
Frontiers in Zero Knowledge

by

Amit Sahai

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2000
Mscuts t e 1000.s

@ Massachusetts Institute of Tchnoogy 200 . All rights reserved.

A uthor........................
Department of Electrical Engineering and

Certified by

R9A Professor of Electrical

Accepted by

Computer Science
August 5, 2000

!
Shafi GoYdwasser

Engineering and Computer Science
Thesis Supervisor

5ARKEtk

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 2 3 2000

LIBRARIES

Frontiers in Zero Knowledge
by

Amit Sahai

Submitted to the Department of Electrical Engineering and Computer Science
on August 5, 2000, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Zero-knowledge proofs, introduced by Goldwasser, Micali, and Rackoff, are fascinating constructs
in which one party (the "prover") convinces another party (the "verifier") that some assertion is true,
without revealing anything else to the verifier. In addition to being powerful tools for construct-
ing secure cryptographic protocols, zero-knowledge proofs also yield rich classes of computational
problems that are of complexity-theoretic interest as well.

We begin by investigating statistical zero-knowledge proofs, which are zero-knowledge proofs
where the condition that "nothing is revealed to the verifier" is interpreted in a strong information-
theoretic sense. We attempt to build a unified understanding of class SZK of problems admitting
statistical zero knowledge proofs, through the discovery of the first natural complete problem for
SZK. The work we present in this thesis on statistical zero-knowledge proofs is based on joint work
with Salil Vadhan and Oded Goldreich.

After this investigation of statistical zero knowledge, we then turn our attention to extending
the cryptographic uses of zero-knowledge proofs in general. Zero-knowledge proofs were designed
and defined to provide provable security for a single pair of interacting parties. In general multi-
user environments, however, where many interactions can take place concurrently, one must face
the challenge of coordinated multi-party attacks. The standard 2-party definition of zero knowledge
does not necessarily guarantee security in this scenario. In this thesis, we define and consider the
notion of concurrent zero knowledge, where zero knowledge is guaranteed even when faced with
a coordinated attack by many verifiers all acting concurrently. We show how to build concurrent
zero-knowledge protocols in which honest parties need only act locally, i.e., an honest prover and
verifier need not even be aware of other parties in order to be guaranteed security. A critical novel
component of our approach is an explicit use of certain local timing constraints in our protocols. The
work we present in this thesis on concurrent zero knowledge is based on joint work with Cynthia
Dwork and Moni Naor.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Electrical Engineering and Computer Science

Acknowledgments

It is my great pleasure to thank the many people who have made possible this thesis work, and more

generally the research that I have had the privilege to participate in. My advisor, Shafi Goldwasser,
has always provided me with advice and encouragement, for which I am very grateful. Shafi's

wonderful ability to find interesting and captivating research problems, and her generosity in sharing

these problems with her students, have made a profound impact on me. I hope that I will be able to

recreate some fraction of her enthusiasm in my dealings with my own students in the coming years.

I also thank Oded Goldreich immensely. I had the great good fortune of beginning my research

at MIT when Oded was visiting. Oded and Shafi are responsible for engendering in me a deep

fascination with the subject of this thesis work, zero-knowledge proofs. A good deal of the work in

this thesis was done jointly with Oded. From him I have learned a great deal about good research

and its presentation. There are few individuals that I hold in higher regard.

I had the privilege of having excellent colleagues in my fellow students on the third floor. Fore-

most among them is Salil Vadhan, with whom I collaborated on all the work in this thesis relating

to statistical zero knowledge. I thank him tremendously for his collaboration and friendship.

The work in this thesis on concurrency and zero knowledge is joint with Cynthia Dwork and

Moni Naor. I thank them very much for collaborating with me on this important project. I give

special thanks to Cynthia Dwork for patiently working with me during my first summer after starting

graduate school, when much of this work was done. Although the ideas we discussed then failed to

reach the goal we had hoped for (with good reason - we now know it to be impossible), they did

lead to our first truly zero-knowledge protocol in the concurrent model with timing, presented in

this thesis.
I also thank Silvio Micali and Madhu Sudan, who have graciously agreed to be on my thesis

committee.
There are many others who through conversations and collaborations in other work helped make

my research experience over the last few years as productive as it has been for me. Most of all,

I thank Manuel Blum for introducing me to Theoretical Computer Science, and kindling in me

an appreciation for the field. I also especially thank Marshall Bern, for collaborating with me

on my first research effort in the field, and for convincing me (without trying) to switch fields

from pure Math. I also thank Miki Ajtai, Sanjeev Arora, Mihir Bellare, Michael Bender, Ran

Canetti, Moses Charikar, Yevgeniy Dodis, Ron Fagin, Venkatesan Guruswami, Shai Halevi, Piotr

Indyk, Joe Kilian, Jon Kleinberg, Ravi Kumar, Eyal Kushilevitz, Eric Lehman, Danny Lewin, Anna

Lysanskaya, Tal Malkin, Silvio Micali, Daniele Micciancio, Ashwin Nayak, Erez Petrank, Zulfikar

Ramzan, Prabhakar Raghavan, Sridhar Rajagopalan, Ron Rivest, Dana Ron, Adam Smith, Dan

Spielman, Madhu Sudan, Andrew Tomkins, Luca Trevisan, Santosh Vempala, Avi Wigderson, and

Stephan Wolf. I am sure to have omitted names of others who I would like to thank as well. I would

also like to thank the IBM Almaden Research Center and Xerox PARC for having me as a summer

intern and visitor.
Finally, I gratefully thank my parents, family, and friends for their support and belief in me

over the years. More than anyone else, my brother Anant Sahai is responsible for any intellectual

curiosity that I may have, and I thank him tremendously for always pushing me and setting a high

standard for me to follow. Lastly, above all, I thank the Lord for His forgiveness and mercy, and for

the inexplicable good fortune that He has bestowed upon me.

5

Contents

1 Introduction
1.1 Zero Knowledge Proofs

1.1.1 Informal definitions
1.2 Statistical Zero Knowledge

1.2.1 Motivation .
1.2.2 Contribution of this thesis

1.3 Concurrent Zero Knowledge
1.3.1 Motivation .
1.3.2 Contribution of this thesis

2 Preliminaries
2.1 Notation and Basic Facts

2.1.1 Languages and Promise Problems
2.1.2 Computation
2.1.3 Standard Complexity Classes and Completeness.
2.1.4 Probability distributions
2.1.5 The statistical difference metric
2.1.6 Computational Indistinguishability

2.2 Zero-knowledge proofs
2.2.1 Interactive Protocols and Proofs
2.2.2 Honest-Verifier Zero-Knowledge Proofs .
2.2.3 General Zero-Knowledge Proofs

3 A Complete Problem for Statistical Zero Knowledge
3.1 Overview .

3.1.1 Consequences
3.2 The Completeness Theorem

3.2.1 The complete problem
3.2.2 A polarization lemma
3.2.3 A protocol for STATISTICAL DIFFERENCE
3.2.4 HVSZK-hardness of SD
3.2.5 Proof of Lemma 3.2.6
3.2.6 Example for GRAPH ISOMORPHISM

3.3 Applications .
3.3.1 Efficient statistical zero-knowledge proofs .
3.3.2 Closure properties
3.3.3 Knowledge complexity

6

9
9
9

10
10
11
11
11
12

13
13
13
13
14
14
15
17
18
18
19
21

23
23
24
26
26
27
31
32
33
36
37
38
38
43

.

.

.

.

3.3.4
3.3.5
3.3.6
3.3.7

Reversing statistical difference
Weak-HVSZK and expected polynomial-time simulators . .
Perfect and computational zero-knowledge
Hard-on-average languages and one-way-functions

4 Dealing with Cheating Verifiers in Statistical Zero-Knowledge Proofs

4.1 Overview .
4.1.1 Our results .

4.1.2 Techniques .
4.2 Notation .
4.3 The starting proof system .

4.4 The transformation .
4.5 Random Selection .
4.6 Proofs for the Transformed Protocol
4.7 Proof of Hashing Lemma .
4.8 Consequences for SZK .

5 Non-interactive Statistical Zero Knowledge

5.1 Overview
5.1.1 The Non-Interactive Model
5.1.2 Previous work
5.1.3 Our Contribution

5.2 The Complete Problems
5.3 Formal Statement of Results

5.3.1 A wider perspective
5.4 EA is in NISZK

5.4.1 The proof system
5.4.2 Flat distributions and the Leftover

5.4.3 Overview of Lemma 5.4.1
5.4.4 Proof of Lemma 5.4.1

5.5 EA and SDU are NISZK-complete . . .
5.6 Comparing NISZK and SZK

5.6.1 Nontriviality of NISZK
5.6.2 Conditions under which NISZK =

Hash Lemma.

SZK

6 Concurrent Zero Knowledge
6.1 Overview .

6.1.1 Zero-Knowledge and Concurrency: A Description

6.1.2 Basic protocol for DHC.
6.1.3 A step closer to concurrency - parallelization. . .
6.1.4 Our Approach: Adding Timing Constraints. . . .
6.1.5 Related previous work
6.1.6 Summary of Results
6.1.7 Subsequent Work on Concurrent Zero Knowledge

6.2 The Model and Preliminaries
6.2.1 Computationally-Sound Proofs or Arguments . .
6.2.2 Weak Synchronization Assumption
6.2.3 Our Model and Concurrent Zero Knowledge . .

7

47
51
52
54

57
58
59
61
62
62
63
64
69
72
75

77
77
77
79
80
80
81
83
83
83
84
85
86
88
90
90
91

of the Problem

95
95
96
96
98

100
101
102
102
103
103
104
104

6.2.4 Remarks On Our Model 106
6.2.5 Commitment Schemes 108
6.2.6 Computationally Secret Statistically Binding (CSSB) Commitment 109
6.2.7 Statistically Secret Computationally Binding (SSCB) Commitment 111

6.3 Weak Concurrent Zero-Knowledge Proofs for NP 113
6.4 Concurrent Zero-Knowledge Arguments . 119

6.4.1 Concurrent Perfect Zero-Knowledge Argument based on DLP 121
6.4.2 Concurrent Zero-Knowledge Under General Assumptions 125

7 Conclusions 130

8

Chapter 1

Introduction

1.1 Zero Knowledge Proofs

Zero-Knowledge proofs, introduced by Goldwasser, Micali and Rackoff [GMR89], are fascinating
and extremely useful constructs. A zero-knowledge proof is an interactive protocol between two
parties: one called a "prover" and the other called a "verifier." It is a "proof" in the sense that it is

convincing - using the protocol, the prover can convince the verifier of the truth of some assertion

to an arbitrarily high degree of confidence. And yet, the verifier learns nothing, other than the fact

that the assertion being proven is true. Zero-knowledge proofs are so fascinating precisely because

of this apparent contradiction. In particular, the definition of zero knowledge implies that some-
one can verify the correctness of a zero-knowledge proof without gaining any ability to convince

someone else of the same statement. Zero-knowledge proofs are powerful tools for constructing

secure cryptographic protocols, and also yield rich classes of computational problems that are of

complexity-theoretic interest as well.

1.1.1 Informal definitions

Defining a meaningful, useful, yet realizable notion of zero-knowledge proof is no easy task. The

seminal paper of Goldwasser, Micali, and Rackoff [GMR89] introduced zero knowledge as an ad-

ditional property augmenting their new notion of interactive proof systems. Before we discuss

interactive proof systems, we first must formalize what is meant by an "assertion" that one might

prove.
Following a standard complexity-theoretic framework, we think of assertions as being strings

over {0, 1}. An interactive proof works for a class of assertions described by what is called a

promise problem H = (Hy, HN). Here, we interpret Hy, called the YES instances of H, to be the
set of true assertions, and I-N, called the NO instances of H, to be a set of false assertions1 .

Informally, then, an interactive proof for the promise problem H is a protocol by means of
which a prover P can convince a probabilistic polynomial-time verifier V of the validity of any true
assertion, namely that a string x is a YES instance of H. By this, we mean that the protocol should
have the following two properties:

* Completeness: For every true assertion, i.e. every x E Hy, by following the protocol, the

prover will convince the verifier to accept the proof with high probability.

'In a promise problem, as opposed to a language, we allow for the possibility that there may be strings which are
neither classified as true or false.

9

* Soundness: For every false assertion, i.e. every x E HN, no matter what strategy the prover
tries to follow, the verifier (following the protocol) will reject the proof with high probability.

If we require that the soundness condition holds for all prover strategies, including ones that
are computationally unbounded, and we allow the honest prover strategy P to be computationally
unbounded as well, this leads to the standard notion of an interactive proof. If, however, we require
that the honest prover strategy P be implementable by a probabilistic polynomial-time machine, and
we only require the soundness condition to hold for probabilistic polynomial-time prover strategies,
then this leads to the notion of a computationally-sound proof, also called an argument, introduced
by Brassard, Chaum, and Crepeau [BCC88].

The zero knowledge property requires that, during the process by which the prover convinces
the verifier that the assertion is true, the verifier learns nothing beyond the validity of the assertion
being proven. To formalize this condition, two probability distributions are considered:

1. The interaction of the prover and verifier from the verifier's point of view.

2. The output of a probabilistic polynomial-time machine, called the simulator (which does not
have access to the prover or any special information)

An interactive proof system (or argument) (P, V) is said to be zero knowledge if, for every YES
instance x, and for every probabilistic polynomial-time verifier strategy, the two distributions above
are "indistinguishable." Intuitively, the verifier gains no knowledge by interacting with the prover
except that x is a YES instance, since it could have run the simulator instead. The specific variants
of zero knowledge differ by the interpretation given to "indistinguishable." The most strict inter-
pretation, leading to perfect zero knowledge, requires that the distributions be identical. A slightly
relaxed interpretation, leading to statistical zero knowledge, requires that the distributions have
negligible statistical deviation from one another. The most liberal interpretation, leading to com-
putational zero knowledge, requires that samples from the two distributions be indistinguishable by
any probabilistic polynomial-time machine.

It is often useful to consider the notion of honest-verifier zero knowledge, where we only require
the above condition to hold for the given verifier strategy V. In other words, we only insist that the
verifier "learn nothing" if it follows the protocol as specified and does not try to cheat.

1.2 Statistical Zero Knowledge

1.2.1 Motivation

In the first part of this thesis, we focus on the class of problems possessing statistical zero-
knowledge proof systems, which we denote SZK. Although statistical zero-knowledge proofs
may have been defined to achieve a cryptographic purpose, they have given rise to a rich field
for complexity-theoretic study.

SZK has been shown to contain a number of important problems, including GRAPH NONISO-
MORPHISM [GMW91], a problem which is not known to be in NP. It is also known to contain
problems with cryptographic application and significance that are believed to be hard on average,
such as QUADRATIC RESIDUOSITY (and its complement) [GMR89], a problem equivalent to the
DISCRETE LOGARITHM problem [GK93], and approximate versions of the SHORTEST VECTOR
and CLOSEST VECTOR problems in lattices [GG98]. On the other hand, it has also been shown that
any problem which has a statistical zero-knowledge proof cannot be N P-hard unless the polynomial-
time hierarchy collapses [For89, AH91, BHZ87]. Because SZK contains problems believed to be

10

hard, and yet seemingly cannot contain N P-complete problems, it holds an intriguing position in
complexity theory.

Another motivation to study statistical zero-knowledge proofs is that, unlike other forms of
zero knowledge (like computational zero knowledge or zero-knowledge arguments), the definition
of statistical zero-knowledge proofs makes essentially no reference to computational restrictions2

This gives us hope that statistical zero-knowledge proofs can give rise to a clean theory3 , and that
the understanding we gain with regard to statistical zero-knowledge proofs may be extended to
give insight to other types of zero knowledge as well. The methodology of extending techniques
originally developed for statistical zero-knowledge proofs to other forms of zero knowledge has
seen success in the past (for example, see [Ost9l] leading to [OW93]).

1.2.2 Contribution of this thesis

In Chapters 3-5, we study statistical zero-knowledge proofs in detail, with an eye towards building
a unified theory. In Chapter 3, based on joint work with Salil Vadhan [SV97, SV99] we present a
complete problem for SZK. Thus, this problem provides a new and simple characterization of SZK
- one which makes no reference to interaction or zero knowledge. We propose the use of complete
problems as a tool to unify and extend the study of statistical zero knowledge. To this end, we use
our complete problem to both establish a number of new results about SZK and easily deduce nearly
all previous results about SZK. In Chapter 4, based on joint work with Oded Goldreich and Salil
Vadhan [GSV98], we show how to transform any proof that is statistical zero knowledge only with
regard to an honest verifier - that is, a proof which only guarantees that the verifier "learns nothing"
if it follows the protocol exactly as specified - into a proof that is statistical zero knowledge for any
verifier, not matter how it deviates from the protocol as specified. Furthermore, the transformation
we give extends to a large class of computational zero-knowledge proofs, as well. Finally, in Chapter
5, also based on joint work with Oded Goldreich and Salil Vadhan [GSV99], we extend our study
to what are known as non-interactive statistical zero-knowledge proofs.

1.3 Concurrent Zero Knowledge

1.3.1 Motivation

After the investigation of statistical zero knowledge, we then turn our attention to extending the
cryptographic uses of zero-knowledge proofs in general. Zero-knowledge proofs, as one might
expect, have vast applicability throughout cryptography. They are particularly useful in constructing
secure cryptographic protocols.

Perhaps the most basic application of zero-knowledge proofs to cryptographic protocols is their
use as identification schemes. Suppose Alice wishes to identify herself to the computer system Hal.
Zero-knowledge proofs provide a beautiful solution to this problem. Informally speaking, Alice
gives a zero-knowledge proof that "she knows her password." Now, because what Alice provides is
a proof, only someone who actually knows Alice's password can successfully complete the protocol.
On the other hand, because the protocol is zero knowledge, even if the computer system Hal itself
(which plays the part of the verifier) has been taken over by an adversary, the adversary will learn
nothing about Alice's password.

2The only exception is the insistence that the verifier strategy be probabilistic polynomial time.
3We hope that this thesis will be seen to support this view.

11

More generally, zero-knowledge proofs are powerful tools in the construction of cryptographic
protocols at large. In every cryptographic protocol, the problem arises that a participant may not
act according to the behavior specified by the protocol. Building on their result showing that, based
on standard intractability assumptions, every language in N P has a computational zero-knowledge
proof [GMW91], Goldreich, Micali, and Wigderson introduced a powerful paradigm to deal with
this problem [GMW87]. In their paradigm, after each step of the protocol, each participant provides
a zero-knowledge proof that, informally speaking, they have followed the protocol as specified.
Again, because each participant is giving a proof, they can only successfully complete the zero-
knowledge proof if they have in fact acted according to the protocol. On the other hand, because
their proof is zero knowledge, honest participants need not fear losing any secrets in the process of
proving that they have acted correctly.

1.3.2 Contribution of this thesis

Zero-knowledge proofs were designed and defined to provide provable security for a single pair of
interacting parties. In general multi-user environments, however, the situation can be quite different.
There may be many parties all interacting concurrently, with pairwise interactions interleaved in
arbitrary ways. Furthermore, many parties may not even be aware of each other's existence. Thus,
honest parties may be unwilling or unable to cooperate with each other to guarantee security. In this
setting, honest parties want interactions to be local: an interaction between a pair of users should
not have to depend on the actions of other parties in the system. On the other hand, an adversary
need not play by the same rules. An adversary may mount a global, coordinated multi-party attack.
In the context of zero-knowledge proofs, we observe that the standard 2-party definition of zero
knowledge does not necessarily guarantee secrecy in this scenario. In Chapter 6, based on joint
work with Cynthia Dwork and Moni Naor [DNS98], we define and consider the notion of concurrent
zero knowledge, where zero knowledge is guaranteed even when faced with a coordinated attack by
many verifiers all acting concurrently. We show how to build concurrent zero-knowledge protocols
in which honest parties need only act locally, i.e., an honest prover and verifier need not even be
aware of other parties in order to be guaranteed security.

A critical novel component of our approach is an explicit use of certain local timing constraints
in our protocols. We rely on a weak synchronization assumption on the local clocks of honest
parties. This assumption holds in particular if we assume that clocks of honest parties run within
constant factors of each other.

12

Chapter 2

Preliminaries

In this chapter, we will provide some definitions and preliminaries that will be needed in this thesis.

We will delay some of these, however, to later chapters in order to aid the reader.

2.1 Notation and Basic Facts

2.1.1 Languages and Promise Problems

Throughout this thesis, all strings are over {0, 1}. We further assume that a canonical unambiguous
efficient encoding of various types of objects as strings has been fixed (and therefore we may talk
of an element of ZP or a graph as being a string).

It is standard in complexity theory to talk of decision problems as languages, which are subsets
of {0, 1}*. In our investigation of statistical zero knowledge, we will use the more general notion
of promise problems [ESY84]. Formally, a promise problem H consists of two disjoint sets of
strings fly and fIN, where Hy is the set of YES instances and fN is the set of NO instances. A
promise problem H is associated with the following computational problem: Given an input which
is "promised" to lie in fy U fIN, decide whether it comes from Hy or fN. Strings in fy U HN

are called instances of H, whereas strings not in fly U 1 1 N are said to violate the promise. The
complement of H is the promise problem TH, where Hy = fIN and 1N = fy. If C is a complexity

class of promise problems, then co-C f {I: H E C}. Note that languages are a special case of
promise problems.

2.1.2 Computation

Throughout this thesis, we will assume a standard model of computation such as the RAM or multi-
tape Turing machine model - since our analysis will be at a sufficiently high level, fixing the exact
model is not important. For more information, see for example [Pap94]. We say that a machine M
is polynomial time if there exists a polynomial p(.) such that for every input x, we have that M(x)
halts within p(Ix1) steps, where IxI denotes the length of the string x.

A randomized or probabilistic machine is one that has access to an unbiased "coin" that it can
flip on command. Formally, we choose an infinite string r uniformly among infinite strings of bits,
and give this as an auxiliary input to the machine. Note that if we know that a machine M will
only look at n random bits, then we need only supply M with a random string of length n. For a
randomized machine M, we write M(x) to denote the distribution of outputs produced when given
x as an input. We write M(x; r) to denote the particular output obtained when the machine M is
supplied with random bits r. We say that a randomized machine M is (strictly) polynomial time

13

(also abbreviated PPT) if there exists a polynomial p(.) such that for every input x, we have that
M(x; r) halts within p(Ix1) steps, no matter what the random bits r are. On the other hand, we say
that a randomized machine M is expected polynomial time if there exists a polynomial p(.) such
that for every input x, we have that the expected number steps that M(x) takes is at most p(xD1).

Finally, a non-uniform machine is one that additional access to an "advice" string, which de-
pends only on the length of the input to the machine. In particular, a non-uniform polynomial-time
machine is specified by a machine M together with a set of strings {71}nEN with the property that
there exists a polynomial p(-) such that for every input x, we have that M(x, ylxI) takes at most
p(lx|) steps before halting. One similarly defines the notion of a randomized (or probabilistic)
non-uniform polynomial-time machine.

2.1.3 Standard Complexity Classes and Completeness.

The complexity class P consists of all promise problems U for which there exists a polynomial-time
deterministic machine M such that M(x) = ac cept if x E fly, while M(x) = re ject if x E UN-
Note that there are no constraints on inputs that violate the promise. We think of P as consisting of
all problems that can be solved efficiently by a deterministic machine. Similarly, the class BPP is
the set of all promise problems H for which there exists a (strictly) probabilistic polynomial-time
machine M such that x E Hy implies that Pr [M(x) = accept] > 2/3, while x E UN implies
that Pr [M(x) = reject] > 2/3. Note that standard techniques (see for example [Pap94]) can be

used to transform any such machine into one where these probabilities are amplified to 1 - 2-
for any constant k.

The class NP consists of all promise problems U for which there exist "short efficiently verifi-
able classical proofs" that a string x is a YES-instance of U. Formally, we require that there exists a
polynomial-time deterministic machine V and a polynomial f(-) such that:

" (Completeness): If x E Uy, then there exists w C {0, 1}'(jxl) such that M(x, w) = accept.
Here, w is the classical proof or witness for x.

" (Soundness): If x E pin, then for all w, we have that M(x, w) = re je ct.

We say that promise problem U (Karp) reduces to promise problem r if there is a polynomial-
time computable function f such that

x E Hy = f(x) E Fy

x E UN -> f(x) E N

If C is a class of promise problems, we say that promise problem U is complete for C if U E C and
every promise problem in C reduces to U. As above, all reductions we consider are polynomial-time
many-one (or Karp) reductions, unless otherwise specified.

2.1.4 Probability distributions

First, we introduce some notation that will be used throughout this thesis. If X is a probability
distribution (or random variable), we write x +- X to indicate that x is a sample taken from X. If
S is a set, we write xERS to indicate that x is uniformly selected from S.

In this thesis, we will consider probability distributions defined both by circuits and probabilistic
Turing machines as described above. If A is a probabilistic Turing machine, we use A(x) to denote
the output distribution of A on input x. If C is a circuit mapping m-bit strings to n-bit strings,

14

then choosing an input u uniformly at random from {0, 1} m defines a probability distribution on

{0, 1} given by C(u). For notational convenience, we also denote this probability distribution by
C. These definitions capture the idea of an "efficiently samplable" distribution, as to sample from
the distribution one need only run the Turing machine or evaluate the circuit.

2.1.5 The statistical difference metric

For probability distributions (or random variables) X and Y on a discrete set D, the statistical
difference between X and Y is denoted by

||X - Y|| = maxIPr [X G S] - Pr [Y E S] |. (2.1)
ScD

This is often also called the variation distance between X and Y. The maximum in (2.1) can
be achieved by taking S = {x: Pr [X = x] > Pr [Y = x]} (or its complement); this can be seen
directly or in the proof of Fact 2.1.1 below.

There is an equivalent formulation of statistical difference in terms of the Li norm - that will
sometimes be more convenient for us. To every probability distribution X on a discrete set D, the
mass function of X is a vector in RD whose x'th coordinate is Pr [X = x]. For the sake of elegance,
we also denote this vector by X. With this notation, we can state the following well-known fact.

Fact 2.1.1 I|X - YII = . IX - YI1

Proof: For any set S C D,

2|Pr [X C S] -Pr [Y E S]I

= |Pr [X C S] - Pr [Y E S]I + Pr [X S] - Pr [Y V S]I

j (Pr[X=x]-Pr[Y=x]) + Z (Pr[X=x]-Pr[Y=X])
xGS xOS

IPr[X = x] -Pr[Y =x]+Z |Pr[X =x] -Pr[Y =x]I
xES x S

= |X-YI1 .

Equality is achieved by taking S = {x: Pr [X = x] > Pr [Y = x]}. U

It is immediate from this characterization of statistical difference that it is a metric (as long as
we identify random variables that are identically distributed). In particular, it satisfies the Triangle
Inequality.

Fact 2.1.2 (Triangle Inequality) For any probability distributions X, Y, and Z,

lix - Y|| lix - Z|| + liZ - Y|

Recall that for any two vectors v C Rm and w E R", their tensor product v 0 w is the vector in
Rfm, whose (i, j)'th component is viw 3 . Now, if we have a pair of random variables (X, Y) (on the
same probability space) taking values in D x E, then X is independent from Y iff the corresponding
mass functions satisfy (X, Y) = X 0 Y, where we view the mass functions of X and Y as elements
of RD and RE, respectively. For this reason, if we have random variables X and Y taking values in

15

sets D and E, respectively, we write X 0 Y for the random variable taking values in D x E which
consists of independent samples of X and Y.

Now, for any two vectors v and w, | ® WI 1 = |v1 -w| 1. In addition, for any mass function X,
|X I1 = 1. These facts enable one to show that the statistical difference behaves well with respect to
independent random variables:

Fact 2.1.3 Suppose X 1 and X 2 are independent random variables on one probability space and Y
and Y2 are independent random variables on another probability space. Then,

||X1,X2)- (Y1,Y 2)I| - ||Xi - Y1|| + 11X 2 -Y2|

Proof:

|(Xl1,X2) - (YiY2)1| | |(X1, X2) - (Y1, X 2) 11+ 1|(Y1, X 2) - (Y1, Y2)|1
1 1

| X1 0 X2 - Y1 0 X2|1 + -|Y 0 X2 - Y1 0 Y211
2 21 1

(X1 - YO) 0 X211 + - lYi 0 (X2 -Y2)112 2

JX1 - Y11 - IX211 + - |Y li - JX2 -Y211

= ||X1 - Y1|| + ||X2 - Y2 ||

Another basic fact about statistical difference is that for any procedure A, even if it is random-
ized, the statistical difference between A(X) and A(Y) is no greater than the statistical difference
betewen X and Y. Formally, if D is any set, a randomized procedure on D is a a pair A = (f, R),
where R is a probability distribution on some set E and f is a function from D x E to any set F.
Think of the distribution R as providing a "random seed" to the procedure A. If X is a probabil-
ity distribution on D, then A(X) denotes the probability distribution on F obtained by sampling
X 0 R and applying f to the result. Note that applying a function is a special case of applying a
randomized procedure.

Fact 2.1.4 If X and Y are random variables and A is any randomized procedure, then

IIA(X) - A(Y)II 5 |X - Y||

Proof: Let A = (f, R). Then, for any set S C F,

Pr [A(X) E S] - Pr[A(Y) E S]I
= |Pr[f(X0R)ES]-Pr[f(Y®R)e S]I
= jPr [X 0 R E f 1 (S)] - Pr [Y 0 R E f-'(S)]|

||X 0 R -Y R||

| |X -Y||+||R - R1

= |IX -Y||.

Taking the maximum over all sets S completes the proof. 0

The next fact is useful when arguing that the statistical difference between two distributions is small.

16

Fact 2.1.5 Suppose X = (X1, X 2) and Y = (Y 1 , Y2) are probability distributions on a set D x E
such that

1. X 1 and Y are identically distributed, and

2. With probability greater than (1 - E) over x +- X 1 (equivalently, x +- Y),

|IX2|x 1=x - Y2 Y1=xJ <6

(where B IA=a denotes the conditional distribution of B given that A = a for jointly dis-
tributed random variables A and B).

Then ||X - Y|| < E + 6.

Proof: Let T C D be the set of x's for which IIX2Ix 1=x - Y2Iy I=x < 6. Now, let S be an
arbitrary subset of D x E and, for every x E D, define Sx = {y E E: (x, y) E S}. Then,

Pr[XES] Pr[X1 T]+(Z Pr[X2 ESx|X1=x]Pr[X1=x]
xET

< E +Z (Pr [Y2 E SxIY1 = x] +6) Pr [Y1 = x]
xET

Sc+6 +Pr[Y G S].

By symmetry, we also have Pr [Y E S] < E + 6 + Pr [X E S]. Since S was arbitrary, IIX - YII <
E+ 6 . *

The next fact formalizes the intuition that if two distributions have small statistical difference,
then their mass functions must be close at most points.

Fact 2.1.6 If X and Y are any two distributions such that IIX - YII < e, then with probability

> 1 - 2 over x +- X,

(1 - -) Pr [X = x] < Pr [Y = x] < (1 + f) Pr [X = x]

Proof: Let S = {x: (1 - Vfi) Pr [X = x] Pr [Y = x]}, i.e. the set of x's for which the left-hand
inequality in Fact 2.1.6 is violated. Then,

Pr [Y E S] (1 - 4) Pr [X E S]

= Pr[XES]-V/ Pr[XES].

Thus, IIX - YII /Pr [X E S],so we must have Pr [X E S] < F. A similar argument show
that the right-hand inequality in Fact 2.1.6 is violated with probability less than V. 0

2.1.6 Computational Indistinguishability

The notion of statistical distance gives a natural metric on distributions, which lets us compare
how similar two distributions are in an absolute sense. In particular, recall that a function p(n) is
negligible if for all polynomials p(n), p(n) 5 1 for all sufficiently large n. Suppose we hadw p(n)
two ensembles of distributions {Ak} kEN and {Bk~kEN. If we knew that flAk - BkII pe(k) for

17

some negligible function p, this would indicate that these two ensembles of distributions are nearly
identical to each other (in an asymtotic sense).

We now consider a computational notion of two ensembles of distributions being nearly identi-
cal. We say that two ensembles of distributions {Ak} kEN and {BkI}kEN are computationally indis-
tinguishable [GM84, Yao82] if for every non-uniform probabilistic polynomial-time machines D
(called a "distinguisher"), there exists a negligible function p(-) such that for all k:

Pr [D(lk, Ak) = 1] - Pr [D(lk, Bk) = 1]1 p(k).

Similarly, we say two ensembles of distributions indexed by strings {Ax}XEL and {Bx}XEL
are computationally indistinguishable if for every non-uniform probabilistic polynomial-time dis-
tinguisher D there exists a negligible function p(-) such that for all x E L:

IPr [D(x, Ax) = 1] - Pr [D(x, Bx) = 1]| p(IxI).

2.2 Zero-knowledge proofs

2.2.1 Interactive Protocols and Proofs

Before defining zero-knowledge, we need to first introduce the notion of a protocol between two
interacting machines. We use the formalism given by Goldwasser and Sipser [GS89]:

Definition 2.2.1 An interactive protocol (P, V) is a pair of probabilistic machines P and V. The
interaction of P and V on common input x (with private inputs pp for P and pv for V, sometimes
omitted) is a random process which proceeds as follows:

1. Choose random strings rp and rv uniformly among infinite strings over {o, 1}.

2. For i = 1, 2, ... do:

(a) If i is odd, letmi = P(pA, x, m1, ,mi1; rA).

(b) If i is even, let mi = V (PB, x, m1, ... , mi_1; rB)-

(c) If mi E {accept,reject,halt}, then stop.

If accept is the last message, then we say that the party which output it accepts the interaction, and
similarly for rej ect. Such a protocol is polynomially bounded if there is a polynomial p(-) such
that the protocol halts within p(|x|) exchanges of messages.

Furthermore, we denote by Viewpv(x) the random variable which represents the view of V in
its interaction with P. Namely, this variable consists of the private input pv to V together with its
random coins rv, along with all messages mi exchanged between the two parties.

We follow [GMR89] and [Gol95] in defining interactive proofs and zero-knowledge. The orig-
inal definitions in [GMR89] were given for languages. We generalize these definitions to promise
problems in the natural way, as previously done in [GK93]. That is, conditions previously required
for inputs in the language are now required for YES instances of a promise problem and conditions
previously required for inputs not in the language are now required for NO instances.

18

Informally, an interactive proof is a protocol in which a possibly computationally unbounded
prover attempts to convince a polynomial-time verifier V that an assertion is true, i.e. that a string
x is a YES instance of a promise problem. More formally, we have:

Definition 2.2.2 An interactive protocol (P, V) between a computationally unbounded prover P
and a probabilistic polynomial-time verifier V is said to be an interactive proof system for a promise
problem H with completeness error c(n) and soundness error s(n) if

1. (Completeness): If x E fly, then Pr [(P, V)(x) = accept] ;> 1 - c(Ix).

2. (Soundness): If x E I-N, then for all P*, Pr [(P*, V)(x) = accept] < s(jx).

Note that as long as 1 - c(n) > s(n) + 1/poly(n) and that both c(n) and s(n) can be com-
puted in time poly(n), parallel repetition can be used to obtain a new interactive proof for H with

k
completeness error and soundness error 2- , for any constant k. We call the number of rounds in
an interactive protocol to be the total number of messages exchanged between the prover and the
verifier. An interactive proof system is said to be public coin (also known as Arthur-Merlin) if on
every input, the verifier's random coins r can be written as a concatenation of strings rir2 ... r.
such that the i'th message sent from the verifier to the prover is simply ri. In this case, sometimes
the verifier is called Arthur, and the prover is called Merlin [BM88]. When we present public-coin
protocols, we often use the Arthur-Merlin naming convention to emphasize the public-coin nature
of these protocols.

2.2.2 Honest-Verifier Zero-Knowledge Proofs

Roughly speaking, an interactive proof is said to be zero-knowledge if, when the input is a YES
instance, the verifier can simulate its view of the interaction on its own. Intuitively, then, what-
ever knowledge the verifier can obtain from the interaction with the prover, it could in fact obtain
completely on its own - by simply performing the simulation. A crucial point here concerns which
verifiers' interaction we can simulate. If the interaction of the verifier V given in the protocol
description with the prover P can be simulated, then we call the protocol an honest-verifier zero-
knowledge proof - since in this case, we know that following the protocol honestly prevents gaining
any knowledge one could not obtain on one's own. If on the other hand, we can simulate the inter-
action of any verifier with the prover, then we call the protocol a (general) zero-knowledge proof.

We will first discuss honest-verifier zero-knowledge proofs. There are three kinds of such
proofs, depending on the quality of the simulation.

Definition 2.2.3 Let (P, V) be an interactive proof system with negligible completeness and sound-
ness errors, for a promise problem H1.

9 (P, V) is said to be an honest-verifier statistical zero-knowledge proof system if there exists a
probabilistic polynomial-time2 simulator S and a negligible function a (called the simulator
deviation) such that

For all x E Hly, we have 11S(x) - Viewpyv(x)II < a(|x1). (2.2)

'We will later discuss the notion of a computationally-sound proof, also known as an argument, where the prover is
assumed to be limited to polynomial time.

2 The definition of each type of zero knowledge can also be made allowing the simulator to run in expected polynomial
time instead of strict polynomial time. See the remarks after the definition.

19

" A honest-verifier perfect zero-knowledge proof system is defined in the same way, except that
Condition (2.2) is replaced by ||S(x) - Viewp,v(x)|| = 0, where S is allowed to output
'f ail' with probability at most 1/ 2 and S(x) denotes the conditional distribution of S given
that the output is not f ail. 3

* A honest-verifier computational zero-knowledge proof system replaces Condition (2.2) with
the requirement that the ensembles {S(x)} xny and {Viewp,v(x)}XEHy are computation-
ally instinguishable ensembles of distributions.

We let HVSZK (resp. HVPZK, HVCZK) denote the class of promise problems with statistical
(resp. perfect, computational) zero-knowledge proof systems against the honest verifier

Remark 2.2.1 We make several remarks about this definition:

1. (Honest Verifiers) In this definition, we only require that the zero-knowledge condition to hold
against the honest verifier, i.e. the verifier that follows the protocol as specified. The usual
definition requires the zero-knowledge property to hold against any polynomial-time verifier
strategy. However, we will show that any proof system which is statistical zero-knowledge
against the honest verifier can be transformed into one that is zero-knowledge against any
verifier. Via this transformation, many of our results about HVSZK directly translate to the
class of promise problems possessing statistical zero-knowledge proofs against any verifier.

2. (Error Probabilities) Note that we have required the completeness and soundness errors to
be negligible. However, it is easy to see that zero-knowledge against an honest verifier is
preserved under parallel repetition. Therefore, starting with any completeness and soundess
errors such that 1 - c(n) > s(n) + 1/poly(n), the completeness and soundness error proba-
bilities can be made exponentially small without increasing the number of rounds, by parallel
repetition (see for instance, [Gol95]).

3. (Strict vs. Expected Polynomial-time Simulation) We note that zero knowledge has been
defined in the past in two ways. [Gol95] works with the variant of zero knowledge in which
the simulator is required to run in strict polynomial time, with some probability of failure in
the perfect case. The original definition in [GMR89] allows the simulator to run in expected
polynomial time, but with zero probability of failure. Note that for honest-verifier statistical
zero knowledge, the choice to restict to strict polynomial time is not very restrictive, because
we are only discussing honest-verifier statistical zero-knowledge and we do not know of any
proof systems which require an expected polynomial time simulator for the honest verifier.
In addition, as shown in Section 3.3.5 of Chapter 3, our techniques can be used to prove
that expected polynomial time simulators and strict polynomial time simulators are actually
equivalent for public-coin statistical zero-knowledge proofs against an honest verifier.

4. (Promise Problems vs. Languages) Our definitions above generalize the original definitions
of [GMR89] from languages to promise problems, and we will focus on the "promise class"
HVSZK rather than the class of languages possessing statistical zero-knowledge proofs. A
couple of justifications can be given for this extension. First, for essentially all of our results
about statistical zero knowledge, the fact that we prove them for the promise class only makes
them stronger, by virtue of the fact that the promise class contains the language class. Second,

3 A failure probability can also be allowed in the definition of statistical zero-knowledge, but this can easily be reduced

to an 2- for any constant k by repeated trials and absorbed in to the simulator deviation.

20

several of the most important natural problems known to be in HVSZK, such as those in
[GK93, GG98], are not languages, but promise problems, so it may actually be preferable to
study the promise class.

Our only result which requires new interpretation for the language class is the Completeness
Theorem. As the complete problem is a promise problem, it is not complete for the language
class in the usual sense. Nevertheless, it still gives a characterization of the language class, in
that a language has a statistical zero-knowledge proof if and only if it reduces to the complete
problem.

We note that one must be a bit more careful in a complexity-theoretic investigation of promise
classes, particularly when discussing reductions that may violate the promise (cf., discussions
in [ESY84, GG98]), and it may be the case that the language class has some different proper-
ties than the promise one.

2.2.3 General Zero-Knowledge Proofs

We now consider how to define proofs that remain zero knowledge against all verifier strategies.
We start with the simplest extension of the definition above to handle the any-verifier case, follow-
ing [GMR89].

Definition 2.2.4 Let (P, V) be an interactive proof system with negligible completeness and sound-
ness errors, for a promise problem H.

" (P, V) is said to be a (general) statistical zero-knowledge proof system if for every non-
uniform probabilistic polynomial-time verifier V*, there exists a probabilistic polynomial-
time4 simulator S and a negligible function a (called the simulator deviation) such that

For all x E fly, we have IIS(x) - Viewpv. (x) II < a(|x|). (2.3)

" A perfect zero-knowledge proof system is defined in the same way, except that Condition (2.3)
is replaced by |IS(x) - Viewpv. (x) = 0, where S is allowed to output 'f ail' with proba-
bility at most 1/2 and S(x) denotes the conditional distribution of S given that the output is
not fail. 5

" A computational zero-knowledge proof system replaces Condition (2.3) with the requirement
that the ensembles {S(x)}EInI and {ViewpV Wy(x)}Ein are computationally instinguish-
able ensembles of distributions.

It may seem that the definition above would be very difficult to achieve - how can we construct a
simulator for each of the infinitely many possible verifier strategies? The way this has been done in
all known general zero-knowledge proofs is to actually exhibit one universal simulator, which when
given "black box" access to any verifier strategy, is able to produce a simulation of that verifier
with the prover. This notion of "black box zero knowledge" was first formalized by Goldreich and
Oren [G094]. We state it formally below:

4As in the honest-verifier case, the definition of each type of zero knowledge can also be made allowing the simulator
to run in expected polynomial time instead of strict polynomial time.

5As noted for the honest-verifier case, a failure probability can also be allowed in the definition of statistical zero-
knowledge, but this can easily be reduced to an 2- k for any constant k by repeated trials and absorbed in to the simulator
deviation.

21

Definition 2.2.5 Let (P, V) be an interactive proof system with negligible completeness and sound-
ness errors, for a promise problem H.

e (P, V) is said to be a (general) black-box statistical zero-knowledge proof system if there ex-
ists a probabilistic polynomial-time6 (oracle machine) simulator S and a negligible function
a (called the simulator deviation) such that for every non-uniform probabilistic polynomial-
time verifier V*, we have:

For all x E UHy, we have SV* (x) - Viewp,v* (x)|| < a(Ix|). (2.4)

" A black-box perfect zero-knowledge proof system is defined in the same way, except that
Condition (2.4) is replaced by |ISv* (x) - Viewp,v* (x) 11 = 0, where S is allowed to output
' ail' with probability at most 1/ 2 and S(x) denotes the conditional distribution of S given
that the output is not f ail. 7

* A black-box computational zero-knowledge proof system replaces Condition (2.4) with the re-
quirement that the ensembles {Sv* (x},an and {Viewp,v* (x)}xEny are computationally
instinguishable ensembles of distributions.

We let SZK (resp. PZK, CZK) denote the class of promise problems with (general) black-box
statistical (resp. perfect, computational) zero-knowledge proof systems.

Remark 2.2.2 Note that in this black-box model, we can also make sense of what it means to
allow unlimited verifiers in the case of statistical or perfect zero-knowledge proofs. We can say
that a proof system is black-box statistical (resp. perfect) zero knowledge against arbitrary verifier
strategies if it satisfies Condition (2.4) for all possible verifier machines V*.

We will omit other definitions until later chapters, where they will be needed.

6 Again, the definition of each type of zero knowledge can also be made allowing the simulator to run in expected
polynomial time instead of strict polynomial time.

7 Again, a failure probability can also be allowed in the definition of statistical zero-knowledge, but this can easily be
reduced to an 2- for any constant k by repeated trials and absorbed in to the simulator deviation.

22

Chapter 3

A Complete Problem for Statistical Zero
Knowledge

A revolution in theoretical computer science occurred when it was discovered that N P has com-
plete problems [Coo71, Lev73, Kar72]. Most often, this theorem and other completeness results
are viewed as negative statements, as they provide evidence of a problem's intractability. These
same results, viewed as positive statements, enable one to study an entire class of problems by fo-
cusing on a single problem. For example, all languages in N P were shown to have computational
zero-knowledge proofs when such a proof was exhibited for GRAPH 3-COLORABILITY [GMW91].
Similarly, the result that IP = PSPACE was shown by giving an interactive proof for QUANTI-
FIED BOOLEAN FORMULA, which is complete for PSPACE [LFKN90, Sha90]. More recently,
the celebrated PCP theorem characterizing NP was proven by designing efficient probabilistically
checkable proofs for a specific NP-complete language [FGL+96, AS92, ALM+92].

In this chapter, we present a complete problem for HVSZK, the class of promise problems
possessing statistical zero-knowledge proofs (against the honest verifier)1 . This problem provides a
new and simple characterization of HVSZK - one which makes no reference to interaction or zero
knowledge. We propose the use of complete problems as a tool to unify and extend the study of
statistical zero knowledge. To this end, we use our complete problem to both establish a number of
new results about HVSZK and easily deduce nearly all previous results about HVSZK. The work
we present in this chapter is based on two papers [SV97, SV99] authored jointly with Salil Vadhan.

3.1 Overview

The promise problem we show to be complete for HVSZK is STATISTICAL DIFFERENCE. An in-
stance of STATISTICAL DIFFERENCE consists of a pair of probability distributions, specified by
circuits which sample from them. Roughly speaking, the problem is to decide whether the distri-
butions defined by the two circuits are statistically close or far apart. (The gap between 'close'
and 'far apart' is what makes it a promise problem and not just a language.) Our main theorem
is that STATISTICAL DIFFERENCE is complete for HVSZK. This Completeness Theorem gives a
new characterization of HVSZK. Informally, it says that the assertions that can be proven in sta-
tistical zero knowledge are exactly those that can be cast as deciding whether a pair of efficiently
sampleable distributions are statistically close or far apart.

'In this chapter, whenever we write "statistical zero-knowledge proof," we mean one that is zero knowledge against
an honest verifier. In the next chapter, we will show that this restriction is without loss of generality.

23

The starting point for our proof of the Completeness Theorem is a powerful theorem of
Okamoto [Oka96], which states that all languages in HVSZK have public-coin (also known as
Arthur-Merlin [BM88]) statistical zero-knowledge proofs. Using the approach pioneered by Fort-
now [For89], we analyze the simulator of such a proof system and show that statistical properties
of the simulator's output distribution can be used to distinguish between YES and NO instances of
the problem in consideration. Our key new observation is that, for a public-coin proof system, these
statistical properties can be captured by the statistical difference between efficiently sampleable
distributions. We thereby conclude that every problem in HVSZK reduces to STATISTICAL DIF-
FERENCE.

To show that STATISTICAL DIFFERENCE is in HVSZK, we exhibit a simple 2-message
proof system for it, generalizing the well-known proof systems for QUADRATIC NONRESIDUOS-
ITY [GMR89] and GRAPH NONISOMORPHISM [GMW91]. One ingredient in our proof system is a
new "Polarization Lemma" for statistical difference, which may be of independent interest. Roughly
speaking, this lemma gives an efficient transformation which takes as input a pair of probability dis-
tributions (specified by circuits which sample from them) and produces a new pair of distributions
such that if the original pair is statistically close (resp., far apart), the new pair is statistically much
closer (resp., much further apart).

3.1.1 Consequences

We propose using complete problems, such as STATISTICAL DIFFERENCE, to unify and extend
the study of HVSZK. We also use the connection between HVSZK and statistical properties of
samplable distributions to establish new techniques for manipulating such distributions. The results
we obtain along these lines are summarized below.

The relationship between HVSZK and BPP. Our complete problem illustrates that statistical
zero knowledge is a natural generalization of BPP. In the definition of STATISTICAL DIFFERENCE
, the circuits can output strings of any length. If we restrict the circuits to have output of logarithmic
length, the resulting problem is easily shown to be complete for BPP.

Efficient HVSZK proof systems. The zero-knowledge proof system we exhibit for STATISTICAL
DIFFERENCE has many attractive properties (which we describe shortly); by the Completeness
Theorem it follows that every problem in HVSZK also has a proof system with such properties.
First, the protocol is very communication-efficient - only two messages are exchanged between
the prover and verifier, and the prover only sends one bit to the verifier (to achieve soundness
error 1/2). In addition, we will show that when the input is a YES instance, the verifier's view of
the interaction can be simulated by a polynomial-time simulator with exponentially small statistical
deviation. Moreover, we will show that this simulator deviation can be made to shrink exponentially
fast as a function of a separate "security parameter" which can be varied independently from the
assertion being proven. This is in contrast to the definition of HVSZK, which only requires that the
verifier be able simulate the interaction with statistical deviation 1/nr(1), where n is the the length
of the assertion being proven.

Closure properties. Using the complete problem, we demonstrate that HVSZK has some very
strong closure properties. First, our proof of the completeness theorem contains a much simpler
proof that HVSZK is closed under complement, first shown by Okamoto [Oka96]. We also imme-
diately deduce the theorems showing that all problems in HVSZK must have relatively low com-
putational complexity, first proven in [For89, AH91]. Then, in Section 3.3.2, we use the complete

24

problem to prove much stronger boolean closure properties. These can be informally described as
asserting the existence of statistical zero-knowledge proofs for complex assertions built out simpler
assertions already known to be in HVSZK. These complex assertions take the form of arbitrary
propositional formulae whose atoms are statements about membership in some problem in HVSZK,
and the statistical zero-knowledge proofs we exhibit have complexity which is polynomial in the
size of these formulae. These results generalize earlier ones of De Santis, Di Crescenzo, Persiano,
and Yung [DDPY94] and Damghrd and Cramer [DC96], which held for monotone formulae and
various subclasses of HVSZK, such as random self-reducible problems.

By the Completeness Theorem, the closure properties we exhibit are equivalent to the existence
of efficient transformations that manipulate the statistical difference between sampleable distribu-
tions in various ways. Indeed, it is by exhibiting such transformations that we prove these closure
properties. The transformations we give (and their application to closure properties) are inspired by
the techniques of De Santis, Di Crescenzo, Persiano, and Yung [DDPY94].

Knowledge complexity. In addition to introducing zero-knowledge proofs, the conference ver-
sion of the paper of Goldwasser, Micali, and Rackoff [GMR89] proposed a more general idea of
measuring the amount of knowledge leaked in an interactive proof. Goldreich and Petrank [GP91]
suggested several definitions of knowledge complexity to accomplish this, and relationships between
these various types of knowledge complexity were explored in [GP91, BP94, GOP98, ABV95,
PT96]. Loosely speaking, the definitions of (statistical) knowledge complexity measure the "amount
of help" a verifier needs to generate a distribution that is statistically close to its real interaction with
the prover. There are several ways of formalizing the "amount of help" the verifier needs and each
leads to a different notion of knowledge complexity.

Our work on HVSZK turns out to have consequences for (non-zero) knowledge complexity
as well. First, we show that for the weakest of the various measures of knowledge complexity,
namely statistical knowledge complexity in the "hint sense", the corresponding hierarchy collapses
by logarithmic additive factors at all levels, and in particular, knowledge complexity log n equals
statistical zero knowledge. No collapse was previously known for any of the variants of knowledge
complexity suggested in [GP91]. Our results are obtained by combining our results on HVSZK with
a general lemma relating knowledge complexity in the hint sense to zero knowledge for promise
problems.

As with zero knowledge, perfect knowledge complexity can also be defined. This measures the
number of bits of help the verifier needs to simulate the interaction exactly, rather than statistically
closely. Using our complete problem for HVSZK, we are able to subsume the relevant previous
results of [ABV95] to give tighter bounds on the perfect knowledge complexity of statistical zero
knowledge.

Reversing statistical difference. One interesting result that follows from the completeness of
STATISTICAL DIFFERENCE and the closure of HVSZK under complement is the existence of an
efficient mapping which "reverses" statistical difference. That is, for every pair of efficiently sam-
plable distributions, we can construct another pair of efficiently samplable distributions such that
when the former are statistically close, the latter are statistically far apart, and when the former are
far apart, the latter are close.

This motivated us to search for a more explicit description of such a transformation. By extract-
ing ideas from the work of Okamoto [Oka96] and our proof of the Completeness Theorem, we have
obtained such a description which we give in Section 3.3.4.

25

Weak HVSZK and expected polynomial-time simulators. The original definition of HVSZK
in [GMR89] allows the simulator to run in expected polynomial time, whereas we insist on strict
polynomial time, following [Gol95]. Actually, our proof of the Completeness Theorem shows that
the two definitions are equivalent for public-coin proof systems. That is, if a problem possesses
a public-coin HVSZK proof system with an expected polynomial-time simulator, then it also pos-
sesses an HVSZK proof system with a strict polynomial-time simulator (which can be made public
coin by [Oka96]). In fact, the equivalence even extends to an even weaker definition of HVSZK, in
which it is only required that for every polynomial p(n), there exists a simulator achieving simulator
deviation 1/p(n).

Perfect and computational zero knowledge. Our techniques can also be used to analyze public-
coin perfect and computational zero-knowledge proofs. Although we do not obtain complete prob-
lems in these cases, we do obtain some novel insights into the corresponding complexity classes.
Specifically, in Section 3.3.6 we show that every problem possessing a public-coin perfect zero-
knowledge proof (essentially) reduces to a restricted version of STATISTICAL DIFFERENCE. We
also show that for any problem possessing a public-coin computational zero-knowledge proof, there
exist ensembles of sampleable distributions indexed by instances of the problem such that on YES
instances, the distributions are computationally indistinguishable and on NO instances, the distribu-
tions are statistically far apart.

Hard-on-average languages and one-way functions. Ostrovsky [Ost9l] showed that if any
"hard-on-average" problem possesses a statistical zero-knowledge proof, then one-way functions
exist. Combining the Completeness Theorem with a result of Goldreich [Gol90] on computational
indistinguishability, we give a simpler proof of Ostrovsky's result.

3.2 The Completeness Theorem

3.2.1 The complete problem

The main aim of this chapter is to demonstrate that HVSZK consists exactly of the problems that in-
volve deciding whether two efficiently samplable distributions are either far apart or close together.
This can be formally described as the following promise problem STATISTICAL DIFFERENCE (ab-
breviated SD):

SDy = {(CoCi) : |Co - Ci| > }

SDN = { 0 Ci):1 Co - C11I<}

In the above definition, Co and C1 are circuits; these define probability distributions as discussed in
Chapter 2. The thresholds of 1/3 and 2/3 in this definition are not arbitrary; it is important for the
Polarization Lemma of Section 3.2.2 that (2/3)2 > 1/3.

We can now state the main theorem of this chapter.

Theorem 3.2.1 (Completeness Theorem) SD is complete for HVSZK.

The most striking thing about Theorem 3.2.1 is that it characterizes statistical zero-knowledge
with no reference to interaction. Future investigation of the properties of HVSZK as a class can focus
on the single problem SD, instead of dealing with complicated protocols and arbitrary languages.

26

We emphasize that the importance of this result lies in the specific complete problem we present
and not simply the existence of a complete promise problem. It is fairly straightforward to construct
a complete promise problem for HVPZK involving descriptions of Turing machines for the verifier
and simulator (though not for HVSZK). However, in contrast to SD, a complete problem constructed
in this manner is essentially restatement of the definition of the class and therefore does not simplify
the study of the class at all.

The proof of Theorem 3.2.1 will come in Sections 3.2.3 and 3.2.4 via two lemmas and a theorem
of Okamoto [Oka96]. But first, we observe that a statement analogous to Theorem 3.2.1 can be made
for B P P, if we generalize B P P to promise problems in the obvious way.

Proposition 3.2.1 If SD' is the promise problem obtained by modifying the definition of SD so that
Co and C1 only have 1 bit of output, then S D' is complete for B P P.

Proof: To see that SD' is in BPP, first observe that for circuits Co and C1 (or any random variables)
that just output 0 or 1,

llCo-Cill = IPr[Co = 1] -Pr[C1 = 1]I.

Thus, an estimate on |1Co - CIl that is correct within an additive factor of 1/3 can be obtained by
sampling Co and Ci polynomially many times and counting the number of ones that occur for each.
This is sufficient to decide SD'.

Now we show that every promise problem H in BPP reduces to SD'. Let A be the PPT machine
which outputs 1 with probability greater than 2/3 when x E fly, but outputs 1 with probability
less than 1/3 when x C HN. Let p(n) be a polynomial bound on the running time of A. Given an
input x, we can, by standard techniques, 2 produce in polynomial time a circuit Cx describing the
computation of A on x for p(Ix1) steps. The input to Cx is the first p(lxl) bits on the random tape
of A the output is the first bit on the output tape. Let D be a circuit that always outputs 0. Then

llCx - DII = Pr [A(x) = 1], so x - (Cx, D) is a polynomial-time reduction from H to SD'. 0

Proposition 3.2.1 remains true even if we allow Co and C1 to output strings of logarithmic
length. Other classes such as P and co-RP can be obtained by modifying the definition of SD
in a similar fashion (and changing the thresholds). This demonstrates that HVSZK is a natural
generalization of these well-known classes.

3.2.2 A polarization lemma

In this section, we exhibit a transformation which "polarizes" the statistical relationship between
two distributions. That is, pairs of distributions which are statistically close become much closer
and pairs of distributions which are statistically far apart become much further apart.

Lemma 3.2.1 (Polarization Lemma) 3 There is a polynomial-time computable function that takes
a triple (Co, C1, 1k), where Co and C1 are circuits, and outputs a pair of circuits (Do, D 1) such
that

|lCo - C1| < 1/3 4 lIDo - Dill < 2--

11Co - C1l > 2/3 J lIDo - Dill > 1 - 2-k

2See, for example, [Pap94, Thms. 8.1 and 8.2].
3The Polarization Lemma stated here is called the Amplification Lemma in [SV97]. We change the name here to

stress that the Polarization Lemma does not merely increase statistical difference.

27

The usefulness of the Polarization Lemma comes from the fact that the two distributions it
produces can be treated almost as if they were identically distributed or disjoint (i.e. statistical
difference 0 and 1, respectively). Indeed, it will be essential in proving that SD (with thresholds
of 2/3 and 1/3, as we've defined it) is in HVSZK and we will make further us of it in deriving
consequences of Theorem 3.2.1.

Superficially, it may seem that a Chemoff bound argument is all that is needed to prove
Lemma 3.2.1. However, Chernoff bounds are primarily useful for distinguishing between two
events. This corresponds to increasing statistical difference, as formalized in the following "di-
rect product" lemma:

Lemma 3.2.2 (Direct Product Lemma) Let X and Y be distributions such that l|X - Y|| =
Then for all k,

kc > 11 Ok X - Oky| > 1 - 2 e-kc 2/2

Proof: The upper bound of ke follows immediately from Fact 2.1.3, so we proceed to the proof
of the lower bound. Recall, from the definition of statistical difference, that there must exist a set S
such that

Pr [X E S] - Pr [Y E] =

Let p = Pr [Y E S]. Then, Pr [X E S] = p + c. Hence, in k independent samples of X, the
expected number of samples that lie in S is (p + E)k, whereas in k independent samples of Y, the
expected number of samples that lie in S is pk. The Chernoff bound4 tells us that the probability
that at least (p + f)k components of 0 ky lie in S is at most exp(-kE2 /2), whereas the probability
that at most (p + -)k components of OkX lie in S is at most exp(-ke2 /2). Let S' be the set of all
k-tuples that contain more than (p + -)k components that lie in S. Then we have,

|kk X - >kY Pr [X SI] - Pr [®kY S ' > 1 - 2e-kE2 /2.

At first glance, it may seem that the proof above is unnecessarily loose, and that one might be
able to prove that the statistical difference increases even for small values of k. However, as pointed
out to us by Madhu Sudan, one cannot hope for this: For any p E [0, 1], there exist distributions X
and Y such that IX 0 X - Y 0 YII = IX - YII = p. (Take X and Y to be the distributions on
{0, 1} which are 1 with probabilities (1 ± p)/2.)

Notice that the Direct Product Lemma 3.2.2 is not sufficient to prove the Polarization Lemma,
because it always increases statistical difference, whereas we would like to increase statistical dif-
ference in some cases and decrease it in others. However, it does drive larger values of the statistical
difference to 1 more quickly than it drives smaller values to 1, so it is a step in the right direction.
The following lemma provides a complementary technique which decreases the statistical difference
to 0, with small values going to 0 faster than large values.

Lemma 3.2.3 (XOR Lemma) There is a polynomial-time computable function that maps a triple

(CoC1, 1k), where Co and C1 are circuits, to a pair of circuits (Do, DI) such that l|Do - D1|| =

||Co - C 1lik. Specifically, Do and D 1 are defined as follows:

4For the formulation of the Chernoff bound we use, see, for example, the formulation of Hoeffding's inequality
in [Hof95, Sec. 7.2.1].

28

DO: Uniformly select (bi... , b) E {0, 1}k such that b1 (1 ... e bk = 0, and output a sample of

Cb (... 0 Cbk.
D1 : Uniformly select (bi,... , bk) E {0, 1}k such that b1 E ED - bk = 1, and output a sample of

Cb (... 0 Cbk.

In order to prove this lemma, we employ a generalization of the technique used in [DDPY94] to
represent the logical AND of statements about GRAPH NONISOMORPHISM. This tool is described
in the following Proposition.

Proposition 3.2.2 Let Xo, X 1 , Yo, Y1 be any random variables, and define the following pair of
random variables:

ZO: Choose a, bER {0, 1} such that a D b = 0. Output a sample of Xa 0 Yb.
Z 1 : Choose a, bRf{0, 1} such that a E b = 1. Output a sample of Xa 0 Yb.

Then ||Zo - Z1|| = ||Xo - X 1 1| - ||Yo - Y|1.

The statistical difference between Xo and X, (or Yo and Y) measures the advantage a com-
putationally unbounded party has, over random guessing, of guessing b given a sample from Xb,
where b is selected uniformly from {0, 1}. Intuitively, the above Proposition says that the advantage
one has in guessing the XOR of two independent bits is the product of the advantages one has for
guessing each individual bit.

Proof:

|Zo - Z1|| = Zo - Z1|1

(X0 (& Yo + 'X1 0 Y) - (X1 YO + 1X0 Y 1
1
- X0 - Xi) 0 (Yo - Y)|1

S Xo - X 1 - |Y - Y1 |

= (X - X1| 1 - ||Y - Y1| 1

Proposition 3.2.2 and an induction argument establish Lemma 3.2.3. Yao's XOR Lemma [Yao82]
(see also [GNW95]) can be seen as an analogue of Lemma 3.2.3 in the computational setting, where
the analysis is much more difficult.

Now we combine the Direct Product and XOR constructions of Lemmas 3.2.2 and 3.2.3 to
prove Lemma 3.2.1. The Direct Product construction gives a way to increase statistical difference
with large values going to 1 faster than small values. Similarly, the XOR Lemma shows how to
decrease statistical difference with small values going to 0 faster than large values. Intuitively, alter-
nating these procedures should "polarize" large and small values of statistical difference, pushing
them closer to 1 and 0, respectively. A similar alternation between procedures with complementary
effects was used by Ajtai and Ben-Or [AB84] to amplify the success probability of randomized
constant-depth circuits.

29

Proof: Let e =[|~log 4 /3 6k]. Apply Lemma 3.2.3 to the triple (Co, C1, 1t) to produce (C6, C)
such that if

IlCo - C1l < 1/3 = 1C6 - Cj' < (1/3)'

|lCo - C1 > 2/3 =1 |C6 - Cj| > (2/3) .

Let m = 3f-1. Let CO' = OmC6 and let C' = Om'C. Then, by Fact 2.1.3 and the Direct Product
Lemma,

11CO' - Cll < 1/3

jCg' - C1'1| > 1 - 2exp(-3'-1(2/3) 2t/2) > 1 - 2e-k

Finally, apply the transformation of Lemma 3.2.3 one more time to (CO', C1', 1k) to produce
(Do, D1) such that

||Co - C1|| < 1/3 : lIDO - D1 < 3-k < 2-k

||CO - C1|| > 2/ 3 J |DO - D1|| > (I - 2e-k)k > 1 - 2ke-k > 1 - 2-k.

Notice that the above analysis relies on the fact that (2/3)2 > (1/3), so it will not work if 1/3
and 2/3 are replaced by, say, .49 and .51. We do not know how to prove such a polarization lemma
for arbitrary constant thresholds. We can however extend it to thresholds a and 3, where 32 > a,

and the running time will be polynomial in exp (1 - log(# 2)/ log(a))-i) along with the input

size. More precisely, we have:

Lemma 3.2.4 (General Polarization Lemma) There is a function that takes as input a 5-tuple
(Co, C, a, /3, 1k), where /2 = y - a, with -y > 1, and Co and C1 are circuits. The function
is computable in time polynomial in the input size and a-'/ loQY), and outputs a pair of circuits
(Do, DI) such that

||Co - C1|| < a J |DO - D1|| < 2-k

11 Co - C,11| > 8 JI|DO - D,11| > 1 - 2--k

Proof: Let f = [log.(6 In 6)]. Apply the XOR Lemma (Lemma 3.2.3) to the triple (Co, C1, 1)
to produce (C6, C') such that if

||Co - C1|| < a

l|CO - C1|| > /
11C6 - C'|| < a'
||CO' - C, || > a,.

Let m = 1/3a' - 'Y/(3#'23). Then apply the direct product construction, letting CJ' = mC6
and let C' = omCl. Then, by Lemma 3.2.2,

|lCo - C1 < a 110C6' - CI'jj < 1/3

||Co' - C1'1| > 1 - 2e32 2 > 2/3

An application of the standard Polarization Lemma finishes the proof. U

30

|Co - C1| < 1/3 4

|Co - C1| > 2/3 4

||CO - C111 > #3 =:

3.2.3 A protocol for STATISTICAL DIFFERENCE

In this section, we show that SD has a simple two-message honest-verifier statistical zero-
knowledge proof system, which is a generalization of the standard protocols for for QUADRATIC
NONRESIDUOSITY [GMR89] and GRAPH NONISOMORPHISM [GMW91]. Intuitively, if two dis-
tributions are statistically far apart, then, when given a random sample from one of the distributions,
a computationally unbounded party should have a good chance of guessing which distribution it
came from. However, if the two distributions are statistically very close, even a computationally un-
bounded party should not have much better than a 50% chance of guessing correctly. This suggests
the following two-message (private-coin) protocol for SD:

Zero-knowledge proof system for SD

1. V, P: Compute (Do, D1) = Polarize(Co, C1, 1"), where n = I(Co, C1).

2. V: Flip one random coin r E {0, 1}. Let z be a sample of Dr. Send z to P.

3. P: If Pr [Do = z] > Pr [Di = z], answer 0, otherwise answer 1.

4. V: Accept if P's answer equals r, reject otherwise.

We establish the following lemma.

Lemma 3.2.5 The above is an honest-verifier statistical zero-knowledge proof system for S D, with
soundness error . + 2-n, and completeness error and simulator deviation both 2-. Thus SD E
HVSZK.

Proof: We will argue that the prover strategy in the protocol we give is optimal - i.e. it maximizes
the verifier's acceptance probability - and use this to bound both the soundness and completeness
error. The simulator deviation will then follow easily.

Consider any prover P*. Suppose for some z the prover P* fails to follow the strategy we
present. If Pr[Do = z] 5 Pr[Di = z], this means that with nonzero probability, P* choses the
distribution in which z is less likely to occur. Then, conditioned on z, the success probability of P*
will certainly be lower than that of the prover in our protocol. If Pr[Do = z] = Pr[Di = z], the
prover has no information about r, so no matter what strategy it uses, it has exactly even odds on
guessing correctly. Since these observations hold for all z, our prover is optimal.

We now analyze the probability of success of the optimal prover. Recall that |IDO - D1 =

Pr[Do E S] - Pr[Di E S] for S = {z : Pr[Do = z] > Pr[Di = z]}. The probability that the
optimal prover guesses correctly is exactly

-Pr [Do E S] + -Pr [Di S] = (Pr [Do E S] +1 - Pr [D1 E S])

1 + lIDO - D1il
2

By Lemma 3.2.1, lIDO - D1l > 1 - 2- when (Co, C1) is a YES instance of SD, and |lDo -
Dill < 2- when (Co, Ci) is a NO instance. Hence, the probability that the prover convinces the
verifier to accept is greater than (1 + 1 - 2 --)/ 2 > 1 - 2-" for YES instances, and less than
(1 + 2 -n)/ 2 < 1/2 + 2- for NO instances. This immediately gives the completeness error; the
soundness error also follows because we considered the optimal prover strategy.

31

Now, notice that when the prover answers correctly, all the verifier receives from the prover

is the value of r, which the verifier already knew. Thus, since we have shown that the prover

is answering correcty with all but exponentially small probability, the verifier should be learning

nothing. To turn this intuition into a proof of statistical zero-knowledge, we consider the fol-

lowing probabilistic polynomial-time simulator: On input (Co, C1), the simulator first computes

(Do, D 1) = Polarize(Co, C1, 1"), where n = |(Co, Ci)|. The simulator then flips one random

coin r E {0, 1}. If r = 0, it samples z from Do, otherwise it samples z from Di. The simulator

then outputs a conversation in which the virtual verifier sends z to the virtual prover, and the virtual

prover responds with r. The simulator also outputs the random coins it used to generate r and z as

the coins of the virtual verifier. Thus, the simulator presented here always outputs conversations in

which the prover responds correctly. Except for the prover's response, all other components of the

simulator's output distribution are distributed identically to the verifier's view of the real interaction.

Hence, the simulator deviation is bounded by the probability that the prover responds incorrectly

in the real interaction, which we have already argued is at most 2-" in the case of YES instances. U

Observe that by using a security parameter k rather than n in the call to Polarize, both the

completeness error and simulator deviation can be reduced to 2 -k. Thus, even very short assertions

about SD can be proven with with very high security. Contrast this with the original definition of

HVSZK [GMR89], which only requires that the simulator deviation vanish as an negligible function

of the input length. This property has obvious cryptographic significance, so we formulate it more

precisely in Section 3.3.1.

3.2.4 HVSZK-hardness of SD

The other major lemma we prove to show that SD is complete for HVSZK is the following:

Lemma 3.2.6 Suppose promise problem H has a public coin statistical zero-knowledge proof sys-

tem. Then there exist PPT's A and B and a negligible function a such that

x E Hy -> A() -B(x)lI < a(xl), and

X E 1N -> jjA(x) - B(x)II > 1 - 2--(Ix).

We defer the proof of this lemma to Section 3.2.5. We first observe how this lemma gives a reduction

to SD for problems with public-coin statistical zero-knowledge proofs.

Corollary 3.2.1 Suppose promise problem H has a public-coin statistical zero-knowledge proof

system. Then H reduces to SD. (Equivalently, H reduces to SD.)

Proof: First apply Lemma 3.2.6 to produce A and B, with p(Ixl) being a polynomial bound on

the running times of A(x) and B(x). Given a string x, we can, by standard techniques, 5 produce in

polynomial time circuits Co and C1 describing the computation of A and B, respectively, on x for

p(|xl) steps. The inputs to Co and C1 are the first p(IxI) bits on the random tapes of A and B and

the outputs are the first p(|x1) positions on the output tapes. Then IICo - Cill = IA(x) - B(x)l1,
which is at most a(lxl) < 1/3 if x E H and at least 1 - 2--' > 2/3 if x H (for all sufficiently
long x). So x i-+ (Co, C1) is a reduction from H to SD which works for all but finitely many x. 0

32

5 See, for example, [Pap94, Thms. 8.1 and 8.2].

The final ingredient in the proof of Theorem 3.2.1 is a theorem of Okamoto [Oka96], which we
state in terms of promise problems. 6

Theorem 3.2.2 ([Oka96, Thm. 1]) If a promise problem H has a statistical zero-knowledge proof
system, then H has a public coin statistical zero-knowledge proof system.

Now it will be easy to show that SD is complete for HVSZK.

Proof of Theorem 3.2.1: Lemma 3.2.5 tells us that SD E HVSZK, so we only need to show
that every problem in HVSZK reduces to SD. Corollary 3.2.1 and Theorem 3.2.2 imply that every
problem H E HVSZK reduces to SD. In particular, SD reduces to SD, or, equivalently, SD reduces
to SD. Composing reductions, it follows that every problem H E HVSZK reduces to SD. U

3.2.5 Proof of Lemma 3.2.6

The constructions in this lemma and the statistical zero-knowledge proof system for STATISTICAL

DIFFERENCE are carried out for the specific example of GRAPH ISOMORPHISM in Section 3.2.6.

Intuition. Recall that we wish to construct a pair of probabilistic polynomial-time machines A
and B such that if x E Hy, the distributions A(x) and B(x) are statistically very close, but when
x E HN, A(x) and B(x) are far apart. We are given that H has a public-coin statistical zero-
knowledge proof system. A natural place to search for such distributions is in the output of the
simulator for this proof system. We think of the simulator as describing the moves of a virtual prover
and a virtual verifier.7 . We wish to find properties of the simulator's output that (1) distinguish the
case x E Hy from x E HN, and (2) are captured by the statistical difference between samplable
distributions. In the case that x E Hy, we have strong guarantees on the simulator's output. Namely,
it outputs accepting conversations with high probability and its output distribution is statistically
very close to the real interaction. When x E IN, there are two cases. If the simulator outputs
accepting conversations with low probability, this easily distinguishes it from the simulator output
when x E fly. However, it is possible that the simulator will output accepting conversations with
high probability even when x E HN. This means that the virtual prover is doing quite well in fooling
the virtual verifier. This naturally suggest a strategy for a real prover - imitate the virtual prover's
behavior. Such a prover, called a simulation-based prover, was introduced by Fortnow [For89] and
is a crucial construct in our proof. The soundness of the proof system tells us that the simulation-
based prover cannot hope to convince the real verifier with high probability. There must be a reason
for this discrepancy between the success rates of the virtual prover and the simulation-based prover.
One possibility is that the virtual verifier's coins in the simulator's output are far from uniform, so
that the simulation only captures a small fraction of possible verifier states. However, this is not the
only difficulty. A second difficulty is that the responses of the virtual prover may depend on future
coins of the virtual verifier, which is impossible in a real public-coin interaction. Note that this is
equivalent to the virtual verifier's coins being dependent on previous messages of the virtual prover.
We will show that these are the only two obstacles the simulation-based prover faces in trying to fool
the verifier, and thus they must be present when x E HN. In the case that x E Hy, however, these

60kamoto stated his result in terms of languages, but the proof readily extends to promise problems (cf., [GV99]).
7This terminology is taken from [AH91]. The cases we consider are quite similar to those analyzed in [For89, AH91]

Because we focus on public coin proofs, many complications that other researchers faced do not arise. This allows us to
make some new observations and reach a novel conclusion.

33

difficulties cannot arise since we are guaranteed that the simulator output distribution is very close

to that of the real interation. If we could measure the extent to which these anomalies are present

by the statistical difference between samplable distributions, we would achieve our objective. This

is precisely what we do.

Notation. Let (P, V) be a public-coin interactive proof system for a promise problem H which is

statistically zero-knowledge against V (the honest verifier) and let S be a simulator for this proof

system. Without loss of generality, it may be assumed that the interaction of P and V on input
x always has 2r(|xf) exchanged messages, with V sending the first message and each message
consisting of exactly q(lx|) bits, for some polynomials q and r. Moreover, it may be assumed
that S's output always consists of 2r(|x|) strings of length q(lxl). The output of S and the con-
versation between P and V on input x will be written in the form S(x) = (ci,pi,... , Cr,pr)s

and (P, V)(x) = (c, pi, ... , Cr , Pr) (PV), respectively, where cl,... ,7cr represent the messages (or
equivalenty, the coins) of V, while p, ,Pr represent the prover messages, and r = r(|xI). (De-

pendence on x will often be omitted in this manner for notational convenience.) We use notation
such as (ci) s for the random variable obtained by running S once and taking the ci -component of its
output. More generally, partial conversation transcripts will be written like (ci, pi, C2, P2)s. We call

a conversation transcript (cl , .. . , Cr, Pr) which would make V accept (resp., reject) an accepting

conversation (resp., rejecting conversation). We denote by U(n) the uniform distribution on strings
of length n.

The proof. In order to formalize the above intuition, a definition of the simulation-based prover
needs to be given. This is the prover P* that imitates the virtual prover, i.e. P* does the following

to compute its next message when the current conversation transcript is (ci, pi, ... ,ci):

If S(x) outputs conversations that begin with (ci,pi, , ci) with probability 0, then

output 0 q(Jx).
Else output y E {0, 1 }q(lxl) with probability

Py = Pr[S(x) begins with (ci,pl, ... , ci, y)
S(x) begins with (ci, pi, .. . C0)]

In order to analyze the success probability of P*, we first compare the output of S to
the actual conversations between P* and V. Let ci be the statistical difference between

(clP1 . . . ,Ci_ 1, A , Ci)s and (ci, p . , ci_1, pi_1)s 0 U(q(x 1)). Thus ci measures how far

from uniform the virtual verifier's i-th set of coins are and how far from independent they are from

what comes before. The following claim formalizes our intuition that P* can do as well as the vir-
tual prover, as long as the virtual verifier's coins are near-uniform and near-independent from what

preceeds them.

Claim 3.2.1 11S(x) - (P*, V)(x)I < Z= ei.

Proof: Let Cs = (ci, pi,... , ci)s be the random variable of partial simulator transcripts ending
with the i-th coins of the virtual verifier. Let R5 = (c, pi, . . . , ci, pi)s be the random variable of
partial transcripts ending with the i-th virtual prover response. Similarly define Cl and Pi* as partial
conversation transcripts of (P*, V). The aim is to show that at round k, the statistical error grows

34

Algorithm A I Algorithm B
Ao(x) Run S(x) for JxJ repetitions. Bo (x) Output 1.

Output '1' if the majority are
accepting conversations;
otherwise output '0'.

Ai(x) Run S(x) to output Bi(x) Run S(x) and flip q(lxl) coins to output
(ci,pi,... , Ci)_SW . (ci,pi, ,ci1,pi.1)s(x) 0 U(q(lxl)).

Table 3.1: The components of A and B

by at most ek. Formally, it will be shown by induction on k that

k

ps P*| < E~i
i=O

The case k = 0 is trivial. For general k, first note that since P* gives a response chosen
according to the same distribution as the virtual prover, adding these responses to the conversations
cannot increase the statistical difference (by Fact 2.1.4). That is,

||IPS+1 - Pk*+1|| = ||C%|"kS1 - Ck,1||
The idea now is to extract the parts of IC+ 1 - CI+1| corresponding to 6 k+1 and observe that

what is left is simply the error from the previous round. Note that C*+1 = Pk* ® U(q(lxl)), since
the real verifier's coins are always uniform and independent from what came before.

Then, applying Fact 2.1.3 and the Triangle Inequality,

llCi+ 1 - CZ+111
1C+ - P U(q(|x|))||

+ lPik 0 U(q(|x|)) - P* 0 U(q(lxl))I|

'Ek++ Ilks - Pk*|| + U(q(lx|)) - U(q(|x|))||
k

Ek+1 + EEi.
i=O

This completes the induction. Since Ps = S(x) and P,* = (P*, V)(x), the Claim is proved.
U

We are now ready to construct the distributions we seek. The two distributions A and B each
consist of r + 1 components, described in Table 3.1. A is the algorithm whose output on input
x is (Ao(x), A 1 (x),..., Ar(x)), all run independently, and B is the algorithm whose output is
(Bo (x), B 1 (x), . . . , Br (x)), all run independently.

Here, Ai is a sampling of a partial conversation transcript from S up to the virtual verifier's
i-th set of coins, while Bi is a sampling of a partial conversation transcript from S up to the virtual
prover's (i - 1)-th response followed by q(|x1) independent random bits. So, for i > 1, the statistical
difference between Ai and Bi is q.

We will show that the statistical difference between A and B is negligible if x E ly and is
noticeable if x E HN. Amplifying this gap by repetition will give us Lemma 3.2.6.

35

Claim 3.2.2 There exists a negligible function a such that if x E fly, then ||A(x) - B(x)|| <
a(Ix|).

Proof: By Fact 2.1.3, the statistical difference between A(x) and B(x) is bounded above by
the sum of the statistical differences between Ai(x) and Bi(x) over i = 1, . . . , r(IxI). First, let's

examine Ao and Bo. Since S(x) outputs a conversation which makes V accept with probability

at least 2/3 - neg(jxj), the Chernoff bound implies that Pr [Ao(x) = 1] = 1 - 2 -- 01), so the

statistical difference between Ao and Bo is negligible. In the real conversations of P and V, the
verifier's coins are truly uniform and independent from prior rounds, so for i > 1, |Ai (x) - Bi (x)I

should essentially be bounded by the statistical difference between the simulator's output and the

real interaction. This is in fact true, as we have:

IIAj(x) - Bj(x)jj < IAi(x) - (ci,pi, . . . , ci)(PV)(x) + (ci,pi, . . . , ci)(py) (x) - Bi(x)II

IIS(x) - (P, 7V)(x)+IIS(x) - (P, V)(x) |.

(The last inequality is by Fact 2.1.4.) Since the statistical difference between S and (P, V) is neg-
ligible, ||A(x) - B(x)lj is bounded by the sum of polynomially many negligible functions and is
therefore negligible itself. 0

Claim 3.2.3 If x E HN then IIA(x) - B(x)II > 1/12r(x|).

Proof: By Fact 2.1.4, it suffices to show that for some i, ei = IIAj(x) - Bj(x)j| > 1/12r(|xl). We

deal with two cases depending on the probability that S outputs an accepting conversation.

Case 1: Pr [S(x) accepts] 5/12. Then, by the Chernoff bound, Pr [Ao(x) = 1] < 2-(Ix),
so the statistical difference between Ao(x) and Bo(x) is at least 1 - 2-(0x1) > 1/12r(x|).

Case 2: Pr [S(x) accepts] > 5/12. Then, since Pr [(P*, V)(x) accepts] is at most 1/3, we must

have

Ei > 11S() - (P* V)(x)I > 1/12.
i=O

Thus, at least one ci must be greater than 1/12r(Ixl). M

Now consider the samplable distributions A(x) = 0s(IxI)A(x) and B(x) = &s(IxI)B(x), where

s(n) = n -r(n)2 . If x E Ely, A(x) - b(x) s(Ix1) IIA(x) - B(x)I, which is still negligible.

If x E HN, then by the Direct Product Lemma (Lemma 3.2.2), A(x) - b(x) > 1 - 2--00x).

This completes the proof of Lemma 3.2.6. 0

3.2.6 Example for GRAPH ISOMORPHISM

For illustrative purposes, here we explicitly describe what happens when the transformations of
Lemma 3.2.6 and the protocol from Section 3.2.3 are applied to the well-known public-coin perfect
zero-knowledge protocol for GRAPH ISOMORPHISM [GMW91]. The protocol proceeds as follows
on input (Go, G1).

1. P sends V a random isomorphic copy H of Go.

2. V picks b E {0, 1} at random and sends it to P.

36

3. P sends V a random isomorphism 7r between Gb and H, if one exists.

4. V checks that 7rGb = H.

The simulator S for this protocol does the following on input (Go, Gi):

1. Pick random b c {0, 1} and a random permutation 7r.

2. Output (7rGb, b, 7r).

Notice that the conversations output by S always make V accept.
If the reduction to SD from the proof of Lemma 3.2.6 is applied to the above protocol, the fol-

lowing distributions are obtained:

Ao(Go, Gi): Always output 1.
Bo(Go, Gi): Always output 1.
A1 (Go, Gi): Output (lrGb, b) for a random permutation 7r and b E {0, 1} chosen at random.
B1 (Go, G1): Output (lrGb, c) for a random permutation 7r and b and c chosen uniformly and inde-
pendently from {0, 1}.

Thus, IJAo(x) - Bo(x)I always equals 0. IIAi(x) - B1(x)I is easily seen to be 0 if Go G1,
and 1/2 otherwise. For the rest of this section, we ignore Ao and B0 since they are irrelevant.

If we now apply the protocol for STATISTICAL DIFFERENCE from Section 3.2.3 to the distribu-
tions A 1 and B1 (without first applying the Polarization Lemma) we obtain the following protocol
(P', V') for GRAPH NONISOMORPHISM:

1. V' picks a random bit d C {0, 1}. If d = 0, V' chooses a random bit b E {0, 1} and a random
permutation 7r and sends (lrGb, b) to P'. If d = 1, V' chooses random bits b, c E {0, 1} and
a random permutation r and sends (7rGb, c) to P'.

2. P' receives message (H, b) from V'. If H is isomorphic to Gb, then P' guesses 0, else P'
guesses 1.

3. V' accepts if the P' guesses d correctly.

Now, if Go is not isomorphic to G 1 , then P' will guess correctly with probability 3/4. However,
if Go is isomorphic to G 1 , then no prover can guess correctly with probability greater than 1/2. The
above protocol is of the same spirit as the standard GRAPH NONISOMORPHISM protocol [GMW91].
In both cases, the verifier randomly permutes one of the graphs to obtain a graph H and in order
for the prover to succeed with probability greater than 1/2, the prover needs to be able to tell which
graph H came from.

3.3 Applications

We now use the Completeness Theorem to establish a number of results. These include almost all
previously known results about HVSZK, along with several new results.

37

3.3.1 Efficient statistical zero-knowledge proofs

The proof system for STATISTICAL DIFFERENCE given in Section 3.2.3 has a number of desirable

features. It is very efficient in terms of communication and interaction, and the simulator deviation

can be made exponentially small in a security parameter (that can be varied independently of the

input length). By the Completeness Theorem, it follows that every problem in HVSZK also has a

proof system with these properties.
We begin by formalizing one of the properties of the SD proof system that was informally

discussed in Section 3.2.3.

Definition 3.3.1 An interactive protocol (P, V) is called a security-parametrized statistical zero-

knowledge proof system for a promise problem H if there exists a PPT simulator S, a negligible

function a(k) (called the simulator deviation), and completeness and soundness errors c(k) and

s(k) such that for all strings x and all k E N,

1. If x E Hy, then Pr [(P, V)(X, 1k) = accept] > 1 - c(k).

2. If X G HN, then for all P*, Pr [(P* V)(x, 1k) = accept] ; s(k).

3. If x C Hy, then |IS(X, 1k) - Viewp,v(x, 1k)|| < a(k).

As usual, we require that c(k) and s(k) are computable in time poly(k) and 1 - c(k) > s(k) +

1/poly(k)

We now describe the efficient proof systems inherited by all of HVSZK.

Corollary 3.3.1 Every problem in HVSZK possesses a security-parametrized statistical zero-

knowledge proof system with the following properties:

1. Simulator deviation 2 -k, completeness error 2 -k and soundness error 1/2 + 2 -k

2. The prover and verifier exchange only 2 messages.

3. The prover sends only 1 bit to the verifier.

4. The prover is deterministic.

Proof: Let H be any promise problem in HVSZK. Let f be the reduction from H to SD guaran-

teed by the Completeness Theorem. A protocol with the desired properties for H can be obtained

as follows: on input (x, 1k), execute the proof system for SD, given in Section 3.2.3, on input f (x)

and using k rather than n in the call to Polarize. M

3.3.2 Closure properties

In this section, we prove several closure properties of HVSZK. The first, closure under reductions,

is a direct consequence of the "security parametrization" property shown to hold for HVSZK in the

previous section.

Corollary 3.3.2 HVSZK is closed under (Karp) reductions. That is, if H E HVSZK and F reduces
to I, then F E HVSZK.

38

Proof: By Corollary 3.3.1, H has a security-parameterized statistical zero-knowledge proof. A
statistical zero-knowledge proof for F can be obtained as follows: On input x, the prover, verifier,
and simulator run the security-parametrized proof for H on input (f (x), 1i), where f is the reduc-
tion from F to H. 0

The security-parametrization property is essential in the above proof, because an arbitrary re-
duction f could potentially shrink string lengths dramatically, and we want the simulator deviation
to be negligible as a function of IxI, not If (x)I.

Next, we show how Okamoto's result that HVSZK is closed under complement follows imme-
diately from our proof of Completeness Theorem.

Corollary 3.3.3 ([Oka96, Thm. 2]) HVSZK is closed under complement, even for promise prob-
lems.

Proof: Let H be any problem in HVSZK. By Theorem 3.2.2 and Corollary 3.2.1, IH reduces to
SD, which is in HVSZK. By Corollary 3.3.2, IT E HVSZK. m

Before moving on to additional closure properties, we deduce the upper bounds of Fort-
now [For89] and Aiello and Hastad [AH91] on the complexity of HVSZK.

Corollary 3.3.4 ([For89, AH91]) HVSZK C A M n co-A M, where A M denotes the class of prob-
lems possessing constant-round interactive proofs.

Proof: Immediate from Corollaries 3.3.1 and 3.3.3. m

Above, we have shown that HVSZK satisfies a computational closure property (Corollary 3.3.2)
and a boolean closure property (Corollary 3.3.3). Now we will exhibit a stronger closure property,
which can be viewed as both a computational one and a boolean one: given an arbitrary boolean
formula whose atoms are statements about membership in any problem in HVSZK, one can ef-
ficiently construct a statistical zero-knowledge interactive proof for its validity. Note that such a
property does not follow immediately from the fact that a class is closed under intersection, union,
and complementation, because applying these more than a constant number of times could incur a
superpolynomial cost in efficiency, while we ask that the construction can be done efficiently with
respect to the size of the formula. The procedure for doing this is based on work by De Santis, Di
Crescenzo, Persiano, and Yung [DDPY94]. They show how to construct statistical zero-knowledge
proofs for all monotone boolean formulae whose atoms are statements about a random self-reducible
language. Their zero-knowledge proofs are constructed by producing two distributions which are
either disjoint or identical, depending on whether or not the formula is true. Hence, their construc-
tion can be viewed as a reduction to an extreme case of SD, in which the thresholds are 1 and
0.

Using the direct product construction, the XOR Lemma, and the Polarization Lemma, we gen-
eralize their result to monotone formulae whose atoms are statements about membership in STA-
TISTICAL DIFFERENCE. Then, using the completeness of SD (Theorem 3.2.1) and closure under
complement (Corollary 3.3.3), we deduce the result to general (i.e. not necessarily monotone) for-
mulae and every promise problem in HVSZK.

We begin with some definitions describing precisely what kind of boolean closure properties we
will achieve. (Later, we will see how it can also be interpreted as closure under a certain class of
polynomial-time reductions.) In order to deal with instances of promise problems that violate the
promise, we adapt standard definitions in a straightforward way.

39

Definition 3.3.2 Let H be any promise problem. We define a tuple of boolean variables (b1, ... , bk) E

{0, I}k to be H-valid with respect to a tuple of strings (XI,... , xk) iffor all i:

" xi G Uly implies bi = 1.

" xi E UHN implies bi = 0.

" bi is unrestricted if xi violates the promise of H.

Definition 3.3.3 Let H be any promise problem. Then we define a new promise problem 1(H)

whose instances are (05, x 1 , ... , x,) where k > 0 and # is a k-ary propositional formula.

" The YES instances of 4(H) are those for which #(b 1, ... , b,) = 1 for all H-valid settings of

(b1,... ,bk) with respect to (x 1 ,... ,xk)-

* The NO instances of 4D(H) are those for which 0(b1,... , b) = 0 for all H-valid settings of
(b1, . . . , bk) with respect to (x 1 , ... , xk).

Mon(H) is defined analogously, except that only monotone # are considered.8

In [DDPY94], it is shown that Mon(L) E HVSZK for any language L which is random self-
reducible, whose complement is self-reducible, or whose complement has a noninteractive statistical

zero-knowledge proof. They also give statistical zero-knowledge proofs for some simple statements
involving a random-self-reducible language and its complement. Damgird and Cramer [DC96] ex-
tend these results by showing that Mon(L) E HVSZK as long as L or its complement has a 3-round
public-coin statistical zero-knowledge proof, and also treat a larger class of monotone functions.

Our result holds for all of HVSZK and for all boolean formulae, not just monotone ones:

Theorem 3.3.1 For any promise problem H E HVSZK, 4(H) E HVSZK.

This theorem can be generalized to work for all boolean formulae whose atoms are statements
about membership in any finite set of languages in HVSZK, but we omit the notationally cumber-
some formal statement since it is immediate from the completeness of STATISTICAL DIFFERENCE.

The main step in proving Theorem 3.3.1 is the following Lemma, which is based on the con-
struction of [DDPY94] for Mon(GRAPH NONISOMORPHISM):

Lemma 3.3.1 Mon(SD) E HVSZK.

Proof: For intuition, consider two instances of statistical difference (Co, C1) and (Do, D 1), both
of which have statistical difference very close to 1 or very close to 0 (which can be achieved by
the Polarization Lemma). Then (Co 0 Do, C1 0 D 1) will have statistical difference very close to
1 if either of the original statistical differences is very close to 1 and will have statistical difference

very close to 0 otherwise. Thus, this Direct Product operation represents OR. Similarly, the XOR
operation in Proposition 3.2.2 represents AND. To obtain Lemma 3.3.1, we will recursively apply
these constructions, taking care to keep the running time polynomial.

Let w = (#, (CD, CI),..., (Cs, C{)) be an instance of Mon(SD) and let n = |w|. By ap-

plying the Polarization Lemma (Lemma 3.2.1), we can constuct in polynomial time pairs of cir-
cuits (D1, DI),... , (Dj, D1) such that the statistical difference between D' and Di is greater than
1 - 2- if (Cs, Cl) E SDy and is less than 2-n if (CO, Ci) E SDN-

40

Figure 3-1:

Consider the randomized recursive procedure Sample(b, b) in Figure 3.3.2 which takes a sub-
formula '(vil, ... , Vik) of # and a bit b E {0, 1} as input.

Executing Sample(#, b) for b E {0, 1} takes time polynomial in n, because the number of
recursive calls is equal to the number of subformulas of #. For a subformula r of q, let

Dif(r) = IISample(-r, 0) - Sample(r, 1)11.

Then we can prove the following about Dif:

Claim 3.3.1 For every subformula 0 = 0(vi, ... , vij) of 0, Dif (0) > 1 - m2-" if

((Coi', C") E SDy,... I(Coi, Ci) E SDy)

is true and Dif (V)) < m2-" if it is false, where m = 1,|.

Proof: The proof of the claim is by induction on subformulae 0 of q. It holds for atomic subfor-
mulae (i.e. the variables vi) by the properties of the D 's.

" Consider the case when 0 = T V p1t. If b is true (with the appropriate arguments), either T or
p must be true. Without loss of generality, say r is true. Then, by Fact 2.1.4 and induction,

Dif(V)) > Dif(r) > 1 - Ir2-" > 1 - I'iP2-".

If ?p is false, then both r and M are false. By Fact 2.1.3 and induction,

Dif(0) 5 Dif(r) + Dif(p) < IT12- + I/I2- < 1b|2-.

" Now consider the case when O = T A /p. By Proposition 3.2.2, Dif(i/) = Dif(r) - Dif(A). If
, is true, then, by induction,

Dif(O) > (1 - 1rT2-)(1 - /iJ2-") > 1 - (Ir + lII)2- > 1 - |7P2-.

8 In [DDPY94], only monotone formulae are treated. What they call 4(L) is what we call Mon(L).

41

Sample(o, b)
If = vi, sample z +- D'.
If r = TV/i,

Sample zi +- Sample(r, b);
Sample z 2 <- Sample(/p, b);
Let z = (z 1 , Z2).

If = r A IL,
Choose c, dE R0, 1} subject to c E d =b;

Sample zi +- Sample(r, c);
Sample Z2 <- Sample(r, d);
Let z = (z 1, z 2).

Output z.

If b is false, then, without loss of generality, say T is false. By induction,

Dif(7P) < Dif(-r) < -rJ2 "n < 17P12~"

Now, let A and B be circuits describing the computations of Sample(#, 0) and Sample(, 1),
respectively, (which take the random bits each procedure uses as input). By the above claim,

IIA-BIi > 1-n2~- > 2/3 if # is true with the appropriate arguments, and |IA-BI < n2-" < 1/3
if # is false. In other words, the construction of A and B from w describes a many-one reduction
from Mon(SD) to SD. This reduction can be computed in polynomial time because Sample runs

in polynomial time. Thus, by Corollary 3.3.2, Mon(SD) E HVSZK. 0

Now it is straightforward to deduce Theorem 3.3.1.
Proof: Let 1 be any promise problem in HVSZK. By closure under complement (Corollary 3.3.3)
and the completeness of SD (Theorem 3.2.1), both H and HT reduce to SD. Let f and g be these re-

ductions, respectively. Now, let (#,x,.. . ,xk) be any instance of <b(f), where # = #(vi, .. . , vk).
Use De Morgan's laws to propagate all negations of # to its variables. Now replace all occurrences

of the literal -,vi with a new variable wi. Let '(vi, ... ,v k, Wi, - , Wk) be the resulting (monotone)

formula. It is clear that

(0, X1, . ,Xk) F-+ (P, f (X1), , f (Xk), g(x1), . . (Xk))

is a reduction from <b(H) to Mon(SD). Since SD is closed under reductions (Corollary 3.3.2),
Theorem 3.3.1 follows from Lemma 3.3.1. 0

Theorem 3.3.1 can be also viewed as demonstrating that HVSZK is closed under a type of

polynomial-time reducibility, which is formalized by the following two definitions.

Definition 3.3.4 (truth-table reduction [LLS75]): We say a promise problem H truth-table reduces

to a promise problem I, if there exists a (deterministic) polynomial-time computable function f,
which on input x produces a tuple (X1, .. . , xk) and a circuit C, such that

1. If x E UHy then for all H-valid settings of (b 1 ... , bk) with respect to (x 1, ...),
C(b, ... , bk) = 1, and

2. If x E U N then for all H-valid settings of (b1,... , bk) with respect to (X.. . , Xk
C(b,...,bk)=0.

In other words, a truth-table reduction for promise problems is a non-adaptive Cook reduction

which is allowed to make queries which violate the promise, but must be able to tolerate both yes

and no answers in response to queries that violate the promise. We further consider the case where

we restrict the complexity of computing the output of the reduction from the queries:

Definition 3.3.5 (NC 1 truth-table reductions): A truth-table reduction f between promise problems

is an NC truth-table reduction if the circuit C produced by the reduction on input x has depth

bounded by cf log |x1, where cf is a constant independent of x.

With these definitions, we can restate Theorem 3.3.1 as follows:

42

Corollary 3.3.5 HVSZK is closed under NC truth-table reductions.

Proof: Any circuit of size s and depth d can be efficiently "unrolled" into a formula of size 2 d . s.
Hence, an NC truth-table reduction from F to H gives rise to a Karp reduction from F to 4(H).
Since HVSZK is closed under <D(.) and Karp reductions, it is also closed under NC truth-table
reductions. 0

It would be interesting to prove that HVSZK is closed under general truth-table reductions (or,
even better, Cook reductions), or give evidence that this is not the case.

3.3.3 Knowledge complexity

Knowledge complexity [GMR89, GP91] is a generalization of zero knowledge which attempts to
quantify how much a verifier learns from an interactive proof. A number of different measures have
been proposed to accomplish this, most of which are based on the intuition that a verifier gains at
most k bits of "knowledge" from an interaction if it can simulate the interaction with at most k
bits of "help". Below we give terse definitions of the variants we consider. All of the following
definitions come from [GP91], except for the last which comes from [ABV95]. Let (P, V) be an
interactive proof system for a promise problem H. Then the knowledge complexity of (P, V) in
various senses is defined as follows:

" Hint sense: We say that (P, V) has perfect (resp., statistical) knowledge complexity k(n)
in the hint sense if there exists a PPT simulator S and a hint function h: Hy -+ {0, 11* such
that for all x E fly, we have Ih(x)I = k(IxI) and ||S(x, h(x)) - Viewpv (x)1 is 0 (resp., is
bounded by a negligible function of IxI.)

" Strict oracle sense: (P, V) is said to have perfect (resp., statistical) knowledge complexity
k(n) in the strict oracle sense if there exists a PPT oracle-machine S and an oracle 0 such
that on every input x E Hy, S queries 0 at most k(IxI) times and I|So(x) - Viewpv(x)|
is 0 (resp., is bounded by a negligible function of IxI.)

" Average oracle sense: (P, V) has perfect (resp., statistical) knowledge complexity k(n) in
the average oracle sense if there exists a PPT oracle-machine S and an oracle 0 such that
for every input x E Hy, the average number of queries S makes to 0 is at most k(IxI) and

|SO(x) - Viewpv(x)|1 is 0 (resp., is bounded by a negligible function of IxI.)

" Entropy sense: (P, V) has perfect (resp., statistical) knowledge complexity k(n) in the en-
tropy sense if there exists a PPT oracle-machine S, an oracle 0, and a PPT oracle-simulator
A such that for all x E Hy, ER[log P,(R) 1] < k(Ix|), where P,(R) = Pr9 [A(x, R; p) =

S'(x; R)] and IISo(x) - Viewp,v(x)|I is 0 (resp., is bounded by a negligible function of
IxI). Here, the notation M(y; r) denotes the output of PPT M on input y and random coins r,

We say that the knowledge complexity (in some specified sense) of a promise problem II is
k(n) if there exists an interactive proof system (P, V) for H achieving negligible error probablity
in both the completeness and soundness conditions such that the knowledge complexity of (P, V)
is k(n). The class of problems possessing perfect knowledge complexity k(n) in the hint, strict
oracle, average oracle, and entropy senses are denoted by PKChint, PKCstrict, PKCavg, and PKCent,
respectively. Statistical knowledge complexity is denoted by SKC with the appropriate subscript.

Our first result about knowledge complexity is that the SKChinft hierarchy collapses by logarith-
mic additive factors. Previously, Goldreich and Petrank [GP91] have shown that SKChint (poly (n)) C

43

AM and SKChint(O(log(n))) c co-AM; the second of these results can be derived immediately
from our result and Fortnow's theorem [For89] that HVSZK c co-AM.

Theorem 3.3.2 For any polynomially bounded function k(n),

SKChint(k(n) + log n) = SKChint(k(n)).

For intuition, consider the case that k(n) = 0. Loosely speaking, if the verifier is given the
hint along with the input (with the "promise" that the hint is correct), then the original proof system
becomes statistical zero knowledge, so we can apply the results of the previous section. By the
boolean closure properties established in Theorem 3.3.1, we can take the "union over all possible
hints" (there are only polynomially many of them) without leaving HVSZK. The result is easily
seen to be the original problem.

In order to turn this intuition into a proof, we first show that knowledge complexity in the hint
sense can be characterized in terms of zero-knowledge promise problems, so that questions about
the SKChinft hierarchy are reduced to questions about statistical zero knowledge. This is equivalence
is obtained by providing the hint along with the input and "promising" that the hint is correct.

Lemma 3.3.2 Let k(n) be any polynomially bounded function. Then H E S KChifl (k(n)) (resp.,
PKChint(k(n))) iff there exists a promise problem F E HVSZK (resp., HVPZK) such that

1. x E fly = there exists a such that Ia = k(jxj) and (x, a) E Fy, and

2. x E HN for all a, (x, a) E N.

Proof: We only give the proof for statistical knowledge complexity and zero knowledge; the
perfect case is identical.

=* Let I be a problem in SKChint (k(n)) and let h: Hy -+{0, 1}*. be a hint function corresponding
to an appropriate interactive proof system and simulator for H. Consider the following promise
problem F:

Fy = {(x,h()):xE Uy}

rN = {(x, a) : x E HN}

By using the protocol and simulator for H, we see that F E HVSZK (the verifier and prover for
F should ignore the second component, whereas the simulator uses it as a hint.) It is clear that F
satisfies the other conditions of Lemma 3.3.2.

= Let F E HVSZK be the promise problem satisfying the stated conditions. Let h: Hy -+ {0, 1}*
be any function such that for all x E fy,

1. |h(x)j = k(Ix|),

2. (x, h(x)) E Fy.

(Such a function is guaranteed by Condition 1.) We now give a proof system for 11 of knowledge
complexity k(n). On input x, the prover gives the verifier h(x) in the first step, and then they exe-
cute the protocol for F on (x, h(x)). The completeness and soundness of this protocol follow from
the properties of the F proof system. This proof system is easily seen to have knowledge complexity

44

k(n) in the hint sense, using the zero-knowledge simulator for F with hint h(x). 0

We now prove Theorem 3.3.2.
Proof: Let H be a problem in SKChint(k(n) + log n) and let IF be the promise problem guaranteed
by Lemma 3.3.2. By Theorem 3.3.1, 4c(F) E HVSZK. Now consider a different, but related promise
problem F', defined by

F'y = {(x, a)): there exists b such that Ibi = log lxi and (x, ab) E Fy}

N = {(x,a):for all b, (x,ab) E FN} = {(x,a):x E H N}-

For any string x, let m = log lxi, let bi,... , bn be all strings of length m, and let # be the
formula 0 (vi, . . vn) = \/ vi. The relationship between F and F' above implies that

(X , a) - (0, (x, abi), . . ., (x, abn))

is a reduction from F' to (F). By closure under reductions (Corollary 3.3.2), we conclude that
F' E HVSZK.

Now, if x E fly, then there exists an a of length k(Ixl) + log(Ix1) such that (x, a) E Ly.

Taking a' to be the first k(Ixl) bits of a, we see that there exists an a' of length k(Ixi) such that

(x, a') E r,. Moreover, if x E HN, then for all a, (x, a) E r'N. Thus, by Lemma 3.3.2, we
conclude that H E SKChint(k(n)). *

The next theorem establishes tighter bounds on the perfect knowledge complexity of HVSZK.
Aiello, Bellare, and Venkatesan [ABV95] have previously demonstrated that every language in
HVSZK has perfect knowledge complexity n-'(1) (resp., 1 + n-'(1)) in the entropy (resp. average
oracle) sense. Our results improve on these bounds, although the results of [ABV95] also apply
to cheating-verifier classes and ours do not. Goldreich, Ostrovsky, and Petrank [GOP98] show
that HVSZK has logarithmic perfect knowledge complexity in the oracle sense (which we do not
consider), so our results are incomparable to theirs. Our result for the strict oracle sense is the first
that we know of.

Theorem 3.3.3 9

1. For every polynomial-time computable m(n) = w(log n), HVSZK C PKCstrict (m(n)).

2. HVSZK c PKCavg(1 + 2-n).

3. HVSZK = PKCent(2--).

Corollary 3.3.1 tells us that every problem in HVSZK has a simple two-message proof system
like the SD proof system of Section 3.2.3. Thus, in order to measure the perfect knowledge com-
plexity of HVSZK and prove Theorem 3.3.3, it suffices to analyze this protocol. Intuitively, since
the prover is only sending the verifier one bit and this bit is almost always a value the verifier knows,
the knowledge complexity of this protocol should be extremely small. However, this argument does
not suffice, because the knowledge complexity of a problem H is determined only by proof systems
for H which achieve negligible error probability in both the completeness and soundness conditions.
We can overcome this difficulty by performing w(log n) parallel repetitions.

9The 2-(n) in these results can be improved to 2-0(nk) for any constant k by amplifying with security parameter
n instead of n + 1 in Protocol 7r of Section 3.2.3.

45

Proof: Let I be any problem in HVSZK and let (P, V) be the proof system for II constructed

in Corollary 3.3.1 (from the SD proof system of Section 3.2.3) with the security parameter set to

k = 4n (so the completeness error is 2 -4"). Let m = m(n) be any function computable in time

poly(n) such that w(log n) ! m < n. Consider the proof system (P', V') obtained by m parallel

repetitions of (P, V); this has negligible completeness and soundness errors. We now analyze its

perfect knowledge complexity in various senses:

1. The prover sends at most m bits to the verifier on inputs of length n, so the perfect knowledge

complexity of this protocol in the strict oracle sense is bounded by m.

2. A perfect simulator for (P', V') can be obtained as follows: On input x of length n, the

simulator runs V(x) for m times independently and queries the oracle once to find out if

any of these runs would result in an incorrect prover response. If the oracle replies yes, the

simulator queries the oracle m more times to find out which runs would result in an incorrect

response. The simulator then outputs the random coins used for running V and the appropriate

prover responses.

In each subprotocol, the prover gives an incorrect response with probability at most 2-4".

Thus, the simulator has to query the oracle for more than one bit with probability at most

n2-4". Thus, on average, the simulator queries the oracle for at most 1+ mn2-4" < 1+2-"

bits.

3. Let S be the simulator for (P', V') which simply simulates V' and queries the oracle 0 for

all prover responses. One possible oracle simulator would assume that the prover is correct

in all subprotocols. Unfortunately, this gives 1/Pr (R) = oc for some R and yields infinite

knowledge complexity. Thus, we instead have our oracle simulator A assume that the prover

is right in each subprotocol independently with probability 1 - 6, where 6 = 2-2n. Thus,

Px(R) = (1 _ 6)k 6 m-k, if R is a set of random coins for V' (equivalently S, since S mimics

V') which would elicit a correct prover response in exactly k of the subprotocols. Let 6 be

the probability that the prover is incorrect in an individual subprotocol. Then, c < 62, and we

have

ER log PR () (1 _))km-k)

= (logs) k 1E - _)k(

k=O

+ log 1 m-k(l)kk6g))
- (Mkk=

1 6) y

=log 1 + M(1 - 6) {log
61 1 -

= m log 1 + clog (-)1 - 6 6

" M log 1+ 62 lg

K 2m6 < 2

for sufficiently large n.

46

The opposite inclusion follows from the result of [ABV95] that PKCent(neg(n)) c HVSZK
for any negligible function neg(n).

U

3.3.4 Reversing statistical difference

By the completeness of SD (Theorem 3.2.1) and HVSZK's closure under complement (Corol-
lary 3.3.3), we see that SD reduces to SD. This is equivalent to the following surprising result:

Proposition 3.3.1 (Reversal Mapping) There is a polynomial-time computable function that maps
pairs of circuits (Co, CI) to pairs of circuits (Do, DI) such that

l|Co - Cill < 1/3 - lIDO - Dill > 2/3
lCo - Cill > 2/3 = lIDo - Dill < 1/3.

That is, SD reduces to SD.

By extracting ideas used in the transformations of statistical zero-knowledge proofs given in
[Oka96] and in the proof of the Completeness Theorem, we obtain the description of this transfor-
mation given below.

The Construction. Let (Co, Ci) be any pair of circuits and let n = I(Co, C) I. By the Polarization
Lemma (Lemma 3.2.1), we can produce in polynomial time a pair of circuits (C6, C') such that

||Co - C1|| < 1/3 -> |CO - C1|1 > 1 - 2-"

llCo - Cill > 2/3 > ||C - C1|| < 2--

Let q = poly(n) be the number of input gates of C6 and Clj (w.l.o.g. we may assume they have the
same number) and let f = poly(n) be the number of output gates. For notational convenience, let
R = {0, l}q and L = {0, i}e. Let m = n 3q2 and define a new distribution 0: {0, 1} m x R m -+ L m

as follows:

C(b,f) = (CG (ri), ... ,G C (rm)).

We use the notation Z +- C to denote Z chosen according to G, i.e. select b and r' uniformly and let
Z= C(b, F).

Let W be a 2-universal family of hash functions from {O, 1} m x R m x Lm to T =

{ , 1}(q+)m-2A-n, where A = nrmq2 = m/n. We can now describe the new distributions:

DO: Let (brER{O,1}m x R m , C - 0, and hER. Output
(C b, r-), b, h, h(b, r,))

Di: Let (b, r')E R{0, 1} m x R m , hER7, and tERT. Output (C(b, f), b, h, t).

The important things to note about these distributions are that b is part of the output, and that Do
and Di only differ in the last component, where Do has the value of the hash function and D1 has
a truly random element of T. Also note that the size of T is chosen to be I{O, 1 }m x RmI/22A+n,
which is essentially I {0, 1 }m x Rn 1, scaled down by a "slackness" factor of 2 2ZA+n. The introduction
of the sample 'in Do may at first seem superfluous; we explain below.

47

Intuition. For intuition, consider the case that C is distributed uniformly over some domain; that

is, for every Z E range(C), the size of the preimage set I{(b, r): C(b, F) = .5} is the same value N.

(It turns out that C is actually "close enough" to uniform for these arguments to work.) Then the

range of C has size 2(I+)m/N. So, in Do, conditioned on a value for C(b, r), the triple (b, F, 7)
is selected uniformly from a set of size 2 (q+1)m. Since this is much greater than ITI, the Leftover

Hash Lemma of [ILL89] implies that conditioned on any value for the first component of Do, the

last two components (h, h(b, F, #)) are distributed close to the uniform distribution on W- x T, which

is the distribution that D1 has in its last two components. 10 Thus, if their second components were

missing, Do and D1 would be statistically close. Now, consider the case that Co - C1 1. Then b

is essentially "determined" by C(b, F). So the presence of b can be ignored, and the above argument

says that Do and D, are statistically very close. Now, consider the case that ||Co - C1|| 0. Then

6 is essentially "unrestricted" by C(b, F). Since there are 2 m choices for b, conditioning on b in

addition to C(b, r), cuts the number of triples (b, F, Y) down from 2 m(q+1) to roughly 2 m(q+1)/ 2 m.

Since 2 m(q+1)/ 2 m is much smaller than |TI, h(b, F, #) will cover only a small fraction of ITI and

thus will be far from uniform (conditioned on values for C(b, r-), b, and h).

Proof of Proposition 3.3.1. First we will argue that C is close to uniform, so that we can apply

arguments like those given above. This is the case because C is composed of many independent,

identically distributed random variables. For i E L m , we say the weight of ' is the logarithm of

the size of the preimage set of Z. Formally, let wt(V) = log2 f(b, F): C(b, F) = 1}|. Let w be the

expected weight of an image, w = E,,_,[wt(F)]. Then we can show the following:

Lemma 3.3.3 Pry,_d[Iwt(5) - wI > A] < 2-().

Proof: For z E L, let wto(z) = log2 I{(b, r): Cb(r) = z}|. Then, for Z E L m , wt(i)
wto (zi) +--- + wto (zm), where Z= (zi, ... , Zm). Observe that when Z is selected according to C,
z, .. ., zm are independent and identically distributed. Moreover, for any z E L, 0 < wto (z) 5 q.
So, by the Hoeffding inequality [Hof95, Sec. 7.2.1], we have

Pr_[Iwt(i) - w| > A] < 2 e~2 2 /mq2
- 2e- 2 .

It will be convenient to eliminate those Z E Lm that have weight far above or below the mean.

Let G = {(b, r): Iwt(C(b, r)) - wI 5 A} be the set of good pairs (b, F). The above Lemma says

that 1G ;> (1 - 2-"("))|{0, 1} m x R'm . Thus JIG - {0, 1} m x Rm |I 2-2(n), where for simplicity
of notation, we let the name of a set also refer to the uniform distribution on the same set. Define

C' to be the distribution obtained by selecting (b, F) <- G and outputting C(b, r). Then, since C is

a function, Fact 2.1.4 tells us that I10 - C' I = 2-1("). Similarly, we define variants of Do and D 1

that sample from G instead of {0, 1} m x R m :

10 Here we see the importance of #: Without , conditioned on some value of 0(1, F), the pair (b, F) would be selected

uniformly from a space of size N. If we were only hashing this pair, for the distribution h(5, F) to be uniform by the
Leftover Hash Lemma, T would have had to be chosen so that ITI < N. The value of N, however, depends on the
inner workings of the circuit C, and is in general unknown. By including -, which comes uniformly from a space of
size 2(q+"l)/N, we balance the arguments to h so that they come from a space of size 2 (q+)"', a known quantity. This
use of "dummy" samples to form a space whose size is known is the "complementary usage of messages" technique of
Okamoto [Oka96].

48

D': Let (, ERG, # - C', and hER. Output
(L'(, (b, Rh, h(bE, a Tu).

Di et(,)E G hER ,and E RT- Output (C'(b, r-), b, h, t)

Since D' (or D') is a randomized procedure applied to two (or one) independent samplings
from G, Fact 2.1.4 tells us that lIDo - D6 = 2-(") (and |ID1 -D' = 2-l(M). Hence, it suffices
to prove that these modified distributions have the properties we want in each case. For the case
when Co and C1 are statistically far, we prove the following claim:

Claim 3.3.2 If 1106 - C11 > 1 - 2-", then IID' - D|II < 2-1(n).

Proof: First we formalize the idea that bis "determined" by C. Define f: L -+ {0, 1} by

if Pr [C6 = z] > Pr [C, = z]
otherwise

1 1
Pr[f (C6(r)) = b] = -= 0] + Pr[f (C'(r)) = 1].
b,r 2 r2r

Now, by the definition of statistical difference, Prr[C6(r) E f - 1 (0)] > 1 -
f-1(1)] > 1 - 2-". Thus, Prb,r[f(Cb(r)) = b] > 1 - 2-". Now define

f () = (f (zi),... , f (zm)). Then

2- and Pr[C'(r) E
f: L m -+ {0, 1} m by

Pr[f((6,)) =b] > (1 - 2-)m = 1 - 2
b,F

Since G is a 1 - 2-Q(") fraction of {0, i} m x R m , the same is true when (6, r) is selected uniformly
from G. Thus, if we define:

D': Let (b,)ERG, g +- C', and hERW. Output

(C'(b, F), f (C'(b, F)), h, h(b, F,)).

D": Let (b, F) E R G, h E R, and tERT. Output (r'(b, F), f(O'(, F)), h, t).

Then, by Fact 2.1.5, ||D' - D"1I = 2-f(n) and IID' - D"11 = 2--1("). So it suffices to show
that IIDU - D = 2(). Since the first components of D" and D1' are identically distributed
and the second components are determined by the first ones, it suffices to show (by Fact 2.1.5) that,
conditioned on any value for the first coordinate, the third and fourth components have statistical
difference 2 -Q(n). This will follow from the Leftover Hash Lemma [ILL89]:

Lemma 3.3.4 (Leftover Hash Lemma [ILL89]) Let W be a family of 2-universal hash functions
from D to T. Let X by a probability distribution on D such that for all x E D, Pr [X = x] _< E/|T |.
Then the following two distributions have statistical difference at most 61/3.

1. Choose x <- X, hE R . Output (h, h(x)).

2. Choose h E R I E RT. Output (h, t).

49

Then

f (z = 01

By the above argument and the Leftover Hash Lemma, it suffices to show that conditioned on

any value Y for O'(b, i?), no triple (b, F, W) has probability more than 2-G(n)/ITI. The pair (b6, -)

comes uniformly from a set of size 2 "wt4) > 2 WZ., and ' is selected independently according to

C', so the probability of any triple (b, F,) is at most

1 (2w+A 22A 2 -Q(n)

2w-A) IGI J (- 2-(n))2(q+1)m TI

Thus, IID' - D"I1 2 -Q(n), and the claim is established. *

Now we treat the other case, when CO and C, are statistically close.

Claim 3.3.3 If11C6 - C'11 < 2-", then IID' - DI1 > 1 - 2-1(").

Proof: First, we formalize the idea that b is almost completely "undetermined" by C(b, f). Since

IVC6 - C'11 < 2-", it follows from Fact 2.1.6 that with probability 1 - 2-2(") over z - 6,

(1 - 2-1(")) Pr [C' = z] < Pr [C6 = z] 5 (1 + 2 -1"(n)) Pr [C' = z]

In other words,

1 - 2-QC") < I{r: C6(r) = z}I < I + 2-Q(").
- I{r: C(r) = z}I -

The same is true with probability 1 - 2 -Q(n) when the roles of C6 and C' are reversed. Thus, with

probability 1 - m2-() = 1- 2-(") over Z +- 0, we have for every pair b, C E {o, 1}E,

{: (, F) = z}
1 - 2-9(n) = (1 - 2 Q(n))m < - (1 + 2 -Q(n))m = 1+ 2-(").

{F: C(, r) = i}

Since there are 2 m choices for c, this, combined with Lemma 3.3.3, implies that, with probability

1 - 2-(4) over Z <- 0, the following holds for every b E {0, 1}":

{F: (, r) = F} < (1 + 2-9(n)) . 2) < (1 + 2-Q(")) . 2w+A-.

Since this is true with probability 1 - 2-2(") for i selected according to C, it is also true with

probability 1 - 2-(") for Z selected according to C'. Fix any such i and fix any b E {0, 1}" and

he E1-. Then, in D', conditioned on d'(6, f) = z, 6, and h, there are at most

(1 + 2-9(n)) . 2w+A-m Gw < (1 + 2~Q(n)) . 2 2A-m(2m+mq)

= (1 + 2-Q(n)) . 2 4A+n-m ITI
= 2-(m)ITI

possible values for (r', Y). Thus, with probability 1-2-1("), conditioned on values for the first three
components of D6, the fourth component h(b, i', W) can cover at most a 2 -(m) < 2 -i(n) fraction
of T. In contrast, conditioned on values for the first three components of D', the fourth component
is uniformly distributed on T. Therefore, 11D' - DI|l > 1 - 2-(n).

50

3.3.5 Weak-HVSZK and expected polynomial-time simulators

Recall that, in this thesis, we define statistical zero-knowledge with respect to strict polynomial-
time simulators. As noted in Chapter 2, the original definition of statistical zero-knowledge permits
expected polynomial-time simulators, but only allowing strict polynomial-time simulators is not
very restrictive when discussing honest-verifier proofs, as we are.

However, our techniques do say something about expected polynomial-time simulators, and in
particular show that expected polynomial-time simulators are no more powerful than strict ones
for public-coin statistical zero-knowledge. This is the first general equivalence between strict and
expected polynomial-time simulators for statistical zero knowledge that we know of.

Indeed, we are able to generalize further to an even weaker notion, which we call weak statistical
zero knowledge:

Definition 3.3.6 An interactive proof system (P, V) for a promise problem U is weak honest-verifier
statistical zero knowledge if for all polynomials p, there exists an efficient probabilistic (strict)
polynomial-time algorithm Sp such that

IISc(x) - (P, V)(x)W| < 1/p(XI|),

for all sufficiently long x E fly.

We denote by weak-HVSZK the class of promise problems admitting weak statistical zero-
knowledge proofs, and by public-coin weak-HVSZK the class corresponding to public-coin such
proofs. Note that any proof system admitting an expected polynomial-time simulator (in the usual
sense) certainly also satisfies the requirements of weak statistical zero-knowledge. We show that
in fact any public-coin weak statistical zero-knowledge proof system can be transformed into a
statistical zero-knowledge proof system with a strict polynomial-time simulator achieving negligi-
ble (in fact, exponentially small) simulator deviation. In other words, public-coin weak-HVSZK =

HVSZK.

Proposition 3.3.2 public-coin weak-HVSZK = HVSZK = public-coin HVSZK.

The only obstacle in generalizing Proposition 3.3.2 to all weak statistical zero-knowledge proofs
(instead of just public-coin ones) is that Okamoto's private to public-coin transformation in [Oka96]
is only given for strict polynomial-time simulators achieving negligible simulator deviation. In
fact, this generalization was accomplished in work (subsequent to ours) by Goldreich and Vad-
han [GV99].

In order to establish Proposition 3.3.2, it suffices to show that every problem in public-coin
weak-HVSZK reduces to SD, as the proposition follows by closure under reductions (Corol-
lary 3.3.2) and Okamoto's theorem that HVSZK = public-coin HVSZK (Theorem 3.2.2). There-
fore, we need only establish the following generalization of Lemma 3.2.6:

Lemma 3.3.5 Suppose promise problem H has a public-coin weak statistical zero-knowledge proof
Then there exist probabilistic (strict) polynomial time machines A and B such that

X E Hy IA() - B(x)II < 1 and
3
2
3

51

Proof: The proof is identical to the proof of Lemma 3.2.6, except that wherever the simulator S is
used in that proof, we replace it with Sp, where the simulator deviation 1l/p(n) = 1/(8n(12r (n))2 .
r(n)) (recall n will be |x|). Then we replace Claim 3.2.2 with the following:

Claim 3.3.4 If x E Hy, then IIA(x) - B(x)I 5 1/3(n(12r(n)) 2).

Proof: The proof is identical to the proof of Claim 3.2.2, except that now, we have that

|IAi(x) - Bi(x)I 5 2I|Sc(x) - (P, V)(x)I 5 1/(4n(12r(n))2 . r(n)).

As in the proof of Claim 3.2.2, it is still the case that A0 (x) outputs 1 with probability 1 - 2-1(n).
Thus, we have that

IA(x) - B(x)I 5 1/4(n(12r(n))2) + 2--(n) < 1/3(n(12r(n))2).

On the other hand, Claim 3.2.3 remains true, and so we have that x E HN implies IIA(x) - B(x) I
1/12r(n).

Then, as in the original proof, we consider the samplable distributions A(x) = Os(Ixl)A(x)

and B(x) = s(1xI)B(x), where s(n) = n(12r(n))2 . If x E Hy, A(x) - b(x) <

s(lxI) IIA(x) - B(x)I 5 1/3, as desired. If X E HN, then by the Direct Product Lemma

(Lemma 3.2.2), A(x) - E(x) > 1 - 2--(Ixl). *

3.3.6 Perfect and computational zero-knowledge

Although the focus of this chapter is (honest-verifier) statistical zero-knowledge, some of the tech-
niques also apply to (honest-verifier) perfect and computational zero knowledge. In particular, for
public-coin proof systems we obtain variants of Lemma 3.2.6 for both perfect and computational
zero knowledge. In addition, a restricted version of STATISTICAL DIFFERENCE can be shown to
have an (honest-verifier) perfect zero-knowledge proof.

First, we define some variants of SD. For any two constants a and 3 with a > 0, define:

SDa'3 = {(Co, C) : 11Co - Ciii 1 a}

SDj = {(Co, Ci) : ||Co - i| <'}

We can almost show that every problem which has a public-coin perfect zero-knowledge proof

reduces to SD 1/2,0 . The caveats are that either the original proof system must have perfect com-
pleteness, or we obtain distributions that are samplable in expected polynomial time rather than
circuits.

Proposition 3.3.3 Every promise problem having a public-coin perfect zero-knowledge proof with
perfect completeness reduces to the complement of SD 1!2 ,0

Proof: It suffices to show that the distributions A(x) and B(x) constructed in the proof of
Lemma 3.2.6 have statistical difference 0 on YES instances, when the original proof system has
perfect completeness and the simulator deviation is 0. Indeed, for i > 1, the distributions Ai(x)
and Bi(x) are identical if the simulator deviation is 0, and the distributions Ao(x) and Bo(x) are
identical under the additional assumption that the proof system has perfect completeness. 0

52

Proposition 3.3.4 Suppose promise problem H has a public-coin perfect zero-knowledge proof
Then there exist probabilistic expected polynomial time machines A and B such that

x E rly > IA(x) - B(x)I| = 0, and

X E UN IIA(x) - B(x)II > 1 - 2 (ixI.

Proof: The proof is nearly identical to that of Proposition 3.3.3, except that we modify A0 (x) and
B0 (x) to have statistical difference 0 (at the price of Bo (x) becoming expected polynomial time).
Let c(n) be a polynomial bound on the number of random coins S uses on inputs of length n. Then
we define A 0 and B 0 as follows (in both descriptions, n = IXI):

Ao(x): Run S(x) for nc(n) repetitions. Output '1' if the majority are accepting conversations
and '0' otherwise.

Bo(x): With probability 1 - 2-c(n), output '1'. Otherwise, calculate the probability o- that S(x)
outputs an accepting conversation (by exhaustive search over all 2 c(n) random seeds). Now calculate

r nc(n)]1

T z (nc(n) or(l _ o_)nc(n)-i.
i=O

If T > 2 -c(n), output '1.' Otherwise, output '0' with probability T/2-c(n), and '1' otherwise.

Note that Bo(x) runs in expected polynomial time, since with probability 2-c(n) it runs in time
poly(n)2c(n) and otherwise it runs in time poly(n). Also observe that T is the probability that
Ao(x) outputs '0'.

Now we argue that, when x E Hy, Ao(x) and Bo(x) have statistical difference 0, i.e. output
'1' with the same probability. Since S(x) outputs a conversation which makes V accept with prob-
ability at least 2/3 - neg(|x|), the Chernoff bound implies that Pr [Ao(x) = 1] = 1 - 2 -Q(xc(xD).
This means that T will always be less than 2-c(x) (for sufficiently large |x|), so B0 will output '0'
with probability 2-c(xi)(T/2-cx)) = r, which is the probability that Ao outputs '0'. 0

Now, if we could show that SD 1 /2, 0 (or its complement) has a perfect zero-knowledge proof
system, we would have something like a completeness result for HVPZK. Although we do not
know how to do this, we can instead show that SD 1,1/ 2 E HVPZK. Indeed, consider the protocol of
Section 3.2.3 with the modification that the two parties use the XOR Lemma (Lemma 3.2.3) instead
of the Polarization Lemma. Then the proof of Lemma 3.2.5 tells us that this protocol, when used
for SD 1,1/ 2 has completeness error 0, simulator deviation 0, and soundness error 1/2 + 2-. Thus
we have:

Proposition 3.3.5 SD1,1/ 2 E HVPZK.

For computational zero knowledge, the techniques of Lemma 3.2.6 give us the following:

Proposition 3.3.6 Suppose promise problem H has a public-coin computational zero-knowledge
proof Then there exist probabilistic polynomial time machines A and B such that

1. x E 1 1 N => IIA(x) - B(x)ll > 1 - 2--(IxI, and

53

2. {A(x)}xenY and {B(x) }xEry are computationally indistinguishable ensembles ofprobabil-

ity distributions.

Note that, in contrast to perfect and statistical zero knowledge, we do not obtain a way of dis-

tinguishing YES and NO instances; it is possible for A(x) and B(x) to have statistical difference

greater than 1 - 2 -WIxI) even for x E Hy. We also remark that Proposition 3.3.6 holds even when

the simulator for the proof system runs in expected polynomial-time, except that A and B will also

run in expected polynomial-time.

Proof: The proof follows Lemma 3.2.6 exactly, except for Claim 3.2.2, which should be replaced

with the following:

Claim 3.3.5 { A(x)}xEny and {B(x)}xery are computationally indistinguishable ensembles of

probability distributions.

The proof in Claim 3.2.2 that A0 (x) and B0 (x) have exponentially small statistical difference

for x E Hy still holds. Thus it suffices to show that the ensembles {A'(x)}xEry and {B'(x)}xern
obtained by removing the O'th components of A(x) and B(x), respectively, are computationally
indistinguishable. To prove this, we first note that a hybrid argument shows that the ensem-

bles {or(IxI) (P, V) (X) }xECly and {or(x) S(IxEr) y are computationally indistinguishable, since

{ (P, V) (W)x) Erly and {S(x) }xErly are computationally indistinguishable.
Now we introduce a new ensemble {C(x)}xeny . Define Ci(x) = (ci, pi, ... , c)y(x) for

X E Hy, 1 < i < r (IxI), and let C(x) = Ci(W) ... 0 Cr (). Then {C(x)}xEny and {A'(x)}xErjy
are computationally indistinguishable since a distinguisher D between them could be used to make

a distinguisher D' between {r (p, V)(X)}xEnY and {®rS(X)}xeny: Given a sequence of r(|x|)
transcripts (ti, ... , tr), D' truncates tj = (ciP, ... , Cr, pr) to produce t' = (ci, pl, . .. , ci) and

feeds (t', ... , t') to D. When fed with O'S(x), D' gives D a sample of A'(x), and when fed with

or (P, V)(x), D' gives D a sample of C(x).
Similarly, {C(x)}xCr and {B'(x)}xErj are also computationally indistinguishable because

a distinguisher between them could be to make a distinguisher D' between { o(P, V) (X) }xErfy
and {OrS(X)}xEHy: Given a sequence of r(IxI) transcripts (ti,...,tr), D' truncates ti =

(ciP1,... ,Cr, pr) and selects ui according to the uniform distribution on strings of length r (IxI) to

producet' = (ci, pi, . . .pi_1, u) and feeds (t' ... , t') to D. When fed with or S(X), D' gives D
a sample of B'(x), and when fed with or (P, V)(x), D' gives D a sample of C(x).

Now, because both {A'(x)}xEHY and {B'(x)}XErY are computationally indistinguishable from

{C(x)}xEry, they must be computationally indistinguishable from each other, completing the

proof. m

3.3.7 Hard-on-average languages and one-way-functions

In this section, we show how to use techniques from this chapter to provide an alternative simpler

proof of a known result relating zero-knowledge proofs for hard-on-average problems and one-way

functions.
At the heart of most cryptographic constructions lie problems that we believe to be hard in

the average case (e.g. QUADRATIC RESIDUOSITY [GM84]). However, not every such problem
has proved useful in general cryptographic constructions. Surprisingly, Ostrovsky [Ost9l] showed
that statisitical zero knowledge provides one way of identifying the cryptographic usefulness of a

54

problem in general applications: He proved that if any hard-on-average problem admits a statis-
tical zero-knowledge proof, then one-way functions exist (which implies the existence of various
cryptographic primitives). Later, Ostrovsky and Wigderson [OW93] generalized this result to com-
putational zero knowledge as well.

We show how to use the techniques from this chapter to provide an alternative simpler proof
of the theorem of Ostrovsky, and a restriction of the theorem of Ostrovsky and Wigderson where
we consider only public-coin computational zero-knowledge proofs. We will give a proof only
for the case of public-coin HVCZK. Note that this implies the same results for HVSZK, since
HVSZK = public-coin HVSZK C HVCZK. We extend the results of [Ost9l, OW93] to promise
problems. We start with a definition of a hard-on-average problem:

Definition 3.3.7 We say a promise problem U is hard-on-average if there exists a PPT algorithm S
such that for all positive integers n and all PPT algorithms A, there exists a negligible function a
such that:

Pr [A(x) = X(x)] <; - + a(n)
X+-S(1n) 2

where x is the characteristic function for the promise problem H and we may assume the strings
output by S(1n) are of length at least n.

A key ingredient in our proof, also used in the proofs of [Ost9l, OW93], will be the result
of [Gol90] showing that the existence of a pair of efficiently samplable ensembles of distributions
that are computationally indistinguishable but statistically far apart is equivalent to the existence of
pseudorandom generators, and hence one-way functions. We first recall this result:

Theorem 3.3.4 ([Gol90]) If there are two ensembles of efficiently samplable distributions {Xn}
and {Y} such that:

1. { Xn} and {Yn} are computationally indistinguishable.

2. There exists a polynomial p such that for all positive integers n, we have ||A(1 n) - B(1I
1/p(n).

Then one-way functions exist.

We now establish:

Theorem 3.3.5 If public-coin HVCZK contains a hard-on-average promise problem H, then one-
way functions exist.

Proof: Suppose H is hard-on-average with respect to the sampler S. We apply Proposition 3.3.6
to H to construct distributions A and B such that if x E HN, then A(x) and B(x) are statistically
far apart, but for x E Hy, we have that A(x) and B(x) are computationally indistinguishable.
Now consider the distribution ensembles X, = (x, A(x)) and Yn = (x, B(x)) where x in both
distributions is chosen according to S(1n).

Intuition. Note that because H is hard-on-average with respect to S, for all n, the probability that
the output of S(1n) is in 1 1 N must be negligibly different from 1/2. Thus, the ensembles Xn and Y
must have statistical difference at least 1/2 - a(n) for some negligible function a. Thus, Xn and Yn
satisfy Condition 2 of Theorem 3.3.4. On the other hand, suppose there exists some distinguisher
D that gets non-negligible advantage -y(n) in distinguishing Xn and Yn, i.e. Pr [D(x, A(x)) = 1] -

55

Pr [D(x, B(x)) = 1] -y(n). We know that A(x) and B(x) are computationally indistinguishable

when x c Hy, so D must be distinguishing A(x) and B(x) only when x E fN- We can use this

to decide X(x), contradicting the assumption that H is hard-on-average. This cannot be, and so the

conditions of Theorem 3.3.4 must be satisfied, which implies the existence of one-way functions.

More formally, consider the following algorithm M for deciding H:

1. Given x, compute a = D(x, A(x)) and b = D(x, B(x)).

2. If a = 1 and b = 0, output 0, by which we mean x E IN.

3. If a = 0 and b = 1, output 1, by which we mean x E Hy.

4. Otherwise, flip a fair coin to decide.

Let p(x) = Pr [D(x, A(x)) = 1], and q(x) = Pr [D(x, B(x)) = 1]. Then note that for any
given x, the probability that the algorithm decides that x E HN is exactly p(x)(1 - q(x) +

(p(x)q(x) + (1 - p(x))(1 - q(x))) = 1 + (p(x) - q(x))/2. Now, by Proposition 3.3.6, there

exists a negligible function (which we can assume is also a) such that for all x E Hy, we know that

|p(x) - q(x)I < a(n).
Now, we consider

= Pr [x E Hy] - Pr [M() = I I X C fy] +
x+-S(ln) x+-S(ll)

Pr [x E HN] Pr [M(X) =O XCHN
X- S() x-S(()

= Pr [x E Hy] - - (1 - EX-S(ln) [(P(X) - q(x)) I x E Ry]) +
X<-S(1n) 2

(1 - Pr [X C
x+-S(ln)

where the last inequality

fly]) - - (1 + E_S(in) [(p(x) - q(X)) | EIN])
2

> - a(n) + '
1 -)

follows since E[p(x) - q(x)] = -y, and yet for all x E fly, we have that
p(x) - q(x) < a(n).

This contradicts the hardness assumption of

distinguishable distribution ensembles that have
Theorem 3.3.4, one-way functions exist. U

H. Hence, Xn and Yn are computationally in-

non-negligible statistical distance, and hence by

56

Pr [M(x) = X()I1
xx-S(1n)

Chapter 4

Dealing with Cheating Verifiers in
Statistical Zero-Knowledge Proofs

So far, all our results have dealt only with honest-verifier zero-knowledge proofs, where the guaran-
tee that the verifier learns nothing only holds if the verifier follows the protocol exactly as specified.
As we have seen, this notion already gives rise to interesting protocols and complexity-theoretic
structure. From a cryptographic point of view, however, it is most often unrealistic to assume that
parties will follow a protocol as specified. Indeed, one of the most important goals in the con-
struction of a cryptographic protocol is to guarantee robustness against parties that deviate from
the protocol - and it is precisely in guaranteeing this kind of security that zero-knowledge proofs
have found their most compelling application [GMW91, GMW87]. Clearly, honest-verifier zero-
knowledge proofs do not suffice for such applications.

This brings up the natural question: how much cheating can we tolerate from the verifier?
In this chapter, we show that for statistical zero-knowledge proofs and public-coin computational
zero-knowledge proofs, the answer is that we can tolerate any amount of cheating on behalf of the
verifier. More precisely, we give an efficient transformation that converts any public-coin proof that
is statistical zero knowledge only for the honest verifier into one that is zero knowledge for any
verifier, no matter how much it deviates from the specified protocol. This transformation applies to
all public-coin honest-verifier computational zero-knowledge proofs, as well. This transformation
has two interesting consequences:

" Because Okamoto [Oka96] has given a transformation from honest-verifier statistical zero-
knowledge proofs to public-coin such proofs, by composing this with our transformation, we
obtain the result that HVSZK = SZK. Therefore, we can translate the results we obtained
about HVSZK to hold for all of SZK.

" Our transformation also preserves the "power of the prover" - that is, if the prover of the
original protocol can be implemented in probabilistic polynomial time, then the prover of the
transformed protocol can be implemented in probabilistic polynomial time as well. Thus,
our transformation also makes possible a useful design methodology for constructing cryp-
tographically useful zero-knowledge proofs: First, construct a public-coin proof that is zero
knowledge only for the honest verifier. Then, use our transformation to convert it into a proof
that is zero knowledge against all verifiers.1

'Note that the transformation of Okamoto [Oka96] from private-coin to public-coin honest-verifier statistical zero
knowledge does not have this feature, and therefore in order to use our transformation cryptographically, it is important
to start with a public-coin protocol.

57

The work we present in this chapter is based on a paper [GSV98] authored jointly with Oded Gol-

dreich and Salil Vadhan.

4.1 Overview

Recall that we defined a black-box any-verifier (statistical or computational) zero-knowledge proof

system to be as follows:

Definition 4.1.1 Let (P, V) be an interactive proof system (P, V) with negligible completeness and

soundness errors, for a promise problem H.

" (P, V) is said to be a (general) black-box statistical zero-knowledge proof system if there ex-

ists a probabilistic polynomial-time2 (oracle machine) simulator S and a negligible function

a (called the simulator deviation) such that for every non-uniform probabilistic polynomial-

time verifier V*, we have:

For all x C Ily, we have ||Sv* (x) - Viewp,v.(x)|| < a(|xl). (4.1)

* A black-box computational zero-knowledge proof system replaces Condition (4.1) with the re-

quirement that the ensembles {SV* (x},xny and {Viewp,v* (x)}xErJ, are computationally

instinguishable ensembles of distributions.

We let SZK (resp. CZK) denote the class of promise problems with (general) black-box statistical

(resp. computational) zero-knowledge proof systems.

Recall that in this black-box formulation of zero knowledge, we can also define what it means

to allow unlimited verifiers in the case of statistical zero-knowledge proofs. We can say that a proof

system is black-box statistical zero knowledge against arbitrary verifier strategies if it satisfies

Condition (4.1) for all possible verifier machines V*, as opposed to only computationally bounded
ones.

We first describe some previous work on transforming honest-verifier zero-knowledge proofs
into general zero-knowledge proofs, and then describe the main result of this chapter.

Previous Transformations of Honest-Verifier to General Zero Knowledge

Conditional results for CZK: Assuming the existence of one-way functions, it is known that

every problem with an interactive proof also has a (general) black-box public-coin computational

zero-knowledge proof[GMW91, IY87, BGG-88, HILL, Nao9l]), which of course in particular

implies HVCZK = CZK (in fact HVCZK = public-coin CZK).

Conditional results for SZK: The problem of relating HVSZK to SZK was first studied in

[BMO90]. They showed that the two classes coincide, provided that the Discrete Logarithm Prob-

lem is hard. At the time, it seemed puzzling that computational assumptions can be used in the

supposedly "information theoretic" context of statistical zero-knowledge. However, a careful ex-

amination reveals that the standard class SZK does refer to computational limitations: It is re-
quired to simulate only all probabilistic polynomial-time verifiers. The computational assumption

2As noted earlier, the definition of each type of zero knowledge can also be made allowing the simulator to run in
expected polynomial time instead of strict polynomial time.

58

is thus used to restrict the behavior of cheating verifiers. This approach was carried to its climax
in [Oka96] (cf., [DGOW95, Part 2]): Using any bit commitment scheme (and thus any one-way
function [HILL, Nao9l]) it was shown that public-coin HVSZK = public-coin SZK. Combined
with the HVSZK = public-coin HVSZK result of Okamoto [Oka96], this implies that the existence
of one-way functions implies HVSZK = SZK (and in fact HVSZK = public-coin SZK).

Unconditional results for constant-round zero-knowledge: The only unconditional transfor-
mations of honest-verifier SZK (resp., CZK) known before, referred to the class of constant-round
public-coin proof systems (cf., [Dam94, DGW94]). It was shown that if II has a HVSZK (resp.,
HVCZK) public-coin proof system of a constant number of rounds then II E public-coin SZK
(resp., II E public-coin CZK).

Weak statistical zero-knowledge: In [DOY97] it is claimed that any language in HVSZK has
an interactive proof, (P, V), with a weak statistical zero-knowledge property: For every positive
polynomial p, and every non-uniform probabilistic polynomial-time verifier V*, there exists a prob-
abilistic polynomial-time simulator SP* (with running-time depending on p) so that the variation
distance between the probability ensembles, {(P, V*)(x) : x E L} and {SP*(x) : x E L}, is at most

l/p(IxI).

4.1.1 Our results

We obtain the first unconditional general transformation of honest-verifier zero-knowledge to gen-
eral zero-knowledge.

Theorem 4.1.1 (Transformation Theorem): There exists an efficient transformation of honest-
veriier statistical (resp., computational) zero-knowledge public-coin proof systems, into general
black-box statistical (resp., computational) zero-knowledge public-coin proof systems. Further-
more,

1. The resulting proof systems has twice as many rounds as the original one.

2. The resulting prover strategy can be implemented in probabilistic polynomail-time given or-
acle access to the original prover strategy.

3. The completeness error of the resulting proof system is exponentially vanishing. In case the
original proof system has perfect completeness, so does the resulting one.

4. The soundness error of the resulting proof system is bounded above by 1/p(jxj), where p is
an arbitrary polynomial determined by the transformation.

5. In case of statistical zero-knowledge, the resulting proof system is black-box statistical zero
knowledge against arbitrary verifier strategies, and its simulation error is at most poly(I|
,(x) + 2 -ID, where c(x) is the simulation error of the original system.

We obtain as immediate corollaries, our two main theorems:

Theorem 4.1.2 Every promise problem having an honest-verifier computational zero-knowledge
public-coin proof system, also has a general computational zero-knowledge public-coin proof sys-
tem. And so, public-coin HVCZK = public-coin CZK.

59

And, using Okamoto's result that HVSZK = public-coin HVSZK [Oka96, Thm. 1], we have:

Theorem 4.1.3 Every language having an honest-verifier statistical zero-knowledge proof system,
also has a general (public-coin) statistical zero-knowledge proof system. And so, HVSZK = SZK.

Remark 4.1.1 Our transformation has several interesting features:

" Arbitrary Verifier Strategies: We stress that, in contrast to the previously mentioned condi-

tional results, our result for statistical zero-knowledge is unconditional and guarantees (black-

box) simulation of all possible verifier strategies (not only polynomial-time ones).

" Computational Zero Knowledge: Theorem 4.1.1 also provides a transformation for a wide

class of computational zero-knowledge proof systems - that is, the class of public-coin proof

systems. We view our result as a significant step towards showing that HVCZK = CZK
without relying on any intractability assumptions.

* Power of the prover: The transformation of Theorem 4.1.1 preserves the power of the prover.

In particular, if the prover strategy of the original public-coin honest-verifier proof system is

implementable efficiently (i.e. in polynomial-time), then the prover strategy of the trans-

formed protocol can also be implemented efficiently. Note, however, that the transformation

of Okamoto from private-coin to public-coin honest-verifier statistical zero-knowledge proofs

does not share this feature. Thus, the composed transformation of Theorem 4.1.3 does not

preserve the power of the prover.

* Soundness error and number of rounds: The transformation of Theorem 4.1.1 increases

the number of rounds of the original proof system only by a factor of 2. However, the re-

sulting protocol has noticeable soundness error. That is, for any positive polynomial p, we

can achieve a soundness error of 1/p(xj). The soundness error may be further decreased,

while preserving the zero-knowledge property, by sequential repetition of the proof system.

In particular, to achieve negligible soundness error it suffices to use w(1) sequential repeti-

tions. This is unavoidable, unless one-way functions do not exist, since only BPP problems
may have black-box simulation zero-knowledge public-coin proofs with constant number of

rounds and negligible error probability [GK96].'

" Completeness error: By first applying the transformation of [FGM+89], we may eliminate

completeness error altogether (at the cost of at most one additional round and not preserving

the complexity of the prover). (Recall that the transformation of [FGM+89] increases the

simulation error by at most an exponentially vanishing amount.)

" Corollaries: Many known results regarding the class HVSZK translate to the class SZK

(and respectively results for public-coin HVCZK translate to public-coin CZK). For example,
using known results regarding HVSZK, one obtains that SZK is closed under complement, has

a complete promise problem, etc. We will elaborate on these in more detail in Section 4.8.

3 Recall that if one-way functions exist then N P has constant-round public-coin proofs with negligible soundness error
which are honest-verifier computational zero-knowledge [GMW9I]. So, if Theorem 4.1.1 were to preserve all its features
while resulting in a proof system with negligible soundness error then NP C BPP would follow, which is impossible if
one-way functions exist.

60

4.1.2 Techniques

Theorem 4.1.1 is proven by modifying the transformation presented in [DGW94]. Whereas the
proof systems resulting from that transformation could be simulated only for a constant number of
rounds, our modified transformation can be simulated for any (polynomial) number of rounds. Both
transformations apply to honest-verifier Arthur-Merlin 4 zero-knowledge proofs (both statistical and
computational).

The verifier (Arthur) is supposed to select its messages uniformly at random from the set {o, 1}
of binary strings of a specified length. Thus, the simulator for the original proof system will also
produce Arthur messages that come from a distribution that is indistinguishable (either in a statistical
or computational sense) from uniform. When we remove the assumption that Arthur is honest,
Arthur may now select its message strings in a manner which is not uniform, and thus the original
simulator will not suffice.

To address this problem, in the transformation of [DGW94], each f-bit long (random) message
sent by Arthur is replaced by an invocation of a 3-round Random Selection protocol, for generat-
ing strings in {0, 1}e. In this protocol, Arthur and Merlin (the prover) interact to jointly produce
a string which will be interpreted as "Arthur's message" in the original proof system. For any
fixed positive polynomial p, a Random Selection protocol with the following two properties was
presented [DGW94]:

1. As long as Arthur acts according to the protocol, Merlin may cause the outcome to deviate
from uniform distribution over {0, 1}f by at most l/p(f). (That is, the statistical distance
from the uniform distribution is at most 1/p(e).)

2. As long as Merlin plays according to the protocol, Arthur may not cause any f-bit string to
appear as the outcome with probability greater than p(f) 4 -2-. In particular, when Arthur ap-
plies any deterministic 5 cheating strategy, the outcome of the protocol is uniformly distributed
over some set of at most p,4 strings.

The proof system resulting from the above transformation is simulated in [DGW94] by running the
honest-verifier simulator, and "hoping" that all Arthur-messages included in the transcript fall in
the sets mentioned in Item (2) above. If this is the case, [DGW94] show that the simulation can
be extended to fit the transformed proof system. Now, if the proof system uses only a constant
number of invocations of the Random Selection protocol, then the "hope" will prevail with inverse
polynomial probability. Thus, by repeating the experiment a polynomial number of times, we can
be guaranteed success with extremely high confidence. This suffices for producing a black-box
simulation with respect to any cheating Arthur-strategy. This approach fails when we have a non-
constant number of rounds (Random Selection invocations), since in this case the "hope" will be
dashed with all but negligible probability.

In our transformation, we modify the transformation of [DGW94] as follows: Rather than select-
ing a message, we use the [DGW94] Random Selection protocol to specify (in a succinct manner)
a set of 2" possible Arthur messages. Merlin then selects a message uniformly from this set. An
immediate concern is that this allows Merlin to select a string which is advantageous for cheating.
However, this only increases Merlin's cheating probability by a factor of 2" per each round. Though

4 Recall that public-coin proof systems are also called Arthur-Merlin proof systems, where the verifier is called Arthur
and the prover is called Merlin. Since we want to stress the public-coin nature of many protocols in this chapter, we will
often use the Arthur-Merlin naming convention when referring to the verifier and the prover.

"The restriction to deterministic strategies is without loss of generality here, as we will discuss briefly.

61

this may seem large, we can make the original proof system have an extremely tiny soundness error

by parallel repetition, which effectively counteracts this threat.

The question now is what have we gained by making this change? Intuitively, we gain not

having to simulate the Random Selection protocol for any possible outcome. Rather than having

to simulate an execution which results in any specific e-bit output, a, we only need to simulate an

execution which results in a random set of strings containing a. The distinction is important since

executions of the former type may exist only for a 1/poly(e) fraction of the possible a's, whereas -
as we show - executions of the latter type exist and can be efficiently generated for all but a 2--n

fraction of the a's. Proving the last statement is a major technical undertaking of this chapter. It is

reduced to proving the following lemma which may be of independent interest:

Lemma 4.1.1 (Hashing Lemma): There exists a universal constant, c > 0, so that the following

holds, for every e, 6 > 0. Let D and T be finite sets, H be a 2-universal family of hash functions

from D to T, and e G T. Let S C H such that |SI ;> 61H1, and X be a random variable ranging

over a finite set D having collision probability at most ' (i.e., E D Pr [X = x] 2 < p). Then

the statistical difference between the following two random processes is at most c - clIc6-C

(A) Select h uniformly in S, and let x be selected from X conditioned on h(X) = e. Output (h, x).

(B) Let x +- X, and h be selected uniformly among all h C H satisfying h(x) = e. Output (h, x).

Actually, we need only establish a special case of this lemma, where X is uniform over D (and

ITI = E - IDI) for our proof of Theorem 4.1.1.

4.2 Notation

In this chapter, whenever we consider an interactive proof system, x will denote the common input

and n will be the length of x. For notational convenience, we will often hide dependence on x or n

when it is clear. For example, we write r instead of r(n), when r is actually a function of n.

4.3 The starting proof system

Theorem 4.1.1 is proven by combining two transformations. The first transformation is obtained

by simple parallel repetition, from which we immediately obtain the lemma below6 . The protocols

resulting from this transformation are the starting point for our main transformation, stated in the

next section.

Lemma 4.3.1 Let U be a problem having a honest-verifier statistical (resp., computational) zero-

knowledge public-coin proof systems of r rounds. Then H has such a (r-round honest-verifier)

zero-knowledge (public-coin) proof system in which

1. The prover strategy can be implemented in probabilistic polynomial-time given oracle access

to the original prover stategy.

2. The completeness error is less than 2', and in case the original proof system has perfect

completeness so does the resulting one.

6 Recall that honest-verifier zero-knowledge properties are preserved under parallel repetition.

62

3. Soundness error is less than 2 -n(+),

4. For II E HVSZK: The simulator deviation is at most a polynomial factor greater than the
original one.

4.4 The transformation

Fix a problem II in HVSZK or public-coin HVCZK and let (M, A) be the proof system guaranteed
by Lemma 4.3.1. Let r = r(n) be the number of rounds of (M, A) and let f = fe(n) be the length
of A's messages. We assume an arbitrary polynomial p(.) has been chosen for the soundness error
for the transformed proof system. Let p = p(n). We may describe this proof system as follows:

Original Proof System (M, A), on input x:

1. In round i (i = 1, 2,... , r),

(a) A chooses a message aiE R{0, 1} and sends it to M.

(b) M sends a response 3i +- M(ai, 1 , ... , ai_1, 0i_1, ai) to A.

2. After round r, machine A deterministically decides whether to accept or reject.

The reason such a protocol could be zero-knowledge against the honest verifier but not against dis-
honest verifiers is that nothing prevents A from choosing the ai's maliciously rather than uniformly.
The idea of our transformation is to replace A's random choices with a Random Selection protocol
(to be described in Section 4.5) which guarantees that the ai's are statistically close to uniform,
regardless of how A behaves. The new protocol, denoted (M, A), proceeds as follows.

Transformed Proof System (M, A), on input x:

1. In stage i (i = 1, 2,... , r),

(a) M and A use the Random Selection protocol,
RS2pr,e(n), to select ao E {0, 1} .

(b) M sends the response 3i <- M(ai, 31 ,... , ai-1,1ii1, a) to A.

2. After stage r, machine A accepts or rejects as A would on transcript (ai, i1, ... , Or, fr).

We will prove the following about the Transformed Proof System:

Lemma 4.4.1 The Transformed Proof System (M, A) has the following properties:

1. The number of rounds is twice the number of rounds in (M, A).

2. M can be implemented in probabilistic polynomial time given oracle access to M.

3. The completeness error is exponentially vanishing. In case (M, A) has perfect completeness,
so does (M, A).

4. Soundness error 1/p.

63

5. When (M, A) is honest-verifier statistical (resp., computational) zero-knowledge, (M, A) is

statistical (resp., computational) zero-knowledge, and this zero-knowledge property is exhib-

ited by a black-box simulator. Furthermore, for honest-verifier statistical zero-knowledge

proofs, this simulation holds against arbitrary verifier strategies.

6. In the case of Statistical Zero-Knowledge, the simulator deviation is at most 2-n() greater

than that of (M, A).

Theorem 4.1.1 follows immediately from Lemmas 4.3.1 and 4.4.1. Lemma 4.4.1 depends cru-

cially on properties of the Random Selection protocol. We devote the next section to describing

the Random Selection protocol and its crucial properties. In Section 4.6, we show how to derive

Lemma 4.4.1 from the properties of the Random Selection protocol.

4.5 Random Selection

Let q and f be any polynomials. In this section, we describe an Arthur-Merlin protocol RSq,f(n) =

(MRS, ARS) (n) for randomly selecting a string in {0, 1}t(). The protocol employs the Random

Selection protocol DGWq,e(n) = (MDGW, ADGW) of [DGW94] as a subprotocol, and the follow-

ing presentation is adapted from that paper.
For notational convenience, we will write q to mean q(n) and f to mean f(n). Let W be the space

of affine linear functions from {0, 1} to {O, 1}0 ", i.e. h E W is of the form h(x) = Ax+b for some

appropriately sized matrix A and vector b. For a E {0, l}E, we write 71,, for {h E W: h(a) = 0}.
Let s = e - (f - n) + (f - n) and t = s - 41og2 (3qs). Note that elements of {0, 1} can be viewed

as elements from X. The protocol DGWq,f utilizes a space of functions F from {0, 1}s to {0, 1}

satisfying the following properties:

1. Each f E F has a description of size poly(n).

2. There is a poly(n)-time algorithm that, on input f E Y and h E {0, 1}, outputs f (h).

3. There is a poly(n)-time algorithm that, on input f E T, y E {0, 1 }, lists all the elements of
f '(y). In particular, If -'(y)I < p(n) for some polynomial p.

4. For every y E {0, 1} and f E Y, f -1(y) is nonempty.

5. JF is a family of almost s-wise independent hashing functions in the following sense: For

every s distinct points hl,.. . , E ({0, 1}\{0, 1}tOS-t), for a uniformly chosen f E F, the

random variables f (hi), ... , f (h) are independently and uniformly distributed in {0, 1 }'.

(This property is used only for the proof of the soundness condition of the protocol, found in

[DGW94].)

Such a family can be constructed essentially by associating the domain {0, 1}' with the field

GF(2s), and considering all polynomials of degree s - 1 over this field. Corresponding to each

such polynomial p, there is a member f of the family which on input h E {0, 1 }s outputs the t most

significant digits of p(h), unless h is of the form h = xO'-t, in which case f(h) = x. For more

details and to see why this family satisfies the conditions above, see [DGW94]. We can view each

f C Y as defining a partition of {0, 1}' into 2 t cells of the form f (y), each of size poly(n). For
notational convenience, we will sometimes write cell y to refer to the cell f (y).

We now describe the protocol of [DGW94]:

64

The DGW Random Selection Protocol DGWq,e = (MDGW, ADGW)(n):

1. ADGW selects f ERF, and sends it to MDGW (i.e., ADGW selects a random partition).

2. MDGW selects yER{0, 1 1t, and sends it to ADGW (i.e., MDGW uniformly selects a cell).

3. ADGW selects hGRf -1 (y) (i.e. ADGW uniformly selects an element of the cell).

4. Output h.

If, at any step, ADGW or MDGW do not select an object from the appropriate set, whatever message
they send is interpreted as a canonical element of that set. In [DGW94], it was shown that the above
protocol has the following properties (roughly speaking):

1. (Soundness) For any Merlin strategy MDGW, the output distribution on R = {0, 1} of

(MDGW, ADGW) deviates from uniform by at most 1/q (in statistical difference).

2. (Simulability) Let A*Gw be any strategy for Arthur. At least a 1/poly(n) fraction of the h's
in {0, 1 } occur as possible outputs of the interaction (MDGW, A*DGW) and given such an h,
one can simulate in poly(n)-time A* w's vview of an interaction resulting in h.

The main hindrance in applying the protocol as used by [DGW94] is that the simulator is only
guaranteed to work for a 1/poly(n) fraction of the h's. In our protocol, we interpret the output
h E 71 of the DGW protocol as a set of strings (namely h- 1 (0)), from which a single string a is
randomly selected by Merlin. It is this a, rather than h, that is the output of the Random Selection
protocol. Thus, we only need to simulate the Random Selection protocol for a random a rather than
a random h. For a given a, there are exponentially many hash functions h such that h(a) = 0.
Because this space of h's is so large and covers the a's near-uniformly, we are able to perform the
simulation for a 1 - 2 -Q(n) fraction of the a's.

A full description of our Random Selection protocol follows.

Our Random Selection Protocol RSq,f = (MRS, ARS)(n):

1. ARS selects f ERF, and sends it to MRS (i.e., ARS selects a random partition).

2. MRS selects yER{0, 1}, and sends it to ARS (i.e., MRS uniformly selects a cell).

3. ARS selects hERf 1 (y) (i.e. ARS uniformly selects an element of the cell).

4. MRS selects aERh-1 (0). (If h-'(0) = 0 then a is defined to be 0 .)

5. Output a.

As with the DGW protocol, if ARS or MRS do not select an object from the appropriate set at any
step, whatever message they send is interpreted as a canonical element of that set. The properties of
this protocol are described in the following Proposition.

Proposition 4.5.1 For any polynomials q and f, the Random Selection protocol RSq,e is a 4-round
protocol with the following properties:

1. (Efficiency) Both MRS and ARS can be implemented in time poly(n) and the protocol is
public-coin for both parties.

65

2. (Soundness) For all Merlin strategies Mks and all sets S C {, i}1, the probability that the

output of (Mks, ARs)(n) lies in S is at most

jS| 1

Also, the statistical distance between the distribution on hfrom executions of (Mks, ARS) (n)

and the uniform distribution over W is at most 11q.

3. (Strong Simulability) There exists a black-box simulator SRS running in time poly(n), such

that for all deterministic7 Arthur strategies A*s, the statistical difference between the follow-

ing distributions is 2 4"):

(I) Execute (A*, MRs) (n), let a E {0, 1 } be the output of the protocol, and let v be A*ss
view of the interaction (i.e., v is a transcript (f , y, h, a)).8

(II) Choose a uniformly from {0, 1}'. Output (S RS(a), a).

Remark 4.5.1 The a's are included in the outputs of Distributions (I) and (II) above to force the

simulator to produce a transcript for an externally specified a (rather than an a which it generates

on its own while producing the transcript.)

Proof: Efficiency is immediate from the description of the protocol and the properties of the

families F and .

Soundness. Let Mks be any cheating Merlin strategy and consider an execution of the protocol

(Mks, ARS). Notice that that the probability that the output a lies in some set S is bounded above
by the probability that h 1 (0) contains an element of S. Now, for h chosen uniformly from ?i

(instead of by the protocol), the probability that h (0) contains an element of S is at most

Pr [h(a)= 0] = S.
5hERW 2ft

In our protocol, h is chosen using the DGW protocol. It shown in [DGW94, Prop. 1] that a cheating

Merlin can cause at most a 1/q statistical difference from the uniform distribution on 71, and so the

Soundness property follows.

Strong Simulability. We now describe the simulator which will be used to establish Strong Simu-

lability. Recall that p is polynomial bound on the size of f 1 (y) for any f E T, s is the description

length for elements of W, and functions in T map {0, 1} to {0, 1} , where t = s - 4 1og 2 (3qs).

7The restriction to deterministic Arthur strategies is only for ease of presentation, as a simulator for randomized Arthur
strategies can uniformly select and fix Arthur's coins and then use the simulator for deterministic strategies. When we use
the Random Selection simulator as a subroutine in the simulator for the Transformed Protocol in Section 4.6, the coins of
Arthur will have already been fixed by the outer simulator.

8In Chapter 2, we defined the Verifier's view to consist of his random coins and the Prover's messages. Here, we do
not include random coins, as they are irrelevant for deterministic strategies. We also include Arthur's messages - this is
unnecessary as they are functions of Merlin's messages, but it will be convenient for our presentation.

66

The simulator S AJ, on input a E {0, l}', proceeds as follows:

Si. Let f E Y be the first message sent by A*s.

S2. Repeat the following up to n - 2(3sq)4 - p times:

(a) Choose h' uniformly from W, (Recall that W = {h: h(a) = 0}.

(b) Let y = f (h') (i.e., y is the cell containing h'). Compute k e if - 1(y)nwa.
With probability 1 - -, proceed to next iteration of Step S2. (Otherwise
continue.)

(c) Let h = A*(y), that is, the element (hereafter called the cell representa-
tive) of cell y that A*RS gives in Step 3 after being sent y in Step 2.

(d) If h(a) = 0, output ((f, y, h, a), a) and terminate the simulation. Other-
wise, proceed to next iteration of Step S2.

S3. If the simulator failed to produce output so far, output f ail.

From the various properties of the families F and W, such as the fact that f (y) can be enu-
merated in time poly(n), and the fact that s, q, and p are all poly(n), we see immediately that the

running time of S S is poly(n).
Let us now show that Distributions (I) and (II) in Proposition 4.5.1 have statistical difference

2-9(n). Each produces output of the form ((f, y, h, a), a). In both cases, f is the (deterministically
chosen) first message of A*RS and y = f (h), so it suffices to show that the distributions restricted to
their (h, a) components are statistically close. We therefore define the Distributions (I') and (II') to
be the Distributions (I) and (II) restricted to their (h, a) components. To analyze these distributions,
we make use of the following Lemma, the proof of which is in Section 4.7.

Lemma 4.5.1 There exists a universal constant c > 0, so that the following holds: Let W be
the family of affine-linear maps from D = {0, 1} to T = {0, 1} ', i.e. h E W is of the form

h(x) = Ax + b for some matrix A and vector b. Let S C W be such that |S I> 6| W. Let E = .
Then IDI'

Part 1: The statistical difference between the following two distributions is at most (c - O16c-)

(A) Choose hERS. Let xERh-1 (0). Output (h, x).

(B) Choose x ERD. Let hERS n Lx. Output (h, x).

Part 2: For at least a 1 - (c - O/c6-c) fraction of x E D,

in Hl> 612.
NXI -

When we apply the lemma, we take f' = f - n, e = 2-, and S = {A*Rs(y): y E {0, 1 } }. In
other words, S is the set all possible cell representatives that A*s can send in Step 3 of the protocol
(MRS, ARS). Notice that

def =SI 2 t -41og 2 (3sq) 1
17-1I 2s (3sq)4

67

and so, c - -1/c 6 -c - 2 -Q(). Now, observe that the protocol (MRS, ARS) selects h uniformly
from S. (Recall that A*S is deterministic.) Thus, Distribution (I') is exactly Distribution (A) of
Lemma 4.5.1. Now we will show that the Distribution (II') is statistically close to Distribution (B).

Let us consider a single iteration of Step S2 in S . In such an iteration, h' is chosen uniformly

from N, and y = f (h'). We write f (N) to denote the set of images of elements of N under f
(i.e., f(N) = {f (h): h E N}). In other words, f (N) is the set of cells intersecting N 0 . We

want to establish that the distribution of h's produced by the simulator will be uniform in S n a.
In order for this to happen, y must be uniformly selected from f (Na). If f was chosen honestly by
A* we would expect it to be one-to-one on the set N, since N 0 is a vanishingly small fraction

of the domain. However, f is chosen adversarially, so we must do some work to ensure uniformity:

Notice that for any yo E 1(Na), the probability that f (h') = yo when uniformly selecting

h' E Na is exactly

IN f f 1 (yo)I

In Step S2b, any such choice is maintained with probability 17/iN n f - (yo) 1. Thus the probability

that y = yo after Steps S2a and S2b in SRS is exactly

1

Na I *

This is independent of yo, and therefore y is a uniformly chosen element of f (Na) - that is, a
uniformly chosen cell intersecting N. (These probabilities sum up to If(Na) I / I Ia1, which may
be less than 1; this is due to the possibility that the iteration ends prematurely in Step S2b.)

Now, since, in Step S2c, h = A*RS(y) is taken to be the representative of cell y, the function h is

uniformly distributed over the representatives of cells which intersect N. In Step S2d, we abandon

any h not in NW, so the resulting distribution on h is uniform over cell representatives in N 0 , that

is, uniform over S n Na. Thus a single iteration of the loop produces an h uniformly chosen from

SnN0 , if it manages to produce output at all. This is identical to how h is chosen in Distribution (B)

of Lemma 4.5.1. So, to show that the Distribution (II') is statistically close to Distribution (B), we

need only to show that the probability that the repeat loop fails to produce output in all its poly(n)
iterations is 2-2(') for at least a 1 - 2-2(') fraction of the a's in {0, 1 1 t. We do this by showing

that each iteration produces output with probability at least n times the reciprocal of the number of
iterations.

There are two places in which an iteration can be exited, causing it to fail to produce output -

Steps S2b and S2d. Observe that the simulator never exits in Step S2d if h' chosen in Step S2a lies

in S, because then h will equal h'. This occurs with probability

iS n N-f
1Na I

By Lemma 4.5.1, for at least a 1 - 2-2(') fraction of a E {0, 1 }e, this quantity is at least 6/2 =

1/2(3sq)4.
Now suppose that h' has been chosen in S. The probability of not exiting in Step S2b is at least

1/If -1 (y)1, which is at least 1/p by the properties of the family F. Thus, for a 1 - 2 -2(") fraction
of the a's, a single iteration produces output with probability at least 1/(2(3sq)4 - p). Since there
are (2(3sq)4

. p) - n iterations, output is produced with probability 1 - 2-1(n).
We have shown that Distribution (I') is identical to Distribution (A) in Lemma 4.5.1 and Dis-

tribution (II') has a statistical difference of 2-9(") from Distribution (B). So, by Lemma 4.5.1, we

68

conclude that Distributions (I) and (II) have statistical difference 2 -2(n) and Strong Simulability is
established. 0

4.6 Proofs for the Transformed Protocol

In this section, we prove Lemma 4.4.1, establishing the desired properties of the transformed pro-
tocol using the properties of the Random Selection protocol which we established in the previous
section.

Number of Rounds. Since the Random Selection protocol consists of 4 message exchanges, with
the last message from Merlin to Arthur (and thus 3 can be sent along with Merlin's choice of a),
we have that the transformed protocol exchanges 4r messages, exactly twice the number which the
original protocol did. This establishes Property 1 of Lemma 4.4.1.

Efficiency. Since the actions of both Arthur as well as Merlin in the Random Selection protocol
can be implemented in probabilistic polynomial time, it is clear that M can be implemented in
probabilistic polynomial time given oracle access to M. This establishes Property 2 of Lemma 4.4.1.

Completeness. It is immediate from the description of the transformed protocol (together with the
fact that the Random Selection protocol always produces an output if both parties act according to
the protocol) that if the original proof system has perfect completeness, then so does the transformed
proof system. Otherwise, since the proof system (M, A) has completeness error at most 2- by
Lemma 4.3.1, and the Random Selection protocol yields an output distribution on a which has
statistical difference at most 2 -") from uniform, it follows that the completeness error of the
transformed protocol is exponentially vanishing. This establishes Property 3 of Lemma 4.4.1.

Soundness. Let x be some string in IN. Assume the polynomial p(n) (chosen for the Soundness
error to be at most 1/p(n)) is non-constant. In the protocol, when the Random Selection protocol is
invoked for the ith time (in order to select ai), we will denote the hash function selected (from W) in
that execution by hi. First we observe that there is a strategy M* which maximizes the probability
that A accepts satisfying the following conditions:

1. M* is deterministic.

2. M* always chooses ai such that hi (ai) = 0 (as long as hT1 (0) # 0) and this choice depends
only on
al, ... , ai_ 1 , 1, . .. , 3i_1, hi (i.e., not on the messages exchanged during the Random Se-
lection protocols or the previous hj's.)

3. M*'s choice of 3i only depends on a,, ... , ai,/ 1 , ... ,#iA1.

The first condition can always be met, for any proof system. The last two conditions can be
achieved because A's behavior (in particular, his decision to accept) after hi is selected only depends
on the stated quantites.

Now consider a modified version of the protocol in which the hi's are chosen uniformly from W
by Arthur rather than through the first three steps of the Random Selection protocol. More precisely,
let A be the verifier strategy obtained by modifying A to choose hi's uniformly from W rather than

69

participate in the first three steps of the Random Selection protocol. By the properties above, M*

defines a strategy against A and we can consider the probability that M* convinces A to accept.

Claim 4.6.1 M* makes X accept with probability at most 2-2(*).

Proof: We upper bound the probability that M* gets X to accept. Notice that, for every

sequence a = (ai,..., ar) E {0, 1 }, Property 3 of M* uniquely determines a sequence

,3 (5) = (1, ,r) of M* responses. Call a sequence 5 accepting if A would accept on coins 5

and prover responses #(5). Notice that X accepts iff the protocol chooses an accepting 5. So we

first bound the number of accepting a's and then we bound the probability that any given a occurs.

By Property 3, we may consider M*'s success probability against the original verifier A. In this
case, A will accept iff his coins a are accepting. The soundness of the original proof system says

that at most 2& - 2-(r+1)n of the S's are accepting.
Now, for any a E {0, 1}', the probability that h(a) = 0 for hERW is exactly 2-('-"). Thus,

for every sequence a = (ai, .. . , ar) E {0, 1}re, the probability that this sequence of ai's occurs
in the interaction between M* and A is bounded above by 2 -r(f-n).

Thus, by a simple union bound, the probability that an accepting sequence occurs in (M*, A)
is at most (2 r - 2-(r+1)n) - 2-r(-n) = 2-n. 0

Now we consider the success probability of M* against A rather than A - that is, when the

hi's are not selected uniformly, but according to the Random Selection protocol. By the Soundness
property of the Random Selection protocol, M* can induce a statistical difference of at most 1/2pr

from uniform on the choice of each hi. Thus the joint distribution of (hi,... , hr) can have a
statistical difference of at most 1/2p from uniform. By Fact 2.1.4. this means that A will accept with

probability at most 1/2p greater than X does. Thus, A accepts with probability at most 2-0(n) +
1/2p(n) < 1/p(n), for sufficiently large n. This establishes Property 4 of Lemma 4.4.1.

Zero Knowledge. We now describe the simulator for the protocol (M, A) of Section 4.4. Let S
be the simulator for the honest verifier in the original protocol (M, A). We will give a universal
simulator S for (M, A) which uses any verifier strategy A* as a black-box.

The simulator SA*, on input x:

1. Uniformly choose and fix random coins c for A* to obtain a deterministic strategy A(1).

2. Run the original honest-verifier simulator to obtain a transcript (ai, 31,... , ar, Or) -- S(x).

3. For i = 1 to r, do the following:

(a) Run the strong simulator for the Random Selection protocol, on input ai with Arthur

strategy AZ, to obtain a simulated transcript ti of the Random Selection protocol (i.e.,

RS (al)).

(b) Let A(i+) be the state of AZ) after additional history ti, ai, #i.

4. Output (ti, ai,, 1, ... tr, ar,7r; c).

To prove that the above simulator has the desired properties, we first consider its output dis-

tribution in the case that the original honest-verifier simulator S is perfect: Let S be the output

70

distribution of SA* if the output of S in Step 2 is replaced with a true sample (al, i, .0. . , ar , r O)
of the protocol (M, A). By an induction argument using the strong simulability property of the
Random Selection protocol, it is easy to show the following:

Claim 4.6.2 S (X) and (M, A*)(x) have statistical difference at most 2- 41).

Proof: By induction on i, we show that the view of A* up to 8i (which we will denote by
Ti*= (ti , ai 31, ... , ti, ai, i3; C)(M,A*)) has statistical difference at most i 2 -Q(") from the output

of S up to the same point (denoted Ti = (ti, ,1,... , ti, a, f8i; c) g). For i = 0, this is clear.
Let us consider what happens in both the interaction between M and A* and in the simulator

S conditioned on a partial transcript T (i.e., conditioned on Ti* = T and Ti = T, respectively.)
Let A(i+) be A* with history T. By the specification of M, the process by which ti+1 and ai+1 are
obtained in the interaction between M and A* is exactly Distribution (I) in the strong simulability

condition of the Random Selection protocol (Prop. 4.5.1), taking Arthur to be A(i+'). Now, in 5 ,
it is clear that each ai+1 is uniform and independent of (a,, 01, . . . , ai, fi) (and thus also of Ti).

Therefore, the process by which ti+ 1 and ai+i are obtained in 5A is exactly Distribution (II) in the
strong simulability condition of the Random Selection protocol. The strong simulability condition
tells us that Distributions (I) and (II) have statistical difference 2 -2(n). Moreover, 6i+l is chosen

according to the same distribution (conditioned on T, ti+1 and ai+1) in both (M, A*) and S _
that is, according to the original M strategy. So the 3 i+1's cannot increase the statistical difference.
We have argued that (Ti*+1Ti* = T) and (Ti+1 ITi = T) have statistical difference at most 2-9(')

for every T. Thus, IITi+1 - Ti*+1|| ITi - Ti*1| + 2-1(") < (i + 1)2-n("), completing the
induction.

We have shown that the total statistical difference is at most r(n) - 2-Q(") = 2-Q("). E

Now we deduce Lemma 4.4.1, Parts 5 and 6, from Claim 4.6.2.

Statistical Zero-Knowledge. Using the output of S instead of a true sample from (M, A) can
increase the simulator deviation by at most IIS(x) - (M, A) (x) 11, which is exactly the simulator
deviation for the protocol (M, A).

Computational Zero-Knowledge. We claim that the ensembles of probability distributions X1 5
{(M, A*)(W)}xern and X2 = {SA* (x)}ry are computationally indistinguishable for any prob-

abilistic polynomial-time A*. Consider the ensemble X 3 L {5 A (X)}xEny. By Claim 4.6.2,
X, and X 3 are statistically close and therefore computationally indistinguishable. We claim that
X 2 and X 3 are computationally indistinguishable, for any probabilistic polynomial-time A*. This
holds because any distinguisher D between X 2 and X 3 can be transformed into a distinguisher D'
between { (M, A) () }xeny and {S(x) }xEry, which are computationally indistinguishable by hy-
pothesis. The new distinguisher D' operates as follows: Given a transcript T of either of the latter
two ensembles, perform the procedure specified by SA*, replacing the execution in Step 2 with T,
and feed the output of SA* to D. When T is selected according to {(M, A)(x)}xErly, D is fed with
ensemble X 3 , whereas when T is selected according to {S(X)}xery, D is fed with ensemble X 2.

Remark 4.6.1 The above proof actually shows that, for any (not just probabilistic polynomial-time)
verifier A*, if (M, A*) and SA* can be distinguished by algorithm D, then there is an algorithm no
more powerful than A* and D (i.e., a probabilistic polynomial time machine with oracle access to

71

A* and D) that can distinguish the original honest-verifier proof system (M, A) from its simulator

S. So, if the honest-verifier simulator produces transcripts indistinguishable from (M, A) by any
machine running in, say, quasi-polynomial time, then the new protocol (M, A) is zero-knowledge
against all quasi-polynomial time verifiers.

4.7 Proof of Hashing Lemma

Here we provide a proof of the Hashing Lemma used to establish the main result of this chapter. We

restate the lemma here:

Lemma 4.7.1 (Hashing Lemma) There exists a universal constant c > 0, so that the following

holds: Let N be the family of affine-linear maps from D = {0, 1} to T = {0, 1} ', i.e. h E N is of
the form h(x) = Ax + b for some matrix A and vector b. Let S C N be such that S> 6| W1. Let

T Then

Part 1: The statistical difference between the following two distributions is at most c * -c-

A = (A I, Ax): Let hE RS. Let xE Rh- 1 (0). Output (h, x).

B = (BW, Bx): Let a- RD. Let he RSfnx. Output (h, x).

Part 2: For at least a 1 - (c - El/c 6-c) fraction of x E D,

IS n -H| 1 SI 6
IRI 2 |H| 2

Proof: We define a perfect hash function h E N to be one of the form h(x) = Ax + b, where the

matrix A is full rank (and hence h is surjective). Note that a straightforward calculation shows that

at most an E fraction of the functions in N are not perfect.
We first establish Part 1 of the Hashing Lemma for the special case of perfect hash functions.

Sublemma 4.7.1 Part I of the Hashing Lemma holds when S contains only perfect hash functions.

Proof: First, we consider the relationship between distributions Ax and Bx.

Claim 4.7.1 11Ax - Bx II < .

Proof: Note Bx is uniform over D. To establish the claim, it suffices to show that for all C C D,

Pr[Ax EC]- .<3E1/3
1D1 6

Note Pr [Ax E C] - = Pr [Ax E (D \ C)]- IDI so it suffices to consider sets C such

that L > -. From the definition of A, we observe:IDI - 2

Pr [Ax c C] =|-1()| | c 1 E - |h--1(o) n C|
hGS hES

where the last equality is due to our assumption that every h E S is perfect, and hence Ih 1 (0) =
1/6.

72

To analyze the expression above, which refers to a sum over h E S, we first consider the
behaviour of the sum over all h E X. Here, we can use Chebyshev's inequality. Consider the
probability space uniform over W, and define, for every x E C, an indicator random variable:

x (h) I {1 if h(x) =0
0 otherwise

Let Wc(h) = I Ih-(0) n C| = E Z xx(h). Since W is a 2-universal family of hash functions,
xEC

the Xx's are pairwise independent with PrhER[Xx(h) = 1] = = . Thus, we have that:

EhE[Wc(h)] = e -- EhD[Xx(h)] = - IC=
ZC C-I-#)

Varhe-[Wc(h)] = E2 - E Varhe-;[xx(h)] =
xEC

By Chebyshev's inequality,

Pr WC(h) -L >E loll
hGW E IDI IDl

xEC

Var[Wc]

E1/ 3 . . 1 2

10D| < 2E1/3

where the last inequality is because ICI > IDI/2. Since IL1 > 6, we can apply the above to the

probability space uniform over S and conclude,

Pr Wc(h) - > 1/3ICI 2 1/3
hES [IDI fDI] 6

Recall,

Hence, for all but

Since for every h it is

Pr [Ax E C] = I Wc(h).
hES

at most 2E1/3 - SI terms in the sum, we have that IWc(h) - 1 < 1/3JLI
6 IDI W)D<

true that 0 < WC (h) 1, we have,

Pr [Ax E C] - 101 < 1/3 + 2E/3< 3 .1/3
|D| - DI 6 6

And the claim is proved. M

We are now ready to complete the proof of this sublemma. For all x E D and all h E S such
that h(x) = 0, we have, by Bayes' Law:

Pr [Aw = hIAx = x]
Pr [Ax = x|A- = h] -Pr [AW = h]

Pr [Ax =x

|h-1(0)|-1 S- _ IS-1
Pr [Ax = x] Pr [Ax = x]

73

<e 101
1D1'

x x1,K-

=

where the last step is because for all perfect h, jh- 1 (0) = 1/. Note that this value has no

dependence on h. Hence, for every x, given Ax = x, the distribution AW is uniform over

{h c S : h(x) = 0}. Note that for all x, given Bx = x, BW is also uniform over the same

set. Thus, conditioned on the value of x, the distributions AW and BW are identical.
Hence ||A - B1I l ||Ax - BxfI < Ej, and the sublemma is established. M

Before we argue Part 1 of the Hashing Lemma in general, we will show how Part 2 follows from
Sublemma 4.7.1. In the sequel, it will be convenient to introduce the following notation: For any
subset I C , we will write Ix to denote the set {h E I : h(x) = 0}.

In order to apply Sublemma 4.7.1, we will consider the subset S' C S of all perfect hash
functions in S. Since less than an e fraction of all hash functions are not perfect, IS' (1 - j) S
(6 -) 7-If. Similarly, we define the following two modifications of the distributions A and B,

using S' instead of S:

A' = (A', A'): Let hE RS'. Let xE Rh-1(0). Output (h, x).

B' = (B', B'): Let xE RD. Let hE RS'n-. Output (h, x).

The following claim establishes Part 2 of the Hashing Lemma:

Claim 4.7.2 Letq 6 61 =, . For at least a (1 - V)fraction of x E D, Is 62.

Proof: By the definition of A'X,

Pr [A ' = x] = |S'| h- (0)f S '

where the last equality follows because Ih- 1 (0)1 = 1/e for all h E S'. However, by the Sublemma,

|A's - B' 11 < E. Note that B1 is uniform over D, so for a (1 - VftY) fraction of x E D, it must
be that

E , = Pr [A' = x] (1 -V) .DI
IS I |D|

Thus,

|Nh2 |NX| EjD| - jNxj |W|
where the last equality follows from e - D = TI and ITI - II = 7-if. Using the fact that

2 (1 - j)1 , we have, for a (1 - f) fraction of x E D,

|Sz| - 6

Note that the final inequality follows because we can safely assume that / + j < -. This is

because we can freely assume that c - ./cg-c < 1, since otherwise the statement of the Hashing
Lemma becomes trivially satisfied. Since \/iY+ f is upper bounded by k -. l/kj-k for some constant
k, our assumption can be made to imply that Vfc + f < 1 by choosing c > 2k. M

Finally, we establish Part 1 of the Hashing Lemma in general by showing that the presence of
imperfect hash functions will not disturb our computations. First, we see immediately that since

S'l (1 - f)|Sf, the statistical difference between A and A' can be at most f. To see that the
statistical difference between B' and B is sufficiently small, it suffices to show that for almost all x,

74

the probability that B-H outputs an imperfect hash function, given that Bx = x, is small. First we
argue:

Claim 4.7.3 For every x E D, Pr [h is imperfect] e.

Proof: Observe that for any x E D, J-t consists exactly of those functions h(y) = Ay + b where
b = -Ax. Thus, there is exactly one function in)Hx for every matrix A. Hence, the fraction of
imperfect functions in Wx is precisely the fraction of matrices A that do not have full rank, which
is at most e. M

For any x E D, the probability that Bh outputs an imperfect hash function given that Bx = x
is

Pr [h is imperfect] < Pr [h is imperfect] - .WXI
hESx ~h-WX S

Using Claim 4.7.2 and Claim 4.7.3 above, we have that for at least a (1 -) fraction of x E D,
def 6<Ethis probability is at most 62 = & (2/6). Thus, lIB - B'|1 < (1 - V P) 62 + V/ 62 + .

We have already observed that IA' - Ajj I I , and Sublemma 4.7.1 showed that IB' - A'II E1.
Hence IA - B 5 'l + f + 62 + fY, and the Hashing Lemma is established. *

4.8 Consequences for SZK

In the previous chapter, we studied HVSZK in depth, and obtained many interesting results. In this
chapter, we saw how to convert any honest-verifier statistical zero-knowledge proof into a general
statistical zero-knowledge proof. In this section, we will see how the results of the previous chapter
translate to SZK.

In this chapter, we showed that:

Theorem 4.8.1 HVSZK = SZK.

Of course, since Theorem 4.8.1 gives an equality of classes, the Completeness Theorem extends
to the general class:

Proposition 4.8.1 STATISTICAL DIFFERENCE is complete for SZK.

We now look at the applications of the Completeness Theorem, beginning with our results on
efficient HVSZK proof systems in Corollary 3.3.1.

Simulator deviation and security parametrization. Both the transformation of [Oka96] and
the transformation of this chapter can be made to preserve a simulator deviation of 2 -9(n). Apply-
ing these transformations to Corollary 3.3.1, we see that every language in HVSZK has a general
statistical zero-knowledge proof with simulator deviation 2 -- (n).

We can also consider a security-parametrized variant of general zero-knowledge, analogous to
the honest-verifier case (Definition 3.3.1): the protocol takes an extra parameter k (in unary) and
the zero-knowledge condition demands that, for any verifier, the simulator deviation is less than
a(k) for some negligible function a. The transformation of [Oka96] and the transformation of this
chapter both preserve the security-parametrization property, so we obtain:

Proposition 4.8.2 Any promise problem in HVSZK has a general security-parametrized statistical
zero-knowledge proof against arbitrary verifiers with simulator deviation 2 -k

75

Message complexity. Corollary 3.3.1 shows that every promise problem in SZK has a 2-message

honest-verifier statistical zero-knowledge proof. Although the transformation of this chapter only

multiplies the number of messages by a factor of two when applied to public-coin proof systems, the

private to public-coin transformation of [Oka96] increases the number of messages to polynomial

even when applied to a constant-message protocol. However, if one is willing to make a com-

putational assumption, then the transformation of [BMO90 applies and this transformation does

preserve the message complexity up to a constant factor.

Proposition 4.8.3 If the discrete logarithm problem is hard,9 then every promise problem in

HVSZK has a constant-message general statistical zero-knowledge proof system with soundness

and completeness errors 2-.

Proof: Let II be any promise problem in HVSZK. From Corollary 3.3.1, we know that II has

a 2-message (honest-verifier) statistical zero-knowledge proof system. Repeating this protocol in

parallel 2 -0(n) times gives a constant round proof system with soundness and completeness errors

2-". Note that parallel repetition preserves honest-verifier statistical zero knowledge. Now, apply

the transformation of [BMO90], which yields a constant-message general statistical zero-knowledge

proof system for H, under the assumption that the discrete logarithm is hard. This transformation

only increases the number of messages by a constant factor and preserves the completeness and

soundness error. N

It is still open whether one can unconditionally prove that all of SZK has constant round any-

verifier proofs. We note that Goldreich and Krawcyzk [GK96] have shown some limitations on the

message complexity of general zero-knowledge proofs (for problems outside BPP): If the proof

system has negligible soundness error and is zero knowledge under black-box simulation, then it

cannot consist of fewer than 4 messages. If, in addition, it is public-coin, then it cannot consist of

any constant number of messages.

Communication. Corollary 3.3.1 shows that every promise problem in HVSZK has a very

communication-efficient honest-verifier statistical zero-knowledge proof, in that the prover only

sends one bit to achieve completeness error 1 - 2- and soundness error 1/2 + 2-. Unfortunately,
none of the known transformations to general statistical zero-knowledge preserve the amount of

communication, so this result does not translate to general statistical zero-knowledge.

Deterministic Prover. We note that the fact that the prover is deterministic in Corollary 3.3.1
cannot extend to any-ver SZK (unless SZK = BPP) [G094].

Closure properties. Since Theorem 4.8.1 gives an equality of classes, any closure properties of

the honest-verifier class (namely, Corollaries 3.3.2, 3.3.3, and 3.3.5, and Theorem 3.3.1) also hold

for the general classs. So we immediately obtain the following:

Proposition 4.8.4 any-ver SZK is closed under Karp reductions, complement, <(-), and NC 1 truth-

table reductions.

Hard-on-average languages and one-way functions. These results are stronger for the honest-

verifier class, because the existence of a hard-on-average problem in the general class implies the

existence of one in the honest-verifier class (even without Theorem 4.8.1).

9 See [BMO90] for a precise formulation of their assumption.

76

Chapter 5

Non-interactive Statistical Zero
Knowledge

As we have seen in the previous chapters, statistical zero-knowledge interactive proofs have a rich
and interesting theory. A crucial feature in the definition of zero-knowledge proofs is interaction.
Indeed, Goldreich and Oren [G094] showed that if one removes interaction from the definition
of zero-knowledge proofs (i.e. allows only unidirectional communication from the prover to the
verifier), then zero knowledge becomes trivial (i.e. zero-knowledge proofs only exist for problems
in BPP). However, for many cryptographic challenges where zero-knowledge proofs may appear
to have promising applications, such as encryption, interaction may not be feasible.

Surprisingly, however, Blum, Feldman, and Micali [BFM88], showed that by changing the
model slightly, it is possible to achieve zero knowledge in a non-interactive setting (i.e. where only
unidirectional communication can occur). Specifically, they assume that both Prover and Verifier
have access to a shared truly random string, called the reference string. Aside from this assumption,
all communication consists of one message, the "proof," which is generated by the Prover (based
on the assertion being proved and the reference string) and sent from the Prover to the Verifier.

Non-interactive zero-knowledge proofs, by virtue of their communication efficiency, have
several applications not offered by ordinary interactive zero-knowledge proofs. They have
been used, among other things, to build digital signature schemes secure against adaptive cho-
sen message attack [BG89], public-key cryptosystems secure against chosen-ciphertext attack
[NY90, DDN91, S99], and non-malleable cryptosystems [DDN91].

In this chapter, we focus on the class NISZK of promise problems that possess non-interactive
statistical zero-knowledge proofs, and its relationship with the interactive class SZK that we have
already examined. Continuing in the spirit of our work on SZK, we show that there are natural prob-
lems which are complete for N ISZK. We use these problems to draw conclusions about the relation-
ship between NISZK and SZK. The work we present in this chapter is based on a paper [GSV99]
authored jointly with Oded Goldreich and Salil Vadhan.

5.1 Overview

5.1.1 The Non-Interactive Model

The main difference between the models in which interactive and non-interactive zero knowledge
are defined is that, in the non-interactive setting, we assume that all parties have access to a shared
random reference string. In this modified model, called the shared random reference string model,

77

we first define the notion of a non-interactive proof system:

Definition 5.1.1 A non-interactive proof system with completeness error c(n) and soundness error

s (n) for a promise problem U is a pair of machines P and V, where V is probabilistic polynomial-

time P is computationally unbounded, together with a polynomial r(n) (which will give the size of

the random reference string o-), such that:

1. (Completeness): If x E HYES, then the probability that V(x, o, P(x, o-)) accepts is at least

1 - c(xI).

2. (Soundness): If x E HNO, then the probability that V(x, o-, P(x, o)) accepts is at most s(|x|).

where the probabilities in Conditions 1 and 2 are taken over the random coins of V and P, and the

choice of o- uniformly from {0, 1 }(n).

Now that we have defined non-interactive proofs in the shared random reference string model,

we can define non-interactive statistical zero-knowledge proofs. Here, we adapt the definition given

in [BDMP91] to promise problems. 1

Definition 5.1.2 A non-interactive proof system (P, V) for a promise problem H is a non-interactive

statistical zero-knowledge proof system if:

1. (Completeness and Soundness): The completeness and soundness errors are negligible func-

tions.

2. (Zero Knowledge): For all x E HEs, the statistical distance between the following two

distributions is at most ():

(A) Choose a uniformly from {0, 1}r(Ix1), sample p from P(x, o-), and output (p, o-).

(B) S(x) (where the random coins for S are chosen uniformly at random.)

where p(n) is a negligible function termed the simulator deviation.
We define the class of all promise problems possessing non-interactive statistical zero-

knowledge proofs NIS Z K.

Remark 5.1.1 We make several remarks concerning this definition:

1. One can also define perfect and computational non-interactive zero-knowledge proofs in the

straightforward analogous manner. Since all our results concern only N ISZK, we omit formal

definitions for these other classes.

2. Our definition captures what [BDMP91] call a bounded proof system, in that for any given

shared random reference string, only one proof can be simulated. In contrast to non-

interactive computational zero knowledge (cf., [BDMP91, FLS90]), it is unknown whether

every problem that has such a (bounded) non-interactive statistical zero-knowledge proof sys-

tem also has one in which the shared reference string can be used an unbounded (polynomial)

number of times.

'Actually, only non-interactive perfect and computational zero-knowledge proofs were defined in [BDMP91]. The
definition we are using, previously given in [BR90, DDPY98], is the natural non-interactive analogue of (interactive)
statistical zero knowledge [GMR89].

78

3. Recall that in the context of interactive zero-knowledge proofs, another issue that arises in
the zero-knowledge condition is the behavior of the verifier - whether it behaves honestly
or not. Note that in the case of non-interactive zero knowledge, the issue of honest verifiers
does not arise since the verifier does not interact with the prover at all. Also, note that we
can always transform a non-interactive zero-knowledge proof into an honest verifier zero-
knowledge proof, since we could have the honest verifier supply a random string which can
replace the common reference string required for non-interactive zero knowledge. This im-
plies that NISZK C SZK (recalling the equivalence of SZK with HVSZK).

We also define a weaker notion of zero knowledge, known as a weak non-interactive statistical
zero-knowledge proof system, analogous to the notion of weak interactive statistical zero-knowledge
that we defined in Definition 3.3.6 in Chapter 4.

Definition 5.1.3 A non-interactive proof system (P, V) for a promise problem H is a weak non-
interactive statistical zero-knowledge proof system if:

1. (Completeness and Soundness): The completeness and soundness errors are negligible func-
tions.

2. (Zero Knowledge): For all polynomials p(.), there exists an efficient probabilistic (strict)
polynomial-time algorithm Sp such that for all sufficiently long x E Hy, we have that the
statistical distance between the following two distributions is at most l/p(|x|):

(A) Choose o- uniformly from {0, 1 }r(IxJ, sample p from P(x, u-), and output (p, o-).

(B) Sp(x) (where the random coins for Sp are chosen uniformly at random.)

We define the class of all promise problems possessing weak non-interactive statistical zero-
knowledge proofs wea k-NIS Z K.

Remark 5.1.2 Clearly, NISZK C weak-NISZK.

5.1.2 Previous work

Since its introduction in [BFM88], most work on non-interactive zero knowledge has focused on
the computational type (cf., [BFM88, DMP87, DMP88, BDMP91, FLS90, KP98]). With non-
interactive statistical zero knowledge, the main objects of investigation have been the specific proof
system for QUADRATIC NONRESIDUOSITY and variants [BDMP91, DDP94, DDP97].2 Recently,
De Santis et. al. [DDPY98] opened the door to a general study of non-interactive statistical zero-
knowledge by showing that it contains a complete (promise) problem3 . In this chapter, we build on
this work, and seek a better understanding of non-interactive statistical zero-knowledge proofs, and
their relationship to their interactive counterparts.

2 The only exception is an unpublished manuscript of Bellare and Rogaway [BR90] who proved some basic results
about non-interactive perfect zero-knowledge and showed a non-interactive perfect zero-knowledge proof for the lan-
guage of graphs with trivial automorphism group.

3 This was done subsequent to our discovery of complete problems for interactive statistical zero knowledge, which
appeared in [SV97].

79

5.1.3 Our Contribution

In this chapter, we seek to understand what, if any, additional power interaction gives in the con-
text of statistical zero knowledge. Thus, we continue the investigation of NISZK, focusing on its
relationship with SZK. We obtain two main results relating NISZK and SZK:

1. We show that the non-triviality of SZK is equivalent to the non-triviality of NISZK, where
by non-trivial we mean that a class includes problems which are not solvable in probabilistic
polynomial-time. In other words SZK $ BPP 4=> NISZK $ BPP. The hypothesis that
SZK : BPP holds under various assumptions, such as the intractability of the Discrete
Logarithm Problem [GK93] or approximate versions of the Shortest and Closest Vector Prob-
lems in a lattice [GG98]. It was not previously known that N ISZK must be non-trivial if these
assumptions hold.

2. Furthermore, we show that if N ISZK is closed under complement, then in fact SZK = N ISZK
- i.e. , all statistical zero-knowledge proofs can be made non-interactive. 4

We also show that NISZK = weak-NISZK.

Complete Problems. Central to our methodology is the continued use of simple and natural com-
plete problems to understand classes, such as SZK and N ISZK, whose definitions are rather compli-
cated. In particular, we exhibit two natural promise problems and prove that they are complete for
NISZK. The two problems refer to the "distance" (in two different senses) of a given distribution
from the uniform one. These two problems are natural restrictions of two promise problems known
to be complete for SZK - the problem STATISTICALDIFFERENCE introduced in Chapter 3 and
another similar problem, called ENTROPYDIFFERENCE 5 . Indeed, our results about the relation-
ship between SZK and NISZK come from showing reductions between the corresponding complete
problems. Thus we continue the general theme of using completeness to simplify the study of a
class.

The richness of NISZK. Since we obtain our results comparing NISZK and SZK by exhibiting
special reductions from problems complete for SZK to NISZK, we obtain a very interesting ad-
ditional consequence: For every problem in SZK, there is a corresponding problem in NISZK of
comparable computational complexity. Since we know SZK to be a rich class with infinite families
of problems believed to be intractable (see Section 3.3.2 of Chapter 3), this implies that NISZK
enjoys similar richness.

5.2 The Complete Problems

Continuing in the spirit of Chapter 3, the primary tools we use in our investigation are promise
problems that are complete for SZK or NISZK. In Chapter 3, we showed that the promise problem
STATISTICAL DIFFERENCE(SD) is complete for SZK, providing the first completeness result for
SZK. After the intial publication of our result [SV97], it was shown in [GV99] that another natural

4 We note that [DDPY98] had claimed that NISZK is closed under complement (and OR), but these claims have been
retracted [DDPY99].

5 ENTROPYDIFFERENCE was shown to be complete for SZK by [GV99] after the publication of our work showing
the completeness of STATISTICALDIFFERENCE [SV97].

80

problem, called ENTROPY DIFFERENCE (ED), is complete for SZK as well. In this work, we
show that "one-sided" versions of these problems, which we call STATISTICAL DIFFERENCE FROM
UNIFORM (SDU) and ENTROPY APPROXIMATION (EA), are complete for NISZK.

Definition 5.2.1 (Problems involving statistical difference): Recall that the promise problem STA-
TISTICAL DIFFERENCE, denoted SD = (SDYES, SDNO), consists of

SDYES {(X, Y) : liX - YII < 1/3}

SDNO {(X, Y) : liX - YII > 2/3}

where X and Y are distributions encoded as circuits which sample from them. The promise problem
STATISTICAL DIFFERENCE FROM UNIFORM, denoted SDU = (SDUYES, SDUNO), consists of

SDUYES e {X : liX - U11 < 1/n}
def

SDUNO = {X : IX - UI > 1 - 1/n}

where X is a distribution encoded as a circuit outputting n bits, and U is the uniform distribution
on n bits.

For the two problems related to entropy, we recall that the (Shannon) entropy of a random
variable X, denoted H(X), is defined as

H(X) Pr [X = a] log 2 (1/ Pr [X = a])

Definition 5.2.2 (Problems involving entropy): The promise problem ENTROPY DIFFERENCE, de-
noted ED = (EDYES, EDNO), consists of

EDYES {(X, Y) : H(X) > H(Y) + 1}
def

EDNO {(X, Y) : H(Y) > H(X) +1}

The promise problem ENTROPY APPROXIMATION, denoted EA = (EAYES, EANO), consists of

EAYES e {(X, k) : H(X) > k + 1}
def

EANO = {(X, k) : H(X) < k - 1}

In these problems, k is a positive integer and X and Y are distributions encoded as circuits which
sample from them.

5.3 Formal Statement of Results

Our first theorem, which is the starting point for our other results, is:

Theorem 5.3.1 (EA and SDU are NISZK-complete) The promise problems EA and SDU are
complete for N ISZK. That is, E A, SDU E N ISZK and for every promise problem H E N ISZK,
there is a polynomial-time Karp (many-one) reduction from H to EA and another from H to SDU.

From the proof of this theorem, we also obtain a method for transforming weak non-interactive
statistical zero knowledge proofs into standard ones.

81

Theorem 5.3.2 weak-NISZK = NISZK.

Armed with our complete problems, we then begin the work of comparing SZK and N ISZK.
First we show that the non-triviality of NISZK is equivalant to the non-triviality of SZK. This is

shown by giving a Cook (or Turing) reduction from ED to EA.

Theorem 5.3.3 (non-triviality of N ISZK) SZK = BPP <> N ISZK 4 BPP.

In fact, it turns out that the type of Cook reduction we use is a special one, and by examining

it further, we are able to shed more light on the SZK vs. NISZK question. Specifically, we observe

that the reduction we give from ED to EA is an AC0 truth-table reduction. That is, it is a non-

adaptive Cook reduction in which the postprocessing is done in AC0 . (Formal definitions are given
in Section 5.6.2.) Further, we can prove that if NISZK is closed under complement, then NISZK

is closed under AC0 truth-table reductions. Thus we deduce that N ISZK being closed under com-

plement implies that NISZK = SZK. In fact, we can show that closure under complement and a

number of other natural conditions are equivalent to SZK = N ISZK:

Theorem 5.3.4 (conditions for SZK = NISZK) Thefollowing are equivalent:

1. SZK = NISZK.

2. N ISZK is closed under complement.

3. N ISZK is closed under NC 1 truth-table reductions.

4. ED (resp., SD) Karp-reduces to EA (resp., SDU). ("general versions reduce to one-sided

ones")

5. EA (resp., SDU) Karp-reduces to its complement. ("one-sided versions reduce to their

complements")

Theorem 5.3.4 can be interpreted as saying that if N ISZK has a relatively weak closure property

(closure under complement), then the class is surprisingly rich (equals SZK) and has a much stronger

closure property (closure under NC 1 truth-table reductions.) At first, it might seem implausible that

a class like N ISZK with such an assymetric definition would be closed under complement. But SZK,

which has a similarly assymetric definition, is known to be closed under complement [Oka96].
In light of this, the closure of NISZK under complement would not be quite as unexpected, and

Theorem 5.3.4 illustrates that proving it would have wider consequences.
The last two conditions in Theorem 5.3.4 show that these questions about non-interactive versus

interactive statistical zero-knowledge proofs are actually equivalent to basic questions about rela-

tionships between natural computational problems whose definitions have no a priori relationship

to zero-knowledge proofs.
The equality of SZK and N ISZK has interesting consequences not just for N ISZK, but also for

SZK. Currently, as we saw in Chapter 4 the best known generic protocol for SZK (against cheating

verifiers, making no computational assumptions) requires a polynomial number of rounds. 6 For

NISZK, however, by [DGW94], it is known that every problem in NISZK has a constant round

statistical zero-knowledge proof system (against general, cheating verifiers) with inverse polynomial

soundness error. Whether every problem in SZK has such a proof system is still an open question,
which would be resolved in the positive if SZK = N ISZK.

6Under the assumption that the Discrete Logarithm is hard, however, there is a constant round, cheating verifier SZK
proof system with inverse polynomial soundness error for all of SZK [Oka96, BMO90].

82

5.3.1 A wider perspective

The study of non-interactive statistical (rather than computational) zero-knowledge proofs may be
of interest for two reasons. Firstly, statistical zero-knowledge proofs provide an almost absolute
level of security, whereas computational zero-knowledge proofs only provide security relative to
computational abilities (and typically under complexity theoretic assumptions). Secondly, by anal-
ogy from the study of zero-knowledge interactive proofs, we believe that techniques developed for
the "cleaner" statistical model can be applied or augmented to yield results for computational zero-
knowledge: The proof that one-way functions are necessary for SZK to be non-trivial [Ost9l] (a
simpler proof was given in Chapter 3) was later generalized to CZK [OW93] (in Chapter 3 we saw a
proof for public-coin computational zero knowledge). More recently, the transformations of honest-
verifier zero knowledge to general zero knowledge, presented in [Dam94, DGW94, DGOW95] and
Chapter 4 apply both to statistical and computational zero knowledge (whereas the original motiva-
tion was the study of statistical zero knowledge). It is our hope that the current study of N ISZK will
eventually lead to a better understanding of NI CZK, where there are still important open questions
such as the minimal conditions under which N P has N ICZK proofs.

5.4 EA is in NISZK

In this section, we show that EA has a non-interactive statistical zero-knowledge proof system. The
proof is given in Subsection 5.4.1, assuming a certain lemma (Lemma 5.4.1). Subsections 5.4.2 to
5.4.4 are devoted to the proof Lemma 5.4.1, which is technically somehwat involved. Therefore,
the reader is encouraged to read only Subsection 5.4.1 from this section on first reading.

5.4.1 The proof system

Our aim in this section is the prove the following:

Lemma 5.4.1 EA E NISZK. Moreover; there is a non-interactive statistical zero-knowledge proof
system for EA in which the completeness error; soundness error; and simulator deviation are all
exponentially vanishing (specifically 2 -, where s is the length of the input).

The transformation given by the following lemma (proved in Subsection 5.4.4) will be applied
at the start of the proof system:

Lemma 5.4.1 There is a polynomial-time computable function that takes an instance (X, k) of EA
and a parameter s (in unary) and produces a distribution Z on {0, 1}e (encoded by a circuit which
samples from it) such that

1. If H(X) > k + 1, then Z has statistical difference at most 2 - from the uniform distribution
on {0, 1}y, and

2. If H(X) < k - 1, then the support of Z is at most a 2-fraction of {0, i} .

Lemma 5.4.1 essentially transforms an instance of ENTROPY APPROXIMATION into an instance
of IMAGE DENSITY, the complete problem of [DDPY98]. Given this transformation, it is straight-
forward to give a noninteractive statistical zero-knowledge proof system for EA:

Protocol 5.4.1 Non-interactive proof systemfor EA, on input (X, k)

83

1. Let Z be the distribution on {0, 1} obtained from (X, k) as in Lemma 5.4.1 taking s to be

the total description length of (X, k) in bits. Let o- C {0, I}t be the reference string.

2. P selects r uniformly among {r': Z(r') = o-} and sends r to V.

3. V accept if Z(r) = o- and rejects otherwise.

It is immediate from Lemma 5.4.1 that the completeness error and soundness error of this proof
system are 2-. For zero-knowledgeness, we consider the following probabilistic polynomial-time
simulator:

Simulator for EA proof system, on input (X, k)

1. Let Z be obtained from (X, k) as in the proof system.

2. Select an input r to Z uniformly at random and let o = Z(r).

3. Output (o-, r).

It follows from Part 1 of Lemma 5.4.1 that this simulator has statistical difference at most 2-
from the distribution of transcripts of (P, V). Thus, assuming Lemma 5.4.1, we have established
Lemma 5.4.1. In fact, we need not require that s be the length of (X, k). Instead, s can be taken
to be an arbitrary security parameter, and the completeness, soundness, and simulation error will be
exponentially small in s, while the running time of the protocol only depends polynomially on s.
We can use this to prove the following, which will be useful to us later.

Proposition 5.4.1 If any promise problem H reduces to EA by a Karp (i.e. many-one) reduction
(even if it is length-reducing), then II G N ISZK.

Proof: A noninteractive statistical zero-knowledge proof system for H can be given as follows: On
an instance x of H, both parties compute the image (X, k) of x under the reduction H< KpEA and
execute the proof system for EA on (X, k), except that we take s to be the length of x. Hence, the
completeness and soundness errors and simulator deviation of this proof system are exponentially
small in |xi (rather than J(X, k)l which could be shorter than x). M

5.4.2 Flat distributions and the Leftover Hash Lemma

Here we discuss some standard notions and techniques that will be useful in the proof of

Lemma 5.4.1. We use the clean formulations of these tools given in [GV99]. A distribution X
is calledflat if all strings in the support of X have the same probability. Notice that if X is flat, then
by the definition of entropy, Pr [X = x} = 2 -H(X) for every x in the support of X. We quantify
deviation from flatness as follows:

Definition 5.4.1 (heavy, light and typical elements): Let X be a distribution, x an element pos-
sibly in its support, and A a positive real number We say that x is A-heavy (resp., A-light) if
Pr [X = x] ;> 2A - 2 -H(x) (resp., Pr [X = x] < 2-A - 2 H-(X)). Otherwise, we say that x is
A-typical.

A natural relaxed definition of flatness follows. The definition links the amount of slackness allowed
in "typical" elements with the probability mass assigned to non-typical elements.

84

Definition 5.4.2 (flat distributions): A distribution X is called A-flat iffor every t > 0, the proba-
bility that an element chosen from X is t - A-typical is at least 1 - 2

By straightforward application of Hoefding Inequality, we have:

Lemma 5.4.2 (flattening lemma): Let X be a distribution, k a positive integer; and ®kX denote
the distribution composed of k independent copies of X. Suppose that for all x in the support of X
it holds that Pr [X = x] > 2'. Then OkX is - rn-flat.

Proof: For every x in the support of X, we let w(x) = - log Pr [X = x]. Then w maps the
support of X, denoted D, to [0, im]. Let X 1, ..., Xk be identical and independent copies of X. The
lemma asserts that for every t

~k

Pr w(Xi) - k -H(X) > t -mV] < 2_t2+1

Observe that E(w(Xi)) = E Pr [X = x] w(x) = H(X), for every i. Thus, the lemma follows
by a straightforward application of Hoefding Inequality: Specifically, define random variables j =

w(Xi), let p = E(j) and 6 = tm/Viz, and use

Pr = -p> < 2 -exp 22 . k

= 2 -exp (-2t2)

The lemma follows. m

The key point is that the entropy of OkX grows linearly with k, whereas its deviation from flat-
ness grows significantly slower (i.e., linear in Vk-) as a function of k. Note that if X is a distribution
defined by a circuit with f input gates, then Pr [X = x] > 2 - for all x in the support of X, so the
conclusion of Lemma 5.4.2 holds with m = f. The other main tool we will use is:

Lemma 5.4.2 (Leftover Hash Lemma [ILL89]) Let W be a 2-universal family of hash functions
mapping a domain D to a range R. Suppose X is a distribution on D such that with probability at
least 1 - 6 over x selected from X, Pr [X = x] <; Ec|R. Then the statistical difference between the
following two distributions is at most 0(6 + 0/3).

(A) Choose h uniformly from 71 and x according to X. Output (h, h(x)).

(B) Choose h uniformly from 71 and y unformly from R. Output (h, y).

In particular, notice that if X is a A-flat distribution, then for any parameters s, t > 0, X satisfies
the hypothesis of the Leftover Hash Lemma with R = 2 H(X)-tA-s 6 t2 +1, and E =2 As
we will be applying Lemma 5.4.2 to sets of strings, we define, for any pair of positive integers a and
b, Na,b to be one of the standard 2-universal families of hash functions mapping {0, 1}a to {0, 1}b
(e.g., affine GF(2)-linear transformations).

5.4.3 Overview of Lemma 5.4.1

The transformation proceeds in four stages, which are roughly described below:

85

1. Let X' consist of many copies of X so that the entropy gap between YES and NO instances

increases, and the distribution becomes quite flat relative to its entropy.

2. Hash X' so that YES instances become close to the uniform distribution while NO instances

have much smaller entropy than the uniform distribution. That is, let Y be of the form

(h, h(X')), where h is uniformly distributed in a 2-universal family with appropriate pa-

rameters.

3. Let Y' consist of many copies of Y so that for NO instances, the entropy deficiency (as com-

pared to the uniform distribution) becomes large and yet Y' becomes quite flat relative to its

entropy; while YES instances remain close to uniform.

4. Hash the inputs to Y' so that NO instances have small support (rather than just small entropy),

while keeping YES instances close to uniform. That is, let Z be of the form (Y'(r), h, h(r))

where h is uniformly distributed in a 2-universal family with appropriate parameters.

5.4.4 Proof of Lemma 5.4.1

Let (X, k) be an instance of EA, let m (resp., n) denote the number of input and output gates

to X, and let s be the extra parameter in the transformation. By increasing s if necessary, we may

assume that s is greater than the total description length of (X, k). Thus, all the intermediate circuits

we build will be of size poly(s). Also note that it suffices for the transformation to achieve error

parameters just 2-9() rather than 2 -, as this can be compensated for by first increasing s by a

linear factor.

Many copies I. The first step is to take many copies of each distribution; this has the effect of

increasing the entropy gap between YES and NO instances relative to X's deviation from flatness.

Namely, let q = 4sm 2 and let X' = OqX (i.e., X' consists of q independent copies of X). Then

H(X') = q - H(X) and, by Lemma 5.4.2, X' is A-flat for A = v/4sm 2 - m = 2/s- iM2 . In

particular, we have established

Claim 5.4.1

1. If H(X) > k + 1, then H(X') > qk + q > qk + fi A + s.

2. If H(X) < k - 1, then H(X') < qk - q < qk.

Hashing I. Now consider the distribution Y on pairs (h, h(x)) induced by choosing h uniformly

from 7 1 qn,qk+1 and x according to X'. Say that elements of ?Iqn,qk+1 take U < poly(qn, qk) <

poly(s) bits to represent. Then Y is represented by a circuit with inputs (resp., outputs) of length

M' = u + qm (resp., n' = u + qk + 1). Y has the following properties:

Claim 5.4.2

1. If H (X) > k + 1, then Y has statistical difference at most 2 - (s2) from the uniform distribution

on {0, 1} '.

2. If H(X) < k - 1, then the entropy of Y is less than n' - 1.

Proof: Part 1 follows from the A-flatness of X and the Leftover Hash Lemma. Part 2 follows from

the fact that the entropy of Y is at most the entropy of X' (which is less than qk) plus the entropy
of the uniform distribution on Wqn,qk+1 (which is u). E

86

Many copies II. We now take many copies of Y, so that the entropy deficiency of NO instances
becomes large relative to the flatness while YES instances remain close to uniform. Specifically, let
q' = 4s - (M') 2 and let Y' = q'y, so that Y' has M = m'q' input gates, N = n'q' output gates,
and Y' is A'-flat for A' = /4s(r') 2 -M' = 2/s - (M') 2 . Then we immediately have:

Claim 5.4.3

1. If H(X) > k + 1, then Y' has statistical difference at most q' - 2 -a(s) = 2-"(s) from the
uniform distribution on {0, 1}N.

2. If H(X) < k - 1, then H(Y') < N - q' < N - 5. - A' - s.

Hashing II. The final step is to make a distribution which, for NO instances, has small support
(rather than just low entropy) in the case of NO instances, while YES instances remain close to uni-
form. Consider a circuit Z which takes as input r E {0, 1 }M and a hash function h E 7 M,M-N-s
and outputs (Y'(r), h, h(r)). Then,

Claim 5.4.4 Z satisfies the requirements of Lemma 5.4.1 (with error parameters 2 -O(s) rather than
2-). That is,

1. If H (X) > k+1, then Z has statistical difference at most 2() from the uniform distribution
on {0, 1 }N X M,M-N-s X (0, 1}M-N-s, and

2. If H (X) < k -1, then the support of Z is at most a 2 () fraction of {0, I}N X NM,M-N-s X
{0, }M~N-s.

The intuition for this is the following: In the case of YES instances, Y' is close to the uniform
distribution on {0, I}N, so for almost all y E {0, 1 }N, there will be about 2 M-N values of r such
that Y'(r) = y. Thus, hashing r down to M - N - s bits will still result in a nearly uniform
distribution.

In the case of a NO instance, Y' has large entropy deficiency and is nearly flat. From this, we
can deduce that Y' lands in some small subset T of {0, 1}N with very high probability. Thus, points
y T must have very low probability under Y', i.e. there are very few inputs r such that Y'(r) = y.
So, for each y V T, the pairs (h, h(r)) will only hit a small subset of the possible values. Therefore,
(Y'(r), h, h(r)) has small support, because either the first component lands in a small set (namely
T) or the last two components land in a small set.

Proof: Suppose H(X) > k + 1. From the fact that Y' has statistical difference at most 2-9(s)
from uniform it follows that with probability at least 1 - 2 -a(s) over y selected according to Y',

1 1
Pr [Y' = y] > 2 2 . (5.1)

Fix any y satisfying Inequality 5.1. Conditioned on Y'(r) = y, r is selected uniformly from

{r: Y'(r) = y}, which by Equation 5.1 is a set of size at least 2 M-N-1. Thus, by the Leftover
Hash Lemma, conditioned on Y'(r) = y, the distribution of (h, h(r)) has statistical difference at
most 2-"(9) from uniform. Therefore the total statistical difference of Z from uniform is 2-n(s).

Now suppose H(X) < k - 1. We want to show that the support S of Z is a small fraction of
D = {0, 1}N X 1 M,M-N-s X {o, 1}M-N-s. To do this, we divide S into three parts, depending on

87

the probability mass given to the y component by Y'. Recall that a "typical" y for Y' has probability

mass 2 --H(Y') >-N+v15s-A'+s

Si = {(y, h, z) E S: Pr [Y' = y] < 2-N-2s} ("much too light")
S2 = {(y, h, z) E S: 2 -N-2s <Pr[Y' y] -N+s} ("too light, but not much too light")
S 3 = {(y, h, z) E S: 2 -N+s <Pr [Y' = y]} ("not too light")

Clearly, S = Si U S2 U S 3 . We will show that lSIlD 5 2-s for i = 1, 2,3, and so |SI/ID <
3 2 2-(s).

First we bound Si. For any y such that Pr [Y' = y] < 2 -N-2s, there are at most 2 M-N-2s

values of r such that Y'(r) = y. Thus, for any such y and any h, the set of z such that (y, h, z) E Si
is of size at most 2 M-N-2s (because each such z must be of the form h(r) for some r such that

Y'(r) = y). This implies that Si is at most a 2 M-N-2s 2M-N-s = 2 s fraction of D.
Now we bound IS2 1. We show that the set A of y such that 2 -N-2s <Pr[Y' = y] < 2 -N+s is

at most a 2 -s fraction of {O, I}N. From this, it follows that S2 is at most a 2-s fraction of D. Every

y E A is V - A'-light (since Y' has entropy at most N - s - V3s4 - A'). By the A'-flatness of Y',

Pr [Y' E A] is at most 23s+1. Since every y in A has probability mass at least 2 -N-2s under Y',

JAl is at most 2 -3s+1/2-N-2s < 2 N-s, as desired.
Finally, we bound 13 I. Clearly, there can be at most 2 N-s values of y such that Pr [Y' = y] >

2 -N+s. From this it follows that IS3I/IDI 2 N-s / 2 N = 2-s.

5.5 EA and SDU are NISZK-complete

In this section, we complete the proof of Theorem 5.3.1. First, we establish that SDU E NISZK by
showing:

Lemma 5.5.1 SDU<KpE A. In particular; SDU E N ISZK.

Proof: Let X be an instance of SDU. We assume that log(n) > 5, where n is the output length

of the circuit X (otherwise, once can decide in probabilistic polynomial time whether X is a YES

or NO instance of SDU by random sampling). Let U denote the uniform distribution on n bits. We

claim the map X -+ (X, n - 3) is the reduction required by the lemma.
If X E SDUYES, then 6 = ||X - U11 < 1/n. Now we use the following fact:

Fact 5.5.1 For any two random variables, A and B, ranging over a domain D it holds that

IH(A) - H(B)l 5 log(IDI - 1) .6 + H 2 (6)

where d I IA - B||, and where H 2 (0) denotes the entropy of a 0-1 random variable with mean 0.

This fact can be inferred from Fano's Inequality (cf., [CT91, Thm. 2.11.1]), and a slightly weaker

bound can be found in [CT91, Thm. 16.3.2]. A more direct proof follows.

Proof: Assume 6 > 0 or else the claim is obvious. Let p(x) Pr [A = x] and q(x) L Pr [B = x].

Define m(x) = min{p(x), q(x)}. Then ZXED m() = 1 - 6. Define random variables Z', X' and

Y' so that

Pr [Z'=z] = m'(x) 1 M- X

88

Pr[X' = X] = ' 1 1 (P(1)

Pr [Y' = x] =q'(x) (q(x) - m())

Think of A (resp., B) as being generated by picking Z' with probability 1 - 6 and X' (resp., Y')
otherwise. Then

H(A) < (1-6)-H(Z')+6-H(X')+H2(6)
H(B) > (1-6).H(Z')

Observing that Pr [X' = x] = 0 on at least one x E D, it follows that H(X') < log(IDI - 1), and
the fact follows. 0

Comment: The above bound is tight. Let e E D and consider A which is identically e, and B
which with probability 1 - 6 equals e and otherwise is uniform over D \ {e}. Clearly, 11A - B11 = 6
and H(A) - H(B) = 6 log(IDI - 1) + H2 (6) - 0-

Returning to our proof, if we apply this fact with A = U and B = X, we have

n - H(X) < n - 1/n + H2 (1/n) < 2.

Hence (X, n - 3) E EAYES, as desired.
If X E SDUNO, then I|X - U11 > 1- 1/n. By the definiton of statistical difference, this implies

the existence of a set S C {0, 1}" such that Pr [X E S] - Pr [U E S] > 1 - 1/n. This implies that

Pr[XES] > 1-1/n and Pr[U ES] < 1/n.

Thus, H(X) <; Pr [X E S] - log(IS|) + Pr [X S] -n < 1 - (n - log n) + (1/n) -n < n - 4, and
we have that (X, n - 3) E EANO.

The "in particular" part of Lemma 5.5.1 follows immediately from Proposition 5.4.1. M

Now, we establish both Theorem 5.3.1 and Theorem 5.3.2 by showing that all promise problems
in weak-NISZK (and hence all promise problems in NISZK) are reducible to SDU (and hence by
the previous lemma to EA).

Lemma 5.5.2 Every promise problem in weak-N ISZK Karp-reduces to SDU.

Proof: Let H be any promise problem in weak-N ISZK. As weak-N ISZK is preserved under parallel
repetition, we may assume that H has a weak-NISZK proof system (P, V) with completeness and
soundness errors at most 2 on inputs of length n. Let r(n) = poly(n) be the length of the random
reference string in (P, V), and let S be a randomized polynomial-time simulator S such that the
statistical difference between the output distribution of S and the distribution of true transcripts of
P is at most 1/(3r(n)). (Such an S is guaranteed by the weak-NISZK property.) Let U denote the
uniform distribution on r(n) bits.

Let x be an instance of H. Define M to be a circuit which does the following on input s:
Mr(s): Simulate S(x) with randomness s to obtain a transcript (-, p). If V(x, -, p) accepts, then
output o-, else output Or(n).

89

We claim that the map x '-+ Mx is the reduction required by the lemma. Suppose x E DYES. In

this case, we know that the random reference string a in the output of S has statistical difference less

than 1/3r(n) from U. In addition, since the completeness error of protocol P is at most 2-n, S(x)
can output rejecting transcripts with probability at most 1/(3r(n)) + 2-n < 2/(3r(n)). Hence,

|IMx - U1| < 2/(3r(n)) + 1/(3r(n)) < 1/r(n), and Mx E SDUYES-
Suppose x E HNO - Since the soundness error of protocol P is bounded by 2-, for at most a 2-

fraction of reference strings o- does there exist an accepting transcript (o-, p). Since Mx only outputs

reference strings corresponding to accepting transcripts or 0 "(n), 1IMx - U| ;> 1- (2 -n+ 2 -r(n)) >
1 - 1/r(n). Thus, Mx E SDUNO- 0

Clearly, Lemmas 5.4.1, 5.5.1, and 5.5.2 combine to prove Theorem 5.3.1. Lemmas 5.5.2 and 5.5.1
show that any promise problem H in weak-NISZK reduces to EA; by Proposition 5.4.1, this implies

that H E NISZK and establishes Theorem 5.3.2.

5.6 Comparing NISZK and SZK

Armed with NISZK-complete promise problems so closely related to problems known to be com-

plete for SZK, we can quickly begin relating the two classes.

5.6.1 Nontriviality of NISZK

First, we establish Theorem 5.3.3 by giving a Cook reduction from ENTROPY DIFFERENCE (ED),
complete for SZK, to ENTROPY APPROXIMATION (EA), complete for NISZK.

Lemma 5.6.1 Suppose (X, Y) is an instance of ED. Let X' = 0 4X (resp., Y' = 0 4 Y) consist of

4 independent copies of X (resp., Y), and let n denote the maximum of the output sizes of X' and

Y'. Then,

(X, Y) E EDYES [((X', k) E EAYES) A ((Y', k) E EANO)
k=1

(X, Y) E EDN0 A ((X', k) c EANO) V ((Y', k) E EAYES)
k=1

Proof: Suppose (X, Y) E EDYES, so that H(X') > H(Y') + 4. Let k = [H(X')j - 2. Then
H(X') > k + 1. On the other hand, k + 3 > H(X') > H(Y') + 4, and hence H(Y') < k - 1.
Suppose instead (X, Y) E EDNO, so that H(Y') > H(X') + 4. Then for all k > FH(X')1 + 1, we
have H(X') < k - 1. So, for all k < FH(X')] + 1, we have k + 1 < H(X') + 3 < H(Y'). 0

From this reduction, we conclude that SZK $ BPP -- > NISZK 4 BPP, which is Theo-

rem 5.3.3. Again, by BPP we mean the class of promise problems solvable in probabilistic polyno-
mial time.

Proof of Theorem 5.3.3. By definition, NISZK c SZK (recall that SZK equals honest-verifier
SZK [GSV98]). Hence if SZK = BPP, then NISZK = BPP.

90

Now suppose N ISZK = BPP, so in particular there is a probabilistic polynomial-time machine
M which decides E A (with exponentially small error probability). To show SZK = BPP, it suffices
to show that ED E BPP since ED is SZK-complete. We now describe how to decide instances
of ED: Let (X, Y) be an instance of ED. Letting X' and Y' be as stated in Lemma 5.6.1, we
run M(X', k) and M(Y', k) for all k E [1, n]. If for some k, we see that M(X', k) = 1 and
M(Y', k) = 0, we output 1. Otherwise, we output 0. By Lemma 5.6.1, this is a correct BPP
algorithm for deciding ED. M.

5.6.2 Conditions under which NISZK = SZK

The reduction given by Lemma 5.6.1 is a very special type of Cook reduction, which we call an AC0

truth-table reduction. In this section, we use the special properties of this reduction to show that if
NISZK is closed under complement, then in fact NISZK = SZK. We now recall how to precisely
define the types of reductions we are using, taking care how they are defined for promise problems.

Definition 5.6.1 (truth-table reduction [LLS75]): We say a promise problem H truth-table reduces
to a promise problem F, written H < r T, if there exists a (deterministic) polynomial-time computable

function f, which on input x produces a tuple (x1, X2, ... , xk) and a circuit C, such that

1. If x E UYES then for all valid settings of b1, b2 , . . , bk, C(b 1 , b2 , ... ,b) = 1, and

2. If x E IINO then for all valid settings of b, ,b 2 , ... , bk, C(b1, b2 , ... ,b) = 0.

where a setting for bi is considered valid when bi = 1 if xi E rYEs and bi = 0 if xi E FNO (and bi is
unrestricted when xi violates the promise).

In other words, a truth-table reduction for promise problems is a non-adaptive Cook reduction
which is allowed to make queries which violate the promise, but must be able to tolerate both yes
and no answers in response to queries that violate the promise. We further consider the case where
we restrict the complexity of computing the output of the reduction from the queries:

Definition 5.6.2 (AC0 and NC1 truth-table reductions): A truth-table reduction f between promise
problems is an AC0 (resp., NC) truth-table reduction if the circuit C produced by the reduction
on input x has depth bounded by a constant cf independent of x (resp., has depth bounded by
c1 log |x|). If there is an AC 0 (resp., NC) truth-table reduction from H to r, we write UH ACottr
(resp., H NC1-tt).

With this definition, we observe that Lemma 5.6.1 in fact gives an AC0 truth-table reduction,
since the formula given in the lemma can be expressed as an AC0 circuit, and the statement of the
lemma shows that the reduction has the robustness properties against promise violations that are
required in Definition 5.6.2. Thus, we have:

Proposition 5.6.1 ED Aco-ttEA.

We say that a class C of promise problems is closed under a class of reductions <, if H <* F and
F E C implies that H E C. By the above, if NISZK is closed under AC0 truth-table reductions, then
ED E NISZK and hence NISZK = SZK. Thus, we would like to capture the minimal conditions
necessary for a promise class to be closed under AC0 truth-table reductions. Here, care must be taken
to because of the possibility of promise violations. Keeping this in mind, we define the following
operator on promise problems to capture the notion of an unbounded fan-in AND gate for promise
problems:

91

Definition 5.6.3 (unbounded AND): For any promise problem H, we define AND (H) to be the

promise problem:

def
ANDYES (X1 , X2 , ... , Xk) : k > 0, Vi E [1, k]xi E HYES}

H)def IN
ANDNO X1 {(X, 2, -. ,Xk) : k > 0,3i E [1,k]xi E NOI

We say a class of promise problems C is closed under unbounded AND if H E C implies that

AND(H) E C.

We have defined AND so that it has the weakest promise condition possible to remain well-

defined. In particular, we see that ANDNO (H) is defined to include xi's that violate H's promise, as
long as just one of them is in HNO- We also need a way of combining two promise problems:

Definition 5.6.4 (disjoint union): For any pair of promise problems H and F, we define the disjoint

union of H and F to be the promise problem DISJOINTUNION(H, IF) defined as follows:

DISJOINTUNIONYES(HF) {0 X HYEs U {1} X FYES

DISJOINTUNIONNO(H, F) 0 X NO U ll x { NO

We say a class of promise problems C is closed under disjoint union if H, F E C implies that

DIsJOINTUNION(H, F) c C.

With these definitions, we can give the following lemma which gives some conditions sufficient

to give closure under AC0 truth-table reductions.

Lemma 5.6.2 A promise class C is closed under AC 0 truth-table reductions if the following condi-

tions hold:

1. C is closed under Karp (i.e., many-one) reductions.

2. C is closed under unbounded AND.

3. C is closed under disjoint union.

4. C is closed under complementation.

Proof: First note that any unbounded fan-in circuit can be efficiently converted into a circuit with

only unbounded fan-in NAND gates (allowing also unary NAND gates), with only a constant factor

blowup in depth. So, as a first step, we observe that C is closed under unbounded NAND: for

any promise problem H, NAND(H) = AND(H) E C, by closure under unbounded AND and
complementation. To generalize this to constant depth circuits with unbounded fan-in NAND gates,
we first need a definition.

Definition 5.6.5 For any promise problem H, and for all natural numbers d > 0 we define

DEPTH d(H) to be the promise problem whose instances are tuples (C, (XrI, x 2 , - -, Xk)), where
C is a circuit of depth at most d (using unbounded fan-in NAND gates only). The YES instances

are those such that for all valid settings of b1 , b2 ,... ,b, C(bib 2 , ... , bi) = 1; whereas the NO

instances are those tuples such that for all valid settings of b1, b2 , ... , bk, C(b1, b2 , ... , bk) = 0.
Here, a setting for bi is considered valid when bi = 1 if xi E UYEs and bi = 0 if xi E UN, (and bi
is unrestricted when xi violates the promise).

92

Using the fact that every AC0 circuit can be efficiently transformed into one with only NAND
gates, we see that H IACO-ttF means that there exists some d such that HIKarpDEPTHd(F) under a
Karp reduction. Hence if we can show that for all d > 0 and promise problems H, DEPTHd(H) E C,
the lemma will be established. We will prove this by induction on d.

First, observe that a depth 0 circuit is simply a variable (negations of variables are achieved with
one unary NAND gate, so count as depth 1). Hence, DEPTH0 (TI) Karpl E C. Now assume that
DEPTHd(H) G C. Observe that a depth d + 1 circuit is simply a NAND of some number of depth d
circuits. Using this observation, we will argue that that

DEPTHd+1 (li)KarpDISJOINTUNION(DEPTHd(H), NAND (DEPTHdp)).

By the hypothesized closure properties of C, this implies that DEPTHd+l (H) E C. The reduction
works as follows. The input to the reduction is a tuple (C, 5) where 5 = (X1, X2, .. . Xk). If C
is actually a depth d circuit, then it simply outputs (0, (C, 5)). If not, then it extracts from C the
circuits C1, C2, . .. , C, that provide input to the topmost NAND gate. Then the reduction outputs
(1, ((C1, 5), (C2, 5), ... , (Cs, 5))). It is clear that map gives a Karp reduction from D EPTHd+1 (H)
to DIsJoINTUNION(DEPTHd(H), NAND(DEPTHd(H))), completing the induction step and the
proof. 0

Which of the conditions of Lemma 5.6.2 does NISZK satisfy? We argue that Conditions 1, 2,
and 3 are satisfied by NISZK:

Lemma 5.6.3 NISZK is closed under Karp reductions.

Proof: Suppose F E NISZK, and HIKarpF. Since EA is complete for NISZK, we have F PKarpEA.
By composing reductions, we see that HIKarpEA. By Proposition 5.4.1, H E NISZK. m

Lemma 5.6.4 NISZK is closed under unbounded AND.

Proof: First, we argue that AND(EA) E NISZK by describing a NISZK proof system for
AND(EA): Let ((X 1,k 1),... , (Xm, km)) be an instance of AND(EA), and say f is the total
length of the instance. Artificially pad each circuit Xi to be of description size f (by adding un-
used gates) and let Y be the resulting circuit. Now execute the N ISZK proof system for EA given
by Lemma 5.4.1 on each pair (Y, ki) in parallel, and have the AND(EA)-verifier accept if the
EA-verifier would have accepted on each pair.

If every pair (Xi, ki) is a YES instance of EA, the AND(EA) verifier will accept with proba-
bility at least 1 - m -2-' = 1 - 2-(), as the completeness error of the EA proof system is at most
2-t. Similarly, running the simulator for the EA proof system m times independently will give a
simulation for the AND(EA) proof system with simulator deviation at most m - 2-t = 2-QM.
Finally, if just one pair (Xi, ki) is a NO instance of EA (even if the others violate the promise), the
verifier will accept with probability at most 2 - in the i'th execution of the EA protocol, and so the
AND(EA) verifier will accept with probability at most 2-1.

This shows that AND(EA) E NISZK. Now let H be any promise problem in NISZK. Since
EA is complete for NISZK, there is a Karp reduction f from H to EA. This induces a Karp reduc-
tion from AND(H) to AND(EA) in the obvious way (i.e. (X1 , .. . , Xk) '-+ (f (Xi),... , f (xk))).
As AND(EA) is in NISZK and NISZK is closed under Karp reductions, AND(H) E N ISZK. m

93

Lemma 5.6.5 NISZK is closed under disjoint union.

Proof: For any two promise problem H and F in NISZK, the Karp reductions fo from H to

EA and fi from F to EA induce a Karp reduction from DISJOINTUNION(H, F) to EA given

by (o-, x) - f0 (x). By Proposition 5.4.1, DISJOINTUNION(H, F) E N ISZK. m

Combining everything, we can give a condition under which SZK = NISZK.

Proposition 5.6.2 If NISZK is closed under complementation, then SZK = NISZK.

Proof: Suppose NISZK is closed under complementation. Combining this with Lemmas 5.6.2,
5.6.3, 5.6.4, and 5.6.5, it follows that NISZK is closed under AC0 truth-table reductions. Ap-
plying Proposition 5.6.1 (ED<Aco-ttEA) and Lemma 5.4.1 (EA E NISZK), we conclude that
ED C NISZK. Since ED is complete for SZK [GV99] and NISZK is closed under Karp reductions

(Lemma 5.6.3), we have SZK C NISZK. As NISZK C SZK is true from the definition of NISZK,

we conclude that NISZK = SZK. m

Finally, we deduce Theorem 5.3.4, which gives a number of conditions equivalent to N ISZK =

SZK.

Proof of Theorem 5.3.4:
1 =4 3. This follows from the result of Chapter 3 that SZK is closed under NC truth-table reduc-

tions (Corollary 3.3.5).
3 =* 2 =* 1. The first is trivial and the second is Proposition 5.6.2.
1 4 4. This follows from Theorem 5.3.1 (which asserts that that EA and SDU are complete for

NISZK), the fact that ED and SD are complete for SZK (shown in Chapter 3 (the Completeness
Theorem) and [GV99]) and Lemma 5.6.3 (that NISZK is closed under Karp reductions).

2 * 5. This follows from Theorem 5.3.1 (that EA and SDU are complete for NISZK) and
Lemma 5.6.3 (that N ISZK is closed under Karp reductions).

94

Chapter 6

Concurrent Zero Knowledge

In this chapter, we turn our attention to extending the cryptographic uses of zero-knowledge proofs
in general. Zero-knowledge proofs were designed and defined to provide provable security for a
single pair of interacting parties. In general multi-user environments, however, where many inter-
actions can take place concurrently, one must face the challenge of coordinated multi-party attacks.
The standard 2-party definition of zero knowledge does not necessarily guarantee security in this
scenario. In this chapter, we define and consider the notion of concurrent zero knowledge, where
zero knowledge is guaranteed even when faced with a coordinated attack by many verifiers all acting
concurrently. We show how to build concurrent zero-knowledge protocols in which honest parties
need only act locally, i.e., an honest prover and verifier need not even be aware of other parties in
order to be guaranteed security.

A critical novel component of our approach is an explicit use of certain local timing constraints
in our protocols. The correctness of our protocols relies on a weak synchronization assumption on
the behavior of the local clocks of honest parties. This assumption holds in particular if we assume
that clocks of honest parties run at rates within constant factors of each other. The work we present
in this chapter is based on a paper [DNS98] authored jointly with Cynthia Dwork and Moni Naor.

6.1 Overview

In a distributed computing aggregate, a collection of physically separated parties communicate via
a heterogeneous network. To date, research applications of cryptographic techniques to distributed
systems have overwhelmingly concentrated on the paradigm in which the system consists of n
mutually aware parties trying to cooperatively compute a function of their respective inputs (see
e.g. [BGW88, GMW87]). In contrast with this traditional paradigm, parties in an aggregate in
general do not know of all the other members, nor do they generally know the topology of the
network. The parties are typically not all acting cooperatively to compute one function or perform
a specific set of tasks; in general no coordination is assumed. A prime example of an aggregate is
the Internet.

Electronic interactions over an aggregate, such as economic transactions, transmission of med-
ical data, data storage, and telecommuting, pose security risks inadequately addressed in computer
science research. In particular, the issue of the security of concurrent executions is often ignored. In
this chapter we address the problem of maintaining zero knowledge under concurrency, continuing
research initiated in [DDN91] on zero-knowledge interactions in an aggregate.

95

6.1.1 Zero-Knowledge and Concurrency: A Description of the Problem

A zero-knowledge protocol is supposed to ensure that no information is leaked during its execution.

In this section, we try to understand what goes wrong when we try to prove that standard zero-

knowledge proofs remain zero knowledge in the concurrent scenario.
For purposes of illustration, we will focus on a well-known N P-complete [Kar72] problem

called DIRECTED HAMILTONIAN CYCLE:

DIRECTED HAMILTONIAN CYCLE (DHC):
Instance: A directed graph G.
Question: Does there exist a Hamiltonian cycle in G, i.e. a cycle containing every node in G

exactly once?

We will first consider a relatively simple 3-round zero-knowledge interactive proof for DHC,
due to Blum [Bl]. This zero-knowledge proof, like all zero-knowledge proofs, can be composed
sequentially as many times as one likes and remain zero knowledge. Another type of composition

is parallel composition, where a protocol is repeated independently many times, but all of them in

parallel with each other. Note that parallel composition is a special case of concurrent composi-

tion. We will see that the basic protocol for DHC does not remain zero knowledge under parallel

composition. The problem of parallel composition, however, has been studied extensively. We will

next give a modified protocol due to [GMW91, GKa96] which does indeed remain zero-knowledge

under parallel composition. Nevertheless, we will show that a straightforward extension of the sim-

ulation strategy for this protocol to the scenario with concurrency fails for a particular interleaving

of concurrent interactions. This will illustrate the difficulties involved in achieving concurrent zero

knowledge.

String Commitment The notion of a commitment scheme will be a crucial ingredient in the pro-

tocol we present for DHC, and in all of our protocols as well. We will give formal definitions of

various types of commitment schemes in Section 6.2. Informally speaking, a commitment scheme

is used to enable a party to commit itself to a value while keeping it secret. Later on, a commitment

may be "opened" to reveal the value - and it should be guaranteed that a given commitment can
only be "opened" to a single value.

In other words, loosely speaking, a bit commitment scheme is a protocol between two parties -
a sender S and a receiver R - that has two phases: a "commitment phase," in which S commits to

a value; and an "opening phase," where S reveals to R the value that it committed to. This protocol

must enjoy two basic properties:

" Secrecy: After the "commitment phase," the receiver R should not gain any knowledge about

the committed value, even if R tries to cheat.

" Binding: After a successful "commitment phase," there can be at most one value that S can

successfully open the commitment as in the "opening phase," even if S tries to cheat.

We will explore many variations on the notion of a commitment scheme when we define them

formally, but for now this intuition will suffice.

6.1.2 Basic protocol for DHC.

Manuel Blum [Blu86] exhibited an elegant computational zero-knowledge proof system for DHC.
It consists of many sequential repetitions of the following basic protocol:

96

Protocol 6.1.1 A directed graph G is the common input to both parties. The prover is assumed to
know a Hamiltonian cycle w in G.

1. The prover picks a random permutation 7r on the nodes of G. It then sends to the verifier
commitments to each of the entries of the adjacency matrix of the permuted graph 7r(G).

2. The verifier responds with a single bit b, chosen uniformly from {0, 1}.

3. The prover does the following:

" If b = 0, the prover opens its commitments from Step 1 to all the entries of the adja-
cency matrix of ,r(G), and also sends a description of the permutation r. The verifier
upon receipt, verifies the correctness of the openings, and also verifies that the revealed
adjacency matrix actually is the adjacency matrix of ir(G). If either of these conditions
fail to hold, the verifier rejects the proof

" If b = 1, the prover opens its commitments only to those entries in the adjacency matrix
of 7r(G) that correspond to edges in the Hamiltonian cycle ,r(w). The verifier; upon re-
ceipt, verifies the correctness of the openings, and also verifies that the revealed entries
of 7r(G) do indeed form a Hamiltonian cycle. If either of these conditions fail to hold,
the verifier rejects the proof

Completeness: Clearly, if the graph G is indeed Hamiltonian, then the prover by following the
protocol will always convince the verifier to accept.

Soundness: On the other hand, if G has no Hamiltonian cycle, we claim that the verifier will
reject with probability at least 1/2 no matter what the prover tries to do (i.e. the soundness error is
1/2).

In Step 1, the prover commits to the adjacency matrix of some graph H (or one or more com-
mitments are invalid). There are two cases: either H is isomorphic to G, or it is not (here we include
the case that one or more commitments are invalid):
Case 1: H is isomorphic to G. Then H cannot contain a Hamiltonian cycle. Therefore, if b = 1,
the prover will not be able to respond in Step 3 in any way that will make the verifier accept.
Case 2: H is not isomorphic to G, or one or more of the commitments are invalid. In this case, if
b = 0, the prover will not be able to respond in Step 3 in any way that will make the verifier accept.

Thus, this protocol has soundness error 1/2.

Zero Knowledge: To argue that this protocol is computational zero knowledge (in the ordinary 2-
party sense), we must simulate the interaction of the prover with any given verifier, without knowing
the location of a Hamiltonian cycle in the graph. We will make the simplifying assumption that the
verifier always completes the protocol (i.e. , it never refuses to provide a valid message in Step 2).
The key observation here is that if the simulator knew what the verifier's query bit would be in
advance, then it would be easy to simulate the protocol:

Suppose the simulator "knew" that the verifier would set b = 0 (and therefore in Step 3, the
verifier would check that the prover reveals a permutation of the graph). In that case, the simulator
can simply follow the prover's protocol: namely, it can choose a random permutation 7r and commit
to the entries of the adjacency matrix of 7r(G) in Step 1, and then reveal everything in Step 3,
finishing the simulation.

97

Suppose instead that the simulator "knew" that the verifier would set b = 1 (and therefore in
Step 3, the verifier would check that the prover reveals a random n-node cycle). In this case, the sim-
ulator can, in Step 1, simply commit to a matrix of all l's, corresponding to the adjacency matrix of
the graph that has a directed edge in both directions between every pair of nodes (which we will call
the complete directed graph). Then in Step 3, the simulator can simply pick a random Hamiltonian
cycle in the complete directed graph and reveal it, completing the simulation. Because the commit-
ments to the other entries of the matrix are never opened, the (computationally bounded) verifier
cannot distinguish them from the commitments it would have encountered in a real interaction with
the prover.

Of course, the simulator does not actually know the verifier's query in advance. But in this
simple protocol, the simulator can simply guess what the verifier's query bit will be, and be correct
with probability at least 1/2. If the simulator is wrong, it can simply try again until it guesses
correctly, to produce a good simulation.

6.1.3 A step closer to concurrency - parallelization.

We know that the simple protocol above remains zero knowledge if it is executed many times se-
quentially. To move one step closer to a scenario where there are many verifiers interacting concur-
rently with a prover, we now consider the problem of repeating this protocol in parallel, rather than
sequentially.

In the naive parallelization of this basic protocol, the prover commits to n adjacency matrices,
receives a vector of n bits, and, according to the ith bit, reveals either the ith permutation and the
ith adjacency matrix, or the cycle in the the ith adjacency matrix. However, the proof that the basic
block is zero-knowledge fails for the naive parallelization. Indeed, there is no 3-round (black-box)
zero-knowledge proof for any language not in B PP that achieves negligible soundness error [GK96].

This already indicates that the standard 2-party definition of zero knowledge does not imply the
more stringent requirement of simulability of concurrent interactions with many verifiers, as it does
not imply closure under parallel composition. However, the question of designing "parallelized"
versions of zero-knowledge proofs has been addressed in the past - from the point of view of trying
to design constant-round (i.e. low levels of interaction) zero-knowledge proofs with negligible
soundness error. In order to "parallelize" the basic block for DIRECTED HAMILTONIAN CYCLE it
suffices for the verifier to commit to the vector of queries in advance using a commitment scheme
with strong (information-theoretic) secrecy. This was suggested in the paper of Goldreich, Micali,
and Wigderson [GMW91], and formally carried out by Goldreich and Kahan [GKa96] for a related
NP-complete problem. We adapt this approach to DIRECTED HAMILTONIAN CYCLE:

Protocol 6.1.2 A directed graph G is the common input to both parties. The prover is assumed to
know a Hamiltonian cycle w in G.

1. The verifier picks n random query bits q1, . . . , q. The verifier sends to the prover commit-
ments to these bits q1, . . . , q,.

2. The prover picks n random permutations 1r1 ,... ,rn on the nodes of G. It then sends to
the verifier commitments to all the entries of the adjacency matrices of the permuted graphs

71i(G), ... -, rn (G).-

3. The verifier then opens the commitments it sent in Step I to reveal the query bits q1, . . . , qn.
The prover upon receipt, verifies correctness of the openings. (If any opening is invalid, the
prover halts.)

98

4. The prover does the following: For i = 1, . . . , n:

" If qi = 0, the prover opens its commitments from Step 2 to all the entries of the adja-

cency matrix of ri(G), and also sends a description of the permutation ri. The verifier,
upon receipt, verifies the correctness of the openings, and also verifies that the revealed
adjacency matrix actually is the adjacency matrix of-ri (G). If either of these conditions
fail to hold, the verifier rejects the proof

* If qi = 1, the prover opens its commitments only to those entries in the adjacency
matrix of iri(G) that correspond to edges in the Hamiltonian cycle 'ri(w). The verifier
upon receipt, verifies the correctness of the openings, and also verifies that the revealed
entries of ri (G) do indeed form a Hamiltonian cycle. If either of these conditions fail
to hold, the verifier rejects the proof

To see why this protocol is zero knowledge, we must exhibit a simulator.1 Again, the intuition
remains that if the simulator somehow knew in advance what the verifier's queries would be, then
the simulation would be easy (as outlined earlier).

Again, of course, the simulator does not actually know the verifier's queries in advance. How-
ever, we have not yet made use of the fact that the verifier commits to its queries in advance, in
Step 1. We can exploit this to create a situation where the simulator discovers the verifier's queries
before it must produce the simulated Step 2 commitments that must be output.

The simulator begins by initializing the verifier, and receiving the verifier's Step 1 commitments
to its queries. At this point, the simulator saves the state of the verifier for later use.

The simulator continues by simulating the Step 2 commitments of the prover by simply follow-
ing the prover's protocol (note that the prover does not require any special information until Step 4,
when it must make use of the fact that it knows a Hamiltonian cycle). In Step 3, the verifier reveals
her query bits q1, . . . , qn. At this point, the simulator restores the state of the verifier to just after
Step 1, when the verifier committed itself to the query bits. Now, the simulator has achieved the
situation we desired - it knows what the query bits of the verifier will be. When the verifier submits
its Step 3 openings, it must open the queries to the same values q1, . . . , qn, since it was committed
to them by its Step 1 message. Thus, the simulator can complete the simulation using the strategy
discussed earlier.

The crucial point here is that the simulator was able to "extract" the verifier's query bits, then
"rewind" the simulation to an earlier point just after the verifier had committed itself, and then
complete the simulation using knowledge of the verifier's queries.

Sketched out, the steps of the simulation are as follows (here, the "prover to verifier" steps
are provided by the simulator). We will denote the verifier's commitment function by K, and the
prover's commitment function by C:

Simulation:
1. V +P : K(query bits)
2. P -+ V : C(permutations of G)
3. V P : open query bits
Reset state of verifier to state after Step 1.
2'. P - V : Commit to graphs suitable for query bits
3'=3. V - P : open query bits
4. P - V : reply to queries

'Note again that we assume that the verifier will always produce valid messages when it is supposed to. The analysis
for when this is not the case can get quite messy [GKa96].

99

Thus, this protocol is zero-knowledge and yet can have arbitrarily low soundness error.

Reality strikes - the full concurrent model. Unfortunately, when this parallelized protocol for
DHC is run concurrently, say, by a single prover interacting with multiple verifiers, the natural

extension of this simulation strategy fails. Consider the following nested interleaving, shown in Di-
agram A below, of n colluding verifiers V1 , . . . , Vn concurrently executing the parallelized protocol
for DHC with a single prover.

V1 V2 ... Vn
Step 1
Step 2

Step 1
Step 2

Step 1
Step 2
Step 3
Step 4

Step 3
Step 4

Step 3
Step 4

Diagram A. A troublesome interleaving.

An adversary controlling the verifiers can arrange that the Step 1 commitments to queries made
by verifiers Vj+1, . . . , Vn can depend on messages sent by the prover in Step 2 of its interaction with
Vi. The difficulty with the straightforward generalization of our simulation strategy is that once the
queries in the interaction with Vi are opened (in Step 3), it becomes necessary to re-simulate Step 2
of the interaction with Vi, and therefore all of the interactions with verifiers Vi+, . .. , V must be
re-simulated (since the Step 1 messages of each of these verifiers will have changed). The most
deeply nested interaction, with Vn, must be simulated 2" times. After the initial appearance of this
work [DNS98], it was shown that in fact the interleaving we present above cannot be (black-box)
simulated in probabilistic polynomial time unless D H C is in B P P [KPR98].

6.1.4 Our Approach: Adding Timing Constraints.

This problem of building protocols that are simulatable in the concurrent setting is indeed quite
tricky. To overcome the problem of simulation for parallelism, it was possible to make use of an

initial commitment by the verifier. A natural analogue of this that can easily be made to work in the

concurrent scenario is to require that all verifiers engage in some kind of initial commitment before

the interleaved protocols begin. Such a solution, however, is very unsatisfying as it requires a global

requirement across all the participants in the protocols, very much against the spirit of a distributed

aggregate in which parties are not necessarily even aware of each other's existence. Instead, one
would like to be able to impose local constraints that affect only the pair of users involved in a single
protocol. We achieve this goal by formally introducing into our protocols a notion which is always
present in reality: the notion of time. We employ time in our protocols by imposing reasonable

100

local timing contraints on the parties in our protocols. We are then able to build several interesting

constant-round protocols that are zero knowledge in the concurrent setting.
In this work, we consider timing constraints of only the following two types:

1. Delays: One party must delay the sending of some message until at least some specified time

3 has elapsed on its local clock since some specified point earlier in the protocol. Note that no

special assumptions (other than the ability for the party to keep time) are needed to implement

such a constraint, although delays might be somewhat inconvenient.

2. Time Limits: One party, the Receiver, requires that the Sender deliver its next message before
some specified time a has elapsed on the Receiver's local clock since some specified point

earlier in the protocol. With each such constraint, there is an assumption that an honest

Sender will be able to produce and deliver its message within the alloted time. (Thus a must
be chosen with this in mind.) We remark that such time limit constraints are already found in
almost any secure implementation of any cryptographic protocol.

In all our protocols, we use only the above types of timing constraints, which we believe to be
quite reasonable. Furthermore, we assume, as we must, some kind of synchronization of clocks of
honest parties. Fortunately, since our timing constraints are so undemanding, the synchronization
assumption we need is quite weak: We make the assumption that all good parties have clocks that
satisfy what we call an (a, /)-constraint (for some a < 8):

Definition 6.1.1 We say a system of honest parties satisfy the weak synchronization assumption
corresponding to an (a,,6)-constraint (for some a < 3) if for any two (possibly the same) non-
faulty parties P1 and P2 , the following is always true: Suppose P1 measures how long it takes for
a time to elapse on its local clock, while P2 measures how long it takes for / time to elapse on its
local clock. Then, if P2 begins its measurement after P1 does (in real time), it must be the case that

P2 finishes its measurement after P1 does, as well.

Remark 6.1.1 We make some remarks concerning the weak synchronization assumption:

1. An (a, 8) constraint is implied by most reasonable assumptions on the behavior of clocks in
a system (e.g. the linear drift assumption).

2. In the special case in which P = P2 , the constraint holds trivially for any a < #.

Concurrency and timing are complicated issues; we make several remarks regarding the as-
sumptions and limitations of our model in Section 6.2.4 after defining the model more precisely.

6.1.5 Related previous work

The study of zero-knowledge in a setting with concurrent interactions was initiated in [DDN91],
who considered the soundness of concurrent executions of zero-knowledge proofs of knowledge.
In a proof of knowledge, the prover does not merely prove that some assertion is true (such as
that a graph G is Hamiltonian). Instead, the prover proves (in some sense) that it knows some
information (such as knowing the actual Hamiltonian cycle in a graph G). Here, the verifier faces the
possibility that the prover with which it is interacting is actually using some concurrently running
second interaction as an "oracle" to help answer the verifier's queries - this is the classic chess
master's problem. In this scenario, a cheating prover may be able to use such an oracle to seemingly
prove knowledge of information that it actually does not have. The problem here is the possible

101

malleability of the interactive proof of knowledge, formalized and addressed in [DDN91]. In this
thesis, we concentrate on standard proofs of validity rather than proofs of knowledge.

Our use of timing considerations to ensure zero knowledge appears to be new. The only work
of which we are aware that uses timing in zero-knowledge protocols is due to Brands and Chaum
[BC94], in which very accurate timing is needed in order to prevent person-in-the-middle attacks by
distant parties (see also the work of Beth and Desmedt [BD91]). Note that timing has been suggested
as a cryptanalytic tool - the best example is Kocher's timing attack [Koc96] - so it follows that any
implementation of a cryptographic protocol must be time-aware in some sense.

6.1.6 Summary of Results

We introduce timing in order to construct protocols that are zero knowledge against many colluding
verifiers acting in concurrent interactions.

In a first attempt, we add timing constraints to the standard parallelization of the Blum DI-
RECTED HAMILTONIAN CYCLE protocol given above. Although we are not able to prove that
this achieves our goal, we show that this yields a five-round weak concurrent computational zero-
knowledge interactive proof for an N P-complete language. Here, by "weak concurrent zero knowl-
edge," we are referring to an analog of weak-SZK that we saw earlier in Chapter 3, defined more
formally below. By shifting to the context of computationally-sound proofs (also called arguments)
where the prover is also assumed to be computationally bounded to polynomial time, we are able
to obtain stronger results. In this context, we obtain a six-round perfect concurrent zero-knowledge
argument in the timing model for DIRECTED HAMILTONIAN CYCLE under the Discrete Log As-
sumption. We also obtain a four-round concurrent computational zero-knowledge argument for
DIRECTED HAMILTONIAN CYCLE in the timing model (thereby showing that the impossibility
result of [KPR98] fails to hold in the timing model) under the assumption of the existence of one-
to-one one-way functions, which becomes a five-round protocol assuming only ordinary one-way
functions.

6.1.7 Subsequent Work on Concurrent Zero Knowledge

After the initial publication of the results presented in this chapter [DNS98], a number of other
researchers have investigated concurrent zero knowledge.

In joint work with Cynthia Dwork [DS98], we presented a constant-round preprocessing pro-
tocol which uses timing constraints like the ones used in this chapter. This protocol need only be
executed once by any pair of prover and verifier to establish a kind of public and private key. After
this preprocessing phase, a rich class of constant-round protocols can be executed by the parties
with no need for further timing constraints in the protocols. In a future version of this thesis, this
material will be presented as well.

Kilian, Petrank, and Rackoff [KPR98] presented the first lower bound on concurrent zero knowl-
edge. They showed that any problem that has a 4 or 5 round concurrent (black-box) zero knowledge
interactive proof or argument must be in BPP. Thus, a large class of known zero-knowledge inter-
active proofs and arguments in the standard setting for problems believed to be outside of BPP do
not remain provably zero-knowledge in the setting with concurrency.

Richardson and Kilian [RK99] then presented the first concurrent zero-knowledge argument for
an NP-complete language in the standard model with no timing assumptions or constraints. Their
protocol, however, required a polynomial number of rounds. This has been improved by Kilian and
Petrank [KPOO] to a polylogarithmic number of rounds.

102

Other work has focused on achieving constant-round protocols but imposing different changes
to the standard model. Di Crescenzo and Ostrovsky [D099] presented a non-local approach using
a different kind of preprocessing-based protocol, where the requirement is that all verifiers must
complete all preprocessing protocols prior to any verifier beginning any further interaction. Canetti,
Goldreich, Goldwasser, and Micali [CGGMOO] consider a model with much weaker non-locality,
described in the next paragraph.

Motivated in part by our notion of concurrent zero knowledge, Canetti, Goldreich, Goldwasser,
and Micali [CGGMOO] introduce a yet further strengthening of zero knowledge called resettable
zero knowledge - where the protocol must remain zero knowledge even against a verifier that is
given the ability to reset the state of the prover arbitrarily. This requirement implies concurrent zero
knowledge, and also provides additional security in settings where a potentially resettable physical
device, such as a smart card, may be acting as the prover. [CGGMOO] give two main results. First,
they show how to translate the result of Richardson and Kilian [RK99] to achieve resettable zero
knowledge arguments for N P with a polynomial number of rounds, without timing or non-locality.
Second, they also consider a model with a limited form of non-locality, where all verifiers publish
a public key (which may be invalid) prior to the start of any interactions2 . In this model, though
making use of potentially stronger intractability assumptions (requiring subexponential hardness),
they are able to exhibit constant-round resettable zero-knowledge arguments for an NP-complete
language.

6.2 The Model and Preliminaries

In this section, we will define our model, concurrent zero knowledge, and various other notions
that we will need in the rest of the chapter. We begin with some preliminaries before we define the
model:

6.2.1 Computationally-Sound Proofs or Arguments

Recall our definition of an interactive proof:

Definition 6.2.1 An interactive protocol (P, V) between a computationally unbounded prover P
and a probabilistic polynomial-time verifier V is said to be an interactive proof system for a promise
problem H with completeness error c(n) and soundness error s(n) if

1. (Completeness): If x E fly, then Pr [(P, V)(x) = accept] ;> 1 - c(IxI).

2. (Soundness): If x E HN, then for all P*, Pr [(P*, V)(x) = accept] < s(jx).

In this definition, we demand that the soundness guarantee hold for all P*, even machines that
take longer than polynomial time. This definition has advantages in its ease of application; however,

for most cryptographic applications, we assume that all parties are polynomially bounded. There-

fore, it makes sense to define a notion of proof where the prover is assumed to be computationally

bounded as well. This leads to the notion of a computationally-sound proof, also called an argument,

first introduced by Brassard, Chaum, and Crepeau [BCC88]:

Definition 6.2.2 An interactive protocol (P, V) between a probabilistic polynomial-time prover P

and a probabilistic polynomial-time verifier V is said to be a computationally-sound interactive

2The actual requirement is considerably weaker. For details, see [CGGM00].

103

proof system, or argument, for a promise problem H with completeness error c(n) and soundness
error s(n) if

1. (Completeness): If x E fly, then Pr [(P, V)(x) = accept] ;> 1 - c(Ixj).

2. (Soundness): If x E HN, then for all nonuniform probabilistic polynomial-time P*, we have
that Pr [(P*, V)(x) = accept] s(|x1).

The standard notions of perfect, statistical, and computational zero knowledge then carry over
to arguments as well.

6.2.2 Weak Synchronization Assumption

We recall the weak synchronization assumption we will need in most of our protocols:

Definition 6.2.3 We say a system of honest parties satisfy the weak synchronization assumption
given by the (a, /)-constraint (for some a < 6) if for any two (possibly the same) non-faulty
parties P and P2 , the following is always true: Suppose P measures how long it takes for a time
to elapse on its local clock, while P2 measures how long it takes for / time to elapse on its local
clock. Then, if P2 begins its measurement after P1 does (in real time), it must be the case that P2

finishes its measurement after P1 does, as well.

6.2.3 Our Model and Concurrent Zero Knowledge

We now consider what it means for an interactive proof system or argument to be zero knowledge
against many colluding verifiers acting concurrently. We need a way of modeling the actions of
many colluding verifiers. We do so by considering the worst case - that all verifiers are under the
direct control of a central controlling adversary. In fact, we even give the adversary the power to
create and destroy provers and verifiers at will, and total adaptive control over the timings of all
messages exchanged between parties.

Definition 6.2.4 Let (P, V) be an interactive protocol. Let the adversary A be a non-uniform prob-
abilistic polynomial-time machine which has a time bound of the polynomial t(n). The concurrent
interaction of P and A on common input x (with private inputs pp for P and pv for A, sometimes
omitted) is a random process which proceeds as follows:

1. Choose random strings rp and rA uniformly among infinite strings over {0, 1}.

2. For i = 1, 2, ... , t(|x) 3 do:

(a) Let request = A (pA, X, m, . .. , mi_1;rA).

(b) If request = (receive, Pa, Vb, m, T), this indicates that prover Pa receives from verifier
Vb the message m at prover P's local time r. If the adversary has never output Pa
before, this indicates that the new prover Pa is being created. Similarly, if the adversary
has never output Vb before, this indicates that the new verifier Vb is being created. If
Vb is sending its first message to Pa, then a new "copy" of the prover P is created
(in our experiment) to interact with Vb. This copy of the prover is unaware of what

3 Here, we are establishing a convention that the number of rounds of communication that A can engage in is bounded
by its running time.

104

other communication Pa might be engaging in. In our experiment, we keep track of
the progress of the interactions of every pair of interacting verifiers and provers. Note
that the adversary must output a local time r which is later than all previous local
times output for Pa. If this is not the case, the adversary's message is ignored. Let
mi = request.

(c) If request = (send, Pa, Vb, r), this indicates that prover Pa must send its next message
to Vb at the prover's local time T. (Again, if Pa or Vb have not appeared before, then a
new prover or verifier is created in our experiment.) In this case, we obtain the message
m that Pa would send next to Vb in its interaction. Note that it could be that Pa would
send no message - either because it is not Pa's turn in the interaction, or because
Pa refuses to do so because of some rule in the protocol. Again, the adversary must
output a local time T which is later than all previous local times output for Pa. Let
Mi = (request, m).

(d) If request = halt, then stop.

Furthermore, we denote by (P ++ A) (x) the random variable which represents the view of A in
its interaction with P. Namely, this variable consists of the private input PA to A together with its
random coins rA, along with all mi.

For an adversary A to satisfy a weak synchronization (a, #)-constraint, it must always output
local times in an order that respects the constraint. For example, such an adversary could not output
the following sequence of requests:

1. (receive, P1, V1, m,r = 0)

2. (receive, P2 , V2 , m, T = 0)

3. (send, P2, V2 ,T = 3)

4. (send, P1, V1, T = a)

This would violate the constraint, since it implies that local time / elapsed on P2 's clock while less
than a local time elapsed on Pi's clock.

We are now ready to define concurrent zero-knowledge proofs and arguments:

Definition 6.2.5 Let (P, V) be an interactive proof system (resp. argument) with negligible com-
pleteness and soundness errors, for a promise problem H.

" (P, V) is said to be a concurrent (black-box) statistical zero-knowledge proof system (resp.
argument) if there exists a probabilistic expected polynomial-time4 (oracle machine) simula-
tor S and a negligible function a (called the simulator deviation) such that for every non-
uniform probabilistic polynomial-time adversary A,

For allx E Hy, we have |ISA(x) - (P ++ A)(x| < a(|x|). (6.1)

" A concurrent perfect zero-knowledge proof system (resp. argument) is defined in the same
way, except that Condition (6.1) is replaced by || SA (x) - (P ++ A) (x) = 0.

4 For concurrent zero knowledge, we take the slightly more liberal definition and allow the simulation to be expected
polynomial time instead of strict polynomial time. Unlike for standard 2-party statistical zero-knowledge proofs, we do
not know if the definitions with expected and strict polynomial-time simulators are equivalent.

105

e A concurrent computational zero-knowledge proof system (resp. argument) replaces Condi-
tion (6.1) with the requirement that the ensembles { SA(x)}xen, and (P ++ A)(x)}xany are

computationally indistinguishable ensembles of distributions.

Note that here, for an oracle machine S to be probabilistic polynomial-time (resp. probabilistic
expected polynomial-time), we mean that for every non-uniform probabilistic polynomial-time ma-
chine A, there exists a polynomial t(-) such that for all x, we have that SA(x) halts in time t(IxI)
(resp. expected time t(jxI)). The point here is that the polynomial time bound for S can depend on
the polynomial bound of the machine A that S makes oracle queries to. This is necessary for the
manner in which we have defined the adversary's interactions, since the number of total interactions
that the adversary engages in depends on the adversary's running time. Therefore, the running time
of SA must depend on the running time of A.

We can also define a notion of weak concurrent zero knowledge, similar to how we defined weak
zero knowledge for the standard 2-party case in Chapter 3:

Definition 6.2.6 Let (P, V) be an interactive proof system (resp. argument) with negligible com-
pleteness and soundness errors, for a promise problem HI.

" (P, V) is said to be a concurrent weak (black-box) statistical zero-knowledge proof system
(resp. argument) if for every polynomial p, there exists a probabilistic polynomial-time5

(oracle machine) simulator S such that for every non-uniform probabilistic polynomial-time
adversary A,

For all sufficiently long x E ly, we have |SA(x) - (P ++ A)(x)| 1/p(Ix|). (6.2)

" A concurrent weak computational zero-knowledge proof system (resp. argument) iffor every
polynomial p, there exists a probabilistic polynomial-time (oracle machine) simulation S such
that for every non-uniform probabilistic polynomial-time adversary A, and every non-uniform
distinguisher D, for all sufficiently long x E fly, we have

IPr [D (SA (x)) = 1] - Pr [D ((P ++ A)(x)) = 1]j 1/p(IxI) (6.3)

6.2.4 Remarks On Our Model

In this section, we make a series of remarks concerning our model:

* "Rewinding" and Concurrency. In the definition of black-box zero knowledge, we assume
that the simulator has oracle access to the adversary, which allows it to reset the state of the
adversary (which has been called "rewinding the verifier" in the literature) and control the
randomness used by the adversary. In a distributed setting with concurrency, however, this
assumption that the state of the adversary can be reset to earlier states may be difficult to

interpret. For example, consider an adversary that makes use of a concurrent interaction with

a third party to select its responses. In this situation, while it seems reasonable to expect that

the simulator can reset the adversary machine, it may not be reasonable to expect that the

simulator can reset the state of the interacting third party. We make several observations here:

5For concurrent weak zero knowledge, we can always restrict to strict polynomial time since the running time can
depend on the threshold polynomial p.

106

1. In some sense, difficulty here is unavoidable, since the adversary could indeed be ob-
taining knowledge from the third party, depending on the protocol being carried out by
the third party and the adversary. If the third party is engaging in the concurrent zero
knowledge protocol as a prover and is assumed to be honest, then it fits in the model as
another prover.

2. On the other hand, we may consider the entire complex of parties that are concurrently
interacting with the provers as being one large probabilistic polynomial-time system (as-
suming there are only a polynomial number of concurrently interacting parties). Since
this entire system can be taken together as a machine whose state can be reset, proving
that a protocol is concurrent zero knowledge implies that it "leaks no knowledge to the
outside world", since it is zero knowledge with respect to the entire complex of external
parties.

3. This issue does cause problems in situations where black-box simulability is used to
establish deniability - that is, where one tries to argue that because one can generate
simulated transcripts of the protocol, one should not trust transcripts of purported exe-
cutions of the protocol as evidence that the protocol took place. If however, a user uses
a concurrent interaction with a trusted third party to select its responses in the protocol
that is supposed to be deniable, then the argument of deniability breaks down, since the
user cannot reset the state of the third party as may be needed to produce a simulation.

4. This issue arises with clocks, as well, as discussed below.

" Timing As Information. In our adversary model, we give the adversary total adaptive con-
trol over all local clocks in the system, subject only to a weak synchronization constraint.
This choice allows us to guarantee security against the widest possible array of interleavings,
which an adversary could potentially force upon the system6 . However, because we give con-
trol of the prover's message timings to the adversary, our model fails to capture the possibility
that the timing of a prover's message itself could yield potentially damaging information to
the adversary. Indeed, the problem of using timing information to attack systems has been
discussed in the work of Kocher [Koc96], along with methods to minimize the risk of infor-
mation loss through timing information. However, because of the various engineering issues
involved in protecting against timing-based knowledge, an investigation of this important is-
sue is beyond the scope of this thesis. For more information, see [Koc96].

" Clocks. Another byproduct of the adversary's total control over local clocks is the implicit
assumption that local clocks are indeed local - that a system's measurement of time is deter-
mined as a result of local computations, as opposed to external inputs. As discussed above,
the need for resettability in simulation gives rise to difficulties if there are interactions with
third parties. For example, if the clock of a system is provided by signed messages by a
trusted third party, this will cause problems in simulation, since the third party cannot be reset
to earlier times. This situation is ruled out in our model since we assume that the local clock
times are dictated by the adversary machine. Note that in our model, the simulator does not
have direct control over clocks in the system, but only indirect control through the ability to
reset the state of the adversary, which controls the clocks.

" Soundness. In this thesis, we only consider soundness in the sense of validity - we insist
that no prover should be able to prove false assertions. We note here that this is in contrast to

6 For example, an adversary may find ways to manipulate the network or loads on the prover's machine in order to
manipulate timings.

107

proofs of knowledge, where the prover tries to prove that it knows some information, rather
than simply proving that some string x is a YES instance of a promise problem. Because we
deal only with validity, concurrency issues do not arise in proving soundness, since we may
consider all interacting parties together as one probabilistic polynomial-time machine (here
we assume that there are at most a polynomial number of parties interacting that can effect
any single prover). Thus, if we prove that no probabilistic polynomial-time machine acting
as prover can prove a false assertion (which is the standard 2-party definition of soundness
for computationally-sound proofs), this implies that no false assertions can be proved even
in a distributed environment with concurrency. Again, here we do not deal with issues of
impersonation or misrepresenting one's knowledge. Such issues are addressed in the work of
Dolev, Dwork, and Naor [DDN91].

" Completeness. The addition of timing constraints adds some potential threats to the com-
pleteness guarantee in protocols. In particular, a time limit may expire due to no fault of the
party required to produce a timely message. This introduces some unavoidable non-locality
depending on the overall network, and also potentially creates a vulnerability to certain kinds
of denial of service attacks, where an adversary slows down the network to deny service. Nev-
ertheless, time limits have proven useful and important in secure implementations of many
cryptographic protocols (see for instance, [Sch96]) for other reasons, and are widely used.
One must take care in selecting the time limits to maintain reasonable expectations on the
computation of the parties involved as well as the status of the network.

" Hijacked Sessions. Another issue that can arise in the context of distributed environments
is the problem of hijacked sessions, where an adversary disrupts one user's communication
and assumes that user's identity. We do not address this problem in any detail. We note
that many such abuses can be guarded against without assuming any infrastructure by having
parties engage in secure key agreement protocols before communicating, and authenticating
all messages with the agreed key. Further protection may be possible assuming a public key
infrastructure and authenticated channels.

" Timing Constraints and Composition of Protocols. While the timing constraints that we
propose (delays and time limits) allow for considerable flexibility, one must nevertheless be
careful when designing protocols to ensure that the timing constraints remain reasonable.
Although in this thesis we only discuss using these timing constraints to achieve zero knowl-
edge, it may be possible to use such timing constraints to provide other types of security.
Thus, when building protocols out of many components that use timing constraints, one must
ensure that all the timing constraints taken together do not conflict with each other.

6.2.5 Commitment Schemes

Commitment schemes are a crucial ingredient in many of our protocols. They are used to enable a

party to commit itself to a value while keeping it secret. Later on, a commitment may be "opened"

to reveal the value - and it should be guaranteed that a given commitment can only be "opened" to

a single value.
In other words, loosely speaking, a bit commitment scheme is a protocol between two parties -

a sender S and a receiver R - that has two phases: a "commitment phase," in which S commits to

a value; and an "opening phase," where S reveals to R the value that it committed to. This protocol

must enjoy two basic properties:

108

" Secrecy: After the "commitment phase," the receiver R should not gain any knowledge about
the committed value, even if R tries to cheat.

* Binding: After a successful "commitment phase," there can be at most one value that S can
successfully open the commitment as in the "opening phase," even if S tries to cheat.

We will explore many variations on the notion of a commitment scheme, but they will all fall
into the general framework outlined above. We now discuss specific types of commitment schemes.

When formalizing either the secrecy or the binding properties mentioned above, we can choose
to impose either a computational or statistical7 standard of security, much as we did when defining
zero knowledge. It is easy to show that no commitment protocol can exist that has statistical guaran-
tees for both secrecy and binding, so we must consider a tradeoff between these two requirements.
Thus, we consider both Computationally Secret Statistically Binding (CSSB) commitment schemes
as well as Statistically Secret Computationally Binding (SSCB) commitment schemes.

6.2.6 Computationally Secret Statistically Binding (CSSB) Commitment

This is the more commonly considered type of commitment scheme, where the committer is com-
mitted to exactly one value, but secrecy is only guaranteed in a computational sense. A formal
definition follows, following [Gol95]8 .

Definition 6.2.7 (Computationally Secret Statistically Binding (CSSB) bit commitment scheme):
A CSSB bit commitment scheme is a tuple of probabilistic polynomial-time machines, denoted
(Si , C, 0, R 1, V), where (SI, RI) are a pair of interactive machines. Informally, Si and R 1 corre-
spond to an initialization protocol between sender and receiver C is the machine which produces
commitment strings, 0 is the machine which produces "openings," and V is the machine which
verifies that an opening is valid. These machines together describe a CSSB bit commitment scheme

if.

" Input/Output Specification: The common input to the initialization protocol (Si , RI) is an in-
teger k presented in unary, serving the role of a security parameter. This interaction produces
a private output for the sender ps and a private output for the receiver PR. We will denote
by View (SI, RI) the random coins used by R1 in the interaction together with all messages
received by R 1 from Si. The commitment machine C takes as input ps together with a bit
b E {0, 1} to be committed to, and outputs the commitment string c to be sent to the receiver.
The opening machine 0 takes as input ps and the random string rc used by the commitment
machine C, along with a bit b' E {0, 1}, and produces an opening string o. Finally, the veri-
fication machine V takes as input the initial private output for the receiver PR together with
a commitment string c, a bit b", and an opening string o, and outputs 1 if the verifier accepts
the opening as the bit b", and 0 otherwise.

* Completeness: For all b E {0, 1}, the probability that V(PR, c, b, o) = 1 is 1, where PR
and Ps are produced by (SI, RI), while c = C(ps, b) using random coins rc, and o =

O(ps, rc, b).

7 For simplicity in application, here when considering a statistical security standard for secrecy, we will insist on

perfect statistical security. See below for formal definitions.
8We give a somewhat less general definition, where we insist that after some initializing interaction, the commitment

and opening process are both non-interactive.

109

" Secrecy: The receiver (even when deviating from the protocol) cannot distinguish a commit-
ment to 0 from a commitment to 1 in a computational sense: Namely, for every probabilistic
polynomial-time machine R* interacting with S1, the ensembles (View (SI, R*)(I k), C(ps, 0))
and (View (SI, R*) (Ik), C(PS, 1)) (indexed by k) are computationally indistinguishable.

" Binding: The sender (even when deviating from the protocol) cannot produce a commitment
that can be opened as both a 0 and a 1, even by an infinitely powerful party. Namely, for
every (arbitrarily powerful) cheating sender machines Si and C*, there exists a negligible
function a(k) such that the probability that there exist two openings oo and ol such that

V (pR, c,0, o0) = 1 and V (pR, c, 1, 01) = 1 is at most a(k). Here, PR and ps are produced
by (Sj, R1), while c = C*(ps).

There are two simple example of CSSB bit commitment schemes that we will use. Full proofs
of security for both can be found in [Gol95].

The first assumes the existence of a 1-1 one-way function f together with a hard-core predicate
for it, denoted B. (We assume that these functions are secure against non-uniform probabilistic
expected polynomial-time machines.)

Construction 6.2.1 (simple bit commitment): Let f : {0, 1}* {0, 1* be a 1-1 one-way func-
tion, and B : {0, 1* -+ {0, 1} be a hard-core predicate for f. Then we consider the following
construction of a CSSB bit commitment scheme:

1. The initialization phase is trivial.

2. C(b) = (f (s), B(s) E b) where s is chosen uniformly from {0, 1 }k. Note s denotes the
random coins used by C.

3. O(s, b) = s. To open, the committer simply reveals its coins.

4. V (c = (x, r), b, o) = 1 iff f (o) = x and B(o) E b = T. The verification simply checks to see
if the commitment was created according to the rules of the protocol.

This construction in fact achieves perfect binding, since by the injectivity of f, no commitment string
can be a commitment to both 0 and 1.

We also recall another construction, due to [Nao91], which can be based on any one-way func-
tion (a proof of security for this scheme is also given in [Gol95]). Using the results of [HILL],
we know that one-way functions imply the existence of pseudo-random generators. We use such
generators in the construction:

Construction 6.2.2 (bit commitment from any one-way function): Let G : {0, 1}* {0, 1} * be a

pseudo-random generator where |G(s)I = 3 - Is| for all s E {0, 11*. Then consider the following

construction of a CSSB bit commitment scheme:

1. In the initialization phase, R1 simply uniformly selects r G {0, 1 }3k and sends it to SI. The

private outputs of both parties is this random string r.

2. C(r, b) chooses s G {0, 1 }k, and outputs G(s) if b = 0 and G(s) D r if b = 1. Note that the

random coins of C are this seed s.

3. O(r, s, b) = s. To open the commitment, the committer reveals his seed s.

4. V(r,c,b,o) accepts if b =0 and G(o) = c or if b= 1 and G(o) ED r = c).

110

Note that, in this construction, there is a probability of at most 2 -k that r might be chosen by
R1 to be equal to G(s) D G(s') for some s, s' E {O, 1 }k. In this case, note that by choosing the
commitment string c = G(s), the sender could open as both a 0 (by sending the opening o = s) as
well as a 1 (by sending the opening o = s').

We note that to commit to a string, one can simply commit bit-by-bit to each bit in the string.
Note however, that one needs to obtain a new random string r for each bit to be committed. This
can be done initially all at once and used in subsequent commitments.

6.2.7 Statistically Secret Computationally Binding (SSCB) Commitment

We now discuss commitment schemes in which the secrecy requirement is made perfectly secure
- the commitment contains absolutely no information about what is being committed to - while
the binding nature of the commitment only holds in a computational sense. Note that, while for
CSSB commitment schemes, we gave a definition only for commitment to a single bit, for SSCB
commitment schemes, we will give a definition for arbitrarily long strings. We will also exhibit a
SSCB construction which is more efficient for long strings than a bit-by-bit commitment would be.

Definition 6.2.8 (Statistically Secret Computationally Binding (SSCB) string commitment scheme):
A SSCB string commitment scheme is a tuple of probabilistic polynomial-time machines, denoted
(Si , K, 0, R 1 , V), where (SI, RI) are a pair of interactive machines. Informally, Si and R1 corre-
spond to an initialization protocol between sender and receiver K is the machine which produces
commitment strings, 0 is the machine which produces "openings," and V is the machine which ver-
ifies that an opening is valid. These machines together describe a SSCB string commitment scheme

if:

" Input/Output Specification: The common input to the initialization protocol (S1 , RI) is an in-
teger k presented in unary, serving the role of a security parameter This interaction produces
a private output for the sender ps and a private output for the receiver PR. We will denote
by View (SI, RI) the random coins used by R 1 in the interaction together with all messages
received by RI from Si. The commitment machine K takes as input ps together with a string
s E {0, 1 }k to be committed to, and outputs the commitment string c to be sent to the receiver
The opening machine 0 takes as input ps and the random string riK used by the commitment
machine K, along with a string s' E {0, 1 }k, and produces an opening string o. Finally, the
verification machine V takes as input the initial private output for the receiver PR together
with a commitment string c, a string s", and an opening string o, and outputs 1 if the verifier
accepts the opening as the string s", and 0 otherwise.

" Completeness: For all s E {0, 1 }k, the probability that V(PR, C, s,o) = 1 is 1, where PR
and ps are produced by (SI, RI), while c = K(ps, s) using random coins rK, and o =

O(ps, rK, s).

* Secrecy: The commitments contain no information whatsoever about the string being com-
mitted to: Namely, for every probabilistic polynomial-time machine R* interacting with SI,
for every valid run of (SI, R*) producing private inputs PR and ps, we have that the distri-
bution of outputs produced by K(ps, s) is completely independent of S. In other words, for
every s, s' E {, 1 }k, the distribution produced by K(ps, s) is identical to the distribution
produced by K(ps, s').

111

* Binding: The sender (even when deviating from the protocol) cannot produce a commitment
that it can later open as both a 0 and a 1, assuming the sender is computationally limited.
Namely, for every probabilistic polynomial-time cheating sender machines Si and M*, there
exists a negligible function a (k) such that the probability that M(ps) = (c, s, o, 1 , 01)
such that so 7 81, V(PR , C, s1 00) = 1 and V(PR, C, s , o') = 1 is at most a(k). Here, pR
and ps are produced by (S,, R 1).

We now give an example of an SSCB string commitment scheme based on the Discrete Log-
arithm Problem (DLP) over prime finite fields, due to [CvHP91]. First, let us identify the specific
assumption we will make:

Assumption 6.2.1 (Discrete Logarithm Assumption (DLA)): Consider a generation algorithm

GDL which does the following: On input 1k, it uniformly selects a prime q between 2 k + 1 and

2 k+1 (by picking random numbers and testing for primality9 until it finds a prime). It then tests

if p = 2q + 1 is also prime; if not then this process is repeated until one is found. We make the

number-theoretic assumption that primes of this form have sufficient density to ensure that this pro-
cess will terminate in time that is expected to be polynomial in k. Note that the multiplicative group

Z* contains exactly p - 1 = 2q elements. Therefore it has a unique subgroup Q of size q. Random

elements g : 1 are chosen in Z* until one is found that satisfies gq = 1 mod p (note that this holds

for at least q - 1 choices of g). Then g must generate the subgroup Q. A random number x C 7Zq is

chosen, and h = gx mod p is thus set to be a random element of Q. Finally GDL (1k) outputs the

tuple (p, g, h, x).

Then we assume that for every non-uniform probabilistic expected polynomial-time machine M,
there exists a negligible function a(.) such that:

Pr [h = gM(pgh) mod p] < a(k)

where (p, g, h,x) +- GDL(1k).

Remark 6.2.1 Note that we need not insist that p have the form 2q + 1, although it is generally
believed that the DLP is hardest for primes of this form. For further discussion, see [Gol95].

We now return to the construction of a SSCB string commitment scheme based on the DLP:

Construction 6.2.3 (SSCB string commitment from DLP):

1. In the initialization phase, R 1 runs GDL to obtain (p, g, h, x). The values p, g, and h are sent

to S1 . The private output of Si are these values, while the private output of R 1 are all four

values.

2. K(p, g, h, s) = gr - hS mod p, where r is chosen uniformly from Zq, and s is interpreted as a

number between 0 and 2 k < q. Note that r is the randomness used by K.

3. O(p, g, h, r, s) = (r, s). To open the commitment, the committer reveals the exponent r and

the string s.

4. The verification procedure, given the commitment c and the opening (r, s) accepts if indeed
c = gr - h' mod p.

9 For more information on Primality testing algorithms, see [GB99].

112

Since this scheme is not very well known and crucial to several of our constructions, we will
prove that it is indeed a SSCB commitment scheme, assuming the Discrete Logarithm Assumption
above:
Proof: Clearly, the completeness condition is satisfied.

To see why Perfect Statistical Secrecy holds, notice that for any value of s, the distribution
K(p, g, h, s) = g()h' is uniform over Q. So indeed, the commitment string reveals no information
whatsoever about the string s being committed to.

To see why the sender is nevertheless bound computationally, consider any probabilistic
polynomial-time machine M which violated the Binding constraint. Note that the input to M is
(p, g, h) from the output of GDL (1k). Suppose M outputs (c, so, ro, s', r') such that so : s1 , and
yet c = grO hs0 = gr' hs1 mod p. Now, so : s1 implies r 0 : r1 mod q. Then, in fact, we have
gror = hs -s0 mod p, and hence h = gy mod p, where we compute y = mod q. Thus,

s -S
from M's output we can efficiently compute a y E Zq such that h = gY. By the DLA, we know this
can happen with at most negligible probability, which completes our proof. 0

Remark 6.2.2 In fact, the DLP-based construction given above has an addition "trapdoor" property
that will be crucial to some of our protocols: This is the property that, if the committer learns x,
then in fact it would be able to open any commitment to any desired value. Note again that the
distribution of commitments is totally independent of the string s being committed to. Suppose a
commitment sent was c = grhs, where rERZq. Now, for any s', we know c = g(r-(s'-s)x)hs'.
Furthermore, for any fixed s, s' we have that (r - (s' - s)x) mod q is distributed uniformly in Zq.
Thus, if the sender knows x, the sender can decommit any commitment to an arbitrarily selected
value s' in a manner perfectly indistinguishable from a honest commitment to S'.

6.3 Weak Concurrent Zero-Knowledge Proofs for NP

In this section, we show how adding timing constraints to the 5-round computational zero-
knowledge proof system for NP first suggested by [GMW91], and presented and analyzed rig-
orously by [GKa96], allow us to achieve weak concurrent zero knowledge (though not zero knowl-
edge). The intuition provided in this section will be useful in the next section, where we will see
how to achieve full concurrent zero knowledge in the context of computationally-sound proofs. For
concreteness and consistency with the rest of this thesis, we will base the protocol on the Discrete
Logarithm Assumption, although in fact any claw-free permutation family suffices (for further in-
formation, see [Gol95]). The protocol given by [GKa96] was based on the NP-complete problem
GRAPH 3-COLORABILITY. Here we present this protocol adapted to the NP-complete problem
DIRECTED GRAPH HAMILTONICITY, based on the basic zero-knowledge proof due to Blum [Bl].
We recall the problem:

DIRECTED GRAPH HAMILTONICITY:

Instance: A directed graph G.
Question: Does there exist a Hamiltonian cycle in G, i.e. a cycle containing every node in G
exactly once?

The protocol makes use of both a Statistically Secret Computationally Binding (SSCB) com-
mitment scheme, as well as a Computationally Secret Statistically Binding (CSSB) commitment
scheme. We now describe the protocol:

113

Protocol 6.3.1 Weak concurrent zero-knowledge proof system for DIRECTED HAMILTONIAN
CYCLE with timing.
A directed graph G is the common input to both parties. The prover is assumed to know a Hamilto-

nian cycle w in G.

1. The prover and verifier interact to set up a SSCB commitment scheme (K) for use by the
verifier as well as a CSSB commitment scheme (C) for use by the prover. Note that this step
may be interleaved with the steps described below, as long as the commitment schemes are
ready before first used.

2. The verifier picks n random query bits q1, . . . , qn. The verifier sends to the prover a commit-
ment using the SSCB (K) commitment scheme to these bits q1, . . . , qn.

3. The prover picks n random permutations w1, . . . , 7rn on the nodes of G. It then sends to

the verifier commitments using the CSSB (C) commitment scheme to all the entries of the
adjacency matrices of the permuted graphs ri1(G), ... , 2 (G).

4. The verifier then opens the commitments it sent in Step 2 to reveal the query bits q1,... , qn.
The prover upon receipt, verifies correctness of the openings. (If any opening is invalid, the
prover halts.)

5. In the final step, the prover does the following: For i = 1, . . . , n:

" If qi = 0, the prover opens its commitments from Step 3 to all the entries of the adja-
cency matrix of -rir(G), and also sends a description of the permutation ri. The verifier,
upon receipt, verifies the correctness of the openings, and also verifies that the revealed
adjacency matrix actually is the adjacency matrix of-wi (G). If either of these conditions
fail to hold, the verifier rejects the proof

" If qi = 1, the prover opens its commitments only to those entries in the adjacency

matrix of 1i (G) that correspond to edges in the Hamiltonian cycle ir (w). The verifier

upon receipt, verifies the correctness of the openings, and also verifies that the revealed

entries of 7ri (G) do indeed form a Hamiltonian cycle. If either of these conditions fail
to hold, the verifier rejects the proof

Timing Constraints:

1. The prover must receive the verifier's Step 4 message within a (local) time since the receipt
of the verifier's Step 2 message. Otherwise the prover aborts.

2. The prover delays sending the Step 5 message until 3 (local) time has elapsed since the receipt

of the verifier's Step 4 message.

Note again that we make the weak synchronization assumption for the (arbitrary) pair of times

(a, #) used in the protocol. For completeness of the protocol, we must further assume that all

necessary communication (Steps 3-4) can occur in time less than a. Recall that under the Discrete

Logarithm Assumption, there exists an SSCB commitment scheme (described in Construction 6.2.3)

requiring a single initialization message from the receiver to the sender (in this case, prover to veri-

fier). Since the Discrete Logarithm Assumption also gives a one-to-one one-way function, this also

implies that the simple CSSB commitment scheme described in Construction 6.2.1 exists, which

requires no initialization. Thus using these commitment schemes, the above protocol requires 5

rounds of communication.
We can now establish:

114

Theorem 6.3.1 Protocol 6.3.1 is a weak computational concurrent zero-knowledge proof system
for DIRECTED GRAPH HAMILTONICITY, with soundness error 2" + a(n), where a(-) is a neg-
ligible function 1, assuming the existence of CSSB and SSCB commitment schemes and the weak
synchronization assumption for (a, 0).

Proof: We must argue completeness, soundness, and weak concurrent zero knowledge. Complete-
ness follows by inspection.

Soundness. For soundness, we assume that G does not have a Hamiltonian cycle, and we will
show that the probability that any prover P* can successfully complete the protocol is at most
2- + a(n), for some negligible function a(-).

Now, conditioned on any particular Step 2 commitments by the verifier, because of perfect
secrecy of the verifier's SSCB commitment scheme, the distribution of the query bits q1, ... , qn
remains uniform. Then we consider the prover's Step 3 commitment. By the statistical binding
property of the CSSB commitment scheme, we know there is at most probability a(n), where a(.)
is some negligible function, that any of the prover's commitments are not absolutely binding. Thus
we may condition on this fact and lose only an a(n) probability mass. Hence, we may speak of the
prover's commitments defining the adjacency matrices of graphs H 1 , . . . , Hn (where it can also be
the case that some of these graphs are invalid, by which we mean that the prover's commitment to
some entry of the adjacency matrix could not be opened as either a 0 or a 1).

Now, for each i = 1, ... , n, consider the following: Either Hi is isomorphic to G, or it is not
(here we include the case that Hi is invalid):
Case 1: Hi is isomorphic to G. Then Hi cannot contain a Hamiltonian cycle. Therefore, if qi = 1,
the prover will not be able to respond in Step 5 in any way that will make the verifier accept.
Case 2: Hi is not isomorphic to G. In this case, if qi = 0, the prover will not be able to respond in
Step 5 in any way that will make the verifier accept.

Since conditioned on all previous messages, the each bit qi revealed in Step 4 is uniform, the
prover can fail to satisfy the verifier with independent probability 1/2 for each i. Therefore, the
probability that the prover will cause the verifier to accept is at most 2-. Thus, factoring the prob-
ability the prover's commitments are not binding, the overall probability of the prover convincing
the verifier to accept is as most a(n) + 2-n, as claimed.

Weak concurrent zero-knowledge. Before we argue that the protocol is weak concurrent zero-
knowledge, we will first informally argue that the protocol is zero knowledge in the 2-party case, in
the special case in which we are assured that the verifier will always provide valid commitments in
Step 2 and always open them in a valid and timely manner in Step 4. This argument proceeds along
the lines of the one given in [GKa96], although it is much simpler because of the assumption we
make on the verifier's behavior.

Intuition - ordinary zero knowledge in a special case. 1 We must simulate the interaction
of the prover with any given verifier, without knowing the location of a Hamiltonian cycle in the

'0 The negligible a contribution to the soundness comes only from the probability that the CSSB (C) commitment used
by the Prover turns out not to be binding. If the Prover's commitment scheme has perfect binding (such as Construc-
tion 6.2.1), then a(.) = 0)

1 This discussion is largely repeated from the introduction to this chapter.

115

graph. The key observation here is that if the simulator knew what the verifier's query bits would be
in advance, then it would be easy to simulate the protocol:

Suppose the simulator "knew" the verifier would set qi = 0 (and therefore check that the prover

reveals a permutation of the graph in Step 5). In that case, the simulator can simply follow the

prover's protocol, namely choose a random permutation 7ri and commit to the entries of the adja-

cency matrix of iri (G) in Step 3, and then reveal everything in Step 5.
Suppose instead that the simulator "knew" the verifier would set qi = 1 (and therefore check

that the prover reveals a random n-node cycle in Step 5). In this case, the simulator can, in Step 3,
simply commit to a matrix of all l's, corresponding to the adjacency matrix of the graph that has

a directed edge in both directions between every pair of nodes (which we will call the complete

directed graph). Then in Step 5, the simulator can simply pick a random Hamiltonian cycle in

the complete directed graph and reveal it. Because the commitments to the other entries of the

matrix are never opened, the (computationally bounded) verifier cannot distinguish them from the

commitments it would have encountered in a real interaction with the prover.

Of course, the simulator does not actually know the verifier's queries in advance. However, also
note that the discussion above did not make use of the fact that the verifier commits to its queries

in advance, in Step 2. We can exploit this to create a situation where the simulator discovers the
verifier's queries before it must produce the simulated Step 3 commitments that must be output.

The simulator begins by initializing the verifier, engaging in the Step 1 setup of the commitment

schemes, and receiving the verifier's Step 2 commitments to its queries. At this point, the simulator
saves the state of the verifier for later use.

The simulator continues by simulating the Step 3 commitments of the prover by simply follow-
ing the prover's protocol (note that the prover does not require any special information until Step 5).
In Step 4, the verifier reveals her query bits q1, . . . , qn. At this point, the simulator restores the

state of the verifier to just after Step 2, when the verifier committed itself to the query bits. Now,
the simulator has achieved the situation we desired - it knows what the query bits of the verifier
will be. When the verifier submits its Step 4 openings, it must open the queries to the same values

q1, . . . , qn, since it was committed to them by its Step 2 message. (If the computationally limited
verifier were able to open its commitments differently with noticeable probability, this would lead

to a contradiction of the binding requirements of the SSCB commitment scheme the verifier uses.)
Thus, the simulator can complete the simulation using the strategy discussed earlier.

The crucial point here is that the simulator was able to "extract" the verifier's query bits, then
"rewind" the simulation to an earlier point just after the verifier had committed itself, and then
complete the simulation using knowledge of the verifier's queries.

Intuition - the concurrent scenario. This simulation strategy for the protocol, without timing

constraints, unfortunately fails in the concurrent scenario, where we must simulate the interaction

of a set of provers with many colluding verifiers acting concurrently. This failure occurs essentially

because while the simulator is waiting to extract the query bits of one verifier, another verifier may

appear and insist on completing the entire interaction. In order to do this, the simulator will need

to extract the new verifier's query bits, which could depend on the particular Step 3 message that

the simulator producedfor the first verifier. In this case, when the simulator finishes extracting the

query bits of the first verifier and then changes the Step 3 message sent to it, the query bits of the

second verifier could change, which would mean that the entire simulation of the second verifier

would have to be redone. 12

1
2 For more discussion on this, see the introduction to this chapter.

116

We solve this problem using timing constraints. The timing constraints of our protocol, together
with the weak synchronization assumption, imply the following extremely useful interleaving con-
straint on the adversary:
Interleaving Constraint:
For any two verifiers V1 and V2, if V2 provides its Step 4 message after (in real time) V1 provides its
Step 2 commitments, then it must be that the Step 5 response to V2 will not need to be sent before V1

provides its Step 4 message.
This is crucial to us, since any interaction can be simulated perfectly up until Step 5 - and

we need the Step 4 message of the verifier to discover its queries. The simulation proceeds by
simulating each interaction perfectly until it reaches Step 4, at which point it resets back and changes
its Step 3 commitments. Because of the interleaving constraint, as we continue this process one
verifier at a time, we will never encounter the situation where we must provide a Step 5 message for
any verifier whose queries we have not already discovered and used to prepare Step 3 commitments.

This would suffice to establish full concurrent zero knowledge, were it not for the simplifying
assumption we made regarding the verifiers. In reality, the verifiers controlled by the adversary need
not provide Step 4 messages in a timely or correct fashion. Unfortunately, this causes a dilemma -
if a verifier V refuses to cooperate at Step 4, what can we do? If we simply ignore V and move on,
later we may need to reset back to an earlier time in the simulation because of another verifier, and
this time V may decide to provide a timely and correct Step 4 message. Then we must reset again,
and we wind up in a very similar situation to the one we started in. In later sections, we will see
how to design protocols in a different manner to deal with this problem (in computationally-sound
proofs). For this protocol, however, we can prove only weak concurrent zero knowledge. This is
achieved by trying to get a valid Step 4 message from each verifier repeatedly, but only a fixed
(polynomial) number of times. If we succeed, then we proceed with the simulation. If the verifier
never cooperates, then we assume that the verifier will never provide a valid Step 4 message. If the
verifier later does provide such a message, we abort. Unfortunately, this can happen with inverse
polynomial probability, which is why we are only able to prove weak zero knowledge.

Proof sketch of weak concurrent zero knowledge - the simulator. Let the adversary A be
bounded by time t(x I). Let 1/q(|x) be the simulator deviation allowed (recall in weak zero
knowledge, one constructs for every polynomial q(.) a simulator that achieves simulator devia-
tion 1/q(JxJ)). For notational convenience, we will omit the dependence on JxI and simply write t
for the time bound of A, and q for the inverse of the simulator deviation we are aiming for.

The simulator's process will be very similar to the simulator for the ordinary parallel DHC pro-
tocol. We will call a verifier V's queries extracted once we discover V's Step 4 message revealing
its queries. After we reset that verifier and are ready to change the Step 3 commitments as specified
above to be appropriate for the queries we have found, we call the verifier neutralized. Once a veri-
fier is neutralized, as noted above, all future messages exchanged with it (in its current interaction)
are easy to simulate. As noted above, the simulator will be making judgements about whether a
verifier will ever provide a valid and timely Step 4 message. If the simulator decides that a verifier
will never provide a valid and timely Step 4 message, then we call the verifier lazy. The simulation
will also have a notion of a current or active verifier, which will be the verifier that the simulator is
trying to neutralize or declare lazy.

In the simulation, we will maintain two important invariants:

* The simulator will never reset the interaction with A back to a point before the Step 2 message
of the current verifier.

117

e All verifiers that provided a Step 2 message before the current verifier's Step 2 message will

be either declared lazy or be neutralized.

Clearly these invariants hold at the start of the simulation. The simulator then proceeds in the

following manner. As in the ordinary parallel protocol, for each interaction of prover and verifier

before the verifier is neutralized, until and including Step 4 the simulator simply follows the prover's

protocol exactly with that verifier. For each new verifier V that appears and provides a valid Step 2

message, the simulator makes that verifier the active verifier, saves the state of the adversary, and

executes t4 _ q trials, resetting back to this saved state at the beginning of each trial:

In each trial, the simulator proceeds following the prover's protocol exactly with V. For all

other verifiers that came after V, it does the same. For all verifiers that have been neutralized, the

simulator proceeds in the manner specified in our discussions above. Note that if a neutralized

verifier ever opens its queries in a way that is not the same as the queries extracted from it, we abort

the simulation. By the properties of the SSCB commitment scheme, we know this can occur only
with negligible probability. For all verifiers that have been declared lazy, the simulator follows the

prover's protocol. But if such a verifier ever provides a valid Step 4 message, the trial is declared a

failed trial, is not counted among the t4 - q trials, and a new trial begins. If, however, over 3 4 - q
failed trials occur, then the entire simulation is aborted. This is called a trialfailure abort. We will

of course show that the probability of this occurring is very small. If V does provide a timely and
valid Step 4 message which reveals its queries, the simulator resets back to just after V's Step 2

message, and thus V is neutralized. If V provides an invalid Step 4 message, or the time limit for

V's message runs out, we stop the trial and begin a new one.
If all t 4 . q trials end in failure, then V is declared lazy, we reset back to the saved state, and

proceed to the next verifier.
If, once we have declared a verifier lazy or neutralized it, before the next new verifier arrives, a

lazy verifier provides a valid and timely Step 4 message, then we abort the entire simulation. This

is called an output abort, since the simulation that occurs after one verifier has been neutralized or

declared lazy, but before a new verifier (if one is coming) provides a Step 2 message, is included in

the output of the simulation.
The output of the simulator is the combined set of messages from the portions of the simulation

from the very beginning, before the first active verifier was found, and that occurs after one verifier
has been neutralized or declared lazy, but before a new verifier (if one is coming) provides a Step 2
message.

Proof of weak concurrent zero knowledge - simulator analysis. Clearly, the simulator de-

scribed above runs in time polynomial in lxi, t, and q.
We now discuss the quality of the simulation. First, consider a simulator S' that acts as above,

but instead of performing t4 - q trials, it conducts as many trials as necessary to either extract the

verifier's queries, or conclude that there is no input for which the verifier will provide a valid Step 4

message. This simulator may not be polynomial-time, but by the discussions above, the output of

this simulator is certainly computationally indistinguishable from (P ++ A) (x) ".
To analyze our simulator, we compute the probability that it behaves in a manner that is ob-

servably different than S'. Note that if our simulator has failed trials fewer than 3 4 - q, this does

not affect the output and is therefore irrelevant. Also, if our simulator and S' differ in terms of the

contents of commitments that are never opened, this is by assumption not a difference that can be

13 This follows formally from hybrid arguments that are standard in cryptography. For examples, see [Gol95].

118

detected, except with negligible probability. Thus, the only differences then are trial failure aborts
and output aborts (which do not occur for S', but can in our simulator).

Consider the behavior of any verifier V, conditioned on the state of the adversary before the
trials for V. Let pv be the probability that V will provide a timely and valid Step 4 message. If

PV > 1/(4t3 - q), then the probability that the simulator does not extract the verifier's queries is:

(1 _ PV) (0-q = 2- Q(t)

On the other hand, suppose pv 1/(4t 3 - q). Suppose, in the worst case, the simulator does not
extract V's queries. In this case, the probability that V will later provide a valid and timely Step 4
message is at most 1/(4t 3 -q) + p(Ix1), where p(IxI1) denotes the amount by which the probability of
V providing a timely and valid Step 4 message can increase in the case where the adversary A sees
some CSSB commitments to matrices of all l's. We know from the security of the CSSB scheme
that p(-) is a negligible function. Therefore, without loss of generality, we can bound the probability
of V providing a valid and timely Step 4 message in the future by 1/ (2t 3

. q).
Thus, the probability of an output abort is bounded by t - 1/(2t 3 - q) < 1/(4 - q) (since there

are at most t different verifiers). The probability that more than 3t4 -q failed trials will occur at any
particular verifier's trials is bounded above by the probability that any particular V produces at least
3 3

. q valid and timely Step 4 messages out of at most 4t - q. But the expected number of times V
responds is bounded by 1/(2t 3 . q) . (4 4 - q) = 2t. The multiplicative Chernoff bound states that if
the random variable X is the sum of IID 0/1 variables, then for any 7 > 0 we have:

Pr [X > (1 + 7)E[X]] < e

Thus, the probability of a trial failure abort occurring is 2 -Q(t). Thus, adding up all the probabilities,
we find that the probability of difference in observable behavior of the simulator and the "idealized"
simulator S' is less than 1/q, as desired. 0

6.4 Concurrent Zero-Knowledge Arguments

In this section, we show how to overcome the difficulty we saw in the previous section by switching
to the context of computationally-sound proofs. We present concurrent zero-knowledge arguments
(computationally-sound proofs) for DHC. We achieve perfect zero knowledge under the Discrete
Log Assumption, and computational zero knowledge assuming only one-way functions.

We were only able to prove weak zero knowledge for the protocol from the previous section
because, in the simulation, P's Step 3 message had to be changed according to V's future response
in Step 4. This creates a dilemma for the simulator in the case where a verifier V fails to provide a
valid Step 4 message: in this case, should the simulator ignore the verifier and simply go on with the
simulation for the other verifiers, or rather should the simulator "rewind" the simulation and give
the verifier V another chance to respond?

* If the simulator chooses the latter option, to rewind and give V another chance to respond,
then we may encounter the same situation again if V still fails to provide a valid message.
How many chances should we give V? There is a clear trade-off between the running time of
the simulation and how certain we can be that V will never respond. In the previous section,
we chose to give V a fixed polynomial number of chances to respond with a valid message.
But, as we saw, this still left an inverse polynomial probability for certain verifiers that our

119

simulation would fail to see a valid Step 4 message even though the verifier would give a valid
message later on in the simulation.

* If the simulator instead chooses the first option, to ignore the verifier V and move on, then
it may happen that later, another verifier V' provides a valid Step 4 message, which forces
the simulator to "rewind" the simulation in order to change the Step 3 message to V'. At this
point, the original verifier V may decide to produce a valid Step 4 message! However, in this
case the simulator will not be prepared to answer V's challenge. Note that this is problematic
exactly because the simulator had to "travel backwards in time" to "fix" an earlier message
sent to V', at which point it became susceptible again to the whims of V.

In this section, we design new protocols to avoid this problem. In these protocols, the simulator
only needs to change future messages based on the verifier's messages, thus avoiding the problem
outlined above. For instance, in one protocol, the simulator chooses P's Step 6 response based on
the verifier's Step 5 message. Of course, if the simulator were able to determine the Step 6 response
based on a single Step 5 message of the verifier, then a cheating prover could do the same to fool
the verifier. Thus, we design the protocol such that the simulator needs to obtain two distinct Step 5
messages from the verifier in order to be able to generate a Step 6 response that the verifier will
accept.

It may seem that this simulator is no better, since it has to "travel backwards in time," as well.
But the crucial difference between this new simulation strategy and the one from the previous section
is that the simulator only needs to "rewind" the simulation in order to extract information, rather
than to change earlier messages in the simulation. Once the information is extracted, the simulator
discards the "rewinded" simulation and returns to the original simulation.

Thus, in the simulation, if a verifier V fails to provide a valid Step 5 message, the simulator can
safely ignore it and move on. If later, when dealing with another verifier V', the simulator "rewinds"
the simulation and V decides to provide a valid Step 5 message, the simulator can safely disregard
this message, since the simulator will eventually return to the original simulation in which V had
not given a valid Step 5 message. We use timing constraints to ensure that during an extraction,
the simulator will not have to provide a Step 6 response to any verifier V that provides a valid
Step 5 message during the extraction procedure. As a result, the simulator can build a transcript
step-by-step, never needing to go back to change some part of the transcript constructed up to that
point.

In the protocols we have seen up to this point, the simulations were based on the following
basic observation about Blum's original protocol described in Section 6.1.1 (Protocol 6.1.1): if the
simulator knew what the verifier's query bits would be in advance, then it would be easy to simulate
the protocol. For the approach we will take in this section, we will make use of a different, even more
basic, observation about Blum's protocol: if the simulator could open the prover's commitments to
arbitrary values, then it would be easy to simulate the protocol. This observation is obvious but
may also seem useless, since we know that commitments are supposed to be binding - one is not
supposed to be able to open commitments to any value other than the one committed to. However, as
we saw in Remark 6.2.2, there exist "trapdoor" commitment schemes, where given a trapdoor that
is ordinarily kept secret, one can open commitments to arbitrary values. Such trapdoor commitment

schemes are critical to the protocols of this section. Whereas in the previous section, the simulator
tried to "extract" the verifier's queries, in this section, the simulators will try to "extract" the trapdoor
of a commitment scheme.

120

6.4.1 Concurrent Perfect Zero-Knowledge Argument based on DLP

In the first protocol given below, we will use the SSCB (trapdoor) commitment protocol based on
the discrete logarithm problem described in Construction 6.2.3.

Protocol 6.4.1 Concurrent perfect zero-knowledge argument for D H C with timing
A directed graph G is the common input to both parties. The prover is assumed to know a Hamilto-
nian cycle w in G.

1. The verifier does the following: Choose random prime p of the form p = 2q +1 (as described
in Construction 6.2.3). Choose random g of order q in Z;. Choose random a, a' E Zq. Set
h = ga mod pv, h' = ga' mod pv. Set K = (p, g, h). Send K and h' to prover.

2. The prover picks n random permutations 71,,... ,7rn on the nodes of G. It then sends to
the verifier commitments using the K commitment scheme to all the entries of the adjacency
matrices of the permuted graphs ,r1(G), ... , 7rn(G). The prover also sends a commitment
K(rp), where rpERZq.

3. The verifier sends rVCRZq.

4. The prover opens its commitment to rp (which the verifier confirms).

5. The verifier does the following: It sets r = rv + rp mod q, and sends c = (ra + a') mod q
and a vector quer' 1R{0, 1} of queries to prover

6. In the final step, the prover checks that h' -h' = gC mod p. If this is correct, for i = 1, ... ,:

" If query = 0, the prover opens its commitments from Step 3 to all the entries of the
adjacency matrix of 7ri(G), and also sends a description of the permutation 7ri. The
verifier upon receipt, verifies the correctness of the openings, and also verifies that the
revealed adjacency matrix actually is the adjacency matrix of iri (G). If either of these
conditions fail to hold, the verifier rejects the proof

" If query = 1, the prover opens its commitments only to those entries in the adjacency
matrix of 7ri (G) that correspond to edges in the Hamiltonian cycle ri (w). The verifier
upon receipt, verifies the correctness of the openings, and also verifies that the revealed
entries of 7ri (G) do indeed form a Hamiltonian cycle. If either of these conditions fail
to hold, the verifier rejects the proof

Timing Constraints:

1. P requires the Step 5 message be received within a local time from receipt of the Step 1
message;

2. P delays the Step 6 message until at least 0 local time has elapsed since the receipt of the
verifier's Step 5 message.

For the zero knowledge guarantee of this protocol, we require that the adversary be constrained
by the (a, #)-constraint.

Theorem 6.4.1 Protocol 6.4.1 is a perfect concurrent zero-knowledge argument for DHC, assum-
ing the weak synchronization assumption for (&, /) and the Discrete Logarithm Assumption.

Proof: As usual, completeness follows by inspection.

121

Soundness. The proof relies on the fact that, if some cheating prover P* convinces V of a false

statement with non-negligible probability, then by exploring the answers to two different query
vectors (Steps 5 and 6), it is possible to obtain two different openings of a "committed" value.

Assume for the sake of contradiction that some non-uniform probabilistic polynomial time
bounded cheating P* can convince V of a false theorem with non-negligible probability p. Note
that we can assume that P* is deterministic without loss of generality, because we allow it to be
non-uniform1 4 . We argue that there exists a probabilistic polynomial time bounded M that, by
interacting with P*, can break the DLA with probability Q(p 6), which is also non-negligible.

On input p, q, g, h = ga, where g generates an order q subgroup of Z*, the machine M (which
is trying to find a) interacts with P* as follows.
Step 1. M chooses c, r ER Zq. M sends K = (p, g, h) and h' = gh-r.
Step 2. P* sends commitments using K to certain adjacency matrices, and sends a commitment
K(rp) to rp. At this point, M saves the state of P* for later use.
Step 3. M chooses rvERZq and sends it to P*.
Step 4. P* opens its commitment to rp. At this point M resets the state of P* to just after Step 2,
sets rV = r - rp mod q, and M re-sends its original Step 3 message, modified substituting the new
value of rv:
Step 3'. M sends rv = r - rp mod q. Note that since r was chosen uniformly at random,
conditioned on rp, this new value of rv is still distributed uniformly.

Assuming that P* responds to the Step 3' message, one of two things can happen: either P*

changes the way it opens its commitment to rp or not. If P* changes its opening of rp, then from
these two openings of the Step 2 commitment, M can immediately derive the discrete logarithm a.

Otherwise, the following occurs:
Step 4'. P* opens rp as before, such that r = rV + rp mod q. At this point, M saves the state of
P* for later use.
Step 5. M sends c (and note that we have arranged so that hr - h' = gC). and sends a query vector

query ER {0, 1}.
Step 6. The check that P* is supposed to do would succeed by definition of h'. P* replies to the
queries. M resets the state of P* to just after Step 4'.
Step 5'. M sends c as before. Then, M chooses a new query' ER {0, 1}" and sends querf' to P*.
Note that with overwhelming probability, qr' = quer.
Step 6. P*'s check succeeds by definition of h'. P* replies to the new queries. M now has the
reply to two different queries. If both queries were answered by P* in a manner that convinces V to
accept, and yet G does not contain a Hamiltonian cycle, it must be that P* has provided the opening
of some commitment under K (made in Step 2) to two different values. From this M can extract a.

We now analyze the probability that M succeeds in obtaining the discrete logarithm a. The
(P*, V) interaction can be viewed as a tree with probability p of success ("success" is when P*

provides messages which cause the verifier to accept). Recall that we may assume that P* is deter-

ministic. Note that M's choices of p, g, h, and h' are chosen randomly but remain fixed throughout

the interaction. Now, with probability at least p/2 over these choices (which are sent in Step 1), P*

will still have a probability of at least p/2 of convincing the verifier to accept 15 . Let us assume that

14 Thus, we can include as part of P*'s description the "best" setting for its random coins. For more discussion and
examples of this type of standard argument, see for example [Gol95].

1
5 Note that if this were not the case, it would mean that with probability (1 - p12), there would be a probability of at

most p/2 of success, while with probability p/ 2 , there is probability at most 1. But (1 - p12) - (p/2) + (p12) - 1 < p,
which is a contradiction of our assumption that P* has probability p of convincing the verifier to accept. We will use this
type of argument often in this proof.

122

we are in the good case, where P* has a probability p/2 of causing the verifier to accept conditioned
on these choices.

Then, with probability at least p/4 (over the choices of rv sent in Step 3), it must be that P*
will respond to the Step 3 message of M in a way such that P* still has a probability of p/4 of
convincing the verifier to accept conditioned on its Step 3 response (which in particular implies that
P*'s Step 4 response is well-formed and valid). Thus, the probability that M chooses two Step 3
messages (once before and once after resetting the state of P*) which lead to a state where P* still
has a p/4 chance of success is at least (p/4)2 , conditioned on being in a probability p/2 state after
the choices of p, g, h, and h'.

Assume that this is the case. At this point, M may have already succeeded in extracting a. Let
us assume that we are in the bad case, where M has not yet succeeded in learning a, i.e. that P*'s
opening of rp does not change in Step 4'. Again, note that r and c, though randomly selected, are
not changed once selected. We know that with probability p/8 over these choices, P* will have a
probability at least p/8 of still convincing the verifier to accept conditioned on these choices. Thus,
finally, the probability that M chooses two Step 5 messages to which P* responds correctly is at
least (p/8)2 . In this, case M succeeds in obtaining the discrete logarithm a. Thus, the overall
probability of extracting a is at least

P .P2 .P 2 V

2 16 8 64

minus a negligible probability of 2 that query = query' during the (P*, M) interaction.

Ordinary Zero Knowledge. Before proving concurrent zero knowledge we outline the simula-
tion technique for proving ordinary zero knowledge in the standard model, without timing. Note that
here, unlike in the protocol of the previous section, we make no simplifying assumptions on the be-
havior of the verifier. Suppose we have an arbitrary (polynomial-time) verifier V*. The (traditional)
black-box simulation for V* works as follows.
Step 1. The simulator receives the first message from V*, in which it sends the paramenters for the
commitment scheme K with trapdoor a (unknown to the simulator), along with h'. If the verifier
fails to provide a message, the simulator outputs the empty transcript and terminates. The simulator
saves the state S of V* at this point for later use.
Step 2. The simulator performs the second step exactly as an honest prover would, sending com-
mitments to permutations of the graph along with a commitment under K to rp, chosen randomly.
Step 3. The simulator receives rv from the verifier. If the verifier fails to provide a message, the
simulator outputs the transcript so far and terminates.
Step 4. Again, the simulator behaves just as the honest prover would, revealing its commitment to
rp. Note that by the fact that the Step 2 commitment to rp was truly independent of rp, and the fact
that rp was chosen randomly, r = rV + rp mod q is exactly uniformly distributed in Zq regardless
of the verifier's actions so far.
Step 5. The verifier sends c = (r - a + a') mod q, where r = rV + rp mod q, with exactly the
same conditional probability that it does in real executions (the conditioning is on the state S of
the verifier after Step 1). A valid Step 5 message is a syntactically correct message that passes
the test in Step 6, that hr - h' = gC. If the verifier sends no message or sends an invalid message,
then the simulator outputs the transcript (including the invalid Step 4 message, if any) and halts. If
the verifier does send a valid message, then the simulator saves the state S' of the verifier and the
transcript T so far, and then executes the following extraction procedure:
Extraction: Interleave the following two procedures in parallel until the first one halts.

123

1. Repeat until the simulator discovers the trapdoor a:

(a) Reset the state of the verifier to just after Step 1.

(b) Repeat the simulation strategy above, selecting a new rERZq each time. Note again
that by the statistical secrecy property of K, regardless of the verifier's choice of r,
in Step 3, after Step 4, r' = r'y + r' will be uniformly distributed in Zq. Thus, the
probability that r = r' is exactly 1/q.

(c) If the verifier provides a valid Step 5 response (c') to a choice of r' = r, then the
simulator, by solving the equations c = ra + a' and c' = r'a + a' (both modulo q) for
a and a', can find the trapdoor a.

(d) If the verifier fails to provide a valid Step 5 response, or if r' = r, then the simulator
repeats this process.

2. Find a by brute force, trying all q different possibilities in the equation gQ) = h.

Step 6: Now that the simulator knows the trapdoor a, it restores the verifier to state S' and continues
building on the transcript T: The simulator now replies to the Step 5 queries of V* as necessary
using the trapdoor in order to perfectly simulate the distribution that the prover would provide in the
protocol.

This completes the description of the simulator. By construction, we see that the simulator
perfectly simulates the protocol with no error. We now compute the running time of the simulator.
Let q be the probability, conditioned on the state S of the verifier after Step 1, that the verifier will
send a valid Step 5 message in an execution of the protocol - that is, that the Extraction procedure
is executed. Let be the probability that the verifier responds with a valid Step 5 message during
extraction such that r' 0 r mod q.

The probability of choosing an r' = r mod q is exactly j, thus > 7 - 1. We consider twoq q
cases:

* 1 > j: In this case 7- - > g and so > I and the expected number of trials during extraction

is at most 1. Recall that the simulation only enters the extraction phase with probability 7.
7

Thus the overall expected number of trials is at most q7y = 3, leading to an expected 0(1)
trials in the extractions overall.

* n < : In this case the brute force search succeeds in O(q) steps, for a total of an expected
0(7qq = 0(1) steps.

Thus, we have that the simulation is expected polynomial time.

Concurrent Zero Knowledge We have arranged so that the proof of concurrent zero knowledge
is almost exactly the same as the proof for ordinary zero knowledge. We redefine a valid Step 5
message to specify that the message must also satisfy the timing constraint. For a verifier Vi, we

redefine r to be the probability, conditioned on the state S of the adversary through the Step 1 mes-

sage of Vi, that the extraction procedure will be executed. Finally, note that the timing constraints

lead to an Interleaving Constraint analogous to the one from Protocol 6.3.1. This interleaving con-

straint ensures that during the interaction with any verifier Vi the simulator never needs to provide a

Step 6 message to any V/ that sent its Step 5 message after Vi sent its Step 1 message. Thus, during

the extraction of Vi, the simulator will only need to provide Step 6 answers16 for verifiers whose

16 Recall that Step 6 is the only step that requires special information to simulate perfectly.

124

trapdoor information has already been extracted. Thus the extraction will never get stuck because
of another verifier.

The simulation is constructed message by message. If in some (P, V) interaction the adversary
sends a valid Step 5 message for Vi, then the extraction procedure is executed to obtain Vi's trapdoor
information ai. As noted above, the timing constraints ensure that the extraction procedure can be
carried out. This completes the proof of concurrent zero knowledge. m

6.4.2 Concurrent Zero-Knowledge Under General Assumptions

In this section we present a protocol that relies only on the existence of one-way functions. We
observe that the critical element of the protocol given in the previous section is the trapdoor com-
mitment scheme, with a protocol in which the trapdoor can be extracted by the simulator. This idea
had been used before to construct ordinary zero-knowledge arguments. We look at the protocol of
Feige and Shamir [FS89], and show that by introducing timing requirements and using a particular
simulator, this protocol can be proven to be concurrent zero-knowledge.

We first present the protocol assuming that one-to-one one-way functions exist, in which case
the protocol has four moves. Note that this gives a kind of "converse" to the result of [KPR98],
showing that four-round concurrent zero-knowledge arguments are possible in the timing model.
We later indicate how to transorm this protocol into a five-move protocol, for which we need only
assume that one-way functions exist (that are not necessarily one-to-one).

The Feige-Shamir trapdoor commitment scheme. The central tool used in the protocol will be
a trapdoor commitment scheme based on the basic zero-knowledge proof for DIRECTED HAMIL-
TONIAN CYCLE of Blum [Blu86], introduced in [FS89]. This commitment scheme will use an
CSSB commitment scheme C as a subprocedure. The trapdoor commitment scheme will be based
on a graph I (say with q nodes) that has a Hamiltonian cycle which cannot be determined in poly-
nomial time. This graph will be chosen using a reduction from a one-way function, so that finding a
Hamiltonian cycle in the graph is as difficult as inverting the one-way function (described in detail
below). The main property of the commitment scheme is that one can create commitment strings
that are indistinguishable from normal commitments, such that given a Hamiltonian cycle for I, one
can decommit to both a 0 and a 1. The commitment scheme CI works as follows:

" To commit to a 0, the sender picks a random permutation 7r of the nodes of I, and commits to
the entries of the adjacency matrix of the permuted graph one by one, using C. To decommit,
the sender reveals 7r and opens every entry of the adjacency matrix.

* To commit to a 1, the sender commits to the entries of an all-ones adjacency matrix (cor-
responding to the complete graph on q nodes) using C. To decommit, the sender reveals a
random Hamiltonian cycle in the adjacency matrix.

This commitment scheme certainly has the property of being computationally secret, i.e. the dis-
tributions CI (0) and C (1) are computationally indistinguishable for any graph I. Note also that
given a Hamiltonian cycle in I, one can open commitments to 0 as both 0 and 1. Note that the
converse is also true, namely that given the opening of any commitment as both a 0 and a 1, one can
extract a Hamiltonian cycle of I.

Picking a suitable graph for the commitment scheme. For the commitment scheme above to be
binding, it must be the case that given the graph I, it is difficult to find a Hamiltonian cycle in I. To

125

ensure that this is the case, we use a reduction from a one-way function to produce the graph. Let
f :{, 1 } * -+ {0, 1}* be any length-preserving (strong) one-way function. Consider the following
language:

L = {(yi, Y2) : there exists x E {0, 1}* such that either f (x) = yi or f (x) = y2}

Clearly, L E NP. By the theory of NP-completeness [Coo7l, Lev73], because DIRECTED HAMIL-

TONIAN CYCLE is NP-complete [Kar72], there is a polynomial-time reduction mapping instances
of L to instances of DHC that also gives a witness mapping in the other direction. More precisely,
there is a polynomial-time computable function g which takes as input an instance (Yi, Y2) of L,

and produces as output a graph I with the property that I E DHC <=z (y1, Y2) E L, together with
a circuit C (called the witness mapper). C takes as input the description w of a cycle in I, and if w
is a Hamiltonian cycle in I, it outputs an x such that either f (x) = yi or f (x) = Y2. Furthermore, g
does not reduce the number of witnesses - if for some instance (y1, Y2), there are two values x, and

X2 such that f (xi) = yi and f (X2) = Y2, then there are at least two distinct Hamiltonian cycles in
G.

Thus, to choose a suitable graph for the commitment scheme, for a given n, we choose two
random values1 XI, X2ER{O, }, and let yi = f(xi), and Y2 = f (x 2). We apply the reduction
g on (Yi, Y2) to obtain a graph I on poly(n) vertices, together with the circuit C. Note again, that
by the properties of g, if one finds a Hamiltonian cycle in I, using C this would yield a preimage x

of either yi or Y2 under the one-way function f. By assumption, any non-uniform polynomial-time
machine could accomplish this goal with only negligible probability over the choices of x, and X2-

We are now ready to give the protocol. In this protocol, we assume that C is the one-round
CSSB commitment scheme given in Construction 6.2.1.

Protocol 6.4.2 Concurrent Computational ZK Argument for DHC - General Assumptions
A directed graph G is the common input to both parties. The prover is assumed to know a Hamilto-

nian cycle w in G.

1. V -+ P : Use the method described above to construct graph I on q = poly(n) nodes

containing two distinct Hamiltonian cycles w 1 and W2. Choose m = q 2 random permutations

01, . . . , 05m on q elements. Send I, and entry-by-entry commitments using C to the adjacency
matrices of #1(I), ... , m (I).

2. P -+ V : Prover must perform the following two actions:

(a) Send r = (ri,... , rm) ER {0, 1}m

(b) Choose m random permutations 01 ... , Om on n elements. Send entry-by-entry com-

mitments using C, (as described above) to the adjacency matrices of)i (G), ... , Om (G).

3. V -- P : Verifier must perform the following two actions:

(a) Fori =1,...,m:

* If ri = 0, open commitments to entire adjacency matrix of qi (I) and reveal #i.
(Prover confirms consistency.)

7
1t may seem strange that we insist on having two possible witnesses. This is important in the proof of soundness

given by Feige and Shamir [FS89] for the protocol we build upon. For details, see [FS89]. This is not important to our

proof of concurrent zero knowledge.

126

* If ri = 1, open commitments only to entries in adjacency matrix of qi (I) that
correspond to the Hamiltonian cycle qi (wi). (Prover confirms that entries revealed
are all 1 and form a Hamiltonian cycle.)

(b) Send R = (R1,... , Rm) ER {0,1}"

4. P -- V : For i = 1, ... m:

* If Ri = 0, open commitments (as described above) to entire adjacency matrix of i b(G)
and reveal Oi. (Verifier confirms consistency.)

" If Ri = 1, open commitments (as described above) only to entries in adjacency matrix
of 0i(G) that correspond to the Hamiltonian cycle Oi (w). (Verifier confirms that entries
revealed are all 1 and form a Hamiltonian cycle.)

Timing Constraints:

1. The Step 3 messages must be received within time a of receipt of the Step 1 message.

2. The Prover waits until at least time , has elapsed since receipt of the Step 3 messages before
sending the Step 4 message.

Theorem 6.4.2 Protocol 6.4.2 is a concurrent computational zero-knowledge argument for DHC,
assuming the weak synchronization assumption for (a,,3) and the existence of one-to-one one-way
functions.

Proof: As usual, completeness is clear. Soundness follows from the soundness of the protocol
without timing constraints as proved in [FS89].

Ordinary Zero Knowledge. The proof we present here follows the argument given by [FS89],
and is analogous to the proof given in the previous subsection. We will then show how the timing
constraints allow the simulation to be extended to the concurrent scenario, much as in Protocol 6.4.1.
Suppose we have an arbitrary (polynomial-time) verifier V*. The (traditional) black-box simulation
proceeds as follows:
Step 1. The simulator obtains the Step 1 message of the verifier, obtaining the graph I together
with entry-by-entry commitments to m adjacency matrices. The simulation saves the state S of the
verifier after its first message has been sent.
Step 2. For part (a), the simulator chooses r ER {0, 1}', just as the real prover would. For part (b),
the simulator commits (using CI) to all O's for each of the m adjacency matrices. Note that so far,
the only difference between simulated and real interactions is that the simulator commits to all O's,
while the real prover may not.
Step 3. We define a valid Step 3 message to be a syntactically well-formed message such that the
prover's verification checks pass for part (a). If the verifier fails to send a Step 3 message in time,
or if it sends an invalid message, the simulation ends and the partial transcript so far (including
the invalid Step 3 message, if any) is output. Otherwise, the simulator stores the part (a) openings
of commitments to adjacency matrices (and possibly associated permutations) for r, along with R
from part (b). The simulator then saves the state S' of the verifier and the transcript T so far. It then
executes the following procedure in order to extract a Hamiltonian cycle in I:
Extraction: Interleave the following two procedures in parallel until the first one halts.

1. Repeat until verifier obtains a Hamiltonian cycle in I:

127

(a) Reset the state of verifier to just after Step 1.

(b) Repeat Step 2 exactly as above (picking new random r' C R {0, 1}M)
(c) If verifier replies for r : r', there is some index i such that ri 5 r'. Thus, by examining

the openings of the commitments to the i'th adjacency matrix, we obtain a Hamiltonian
cycle in I, and stop.

2. Find a Hamiltonian cycle in I by brute force. Note that this procedure takes q! = 0(2')
time.

There are two possibilities: First, it is possible the brute force search completes and discovers
there is no Hamiltonian cycle in I. Note that this event can only occur with probability 2 -', since
if I has no Hamiltonian cycle, then there is only at most one value for r which could admit a valid
verifier Step 3 response. In this case, the simulation aborts. The other case is that one of the two
procedures uncovers a Hamiltonian cycle c in I. This allows the simulator to open its commitments
from Step 2b to any desired value in a manner (computationally) indistinguishable from what occurs
in actual protocols.
Step 4: The simulator resets the state of the verifier to S' (after the first valid Step 3 message was
received) and adds to the transcript T as follows: For each i = 1, . . . , m, the simulator picks a
random permutation Vi on n elements. If Ri = 0, the simulator uses c to open the i'th adjacency
matrix as 'ij (G) and reveals Oi. If Ri = 1, the simulator uses c to open a random circuit as all 1's.
The simulation ends, and the transcript prepared is output.

This completes the description of the simulator. First, we observe that because Cr (0) and C, (1)
are computationally indistinguishable (and the simulation aborts with only negligible probability),
the output of the simulation is computationally indistinguishable from transcripts from actual inter-
actions.

We now compute the running time of the simulation. Certainly all time spent outside of the
extraction procedure is polynomially bounded. We now show that the expected running time of
the extraction is also polynomially bounded: Let q be the probability conditioned on state S of the
verifier (after Step 1), that the verifier will send a valid Step 3 message after the simulated Step 2.
(Note that we are considering simulated Step 2, not actual Step 2, where the commitments would
differ.) Thus, conditioned on S, q is the probability that the Extraction procedure is executed. Let

be the probability that the verifier responds with a valid Step 3 message during extraction where
r' 4 r. Thus, ;> 7 - 2 -m. We now consider two cases:

" Case n 2 - 2 -m: In this case, since the brute force search will end in at most 2m steps, the
expected number of steps spent in the extraction procedure overall is bounded by 71. 2 m < 2.

* Case i7> 2 - 2-: Then, > 77/2. Hence, the expected number of trials during extraction is
at most - 1/ 2.

Concurrent Zero Knowledge The extension of the proof to concurrent zero knowledge is almost

exactly the same as in Protocol 6.4.1. We note that again, the timing constraints ensure that during

the interaction with any verifier V the prover never needs to provide a Step 4 message to any V
that sent its Step 3 message after V sent its Step 1 message. Thus, during the extraction of Vi,
the simulator will only need to provide Step 4 answers 18 for verifiers whose trapdoor information
has already been extracted. Thus the extraction procedure will never get stuck because of another
verifier.

18 Recall that Step 4 is the only step that requires special information to simulate.

128

The simulated transcript is constructed message by message. If in some (P, V) interaction the
adversary sends a valid Step 3 message for Vi, then the extraction procedure is executed to obtain the
Hamiltonian cycle for the graph that Vi sent. As noted above, the timing constraints ensure that the
extraction procedure can be carried out. This completes the proof of concurrent zero knowledge. U

If we assume only that one-way functions exist, then we can substitute the basic commitment
scheme C with the 2-round interactive commitment scheme of Naor [Nao9l] (this commitment
scheme is described in Construction 6.2.2). This requires one additional setup round for the com-
mitment scheme. The proof of concurrent zero-knowledge remains the same, except for one caveat:
In the scheme of Naor, there is an exponentially small probability, over the setup round, that a com-
mitter could produce a commitment that can be opened both as a 0 and as a 1. If the simulator ever
observes the verifier open a commitment as both a 0 and a 1, it simply aborts. Since this can only
occur so rarely, it does not affect the quality of the simulation.

129

Chapter 7

Conclusions

In this thesis, we have explored two frontiers of research on zero knowledge:

Statistical Zero Knowledge. In the first part of this thesis (Chapters 3, 4, and 5), we took a
complexity-theoretic perspective and studied statistical zero-knowledge proofs in detail. In Chap-
ter 3, we introduced the problem STATISTICAL DIFFERENCE, and showed that it is complete for
the complexity class HVSZK of all problems that admit honest-verifier statistical zero-knowledge
proofs. This provided a new characterization of the class which made no reference to interaction
or zero knowledge. This complete problem gave us a unifying framework under which to study
HVSZK. We were able to give simplified proofs for nearly all previously known results about
HVSZK, as well as establish several new interesting properties.

In Chapter 4, we gave a transformation that allowed us to transform any proof system that is
statistical zero knowledge just for the honest verifier, into one that is statistical zero knowledge
for every verifier. This in particular showed that the class of problems that admit honest-verifier
statistical zero-knowledge proofs is no bigger than the class of problems admitting (general) statis-
tical zero-knowledge proofs, i.e. HVSZK = SZK. Thus, the many properties we had established
about HVSZK in Chapter 3 in fact carry over to the general class SZK. In particular, this showed
that the problem STATISTICAL DIFFERENCE characterizes all problems admitting statistical zero-
knowledge proofs.

Finally, in Chapter 5, we extended our theory to cover the non-interactive form of statistical
zero-knowledge proofs, as well. We showed that the class NISZK of problems admitting non-
interactive statistical zero-knowledge proofs has complete problems that are very closely related to
STATISTICAL DIFFERENCE, the complete problem for SZK. Using this fact, we were able to obtain
results relating the interactive and non-interactive forms of statistical zero-knowledge proofs.

Although our investigation has shed some light on the nature of statistical zero-knowledge
proofs, many open problems remain:

1. Other complete problems for SZK. We showed that STATISTICAL DIFFERENCE is complete
for SZK, and [GV99] have shown that the related problem ENTROPY DIFFERENCE is also
complete for SZK. Are there other problems, graph-theoretic or number-theoretic in nature,
that are complete for SZK?

2. Number of rounds necessary for general statistical zero-knowledge proofs. In Chapter 3,
we showed that every problem in HVSZK has a 2-message honest-verifier statistical zero-
knowledge proof. While the transformation we gave in Chapter 4 from honest-verifier to

130

general statistical zero-knowledge proofs only increases the number of rounds in the proto-
col by a constant factor, it only applies to public-coin protocols, whereas our protocol from
Chapter 3 was a private-coin protocol. The transformation of Okamoto [Oka96] from private-
coin to public-coin protocols increases the number of rounds by a polynomial factor. Is this
necessary? Is it possible that every problem in SZK has a constant-round general statistical
zero-knowledge proof system? A constant-round public-coin such proof system?

3. Relationship of NISZK and SZK. We showed in Chapter 5 that if NISZK is closed under
complement, then N ISZK = SZK. Is this the case? Recall that if this is the case, then it would
imply that the answers to the open problems from the previous item would be positive.

4. Other types of zero knowledge. Is it possible to further extend the techniques we have
used in examining statistical zero-knowledge proofs to other types of zero-knowledge pro-
tocols, such as computational zero-knowledge proofs, or zero-knowledge computationally-
sound proofs (also called arguments)? In particular, can one exhibit a problem that is uncon-
ditionally complete for the class of problems admitting computational zero-knowledge proofs,
or even honest-verifier computational zero-knowledge proofs? We showed in Chapter 4 how
to transform public-coin honest-verifier computational zero-knowledge proofs into general
computational zero-knowledge proofs. Can one do this for all honest-verifier computational
zero-knowledge proofs unconditionally?

5. SZK vs. PZK. We saw in Chapter 3 that the "perfect knowledge complexity" of problems
in SZK is extremely low - in fact, when interpreted in the entropy sense, we saw that every
problem in SZK has a proof system for which there is a simulator which only needs 2-"c bits
of information from an oracle in order to be able to simulate the protocol perfectly. Thus, the
"gap" between perfect zero-knowledge proofs and statistical zero-knowledge proofs is very
small. Is there actually no gap, i.e. , is it the case that PZK = SZK? If one could exhibit a
perfect zero-knowledge proof for STATISTICAL DIFFERENCE, this would settle this question
in the affirmative.

6. Power of the Prover. The transformation we gave in Chapter 4 from public-coin honest-
verifier to general zero-knowledge proofs had the interesting feature of preserving the power
of the prover. Unfortunately, the transformation of [Oka96] from private-coin to public-coin
honest-verifier statistical zero-knowledge proofs does not have this property, and in fact even
the transformation of Goldwasser and Sipser [GS89] from private-coin to public-coin proofs
does not. Must all general transformations from private-coin to public-coin proofs require an
increase in the power of the prover? Recently, Vadhan [VadGO] gave some evidence that this
may be true, by analyzing a special case of the complete problem STATISTICAL DIFFERENCE
presented in Chapter 3 to rule out a wide class of transformations. Is there an unconditional
transformation from private-coin honest-verifier to general zero-knowledge proofs which pre-
serves the power of the prover? On a related note, how much computational power is required
by the prover in statistical zero-knowledge proofs?

Concurrent Zero Knowledge. In the second part of this thesis (Chapter 6), we took a crypto-
graphic perspective, and considered the problem of maintaining zero knowledge in a distributed
environment where many parties may act concurrently. In this setting, we introduced the notion
of a concurrent zero-knowledge proof - namely, a protocol that can be carried out by a single
pair of parties oblivious to other parties in the system, which nevertheless remains zero knowledge
even when faced with a coordinated attack by many verifiers. We introduced a notion of local

131

timing constraints and gave general techniques for using them to achieve constant-round concur-
rent zero-knowledge computationally-sound proofs, which we illustrated with such proofs for an
N P-complete problem under various assumptions.

The work in this thesis was the first to consider the problem of concurrent zero knowledge, and
much work has followed. However, research on concurrency and cryptographic protocols remains
in its infancy, and many fundamental problems remain open:

1. Constant-round concurrent zero knowledge without timing. Is it possible to obtain
constant-round concurrent zero-knowledge proofs or arguments without using timing con-
straints? We have shown how to construct 4-round arguments based on standard intractability
assumptions with timing, and [KPR98] have given an impossibility result for up to 5-round
protocols without timing.

2. Addressing all concerns of concurrency together. In this thesis, we considered only the
zero knowledge requirement in a distributed setting, but there are many other security notions
that require attention in a distributed setting (see the remarks of Section 6.2.4). [DDN91], for
example, considered the problem of malleability for zero-knowledge proofs in a distributed
setting. Can one build efficient protocols that address all these concerns simultaneously?

3. Other uses of timing constraints. In this thesis, we examined using local timing constraints
to aid us in achieving concurrent zero knowledge. Are there other cryptographic uses for such
local timing constraints, especially in distributed settings?

132

Bibliography

[ABV95] William Aiello, Mihir Bellare, and Ramarathnam Venkatesan. Knowledge on the
average-perfect, statistical, and logarithmic. In Proceedings of the Twenty Seventh
Annual ACM Symposium on the Theory of Computing, 1995.

[AH91] William Aiello and Johan Hastad. Statistical zero-knowledge languages can be recog-
nized in two rounds. Journal of Computer and System Sciences, 42(3):327-345, June
1991.

[AB84] Miklos Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth compu-
tations. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Com-
puting, pages 471-474, Washington, D.C., 1984.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. In Proceedings of the
Thirty Third Annual Symposium on Foundations of Computer Science, pages 14-23,
1992.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs. In Proceedings of
the Thirty Third Annual Symposium on Foundations of Computer Science, pages 2-13,
1992.

[BM88] Laszl6 Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system
and a hierarchy of complexity classes. Journal of Computer and System Sciences,
36:254-276, 1988.

[Bel97] Mihir Bellare. A note on negligible functions. Technical Report CS97-529, De-
partment of Computer Science and Engineering, University of California at San
Diego, March 1997. Also available from the Theory of Cryptography Library
(http: / /theory. lcs.mit. edu/~tcryptol).

[BGS97] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Personal communication, June
1997.

[BG89] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In G. Brassard, editor,
Advances in Cryptology-CRYPTO '89, volume 435 of Lecture Notes in Computer
Science, pages 194-211. Springer-Verlag, 1990, 20-24 August 1989.

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in constant
rounds. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, pages 482-493, 1990.

133

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. The (true) complexity of statistical
zero-knowledge. In Proceedings of the Twenty Second Annual ACM Symposium on
Theory of Computing, pages 494-502, 1990.

[BP94] Mihir Bellare and Erez Petrank. Making zero-knowledge provers efficient. In Pro-
ceedings of the Twenty Sixth Annual ACM Symposium on the Theory of Computing,
1994.

[BR90] Mihir Bellare and Phillip Rogaway. Non-interactive perfect zero-knowledge. Unpub-
lished manuscript, June 1990.

[BGG-88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Haistad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
S. Goldwasser, editor, Advances in Cryptology-CRYPTO '88, volume 403 of Lecture
Notes in Computer Science, pages 37-56. Springer-Verlag, 1990, 21-25 August 1988.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, pages 1-10, 1988.

[BD91] T. Beth and E. Desmedt. Identification Tokens - or: Solving the Chess Grandmas-
ter Problem. In Advances in Cryptology-CRYPTO '90, Lecture Notes in Computer
Science, Vol. 537, Springer-Verlag, 1991, pp. 169-177.

[Blu86] Manuel Blum. How to Prove a Theorem So No One Else Can Claim It. Proceedings of
the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp.
1444-1451.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninter-
active zero-knowledge. SIAM Journal on Computing, 20(6):1084-1118, December
1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, pages 103-112, Chicago, Illinois, 2-4 May 1988.

[BHZ87] Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25:127-132, 1987.

[BC94] S. Brands and D. Chaum. Distance-Bounding Protocols. In Advances in Cryptology
- EUROCRYPT'93, 1993, Lecture Notes in Computer Science, Vol. 765, Springer
Verlag, 1994, pp. 344-359.

[BCC88] Gilles Brassard, David Chaum, and Claude Crepeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156-189, October 1988.

[CGGMOO] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable
Zero-Knowledge. ECCC Report TR99-042, revised June 2000. Available from
http://www.eccc.uni-trier.de/eccc/.

[CvHP91] D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong undeniable signa-

tures, unconditionally secure for the signer. In Advances in Cryptology - CRYPTO'91,
Lecture Notes in Computer Science 576, Springer Verlag, pages 470-484, 1992.

134

[Coo7l] Stephen A. Cook. The complexity of theorem-proving procedures. In Conference
Record of Third Annual ACM Symposium on Theory of Computing, pages 151-158,
1971.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series
in Telecommunications. John Wiley & Sons, Inc., 2nd edition, 1991.

[Dam94] Ivan Damg.rd. Interactive hashing can simplify zero-knowledge protocol design. In
Proceedings of Crypto '95, Lecture Notes in Computer Science, volume 403, pages
100-109. Springer-Verlag, 1994.

[DC96] Ivan Damgdrd and Ronald Cramer. On monotone function closure of perfect and
statistical zero-knowledge. Theory of Cryptography Library: Record 96-03, 1996.
http://theory.lcs.mit.edu/~tcryptol.

[DGOW95] Ivan Damgard, Oded Goldreich, Tatsuaki Okamoto, and Avi Wigderson. Honest ver-
ifier vs. dishonest verifier in public coin zero-knowledge proofs. In Proceedings of
Crypto '95, Lecture Notes in Computer Science, volume 403. Springer-Verlag, 1995.

[DGW94] Ivan Damgird, Oded Goldreich, and Avi Wigderson. Hashing functions can simplify
zero-knowledge protocol design (too). Technical Report RS-94-39, BRICS, November
1994. See Part 1 of [DGOW95].

[DDP94] Alfredo De Santis, Giovanni Di Crescenzo, and Guiseppe Persiano. The knowledge
complexity of quadratic residuosity languages. Theoretical Computer Science, 132(1-
2):291-317, 26 September 1994.

[DDP97] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-
efficient non-interactive zero-knowledge (extended abstract). In Pierpaolo Degano,
Robert Gorrieri, and Alberto Marchetti-Spaccamela, editors, Automata, Languages
and Programming, 24th International Colloquium, volume 1256 of Lecture Notes in
Computer Science, pages 716-726, Bologna, Italy, 7-11 July 1997. Springer-Verlag.

[DDPY94] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. On
monotone formula closure of SZK. In Proceedings of the Thirty Fifth Annual Sympo-
sium on Foundations of Computer Science, pages 454-465, 1994.

[DDPY98] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Im-
age Density is complete for non-interactive-SZK. In Automata, Languages and Pro-
gramming, 25th International Colloquium, Lecture Notes in Computer Science, pages
784-795, Aalborg, Denmark, 13-17 July 1998. Springer-Verlag. See also [DDPY99].

[DDPY99] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image
Density is complete for non-interactive-SZK, May 1999. Preliminary draft of full
version.

[DMP87] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-
knowledge proof systems. In Carl Pomerance, editor, Advances in Cryptology-
CRYPTO '87, volume 293 of Lecture Notes in Computer Science, pages 52-72.
Springer-Verlag, 1988, 16-20 August 1987.

135

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-

knowledge with preprocessing. In S. Goldwasser, editor, Advances in Cryptology-
CRYPTO '88, volume 403 of Lecture Notes in Computer Science, pages 269-282.
Springer-Verlag, 1990, 21-25 August 1988.

[D099] Giovanni Di Crescenzo and Rafail Ostrovsky. On Concurrent Zero-Knowledge with
Pre-processing. In Advances in Cryptology - CRYPTO'99, Lecture Notes in Com-

puter Science, pages 485-502. Springer-Verlag, 1999.

[DOY97] Giovanni Di Crescenzo, Tatsuaki Okamoto, and Moti Yung. Keeping the SZK-verifier
honest unconditionally. In Burton S. Kaliski Jr., editor, Advances in Cryptology-
CRYPTO '97, volume 1294 of Lecture Notes in Computer Science, pages 31-45.
Springer-Verlag, 17-21 August 1997.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In Proceedings of the Twenty Third Annual ACM Symposium on Theory of

Computing, pages 542-552, New Orleans, Louisiana, 6-8 May 1991.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In Pro-

ceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, pages

409-418, 1998.

[DS98] Cynthia Dwork and Amit Sahai. Concurrent Zero-Knowledge: Reducing the Need

for Timing Constraints. In Advances in Cryptology - CRYPTO '98, Lecture Notes in
Computer Science, pages 442-457. Springer-Verlag, 1998.

[ESY84] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise
problems with applications to public-key cryptography. Information and Control,
61(2):159-173, May 1984.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal

of Cryptology, 1(2):77-94, 1988.

[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. In Journal of the Association for Computing

Machinery, 43(2):268-292, 1996.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge

proofs based on a single random string (extended abstract). In 31st Annual Symposium

on Foundations of Computer Science, volume I, pages 308-317, St. Louis, Missouri,

22-24 October 1990. IEEE.

[FS89] Uriel Feige and Adi Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds.

In Advances in Cryptology - CRYPTO'89, Lecture Notes in Computer Science 435,
Springer-Verlag, 1989, pp. 526-544.

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio Micali, editor,
Advances in Computing Research, volume 5, pages 327-343. JAC Press, Inc., 1989.

[FGM+89] Martin Ftirer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos.

On completeness and soundness in interactive proof systems. In Silvio Micali, editor,
Advances in Computing Research, volume 5, pages 429-442. JAC Press, Inc., 1989.

136

[Gol90] Oded Goldreich. A note on computational indistinguishability. Information Processing
Letters, 34:277-281, 1990.

[Gol95] Oded Goldreich. Foundations of Cryptography (Fragments of a Book). Weizmann
Institute of Science, February 1995.

[GG98] Oded Goldreich and Shafi Goldwasser. On the limits of non-approximability of lattice
problems. In Proceedings of the 30th Annual ACM Symposium on Theory of Comput-
ing, Dallas, TX, May 1998. ACM.

[GKa96] Oded Goldreich and Ariel Kahan. How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology, 9(3): 167-190, 1996.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169-192, 1996.

[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for a
problem equivalent to the discrete logarithm. Journal of Cryptology, 6:97-116, 1993.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proceedings of the
Nineteenth Annual ACM Symposiumm on Theorey of Computing, pages 218-229, New
York City, 25-27 May 1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
Association for Computing Machinery, 38(1):691-729, 1991.

[GNW95] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao's XOR-lemma.
ECCC Report TR95-050, March 1995. Available from http: / /www. eccc . uni-
trier. de/eccc/.

[G094] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1-32, Winter 1994.

[GOP98] Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational complexity and
knowledge complexity. SIAM Journal on Computing, 27(4):1116-1141, August 1998.

[GP91] Oded Goldreich and Erez Petrank. Quantifying knowledge complexity. In Proceedings
of the Thirty Second Annual Symposium on Foundations of Computer Science, pages
59-68, 1991.

[GSV98] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proceedings of the 30th An-
nual ACM Symposium on Theory of Computing, pages 399-408, Dallas, TX, May
1998. ACM.

[GSV99] Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero-knowledge be
made non-interactive?, or On the relationship of SZK and NISZK. In Advances
in Cryptology-CRYPTO '99, Lecture Notes in Computer Science, pages 467-484.
Springer-Verlag, 1999, 15-19 August 1999.

137

[GV99] Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero-knowledge
with applications to the structure of SZK. In Proceedings of the Fourteenth Annual
IEEE Conference on Computational Complexity, pages 54-73, Atlanta, GA, May
1999. IEEE Computer Society Press.

[GB99] Shafi Goldwasser and Mihir
Bellare. Lecture Notes on Cryptography, 1999. Available from homepage of Mihir
Bellare (http: / /www-cse . ucsd. edu/users /mihir).

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270-299, April 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186-208, February
1989.

[GS89] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In Silvio Micali, editor, Advances in Computing Research, volume 5,
pages 73-90. JAC Press, Inc., 1989.

[HILL] Johan Hastad, Russell Impagliazzo, Leonid Levin, and Michael Luby. Construction of
pseudorandom generator from any one-way function. To appear in SICOMP. Prelim-
inary versions by Impagliazzo et. al. in 21st STOC (1989) and Histad in 22nd STOC
(1990).

[Hof95] Micha Hofri. Analysis of Algorithms: Computational Methods and Mathematical
Tools. Oxford University Press, 1995.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstract). In Proceedings of the Twenty First Annual
ACM Symposium on Theory of Computing, pages 12-24, Seattle, Washington, 15-17
May 1989.

[IY87] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations (ex-
tended abstract). In Carl Pomerance, editor, Advances in Cryptology-CRYPTO '87,
volume 293 of Lecture Notes in Computer Science, pages 40-51. Springer-Verlag,
1988, 16-20 August 1987.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In J. W. Thatcher and

R. E. Miller, editors, Complexity of Computer Computations, pages 85-103. Plenum

Press, Inc., 1972.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system

for NP with general assumptions. Journal of Cryptology, 11(1): 1-27, Winter 1998.

[KPOO] Joe Kilian and Erez Petrank. Concurrent Zero-Knowledge in Poly-logarithmic Rounds.

Manuscript, April 2000.

[KPR98] Joe Kilian, Erez Petrank and Charlie Rackoff. Lower Bounds for Zero Knowledge on
the Internet. Proceedings of the 39th IEEE Symposium on Foundations of Computer

Science, 1998, pp. 484-492.

138

[Koc96] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In Advances in Cryptology - CRYPTO '96, Lecture Notes in Computer
Science, Vol. 1109, Springer-Verlag, 1996, pp. 104-113.

[LLS75] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial time
reducibilities. Theoretical Computer Science, 1:103-123, 1975.

[Lev73] Leonid A. Levin. Universal'nyie pereborny-e zadachi (Universal search problems : in
Russian). Problemy Peredachi Informatsii, 9(3):265-266, 1973.

[LFKN90] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic meth-
ods for interactive proofs. In Proceedings of the Thirty First Annual Symposium on
Foundations of Computer Science, pages 1-10, 1990.

[Nao9l] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151-158, 1991.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the Twenty Second Annual ACM Symposium on
Theory of Computing, pages 427-437, Baltimore, Maryland, 14-16 May 1990.

[Oka96] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. In
Proceedings of the Twenty Eighth Annual ACM Symposium on the Theory of Comput-
ing, 1996. See also preprint of full version, August 1997.

[OVY93] R. Ostrovsky, R. Venkatesan, and M. Yung. Interactive hashing simplifies zero-
knowledge protocol design. In Proceedings of Eurocrypt '93, Lecture Notes in Com-
puter Science. Springer-Verlag, 1993.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Proceedings of the Thirty Second Annual Symposium on Foun-
dations of Computer Science, pages 133-138, 1991.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Proceedings of the Second Israel Symposium on Theory of Com-
puting and Systems, 1993.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PT96] Erez Petrank and Gdbor Tardos. On the knowledge complexity of NP. In Proceedings
of the Thirty Seventh Annual Symposium on Foundations of Computer Science, pages
494-502, 1996.

[RK99] Ransom Richardson and Joe Kilian. On the Concurrent Composition of Zero-
Knowledge Proofs. In Advances in Cryptology - EUROCRYPT'99, 1999, Lecture
Notes in Computer Science, Springer Verlag, 1999, pp. 415-431.

[S99] Amit Sahai. Non-malleable non-interactive zero knowledge and chosen ciphertext
security. In Proceedings of the Fourtieth Annual IEEE Symposium on Foundations of
Computer Science, 1999.

[SV97] Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero-
knowledge. In Proceedings of the 38th Annual Symposium on the Foundations of
Computer Science, pages 448-457. IEEE, October 1997.

139

[SV99] Amit Sahai and Salil Vadhan. Manipulating statistical difference. In Panos Pardalos,
Sanguthevar Rajasekaran, and Jose Rolim, editors, Randomization Methods in Algo-
rithm Design (DIMACS Workshop, December 1997), volume 43 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 251-270. American
Mathematical Society, 1999.

[Sch96] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C,
2nd edition. New York: Wiley, 1996.

[Sha90] Adi Shamir. IP=PSPACE. In Proceedings of the Thirty First Annual Symposium on

Foundations of Computer Science, pages 11-15, 1990.

[Vad00 Salil P. Vadhan. On transformations of interactive proofs that preserve the prover's
complexity. In Proceedings of the 32nd Annual ACM Symposium on Theory of Com-

puting, Portland, OR, May 2000. ACM. To appear.

[Vad99] Salil Pravin Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Mas-

sachusetts Institute of Technology, August 1999.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings of the

Twenty Third Annual Symposium on Foundations of Computer Science, pages 80-91,
1982.

140

