pure delay line based approach for PWM signal generation.

The approach used in the ESEP's converter is a hybrid of the delay-line and counter-based

models. The PWM signal generator (Figure 4-27) consists of a 32 stage delay line configured as a

ring oscillator that is phase locked to a reference clock (Oref). A programmable divider allows the

ring oscillator frequency to be set two to 32 times faster than the reference frequency. The taps of

the delay line then divide the input clock period into 64 to 1024 equal increments using a 32-to-I

multiplexor. The PWM output is generated by setting the output flip-flop on the rising edge of (ref

and then resetting the flip-flop when the ring oscillator pulse arrives at the kth tap of the delay line

selected by the multiplexor for the nth time, where k and n are specified using the five LSB's and

the five MSB's of the duty-cycle command word, respectively.

The delay line contains 32 variable delay elements, each consisting of a current-starved buffer,

divided into four eight-buffer segments (Figure 4-28). Postcharge logic [100] is used to match

leading-edge and falling-edge propagation times and allows a ring oscillator to be created with an

even number of stages. The delay of the delay line is controlled by adjusting the gate signals on

starvation-type NMOS devices, which controls the speed of the positive going edge at the output

of each buffer. The control-node voltage is controlled through a phase-locked loop (PLL) using a

charge pump. The biasing for the charge pump is generated on-chip with a low voltage modified

100 nA MOS Widlar current source that uses MOS devices biased in subthreshold. The compensa-

Length4:0

Dref PLL pref PLLctrl 32-stage Delay Line cnt A=B? OD
(p11 Control Ring Oscillator P

P I~1nref ---

32-to-1 Mux Duty4:0

Reset
PWM

Figure 4-27: Hybrid counter and delay line based approach for PWM signal generation.
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Rest

In H I Out

PLLctrl-H

Tap,, Tapig Tap27

Reset et Reset Reset Ie t

TaP31 In ! In In In .. In

Tap0  Tap1 :6  Tap7  Tap 8:15 Tap16

Figure 4-28: The ESEP's PWM signal generator delay line.

tion network of the PLL is also implemented on-chip using poly-poly capacitors and a poly resis-

tor.

The hybrid approach provides considerable advantages over both of the aforementioned tech-

niques. By using a delay line, the circuit can be clocked at a much lower rate than in the fast-

clocked counter approach, resulting in a 32x reduction in power. This enables significantly higher

efficiencies at low load power levels. The use of the counter enables the size of the delay line to be

reduced so that the width requirements of the selection multiplexor can be reduced by a factor of

eight relative to the pure delay-line implementation (assuming 256 taps). This yields a 9x reduc-

tion in area relative to the pure delay line based approach.

The ADC is a 100 Ksample/s, 7 bit, charge-redistribution converter. The advantage of a charge

redistribution converter for low-power applications is that it can be implemented without amplifi-

ers, which would typically cause significant static power to be dissipated. A dynamic comparator

is utilized to compare the capacitor array voltage to an external analog reference at each stage of

the conversion. The dynamic comparator dissipates power only during evaluations and requires no

external biasing networks.

An annotated die photograph of the DC/DC Converter is shown in Figure 4-29. The converter

measures approximately 3 x 1.8 mm 2 . The size is somewhat misleading, as portions of its circuitry

are dedicated to test structures used to characterize this prototype implementation, and could be

eliminated in future implementations.
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4Q I

Figure 4-29: Die photograph of the DC/DC converter circuitry.

4.6 Verification
The processor was verified at several stages of the design hierarchy. The initial architectural imple-

mentation was verified using a bit-true simulator written in the C Programming Language, and

whose veracity was determined using the publicly available RSAref multi-precision arithmetic

library available from RSA Labs.

The bit-true simulator was used to generate test vectors for a switch level verification of the

processor using both behavioural and structural Verilog derived from schematic level descriptions.

A more detailed schematic-level simulation was then performed using Synopsys' Timemill and

Powermill simulators, which provide a very accurate, piecewise linear SPICE-like simulation. The

simulation was repeated for netlists annotated with parasitic capacitances extracted from the actual

physical layout of the processor.

The fabricated parts were tested using the ESEP test board shown in Figure 4-30. Functional-

ity was verified using the Tektronix DAS 9200 for both digital stimuli generation, and data acqui-

sition. A Tektronix TDS 744A digital oscilloscope was used for all analog measurements (e.g.,

power supply transient response). A Keithley Sourcemeter is used to generate the required power

supplies, thereby enabling the current drawn, and hence the power consumption of, each supply to

be accurately measured. In addition, the Sourcemeter is also used as a variable load (i.e., current

sink) for characterizing the efficiency of the embedded variable output DC/DC converter.
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Figure 4-30: ESEP test board.

4.7 Experimental Results
The ESEP's operation is verified for each possible configuration (i.e., datapath size) at a variety of

operating frequencies. For each operating point, the required supply voltage was determined

experimentally using an external power supply (Figure 4-31). Once the characterization is com-

plete, the resulting map of voltage vs. operating point is use&to program the external LUT.

4.7.1 Energy Scalability

At the ESEP's maximum operating speed offkeystream = 1 Mbps (fmult = 29 MHz) and width of 512

bits, the QRG circuit operates at a supply voltage of 2.5V, and dissipates 134 mW (140 mW total if

the power consumption of the DC/DC converter is included). This implies a peak energy consump-

tion of 134 nJ/bit at a I Mbps keystream rate.

Energy scalability as a function of the security provided can be seen in Figure 4-32, which

shows the effects of both shutting down unused data paths (fixed supply), and varying the supply

voltage to compensate for variations in computation as the width of the QRG is varied form 512

down to 64 bits at a fixed throughput of I Mbps. The somewhat unusual shape arises because the
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Figure 4-31: Required QRG supply voltage as a function of throughput and security.

operating frequency of the QRG is a non-linear function of the QRG width:

n/2 + 4
fmult ~ 102n4 fkeystream (4-9)

Figure 4-32 (a) also demonstrates the benefits of using a variable supply voltage relative to a fixed

supply; the energy reduction due to the variable supply varies between Ix at a width of 512 bits to

3.8x at a width of 64 bits. The resulting relationship between security and energy consumption is

shown in Figure 4-32 (b), where the energy consumption varies by a factor of 30 as the security is

varied across its range of possible of values.

Figure 4-33, demonstrates the energy savings that can be achieved as a function of the required

throughput when the dynamically adjustable embedded power supply is used. Note that the energy

150 150
512b

125 448b

100 100

75 
384b

fixed
50 supply 50 320b

variable 256b

25 supply 192b
64b 128b

064 128 192 256 320 384 448 512 10-10 10-5 100 105

QRG Width (bits) Security (MIPS-years)

(a) (b)

Figure 4-32: Energy consumption of the ESEP as a function of QRG width and security.
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Throughput 01 384
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Figure 4-33: Energy savings of the ESEP as a function of throughput.

consumption reaches its minimum value when the supply voltage reaches its minimum value of

IV. Below this value the circuit delays grow exponentially with a reduction in voltage as the MOS-

FETs are operating in the subthreshold regime, so further energy reduction isn't possible. At this

point, the energy consumption remains constant as both the switched capacitance and supply volt-

age remain the same.

As Figure 4-33 shows, when variations in throughput are taken into account, the energy sav-

ings due to energy scalability can increase to a factor of approximately 7x.

4.7.2 Power Supply Efficiency and Settling Time

The system performance of the embedded DC/DC converter is shown in Figure 4-34. The figure

illustrates how the converter reacts to changing quality requirements, as indicated by the bottom

two traces which correspond to the required width of the QRG multiplier. As can be seen, the con-

verter is capable of switching between output levels very quickly with a 90% settling time of only

I00gs.

The embedded DC/DC converter efficiency is measured using a Keithley Sourcemeter pro-

grammed to sink the same amount of current as the ESEP operating at the required supply voltage.

These voltages and currents are determined during the characterization of the ESEP described in

Section 4.7. This method provides a solution that accurately simulates the operating conditions of

the processor, while providing much more accurate control of the load power.

The resulting efficiency curve is shown in Figure 4-35. The efficiency of the power supply is
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Figure 4-34: Dynamic performance of embedded DC/DC converter.

approximately 96% at the peak power load of 134 mW, and efficiencies of over 80% are main-

tained for loads down to 10 mW. Figure 4-35 also provides a comparison of efficiencies between

the converter described here, and the one used by Kuroda et. al. [74]. The proposed converter

achieves significantly higher efficiencies across all power levels of interest for this application

(e.g., 95% vs. -80% @ 100mW, 80% vs. -40% @ 10mW).
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Kuroda et. al.
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Figure 4-35: Embedded DC/DC converter efficiency.
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The sharp drop-off in efficiency at light loads isn't due to any inefficiency in the converter

architecture that was chosen. Instead, the drop is caused by the losses that arise in switching the

output power FETs. These devices are optimized to deliver power loads on the order of a 100 mW,

where high output currents require extremely low switch resistance in order to minimize 12R

losses. Since the devices are very large (WPFET = 44 mm, WNFET = 16 mm), a large gate capaci-

tance in both the switches and the buffer chain required to drive them. At light loads, the overhead

associated with driving the power FETs begins to dominate the losses and thus the efficiency

decreases. In a separate stand-alone implementation of the DC/DC converter, two sets of output

power switches were implemented; one for loads on the order of a 100 IW, the other for loads on

the order of several milliwatts. Using this implementation, efficiencies of 90% have been measured

at loads on the order of hundreds of microwatts.

4.7.3 Hardware vs. Software Efficiency

In conventional implementations, an algorithm such as the QRG would be implemented in soft-

ware running on a low-power embedded processor. Unfortunately, as discussed in Section 3.7.2, a

conventional software solution running on a fixed-supply processor is not energy scalable, nor par-

ticularly energy efficient. Hence, one would expect the ESEP to be much more energy efficient

than a software-based solution. To determine the veracity of this claim, a software-based imple-

mentation of the QRG was created using both generic C, and hand-optimized assembly language

(ASM).

The energy consumption of the software-based solution was quantified using the technique

described in Section 3.3, and the resulting energy consumption is shown in Figure 4-37. Compared

2000

.9 1500

1000

Ci

500
ASM

0
64 128 192 256 320 384 448 512

QRG Width (bits)

Figure 4-36: Ratio of energy efficiencies of hardware vs. software-based QRG implementations.
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Figure 4-37: Energy consumption of software-based QRG implementation.

to the hardware-based ESEP, the software implementation is two to three orders of magnitude

more energy inefficient (Figure 4-36). Note that this comparison is performed under conditions

that benefit the software-based solutions, with the throughput set to the peak rate possible via soft-

ware (25 Kbps and 125 Kbps for the C and ASM implementations respectively). Were the compar-

ison made at a lower throughput, the ESEP could reduce its supply voltage, and hence its energy

consumption. Since the software based solution is tied to a fixed supply voltage, it's energy would

not decrease. In fact, the energy consumption will actually increase when the rate is reduced suffi-

ciently low as the StrongARM SA-1 100 has significant leakage currents which lead to non-zero

power consumption during idle periods that must be accounted for in the total energy consumption

of a given operation.

4.8 Summary of Contributions
This chapter saw the introduction of the notion of energy scalable computing in which the time-

varying quality and throughput requirements of the data stream are exploited by an architecture in

order to minimize the average energy consumption of the system. Energy scalable computing is

most useful where data rates and quality requirements vary greatly. In terms of cryptographic

applications this occurs in the data encryption function which ties symmetric key ciphers to the

data stream.

An energy scalable architecture for providing data encryption was described and implemented

in the form of the Energy Scalable Encryption Processor (ESEP). The ESEP features the ability to

dynamically adjust both the level of security that is being provided, and the supply voltage at
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which the processor is operating through the use of a partitioned datapath and embedded program-

mable high efficiency variable-output DC/DC converter.

The ESEP validates the thesis of Energy Scalability by demonstrating that energy consump-

tion can be reduced by a factor of 7 as a function of throughput, and 30 as a function of security. A

comparison of the ESEP to both a conventional and optimized software-based solution demon-

strates over two orders of magnitude improvement in energy efficiency for the energy scalable

implementation.

The embedded DC/DC converter used within the ESEP demonstrates the benefits of utilizing a

hybrid delay-line and PLL-based fixed-frequency PWM architecture for doing low load power

conversion. The converter achieves efficiencies over 90% at loads on the order of 10's of mW, and

is capable of achieving similar efficiencies at loads on the order of 10's of p.W as well. Compared

to other published power converters, our implementation is significantly more efficient under all

operating conditions.
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Chapter 5

Domain Specific Reconfigurable
Cryptographic Processor (DSRCP)

In the past, several standards for implementing various asymmetric cryptographic techniques have

been proposed such as the ISO, ANSI (X9.*), and PKCS standards. The variety of standards7 has

resulted in a multitude of incompatible systems that are based upon different underlying mathe-

matical problems. For example, the IEEE P1363 Standard for Public Key Cryptography described

in Section 5.1 recognizes three distinct families of problems upon which to implement asymmetric

techniques: integer factorization (IF), discrete logarithms (DL), and elliptic curves (EC). Each

family has its advantages and disadvantages: IF and DL have been around for many years, allow-

ing them to be thoroughly scrutinized for flaws, whereas EC appears to be much more resilient to

cryptanalytic attacks but is still relatively new so users should be less willing to trust it.

As a result of these choices, system developers have had to either utilize software-based tech-

niques in order to achieve the algorithm agility required to maintain compatibility, or use special

purpose hardware and restrict themselves to only providing secure communications with compati-

ble systems. As shown in Section 3.3, software-based approaches for public key cryptography lead

to very computationally intensive implementations that are very energy inefficient, consuming as

much energy as it would take to encrypt/decrypt 10's of Mbit using symmetric key algorithms. In

the past, these inefficiencies could be ignored as the user was operating from a fixed-location sys-

tem with access to ample memory and processing power, as well as an effectively limitless energy

budget. However, in the portable energy-constrained environments of interest in this dissertation,

7. A wise man once said that the best thing about standards is that there are so many to choose
from!
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these inefficiencies require us to re-evaluate the use of a software-based implementation. The alter-

native hardware-based implementations, while being very energy and computationally efficient,

are very inflexible and don't satisfy the compatibility constraints that are necessary to increase the

utility of portable computing devices.

In this chapter a compromise between these two extremes is proposed by taking advantage of

the fact that the range of operations necessary to implement the required public key cryptographic

algorithms is small enough that domain specific reconfigurable hardware can be developed which

delivers the required algorithm agility. Furthermore, this is done in an energy-efficient manner that

enables operation in the portable, energy-constrained environments where algorithm agility is

required most of all. The resulting implementation is known as the Domain Specific Reconfig-

urable Cryptographic Processor (DSRCP).

5.1 IEEE Public Key Cryptography Standard (P1363)
In 1977, the U.S. Government proposed a new standard for symmetric key cryptography known as

the Data Encryption Standard (DES) [43]. By introducing a single standard, the Government pro-

vided industry with a reference implementation which has since been adopted extensively, and is

still in use today, almost twenty five years later [44]. In the last few years, the search for a replace-

ment to DES has begun in the form of the Advanced Encryption Standard (AES). The develop-

ment of AES will ensure standardization for secret key cryptography for years to come.

Unfortunately, no such effort was made for wide-ranging standardization of asymmetric key cryp-

tography until the recent IEEE P1363 Standard for Public Key Cryptography [56].

P1363 standardizes the use of various public key cryptographic algorithms in order to provide

three basic types of cryptographic functions: key agreement, digital signatures, and public key

encryption. These functions were chosen as they represent the most useful functions of public key

cryptography:

" Key agreement functions allow two parties to establish a set of secret keys in the pres-
ence of adversaries. These keys can then be used by much more efficient secret key
algorithms to encrypt/decrypt data transmissions between the two parties.

" Digital signatures are used to "sign" digital data in much the same way that a person's
handwritten signature is used. The digital signature provides irrefutable proof that a
given user generated a particular piece of digital data, and that the data has not been
modified.

" Public key encryption is simply the application of an asymmetric algorithm to encode
data in those cases where symmetric key encryption is not feasible.
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In addition, P1363 also defines three separate hard number theoretic problems upon which to

build the aforementioned cryptographic functions: integer factorization, discrete logarithms, and

discrete logarithms over elliptic curves. The following sections describe each of these problems in

terms of where they came from, how they are used, how they derive their security, and how to

quantify their security based on the implementation parameters.

5.1.1 Discrete Logarithm (DL)

The problem of finding discrete logarithms (DL) over large finite fields was first proposed by Dif-

8
fie and Hellman [36], and was the first public example of an asymmetric cryptographic algorithm

The security of DL-based schemes relies on the difficulty of computing logarithms within a finite

cyclic multiplicative group (e.g., Zj* or GF(2P)* where p is a large prime). The algorithm exploits

the fact that given a generator g of the group G, it is easy to compute ga e G for some random inte-

ger a, but given ga it is computationally infeasible (for groups of sufficiently large order) to com-

pute a. As such, two users (such as our old friends Alice and Bob) can establish a secret using the

following basic protocol:

" Alice and Bob agree on a generator g and group G, neither of which needs to be kept
secret

- Alice and Bob generate random values a and b respectively which they keep secret

" Alice sends ga to Bob, and Bob sends gb to Alice.

- Alice computes (gb)a = gab, and Bob computes (ga)b = gab

At the completion of the above protocol Alice and Bob will share the secret value gab, and an

eavesdropper, Eve, will only have learned the values ga and gb. Assuming that computing discrete

logarithms over G is infeasible, then the eavesdropper is only able to compute ga+b. Hence, A and

B have managed to share a secret over an unprotected channel. Other techniques based on discrete

logarithms have also been proposed (e.g., El Gamal encryption and signature schemes [41]), all of

which rely on performing computations over a finite field such as Z * or GF(2P).

P1363 describes DL-based key agreement schemes based upon the work of Diffie-Hellman

[36] and Menezes-Qu-Vanstone [83], as well as digital schemes based upon the work of Nyberg-

Rueppel [90], and the Digital Signature Algorithm [47]. The basic cryptographic primitive used by

these schemes is exponentiation within GF(q)*, where q is either a large prime or 2 '. Additional

8. Originally it was thought that it was the first demonstration of public key cryptography period,

but recent evidence [42] has shown that the technique had been discovered by the military sev-

eral years earlier.
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field operations such as multiplication, addition/subtraction, and inversion are also utilized.

The security of DL-based cryptography is based on the difficulty of computing discrete loga-

rithms over the given field (i.e., Z,* or GF(2')). The most efficient algorithms for computing dis-

crete logarithms over Z,* utilize a method known as Index Calculus [2] in order to compute a

discrete logarithm in time that is proportional to LI[v, c], which is defined as follows:

L [v, c] = ec(0ogP)V(Ioglogp) (5-1)

Both c, a constant factor, and v, a non-negative value less than 1, are determined by the discrete

logarithm algorithm that is used. For Z ,* the current state-of-the-art algorithms run in L [1/3,

-1.923], and for GF(2') Coppersmith [30] developed an optimized algorithm whose running time

is on the order of L 2'[1/3, <1.587 ].

5.1.2 Integer Factorization (IF)

Integer factorization was originally proposed as a means of implementing public key cryptography

in 1978 with the introduction of Rivest, Shamir, and Adleman's well-known RSA algorithm [107].

IF-based algorithms utilize the cyclic multiplicative subgroup formed by the integers modulo-N,

where N is a large n-bit composite integer formed by the product of two randomly generated n/2-

bit primes (typically denoted as p and q). The RSA algorithm utilizes the fact that the order of the

cyclic multiplicative subgroup of Zn* is $(n) = (p-1)(q-1), and thus for any a C Zn, the following

relation holds:

a 0(n) = I mod n (5-2)

One then chooses two values e and d that satisfy the relation:

e - d = 1 mod $(n) (5-3)

The value e is called the public exponent and along with n forms the public key. The value d is

called the secret exponent and forms the private key. With these values one can encrypt a message,

x < n, using modular exponentiation with e, and decrypt the result using modular exponentiation

with d. The encrypt/decrypt operation is illustrated in EQ 5-4.

(x)dmod n = xe mod n (5-4)

= xa.0(n)+I mod n

= (xo n))a X mod n

= (1)a . x mod n

= x mod n

Obviously, if one could compute the factorization of n, then one could compute $(n) and find d
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using the fact that d = e-I mod $(n). Hence, RSA is no more difficult to break than the problem of

integer factorization. Note that the encryption and decryption operations commute, a feature that is

used extensively for digital signature generation.

P1363 describes IF-based digital signature schemes based upon the work of Rivest-Shamir-

Adleman [107], Rabin [103], and Miller's extension of Rabin's work [134]. Public key encryption

schemes based upon RSA are also described. The basic cryptographic primitive used by the IF-

based schemes is modular exponentiation, with additional modular arithmetic operations such as

addition/subtraction, multiplication, and inversion being required as well.

Schemes based upon IF exploit the fact that factoring large composite integers (e.g., 512+ bits

long) into their constituent prime factors is a very difficult problem. The effort that is required to

factor very large numbers is closely related to that of computing discrete logarithms over fields of

comparable size. In fact, the complexity of factoring a given modulus N using state-of-the-art fac-

toring algorithms such as the General Number Field Sieve [76] (GNFS) is stated in the same man-

ner as computing discrete logarithms: LN[v, c]. This similarity arises due to the fact that both

factoring and discrete logarithms utilize the aforementioned Index Calculus methods, hence it

should come as no surprise that they have comparable running times. The fastest general purpose

factoring algorithm, the GNFS, achieves a running time on order LN[l~3 , -1.923].

5.1.3 Elliptic Curve Discrete Logarithm (ECDL)

The elliptic curve discrete logarithm problem is closely related to the discrete logarithm problem

over multiplicative groups, except now the group is the set of points found on an elliptic curve over

the field GF(q), and the group operation is addition as opposed to multiplication. Hence, the ellip-

tic curve discrete logarithm problem relies on the difficulty of determining the integer n, given

only the curve E and the points P and nP.

All of the ECDL-based schemes described in P1363 are analogs of the DL-based schemes

described in Section 5.1.1, with exponentiation over multiplicative groups replaced by point multi-

plication over the additive group formed by the points on an elliptic curve over GF(q), where q is

either prime or 2".

The primary advantage of using elliptic curves is that the powerful Index Calculus method

appears to be unusable for computing discrete logarithms over elliptic curves. Without Index Cal-

culus, the best method of computing discrete logarithms is the Pollard-Rho algorithm [98] and its
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parallelized extension [92], which compute discrete logarithms in O($) time, where n is the

order of the point P being multiplied. For a properly chosen curve and point, the value n will be

close to the order of the field upon which the curve is constructed (i.e., GF(q)). Hence, in terms of

M = [log 2qj the number of bits used to represent the field, the complexity of computing discrete

logarithms over an elliptic curve is fully exponential, 0(2""2), a substantial improvement over the

sub-exponential complexity of the IF and DL problems. Hence, elliptic curve cryptography

appears to be much more secure than its IF and DL-based counterparts, a fact that is evident by its

much shorter key sizes.

5.2 Programmable Logic and Domain Specific Reconfigurability
In conventional reconfigurable applications such as Field Programmable Gate Arrays (FPGAs),

the architectural goals of the device are to provide a large number of very small, yet powerful pro-

grammable logic cells, and very flexible programmable interconnect to connect these cells

together. This approach has proven very successful in terms of both performance and flexibility,

with FPGA-based implementations being used extensively in industrial applications where moder-

ately high levels of performance are required and the high costs and lengthy design cycles of semi

or full custom integrated circuits cannot be justified.

In the past, the use of programmable logic in cryptography has been limited primarily to

implementations of symmetric key algorithms such as DES (e.g., [135], [105], [48], [62], and

[39]). Unfortunately, asymmetric key algorithms were largely ignored as the high gate counts

required for efficient implementation were not available in a single device. The latest advances in

programmable logic have addressed and alleviated this constraint by delivering devices with

usable gate counts on the order of several hundred thousand. As a result, there has been great inter-

est in implementing asymmetric algorithms using programmable logic ([93], [20], and [109]), both

because of the increased throughput that it yields relative to conventional software-based solu-

tions, and the flexibility it provides by allowing one to reprogram it on the fly to implement a vari-

ety of algorithms.

Until recently, these programmable implementations have been optimized to leverage a maxi-

mum amount of flexibility while maintaining a minimum level of performance. Issues such as

power consumption have largely been ignored in all cases except those where the sheer size of the

device warrants some form of power management in order to prevent failure due to thermal effects.

This issue is now being addressed with the latest families of programmable logic devices such as

138



- -=----------- I

5.3 INSTRUCTION SET DEFINITION/ARCHITECTURE 139

Xilinx's Virtex [136] and Altera's APEX 20K [9], which utilize low power modes and architectural

features to reduce power dissipation.

Despite these recent advances, the overhead associated with making such a general purpose

computing device will ultimately limit its energy efficiency, and hence its utility in energy-con-

strained environments. To illustrate this fact consider the space of all possible functions. A conven-

tional reconfigurable logic device attempts to cover as much of this space as possible given its

architectural constraints in terms of technology, logic resources, and routing resources. This results

in a considerable amount of overhead that isn't necessary given a specific subset of functions.

Kusse [75] attempted to quantify this overhead by breaking down the energy consumption of a

conventional FPGA by its architectural components (Figure 5-1). Their analysis reveals that only

1/20th of the total energy is being used to perform useful computation.

1/1 (9%) Logic (5%)

Global Clock (21%) Interconnect (65%)

Figure 5-1: Energy consumption breakdown of XILINX XC4003A [75].

The DSRCP differs from conventional reconfigurable implementations in that its reconfig-

urability is limited to the subset of functions, called a domain, required for asymmetric cryptogra-

phy. This domain requires only a small set of configurations for performing the required operations

over all possible problem families as defined by IEEE P1363. As a result, the reconfiguration over-

head is much smaller in terms of performance, energy efficiency, and reconfiguration time make

the DSRCP feasible for algorithm-agile asymmetric cryptography in energy constrained environ-

ments. In addition, from an architectural standpoint the DSRCP focuses on minimizing the domi-

nant interconnect component of Figure 5-1 by utilizing an interconnect-centric architecture that

attempts to minimize global interconnect by exploiting a bit-sliced implementation with pre-domi-

nantly local interconnections.

5.3 Instruction Set Definition/Architecture
The instruction set definition of the DSRCP is dictated by the IEEE P1363 description document.

For each primitive listed in the standard, a list of the required arithmetic functions is tabulated in

order to determine the required ISA of the processor. Note that certain primitives also require such
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operations as the ability to set specific bits within a given operand and the ability to generate ran-

dom bits, neither of which are implemented in this version of the processor. The resulting func-

tional matrix is shown in Table 5-1.

C2

H
0

0 0 0

z

0 0

H

0

0
z

0 U
WL

0

PKO #1 X

PKO #2 X X X X X

IFEP-RSA I X
IFDP-RSA X X X X X

IFSP-RSA I X X X X X

IFVP-RSAI X
DLSVDP-DH X

DLSVDP-MQV X X X X X

DLSP-DSA X X X X

DLVP-DSA X X X X

ECSVDP-DH X

ECSVDP-MQV X X X X

ECSP-DSA X X X X

ECVP-DSA X X X X X
MODEXP X X

GFEXP X X
ECADD X X X X __

EC DOUBLE X X X

ECMULT X X

Table 5-1: Functional matrix of the IEEE P1363 for the DSRCP instruction set.

The matrix is used to define the required final instruction set of the processor, along with addi-

tional auxiliary functions for controlling the processor configuration, as well as moving data into,

out of, and within the processor.

5.3.1 DSRCP Instruction Set

The basic instruction format for the DSRCP is a 30 bit word partitioned as shown in Figure 5-2.

The DSRCP executes 24 instructions in all, a brief summary of which are given in Table 5-2. A

detailed description of the instruction set is included in Appendix B.

29 25 20 17 12 10

opcode rd rsO rsl rs2 length

24 21 16 13 9 0

Figure 5-2: DSRCP Instruction word.
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Opcode Mnemonic Description

00000 ECDOUBLE rd,rs0,rs2 (rd,rd+1) = 2-(rs0,rs0+1), over curve defined by (rs2 , N)

00001 GFINV A = 1 /Pc

00010 GFMULT Pc = A-B

00011 MONTRED (Pc,Ps) = (Pc,Ps)- 2-n mod N

00100 MONTREDA (Pc,Ps)= A -2-n mod N

00101 MONTMULT (Pc, Ps) = A-B- 2~" mod N

00110 COMP rs0,rsl sets the gt and eq flags, where gt = (rs0 > rsl) and
eq = (rs0 == rsl)

00111 GFADD/XOR rd,rs0,rsl rd = rs 0 + rs 1 (equivalent to rs 0 ^ rs1)

01000 ADD/SUB rd,rs0,rsl,rs2 rd = rsO + rsl + rs2<0> (rs2<2:1> = 00)
rd = (rs0 + rsl + rs2<0>) >> 1 (rs 2<2: 1> = 01)

rd = rs0 - rsl (rs2<2:1> = 10)
rd = (rsO - rs) >> 1 (rs2<2:1> = 11)

01001 MODADD rd,rs0,rsl,rs2 rd = (rs0 + rsl + rs2<0>) mod N

01010 SETLENGTH length sets width of datapath to be (length + 1)

01011 MODSUB rd,rs0,rsl rd = (rs0 - rsl) mod N

01101 ECADD rd,rs0,rsl ,rs2 (rd,rd+1) = (rsO,rsO+1) + (rsl,rsl+1), over curve defined
by (rs2, N)

01110 GFINVMULT A = B / Pc

10000 ECMULT length (R4,R5) = Exp-(R2,R3), Exp has length bits, over curve defined
by (R6,N)

10010 MODMULT rd,rs0,rsl,rs2 rd = (rs0-rsl) mod N, correction factor in rs2

10100 MOD rd,rs0,rsl,rs2 rd = (rsl.2n + rs0) mod N, correction factor in rs2

10110 MODINV rd,rs0 rd = (1 / rs0) mod N

11001 GFEXP rd,rsO,length rd = rsOExp mod N, Exp has (length + 1) bits

11011 MODEXP rd,rs0,rs2,length rd = rsOExp mod N, Exp has (length + 1) bits, correction

factor in rs2

11100 REGCLEAR rd,rs0 clears registers specified in mask formed by (rd,rs0) = R<7:0>

11101 REGMOVE rd,rs0 rd = rs0

11110 REGLOAD rd rd is loaded from the I/O interface

11111 REGUNLOAD rsl rs1 is unloaded to the I/O interface

Table 5-2: ISA of the DSRCP.

5.4 Architecture
Figure 5-3 shows the overall system architecture of the DSRCP. The processor consists of four

main architectural blocks: the global controller and microcode ROMs, shutdown controller, 1/0
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Instruction

DSRCP

Global p-code SHA- 1
Controller ROMs Engine

Shutdown 32
Controller

Reconfigurable 3 1/0
Datapath Interface
(32 x 32b)

li .. ft I-*%&-l a.- !:7,7. M _...

32
Data

Figure 5-3: Overall system architecture of the DSRCP.

interface, and the reconfigurable datapath. In addition, the initial architectural definition called for

an embedded SHA-1 hash function engine to be included within the processor as well. The inclu-

sion of a hash engine was desirable as the key derivation primitives contained within P1363 call

for this functionality. Although the hash engine was designed and simulated at the transistor level,

it was unfortunately left out of the final layout due to time constraints. Details regarding the design

of the engine are included in Section 5.7.5.

5.4.1 Controller and Microcode ROMs

The DSRCP features a three-tiered control approach that utilizes both hardwired and microcode

ROM-based control functions. This multi-tiered approach is required as various instructions within

the DSRCP's ISA are implemented using other instructions within the ISA, as illustrated for the

MODMULT instruction in Figure 5-4.

The first tier of control corresponds to those instructions that are implemented directly in hard-

ware. The second tier of control represents the first level of microcode-encoded instructions, which

MODMULT(rdrsOrslrs2)i

4 pi-codeI
ROM #2

REGMOVE(A,rsO,O)
REGMOVE(B,rs2,0)
MONTMULT()
MOD ADD(A,Pc,Ps, 0)
REGMOVE(B,rsl,O)
MONT_ RMULT(
MOD_ADD(rd,Pc,Ps,0)

p, -code
ROM #1

/ADD(rt,Pc,Ps,O)
if (COMP(rt,N) == "GTEQ")

SUB(A,rt,N)
else
e REGMOVE(A,rt)

H/W C 
Controller - -

Figure 5-4: Hierarchical instruction structure of the DSRCP.

Instruction
Stream

142



5.4 ARCHITECTURE

are composed of sequences of first tier instructions. Similarly, the third tier of control represents

the second level of microcode-encoded instructions which consist of sequences of both first and

second tier instructions. The resulting mapping of instructions to these control tiers is given in

Table 5-3

Tier Instructions

I ADD/SUB, COMP, GFINV, GFINVMULT, GFMULT, GF_ADD, MONTRED,
MONTMULT, MONTREDA, SETLENGTH

II EC_DOUBLE, EC_ADD, MODADD, MOD_SUB, GFEXP

III ECMULT, MODMULT, MOD, MODINV, MODEXP

Table 5-3: DSRCP instruction mapping to control hierarchy.

The microcode approach was chosen due to its simplicity and extensibility as modifications

and enhancements of the ISA can be accomplished with a minimal amount of design effort by

modifying the microcode ROM contents. The drawback of using this approach is the additional

latency that is incurred as instructions are decoded in three distinct phases that can end up consum-

ing a significant portion of the processor's cycle time. This performance issue is addressed by

pipelining the instruction decoding at the output of the first-level k-code ROM. The pipeline reg-

ister hides the delay of accessing the two k-code ROM's by overlapping it with the previous

instruction execution, at the cost of adding an additional cycle of latency. This additional overhead

is insignificant for all operations due to their large cycle counts (e.g., n or n2 for typical n-bit oper-

ations), with the exception of modular addition and subtraction. The overhead for modular addi-

tion and subtraction is approximately 40% (10 cycles vs. 7 cycles), which only significantly affects

the modular inversion routine due to its heavy use of these operations.

5.4.2 Shutdown Controller

As in the ESEP, the DSRCP features a shutdown controller that is responsible for disabling unused

portions of the circuitry in order to eliminate any unnecessary switched capacitance. The shutdown

strategy is dictated by the current width of the datapath, as set by the last invocation of the

SETLENGTH instruction, and enables the datapath to shutdown in thirty-two 32-bit increments.

There is a subtle feature of the shutdown control scheme, due to the way Galois Field multipli-

cation is performed within the DSRCP, that warrants additional explanation. When performing

operations over the field GF(2"), all operands are n bits long and can be stored within the least sig-

143



CHAPTER 5 DOMAIN SPECIFIC RECONFIGURABLE CRYPTOGRAPHIC PROCESSOR (DSRCP)

nificant n bits of the datapath. However, the field polynomial is stored as a (n + 1) bit value as it

represents a polynomial of degree n. Thus, only enabling the least significant n bits of the datapath

may result in errors as the effects of the MSB won't be accounted for. This problem will appear

when the datapath width falls on the shutdown boundary of the processor (as bit (n + 1) will fall

within the next segment, which is disabled). Given that the datapath can be shut down in 32 bit

increments, if n is divisible by 32 then an additional datapath segment must be enabled to allow

correct operation. Hence for these widths, the datapath will actually switch an additional 32 bits.

These boundary conditions are almost entirely encountered when performing IF/DL type opera-

tions in which the processor is operating at widths of 512-1024 bits. The additional 32 bits of data-

path represents only 3-6% overhead. In the case of ECC applications, the value of n is typically an

odd value so the aforementioned condition will not be an issue.

5.4.3 I/O Interface

Operands used within the processor can vary in size from 8-1024 bits (1025 bits in the case of field

polynomials), requiring the use of a flexible I/O interface that allows the user to transfer data to/

from the processor in a very efficient manner. In addition, one would like to achieve compatibility

with existing systems, hence a 16, 32, or 64-bit interface would be preferable.

Ultimately, the I/O interface width was dictated by the physical implementation of the proces-

sor which made a 32-bit interface the most economical width. This choice is very well suited to

existing processors and systems which are predominantly built upon 32-bit wide busses. The

choice of a 32-bit interface also allows for relatively fast operand transfer onto and off of the pro-

cessor, requiring at most 32 cycles to transfer the largest possible operand.

Again, the use of (n + 1) bit operands to represent n-th degree field polynomials introduces a

subtlety that requires [(n + 1)/321 cycles to load in each n-bit operand. This rule's only excep-

tion is in the case where n = 1024, at which point an additional cycle is not added; instead the MSB

is passed into the processor via instruction bit rs22

5.4.4 Reconfigurable Datapath

The primary component of the DSRCP is the reconfigurable datapath, whose architecture is shown

in Figure 5-5. The datapath is composed of four major functional blocks: an eight word register

file, a fast adder unit, a comparator unit, and the main reconfigurable computational unit.

The register file size is chosen to be eight words as it is the minimum number required to
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RO sum sum xor

R2 Reconfigurable Logic gt
R3 Adder Comp
R4 A B Pc Ps NR5
R6 A B A B
R7

rs

rsO

Figure 5-5: Reconfigurable datapath architecture block diagram.

implement all of the functions of the datapath. The limiting case for this architecture is that of

elliptic curve point multiplication in which registers (R2,R3) are used to store the point that is

going to be multiplied by the value stored in Exp register, (R4,R5) are used to store the result,

(RO,R1) are used to store an intermediate point used during the computation, R6 is used to store

the curve parameter a, and R7 is used as a dummy register in order to provide resilience to timing

attacks.

The number of read and write ports within the register file is dictated by the requirement to be

able to perform single cycle, two operand operations which generate a writeback value. In certain

cases two write ports could have proved useful (e.g., elliptic curve point transfers), but the infre-

quency of the operation didn't merit the additional overhead that it would have introduced.

The fast adder unit is capable of adding/subtracting two n-bit (n 1024) operands in four

cycles. The unit features a local register to store the previous sum result, a feature which is used in

modular addition/subtraction, and inversion routines. The adder unit can also right shift its result,

as required by the modular inversion algorithm that is used within the DSRCP.

The comparator unit performs single-cycle magnitude comparisons between two n-bit oper-

ands, and computes the XOR of the two operands, which is equivalent to adding two operands over

GF(2n). The comparator generates two flags, GT and EQ, which can be decoded into all possible

relation operations (i.e., GT, GTEQ, EQ, LTEQ, and LT), using a fast O(log2n) depth tree-based

topology that is quite similar to the ESEP's sign detection circuit (Section 4.3.2).
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The reconfigurable computation unit consists of six local registers (Pc, Ps, A, B, Exp, and N)

that are used to store intermediate values and operands to the reconfigurable portion of the datap-

ath, and a reconfigurable logic block that is capable of implementing all of the required datapath

operations. The Pc and Ps registers are used primarily in modular operations to store the carry-save

format partial product, and in Galois Field operations as two separate temporary values. A and B

store the input operands used in all modular and Galois Field operations. The Exp register is used

for storing either the exponent value, in the case of exponentiation operations, or the multiplier

value, in the case of elliptic curve point multiplication. The N register also serves a dual purpose;

for modular operations it is used as the modulus value, and in Galois Field operations, it stores the

field polynomial in a binary vector form (e.g., x3 + x2 + 1 is stored as [1,1,0,1]). In all relevant

operations, it's assumed that both the Exp and N registers are pre-loaded with their required val-

ues.

Using local memory within the datapath eliminates the need to continually access the register

file every cycle, removing the associated overhead of repeated register file accesses. In addition,

several operations require four of the registers to be read, and two registers to be written on any

given cycle, requiring additional read and write ports to be added to the register file. This would in

turn increase the size of the register file, as well as its decoding complexity, thereby offsetting any

advantage that might be gained by going to a unified memory model that eliminated the local

memory.

The datapath utilizes three separate busses for distributing data between the various functional

units: the two operand busses (rsO and rsl) and a writeback bus (wb). Not all registers and busses

are inter-connected as analysis and profiling dictated that not all connections were required. The

unnecessary connections were removed in order to minimize the capacitive load on the busses. rs0

is also used as a secondary writeback bus to enable values within the datapath to be transferred to

other registers within the datapath.

As described in Section 5.4.2, all functional units within the datapath can be shutdown in 32

bit increments to minimize unnecessary switched capacitance when the processor is operating at a

reduced width.

5.5 Algorithm Implementation
The DSRCP implements a wide range of functions, most of which are composed of other func-
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tions executed by the processor. Given this nested construction, some consideration must be made

as to how the various operations are implemented algorithmically in terms of the DSRCP's instruc-

tion set.

In this section we address this issue by looking at the algorithms used to implement the various

arithmetic functions of the processor.

5.5.1 Conventional Multiplication

Conventional multiplication is implemented using modular multiplication with the operand sizes

limited to half the current width of the datapath, and the modulus set to its maximum value. While

this limits single instruction multiplications to lengths of 512 bits, longer operand sizes can be

handled using the conventional multi-precision techniques outlined in Section 3.4.3, where the

word size is now the width of the datapath.

5.5.2 Modular Addition/Subtraction

Modular addition and subtraction are implemented using the COMP and ADD/SUB instructions.

The microcode for their implementation is shown in ALG 5-1 and ALG 5-2.

Input: rs0, rsl: two n-bit operands that are to be added
rs2<0>: carry in

Output: rd = (rs0 + rsI + cin) mod N

Algorithm: ADD(regsum, rs0, rs1,rs2)

if (COMP(regsum,N) == "GTEQ")

SUB (rd, regsum, N)
else

REGMOVE (rd, regsum)

endif

Algorithm 5-1: Modular addition implementation on the DSRCP.

Input:

Output:

rsO, rs 1: two n-bit operands

rd = (rsO - rs 1) mod N

Algorithm: if (COMP(rs0,rsl) == "GT")
SUB(rd, rsO, rsl)

else
ADD(regsum,rsO,N,0)

SUB(rd,regsum,rsl)

endif

Algorithm 5-2: Modular subtraction implementation on the DSRCP.
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5.5.3 Montgomery Reduction
Montgomery reduction is implemented directly in hardware so it has no microcoded algorithmic

sequence. There are actually two forms of Montgomery reduction that may performed depending

on the instruction used: MONTRED or MONTREDA. The two operations perform Montgom-

ery reduction on either the value currently stored in the carry-save pair (Pc, Ps) or A register.

Implementation details of these operations are deferred to the design discussion of Section

5.6.5.1.

5.5.4 Modular Reduction

Modular reduction is performed using a modified of Montgomery's technique as described in Sec-

tion 3.4.5. The resulting modular reduction algorithm (ALG 5-3) differs from its software equiva-

lent in how it handles the reduction of the upper half of the value being reduced. In software (ALG

3-9) the entire 2n bit value is reduced by repeated applications of Montgomery's reduction tech-

nique. In hardware only the bottom n bits of the value are reduced in this manner, and the upper n

bits are simply modularly added in to the reduced lower n bits. This operation is equivalent to

dividing the upper bits by 2n, which is exactly the same operation that Montgomery's reduction

performs. Hence the two algorithms are equivalent but the new algorithm requires half the time.

Note that the ALG 5-3 requires n to be a multiple of 32 bits in order to ensure proper align-

ment when adding in the upper half of the input value. This requirement is not unreasonably

restrictive as modular reduction is used predominantly in IF/DL type operations where n is com-

monly a multiple of 32.

A

Input: rsO, rs 1: n-bit registers containing the value to be reduced stored in the format (rs I .2" + rsO)
rs2: n-bit register containing the Montgomery correction value 22n mod N

Output: rd = (rs1.2" + rsO) mod N

Igorithm: REGMOVE(Ps,rsO) // Ps = rsO

CLEARPC // Pc = 0

MONTRED( ) // (Pc,Ps) = rs0-2-n mod N

MODADD(rd,Pc,Ps,0) // rd = rs0-2-n mod N

MODADD(rd,rd,rsl,0) // rd = (rsl-2n + rs0)2-n mod N
REGMOVE(A,rd) A = rd

REGMOVE(B,rs2) // B = 2 2n mod N

MONTMULT( ) // (Pc,Ps) = (rsl-2n + rs0) mod N

MODADD(rd,Pc,Ps,0) // rd = (rsl-2n + rs0) mod N

Algorithm 5-3: Modular reduction implementation on the DSRCP.
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5.5.5 Modular Multiplication

Modular multiplication is implemented using Montgomery multiplication, where preprocessing of

the inputs is used to cancel the residual factor of 2'" that arises. The resulting implementation is

described in ALG 5-4.

Input: rsO, rs 1: n-bit registers containing the values to be multiplied

rs2: n-bit register containing the Montgomery correction value 2 2n mod N

Output: rd = (rs0-rsI) mod N

Algorithm: REG_MOVE(A,rs0) // A = rsO

REG_MOVE(B,rs2) // B = 2 2n mod N

MONTMULT( ) / (Pc,Ps) = rso-2n mod N

MODADD(A,Pc,Ps,0) // A = rsO-2n mod N

REG_MOVE (B,rsl) // B = rsl

MONTMULT( ) / (PcPs) = rsO-rsl mod N
MODADD(rd,Pc,Ps,0) // rd = rsO-rsl mod N

Algorithm 5-4: Modular multiplication implementation on the DSRCP.

5.5.6 Modular Inversion

Modular inversion utilizes a modified form of the extended binary euclidean algorithm to perform

modular inversions. The modular inversion algorithm that is used (ALG 5-5) differs from the con-

ventional implementations by its use of modular subtraction routines in the adjustments of RO/R2

or R1/R3 in order to maintain the non-negativity constraint on the datapath. The modular inversion

instruction utilizes several architectural features that were included specifically for this operation,

such as the ability to right shift the output of the adder unit, and having the reset value of RO be 1

instead of 0. The modified inversion algorithm is shown in ALG 5-5.

Unfortunately, the use of modular subtraction greatly increases the execution time of the mod-

ular inversion routine (-14.5 cycles per bit of the operand), to the point where it is almost an order

of magnitude slower than all other modular arithmetic routines except for modular exponentiation.

However, given the infrequency of the need for performing modular inversion, and the fact that it

is typically required to operate on much smaller operands (e.g., 160 bit inversion during 1024 bit

digital signature operations), the overhead was deemed acceptable.

5.5.7 Modular Exponentiation

Modular exponentiation is performed using a standard square-and-multiply algorithm with an

exponent scanning window of size two. The algorithm pre-computes and stores the values {2",

rs0-2", rs02-2", rs0 3 -2"} in {R0, RI, R2, R3} respectively. During each iteration the current value is

squared twice, and then the exponent is read two bits at a time. The value read corresponds to the
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Input:

Output:

Algorithm: R3

R2

R1
RO

0, RO = 1
1

N

rsO

rsO: n-bit register containing the value to be inverted

rd = (1 / rsO) mod N

REGCLEAR(RO,R3) //

REG_MOVE(R2,RO) //

REGMOVE(R1,N) //
REG_MOVE(RO,rs0) //

while (COMP(RO,O) == "NEQ")

while (RO<O> = 0)

ADD(RO,RO,0,2) //

if (R2<0> == 1)

ADD(R2,R2,N,2) //

else
ADD(R2,R2,0,2) //

endif

endwhile

while (R1<0> = 0)

ADD(R1,R1,0,2) //

if (R3<0> == 1)

ADD(R3,R3,N,2) //

else
ADD(R3,R3,0,2) //

endif

endwhile

if (COMP(RO,R1) == "GTEQ")

SUB(RO,R0,R1) //

MODSUB(R2,R2,R3) //

R3 = (R3

R3 = (R3

+ N) /

/ 2)

2

RO = RO - R1

R2 = (R2 - R3) mod N

else
SUB(R1,R1,RO)

MODSUB(R3,R3,R2)

endif

endwhile

REGMOVE(rd,R3)

// R1 = R1 - RO

// R3 = (R3 - R2) mod N

/ rd = R3

Algorithm 5-5: Modular inversion implementation on the DSRCP.

register that is used during the subsequent multiplication (e.g., if "01" is read then R1 is used).

Note that multiplying by the value stored in RO is essentially a NOP as Montgomery multiplication

is being used which divides the product by 24. The resulting algorithm is shown in ALG 5-6.

The use of an explicit length operand in ALG 5-6 enables the decoupling of the length of the

exponent and the operands, leading to much more efficient exponentiation when the exponent

value is significantly shorter than the operands.

5.5.7.1 Timing Attacks

By utilizing NOPs in the modular exponentiation algorithm, a certain type of cryptanalytic attack

known as a timing attack can be prevented. Timing attacks exploit conditional execution state-

ments in cryptographic algorithms whose execution is related to the secret key information. An

example of this is the conditional multiplication statement in the basic binary square-and-multiply

RO = (RO / 2)

R2 = (R2 + N) / 2

R2 = (R2 / 2)

R1 = (R1 / 2)
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5.5 ALGORITHM IMPLEMENTATION

Input: rsO: n-bit register containing the value to be exponentiated
rs2: n-bit register containing the Montgomery correction value 2 2n mod N
length: 9-bit value representing the length of the exponent stored in Exp

Output: rd = rsOExp mod N

Algorithm: REGMOVE(Ps,rs2) / Ps = 2 2n mod N
MONTRED( ) // (Pc,PS) = 2 n mod N

MODADD(RO,Pc,Ps,O) // RO = 2n mod N

REGMOVE (A, rsO) // A = rsO

REGMOVE(B,rs2) // B 2 2n mod N

MONT MULT( ) // (Pc,Ps) = rsO-2n mod N

MOD_ADD(R1,Pc,Ps,O) // R1 = rsO-2 n mod N

REGMOVE (A/B,R1) / A,B = rsO-2 n mod N

MONT MULT( ) // (Pc,Ps) = rs02-2n mod N
MODADD(R2,Pc,Ps,O) / R2 = rs 02-2n mod N
REGMOVE(B,R2) // B = rs 02-2n mod N
MONT MULT( ) // (Pc,Ps) = rs03 -2n mod N

MODADD(R3,Pc,Ps,O) // R3 = rs03-2n mod N

REGMOVE (A/B,RO) / A,B = 2n mod N

for (i=iength-1;i>0;i=i-2)

MONTMULT( ) // (Pc,Ps) = P
2 

2n mod N

MODADD(A/B,Pc,Ps,0) // A,B = P
2 

-2n mod N

MONTMULT( ) // (PC,Ps) = P
4 

-2n mod N

MODADD (A, Pc,Ps,0) / A = P
4 

-2n mod N

REGMOVE(B,R<Exp[2i:2i-1]>) // B = R<j>

MONTMULT( ) // (Pc,Ps) = P4+j. 2 n mod N

MOD ADD(A/B,Pc,Ps,0) // A,B = P4j.2n mod N

endfor
MONThREDA( ) / (Pc, Ps) = pExp mod N

MODADD(rd,Pc,Ps,0) // rd = PExp mod N

Algorithm 5-6: Modular exponentiation implementation on the DSRCP.

algorithm (ALG 3-14). The resulting variations in execution time, and their correlation to the

secret key information can then be exploited by an attacker in order to recover the secret key infor-

mation. In practice this turns out to be a very powerful weapon in the cryptanalyst's arsenal.

However, timing attacks are easily thwarted either through the use of blinding techniques

adapted from those used in signature schemes [27], or, as is done in the DSRCP, by eliminating the

variation in execution times. The cost of timing attack immunity is that strings of zeros in the

exponent cannot be exploited to speed up the operation. The loss in efficiency due to this fixed per-

formance, assuming that the probability of any bit in the exponent being set is 1/2 and that Tmult =

Tsquare, is:

n 3
T . - Tsquare+ mult 2 nmult 1fixed - 1 = - 1 = - (5-5)
Tsin( )2 -11s. T + - T nTmult

square 2 tmult
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which is approximately 9%. This performance hit is deemed acceptable given the added benefit

that it yields regarding timing attack immunity.

5.5.8 GF(2") Inversion
GF(2") inversion is also implemented directly in hardware so it has no microcoded algorithmic

sequence. Discussion of the resulting implementation is deferred to the design discussion of Sec-

tion 5.6.5.

5.5.9 GF(2") Addition/Subtraction

GF(2") addition is equivalent to GF(2") subtraction, both of which are implemented using compo-

nent-wise XORing of the inputs. The comparator unit is used for this task as it performs this XOR

function implicitly in order to do magnitude comparisons.

5.5.10 GF(2") Multiplication

GF(2") multiplication is implemented directly in hardware so it has no microcoded algorithmic

sequence. Discussion of various hardware-based approaches is deferred to the design discussion of

Section 5.6.5.

5.5.11 GF(2") Exponentiation

GF(2") exponentiation is implemented in the same manner as modular exponentiation, using a

repeated square-and-multiply approach with an exponent scanning window of size two. {RO, Ri,

R2, R3) are now used to store the values {1, rsO, rs0 2 , rs03} which are pre-computed at the start of

the exponentiation operation. Timing attacks are once again addressed by always performing a

multiplication, be it by 1 or some power of rsO. The resulting algorithm is shown in ALG 5-7.

5.5.12 Elliptic Curve Point Doubling

The native elliptic curve point doubling is implemented only over a field of characteristic 2, given

the ISA of the DSRCP though, it is possible to use an off-chip instruction stream to implement

elliptic curve point addition operations in fields of prime characteristic as well via its modular inte-

ger instructions.

Affine co-ordinates are used for elliptic curve point doubling as the storage requirements of a

projective implementation are prohibitively high, as discussed in Section 2.2.1. The fast inversion

times achieved by the DSRCP architecture make an affine co-ordinate based solution faster than

it's projective equivalent.
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5.5 ALGORITHM IMPLEMENTATION

Input: rsO: n-bit register containing the value to be exponentiated

length: 9-bit value representing the length of the exponent stored in Exp

Output: rd = rsOExp, where rd and rsO are elements of the field defined by the field

polynomial stored in N.

Algorithm: REGCLEAR(Oxl) // RO = 1

REGMOVE (R1,rsO) // Ri = rsO

REGMOVE (A/B,Rl) // A,B = rsO

GFMULT( ) /I Pc = rsO
2

REGMOVE(R2,Pc) / R2 = rs 02
REGMOVE(B,R2) // B = rs02

GFMULT( ) /Pc = rsO 3

REGMOVE (R3,Pc) // R3 = rsO 3

REGMOVE(A/B,RO) // A,B = 1

for (i=length-1;i>=O;i=i-2)

GFMULT( ) // Pc = P
2

REGMOVE (A/B, Pc) /I A,B = P
2

GFMULT( ) //Pc = P
4

REGMOVE (B,R<Exp[2i:2i-1]>) // B = R<j>

GFMULT( ) //Pc = P4+j

REGMOVE (A/B,Pc,O) / A,B = p
4
+j

endfor // rd = PEXP

REGMOVE(rd, Pc)

Algorithm 5-7: GF(2") exponentiation implementation on the DSRCP.

Input: rsO: n-bit register containing the x-ordinate of the elliptic curve point to be doubled

rs2: n-bit register containing the curve parameter a

Output: (rd, rd+1) = 2(rsO, rsO+I)

Algorithm: if (COMP(rsO,O) == "EQ") // check input, if invalid

REGCLEAR(3 << rd) // clear result

elseif
REGMOVE(Pc,rsO) Pc = x
REGMOVE(Ps,N) / Ps = f(x)

REGMOVE(B,(rsO+l)) / B = y
GFINVMULT( ) // A = yj/xj

REGMOVE(RO,A) / RO = y/x

GFADD(RO,RO,rsO) // RO = x, + yl/x1 =

REGMOVE (A/B, RO) / A,B = X
GFMULT( ) / Pc = 2

GFADD(RO,RO,Pc) // RO = X2 + X
GFADD(RO,RO,rs2) // RO = X2 + X+ a =x3

GFADD(Rl,rsO,RO) // Rl = X1 + X3
REGMOVE (B,Rl) B = x + X3
GFMULT( ) // Pc = X(x1 + x3)
REGMOVE(rd,RO) // rd = X3
GFADD(RO,rd,Pc) / RO = X(x1+x 3)+x 3
GFADD((rd+l),(rsO+1),RO) / rdy = y3

endif

Algorithm 5-8: Elliptic curve point doubling implementation on the DSRCP.
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The elliptic curve point doubling instruction implements EQ 2-27 using the algorithm given in

ALG 5-8. The input point is checked to ensure that it is valid via the initial zero check of its x-ordi-

nate. A zero x-ordinate indicates the point at infinity which is encoded as the point (0,0). The y-

ordinate is not required to be checked as the only valid points on curves of characteristic two with

a 0 x-ordinate are the points (0,±J6), which cannot be used for elliptic curve multiplication due

to the fact that point doubling is ill-defined when x1 is 0, which is non-invertible. Hence, it's very

unlikely that this point will occur and thus only the x-ordinate needs to be checked. Note that all

elliptic curve points within the DSRCP are assumed to be stored as register pairs (e.g., Rx and

R(x+1)) such that only the location of the x-ordinate needs to be specified.

5.5.13 Elliptic Curve Point Addition

Elliptic curve point addition is also only implemented natively for fields of characteristic two, as is

done for elliptic curve point doubling. Again, off-chip instruction streams can be used with the

modular functions of the DSRCP instruction set to implement operations over curves built upon

fields of prime characteristic.

The algorithm for point addition is given in ALG 5-9, and features an initial check of the two

input points to ensure that neither is the point at infinity by looking at their x-ordinates to ensure

that they are non-zero. This zero check exploits the fact that the point at infinity is coded as (0,0) as

that point cannot satisfy the characteristic equation for a curve of characteristic two (i.e., EQ 2-26).

The only problem with using this zero condition to determine the validity of a point is that the

points (0,±,a6) are valid points as well. However, as stated before in the case of point doubling,

these point aren't valid for point multiplication. Hence, for practical purposes only the x-ordinate

needs to be checked.

The point addition algorithm utilizes an additional parameter for determining if the output reg-

isters are modified by the operation. This parameter is denoted as wb in ALG 5-9, and if it is set

the results of the point addition are written back to the destination registers. If wb is not set, the

results are written back to R7, which is used as a temporary store whose value is discarded at the

completion of the operation. The need for this writeback enable feature will be made apparent in

the discussion of point multiplication (Section 5.5.14).

5.5.14 Elliptic Curve Point Multiplication

Elliptic curve multiplication is performed using a simple repeated double-and-add algorithm

(ALG 5-10) that is the analog of the square-and-multiply technique used in exponentiation, except
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5.5 ALGORITHM IMPLEMENTATION 155

Input: rsO: n-bit register containing the x-ordinate of the first elliptic curve point

rsl: n-bit register containing the x-ordinate of the second elliptic curve point

rs2: n-bit register containing the curve parameter a

wb: a single bit that must be set to I if the results are to be written back to rd

(if wb == I then all instances of "xx/R7" are xx, otherwise they're R7)

Output: (rd, rd+1) = (rsO, rsO+l) + (rsl, rsl+l)

Algorithm: if (COMP(rsO,O) == "EQ") // check first point, if
REGMOVE(rd/R7,rsl) /I invalid copy second to

REG-MOVE( (rd+l)/R7, (rsl+l)) // output

elseif (COMP(rsl,O) == "EQ") // check second point, if

REGMOVE(rd/R7,rs0) // invalid copy first to

REGMOVE((rd+l)/R7, (rsO+1)) / output

elseif
GFADD(rd/R7,rsO,rsl) // rd,/R7 = X1 + X2
REGMOVE(Pc,rd) // Pc = X1 + X2
REGMOVE(Ps,N) / Ps = f(x)

GF-ADD( (rd+l) /R7, (rsO+1) , (rsl+l) ) / rdy/R7 = yl + y2
REGMOVE(B,(rd+l)) // B = rdy
GFINVMULT( ) // A = (yl+y2 )/(X1 +x 2)
REGMOVE(RO,A) / RO =

REGMOVE(Pc,RO) /I Pc = X
REGMOVE(A/B,Pc) // A,B = X
GF_MULT( ) PC = X2
GFADD(RO,RO,Pc) // RO = X2 +X

GF_ADD(RO,RO,rs2) // RO = X2 +k+a
GF_ADD(rd/R7,rd,RO) / rd /R7 = X2+k+a+xl+x 2= X3
GFADD(RO,rd,rsl) / RO = X3 + X2
REGMOVE(B,RO) B = x3 + X2
GFMULT( ) /I Pc = X(x3 + x2 )
GFADD(R7,rd, Pc) / R7 = X(x 3 + x2 ) + X3
GFADD((rd+l)/R7,R7,(rsl+l)) / rd, ,/R7 = X(x 3 +x 2 )+x 3+y 2
endif

Algorithm 5-9: Elliptic curve point addition implementation on the DSRCP.

for the fact that a window size of one is now being used. A larger window size is not possible on

the current DSRCP architecture due to memory limitations as the four pre-computed values9

would require 8 additional registers. The issue of timing attacks is once again addressed by utiliz-

ing NOPs when a point addition isn't required to ensure that the execution time remains constant.

These NOPs are implemented using the writeback enable bit of the point addition function.

The decision to utilize NOPs impacts the efficiency of the elliptic curve point multiplication

operation compared to conventional techniques that skip the addition operation altogether when it

is not required (i.e., the corresponding exponent/multiplier bit is 0). Assuming that Tdouble= Tadd,

which is the case in the DSRCP, and that the probability of any given bit in the multiplier being a 1

9. It is possible to use only three pre-computed values, but this leaves the design susceptible to tim-

ing attacks.
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is 1/2, then the loss in efficiency is:

Tdsrcp n -Tdouble + n -Tadd 2 nfTadd(--sr 1 = - 1 = - 1 = -(5-6)

skip n double +nII add 3Tadd

which is about 33%. A further degradation in efficiency arises if one compares the chosen imple-

mentation to a simple signed-digit representation of the multiplier (i.e., ExpC E {0, ±1}) which

requires on average n doublings and n/3 additions, for a 50% loss of efficiency. However, neither

of these approaches have immunity to timing attacks, and given that the function of the processor

is to provide primitives for providing security, the resulting degradation in efficiency is considered

acceptable as it eliminates this potential security flaw. Of course, if the loss in efficiency were

deemed too costly, a simple modification of the corresponding microcode ROM is all that would

be required to implement the change.

Input: length: an n-bit value representing the length of the multiplier stored in Exp.
All other registers are pre-assigned and must be loaded with the following values:

(R2,R3): the (x, y) ordinates of the point that is to be multiplied
R6: the curve parameter a
Exp: the integer value that (R2,R3) is to be multiplied by

Output: (R4,R5) = Exp.(R2,R3)

Algorithm: REGCLEAR(0x30) // R4,R5 = 0
for (i=length-1;i>=0;i--)

EC_DOUBLE(R4,R4,R6) // (R4,R5) = 2(R4,R5)
ECADD(R4,R4,R2,R6,Exp[i]) //(R4,R5) = (R4,R5)+Exp[il-(R2,R3)

endfor
REGMOVE(RO,RO,RO) // a NOP

Algorithm 5-10: Elliptic curve point multiplication implementation on the DSRCP.

5.6 Reconfigurable Processing Element Design
The key component of the DSRCP architecture is the reconfigurable datapath which is imple-

mented using an array of 1024 reconfigurable processing elements in an array of 32 rows of 32

processors. The DSRCP's reconfigurable processing element is the dominant circuit element

within the processor due to its functionality, and the proportion of area (-80%) that it consumes.

The design of this element is discussed in the following subsections.

5.6.1 Register File

The register file of the DSRCP utilizes edge-triggered TSPC-style registers. A more typical

SRAM-based register file design was not used both because of the small size of the register file,

and because the edge-triggered register circuit style is much simpler to design and implement,

156



5.6 RECONFIGURABLE PROCESSING ELEMENT DESIGN

especially at the low operating voltages that the DSRCP is intended to be operated at (e.g., lV).

The penalty for adopting this edge-triggered design style is area and energy. The energy pen-

alty isn't a concern due to the relative infrequency with which the register file is accessed. The low

register file access frequency is due to both the large number of cycles that typical datapath opera-

tions require (e.g., from hundreds of cycles for multiplications to several hundred thousand cycles

for exponentiation), and the use of local memory within the reconfigurable datapath logic to store

temporary values. As a result, the duty cycle of the register file is typically less than 1 %, and hence

its energy consumption is an insignificant portion of the total energy consumption.

The area penalty is more significant though. Assuming a standard 6T SRAM cell with a trans-

mission gate read port (for low voltage operation), the resulting layout would be approximately

7.5x5tm2 , whereas the area of the TSPC register is twice as large at 7.5x101m2 . Given that the

register file occupies approximately 20% of the processing element area, the overall area penalty is

approximately 10% which was deemed acceptable for this application.

A TSPC-based register approach was chosen in the interest of performance under the con-

straint of utilizing a single clock line. The clock-to-output delay of the TSPC was found to be bet-

ter under the required operating conditions than the competing dual-clock designs with local

inversion, such as those proposed by Simon [122]. The single clock line constraint is adopted in

the interest of minimizing the number of control signals that must be distributed across each row

of the datapath.

The eight registers each have their own clock and reset lines, the clock lines serving as the

writeback register select control lines. The register outputs drive an eight-to-one pass gate multi-

plexor (which uses three select lines) that serves as the register selector. All of the registers, with

the exception of RO, reset to the value OxO. RO resets to the value Ox 1, as required by the modular

inversion algorithm. The LSBs of the registers RO, RI, R2, and R3 are also provided as separate

outputs in the interest of the modular inversion algorithm.

5.6.2 1/0 Interface

The 1/0 interface consists of a 1/0 register that can be loaded either from the writeback bus (in the

case of REGUNLOAD operations), or the IOIN bus (in the case of REGLOAD operations). The

register serves as an intermediary node for data passing into/out of the processor. The 1/0 interface

is capable of driving the writeback bus (REGLOAD), or the IOoUT bus (REGUNLOAD).
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omparator topology used in the DSRCP.

5.6.3 Magnitude Comparator

The DSRCP design requires a magnitude comparator that is capable of resolving the relative mag-

nitudes of two operands up to 1024 bits long within a single 20ns cycle at the desired operating

voltage of 1V. This is accomplished using a fast, tree-based technique that is shown in Figure 5-6,

and which is similar to the sign detection technique used within the ESEP. The comparator first

encodes the inputs based on a bit-by-bit comparison of the two operands to form the signals

EQi = opIi @ op21 , and GT, = opl - op21 . Once in this format, two adjacent, encoded bit posi-

tions can be compared using the relations EQ , 1,j = EQ 1 2i, EQ 2i+ 1, and

GT+ 1, = GTj, 2i+ I + GTj, 2i* EQ, 2/+ i, the outputs of which are passed to the next level of the

comparator tree. At each stage, the number of comparisons are reduced by a factor of two, hence

the tree has depth log2 n, where n is the number of bits in the operands.

The comparator is partitioned into thirty-two 32-bit sections, or one section per row. The final

stage of each of these 32 comparisons utilizes an enable signal that either performs the aforemen-

tioned comparison if the row is enabled, or outputs an equal signal in the event that the row has

been disabled in order to prevent any data remaining in the upper, unused portions of the register

from corrupting the comparison. The resulting comparator circuit is shown in Figure 5-6.

5.6.4 Carry Bypass Add/Subtract Unit
The DSRCP requires non-redundant addition/subtraction operations that must operate on operands

that can be up to 1024 bits long. To complicate matters further, this operation must be performed
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Figure 5-7: Modified bitsliced carry-bypass adder [113].

as quickly as possible, in as small an area as possible, and preferably using a modular bitsliced

implementation.

There are a wealth of fast addition techniques available to choose from such as carry-looka-

head, carry-bypass/skip, and carry-select. Carry-lookahead is the most time efficient as a hierarchi-

cal approach can compute n-bit additions in 0(1og2 n) delay, but its area overhead precludes its use

within the DSRCP. On the other hand, conventional hierarchical carry-select and carry-bypass/skip

implementations have O(jn ) delay, but don't lend themselves well to a modular, bit-sliced imple-

mentation as they require very wide AND structures and multiplexors that won't fit within the area

constraints of the DSRCP's processing element.

However, the modified carry-bypass/skip adder proposed in [ 113] yields a delay of 0(,

while lending itself to a very efficient, bitsliced implementation. The main difference between the

proposed adder and a conventional carry-bypass adder is that the propagate signal p7 is generated

in a serialized fashion and then used to determnine if the group carry-in cj will affect the individual

bitslice. If so, then ci is XORed with the sum output d; to produce the correct sum value si, as

shown in Figure 5-7. This approach is much better-suited to the bitsliced requirements of the

DSRCP as the wide AND structures of the conventional carry-bypass/skip adder are now trans-

formed to a serialized AND function that can be distributed between the bitslices very efficiently,

as shown in Figure 5-7.

Using this basic bitslice, the full addition is separated into groups of increasing length, each of

which computes its sum assuming a carry-in of zero. When the carry-out of the previous stage is

determined, both the output sum bits of the current stage and the group carry-out are corrected
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Figure 5-8: Carry propagation path in modified carry-bypass/skip adder.

immediately in parallel. In conventional carry-bypass approaches, once the group carry-in has

been determined correctly it must propagate through the group in a ripple-carry fashion.

The increasing group size is utilized to equalize the delay paths of the carry signals, as illus-

trated in Figure 5-8. In order to minimize the delay through the adder, one must find a mapping of

increasing group lengths whose sum spans the adder width (1024 bits in the case of the DSRCP).

The optimal grouping was found to be that of lengths that start at 5 and increase by one for each

subsequent group, until the final group which has the same length as the second last group (44).

The resulting adder structure has a critical path of approximately 45 adder delays. When consider-

ations for group-carry buffer delays are taken into account, the modified carry-bypass adder was

chosen to have a latency of four cycles to ensure its operation at a peak clock rate of 50 MHz at a

supply voltage of lV (tadd = 65.1 ns at the nominal process corner).

5.6.5 Reconfigurable Datapath
The reconfigurable datapath is where the primary operations of Montgomery multiplication/reduc-

tion, GF(24) multiplication, and GF(2") inversion are performed. The datapath utilizes three dis-

tinct modes of operation in order to accomplish each of these tasks, each of which is provided

through a small amount of reconfigurability that enables a variety of functions to be performed, but

which does not incur a great deal of overhead.

A study of each of these modes is described in the subsequent sections, culminating in the pro-

posed design of the reconfigurable processing element that is used within the DSRCP.
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5.6.5.1 Montgomery Multiplication and Reduction

In radix-2 form, Montgomery Multiplication reduces to the very simple round function

(PC, Ps)jI = (Pc, Ps)1 + bjA + qjN
2

where (Pc,Ps) is the carry-save format partial product accumulator, b1 is bitj of the B operand, and

qj is set to ensure that the numerator of EQ 5-5 is even so that right shift (i.e., division by two)

doesn't throw away information. Given that N is odd, qj is set if the LSB of the sum ((Pc,Ps) + b1A)

is set, which corresponds to Pso G b A = 1.

Montgomery reduction is performed using the same hardware and basic round function, but

with two different input configurations. The first configuration is utilized for performing Mont-

gomery reduction of the carry-save register pair (Pc, Ps). This operation requires the (Pc, Ps) regis-

ter pair be pre-loaded with the value that is to be reduced. During execution the A operand is

cleared in order to perform the round function

(Pc, Ps)1 + qjN
(Pc, Ps) + I = 2 (5-8)

with the value of qj= Pso. The second configuration is utilized to perform Montgomery reduction

of the A register, and requires the A operand to be pre-loaded with the value that is to be reduced.

At the beginning of execution the B operand is reset to the value I and the carry-save pair (Pc, Ps)

is cleared. This has the equivalent effect of pre-loading (Pc, Ps) with the A operand, and then per-

forming the round function of EQ 5-8 upon it to form the result A-2 mod N.

bi Ai Pci Psi

+

Xci Xc;- I

+

Pe-I Psi- Ni qj

Figure 5-9: Montgomery multiplication/reduction datapath cell.
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The above round functions can be implemented using the datapath of Figure 5-9. The required

circuitry is just two full-adders, two AND gates, as well as the registers for storing Pc, Ps, A, and

N. The B operand is stored in a right-shift register that processes the B operand from LSB to MSB.

5.6.5.2 GF(2") Multiplication

Mastrovito's thesis [80] serves as an extensive reference for various architectures for performing

multiplication within GF(2"). For the standard/polynomial basis multiplication that is used within

the DSRCP, there are several options from which the appropriate architecture can be chosen, and

the final implementation derived.

At the highest level, the designer must choose whether a parallel, serial, or hybrid parallel/

serial algorithm is to be used. Parallel algorithms compute each bit of the product in parallel, such

that the full result is computed in minimal time, but at the cost of 0(n2 ) gate complexity. For the

sizes of n considered in cryptographic applications (n > 150), this leads to impractical realizations.

A serial algorithm computes the output using a standard bit-serial multiplication algorithm, with a

partial reduction by the field polynomial included during each iteration. The resulting algorithms

require 0(n) cycles, and 0(n) gate complexity, which is much more practical for cryptographic

applications. A hybrid algorithm attempts to compromise between these two extremes by analyz-

ing 1 bits per iteration, leading to a multiplication algorithm that requires o(Fn/I1) cycles, and

0(n.1) gate complexity. However, given that the datapath must be able to perform several other

functions in addition to GF(24) multiplication, all of which map very well to the serial implemen-

tation, it was determined that a serial approach was best suited to the DSRCP.

Serial multiplication can be performed using two basic approaches: LSB first multiplication,

and MSB first multiplication. Both of these approaches are derived from the basic multiplication

equation:

C(x) = A(x) B(x) mod f(x) (5-9)

n - I
= A(x) - bix mod f(x)

i = 0

which can be decomposed into two separate forms, corresponding to the LSB and MSB first algo-

rithms.

The LSB algorithm decomposes multiplication into a sequence summations of bj-[xA(x)]ftx)

(where [ ]ftx) denotes reduction by ftx)), by exploiting the distributive nature of the reduction oper-
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CmI Cm-2 C, Cf)

clocked

Am- Am-, A A each
cycle

Pm-1 Bm- B0

Figure 5-10: Least significant bit first GF(2") multiplier architecture.

ation, and the decomposition of B(x) into its polynomial representation:

C(x) = [A(x) - B(x)]f(x) (5-10)

= [bo-x A(x)+b x A(x)+...+bm-IX- A(x)]f(x)

= bo[x A(x)]f(x)+bI[x A(x)]f(x)+... +bm - 1 [X A(x)]f(x)

The LSB-first approach can be implemented using the architecture of Figure 5-10. The advan-

tage of this approach is that it uses the same right shift register for the B operand as the Montgom-

ery Multiplication scheme. Unfortunately, it requires that three of the four registers within the

datapath be clocked on any given cycle, leading to a large amount of switched capacitance. Given

the need for energy efficiency, this additional overhead is unacceptable, so the LSB-first approach

was not utilized.

The second approach to serial multiplication is the MSB-first model in which multiplication is

performed by repeatedly shifting the accumulated partial products and adding in the new partial

products generated by scanning B(x) from MSB to LSB. The resulting value is then reduced, giv-

ing the decomposition:

C(x) = A (x) - B(x) (5-11)

= [(...((b -_A(x))x+bf_2A(x))x+...)x+bo]f(W

= [[...[[b_ IA(x)]f(W)' x + bn- 2 A(x)]f(x) X+...] * x + boA(x)]f(W

The MSB-first approach is implemented using the architecture of Figure 5-11. The disadvantage of

this approach is that the B operand must be left shifted, thus requiring a bi-directional shift register

for the B operand in order to implement Montgomery Multiplication as well. However, this is a
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clocked
each
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Figure 5-11: Most significant bit first GF(2") multiplier architecture.

small inconvenience, requiring very little additional wiring and overhead. The MSB-first architec-

ture only requires two of the four operands to be clocked on any given cycle which is a 33% reduc-

tion in the clock load compared to the LSB-first approach. Furthermore, while the B operand is

corrupted during the course of a multiplication, the A operand is not -- a feature that is exploited

during the implementation of more elaborate functions which call upon the GF(2") multiplication

operation (e.g., modular exponentiation and elliptic curve point doubling/addition). These advan-

tages led to the MSB-first architecture being used within the DSRCP.

The mapping of the MSB-first architecture onto the basic datapath cell used in Montgomery

Multiplication is very straightforward, and requires only one of the two full-adder cells that are

available (Figure 5-12). The cell takes advantage of the fact that a conventional full-adder's sum

output is equivalent to a three input addition over GF(2) when the carry-in is treated as just another

input. In the MSB-first approach, each cell must compute the function:

Pc. + = [Pc., - x + b.A ] (5-12)

= [Pcj, i _I+ bjAi]
=Pc, 1 +bjA+Ni -Pcj,m-I

where the Ni-Pcj,m1 term represents the reduction byf(x) as N is used to store the field polynomial

f(x) in binary form, and Pcj,1 is shifted into the x' position which, if it is a 1, will result in the

field polynomial vector being added into the result in order to reduce it.

5.6.5.3 GF(2") Inversion

As discussed in Section 3.5.6, there are a variety of techniques for performing inversion in GF(2").
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bi Ai P c

PCj

qj Ni

Figure 5-12: GF(2") multiplication datapath cell.

In hardware, a very simple, and as it turns out very efficient, means of implementing inversion uti-

lizes the binary extended euclidean algorithm shown in ALG 5-11. The algorithm is modified to

perform a multiplication in concurrency with the inversion, by initializing the Y variable to be the

multiplier value (if no multiplication is required, the Y register can simply be initialized with the

value 1). This optimization provides significant savings during elliptic curve point operations as it

eliminates one multiplication, reducing the total cycle count by approximately 18%. The algorithm

can be further optimized by parallelizing the two embedded while loops, which effectively halves

the number of cycles required as the dominant amount of time is spent in this portion of the algo-

rithm. The net result of these optimizations is a universal inversion implementation that works over

any field of order 8 n 1024 and takes at most four multiplication times (Tmuit = n cycles), and

on average 3 .3 Tmult in order to invert (and multiply) an element of GF(2").

Implementing ALG 5-11 on the datapath cell used in both Montgomery and GF(2") multipli-

cation requires some degree of reconfigurability so that the computational resources can be re-used

to perform different parts of ALG 5-11. The basic requirements are two two-input adders over

GF(2) to perform each of the parallel while loops, and the two summations in each branch of the

IF clause. Since all operations are performed in parallel, each iteration of the parallel while loops

requires one cycle to perform the actual operations. An additional cycle is incurred when the exit

condition of the parallel while loops is satisfied (i.e., Wo = X0 = 1) as it must be detected via an

additional iteration of the loop. The second part of the algorithm requires a single cycle as well.

The two datapath adders can be used as two input GF(2) adders by zeroing one of their inputs and

165



CHAPTER 5 DOMAIN SPECIFIC RECONFIGURABLE CRYPTOGRAPHIC PROCESSOR (DSRCP)

Input: W: a, the element of GF(2) that is to be inverted
X: N, the binary representation of the field polynomialf(x)
Y: b, the element of GF(24) that is to be multiplied by the computed inverse
Z: 0, just plain old zero!

Output: Z = b/a

Algorithm: while (W != 0)

while (Wo == 0)
W = W/2;

Y = (Y + Yo-N)/2;

endwhile
while (XO == 0)

X = X/2;

Z = (Z + Zo-N)/2;

endwhile
if (W >= X)

W = W + X;

Y Y + Z;

else
X W + X;

Z = Y + Z;

endif
endwhile

Algorithm 5-11: Extended binary euclidean algorithm used in the DSRCP.

then utilizing multiplexors to allow the adder inputs to be changed on the fly to accommodate

ALG 5-11. The corresponding architecture and its resulting mapping to the datapath cell is shown

in Figure 5-13

5.6.5.4 Redundant Number Representation

A redundant carry-save number representation is used within the datapath to eliminate carry-prop-

agation. Initially all internal operands (i.e., A, B, and P) were planned to be represented using a

carry-save format. Unfortunately, this approach has several inefficiencies that make it unsuitable

for the DSRCP.

Firstly, if B is stored in carry-save format, then a bit-serial full-adder must be inserted into the

critical path to compute the b digit that is required during each multiplication iteration. Secondly,

if A can be stored in carry-save format, it requires an additional row of full adders to allow for the

accumulation of the two carry-save values A and P, as shown in Figure 5-14. Thirdly, the size of

the register required to store the intermediate partial products will be larger than that of the other

operands, thereby introducing problems during the physical implementation by requiring addi-

tional bitslices solely for storage purposes. To see this, consider the expression for each iteration of

Montgomery Multiplication and recall that the magnitude of A is bounded from above by 2N:
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Figure 5-13: Basic GF(24) inversion architecture resulting datapath cell.

(Pc, Ps)O = 0
(Pc,Ps)1 = ((Pc,Ps)o+bj(Ac,i

(Pc, Ps) 2 = ((Pc, Ps) 2 + b(Ac,

k

As)+qjN)<(2N+N)/2 = 3N/2
As)+qjN)<(3N/2+2N+N)/2 = 9N/4

(5-13)

Thus, (n + 1) bits will be required for both Pc and Ps. From an algorithmic standpoint, the

increased magnitude of the partial product would require additional iterations of Montgomery's

Multiplication Algorithm, increasing the control complexity as multiplication would now be a spe-

cial case, and require its own unique correction value (i.e., 2 2(n+1) as opposed to the value 2 2n used

in both Montgomery reduction and modular reduction.

However, if only the partial product is stored in redundant format then repeated modular mul-

tiplications/squarings will require a modular addition operation between operations. This intro-

duces a 10 cycle overhead per multiplication operation, which is approximately 1-2% overhead on

a 512 or 1024 bit modular exponentiation. Since all of the aforementioned problems can be

I Z1:0 oS,
01 W+X Y+Z
10 Z+N LY+N

(Pc, Ps)k = 3N 2- =
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avoided by using this approach, it was adopted within the DSRCP.

+ + I -r

Figure 5-14: Carry-save datapath using redundant A and P operands.

5.6.5.5 Final Datapath Cell Design

The final datapath cell is shown in Figure 5-15. In all it contains two full-adders, two AND gates, 6

2-to- I multiplexors, and 6 register cells (the exponent register, EXP, and modulus/field polynomial

register, N, are not shown). The reconfiguration muxes are controlled through the use of 8 control

lines (3 for the adder muxes, and 5 for the register muxes).

b/1 A; Pc; Pc , Ps;

Yci

B;

Y I I
Ys1 qjI1 Ni

Xc 1

Ys
reg

Ai+j Ai
Xsi, 1

Ys -
reg -

B -
Ysi~ 1>

Xs
reg

Yci s

Xsi
regi

Figure 5-15: Final reconfigurable datapath cell.
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5.7 Implementation
The DSRCP was implemented using a modem 0.25 [m single poly, 5-layer metal CMOS process

furnished by National Semiconductor. The design style is entirely static, edge-triggered CMOS in

order to ensure a robust implementation.

An annotated die photograph of the DSRCP is shown in Figure 5-16, and the relevant imple-

mentation details are provided in Table 5-4. The various circuit structures and functional blocks

that make up the DSRCP are described within this section. In addition, the transistor level design

and implementation of the SHA- 1 Hash Function Engine is also described.

Figure 5-16: DSRCP die photograph.
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Die Dimensions 2.9 x 2.9 mm 2 (core)

4.2 x 4.2 mm 2 (chip)

Device Count 880,000

PMOS Device Threshold Vtp = -0.51 V

NMOS Device Threshold VtN =0.41 V

Table 5-4: Process details for the DSRCP.

5.7.1 Controller and Microcode ROMs

As described in Section 5.4.1, the DSRCP is controlled in a three tiered manner that utilizes two

separate microcode ROMs arranged in a hierarchical fashion with their associated controller

FSMs. Instructions are initiated using the 30-bit instruction word and the START input of the pro-

cessor, which indicates to the processor that the instruction inputs are valid and can be sampled on

the next rising clock edge. This will enable Controller #2 which can in turn enable Controller #1

using a similar START signal. Controller #1 can then enable the hardware FSM's of Controller #0

which perform the lowest level functions. When any of the controllers has completed its function,

it signals the next controller up in the control hierarchy using the appropriate DONE signal.

Hence, each set of START/DONE signals forms a handshake as illustrated in Figure 5-17 which

shows the flow of control information in the control hierarchy. Figure 5-17 also indicates the loca-

tion of the pipeline register that is used to minimize the critical path of the control logic.

Each ROM-based controller consists of a small ROM core, an input selector which gates the

appropriate values onto the corresponding operand signals, and a control FSM that also serves as

Controller #2 Controller #1 Controller #0
rd -p 0 rd2  [M -- rdI -1

rsO Control rs0 2  - Control - rsO1 -g Mult/Inv DSRCPrsl FSM#2 rsl 2 -W FSM#l - rslI -w FSM --No- Controlrs2 -g - rs22 -I - rs2l e Signalslength -0 --0-ength2-y 11 lengthi I soto
start Input art2Input start Control

done 2  Selector done, Selector doneo

() ....... ...L ..... L L
start ___________

done
2 _ _ 

_
LCdntroller #2 Active

start2

done

Con troller #1 Active

start1

doneo

Controller #0 Active

Figure 5-17: DSRCP control block diagram and sample timing diagram.
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Figure 5-18: Static ROM example.

the ROM address generator. The resulting controllers emulate small microcontrollers. Given the

size of the ROMs that were required (69 and 67 words respectively for ROM #2 and ROM #1), a

four bank partitioning scheme was utilized in order to allow a static ROM implementation that

uses simple inverters as the sense amplifiers (Figure 5-18). The inverters are sized such that their

switching threshold is biased towards the supply rail in order to compensate for the lower conduc-

tance of the PMOS devices. The use of static ROMs eliminates the need for the use of conven-

tional pre-charged techniques, thereby simplifying (eliminating) all timing requirements, and

providing an implementation that will scale across a wide range of operating voltages. The cost of

using the static ROMs is the requirement of complementary row select lines, which will increase

the effective switched capacitance of a ROM access. However, when the energy consumption of

the ROM is analyzed, the energy contribution of the select lines is approximately 10%, which

means the overhead of using the static scheme is just 5% of the ROM energy. In terms of the entire

processor, the energy consumption of the ROMs is less than I%, making the overhead insignifi-

cant.

5.7.2 Shutdown Controller

As described in Section 5.4.2, the shutdown controller is responsible for disabling unused portions

of the datapath in order to minimize the amount of unnecessary switched capacitance within the

DSRCP.

The DSRCP is capable of shutting down the datapath row by row, in 32-bit increments using
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Figure 5-19: Shutdown strategy in the DSRCP.

both clock and control signal gating which is performed in the row drivers that are found along the

inside edge of the two halves of the datapath, as shown in Figure 5-19. The gating is performed

using simple AND structures. The gating signal is generated off the falling edge of the main clock

to ensure that edge-triggered signals generated from the main clock (e.g., the register file clocks)

are gated during the low phase of the clock to eliminate any spurious glitches that might occur by

ANDing the clock with a late-arriving enable signal while the clock is high.

5.7.3 1/0 Interface

Operands used within the processor can vary in size from 8-1024 bits (1025 bits in the case of field

polynomials), requiring the use of a flexible 1/0 interface that allows the user to transfer data to/

from the processor in a very efficient manner. The processor's floorplan is based on two banks of

processing elements. Each bank contains 16 rows, with 32 processing elements per row. This clus-

tering of 32 PE's per row maps ideally to a very efficient 32-bit interface that requires at most 32

cycles to load or unload a 1024-bit operand. This arrangement also allows the use of vertical bus-

sing for the distribution of [/0 data, which minimizes the area overhead required as few signals are

run vertically. Thus, there is an abundance of routing space. In addition, by using a shared bus

scheme, only two wires per bitslice, 64 wires in all, are required (32 for input and 32 for output). In

comparison, were the 1/0 data to be distributed horizontally, it would require 32 wires per row for

a single-cycle, full parallel distribution. Given that all of the horizontal routing resources are

already allocated for control signal distribution, the required routing resources would need addi-

tional area. Of course, one can always trade off speed for area by using multiple-cycle, time-multi-

plexed data distribution on fewer wires.
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Figure 5-20: I/O bussing architectures used within the DSRCP.

The decision to utilize two separate busses for input and output enables static bus repeaters/

latches to be inserted into the busses at the vertical midpoint of the two banks, allowing the busses

to be segmented in order to minimize the capacitive load seen by any given driver on the bus. This

allows minimum-sized drivers to be used and eliminates the unnecessary charging/discharging of

large portions of the bus capacitance by near-end drivers (e.g., rows 8-15 and 16-23). The final

input/output bus architecture is demonstrated in Figure 5-20.

Operands within the datapath are distributed among the PEs as shown in Figure 5-21. The LSB
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Figure 5-21: Direction of operand flow within the DSRCP datapath.
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is stored in the leftmost PE of the first row of the right bank, and the MSB is stored in rightmost

element of the top row in the left bank. As a result, when data is read in/out vertically, every other

row is reversed in terms of its bit-order, requiring the use of a multiplexor-based swapping unit to

ensure a consistent bit-ordering. This re-ordering can be done directly at the processor's interface

to enable a very compact layout, and can be controlled using the interface logic that generates the

row enable signals for the I/O interface.

5.7.4 Reconfigurable Datapath Bitslice

The reconfigurable datapath bitslice represents the main circuit element of the DSRCP both in

terms of functionality and area resources. The bitslice consists of five distinct components: an 8-

word register file, I/O interface, fast comparator, fast adder, and the reconfigurable datapath cir-

cuitry with local storage. The bitslice architecture is shown in Figure 5-22.

The physical layout of the bitslice is shown in Figure 5-23 along with a block diagram depict-

ing the mapping of the various circuit elements within the bitslice. The map is required due to the

density of the final layout which makes it difficult to identify individual circuit features. The den-

sity of the layout is much improved over that of the ESEP (Figure 4-17) due to the abundancy of

metal layers which allow for over-cell routing, leading to a very dense final layout that is approxi-

mately 30 x 150 pm 2 . As in the ESEP, the layout was designed such that all inter-cell connections

are made via abutment of the layout in both the horizontal (for all control signals) and vertical (for

I/O bussing) directions.

174



5.7 IMPLEMENTATION

IOOUTi

1OSEL

CLKIO

CLRIO

CLEARREG
7 :0 -*

CLKREG
7:0

ROSEL
2:0

R 1 SEL 2:0

CMPSELA 1:0--

CMPSELB 1 :0-0]

ADDSELA 1 :0

ADDSELB1: 0

SUB

CARRY

Pi- I

Gj_

SUM1

RSHIFT

CLKSUM

CLRSUM

REGSEL
5:0

ADDSEL
2:0
Ai
B

Bi_- --
PCi

PS

PC ~

XS

YC

Ys.

bj 1
CLKREG 5:0

CLRREG
5:0

4

8
0-

Register File ,-

Comparator 2-

C4 w C,

07MZ U z

Adder

CT ~ n

OO
2 -

04~

Reconfigurable
Datapath

0 0

IO0UTi

lOINi

t
IOSEL

-P CLKIO

O CLRIO

- CLEARREG
7 :0

CLKREG
7 :0

ROSEL
2 :0

RISEL
2 :0

CMPSELA 1 :0

CMPSELB1 :0

GTi

EQ1

ADDSELA 1 :0

ADDSELBI:0

SUB

CARRY

Pi

Gi

SUMi+,

RSHIFT

CLKSUM

CLRSUM

REGSEL5:0

ADDSEL
2 :0

Aisj
Bi+,
Bi

PCi+I

PSi+1
Pc
xCi
xSi+I

YCi+I

YSi+1

CLKREG
5:0

CLRREG
5 :0

IOINi

Figure 5-22: DSRCP bitslice architecture.

tl

I/0 Interface,,-
0
0

.zIIIzIThI

TFPTf lIT

175



CHAPTER 5 DOMAIN SPECIFIC RECONFIGURABLE CRYPTOGRAPHIC PROCESSOR (DSRCP)

R2H R3

R6 R7

I/o Interface

Comparator

Adder

x
A B

N Exp

Logic

Muxes

Adder #1
| Adder #2

glji; ow ;a

ggI

U -6

4-30 gim

Figure 5-23: Layout of the DSRCP processing element.

C

t J,

............. ........... ..... ...........

" I

176



5.7 IMPLEMENTATION

en iowb

115
*b Al m [18 15

_ A0 d q wb

io.,nSeI

c l r i o r
C~ ~ ~ r,,i

en... out 

i-u

Figure 5-24: I/O cell bitslice schematic.

5.7.4.1 I/O Cell

The 1/0 interface was initially planned to provide a background data loading/unloading mecha-

nism that would operate in parallel to conventional processing functions within the DSRCP in

order to hide the latency of the loading/unloading operations. Hence, the cell contains memory to

store the value being loaded/unloaded while the I/O interface is activated. However, the resulting

complexity in both the control and programming model of the processor was deemed unnecessary

due to the relative infrequency of the loading and unloading operations compared to the proces-

sor's other functions. Hence, a much simpler blocking I/O interface was adopted.

The resulting 1/0 cell bitslice schematic is shown in Figure 5-24. The cell consists of the local

register that can be loaded from either the internal writeback bus in the case of an unloading oper-

ation, or the 1/0 input bus in the case of a load. Similarly, the register's value can then be driven

onto either the internal writeback bus for loads, or the I/O output bus for unloading operations.

5.7.4.2 Register File

As described in Section 5.6.1, the register file of the DSRCP is implemented using TSPC registers

with an asynchronous clear signal. The only exception to this rule is the LSB of RO which utilizes

a TSPC that can be pre-set asynchronously. This feature is included for operations such as modular

inversion which require a register to be loaded with the value 1, which eliminates the need to

explicitly load this value into the register file using the external I/O interface.

Figure 5-25 shows the schematic of the register file bitslice that is used within the DSRCP. The

register file features two read ports (rsO and rsl), and a single write port (wb). The register select is

managed using two 8-to-I transmission-gate multiplexors, and the three enable signals (en_rORsO,

en_rIRsl, and enrslWb) are used to control the C2 MOS tri-state drivers that interface to the

internal busses.
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Figure 5-25: Register file bitslice schematic.

5.7.4.3 Comparator Unit

The comparator bitslice of the DSRCP consists of the operand selection and initial comparison

stages of the fast magnitude comparator unit described in Section 5.6.3. As the schematic of Fig-

ure 5-26 shows, the comparator can choose each of its inputs A and B from any of three sources.

The A input can come from either the registered output of the adder unit (regSumi), the Ps register,

the first operand bus (rs0;), or the zero value. The B input can come from either the modulus regis-

seIA<0>
seIA< 1>

regSum A3nujx4 17

gnd...t

SeIB<b

eonxorWb D

Figure 5-26: Comparator bitslice schematic.
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(GTi, EQ) for 32 bitslices in the row

(GTrow, EQrow)

Fold tree into a single row of comparator circuits.

(GTj, EQ) for 32 bitslices in the row

5 Routing
Channels
Required

(GTr()w, EQrw)

Figure 5-27: Comparator tree topology mapping into a bitsliced format

ter N, the Pc register, the second operand bus (rslI), or the zero value. These input combinations

were chosen based on the lessons learned during the development of the software-based imple-

mentations. The default inputs to the comparator are the zero values in order to isolate the compar-

ator logic and prevent it from switching unintentionally. This eliminates any wasted power due to

unnecessary spurious transitions.

The physical layout of the comparator bitslice provides space for two comparator circuits in

addition to the circuitry of Figure 5-26. This allows the log 2n level tree topology of the comparator

circuit to be mapped into a single row amenable for a bitsliced implementation, as shown in Figure

5-27. Note that the dual row mapping shown in Figure 5-27 is an artifact of the diagram used, the

actual implementation folds everything into a single row, requiring 5 additional routing channels to

handle the interconnection of the tree, as seen in the bitslice layout of Figure 5-23.

5.7.4.4 Adder Unit

The adder unit bitslice circuit schematic is shown in Figure 5-28. The adder consists of the modi-

fied carry-bypass/skip adder cell described in Section 5.6.4, a local register for storing the result so

that it can be used in future operations such as subtractions for performing modular correction, and

multiplexors for both input operand selection and right shifting of the result (as required during the

modular inversion operation). Both the output of the adder (sumi) and its registered version (reg-
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Figure 5-28: Adder unit bitslice schematic.

Sumi) can be driven onto either the rsO or writeback busses. The rsO bus is used for writing back

the adder output to the reconfigurable datapath's local registers. By using the rsO bus in this man-

ner we're able to eliminate the need for an additional multiplexor input in the reconfigurable data-

path's circuitry, as will be seen in Section 5.7.4.5.

Operand selection for the adder is performed using almost the same strategy, and input map-

ping, as that used in the comparator unit (Section 5.7.4.3). The only difference between the two is

the left shifting (i.e., doubling) of the Pci input, to simplify the conversion of the redundant carry-

save value stored in (Pc, Ps) into a non-redundant binary form using modular addition. Subtraction

is performed using an XOR gate to invert the B operand, and a I is injected into the adder's carry-

in signal in order to negate operand B using its two's complement representation. Note that the A

operand's signal path includes a tri-state buffer which is required to eliminate the race condition

that results when the A operand is read from the rsO bus and the adder's non-registered output is

then driven onto the rsO bus. The tri-state buffer ensures that the resulting feedback path is broken.

The physical layout of the adder cell also provides space for inserting a carry-generator circuit

and its associated buffering within any given bitslice.

5.7.4.5 Reconfigurable Datapath

The reconfigurable datapath bitslice consists of two main circuit elements: the six bits of local

------ D sumi

--- <D Wbi

D regSumi
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Figure 5-29: Reconfigurable datapath bitslice schematic.

storage for the Pc, Ps, A, B, N, and EXP registers, and the reconfigurable adder/AND circuits that

implement the various functions described in Section 5.6.5. The resulting circuit implementation is

shown in Figure 5-29. The registers used for local storage are implemented with the same TSPC

style used within the register file. The reconfigurable adder cells are implemented using area-effi-

cient transmission-gate adder cells, whose schematic is shown in Figure 5-30.

In addition to these circuit elements, the reconfigurable datapath requires two n-bit and two

n/2 -bit multiplexors which are implemented using the folding technique described in Section
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Figure 5-30: Reconfigurable transmission-gate adder schematic.

5.7.4.3 for the comparator circuitry. The first n-bit multiplexor is used to select the most significant

bit of the partial product accumulator during GF(2') multiplication in order to perform the modu-

lar reduction described in the multiplication operation of EQ 5-12. The MSB-first GF(2") multipli-

cation architecture of the DSRCP also requires the ability to select the most significant bit of the B

operand, which is done via the second n-bit multiplexor. The two n/2-bit multiplexors are used to

select the next even/odd bit pair from the EXP register that is required for implementing the radix-

4 exponent-scanning algorithm used in both modular and GF(2") exponentiation (ALG 5-6 and

ALG 5-7 respectively). These multiplexors, and their associated control and output signal routing

can be seen in the bitslice's physical layout (Figure 5-23).

5.7.5 SHA-1 Hash Function Engine

In 1993 the National Institute of Standards (NIST) proposed a standard for a cryptographically

secure hashing algorithm. From the perspective of the NIST standard, a hashing algorithm is

essentially a many-to-one mapping that takes k-bit input vectors, and outputs 1 bit output vectors

such that k > 1, and the following properties hold:

- given any hash value, y =f(x-), it is computationally infeasible to find the input vector,
xi, that generated yj using hash function ft.) (i.e., the functionf is non-invertible or one-
way)

- each output value should appear equally likely given a uniform distribution of input val-
ues

- it's computationally infeasible to find two distinct inputs, x; and x, such that they map to
the same output (i.e., f(x;) = f(xj))

In terms of the P1363 standard, hash functions are used to generate secret keys from a shared
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Input: x: a binary value whose length is padded to a multiple of 512 bits (using the padding tech-

nique described in [46]), the length is represented as 16m.

Output: y: a 160-bit hash value

Algorithm: h, = 0x67452301, h2 = OxEFCDAB90, h3 O= x98BADCFE

h4 = Ox10325476, h5 O= xC3D2E1FO

yj = 0x5A827999, Y2 = Ox6ED9EBA1, y 3 O= x8F1BBCDC

Y4 = OxCA62C1D6
initialize (H1,H 2 ,H3,H 4 ,H 5 ) = (hj,h 2 ,h 3 ,h 4 ,h 5 )

for (i = 0; i < m; i = i + 1)
for (j = 0; j < 16; j = j + 1)

X[j] = x[16-i+j]

endfor
for (j = 16; j < 80; j = j + 1)

Xlj] = lrot(X[j-31 X[j-8] ^ X[j-141 ^ X[j-16]),1)

endfor
(A,B,C,D,E) = (H 1 ,H2 ,H3 ,H 4 ,H 5 )

for (j = 0; j < 20; j = j + 1)
t = lrot(A,5) + ((B&C) I (f&D)) + E + X[j] + yi

(A,B,C,D,E) = (t,A,lrot(B,30),C,D)

endfor
for (j = 20; j < 40; j = j + 1)

t = lrot(A,5) + (B^C^D) + E + X[j] + y2
(A,B,C,D,E) = (t,A,lrot(B,30),C,D)

endfor
for (j = 40; j < 60; j = j + 1)

t = lrot(A,5) + (B&C I B&D I C&D) + E + X[j] + Y3
(A,B,C,D,E) = (t,A,lrot(B,30),C,D)

endfor
for (j = 60; j < 80; j = j + 1)

t = lrot(A,5) + (B^C^D) + E + Xlj] + Y4

(A,B,C,D,E) (t,A,lrot(B,30),C,D)

endfor

(H 1,H 2 ,H 3 ,H 4 ,H 5 ) (H 1 +A,H 2 +B, H 3 +C,H 4 +D,H 5 +E)

endfor
y = (Hj l H21|H3||H4||H5)

Algorithm 5-12: The Secure Hash Algorithm, revision 1 (SHA-1).

secret binary value generated using any of the documented asymmetric key agreement techniques.

The hashing enables users to hide the secret binary value in the event that an attacker is able to

recover the secret key being used (as the hash is non-invertible). Given that the shared secret is not

compromised, a new secret key can be quickly generated by having both parties agree upon a new

conditioning step prior to hashing (e.g., one could rehash the shared secret after XORing it with a

publicly known value).

The original NIST proposal, known as the Secure Hash Algorithm (SHA) [45], was found to

have weaknesses, which were addressed by a design revision that modified SHA into its current

incarnation SHA-1 [46]. The SHA is actually based upon the construction of the MD4 algorithm

developed by Rivest [106], but modified to counteract several weaknesses that were found within
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Figure 5-31: SHA-1 architecture.

MD4, as well as to provide additional measures to increase its lifetime (e.g., using 160 bit chaining

values, as opposed to MD4's 128 bit values).

The SHA-I algorithm is given in ALG 5-12, where irot (x, y) is the left rotation of the vec-

tor x by y bit positions, is the concatenation operation, and all additions are assumed to be mod-

ulo-2 3 2

ALG 5-12 is implemented using the circuit shown in Figure 5-31. The Hi reset to their respec-

tive hi values, while the yj values are generated in the control logic. The adders that are used to

update the Hi values are isolated using transmission gates in order to eliminate spurious transitions

in the adders due to the constantly changing chaining variable values (A, B, C, D, and E) which are

updated every round. The 32-bit adders are implemented using the same modified carry-bypass/

skip architecture of Section 5.6.4.

The XU] values are computed in the 512-bit circular buffer which emulates ALG 5-12's 80-

word XU] array using a single 16-word array whose values are updated during each cycle of the

SHA-I algorithm. The circular buffer is initially loaded during a 16-cycle load phase that preceeds

each 80-cycle computation of the new hash values. Hence, 96 cycles are needed to process each

512-bit input block. Note that this design requires no external memory to process each 512-bit

block, although it does require an external processor to handle the data padding operation in which

an arbitrary length input vector is mapped to a sequence of 512-bit blocks.

I
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Figure 5-32: SHA- I 512-bit circular buffer.

Power consumption (and hence energy consumption) is minimized through the use of aggres-

sive shutdown techniques that isolate unused portions of the circuitry, and through a parallelization

of the circular buffer which reduces its operating frequency and power by a factor of four (Figure

5-32). This parallelization exploits the fact that new values of X[j] are computed using only four

other values of X. Hence on any given cycle, only four values of X need to be updated.

The above design has been implemented at the transistor level, simulated using Synopsys'

Timemill and Powermill simulation tools, and the circuit performance has been evaluated using

Hspice. Under typical operating conditions (IV power supply @ 50 MHz clock rate), the SHA-I

engine is capable of hashing at a rate of 266 Mbps at a power consumption of approximately 800

[tW (assuming 50% power overhead for interconnect), or 3 pJ/bit. In comparison, an optimized

assembly language software-based solution executing on the SA-1 100 has a hashing rate of just

33.9 Mbps at a power consumption of 352.5 mW, for 10.4 nJ/bit. Hence, the hardware-based solu-

tion described here is approximately 3.5 orders of magnitude more energy efficient than the opti-

mized software-based solution.

The actual circuit schematics for the SHA- 1 engine are provided in Appendix D.

5.8 Verification
The DSRCP test strategy mirrors that of the ESEP, with several levels of verification at different

stages of the design hierarchy. Given the programmable nature of the DSRCP though, the overall

testing is much more involved than that of the ESEP.
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Initially the architecture is verified using a bit-true simulator developed in the C Programming

Language, whose accuracy is verified through the use of publicly available multi-precision modu-

lar arithmetic, GF(2") arithmetic, and Elliptic Curve arithmetic packages. The bit-true simulator is

also used to gather performance statistics via extensions that enabled it to track the cycle counts of

the various operations.

The bit-true simulator also features the capability to generate test vectors for the switch level

verification of the processor using structural Verilog derived from schematic level descriptions.

The Verilog simulations features a much more complex testing program, one that is capable of

stressing the processor across its entire suite of functions, as well as all configurations (e.g., oper-

and sizes). The Verilog simulation results are also used to augment the initial performance statis-

tics, giving a very accurate estimate of the processor's expected performance. In addition, the

Verilog simulations provide access to cycle-by-cycle test vectors which are then used to perform a

much more detailed schematic-level simulation using the aforementioned Timemill and Powemill

simulators. The simulations are repeated for netlists annotated with parasitic capacitances

extracted from the DSRCP's physical layout.

The fabricated parts are tested using a special-purpose printed circuit board (Figure 5-33) that

Figure 5-33: DSRCP test board.
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Figure 5-34: DSRCP test board block diagram.

allowed the DSRCP to be interfaced directly to a PC running a test program that emulated the Ver-

ilog testfixture used in previous stages of the verification procedure. This test program is used in

conjunction with a Tektronix TLA-714 digital logic analyzer mainframe in order to verify the

functionality of the DSRCP. Power consumption measurements are performed using a Keithley

SourceMeter to power the DSRCP.

5.8.1 DSRCP Test Board

The programmable nature of the DSRCP requires a much more elaborate testing platform than the

ESEP to allow for real-time interaction with the processor in order to sufficiently test its function-

ality. In addition, the basic requirements of a 32-bit databus interface and a 30-bit instruction word

resulted in the development of a test board that features an interface to the PC for real-time stimuli

generation via a PCI-based data acquisition card with four 8-bit asynchronous I/O ports.

The 8-bit asynchronous data interface of the PC and the 32-bit synchronous data interface of

the DSRCP are coupled through the use of asynchronous FIFOs controlled by the test board's

Controller FPGA (Figure 5-34). The input FIFOs allow data to be loaded asynchronously from the

PC in 8-bit bytes in a sequential manner, and then loaded into the DSRCP synchronously as a 32-

bit word that is aligned with the processor's clock. Similarly, the output FIFOs are loaded synchro-

nously with the 32-bit words output by the processor, and then output to the PC asynchronously in

8-bit bytes. The Controller FPGA also assembles the 30-bit instruction word from 5-bit nibbles

(this rather odd value is dictated by the limited number of pins on the PC's data I/O card) and han-
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dles the START/DONE handshaking protocol used by the DSRCP. The test board includes a stand-

alone testbed for the DSRCP that is intended for at-speed characterization using a Tektronix

TLA7PG2 digital pattern generator and TLA-714 digital logic analyzer. This additional port is

required due to the performance limitations of the asynchronous FIFOs which ultimately limit the

maximum testing speed of the DSRCP to 45 MHz.

5.9 Experimental Results
The DSRCP's operation is verified for all instructions within the DSRCP's ISA, with operand

sizes ranging from 16 to 1024 bits in 16-bit increments. These sizes allow us to verify operation of

the processor with operands that terminate both at the row boundaries and within the middle of the

row. As a result, we are able to verify that the processor will operate correctly for all possible oper-

and sizes from 8 to 1024 bits. For all tests the processor is powered using a Keithley 2400

Sourcemeter in order to allow for both accurate control of its supply voltage and accurate measure-

ment of the processor's power consumption.

The DSRCP is fully functional for all instructions, at all operand sizes, over a range of operat-

ing frequencies from 3 to 45 MHz (as mentioned in Section 5.8.1 the maximum operating fre-

quency is a result of the FIFOs used in the test board and not the DSRCP). At the peak measured

operating point of 45 MHz, the DSRCP requires a supply voltage of 1.8V and dissipates at most

58mW. From these measurements it's estimated that the DSRCP will operate at its peak operating

frequency of 50 MHz at a supply voltage of 2V and power consumption of 74mW. Note that this

supply voltage is a factor of 2 higher than the intended design point of IV @ 50 MHz, and the cor-

responding speed of the processor at IV is 15 MHz, a 3x reduction in performance. This reduction

in performance is somewhat surprising given that simulations performed using the final layout

with extracted parasitic capacitances demonstrated a worst case operating point of 1.5V @ 50

MHz 10 . Unfortunately, characterization data is currently unavailable for determining the actual

process performance relative to the circuit models used during design and simulation to verify

their accuracy. Despite the mismatch in performance, the maximum switched capacitance of the

final implementation (0.37 nF) is close to the expected value derived from simulation (0.3 nF).

10. Due to the large device count of the resulting extracted netlist of the DSRCP (-880,000 devices
+ -160,000 parasitic capacitors), extracted simulations required approximately four weeks to
run so time constraints allowed for only a single simulation. The operating point for this simula-
tion was chosen conservatively to be 1.5V @ 50 MHz in order to ensure verification of the func-
tionality of the design.
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The minimum operating voltage of the DSRCP is 0.68V, which is achieved at clock rates up to

3 MHz and a peak power consumption of 525pW. This minimum voltage is dictated by the mini-

mum operating voltage of the level-shifting circuitry used within the DSRCP to interface the lower

core voltage to the 2.5V interface voltage used on the test board.

Operation Cycle Counts

REGLOAD, REGUNLOAD 2-32

REGMOVE, REGCLEAR 2
ADD/SUB 4

MODADD, MOD_SUB 4-10

COMP, GFADD 2

Table 5-5: Performance of utility instructions within the DSRCP.

Table 5-5 shows the performance of the DSRCP instructions whose performance is indepen-

dent of the operand size (with the exception of REGLOAD and REGUNLOAD of course). Fig-

ure 5-35 shows the performance of those DSRCP instructions whose execution time is

proportional to the size of the operands. The results are normalized relative to the operand size in

order to better illustrate this proportionality. The resulting performance is as predicted in the ear-

lier design discussions of Section 5.5. The performance of the cryptographic primitives required

for IF, DL, and EC-based cryptography are shown in Figure 5-36. Several important performance

points are highlighted for easy comparison with other reported implementations in Table 5-6. The

DSRCP's performance compares quite favourably; although several solutions quote higher rates,

they represent dedicated solutions which cannot perform any other functions. From a power con-

8 - - - -.-....-..-..-.
MODINV (not shown, -14.5)

6 EC ADD/DOUBLE
~5.5 cycles/bit

4 GF INV/INVMULT
-3.3 cycles/bit

MOD, MOD_MULT
2 -2 cycles/bit

GFMULT, MONTREDUCE -Icce/i
MONTREDUCEA1 cycles/bit

0
0 256 512 768 1024

Operand Size (bits)

Figure 5-35: Performance of several DSRCP instructions.
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Modular/GF(2n) Exponentiation Operand Size (bits)
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Tmodexp = 32
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Tmodex- 8.2ms @ 512b GF(2n) Exponentiation

Tecmult = 14.

- Elliptic Curve

LOAVAPoint Multiplication

64 128

.Ams @ 1024b

5mns @ 256b

192 256

Elliptic Curve Point Multiplication Operand Size (bits)

Figure 5-36: Performance of various cryptographic primitives for IF, DL, and

EC-based public key cryptography.

sumption perspective, our solution represents a significant reduction in power consumption com-

pared to previous solutions whose power consumption was reported.

Power Operand Time per Cycles per Clock

Design Consumption Size Operation Operation Rate

(W) (bits) (ms) (Mcycles) (MHz)

Ishii [57] 2W 1024/512 100/25 - 40

Ivey [59] - 512 <8 - 150

Orup [95] - 512 5 0.125 25

Chen [281 - 512 21 1.05 50

Yang [138] - 512 4.3 0.54 125

Guo [53] - 512 1.8 - 143

Leu [77] - 512 4.6 0.53 115

Royo [I10] - 768 10.6 - 50

Satoh [113] 0.33 1024 23 - 45

Vandemeulebroecke [128] 0.5 1024 125 - 25

Shand [121] - 1024/512 6/0.85 - 40

Yuliang [139] - 1024 650 - 20

DSRCP < 75 mW 1024/512 32.1/8.2 - 50

DSRCP w/CRT < 45 mW 1024/512 17/4.5 - 50

Table 5-6: Reported implementations of Modular Exponentiation functions

Unfortunately, as mentioned in Section 1.2.4, there are few reported implementations of ellip-

tic curve and GF(2') cryptographic hardware that can be used for comparison. However, for those

that have been reported, the DSRCP performs much better in terms of the time required to perform
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the required Elliptic Curve point multiplication assuming a randomly chosen point multiplier with

uniform statistics (Table 5-7). Note that both of the previously reported implementations make no

attempts to thwart timing attacks, so they are able to skip over zero-bits in the multiplier leading to

a performance improvement relative to the constant execution time approach of the DSRCP.

Despite this optimization, the DSRCP still outperforms the reported solutions, and in terms of the

underlying elliptic curve addition and doubling operations the DSRCP achieves a much more effi-

cient implementation requiring just 5.5 cycles per bit, as compared to the approximately 20 cycles

per bit of both [6] and [123]. This improved performance is a direct result of the highly optimized

GF(2") concurrent multiply-and-invert operation used in the DSRCP (Section 5.6.5.3).

Power Operand Time per Cycles per Clock
Design Consumption Size Operation Operation Rate

(W) (bits) (ms) (Mcycles) (MHz)

Agnew [6]- 155 8.1 0.323 40

Sutikno [ 123 ], [124] -155 21.6 0.323 15
DSRCP -10 mW 155 5.4 - 50

Table 5-7: Reported implementations of Modular Exponentiation functions

5.9.1 Comparison to Conventional Software and FPGA-based Solutions

In a conventional application that requires cryptographic algorithm agility, the two most common

solutions are those based on either software or reprogrammable hardware such as FPGAs. In this-

chapter we have proposed the use of domain-specific reconfigurable hardware for performing the

same operations in a much more energy efficient manner that delivers the same flexibility as both

software and FPGA-based solutions. In Chapter 3 we described the development of an energy-effi-

cient software-based implementation of the required cryptographic primitives that are necessary

for implementing IF, DL, and EC-based cryptosystems as defined by IEEE P1363. As a result of

this research, we derived the energy consumption for each primitive, at a variety of operand sizes,

as shown in Table 3-9 and Table 3-11. The energy consumption of an FPGA-based solution is

computed using the implementation specifics given in [20] and [109] and the power consumption

calculation guidelines described in [137]. The corresponding energy consumption of these primi-

tives is measured for the DSRCP under the operating conditions required to deliver the same per-

formance as the software-based solution, which is the slowest of the three solutions, and thus the

limiting case. At this reduced rate of performance, the DSRCP's clock rate can be reduced and

voltage scaling applied to minimize its energy consumption. Note that this is the same technique

used extensively in the energy scalable implementation described in Chapter 4. Hence, the same

energy scalable techniques can be applied to this application as well.
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Figure 5-37: Comparison of the energy consumption per operation for software and
FPGA-based solutions to the DSRCP using a variable power supply voltage.

The resulting comparison of the energy consumption of the various primitives for these three

solutions is shown in both Figure 5-37 and Figure 5-38. Figure 5-37 represents a comparison of the

energy consumption in which the DSRCP utilizes a variable power supply such as that described

in Section 4.3.3, which allows the supply voltage to be reduced as the operand sizes increases. This

reduction is possible due to the fact that the software-based solution's performance decreases more

rapidly than the DSRCP's (recall that software-based modular multiplication has complexity
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Figure 5-38: Comparison of the energy consumption per operation for software and
FPGA-based solutions to the DSRCP using a fixed power supply voltage.
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0(n ) as compared to the hardware's 0(n) complexity). Figure 5-38 represents the case where

the supply voltage is fixed, resulting in no energy reduction at larger operand sizes. Both figures

also utilize the security equivalence of EQ 3-6 in order to normalize the security of the IF, DL, and

EC-based schemes by using an equivalent IF modulus size as the common security reference. The

results show that the DSRCP is approximately two to three orders of magnitude more energy effi-

cient than both the software and FPGA-based implementations. One surprising result of this com-

parison is that the energy efficiency of software-based modular exponentiation appears to be better

than a FPGA-based implementation. This surprising result arises due to the large power consump-

tion of the FPGA-based solution which cannot be overcome by its improved performance to yield

a net reduction in energy efficiency 1 . However, it is quite likely that if a more modem power-opti-

mized FPGA were used for the comparison, the energy efficiency of the FPGA-based solution

would become better than software. However, the DSRCP will still dominate in terms of energy

efficiency.

A more detailed comparison of the software-based solution and the DSRCP is shown in Figure

5-39 (variable supply voltage) and Figure 5-40 (fixed supply voltage). The resulting ratios demon-

strate the aforementioned two to three orders of magnitude improvement in energy efficiency of

______-_-_I_-_- ___________________!_-_-_I________ Elliptic Curve
--- t Multiplication

GF(2) Exponentiation

10 C Modular Exponentiation------------------------------------- MdlrEpntiio

10,
512 640 768 896 1024

Equivalent IF Security

(equivalent modulus bit-length)

Figure 5-39: Improvement in energy efficiency achieved by using the DSRCP relative
to a software-based solution using a variable power supply voltage.

11. Recall that energy is the product of power consumption and execution time, so a reduction in
execution time can offset an increase in power consumption.
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Figure 5-40: Improvement in energy efficiency achieved by using the DSRCP relative
to a software-based solution using a fixed power supply voltage

the DSRCP over the conventional software-based solution. Remarkably, this energy efficiency is

possible while allowing all of the flexibility of a software-based solution for implementing the

required cryptographic primitives.

5.10 Summary of Contributions

This chapter described the use of domain specific reconfigurable computing which enables us to

provide full algorithm-agility within the domain of public key cryptography, as described by the

IEEE P 1363 Standard for Public Key Cryptography, without incurring the power and performance

overhead associated with conventional reconfigurable solutions.

A domain specific reconfigurable architecture for public key cryptography was described and

implemented in the form of the Domain Specific Reconfigurable Cryptographic Processor

(DSRCP). The DSRCP features the ability to dynamically reconfigure the processor to perform

either conventional, modular integer, GF(2"), or elliptic curve arithmetic operations using the same

basic reconfigurable processing element. The datapath can also be reconfigured to accommodate

any operand size from 8 to 1024 bits. All reconfiguration is performed within a single cycle. The

DSRCP operates at a peak clock rate of 50 MHz at a supply voltage of 2V and a power consump-

tion of 74 mW for 1024-bit modular exponentiation. In ultra-low power mode, the DSRCP oper-

ates a clock rate of 3 MHz at a minimum supply voltage of 0.68V and a power consumption of
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525ptW.

The DSRCP validates the thesis of Domain Specific Reconfigurability by demonstrating that

for the chosen domain of public key cryptography, a hardware-based solution with limited recon-

figurability can deliver the algorithm-agility of a software-based solution and the energy efficiency

of a hardware-based solution, without the high overhead costs associated with generic programma-

ble logic implementations. The resulting implementation achieves approximately two to three

orders of magnitude better energy efficiency than comparable software and FPGA-based imple-

mentations, while achieving performance levels that are comparable to previously reported hard-

ware-based implementations.
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Chapter 6

Conclusions

The popularity of wireless networks and the accompanying demand for portable computing sys-

tems requires the development of energy-efficient hardware that is capable of providing a wide

range of functionality in an energy-constrained environment that exhibits time-varying quality

requirements. As a result, adaptive energy-scalable approaches are required in order to minimize

the energy consumption by allowing the system to adapt to the current operating (i.e., quality)

requirements. This energy-scalable approach enables the energy consumption of the system to be

based on the average-case as opposed to the worst-case, leading to substantial improvements in the

system's operational lifetime. In addition, the lack of a coherent wireless security architecture has

resulted in many different types of cryptographic primitives being used, requiring some form of

algorithm agility in order to maximize the portable systems' utility. Conventional solutions such as

software provide the required flexibility but are too energy-intensive, whereas dedicated hardware

is energy-efficient but not algorithm agile. A possible compromise exists in the form of domain

specific processing which utilizes limited reconfigurability to provide a range of functionality that

allows an entire domain, in this case asymmetric cryptography, to be implemented in a very effi-

cient manner. By limiting the degree of reconfigurability, the overhead associated with conven-

tional programmable logic (e.g., FPGA's) is minimized, while still providing the required degree

of algorithm agility. The work described in this dissertation has demonstrated the value of using

both energy-scalable approaches and domain specific processing through two proof of concept

implementations: the Energy Scalable Encryption Processor (ESEP) and the Domain Specific

Reconfigurable Cryptographic Processor (DSRCP).
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6.1 Summary of Contributions
The work described in this dissertation began with the development of an optimized software-

based solution for implementing the required arithmetic functions required by the various public

key algorithms. The resulting implementation was used to characterize the energy efficiency of a

software-based implementation running on the StrongARM SA- 1100 low power processor. The

resulting analysis showed that the required primitives consume several mJ of energy per operation;

the equivalent of encrypting 10's of Mbytes of data using secret key cryptographic algorithms. In

addition, certain operations such as GF(24) multiplication and exponentiation were found to be

over an order of magnitude less efficient than equivalent integer-based operations running on a

general purpose processor such as the SA- I100. A small modification to the processor's multipli-

cation unit was proposed which simulation indicated would eliminate this inefficiency with only a

small amount of overhead (<10%) in terms of both performance and area.

The thesis of Energy Scalability was then addressed, motivated by the time-varying quality

and throughput requirements that are inherent in wireless networks, and the overriding desire to

maximize the operational lifetime of the portable computing systems' used in wireless applica-

tions. Energy scalable computing is most useful where data rates and quality requirements vary

greatly over time. In terms of cryptographic applications this occurs in the data encryption func-

tion which ties secret key ciphers to the wireless data stream. As a result, we proposed the develop-

ment of an energy scalable architecture for providing data encryption. The resulting architecture,

and Energy Scalability thesis, were then verified using a proof-of-concept implementation: the

Energy Scalable Encryption Processor (ESEP). The ESEP utilized a scalable architecture and

novel high-efficiency embedded power converter in order to dynamically adjust both the level of

security that was being provided, and the processor's supply voltage. Experimental data verified

the thesis of Energy Scalability by demonstrating that the system's energy consumption can be

reduced by a factor of 7 as a function of throughput, and a factor of 30 as a function of the security

level being provided. Using this energy-scalable implementation, the energy consumption required

to encrypt an example compressed video stream was reduced by a factor of 4. In addition, the

ESEP was found to be over two orders of magnitude more energy efficient than an optimized soft-

ware-based solution.

The embedded power converter used in within the ESEP demonstrated the benefits of utilizing

a hybrid delay-line and PLL-based fixed-frequency PWM architecture for doing low load power

conversion. The hybrid approach used enabled high efficiencies (80-96%) across a wide variety of
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loads ranging from 10-100's mW, and the converter's control architecture has also demonstrated

the ability to achieve high efficiencies at loads down to 10's of pW, enabling variable voltage sup-

ply techniques to be used in a variety of portable applications. Variable supply techniques require

us to rethink the conventional view of the power supply in energy-constrained system design as the

supply is no longer a fixed value. Instead, the power supply becomes another system parameter

that can be optimized to satisfy a given set of design constraints, such as performance or energy

consumption, which can change with time. Exposing the power supply in this manner yields a very

powerful tool for developing energy-constrained systems in a variety of applications.

The thesis of Domain Specific Reconfigurability was illustrated using the domain of public

key cryptography as defined by the IEEE P1363 standard. Analysis of the standard yielded an

instruction set that required a variety of arithmetic functions over modular integer fields, binary

Galois Fields, and Elliptic Curves built upon binary Galois Fields. The resulting ISA was then

implemented in the Domain Specific Reconfigurable Cryptographic Processor (DSRCP), which

represented the first reported hardware-based solution capable of implementing such a wide vari-

ety of cryptographic primitives. The DSRCP utilized a datapath that can be dynamically reconfig-

ured in a single cycle to accommodate any operand size from 8 to 1024 bits. The architecture was

fully programmable in the sense that it can accommodate any odd integer modulus, characteristic

polynomial for GF(2") (8 n 1024), or valid Elliptic Curve. The DSRCP validated the thesis of

Domain Specific Reconfigurability by demonstrating that for the chosen domain of public key

cryptography, a hardware-based solution with limited reconfigurability can deliver the algorithm-

agility of a software-based solution and the energy efficiency of a hardware-based solution, with-

out the high overhead costs associated with generic programmable logic implementations. Experi-

mental results indicated that the DSRCP achieves approximately two to three orders of magnitude

better energy efficiency than comparable software- and FPGA-based implementations, while

achieving, and in some instances surpassing, the performance and energy-efficiency of hardware-

based solutions.

6.2 Future Work
The work described in this dissertation represents only the beginning in terms of issues that need

to be addressed in regards to developing energy scalable solutions and techniques. A great deal of

work remains to be done at all levels of the system design hierarchy in terms of both the hardware

and software. In addition, at a higher level the whole theory of energy scalability needs to be prop-

erly formalized, and a common framework and set of metrics developed in order to properly define
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and characterize the notion of energy scalable computing. This will ultimately enable system

designers to develop formal design methods and evaluation criteria for future energy scalable sys-

tems.

The work described in Section 3.7.2 introduced the notion of energy scalable software as a

means of reducing the energy consumption of conventional software-based solutions during peri-

ods of inactivity on the processor. There remains a great deal of work to be done in regards to aug-

menting these basic results to incorporate energy-scalable algorithmic techniques, such as those

proposed for video compression software. Unfortunately, it is not readily apparent that the same

techniques such as trading off computational accuracy can be applied to cryptographic algorithms.

Cryptographic algorithms by design produce uncorrelated results when the inputs differ in even

the smallest detail (e.g., a single bit change in the input produces seemingly random output). One

alternative in secret key algorithms, which utilize an iterative round-based approach, is to limit the

number of iterations performed. However, work remains to be done in regards to characterizing

how security varies as a function of the number of iterations. Future secret key algorithm designs

could use the variable-iteration approach as a design criteria in the hope of developing an energy-

scalable encryption algorithm. Public key algorithms appear to have no such equivalent inherent

scalability. Instead, public key algorithms appear to require the use of multiple instantiations of the

algorithm with different key sizes and values, though future research might yield energy-scalable

public key algorithms as well.

The development of the DSRCP illustrated how domain specific processing can be used in

public key cryptographic applications. A natural extension of this work is the development of a

secret key analogue of the DSRCP based upon the ongoing Advanced Encryption Standard speci-

fication. The domain of secret key cryptography presents considerably different design challenges

due to the ability to tailor algorithm designs to conventional general purpose processing architec-

tures. The resulting architecture would likely differ considerably from that of the DSRCP, utilizing

a systolic array-based approach, with each processing element providing a reduced set of conven-

tional arithmetic instructions. Future research will enable the evaluation of this approach, as well

as help to determine the optimal implementation parameters in terms of the array size and instruc-

tion set. Ultimately a proof-of-concept implementation could be developed similar to the DSRCP

to allow experimental results to be gathered and conclusions drawn.
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Recently very powerful implementation-based attacks such as power analysis and fault injec-

tion have been proposed as a means of attacking hardware-based cryptographic applications.

These attacks have yielded extremely good results, breaking many existing systems (such as the

smartcard-based systems commonly used in portable applications) in a matter of minutes once the

initial characterization has been performed. Hence, research needs to be done to develop imple-

mentation techniques to counteract these attacks. Unfortunately, the problem is made considerably

more difficult due to the constraints placed upon the designer by the portable nature of the applica-

tions. As an example, consider the case of power analysis. A straight-forward solution is to utilize

some form of constant-bias, current-steering logic in order to eliminate any tell-tale signatures in

the processor's power consumption, at the cost of a large degree of static power consumption. In

conventional desktop situations the additional power consumption isn't a concern and the solution

is acceptable, whereas in an energy-constrained portable application this approach is infeasible.

Future research will enable security system designers to develop both algorithmic and implemen-

tation-specific techniques to address these new attacks in constrained environments

Currently one of the main consumer concerns for the widespread acceptance of wireless net-

works is security. In the past system developers have all but ignored security in commercial wire-

less applications - the wide spread fraud that plagues the cellular phone industry today is a

damning testimonial of this fact. In the future, portable chipset developers will need to consider the

needs of security applications and develop extensions to their processors that facilitate security in

the same manner that DSP's today feature video and channel/error coding extensions in their

ISA's. However, work remains to be done to determine what these extensions will be, and how

they will best be integrated into existing architectures. The aforementioned multiplier unit modifi-

cation represents an initial step in this direction.

The work described in this dissertation focuses primarily on low-level algorithmic hardware-

based solutions for cryptographic applications in portable environments. Additional research is

required at a higher level in terms of developing energy-efficient security protocols for wireless

systems. In particular, the question remains to be answered if there are ways to exploit the distribu-

tion of computation and energy resources in the network, such that the most constrained nodes do

the least amount of work. While similar work has been done in regards to video compression

[104], the need for trust and authentication make the problem considerably more difficult in the

case of security.
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In the past the focus in integrated circuit design has been the Application Specific Integrated

Circuit (ASIC) which typically operated from a fixed power supply to perform a given function in

a very efficient manner. However, the ever increasing demand for functionality and portability has

ushered in the era of the energy-scalable Domain Specific Integrated Circuit (DSIC) (no, we don't

know what happened to BSIC and CSIC...). DSIC's provide a much greater array of functionality

than their ASIC counterparts at the cost of only a small amount of overhead in terms of perfor-

mance/area, while yielding significantly better energy-efficiency due to their energy-scalable char-

acteristics. The design methodology utilized in this dissertation represents an example of how to

develop a DSIC and extend it using energy-scalable features such as embedded variable-output

power converters. The resulting research illustrates both the feasibility of this approach and the

advantages over conventional software, hardware, and programmable logic-based solutions.
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Appendix A

Energy Scalable Encryption
Processor User's Manual
This appendix serves as a general user's manual for using the Energy Scalable Encryption Proces-

sor described in Chapter 4.
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APPENDIX A ENERGY SCALABLE ENCRYPTION PROCESSOR USER'S MANUAL

A.1 Pin Descriptions

Pin Name Location Type Pin Description

Length<2:0> K13, JI1, K12 Input Sets width of the QRG using the formula:
widthQRG = (Length2 :0 + I)*64

SerPin<1:0> G12, H13 Input Serial input for the P operand (two bits for redundant digit val-
ues).

SerNin Gil Input Serial input for N operand (just one bit as N is a binary value).

Clkqrg H2 Input Main clock for QRG.

Init G3 Input When set high it forces an initialization cycle

Mult GI Input When set high it forces a multiplication cycle

Residue<7:0> JI 3, HI 1, Fl 3, Fl 2, Output QRG output
F1 1, E13, E12, D13

SignOut El l Output Sign of the final result as determined by the internal sign detector.

Resetqrg J12 Input Main QRG circuit reset.

MultActive G2 Output Output that indicates when QRG is performing an iteration.

MultDone F1 Output Indicates when the QRG has finished performing an iteration.

SerXfer A5 Bi-direct Bi-directional, single-pin serial interface to the DC/DC converter.

Cl B4 Input Clock used by DC/DC converter for A/D controller.

C2 A4 Input Clock used by DC/DC converter for Serial interface.

PLLcIk A6 Input Clock used by DC/DC converter for delay-line PLL.

LastTap C5 Output Diagnostic output showing the output of last tap in DC/DC con-
verter delay line (can use to check for PLL lock).

Resetdc A2 Input Main DC/DC converter circuit reset.

Pout C2, D3 Output PWM-modulated output of the DC/DC converter.

Vref C7 Input Voltage reference for DC/DC converter circuit's A/D.

VDDA B7 Power Analog power supply for DC/DC converter circuit.

GNDA A7 Power Analog ground for DC/DC converter circuit.

VDDSW BI, B2 Power Power supply for output power switches of DC/DC converter.

GNDSW Cl, D2, E3 Power Ground for output power switches of DC/DC converter.

GND N8, N5, N4, M9, Power Both pad and core ground for the ESEP.
M7, M6, M4, L13,

L9, L8, K11, J2, H3,
H1, G13, E2, A8,

B6, C4

VDDdc C6 Power Core power supply for DC/DC converter circuit.

VDDqrg N10, N9, N7, N6, Power Core power supply for QRG circuit.

M13, M8, M5, L6,
L5, H12, F2

VDDX M12, L12, KI, Jl, Power Pad ring power supply for the ESEP.
Dl, B5

Table A-1: Pin descriptions and locations for the QRG.
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A.2 PACKAGE DIAGRAMS

A.2 Package Diagrams
Figure A-I and Figure A-2 show the pin outs of the ESEP from both the top and bottom.
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Figure A-1: Top view of the ESEP package.
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Figure A-2: Bottom view of the ESEP package.

A.3 Determining Clock Rate and Supply Voltage
This section describes methods for determining the required clock rate and supply voltage of the

QRG chip.

The scalable nature of the QRG implies that it will require a variable number of clock cycles in

order to perform an operation. The number of cycles that are required can be computed using the

formula:

= (data rate) x (# cycles per operation) [10l 2N] + 4
fCLK (# bits per operation) loglog2N] DATA (A.1)

Table A-2 provides a sample set of clock rates for the QRG chip assuming a I Mbps data rate.

N

MI 0

L

K

J

H

G

D

C

B

D
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A.3 DETERMINING CLOCK RATE AND SUPPLY VOLTAGE

Bitwidth

64 128 192 256 320 384 448 512

Clock Frequency (MHz) 6.0 9.7 14.3 16.5 20.5 24.5 28.5 28.9

Table A-2: Sample Clock Frequency Values for QRG Processor @ 1Mbps

The chip is intended to be used with a variable power supply and as such the required supply

voltage is a function of the data rate and bitwidth of the processor. Table A-3 provides the sample

set of values for VDD as measured on a QRG chip in the lab. Figure A-3 shows a measured curve

of supply voltage vs. clock frequency that can also be used by the system designer to develop an

initial value of VDD for a given operating frequency (as determined by the required data rate).

Throughput (Kbps)

Bitwidth 100 200 300 400 500 600 700 800 900 1000

512 1.14 1.31 1.46 1.60 1.75 1.89 2.04 2.21 2.36 2.55

448 1.14 1.31 1.46 1.59 1.73 1.87 2.03 2.20 2.38 2.52

384 1.11 1.26 1.39 1.51 1.62 1.74 1.86 1.99 2.12 2.25

320 1.11 1.22 1.33 1.43 1.53 1.63 1.73 1.84 1.94 2.04

256 1.06 1.17 1.26 1.35 1.43 1.51 1.59 1.67 1.75 1.83

192 1.04 1.14 1.23 1.30 1.38 1.45 1.52 1.58 1.65 1.72

128 1.00 1.08 1.14 1.22 1.26 1.32 1.36 1.41 1.45 1.50

64 1.00 1.02 1.07 1.11 1.15 1.18 1.22 1.25 1.29 1.32

Table A-3: Sample supply values for the ESEP.

0 5 10 15 20 25 30

Clock Frequency (MHz)

Figure A-3: Supply voltage vs. clock frequency of ESEP.
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A.4 Basic Operation
This section describes the basic operation of the QRG circuitry, which can perform two basic func-

tions: initialization and multiplication. Initialization is required to setup the modulus and seed

value that are to be used for the QRG. Both the modulus and seed are entered serially via SerNin

and SerPin<1:0> respectively. SerPin uses two pins in order to handle input digits from the

redundant number set {-1, 0, 11. Note that for binary-valued inputs you can simply ground Ser-

Pin<1> and use SerPin<0> as a binary-valued serial port. Multiplication performs the QRG com-

putation:

Residue(n - 1, 0) = LSB,1(P2 mod N) (A.1)

where n = floor(log2l0g2 N) is the number of bits that you are capable of extracting from each iter-

ation; it's up to the system designer to ensure that only the n LSB of each result are used. A simple

way to determine n is to compute n = floor(log2 (bitwidth of N)) (e.g., if N is a 512b value then n =

9 bits).

A.4.1 Initialization
Initialization is performed to shift in the required operands and preload them into the required

internal registers (X & Y). The entire initialization function is performed via the Init, Ser-

Pin<1:0>, and SerNin inputs. Init is asserted and then after a I cycle delay (which enables the Ini-

tialization FSM to enable the appropriate internal circuitry) SerPin and SerNin inputs are applied

serially, starting with the MSB (or MSD in the case of SerPin). The number of values presented to

the SerPin and SerNin inputs depends on the current value of Length<2:0> input (which ulti-

mately defines the width of the QRG's datapath). A sample timing diagram is shown in Figure A-

4. There's no magic here... it's just that simple! Note that all data is clocked on the rising edge of

Clk so data should be setup appropriately (sorry... I don't have any setup/hold time information at

this time -- I suggest you use the negative edge of Clk to register the SerPin and SerNin data

inputs outside of the chip).

Note that once an "Init" cycle is started it must run to completion -- the QRG will ignore all

other requests until it has finished the process. Once the LSB of P and N have been loaded the user

must wait 3 cycles while the internal control logic resets itself before issuing another "Init" or

"Mult" request (i.e., you can assert Mult a minimum of (m + 4) cycles after asserting Init). The

resulting timing is shown in Figure A-4.
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Cycle# 0 1 2 3 m m+1 Im+2 m+3 1m+4

QRGclk .V .JL LF]

Init Can assert Mult here

m = ceiling(og 2N) cycles

SerPin1 :0  MSD MSD- I . 0 .

SerNin MSB MSB3- . ..

Figure A-4: ESEP initialization timing diagram.

A.4.2 Multiplication
Multiplication is performed using a radix-4 modular multiplication algorithm due to Takagi. As

such it requires just k = ceiling(log 2N)/2 cycles to perform the computation P2 mod N. In all it can

require either (k + 3) cycles if you've just begun performing multiplications (i.e., MultActive was

deasserted when Mult was asserted), or (k + 4) cycles if you've just completed a multiplication

and wish to perform another. This arises because the first multiply doesn't incur a 1 cycle internal

register load that occurs after the multiplication has occurred. The resulting timing is shown in Figure

A-5.

For system design it should be noted that a very simple way to determine when a result is

ready is to monitor the MultDone output signal which indicates that the internal circuitry is latch-

ing the current output of the multiplier. The Residue output will then become valid within one

Clk cycle (e.g., propagation delay through the redundant-to-binary number conversion circuitry).

A one-cycle-delayed version of this signal could in fact be used as a clock signal to register the

Residue output external to the QRG (the signal is driven by an internal negative-edge DFF so it

will not glitch).

Cycle# 0 1 2 3 k+1 k+2 k+3 0 1
Clk

Mult

MuttActive
+- k = ceiling(log2N)/2 cycles

MultDone

Residue 7.0 - - - VALID

Figure A-5: ESEP multiplication timing diagram.
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A.5 Embedded DC/DC Converter
The embedded DC/DC converter requires some additional setup, particularly in regards to its

many power connections, in order to ensure correct operation. In addition, the converter also

employs a bi-directional single-wire serial interface that is used to configure the many internal reg-

isters within the converter.

The main power connections to the DC/DC converter are the core digital (VDDd) and analog

supplies (GNDA and VDDA), the output power switch supplies (GNDs, and VDDsw), and the A/

D voltage reference (Vref). The core digital supply can be set to any value from I - 2V (you

shouldn't need to go higher as the circuit operates at relatively low speeds). The analog supplies
3

should be set to ensure correct operation of the A/D, which requires VDDA 3 Vref. So for a

typical Vref of 2V you want VDDA to be 3V. The analog supplies should be isolated from their

digital counterparts to minimize the any noise coupling that may occur if they are shared. The out-

put power switch supplies should similarly be isolated as they will experience very large current

swings due to the PWM modulation. The positive supply (VDDsw) should be connected to the

external battery/supply that will be used supply the output power to the load. Vref is used by the A/

D for the comparison and should be set to a value greater than the maximum output voltage of the

converter.

A.5.1 Single-wire Serial Interface
The DC/DC converter utilizes a single-wire bi-directional serial interface for transferring data to/

from the converter. The use of a single-wire requires two separate procedures for reading and writ-

ing data from/to the converter, as well as specific codes for indicating to the converter's serial

interface logic, just which operation is going to be performed. The write cycle is done in two

Cycle # 0 1 2 3 4 5 6 7 8 9

Clk

First transmit write address:

SerXfern 1 i ao ai a 2 Ja 3 Ia 4 Ias a 6 /
11: indicates that a write address is to follow

Then transmit write data:

SerXfer I *1 0 do d1  d d d4 d5  d6  d7 /

0: indicates that data is to follow

Figure A-6: Serial interface write protocol for the DC/DC converter.
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Cycle # 0 1 2 3 4 5 6 7 8 9

Clk

First transmit read address:

SerXfer / 1 0 ao al a2  a3  a4  a5 j a6  /
I

10: indicates that a read address is to follow

Pull low and tri-state line, wait for read data:

SerXfer I high impedance

internal FSM takes control and outputs data from read address

Figure A-7: Serial interface read protocol for the DC/DC converter.

stages: first the write address is specified, and then the write data is provided. Both of these stages

are initiated by pulling the SerXfer line low to indicate the beginning of a serial interface transfer.

The specific timing of the write operation is shown in Figure A-6.

The read cycle is similar in that the operation is again performed using two stages: first the

read address is specified, the user then notifies the converter that they are ready to receive the data

by pulling the SerIn line low again and then tri-stating the line to allow the converter to drive the

contents of the desired address out on the SerXfer line. The specific timing of the read operation is

shown in Figure A-7.

The register map describing the addresses and functions of the various registers is shown in

Figure A-8. Note that the converter actually has additional registers that are not shown, as well as

additional functionality that isn't represented in the figure (e.g., the Configuration Register has

several constant values shown). This functionality/programmability has been intentionally left out

as it isn't used in the ESEP configuration described within this dissertation, and attempting to

describe everything that it can could be a dissertation unto itself! Hence, only the relevant func-

tionality is described.

A.5.2 Configuring the DC/DC Converter
The DC/DC Converter is very programmable, and features several features that aren't used in the

ESEP configuration described within this dissertation. Most notably the converter actually features

two separate controllers that enable it to handle two simultaneous outputs (denoted as A and B in

all figures and the following discussion). Only the A output is used in the ESEP configuration.
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The basic operation of the DC/DC Converter was described in Section 4.3.3, and shown in

Figure 4-9. The Converter should be configured to gate the A/D converter output into the A con-

troller, which is then used to drive the PWM output. This requires the Configuration Register to be

set with the value 0x33, which enables both Cl and C2 as the core clocks of the converter (these

two signals should be driven from the same source so enabling both won't cause any problems)

and gates the A/D output into the required controllers (we're actually driving it into both A and B

but this won't affect functionality). The key value that needs to be set is that of the ReferenceA and

ReferenceB registers (set both for completeness). The value stored in this register is added to the

output of the A/D to create an offset that is then multiplied by the appropriate scale values (stored

in the Scale Register) to form the resulting duty cycle error signal. The value stored in the Refer-

ence registers should be the 2's-complement representation of the negative of the expected output

value of the A/D. The expected value will depend on the magnitude of the Vref (as the A/D's out-

put is scaled from its value). A simple way to compute the required value is to use the formulae:

ReferenceA<7:0> = Ox7F + 1 (A.1)

For example, if we had a Vref of 3V and wanted a 1.5V output we'd compute the value to be:

ReferenceA<7:0> = ((-135. Ox7F + I (A.2)

= 01000000 + 1 = 10111111 + 1 = 11000000 = OxCO

The other registers can be left at their default values, though if the need arises they can be changed

to improve stability/performance.

As alluded to earlier, the DC/DC Converter can operate using either an automatically updated

output duty cycle (if Cl/C are enabled), or via a manual setting of the Duty Cycle registers. Note

that the manual setting will eliminate the voltage feedback regulation (as the feedback loop is

essentially disabled), thereby compromising the system's ability to respond to variations in the

load. As such, it is recommended that the feedback not be disabled, and the system allowed to

operate using automatic updates of the duty cycle.
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Configuration Register (Address = 0x00, default value = 0x33)
7 0

0 EnC2 EnCl1 0 0 1 1

EnC2: enables/disables (1/0) clock C2 as DC/DC converter core clock
EnCI: enables/disables (1/0) clock Cl as DC/DC converter core clock

Reference A Register (Address = OxOl, default value = OxCD)
7 0

RefA<7:0>

RefA: 8-bit value 2's complement value representing the negative of the digital code representing the

desired output value for the A output.

Reference B Register (Address = 0x02, default value = OxCD)
7 0

RefB<7:0>

RefB: 8-bit value 2's complement value representing the negative of the digital code representing the
desired output value for the B output.

Feedback Frequency Register (Address = 0x03, default value = Ox IC)
7 0

FBfreq<7:0>

FBFreq: 8-bit value used to divide down the core clock into the feedback update clock
(i.e., ffcdback =.fcore / FBfreq 7:0 ). Smaller value = faster updates in feedback loop.

Scale Register (Address = 0x04, default value = 0x88)
7 0

ScaleB<3:0> ScaleA<3:0>

ScaleB: 4-bit value used to scale the duty-cycle error signal (i.e., provides gain in feedback loop) for
the B output.

ScaleA: 4-bit value used to scale the duty-cycle error signal (i.e., provides gain in feedback loop) for
the A output.

Duty Cycle A Registers (Addresses = 0x09 (upper) and 0x07 (lower), default value = Ox28E)
I 8 7 0

DutyA<l 1:8> DutyA<7:0>

DutyA: 12-bit value stored in two registers (upper and lower) that corresponds to the duty cycle used in the
output PWM stages. Only the 10 MSB are used (i.e., DutyA<1:0> ignored) to specify the tap to be

used in the virtual 1024-tap delay line. Note that this register can either be automatically updated if

either Cl or C2 is enabled in the Configuration Register, or manually set if they are both disabled.

Duty Cycle B Registers (Addresses = 0x09 (upper) and 0x07 (lower), default value = 0x200)
11 8 7 0

DutyB<1 1:8> DutyB<7:0>

DutyB: 12-bit value stored in two registers (upper and lower) that corresponds to the duty cycle used in the
output PWM stages. Only the 10 MSB are used (i.e., DutyA<l :0> ignored) to specify the tap to be

used in the virtual 1024-tap delay line. Note that this register can either be automatically updated if

either Cl or C2 is enabled in the Configuration Register, or manually set if they are both disabled.

Figure A-8: DC/DC Converter register map.
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Appendix B

DSRCP Instruction Set
Definition
This appendix serves to give a detailed description of the DSRCP instruction set that was origi-

nally introduced in Section 5.3.1. The DSRCP ISA contains a total of 24 instructions, each of

which is shown in Table B-1, and then described in detail in the following text.

rd rsO

Opcode Mnemonic

rs2ECDOUBLE

GF_INV

GF_MULT

MONTRED

MONTRED_A

MONTMULT

COMP

GF_ADD

ADD/SUB

MODADD

SETLENGTH

MODSUB

-re

rs0 rsl rs2

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

rd

rd

rd

rd

served-

rs0 rsl

rs0 rsI

rs0 rsl

rs0 rsl

length

rs0 rsl

rs2

rs2

ECADD rd

GF_INVMULT

-reserved-

Opcode Mnemonic

ECMULT length

-reserved-

MODMULT rd rs0 rsI

-reserved-

MOD rd rsO rsl

-reserved-

MODINV rd rs0

-reserved-

-reserved-

GF_EXP rd rsO

-reserved-

MODEXP rd rs0

EGCLEAR rd rs0

REGMOVE rd rsO

REG LOAD rd

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111 rs IREGUNLOAD

Table B-1: DSRCP instruction set.
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B.1 Detailed Instruction Descriptions

EC DOUBLE rd, rsO, rs2

29 25 20 17 12 10
00000 rd rs0 rs2 2 2 Ir

2 R<x> = xxx

- R<x> = Oxxx

P R<x> = Oxxx

Computes (rd,rd+I) = 2.(rsO,rsO+1), over the elliptic curve defined by the curve parameter
a stored in rs2, and the field polynomial stored in N. Registers RO and RI are corrupted
during the execution of EC_DOUBLE and should not be used.

" rd: all but RO and RI

- rsO: all but RO and RI, can be the same as rd

- rs2: all but RO, RI, rd, (rd+1), rsO, (rsO+I)

ECADD rd, rsO, rsl, rs2, wb

29 25 20 17 12 10 8
01101 rd rs0 I rsl I rs2 wb 7

24 21 16 13 9 o R<x>= xxx

t R<x> = Oxxx

o R<x> = Oxxx

P R<x> = Oxxx

Computes (rd,rd+I) = (rsO,rsO+l) + (rsl,rsl+I), over the elliptic curve defined by the
curve parameter a stored in rs2, and the field polynomial stored in N. The writeback flag,
wb, is used to determine if the result is written to (rd,rd+1): if wb = 1 then the result is

written to (rd,rd+1), if wb = 0 then (rd,rd+1) is not affected (R7 is used instead to store
intermediate values). This is used to thwart timing attacks during EC point multiplication.
Registers RO, Rl, and R7 are corrupted during the execution of EC_ADD and should not
be used.

" rd: all but RO, Ri, and R7, should NOT be the same as rsl

" rs0: all but RO, RI, and R7, can be the same as rd

" rsl: all but RO, Ri, and R7, rd, (rd+l), rsO, (rsO+1), rs2

* rs2: all but RO, R1, and R7, rd, (rd+1), rsO, (rsO+1), rsl, (rsl+1)

ECMULT length

29 25

10000 length
9 0

Computes (R4,R5) = Exp-(R2,R3), over the elliptic curve defined by the curve parameter a
stored in R6, and the field polynomial stored in N. The length parameter refers to the
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length of the multiplier value that is assumed to be stored in the Exp register (i.e., a 256-bit
multiplier corresponds to a length value of OxOFF). All elements of the register file are
used during the execution of ECMULT.

- length: {0x007,Ox3FF} where the multiplier length in Exp is (length + 1)

GFADD rd, rsO, rsl

29 25 20 17

1001111 rd I rs0 I rsl I
24 21 16 13

rsl rso

Oxxx R<x> Oxxx R<x>
1001 Zero 1000 Zero
1010 PC 1010 PS
1011 N 1011 Sum

SR<x> = xxx

Computes rd = rs0 + rsl, over the field GF(2") defined by the field polynomial that is
stored in N. Note that this operation is equivalent to rd = rs0 A rs 1.

- rd: R<7:0>

" rs0: R<7:0>, ZeroValue, Ps, regSum

* rsl: R<7:0>, ZeroValue, Pc, N

GFMULT

29 25
00010

Computes Pc = A-B over the field GF(2") defined by the field polynomial that is stored in
N. Note that the value stored in B is corrupted during this operation, while that stored in A
is unaffected.

GFINV

29 25
000011

Computes A = 1/Pc over the field GF(2") defined by the field polynomial that is stored in
N. Note that the values stored in A, B, Pc, and Ps are corrupted during this operation.

GFINVMULT

29 25
011101

Computes A = B/Pc over the field GF(24) defined by the field polynomial that is stored in
N. Note that the values stored in A, B, Pc, and Ps are corrupted during this operation.
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MONTMULT

29 25

0 010 1 I
Computes (Pc,Ps) = A-B.2" mod N, where (Pc,Ps) is a carry-save value. Note that the
value stored in B is corrupted during this operation.

MONTRED_A

29 25

00100

Computes (Pc,Ps) = A-2-' mod N, where (Pc,Ps) is a carry-save value. Note that the value
stored in B is corrupted during this operation (B is reset at the start of the operation).

MONTRED

29 25

0F0 011

Computes (Pc,Ps) = (Pc,Ps).2-4 mod N, where (Pc,Ps) is a carry-save value. Note that the
values stored in A and B are corrupted during this operation.

COMP rsO, rsl

29 25 20 17
omue1 10 rse m rso

161 3 --- rsl rso

Oxxx R<x> Oxxx R<x>
1001 Zero 1000 Zero
1010 PC 1010 PS
1011 N 1011 sumI

Computes the relative magnitude of rsO and rs I, and sets the appropriate (gt, eq) flags from
which any relation can be derived (gt, gteq, eq, lteq, lt).

- rsO: R<7:0>, ZeroValue, Ps, Sum

" rsl: R<7:0>, ZeroValue, Pc, N
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ADD/SUB rd, rsO, ral, rs2

29 25 20 17 12 10

01000 rd rs0 rsl rs2
24 21 16 1 13

rs2

Oox rd = rs0 + rsl + rs20
Olx rd = (rs0 + rsl + rs20 )/2
lox rd = rs0 - rsl
lix rd = (rs0 - rsl)/2

-*- rd

o rsl rsO Oxxx R<x>
Oxxx R<x> Oxxx R<x> 1001 A
1000 Zero 1000 Zero 1010 B
1010 2-Pc - 1010 Ps 1011 A,B
1011 N 1011 RegSum 1100 RegSum

Computes a variety of additions and subtractions using the bits of the rs2 operand to con-
trol the type of operation that is performed. The function map is given below, and rs2<0>
is used as the carry-in at all times except for subtractions, where it is ignored. Also, when
Pc is used as rsl, the value 2-Pc is input to the adder so that the carry-save value (Pc,Ps)
can be converted to binary form.

- rd: R<7:0>, A, B, RegSum

- rsO: R<7:0>, ZeroValue, Ps, RegSum

- rsl: R<7:0>, ZeroValue, 2-Pc, N

MODADD rd, rsO, rsl, rs2

29 25 20 17 12 10
C01001 rd I rsO rsl rs2 m

24 21 16 13 rd

No- rd RO ABexxx R<x>
*xxx R<x> 00 xxx R<x> 1001 A
1000 Zero 1000 zero 1010 B
1010 2-Pc 1010 PS 11011 A,B
1011 C u1011RegSum I 1100RegSum

Computes rd =(rsO + rs I + rs2<0>) mod N.

- rd: R<7:0>, A, B, RegSum

- rsO: R<7:0>, ZeroValue, Ps, RegSum

" rs I: R<7:0>, ZeroValue, 2-Pc, N

MODSUB rd, rsO, rsl

29 25 20 17
010111 rd r so rs1

24 21 16 11 rsl3 rd

Oxxx R<x>
Oxxx R<71> 1 Oxxx R<x> 1001 A
1000 Zero 1000 zero 1010 B
1010 2 - Pc -1010 PS 1011 A, B
1011 N 1l11RegSum 11 0 RegSum

Computes rd =(rsO - rs 1) mod N.
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* rd: R<7:0>, A, B, RegSum

" rsO: R<7:0>, ZeroValue, Ps, RegSum

- rsl: R<7:0>, ZeroValue, 2-Pc, N

SETLENGTH length

29 25

001 length
9 0

Configures the DSRCP's length register from which all of the processor functions derive
their operand sizes. The processor's width is set equal to (length + 1).

- length: must be in the range {0x007,0x3FFF}

MODMULT rd, rsO, rsl, rs2

29 25 20 17 12 10

10010 rd rs0 rsl rs2
24 21 16 13

ip R<x> = xxx

m R<x> = Cxxx

P R<x> = Oxxx
P R<x> = Oxxx

Computes rd = rsO.rs I mod N using Montgomery Multiplication (MONThMULT). The
Montgomery correction factor of 2 2n mod N is stored in rs2.

" rd: R<7:0>

" rsO: R<7:0>

- rsl: R<7:0>

" rs2: R<7:0>

MOD rd, rsO, rsl, rs2

29 25 20 17 12 10

10100 rd rs0 I rsl Irs21
24 21 16 13

R<x> = Oxxx

P R<x> = Cxxx

P R<x> = Oxxx

Computes rd = (rsl -2' + rsO) mod N using Montgomery reduction (MONTRED). The
Montgomery correction factor of 2 2n mod N is stored in rs2, and the current width of the
processor must be a multiple of 32 (i.e., the last invocation of SETLENGTH(n) must sat-
isfy (n+1) mod 32 = 0).

- rd: R<7:0>

- rsO: R<7:0>
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- rsl: R<7:0>

* rs2: R<7:0>

MODINV rd, rsO

29 25 20 17
101101 rd Irs0

24 21
24 1 R<x> = Oxxx

P- R<x> = Oxxx

Computes rd = (1 / rsO) mod N using a modified form of the binary extended euclidean
algorithm. Although registers RO, Ri, R2, and R3 are corrupted during the execution of
MODINV they can be used for rd and rsO so long as the user understands that, in the case
of rsO, its value will no longer be valid at the completion of the operation.

- rd: R<7:0>

* rsO: R<7:0>

MODEXP rd, rsO, rs2, length

29 25 20 17 12 10

11011 rd I rs0 I jrs2j length
24 21 9u.m R<x> = xxx

m R<x> = Oxxx
m R<x> = Oxxx

Computes rd = rsOExp mod N using Montgomery exponentiation. The Montgomery cor-
rection factor of 2 2n mod N is stored in rs2, and the length input refers to the length of the
exponent value that is assumed to be stored in the Exp register (i.e., if it is a 512-bit expo-
nent then the length value is Ox1FF). Registers RO, RI, R2, and R3 are corrupted during
the execution of MODEXP so they should not be used for rd and rs2, but RI, R2, and R3
could be used for rsO. At the completion of the MODEXP operation, RO = 2" mod N, RI
= rsO.2" mod N, R2 = rs02-2' mod N, and R3 = rs03.2' mod N.

- rd: R<7:4>

- rs: R<7:l>

- rs2: R<7:4>

- length: must be in {x000,0x3FF} where the exponent length in Exp is (length + 1)
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GFEXP rd, rsO, length

29 25 20 17
1110011 rd I rs0 I length

24 21 9 0
o R<x> = Oxxx

- R<x> = Oxxx

Computes rd = rsOExp over the field GF(2n) defined by the field polynomial stored in N.

The length input refers to the length of the exponent value that is assumed to be stored in

the Exp register (i.e., if it is a 937-bit exponent then the length value is Ox3A8). Registers

RO, R1, R2, and R3 are corrupted during the execution of GFEXP so they should not be

used for rd, although RI, R2, and R3 could be used for rsO. At the completion of the

GFEXP operation, RO = Ox1, RI = rsO, R2 = rs0 2 , R3 = rs03.

* rd: R<7:4>

* rs: R<7:l>

- length: {0x007,0x3FF} where the exponent length is in Exp is (length + 1)

REGCLEAR rd, rsO

29 25 20 17 12 10 8 0
1111001 rd I rsO I

241 21 1 16 13 9

I rdI RsO

Resets the value in those registers whose bits are set in the bitmask formed by concatenat-

ing rd and rsO, as illustrated above. All registers with the exception of RO reset to the zero

value, while RO resets to Ox 1.

REGLOAD rd

29 25

11110 rd I
24 21

p R<x> = Oxxx

Loads rd from off-chip using 32-bit accesses, the length of this load is based on the current

value of the length register, as set by the last invocation of the SETLENGTH( ) instruc-

tion. The load is designed to enable the loading of GF(2') polynomials which are (n + 1)

bits long meaning that an extra cycle is executed in those cases where n is a multiple of 32

(i.e., (length + 1) is a multiple of 32).

- rd: R<7:0>
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REGUNLOAD rsl

29 25

11111 rsl
16 1 R<x> = Oxxx

Unloads rsl from the chip using 32-bit accesses, the length of this unload is based on the

current value of the length register, as set by the last invocation of the SETLENGTH( )

instruction. REGUNLOAD uses the same strategy as REGLOAD for determining the

number of 32-bit words that need to be output.

- rsl: R<7:0>

rsO, rs20

17 12 10

1111011 rd I rs I I rs2
24 21

T Imsb = rs20
rsO

Oxxx R<x>
1001 A
1011 RegSum
1100 Pc
1101 N

Performs the register transfer rd = rsO, with the msb of the datapath being set equal to the

rs2<0>. This ability to set the MSB is used for loading the N register with a 1025-bit value

so that it can represent field polynomials over GF(210 2 4 ).

" rd: R<7:0>, A, B, Pc, Ps, N, Exp

- rsO: R<7:0>, A, RegSum, Pc, N

" rs2: only the LSB is used

REGMOVE rd,

29 25 20

rd
Oxxx R<x>
1001 A
1010 B
1011 A,B
1100 Pc
1101 Ps
1110 N
1111 Exp
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Appendix C

DSRCP User's Manual
This appendix serves as a general user's manual for using the Domain Specific Reconfigurable

Processor described in Chapter 5.
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C.1 Pin Descriptions

Pin Name Location Type Pin Description

OP<4:0> B1, D3, C1, D2, C2 Input Instruction opcode (defined in Appendix B).

RD<3:0> B6, B5, A2, C3 Input Destination operand.

RSO<3:0> A6, A4, C5, A l Input First source operand.

RS1<3:0> A7, A5, B4, C4 Input Second source operand.

RS2<2:0> C6, A3, B3 Input Third source operand.

Length<9:0> C9, Al0, B10, Cl0, Al l, Input Sets width of either the datapath or exponent/multiplier

BI1, A12, C1, B12, A13 operand using the formula:
width = (Length9 :0 + 1)

Clk C8, M7 Input Main clock of the DSRCP (two pins that must both be
driven).

Reset B7 Input Main reset of the DSRCP (active high).

Data<3 1:0> Ni, M2, L3, P1, M3, P2, N3, Bi-direct Bi-directional 32-bit data port of the DSRCP.
M4, P3, N4, P4, M5, N5, P5,
M6, N6, P6, P7, N7, M8, P8,
M9, PIO, P 1, NIO, P12, NI I,

MIO, P13, N12, MI1, P14

PadIn, PadOut L12, M14 Input, Test pins for verifying the pad drivers and level shifters

Output work correctly (PadIn directly drives PadOut).

Start A9 Input Instruction strobe signal that tells the processor to read

and execute the current instruction word.

Done B9 Output Indicates that the DSRCP has finished the last instruc-
tion and is ready for another.

OutputEn N8 Output Test signal that indicates the current direction of the bi-

directional data drivers (i.e., high = output, low = input).

LSB<3:0> C14, B14, D13, E12 Output Test outputs that indicate the LSB's of R3, R2, RI, and
RO respectively.

ExpMSB<1:0> C13, D12 Output Test outputs that indicate the current bits scanned from
the exponent register.

Cout DI Output Carry-out signal from the adder unit.

GTEQ, EQ A14, C12 Output Greater-than (GT) and Equal (EQ) flags from the com-
parator unit.

GND GI, JI, KI, Ml, E3, F3, H3, Power Both pad and core ground for the DSRCP.
C7, P9, F12, H12, E14, G14,

J14, K14, L14, N14

VDD Li, E2, F2, G2, H2, J2, K3, Power Core power supply for DSRCP.
B8, M12, E13, F13, G13,

H13, J13, K13, L13

VDDX El, Fl, HI, K2, L2, G3, J3, Power External pad ring power supply for DSRCP
A8, N9, G12, J12, K12, D14,

F14, H14, M13

Table C-1: Pin descriptions and locations for the DSRCP.
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C.2 Package Diagrams
Figure C-I and Figure C-2 show the pin outs of the DSRCP from both the top and bottom.

14 13 12 11 10 9 8 7 6 5 4 3 2 1

P U U N N U U U U N U E N U U P
Data0  Data3  Data 6  Data8  Data9  GND Data,1  Data1 4  Data 15  Data18  Data2, Data2 3  Data26  Data28

N N 3 U U U U U U N U 0 U E U N
GND Data2  Data5  Data7  VDDX OutputEn Datal 3  Datal 6  Data1 9  Data 22  Data25  Data3 l

M E U U U U U N N N U U U U U M
PadOut VDDX VDD Data, Data4  Data,( Datal 2  Clk Datal 7  Data 20 Data24  Data27  Data30  GND

L U 0 U 0 U U L
GND VDD Padin Data 29 VDDX VDD

K N 0 E 0 E a K
GND VDD VDDX VDD VDDX GND

J E N U U U N J
GND VDD VDDX VDDX VDD GND

H . . . Top N E 0 H
VDDX VDD GND GND VDD VDDX

G * View . ON G
GND VDD VDDX VDDX VDD GND

F * * N E 0 E F
VDDX VDD GND GND VDD VDDX

E 0 0 0 0 0 E E
GND VDD LSBO GND VDD VDDX

D U U 0 * * E D
VDDX LSBI ExpMSB 0  OP 3  OP1  Cout

C U 0 U 0 0 E 0 W 0 U U 0 0 0 C
LSB 3 ExpMSBI EQ Length 2 Length 6 Length9 Clk GND RS2 2 RS0 1 R510  RDO OP0  OP2

B 0 0 N 0 N U 0 U U 0 0 0 3 0 B
LSB 2  LengthI Length 4 Length 7  Done VDD Reset RD 3  RD 2  RSII RS20  OP4

A E E E 0 N S 0 E N 0 0 0 0 M A
GTEQ Length) Length3 Length 5 Length8  Start VDDX RS1 3  RSO 3  RS1 2  RS0 2  RS21  RD, RSOO

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure C-1: Top view of the DSRCP package.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data28  Data 26 Data 23 Data 21  Dataig Data15  Data14 Data1I GND Data9  Data Data 6  Data3  Data

* 0 U U U N U E E U E U a E
Data 31  Data 25 Data 22 Data 19 Data1 6 Data1 3 OutputEn VDDX Data7  Data5  Data2  GND

GND Data Data27 Data2 4 Data 20 Data 17  Clk Data1 2 Datao Data4  DataI VDD VDDX PadOut

VDD VDDX Data29  PadIn VDD GND

N X D X N G
GND VDDX VDD VDDX VDD GND

GND VDD VDDX VDDX VDD GND

- - - Bottom - - -
VDDX VDD GND GND VDD VDDX

View -D-X
GND VDD VDDX VDDX VDD GND

VDDX VDD GND GND VDD VDDX

VDDX VDD GND LSB 0  VDD GND

Cout OP, OP3  ExpMSBO LSBI VDDX

OP2  OP() RDO RS 11  RSO1  RS22 GND Clk Length9 Length6 Length 2  EQ ExpMSBI LSB 3

E 03 U U U U U U N N U U 03
OP 4  RS21  RS1I RD, RD 3  Reset VDD Done Length7 Length 4 Length, LSB,

RSO1 RD, RS2 1 RSO2 RS1 2 RSO3 RSI3 VDDX Start Length8 Length5 Length3 Length1 GTEQ

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure C-2: Bottom view of the DSRCP package.

C.3 Basic Operation
The DSRCP operates using a simple handshaking interface consisting of the Start/Done signals.

This is pseudo-asynchronous in the sense that the delay between the start and finish of the instruc-

tion execution is not fixed, but can vary depending on the operation performed, and operand values

used. However, all signal generation and data latching is done synchronous to the main Clk signal.

The basic operation of the processor is then a simple matter of assembling the appropriate

instruction word (using the assembly guidelines and codings given in Appendix B), asserting the

Start signal, and then waiting for the Done signal to be asserted, indicating that the instruction has
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completed execution. The only exceptions to this simple methodology are the data transfer instruc-

tions, REGLOAD and REGUNLOAD, which require data to be written to, or read from the

Data3 1 :0 data port respectively. Data transfers to/from the DSRCP are described in greater detail in

Section C.3.1.

The processor is reset using the Reset input. Note that the current width of the datapath dic-

tates which bitslices are affected by the Reset input -- if you want to reset the entire datapath then

you need to first utilize SETLENGTH(1023). All control registers and logic are reset, regardless

of the current width of the datapath.

C.3.1 Data Transfer to/from the DSRCP
Data is transferred to/from the DSRCP during the execution of the REGLOAD and

REGUNLOAD instructions. The invocation of these two instructions starts an internal FSM that

then accesses the data port (Data<31:0>) after a set number of cycles. The direction of the data

port is determined by the operation being performed (output for REGUNLOAD, input for

REGLOAD), and can be determined by monitoring the OutputEn signal that indicates the cur-

rent direction of the data port drivers. The timing of the resulting access is shown in Figure C-3

and can be used in designing external interfaces to the processor.

Cycle# 0 1 2 3

Clk ...i .... J."

n n+1 n+2

-FLY-K -
Start

Data31:0  Q0 Q1
(output) Y c I X

Done

Start

Data3 1:0  D
(input)

Done

Figure C-3: REGLOAD and REGUNLOAD timing diagrams.

REGISTER
UNLOAD
Timing

REGISTER
LOAD
Timing
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Appendix D

SHA-1 Circuit Schematics
As mentioned in Section 5.7.5, the Secure Hash Algorithm (rev. 1) function was designed down to

the transistor level but was not included in the final layout of the DSRCP due to time limitations

imposed by the fabrications schedules and tapeout deadlines. Hence, we've provided a complete

set of schematics (down to the basic logical gates) for the SHA-1 Engine so that others interested

in the design have a reference design for their use. We encourage others to utilize this design in

their own work and only ask that some reference to the source of the design be included in the

design documentation.
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