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ABSTRACT

High range-resolution radar (HRR) is a useful tool for pose estimation: the
problem of determining the orientation of a target object. Using a blocks-world tank as
target, HRR models for return data for both rough and specular surface reflections are
determined. The profiles are used to find Cram6r-Rao type bounds on mean-squared
error performance of any unbiased estimator which uses HRR data. The goal is to
determine the effect on these bounds of the key parameters of the system: signal-to-noise
ratio (SNR), target size, range bin width or range-resolution, and target reflectivity.
Results are compared with minimum mean-squared error estimates obtained via
simulation.
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Chapter I

Introduction

Radio Detection and Ranging, known by the acronym radar, has been used to

detect the presence of and to determine the distance to and the velocity of remote objects

since its development in the Massachusetts Institute of Technology's Radiation Lab

during World War II. [1] However, recent advances in radar and other remote sensing

technologies have permitted the collection of sophisticated images of remote objects.

Synthetic aperture radar (SAR) systems can form high-resolution range and cross-range

images of a target. [2] Similarly, passive forward-looking infrared (FLIR) systems can

image the temperature on a target. In contrast, high range-resolution radar (HRR)

systems use a high bandwidth pulse which provides more detailed information about the

depth profile of an object, albeit at low resolution in the transverse spatial dimensions [3].

Automatic target recognition (ATR) systems attempt to classify the object under

observation as one from a library of known possibilities.

In addition to identifying the class to which a target belongs, an ATR system may

also give an estimate of its orientation, i.e., its pose. For a rigid-body target the pose

parameter describes object orientation in three dimensions. When the target in on the

ground at a known location, such as a tank on a flat plain, pose can be specified by a

single rotation angle expressed on a 2n radian interval. Because radar signatures, even

from the same object, are highly dependent on and vary significantly with changes in

orientation, knowledge of pose increases the probability of correct identification. [4]
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This thesis examines limits on the accuracy of orientation estimation for ground-

based targets based on data from an HRR system. To achieve that goal, there must first be

an explicit notion of orientation, including a metric that provides a sensible or natural

measurement of the difference between two orientations. The Hilbert-Schmidt norm

fulfills these requirements and is used to quantify the performance of the estimators. [5]

Additionally, there must exist a statistical model to describe the information that is

available from the radar system. A conditionally-Gaussian model is used to represent the

data that will be generated by such a system. [6]

Prior work on HRR pose estimation has used Monte Carlo simulation to

determine estimation performance for specific targets [2]. These simulations rely on

detailed computer-aided-design (CAD) models to generate the parameters used in the

return data statistical model. This approach has the benefit of employing accurate models

for targets of interest, but it has several distinct disadvantages. A large number of Monte

Carlo trials is required to obtain accurate results, and to determine the performance

behavior as a function of quantities such as signal-to-noise ratio (SNR) or range-

resolution requires an order of magnitude increase in the number of simulation trials.

Furthermore, to study pose-estimation performance when data from several different

remote sensors is optimally combined requires even more dramatic increases in

simulation time. Finally, and perhaps most importantly, little physical intuition can be

gained from simulation results: it is desirable to be able to show that, based on a certain

theoretical model, performance is a specific, derived, function of the other system

parameters.
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The above shortcomings illustrate why analytically derived bounds on pose-

estimation performance are an attractive alternative to Monte Carlo simulations. Cram6r-

Rao analysis provides a method of calculating these limits directly, without simulation.

Given a probability distribution for some data, the Cram6r-Rao method allows the

determination of variance lower bounds on unbiased estimates of the unknown

parameters of the distribution. [7] In the case of interest for this thesis, the HRR return

profile from a known target is a random vector whose probability distribution is

determined by the target's orientation angle. That random vector contains information

about the orientation angle; the Cram6r-Rao analysis allows us to determine how much

information it can provide. If, for example, the distribution is highly sensitive to changes

in orientation around some nominal pose angle, then it should be easy to accurately

estimate the orientation angle when it is near that particular value. On the other hand,

pose estimation will be difficult when the target is at an orientation for which the

distribution is relatively constant over a wide range of poses.

This thesis consists of two main portions. In Chapters 2 and 3 there is

background information on orientation estimation and the Hilbert-Schmidt metric and its

measurement statistics, on the specifics of high range-resolution radar, on the statistical

model for HRR return data, and on the Cramrr-Rao bound. The second portion deals

with the work done for this thesis. In Chapters 4 and 5 there is the derivation of the

orientation dependence of the HRR statistics for a blocks-world target model, the analysis

of Cram6r-Rao type bounds based on these parameters, and comparisons between the

derived bounds and the performance of a minimum-mean-squared error estimator. The
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thesis concludes in Chapter 6 with a summary of accomplishments and some suggestions

for future work.
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Chapter II

Pose Estimation with High Range-Resolution Radar

An automatic target recognition system which estimates pose requires a method

of stating its output, a formalization for expressing target pose. In addition, in order to

evaluate the performance of the system, there must be a way to compare the pose

estimate to the actual value and determine the magnitude of the error. A common

formulation for measuring error is the Hilbert-Schmidt norm, which is described in the

first section of this chapter. The second section of this chapter is devoted to the physics

of high range-resolution radar. An ATR system needs data on which to base its

decisions; this thesis investigates the accuracy of ATR using HRR data. It is therefore

critical to understand the manner in which information about the remote target is derived,

received, and processed by the ATR system.

2.1 Pose Estimation

Intuitively, the simplest way to describe the angular position of a point in 2-space,

equivalent to the angular orientation of a ground-based rigid-body target, is the polar

coordinate 0. The range of 0, without loss of generality, can be taken to be -7c < 0 5 n.

However, this formulation has the disadvantage of lacking a simple effective metric, or

method of describing the differences between two angles. Orientation is cyclic: given a

range of -n < 0 in, a pose estimate of -3.1 radians is an accurate measurement of an

object placed at +3.1 radians, yet the standard metric 01-021 would give an error of 6.2
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radians. This value is well above the intuitive error of approximately .08 radians. In fact,

one would expect that the greatest possible error would occur when the estimate is

directly opposite the actual value, for a difference of R; 6.2 is even much larger than this

intuitive maximum.

A method of stating orientation, which avoids this drawback, is the rotation

matrix. If we represent a point in 2-space as the 2-vector [x,y]T, then the action of the

rotation matrix 0,

cos -sin l

sin9 cos6j
on the position vector is to rotate the point about the origin by the angle 0. Notice that

the determinant of 0 is unity regardless of 0. The set of all possible 0 is known in group

theory as SO 2 , the special orthogonal group of dimension 2. (Special refers to the

determinant being equal to one; orthogonal is because the column vectors are

perpendicular to each other.) SO 3 and even high order groups are defined in the same

manner, and SO 3 performs all possible rotations in 3-space. These groups do not have the

cyclic problem as above, for we can use the Hilbert-Schmidt norm to define differences

between a pose 0 and an estimate 0 based on $ [5]:

cos0 -sin 1
0 =

0 sin 0 coso

0- HS = tr((O -0)(0 -0))= 4-4(cos(9 -0))

The Hilbert Schmidt Norm
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Observe that, even if 0 and $ span an arbitrary boundary, the common sense of the

metric is preserved due to the fact that cos(0) =cos(27t-0). Also, as -$ approaches

zero, 0-0,H approaches 2Ie - $1, which is a nice property - it is the intuitive metric

that we first desired, scaled by a constant factor.

Let p(0jD) be the conditional probability distribution for 0, conditional on

knowledge of the sensor data D. The Hilbert-Schmidt estimator for 0 is then defined in

the natural way:

OHS (D) = ArgMin6 E1 o--_0 1

and can be shown to satisfy OHS (D)=

J 00 p( I D)dO
-"{ where

Fdetj O0 p(O | D)dO

[cos 9
0=. sin 9

- sin0

cosoj

The Hilbert-Schmidt estimate minimizes the expectation of the squared Hilbert-Schmidt

error on the distribution. An equivalent formulation of estimator is:

0 (D) = cos 9 HS -sinHS

Hi HS CoHS _

whereOHS =arg J(cos9)p(ID)d9+iJ(sinO)p(OID)d9,-7r <HS *

Given the Hilbert-Schmidt estimator, and an associated Hilbert-Schmidt error, we

now have a convenient way to measure the error variance of any estimator. This error
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can be compared with the HuIbert-Schmidt bound, by definition the minimum mean-

squared error of any estimator.

2.2 High Range-Resolution Radar

A pulsed radar system works by emitting a short burst of electromagnetic energy,

in the form of a carrier frequency modulated by an envelope. If there is a target object

located nominally RO meters away, the electromagnetic wave may be reflected and then

return to the antenna 2 Ro/c seconds after it was transmitted. The measured value of this

delay can then be used to estimate the range. Many high range-resolution systems will

use a chirp pulse of the form A(t)cos( wo + Mt, where A(t)> 0 is the envelope of

duration T and W is the chirp bandwidth. The frequency of this pulse increases linearly

with time. An alternative approach varies the pulse's frequency in piecewise-constant

discrete steps. Either method allows a pulse of the same width T in the time domain to

occupy more bandwidth W in the frequency domain, yielding an autocorrelation between

transmitted and received pulses that is more sharply peaked. That narrower

autocorrelation peak translates into a more precise measurement of the time-of-flight of

the pulse, and hence, of the distance to the target. Greater bandwidth, and therefore

smaller effective pulse width, means improved range resolution for the HRR system. For

a typical forward looking millimeter-wave radar system, the center carrier frequency

might be at 85.5 GHz (corresponding to a wavelength of 3.51mm), with a chirp

bandwidth of 300MHz. [3]

Given that the target is not simply a featureless plane oriented normal to the

direction of the incoming radar pulse, then each of these features will also reflect the
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electromagnetic wave. A portion of the target located at a distance RO+r from the antenna

will cause a reflection to appear 2r/c seconds later than the nominal range RO return. For

every feature, in fact, there will be an appropriate reflection returning to the radar, and

their sum creates the entire return for the radar pulse. The range resolution is the

minimum distance between two features in the radar antenna's beam whose returns can

be distinguished from their delay difference. For simplicity, this thesis assumes that the

radar system transmits a single carrier frequency modulated by a transform-limited

(unchirped) Gaussian pulse. If the pulse has width T, the distance cT/2 can be taken as

approximately the range resolution. Alternatively stated, an arbitrary pulse of bandwidth

W can resolve features which are located c/W meters apart.

The received signal will differ in both phase and amplitude from the transmitted

pulse. After bandpass/matched filtering it takes the form r(t)cos(wt + #(t)), where r(t)

and $(t), the magnitude and phase shift, are random processes whose statistics depend on

the target characteristics and the random noise in the receiver. This sinusoid can be

written in the more compact complex notation Re ) "L), where r(t)= r(t)ed is a

complex envelope containing both the phase and amplitude information. With

appropriate normalization, the instantaneous power received at the antenna in this

formulation is then r 1. Samples of this power waveform at equal time spacings

corresponding to the range resolution yield the HRR data to which the ATR algorithms

have access and upon which they must base their orientation estimate. Each sample can

be considered to be the average power received over the sampling period, equivalently,

the energy received at the antenna over that time period. Also, since each different

sample corresponds to a portion of the target object which is at a different, specified
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distance from the radar system, each sample is termed a range bin. The typical HRR

system described above has 512 range bins per profile, each corresponding to a range

resolution, or range bin width, of 0.52 meters. [3]

The amplitude of the received electromagnetic wave, or equivalently the power

detected by the antenna after processing, is dependent on several variables. From the

standard monostatic radar equation [8]

PR _T- GT UR -2a'?

4;rR2 4gzR
2

we see that the received power PR is proportional to the transmitted power PT, as well as

to the antenna gain of the transmitter GT, the overall power efficiency of radar E, and

most importantly to our analysis, the target cross section aR, at range R In addition, the

power is exponentially attenuated by scattering in the atmosphere with a decay

coefficient a, and spreads out spherically from the transmitting and reflecting points, as

seen in the two factors of 4nR 2. The cross-sectional area GR is SO important because the

differences in range of any interesting features is so small compared to the total range to

the target R, all of the other variables may be treated as constants. This simplifies the

radar equation, in our area of interest, to a proportionality: PR = KOR

It is also important to note that while SAR, FLIR, and laser radar systems place

many pixels across the face of a target object, the transverse spatial resolution of an HRR

system is generally incapable of this imaging task. This work assumes that the target,

while occupying several range bins, is confined to a single spatial pixel, i.e. that the target

falls within a single beamwidth of the HRR radar. The availability of good depth

information without transverse spatial information means that the return profile yields no
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information about the horizontal or vertical placement of any feature within the beam.

As a result, there will be ambiguity in determining the orientation of objects with many

sorts of symmetry. A tank with bilateral symmetry, for example, will produce the same

HRR profile when viewed from its left side as it would when viewed from its right side.
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Chapter III

High Range-Resolution Radar Data Models

A statistical model for a set of random data is needed in order to perform any sort

of meaningful parameter estimation based on that data. High range-resolution radar data

consists of a vector of range bin samples. The samples correspond to the return power

reflected from the target object and received by the antenna within specified time

intervals. Equivalently, because R=ct/2 shows that range is proportional to time delay,

the samples also correspond to electromagnetic wave energy that was reflected off of the

target at differing, specified ranges from the antenna.

Modeling the statistics of this random vector requires two stages. First, given a

reflected electromagnetic wave with certain phase and amplitude properties, the

distribution of the data that the radar receiver will yield must be modeled. Then, we need

to know how a specific target, based on its dimensions, reflectivity, and orientation, will

reflect the electromagnetic radar pulse and yield the above properties.

3.1 Conditionally Gaussian Statistical Model

As previously described, under proper normalization the instantaneous power in

an electromagnetic wave is equal to IrO 2. For the itih range bin, the radar produces a

value pi, equal to the time-averaged power received over the time-delay interval

corresponding to that range bin. It is convenient to work with the random variable

r = J , the square-root of the power. The vector F comprised of these components is
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the range profile, a real vector of HRR return data. We shall begin analysis, however,

with the complex vector F, a vector of samples of the complex envelope.

Each complex random variable r of the vector r is the sum of the radar return

due to the target, y, , and the receiver noise, n, :

r,= y +n

The receiver noise n is typically receiver thermal noise, and hence can be taken to be

statistically independent from bin to bin. In keeping with models of this kind of noise,

n is taken to be a zero-mean complex Gaussian random variable whose real and

imaginary parts each have variance A2 /2. The target reflection y is itself a complex

Gaussian random variable, whose mean rn and variance A, /2 depend on the target's

geometry and orientation. Explicitly, then, the reflection should be written y, (Q, 9), as a

function of target Q and angle 0, but that dependence will be understood in the more

compact notation. Finally, each y, , like receiver noise n, , in each bin, is statistically

independent, conditioned on knowledge of the target and its pose. It follows that the

statistics of a single range bin can be studied without loss of generality; further analysis

will drop the identifying subscripts.

Physically, the distributions' m and Xg parameters correspond to properties of the

reflected electromagnetic wave. The mean parameter m represents the coherently

reflected electromagnetic field, as if off of a smooth, mirror-like surface. The qualitative

adjective 'smooth' can be more precisely defined to apply to surfaces whose variations

and irregularities are much smaller than the wavelength of the carrier signal. These
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coherent reflections are also described as specular. Herein, m is determined from the

geometry of the target using the far-field Fraunhofer diffraction approximation. The

variance Xg accounts for random minute surface variations of the target, manufacturing

variations, mud and dirt, constructive and destructive interference of waves bouncing off

of unmodeled features of the target - for any factors that are not taken into account in our

simple geometric modeling and that vary even from target to target of the same type. To

contrast with the mean, the surface variations which produce the interference for the

variance parameter Xg will have size on the order of the carrier signal's wavelength or

larger. The model for computing Xg as a function of the target geometry assumes that the

parameter is proportional to the cross-section that the target presents to the radar system

at a given range, multiplied by an orientation factor. The methods for deriving both m

and Xg will be discussed in greater detail later.

Using the above Gaussian distributions for the real and complex parts of r, the

distribution for the real magnitude r can be shown to be: [9]

2r - 21mr
Pr (r1)= -e 0Io 1,r O;

where I0 (x) = . e )d#, the zeroth order modified Bessel function and X=Xn+Xg.

This probability distribution is named the Rice distribution. Similarly, the probability

distribution for the power p = r 2 is found by the Leibniz rule to be:

1 2 2 m
p,(p I0) = -e ! 0.
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Additionally, there are more specialized forms of these distributions, applicable when the

mean m is zero. The Rayleigh distribution describes the magnitude, and the exponential

distribution applies to the power:

2r r 1 P

pr(rI)=- e A, r>O and p(p|6)=-e A, p>O

Examples of the Rayleigh and Rice distributions are plotted in Figure 3.1.

Rayleigh 0istribution with ance lambda=2

0.6

0.5.

0.4-

0.3-

0.2-

0.1-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Rice distribution with mean m=2 and %ariance lambda=2

0.6

0.5

0.4

0.3

0.2

0.1

3.5 4 4.5 50 0.5 1 1.5 2 2.5 3

Figure 3.1: Rayleigh and Rice probability distributions

These conditionally-Gaussian distributions, once m and Xg have been related to

target geometry and orientation, will be the foundation for our Cramer-Rao analysis.

Some prior HRR-based ATR work [6] has been performed with a deterministic model

that lacks the reflection variance Xg. In a train-and-test approach based on real data in

which the performance of the deterministic model was compared to that of using the

conditionally-Gaussian model, it was found that the conditionally-Gaussian model gave

substantially better performance. [6] That is why we have selected it for use in our

Cram6r-Rao analysis.
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3.2 Lambertian/Rough-Surface Target Model

The focus of this thesis lies in determining analytical bounds whose behavior can

be linked, through underlying theory, to physical descriptions of the target and the radar

system. To accomplish this goal, the work uses simplifying models of the target in order

to draw out these scaling laws. The first of these is to employ a blocks-world model of

the target of interest, here a generic three-block tank: body, turret, and gun barrel, as

shown in Figure 3.2. The tank is viewed directly from ground level as it rotates around a

vertical axis. Each block that comprises the tank has a height zj, a width xi, and a depth

yI.

Size Parameters for Standard Blocks-World Tank Model, meters
Body Turret Gun Barrel

xI yi zi Xi yi zI xI yi zi
3.8 10.28 1.5 3.48 8.0 1.4 0.3 6 0.3

(a) (b)

Figure 3.2 Blocks-world tank model, seen from 9 = 0 (a) and 9 = -ir/2 (b)

As stated above, the power received from a reflection, less thermal receiver noise,

comes from two sources, coherent specular reflection and Lambertian fading interference.

In another attempt at simplification, these two limiting reflectivity cases will be studied

separately.
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In the rough-surface model, the coherent return m is taken to be zero. Under this

condition, it was shown above that power takes an exponential distribution whose

expected value in each range bin is the variance X.

E[p|1]=,1

To determine X, therefore, the amount of power that is reflected incoherently off of the

target surface must be found. Given that the target is completely within one beam width,

and that the target is sufficiently far away from the antenna (absolute range is much

greater than range-resolution), we can assume that the power per unit area incident from

the beam onto the target surface is a constant. Then, the reflected power from the target

is proportional to the area presented by the target to the radar system. Finally, because

this power does not return to the antenna all at the same time, but is distributed over time

as the area is distributed over range, all of this becomes a function of distance from the

antenna, as well.

The simplest case is a flat, but rough-surfaced, rectangular plate with width x, and

height zI. Both dimensions are measured in coordinates normal to the propagation

direction of the radar's incident plane wave, so that the surface area available to reflect

the beam is the product xizI. Let R be the range from the radar system to the plane, with

an appropriate offset such that the origin of R is at the target plane. R>O refers to a point

between the plane and the radar; R<O for objects further from the radar receiver than the

origin.
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Allow the orientation 6 = 0 to be when the plane is normal to the incident plane

wave; positive 0 shall be counterclockwise rotation when the system is viewed from

above (azimuthal angle of n/2). Recall, however, that the range profile, however, has no

spatial resolution in the plane of the target, so for this target the profiles for poses

6 = +0 and 6 = -60 will have identical distributions.

+R
R=xisinO R=O

da \

0

dR

Figure 3.3: Determining the Cross Section in a Simple Case

From Figure 3.3 above, the differential cross-section dc(R) for a plane is seen to
dR

be:

dc-(R) - z, cot 6; Ra : R ! R R
dR 0; elsewhere

with the boundaries on R given by:

1
- Rmn = Rm =-x, sin0

2
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The differential cross section dc(R) should intuitively have the property that
dR

fd(R)dR A, where An is the projection of the surface on the normal plane. Indeed,
__dR

-x, sin 0
2

observe that f (z, cot e)dR = (x, sin Xz1 cot 0)= x, z, cos 6 yields the expected result.

-x, sin B
2

In addition to being proportional to the cross-section, however, the reflected

power must be multiplied by an angular factor to account for the obliquity of the plane.

For this case, the factor is cos 6. For a plate whose nominal 6 = 0 orientation differs by

0 degrees from the normal, for example the side face of a rectangular block, the factor

would be cos(6 - 00). For the right or left side of the rectangular block, which are

oriented at 60 = r/2 when the target as a whole has pose 6 = 0 , the factor is sin 6 .

do-(R )The function f(R,6) = cos6 is a continuous function of range. What is
dR

needed, though, is to create a discrete function with a value for the variance at each range

bin. To conform to the physical model of the radar system, we introduce a discretization

in which the power sample for each range bin is the time average of the instantaneous

power over the time-delay interval corresponding to that bin.

Let 1i be the range bin density, in units of range bins per meter. This quantity is

1
defined so that - = Re , the range resolution of the system. Let there be 2N+1 total

range bins, each identified by an index J such that - N J N . Center the J=0 range

bin around R=0. The lower and upper edges of the J range bin are then J 1/2 and
7
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+ +1/2. The parameter A, (0, J) for a single plane target can now be defined and is

illustrated in Figure 3.4 for a hypothetical, fixed orientation, target plate.

J+1/2 J+1/2

17 do-(R, 0) cs0R
A,(oJ)=K ' =K f f(R,6)dR

J -1/2 dRJ-1V2

J=2 J=1 J=O J=-1 J=-2 J=-3

Range bins

Figure 3.4 Hypothetical range profile at a fixed orientation.

In the slightly more complicated blocks-world model that we use to represent the

tank, a rectangular prism viewed from zero azimuthal angle has four planar sides of

interest; see Figure 3.5. Additionally, these planes do not rotate around their center

points, as in the

ZI

Y1x

Figure 3.5: A rectangular prism, or block.
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above example, but around some other point in space. This axis of rotation is often, but

not necessarily, through the center of the block. Suppose the block has dimensions x, by

yj by zj, and let the block face that is oriented towards the radar when 0=0 again have

height z, and width xi. This will be known as the front of the target. The depth of the

block is yi; equivalently, the sides of the block which face the radar at orientations of

0 = ± ir/2 have dimensions of yi by zi. The axis of rotation will be located along the

centerline running from the front face to the rear face, at a distance of p from the front of

the target, as shown in Figure 3.6. When p = Y, we have the special case in which the
2

rotation axis is located at the center of the block.

Top View, Orientation 0=0

yI

p 
X

R=y/2 R=0 R=-y/2

Figure 3.6: Dimensions of a block, top view, where p = . The radar system is located
2

far to the left of the block.

As the block rotates, the radar system will see various cross-sections of each of

two faces. At a very small angle, for example, there will be a large cross-section and
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return in the range bin corresponding to the front face of the target; also, there will a

small cross-section for each of the bins along the side face of the target.

Differential Cross-Section of a Square Block, Pose Angle of 20 degrees Cross-Section of a Square Block, Pose Ange of 20 degrees

Twenty Range Bins across width of target

. 2.5- 2.5-

2 -2

1.5 1.5

0.5- 0.5

0 '' - - 0
-5 -4 -3 -2 -1 0 1 2 3 4 5 -20 -15 -10 -5 0 5 10 15 20

Range Bin Index J

Figure 3.7: Continuous Differential Cross Section f(R,O) as a function of range and the

discretized Xg(O,J), both of the same square 5m x 5m target with a range resolution of

0.25m and pose angle of 20'.

Observe that for a rotating block at any given angle, the differential cross-section

vs. range is a piecewise constant function with two non-zero portions, as shown in Figure

3.7. One portion represents the set of ranges over which two sides of the block appear; in

the figure below, this corresponds to region II. The other piece contains the cross-section

for only one face of the block, which appears in region III of Figure 3.8. There will be no

reflection from the block in region I, where none of the target is located, nor in region IV,

because the rear two sides of the block are hidden from the radar's view by the two

visible faces.
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0

III III IV
Figure 3.8: Corners of the block define the boundaries of different regions.

Also marked in Figure 3.8 are the three relevant corners of the block. Intuitively

we can see that these boundaries move as the block rotates, and that the value of the

cross-section in each of these regions changes. Let d1(0), d2(0), and d3(0) be the positions

of these three marked corners in the range coordinates, with zero taken to be at the axis of

rotation. If the axis is at the center of the block, then at 0=0, d I= 2 and
2

d 2= d3 = . As 0 increases from 0 to 7r/2, di increases monotonically and d2 decreases
2

monotonically. However, d3 increases, until it reaches a maximum at Om = tan -

and then it decreases to d = at 0 = -. Specifically, the values for these boundaries
2 2

are shown in Table 3.1, along with some convenient notation in Figure 3.9:
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Figure 3.9:
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Graphical representation of notation.

Table 3.1: Positions of the corners of the rotating block.

Now computation of the differential cross section dR is straightforward.

is such that d 2 < R < d3 then there is a contribution from the front face with value

z, cot(9). Also, if R lies between the limits d, and d3, then there is a contribution of

If 0

28

Case p = General Case; p not necessarily equal to
2 2

i, = = tan 0, = tan~

m =Or =tan-j1 Or =tan-J
"' 'y' 2(y - p)

d =d =1 x 2 + df = ;2 +(x/2)2

f2

d =d = x df = (y - p) 2 +(x/2)2

2
d1(O )= -d 2 (6 )= -- ( ycos9 -x sinO) d1 (6)= -d, COS( +Or)

d2 (0)=-(ycos0-xsin0) d 2 ()=df cos(O+ O)
2

d 3 (0)= (y cos 0 + x sin 0)= d cos(O - ,.) d3 (0)= df cos(O - Of)
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z, tan(O) from the side face. Multiplying these by the correct obliquity factors (cos(O)

for the front face, sin(0) for the side) and we have the continuous function of range f(R,

0). From this A, (0, J) is computed by integrating over the depth of the range bin, as it

was explicitly defined earlier. In figure 3.7 above, we can see that although the

differential cross section is piecewise constant, the bins in which the boundaries, di, d2,

and d3, fall take on different values. In fact, it is these boundary bins in which Xg changes

the quickest with respect to 0.

Differential Cross-Section of a Square Block, Multiple Pose Angles

6- 10 degrees

5 -

4-,

3 - 20 degre j

2 - 30 cer L

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 3.10: Cross-Section with obliquity factor at different orientations.

Figure 3.10 shows f(R,0) versus range R for a rectangular block of dimensions

5m x 5m x 1m seen at four different poses. We can see that at the 100 pose, nearly all of

the reflected power returns in the few bins corresponding to the front face. As pose angle

increases, the number of bins receiving reflection from this face increases, however, the

magnitude of the average power in each bin is decreasing.
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Given the model for a rectangular prism, computing the XgJ for a blocks-world

tank requires only the addition of three sets of XgJ, one each for the tank, body, and gun

barrel of the tank. Each is computed with the dimensions x1, yi, and z, for the size tank of

our choosing, and again the final value is just the sum of the three. To see this, remember

that the X's are all proportional to the cross-sectional area, and that the high range-

resolution radar has no way to distinguish where, in the transverse spatial direction, an

object lies. By stacking three blocks on top of each other we are increasing the cross-

sectional area seen by the radar system. Since all of the calculations from that point

onwards are linear, addition of the X's is the proper course.

3.3 Specular Reflection Model

The above Lambertian model is valid when the depth of the surface irregularities

on the target is large enough for complete incoherence - when no macroscopic Snell's

law reflection off the target occurs. The limiting case in the opposite direction is a

smooth, highly polished surface whose irregularities are of an order much smaller than

the radar wavelength. Here, the surface acts as a mirror, and an electromagnetic wave

reflects according to Snell's law. Intuitively this means a return will only be detected at

the radar when a face is nearly normal to the beam, and that in this case the return will be

of high intensity.

To develop a model for this specular-return intensity we will investigate the

consequences of Fraunhofer diffraction. The Fraunhofer approximation is the far-field

solution to a wave equation, which specifies the complex amplitude of an

electromagnetic wave when the amplitude is known over some other plane. [10] It is a
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simplification of the Huygens-Fresnel principle, derived from boundary conditions on the

electromagnetic field, which is valid when the true range R from the source plane to the

field point of interest satisfies R >> - kD 2. Here, k is the wave number of
4 C A

the radar's transmitted electromagnetic wave and D is the effective diameter of the

radiating region in the source plane.

The Fraunhofer approximation says that if the complex amplitude of an

electromagnetic wave is known over some aperture, some portion of a plane, and is

assumed to be zero elsewhere on the plane, then the complex amplitude of the

electromagnetic field at a point a distance z and at coordinates xO and yo can be

determined. Given a coordinate system x1, y1 in the known plane, we can specify this

complex wave as U(x1, y1 )e~/*. The Fraunhofer approximation for a monochromatic

source states that the complex amplitude at the remote point can be calculated via:

h 2z -j-(xx+y y 1)
U(xO, yO) = .e2z fU(x, y1  dxldy

Since we are interested in only the center point (xo=yo=O) of the distribution, this formula

simplifies greatly.

U = -e JU(x,y,xldy, [10]
jAz

To derive the reflection model, we use two applications of the Fraunhofer far-

field approximation. The first of these is a demonstration that, at a plane normal to the

beam at the surface of the target, the incoming radar beam can be taken to be a plane

wave, i.e. to have the form Ae(kz-"). We then look at how Snell's Law reflection off of

a surface will alter the electromagnetic field due to the radar. The complex amplitude
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U(x, y, ) resulting from this calculation is then used as the known data in the Fraunhofer

equation to determine the reflection strength seen by the antenna.

These Fraunhofer calculations are valid only in the case of a monochromatic

wave, i.e., a continuous signal at a constant frequency. The electromagnetic pulses used

in radar, however, comprise a range of different frequency components. To account for

this, we first perform the Fraunhofer approximation for the general monochromatic case.

This process creates a linear transfer function; for any single-frequency input to the

reflection system, the output is a wave of the same frequency with a multiplicative

change in its amplitude and phase. Then, for whatever pulsed time-domain signal is

desired, we can perform the Fourier transform to determine the weighting amounts for

each frequency component of the waveform. We then multiply these frequency-domain

weights by the frequency-dependant transfer function to determine the effect of reflection

and transmission on the waveform as an entity. An inverse Fourier transform then

returns the time domain waveform received by the antenna.

Let DR be the diameter of the circular radar transmitting antenna and PT be the

transmitted power. Given that P = fEI2 dA and that the power is evenly distributed over
surf

the antenna surface, the electromagnetic field strength of the transmitted wave E is

4
T 2 . To verify that the Fraunhofer approximation will be valid in this case, the

DR

requirement for operation in the far-field must be fulfilled: R > kD . Using a
4

nominal wavelength of 3.51mm and antenna diameter of 30.5 cm [3] the limiting distance
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is approximately 50m, much less than a typical application where the range will be on the

order of 1km.

Applying the approximation to determine the complex amplitude of the

electromagnetic field U(xo, yo) at a plane a distance z from the antenna yields

eI'21 rD 2

U (X0, Yo -~z JP7 R. This implies that E(z,t)= PT (,I)2 4 ej~k- which is, as

we desired in the far-field region where the target will be located, a plane wave. Define,

1 rD2
for later convenience, A = PT 1 to be the real amplitude of this wave.

/Z 4

Now we examine the target geometry to determine what effect interaction with

the target will have on the waveform. For reflection off of a flat mirror-like plate, let the

known Fraunhofer plane be normal to the incoming radar pulse, through the center of the

plate. The aperture will have dimensions of height zi and width xicos0 or yicos0,

depending on whether the pose is near 0=0 or 0=ir/2, i.e. upon which face of the block is

exposed to the radar. At the small angles off normal incidence, angles for which Snell's

law behavior will be appropriate, we can approximate cosO as unity. For simplicity, we

then let the width be w. Outside of this aperture (IxI > w or Iy j> Zi) assume that
2 2

U(x1,yi)=0. Within the boundaries of this rectangular region, the wave will have to travel

a slightly longer or shorter distance to reach the imaginary z=O reference plane, as shown

in Figure 3.11.
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Figure 3.11: Extra path length traveled by a wave reflecting off of a tilted plate

A wave that enters the plane z=0 at a position y must travel an additional distance

of y tan 0 before being reflected off of the plate. Then, to return to the imaginary plane,

it must travel and additional distance y tan 9/cos 29, for a total extra length of

y tan 1+ 1 . However, that wave now has a y-coordinate of y(1 + tan 0 tan 29).
cos 20 ).

Taking the ratio of these quantities determines the excess distance traveled by a wave

which leaves the z=O plane with a normalized y-coordinate. Substitution with standard

trigonometric identities reveals that a wave leaving the plane at y1 will have traveled

y, sin 29 greater path length than a wave leaving at the center of the plate, where y = 0.

Accordingly, the phase will be shifted along that plane by a factor of ky sin 29.

However, the real amplitude of the wave A will remain unchanged, so that

U(x1, yj) = Ae "* sin2O
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The Fraunhofer approximation can now be applied a second time, to determine

the effect that this reflection from the target will have on the waveform received back at

the radar antenna. In this far-field regime the specular return (in units 4Watts) is

r 2RU(x), y), where
4

ejkz 2 2

U(xOy )= -- Af dx f dyle jk sin 20,

2 2

eik 1 k
= Az, sin w-sin26D.

-sin 2 2
2

Using a small angle approximation of sin 0 = 6 , we see that the signal detected at the

receiver is again a plane wave, but one whose amplitude is a sinc function with respect to

0. In fact, the sinc resulting from reflection off of this perfectly flat surface is extremely

narrow: the first zero-crossing will occur when the plate is tilted only 0 w -= 2
wk 2w

radians off from normal. For even a very small target with a width of 1m, that becomes

an offset of 1/10 of a degree.

The preceding analysis is for a monochromatic source. The HRR system we will

consider uses a carrier frequency wo modulated by a Gaussian pulse envelope of width t,

such that the range resolution of the radar RR = . In the frequency domain, this pulse
2

transforms into another Gaussian

727 2 e 2v Ae 2
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so that our passband pulse transforms into a Gaussian centered around the carrier

frequency wo:

e 2,r
2 i Ot Ae 2

For all frequencies, weight this by the amplitudes determined through the Fraunhofer

approximation, remembering that the wavenumber k is a function of frequency and must

be expressed as such in order to perform the integration in the inverse Fourier transform.

The results of this calculation show that two Gaussian pulses are received at the antenna.

Each is shifted in phase and in delay as if it had been reflected from a single reflector,

normal to the plane wave, located at the two corners of the plate. However, because the

width of the pulse is so great compared to the period of the carrier, very little separation

of the pulses can occur as the target rotates before the sinc function decays to an

insignificant value. In light of this, and of the fact that almost no significant information

may be gained if reflection only occurs at extremely small angles, for purposes of

analysis we shall arbitrarily broaden the width of the sinc. It shall be approximated as a

Gaussian with width a, so that the mean value of the return in a single range bin will be

1 rD2  1 rD
Ke 2r2 , where K = 1- R AZW= PR ZW . The angular width over

AR 4 (A) 2  4 (I)

which the reflection is seen a shall be somewhat broadened from the theoretical value

computed from the model. This is done so that detection over a wider range of

orientations is possible; however, to keep the analysis under control, the value of a shall

still be small enough such that the return from a surface remains in a single range bin.
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These amplitudes can be found for each surface of the tank, so reflection return will

appear in our specular model, with different amplitudes, in three range bins.

The preceding, seemingly arbitrary angular broadening of the specular reflection

from a single plate is actually quite appropriate. A tank does not consist of three large

reflectors, but rather of many much smaller facets. A smaller facet implies a wider sinc

function, which we can approximate fairly well with a Gaussian. The Fraunhofer analysis

method can be extended to returns occurring from multiple facets in as many range bins

as desired, although additional work would be required to properly account for multiple-

facet reflections.

The statistical model for the case of pure specular reflection, therefore, involves a

distribution with both variance X and mean m parameters, as opposed to the purely

Lambertian model for which there was no coherent reflection parameter m. We shall

model m(9) as the artificially broadened Gaussian described above which will appear,

for a single reflective surface, in a single range bin. It is taken to be zero in all other

range bins. The variance parameter X in this case is due solely to thermal receiver noise,

and is therefore not a function of the orientation and will be constant across all range

bins.

3.4 Composite Target Model

The Lambertian and specular models are two limiting cases, appropriate when the

all of the power reflected off of the target surface is found in either coherent or

completely incoherent radiation. Most real targets, however, reflect a combination of the

two types of radiation. Although the analysis of such a model is not studied in this thesis,
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the Rician parameters m and X can be straightforwardly determined for an appropriate

statistical probability distribution. To do so, another descriptive quantity of the physical

system must be defined. Let a fraction a of the total reflected power P reflected by the

target's physical cross section due to specular reflection, and then the remaining fraction

(1 - a) will be due to incoherent reflection. The mean and variance parameters can be

computed independently, as described above in this chapter. Since the total reflected

power is the sum from the two types of reflection, then momposite(0) = mspecuar (9)V and

A(2) = A,, + Ag,etian(OXi -a) are the appropriate mean and variance parameters for

case of composite reflection, where 0 a 1.
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Chapter IV

Cramdr-Rao Bounds

The general problem of estimation is to provide a choice for the value, i.e. an

estimate, of some quantity, taken from a continuous set of possibilities. Depending on

the quantity we desire to estimate, there are two methods of thinking about estimation. In

the first, the quantity is a random variable with a known prior density; in the second, it is

a non-random parameter of the probability density of the data to which we are allowed

access. For most of this analysis, the target's pose it treated as an unknown parameter 0.

It is a set quantity, not a random variable, which we want to determine from the statistical

radar-return data. The analysis proceeds by determining, for each possible true value of

0, how well an estimator of that orientation could perform. Performance is measured, as

described earlier, by the Hilbert-Schmidt metric, which at high signal-to-noise ratios is

approximately equal to the minimum-mean-squared error on pose angle estimation. The

Cramdr-Rao bound, which is a lower bound on the variance of any unbiased estimator, is

used to put a best-case limit on that performance. A drawback of the Cramdr-Rao bound

is that it is only valid for unbiased estimates of the unknown parameter; the implications

of that problem are addressed in the cases in which it becomes an issue. Finally, an

estimation of the overall performance of pose estimators, when the pose is viewed as a

random variable with a uniform distribution, is found by averaging the error variance

over the set of all possible orientations.
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4.1 Cramdr-Rao Analysis

In general, the mean-squared error of an estimator $ of an unknown non-random

parameter 0 is the sum of two components, the variance of the estimator and the bias.

The estimator 0 is a function of the data provided through some statistical distribution

based on the parameter 0, which means that $ is itself a random variable with mean

M= E[$]and variance o-? = E[0 2 ]-m 2 . The mean-squared error EF($ - 92 is then

- +(m -0)2, the variance added to the square of the bias. Most often, we are

interested in finding the unbiased estimator with the minimum possible variance to

minimize the total mean-squared error. Cram6r-Rao analysis is a tool which, by

linearizing the behavior of the probability distribution for the data around an operating

point, allows us to do precisely that. There do exist cases, however, especially with

distributions which are highly non-linear functions of the parameter which we desire to

estimate, for which no unbiased estimator exists, or for which a small bias may be a good

tradeoff for a large reduction in the variance of the estimator. When this case applies to

the problem of pose estimation with HRR data, some alternate methods of approximating

the minimum-mean squared error will be discussed.

For the most part, however, and especially in the good performance region of high

signal-to-noise ratios, an unbiased estimate is the most desirable. The Cramer-Rao bound

is therefore the primary tool used to place performance bounds on the problem of

orientation estimation. It achieves this goal by determining how sensitive the statistical

distribution of the data is to changes in the unknown non-random parameter, here the
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orientation angle 0. The sensitivity measurement that is used is the Fisher Information

[7]:

I, (0)= E In py )0 ,

where y is the data to which the estimator has access. Also, an alternate, equivalent

formulation of the Fisher Information can be shown to be:

I, (0)= -E aIn py | 10.

Additionally, given access to a random vector y composed of statistically independent

components, the total Fisher information provided by this vector equals the sum of the

Fisher informations provided by the individual components.

The Cramr6r-Rao bound is the inverse of the Fisher Information:

or(0)> 1 [7]

As demonstrated earlier, the return data from an HRR radar in each bin is statistically

modeled to have a Rician distribution, with parameters 2() = g (9) + 2 and m(9)

determined by the target's geometry, orientation, and the radar receiver noise:

2r '"I 2mr

P,.(r0)=e ( Io J,r .

The Fisher Information of each bin is then found to be very difficult to work with

analytically, involving several higher-order modified Bessel functions. To avoid that

problem, only the two limiting reflectivity cases, completely Lambertian and completely

specular, are discussed in this thesis.
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4.2 Analysis of Rough-Surface Target Model

In the Lambertian reflection model, the mean parameter m of the Rician

distribution is zero. The probability distribution for each bin then become Rayleigh:

2r r'
pr(r|1)=--e A, r>0

where A = A(, J) = 1g (0, J)+ . The Fisher Information about 0 in the data r is found

to be:

1F a 2Ir (o)-=

For the reflection pattern of a single rectangular block, there are three main effects which

contribute to the change of variance with respect to pose in each bin. The first of these is

the change in the reflection of the front face of the block. When this face spans the entire

bin width, its contribution to variance is 2
gJ,frontace(o) = KZ, cot 0 cos 9. We then find

= cos 9(csc2 +1). Similarly, there is a contribution from the side face, if that
ao

face also spans the entire bin, of 2
gJ,sideface() = 'z, tan 0 sin 0. This term has derivative

-- = xz, sin G(sec2 9+ I). The third, slightly more complicated, effect occurs when the
ao

bin under investigation contains one of the block's edges, i.e. one of the boundaries (dj,

d2, or d3 defined in Section 3.2) of the spatial regions for which the above two faces may

contribute to the total reflection strength. In this case, both the contributions of the two

faces change, as do the fractions of the bin in which the reflection is received.
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Width of a single range bin
Figure 4.1: Three effects contribute to the change in variance parameter Xg as orientation

changes and a block's edge moves through a range bin.

Recall from Section 3.2 that the Xg parameter in each bin is the average, over the

range, of the function f(R,O) shown in Figure 4.1 above. The change in f(R,O) as the

pose angle 0 increases is indicated by the arrows; the sum of these changes integrated

over the width of the entire range bin becomes the change in the variance of the range

bin, --. As the edge d2 enters or leaves this particular range bin, the derivative as a

function of 0 will be discontinuous, even though the variance A() remains a continuous

function. As will be shown, this implies that the Fisher information and therefore the

Cram6r-Rao bound are discontinuous functions of the orientation 0.

Following, we have plotted the variance parameter (Figure 4.2a), its derivative

(Figure 4.3a), and the Fisher information for a single range bin (Figure 4.3b), for a

rectangular block with unit width whose depth is twice that large, and whose height equal

its width. The range resolution is four range bins per unit width .
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Figure 4.2: The variance parameter X is composed of contributions from the front face,
proportional to cot(0)cos(0), and from the side face, proportional to tan(0)sin(0).

When the block is at the 0=0 orientation, all of the front face is found much closer

to the radar than the center of the block (at the distance y/2, precisely), so there is no

reflection from that face received at the radar in this bin. Also, the side face of the block

is parallel to the radar's line of sight, so it has no visible cross section at this orientation.

Thus, there is no power received by the radar at this orientation, in this bin, due to

reflection from the side of the target, either. However, as 0 increases, a small cross

section from the side face appears and grows in magnitude as the face becomes closer to

head-on with the radar. At some point, then, the back edge of the side face begins to

leave the bin, and the variance of the bin decreases as less cross section is available for

reflection. Around the same angle, the back edge of the front face then begins to enter

the bin as well, and the contribution from this face can be seen clearly at the far right of

Figure 4.2a. In, Figure 4.2b, we show the two trigonometric functions, whose

contributions represent those of the front and side faces, respectively.
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Figure 4.3: The derivative of the variance and the Fisher Information.

The discontinuities in the derivative due to the back corner of the side face

entering and leaving this particular bin are clearly visible in Figure 4.3a. The two plots in

Figure 4.3 also vividly demonstrate that the Fisher information provided at the angles at

which the corner is moving through the bin is significantly greater than that available at

other orientations. In the more complete case, when the data from multiple bins is

available to aid in pose estimation, it is therefore the bins that contain edges that are most

helpful in refining the estimate.

Signal-to-Noise Ratio (SNR) is defined as for a rectangular block to be the ratio

G, where the denominator is variance parameter due to thermal noise. The

numerator is the parameter due to geometry, measured in the bin at which the larger of

the front and side faces appears, at the orientation such that this face is normal to the

incoming radar beam.

To obtain the Fisher Information contained in the entire vector of range

information, the individual Fisher Informations of each bin are summed. Figure 4.4 is a
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plot of the total Fisher information versus pose angle 0 from a 1m x 2m x lm sized

rectangular block, with a range resolution of 0.25m, at a SNR of 2.

Fisher Information from a Rectangular Block, SNR=2
140

120-
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aa
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0 10 20 30 40 50 60 70 80 90

Orientation angle Theta

Figure 4.4 Fisher Information as function of Orientation

The Cram6r-Rao bound, the inverse of the Fisher Information and the focus of

this thesis, for this block is plotted versus pose 0 in Figure 4.5 below.

CRB from a Rectangular Block, SNR=2
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Figure 4.5: The Cramer-Rao bound on Pose Estimation of a Rectangular Block
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There are several features of this bound which deserve further investigation. The

first of these is the striking jaggedness of the bound, i.e. the large discontinuities due to

the corners of the block entering and leaving range bins. At first glance, it seems

plausible that, because any particular corner is always within one bin or another, there is

always at least one bin with a large Fisher Information. However, that argument is not

exactly correct. There is, at most angles, at least one bin with a large derivative .
ao

However, consider the case illustrated below in Figure 4.6. Because the largest

component of the derivative in either bin is due to the movement of the boundary

f(RO)
< 4 4 4' at some fixed

orientation 0

t t t t t t+

d2(0)

Range R Two range bins

Figure 4.6: The function f(R,O) as it changes with increasing angle 6

d2 (9), the derivative in the first bin after this corner switches bins will be approximately

equal to the value of the derivative in the bin on the right just before that occurrence takes

place. However, the value of the variance X itself will be much smaller in the left bin at

that instant. Since the Fisher Information is the square of the ratio of these quantities, the
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total Fisher Information will be dramatically larger at the angles slightly after the bin

crossing than slightly before. Another consequence is that the information will decrease

as the edge travels further through the bin, an effect that can be seen in the plot of the

Cram6r-Rao bound above.

The ultimate cause of these discontinuities is the assumption that range to the

center of the block is known exactly. In practice, this distance will not usually be known

to any greater accuracy than the range resolution, making the exact angle at which one of

the block's corners traverses from one range bin to another a moot point. The cross

section/obliquity function f(R,0) could be smoothed to represent this uncertainty in range

knowledge; for example, we could assume that the actual absolute range to the target is a

random variable with a normal distribution and modify the function accordingly.

However, this will likely result simply in a leveling out of the Fisher Information and

therefore the Cram6r-Rao bound (CRB). Since the ultimate goal is to integrate the CRB

over a uniform prior density, i.e. average its value over all possible orientations, the final

effect of this smoothing would be minimal.

A second observation is that the Cramdr-Rao bound predicts, on the average, a

greater ability to estimate pose for orientation angles -- 0 < - than it does for the
4 2

angles 05 -. This agrees with intuition. At the greater angles, the larger face is
4

presented towards the radar. Accordingly, there is a greater cross section available to

reflect the radar signal, and better information available to aid in estimation.

Finally, at orientations near 0 =0 and 0 = -r , there is a dramatic increase in the
2

Crame~r-Rao bound; the bound very quickly heads towards infinity and there is a
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singularity located at each of those angles. It can shown that these increases occur when

a block face is completely contained within one range bin. This effect is highly counter-

intuitive; one would expect that at these angles, the radar return profile will be very

distinctive - almost all of the return is located in one single bin. It is precisely that fact,

that nearly all of the return is to be found in one bin, that leads to such a large bound.

Over the range of angles for which a face does appear in a single bin, the return is

distinctive, but changes very little from one orientation to another. Since Cram6r-Rao-

bound analysis is completely based on the determination of how quickly a random vector

or variable changes with respect to changes in the parameter which is to be estimated, an

invariant statistical distribution for the random variable provides virtually no information

about what, within that particular range, the pose might be. In fact, the Cram6r-Rao

bound is derived from a linearization of the probability distribution at a certain point.

Thus, because HRR can make no distinction between a block oriented at + # and one at

- 0, there is necessarily an inflection point at 6 = 0 where there is no change in the

statistical distribution. At this point, the Fisher Information is necessarily zero and the

CRB is infinite.

This singularity occurrence reflects the difficulty of creating an unbiased pose

estimator for these special orientations. However, to show that it is possible to make a

somewhat good estimate of the pose at these orientations, a method other than Cramer-

Rao analysis may be used. If the question "Is the pose angle such that the entire front

face of the target block is to be found within one range bin?" is asked, the overall

problem becomes one of decision between two alternatives rather than an estimation,

with a continuum of possible results.
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Specifically, the set of possible angles 0 _6 - can be divided into M different
2

bins, each of width 7 . For each angular bin, compute the variance A,, (0.), where
2M

0. is the angle at the center of each bin, i.e. OM = -- (2m - 1). Using a maximum
2M

likelihood binary decision rule, we can determine the probability that, in a choice

between the true orientation 0, and an alternative 61, the correct orientation is identified.

The conditional probability of correct decision in this M-ary decision problem can then

be bounded by the sum of the errors in the M-1 binary decision problems:

P[declaring1 I1\true] 1 - Y PdeclaringOj1\Itrue],
j*i

where the probability on the left side of the equation refers to the M-ary problem and the

right side refers to a binary decision between 0, and Oi only.

Further, the set of probabilities P[declaring91 |6,true] can be used to approximate

the minimum mean-squared error of a maximum likelihood estimator. The error is the

sum of the error from choosing the wrong angular bin, in addition to an error from

declaring the orientation to be the particular angle at the center of the bin, when it could

be uniformly distributed within it:

E[(9 -6 ~ (e, -OY I )pdeclarnfg9 I\,true]+ 1 2
j~i 12 2M

This formula would provide a more precise value for the mean-squared error if the

probabilities used were the error probabilities in the M-ary decision problem, rather than

the binary error probabilities. However, especially for a vector of random variables,

which the range profile provides in this case, finding the binary probabilities is a solvable
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problem, whereas the M-ary maximum-likelihood error probability is much more

difficult to find. In addition, if the true orientation is 6, then a minimum on the

estimation error can be found by assuming that, in a binary decision between 02 and

61>2, 62 will always be chosen. Any cases in which this choice does not occur will

increase the mean-square error of the result, so that

) 2 P[declaringo2 Iatrue + - becomes a minimum bound.
2M 12 (2M)

To compute the binary probabilities, we use the Van Trees approximation for

Receiver Operating Characteristics (ROC). [11] In a likelihood ratio test with data X

and the two hypotheses 6, and 6O, the log-likelihood

f(X) _[in P.10 (xI0)

is compared to some threshold y in order to determine whether to declare hypothesis 0,

or to declare 6. To choose the hypothesis with greatest probability of being true, the

threshold y is set to zero.

The Van Trees approximation transforms the coordinate system such that

P(s) = ln(E[es' 61]), 05 s 1

and concludes that

P declaringa1 6,true]~ Q[(1- s)..i~( ]exp[ (1 - s) 2 p(s) + p"(s) + s)I (s)
2

01 2

where Q(x) Jdt L e 2 and 1a(s) = y.
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To apply these results to the problem at hand, i.e. the rough-surface model of

radar return, we examine the square of the data that we considered earlier. These values

then take an exponential, rather than Rayleigh, statistical distribution in each bin;

however the variance parameters X remain unchanged. For vectors P of independent

exponentially distributed random variables the log-likelihood t is:

e(P)=LB+ZJ

where LB = nt . It is also verified that p(s) converges for all 0 5 s 1 for an

exponentially distributed random vector. The semi-invariant moment-generating

function, u(s), is then given by:

pu(s)= sL-Xln 1+

The derivatives A(s) and A(s) follow straightforwardly.

Next, we are ultimately interested in finding the probability of error using a

decision rule for which the log-likelihood threshold y is zero, i.e. the maximum likelihood

decision region for any data vector P. Since y = ft(s) is a monotonically increasing

function of s, we can use Newton's approximation method to find the s for which

p(s) = 0 without fear of the algorithm looping within a local extrema rather than

converging to the correct result. With knowledge of the appropriate s, p(s) and p(s) can

be calculated, and therefore the error probabilities for each of the M possible are

computed.
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For the same rectangular block analyzed for the Cramdr-Rao bound earlier in this

section, we can compute the probabilities of declaring 9, when the true orientation is 0,,

the center orientation of the

within a single range bin.

angular bin in which the front face is located completely

Figure 4.7 Binary decision probabilities of error.

In figure 4.7 above, the probabilities of declaring 9, when 01 is the true

orientation are shown for the case of SNR=2. These probabilities are so large that the

SNR used for these calculations clearly falls outside the good-performance region that we

desire to work in. Nonetheless, the bound on MMSE can be obtained from this data, a

similar calculation is done when the true orientation is near -, and the results, once
2

grafted onto the plot of the CRB obtained earlier, provide the composite bound is shown

in Figure 4.8.
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Composite MMSE Bound on Pose Estimation
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Figure 4.8 Bound obtained using both CRB and Van Trees error estimation

All of this analysis was performed using a single rectangular block as a target; the

extension to a three-block tank is straightforward and will be discussed in Chapter V.

4.3 Analysis of Specular Target Model

It can be shown that the Rice distribution,

Pr(rI0)=-e A I r r>O

can be approximated, when m 2 >> A, by a Gaussian probability distribution with the

same mean and whose variance is one-half that of the Rician's parameter:

2
pr(r 10) e 2

2

As a demonstration, Figure 4.9 shows a concurrent plot of the two probability

distributions.
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Figure 4.9: Comparison of Gaussian and Rician Distributions

Under the model described in Chapter III, the radar return profile for a rectangular

block will consist of only noise in every bin unless face of the target is close to being

normal to the radar beam. In this case, that range bin will have a Gaussian distribution,

62

with mean m = Ke 20,2 and accordingly, full statistical description

r-Ke 2a2

12(-
pr(r | 1 e 2

2 -
2

Applying Cramdr-Rao analysis to a Gaussian distribution with mean m(9) and constant

A2 m2
variance - yields the Fisher Information . For the mean of this model, the

2 A ms
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A 4--0-
Cram6r-Rao bound becomes 2 ,2 ' This bound is plotted in Figure 4. 10a, below

K 2 0 2 e,2

K 2
for a K Signal-to-Noise ratio of 25 and a reflection-decay standard-deviation

parameter a of 4 degrees.

X 1o-' Cramer-Rao Bound for Specular Model x 10-
5

Cramer-Rao Bound on Estimation of Theta
2 

for Specular Model

4.5-

4- 2-

3.5-

3

,2.5- -

1.5 --

1-

0.5 -

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -2 0 2 4 6 8 10
Orientation, degrees Orientation, degrees

(a) (b)
Figure 4.10 The Cram6r-Rao bounds on the estimation of 0 and 02.

The Cram6r-Rao bound on the estimation of 0 in the specular case, just as with the rough-

surface model, has a singularity at 6 = 0, when the face is perpendicular to the radar

beam. Again, intuition would expect that at these smallest angles it should be easier to

make a good estimate of pose, because at this orientation the mean takes its greatest value

in comparison to the noise. Greater signal implies that estimation should be more

accurate.

Remembering that HRR data can give no indication on whether a symmetric

target is oriented at 6 = +8 or at 6 = -8, it is useful to determine the Cramdr-Rao bound

on the estimation of 62. Normally, in an estimation of the square of a parameter, any
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information on the sign of the value would be lost, but since in this case there is no sign

data in the profile it makes a logical choice. Computing the Fisher Information

2 M )m2 
4- -

Sproduces a Cramdr-Rao bound of 2 This is also plotted in Figure
A To2 K 2 a

4.10b. above, on an equivalent scale. (The vertical axis for the plot on the left ranges

from 0 to .2, while on the right plot it varies from 0 to a 4 .)

To attempt to compare the Cram6r-Rao bound on the estimation of 02 with the

mean-squared error of a specific estimator, the mean-square error E[( 02 2 of the

maximum-likelihood estimator 02 = -2c 2 In ( was computed. Using the

approximation

ln(1+ z)= z -1 z2 for z <<1
2

it can be shown that, for a Gaussian distribution with mean m and variance -,
2

E [ln x = in m 1 /2 when M2 >> A . Strictly speaking, the far tail of the
2 M2

Gaussian distribution must be ignored, because the logarithm of a negative number is an

imaginary number and the integral will not converge in that region. However, because

the Gaussian is only approximating the Rice distribution this is not a fundamental

problem. Further, approximating E[(In x)2]= (in M) 2 + (I - In m) 2/- and substituting
M 2
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4-A
these into the expansion of EI(02 - ~2 produces a mean-square error of 2

K 2e 2

exactly the bound predicted through Cram6r-Rao analysis.
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Chapter V

Performance Comparisons

Up to this point, this thesis has described methods for computing minimum mean-

squared error bounds for pose estimation of rectangular and blocks-world target models.

A major goal of the work, however, is to determine the effects that variations in the

physical parameters of the radar-target system have on these bounds. Much of this

behavior is found to be reducible to the effects of varying the signal-to-noise ratio. For

example, increasing the cross-section of a target may have exactly the same effect as

reducing the value of the receiver noise by the same proportion. SNR has been

previously defined in both specular and rough-surface cases as the ratio of maximum

power received in a bin, due to reflection from the target, to the power resulting from the

thermal receiver noise, allowing changes in many parameters to be absorbed into this one

variable. Finally, the performance results obtained through the models are compared

with Monte-Carlo simulations that find the Hilbert-Schmidt estimate and associated error

for many trials of the statistical data.

5.1 Rough-Surface Performance Analysis

An examination of the form of the Fisher Information for each individual range

bin in the rough-surface model produces a few observations. The first of these is that,

even as signal-to-noise ratio grows without bound, there may be a finite limit on the

fidelity of the pose estimate. In other words, the minimum mean-squared error cannot

necessarily be reduced to an arbitrarily small value by increasing the SNR. Recall the
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form of the Fisher Information for a single bin, based on a Rayleigh probability

distribution:

la0

Ag,J + A ,J

Defining 2
g = g'' as SNR-normalized variance for each bin, the total Fisher

max Agj
J,e

Information available from the radar-return range profile becomes

I 2

SNR

The values of 2
gj and are both proportional to the target's height zi, so

increasing this parameter by a constant factor is equivalent to reducing the receiver noise

by the same factor, i.e. the SNR is constant. However, even if we could increase the

signal-to-noise ratio to infinity, perhaps by setting receiver noise to zero, there is still a

maximum Fisher Information in each range bin. This implies that the CRB cannot be

reduced to zero in this manner. While at very low signal-to-noise ratios, the Cramer-Rao

1
bound will improve as 2 , the performance will eventually plateau. The only way to

SNR 2

further increase the Fisher Information is to increase the number of bins in which the

target appears; i.e. increase the length x, and the width yi or increase the range bin density

n = --. For a given target, this means that increased range-bin density, which requires
R,

increased radar-pulse bandwidth, is necessary. Figure 5.la below displays the variation
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in the CRB, integrated over a uniform prior distribution, as SNR is increased via

decreasing the variance contribution of receiver noise. In Figure 5.1b, the width and

length of the tank are increased proportionally over a range of 0.4 to 2.5 times the size of

the basic tank model. The tank used is the blocks-world model described in section 3.2,

with a standard range-resolution [3] of 0.5 meters.

Changes In CRB as Receher Noise Decreases
-1.4

-1.6

-1.8 -

*2

-2.2

-2.4

-2.6

-2.81_
15 20 25 30 35 40 45

20Iog(SNR)

Changes in CRB as Tank Size increases
-1

-1. 5

-2-

-2.5

-3-

-3.5-

.41
20 25 30 35 40 45 50 55

20og(SNR)

(a) (b)
Figure 5.1: Plots comparing the change in CRB as SNR increases. In plot (a), receiver
noise is decreased to provide better SNR. In plot (b), the sizes xi and yi are increased
while keeping the receiver noise unchanged.

Figure 5.lb shows that, as the size of the target grows, the MMSE appears to

1
decrease as N 2 , possibly because there are two effects influencing an algorithm's

pose estimation ability. First, there is the increase in the number of bins that provide a

radar return, and therefore can provide applicable Fisher Information. Secondly, a longer

moment arm for rotation means that, over the same range of orientations, the corners of

the block will be sweeping each range bin at a faster pace, increasing the value of -- in
e6

each bin by a factor while leaving A, invariant.
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Increasing SNR by changing the target height z, or the receiver noise A,,

however, only seems to produce a ( -change in the MMSE in this regime, and we
SNR)

can see that as the SNR increases, the effect becomes even less pronounced. The limit on

pose estimation ability, discussed above, is being reached and can be seen at the right

extreme of Figure 5.2a as the CRB begins to flatten out.

The predictions of the Cram6r-Rao bound can be compared to the mean-square

error of the Hilbert-Schmidt estimator. The first step in determining the HSE is to

generate a random range profile R according to the statistical model for a particular

orientation angle 0. Then the Hilbert-Schmidt estimate is found: for each of a set of N

possible orientation angles, the conditional probability density

PRG1 (Rjo,)= 7 p, (R, I 9) is computed. Because we assume a uniform prior density for
J

pose, we obtain the posterior distribution for pose 0 by normalizing the conditional

density such that aX PRIO (Rj91 ) =1. In a similar manner we compute
N

1N N
Ecos 9] = PR61 (R|oi)cos 9, and E[sin 9] = PR|, (R19, )sin 9,. The Hilbert-

Schmidt estimate is then $HS = tan-i( Ecs0] . Finally, the squared-error (0- $HS Y is

calculated for this trial. Over a set of many trials, the mean of these squared-errors will

converge to the mean-squared error, which in the high-performance regime is

approximately one-half of the Hilbert-Schmidt error. Figure 5.2 shows a comparison of

the empirically calculated MSE (600 trials at each of 45 angles, SNR=46dB, for the
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standard tank model) with the theoretically derived Cramer-Rao/Van Trees composite

bound.

Figure 5.2:

Pose Estimation Error as a Function of Orientation
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CRB and Mean Square Error of the Hilbert-Schmidt Estimator

At some points in the figure above, the minimum mean-squared error obtained by

simulation becomes smaller than the Cram6r-Rao bound, which is an apparent

inconsistency - the CRB is by definition the minimum mean-squared error of any

unbiased estimator. However, this is a manifestation of the same behavior which is seen

at the two orientation extrema, 0 =0 and = -. Although estimators may exist which
2

have better than CRB mean-squared errors at certain values of the unknown parameter, a

deeper analysis of the estimator will show that it cannot be unbiased. It is expected that,

as signal-to-noise ratio increases that an unbiased estimator, who best possible mean-

squared error is predicted by the Cram6r-Rao bound, will outperform all other valid

estimators.
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The variation of the bound with respect to changes in parameters can also be

checked against the simulation results. Below, in Figure 5.3, is the same behavior

captured in Figure 5.1a above, the changes in error variance with receiver nose. These

plots also include the MSE calculated by the Monte-Carlo method for a comparison,

using 250 trials at each of 90 poses for each value of SNR.

Comparison of CRB and MSE of HS Estimate
-1.4

.1.6 - - _ _

M E of HS Est mate

8-1.8

C CRB

Z -2.2
w
CO)

2 -2.4 - _ _ _ _
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U-2.6

15 20 25 30 35 40 45
2OMog(SNR)

Figure 5.3: Comparison of CRB and MSE of Hilbert-Schmidt Estimate as SNR increases

5.2 Specular Results

By inspection of the Cram6r-Rao bounds derived in Chapter IV for a single block,

24
-0-
2 ,2 , the error variance of an estimate of orientation angle 0, we see that the error

K 29 2 e ,2

1 K2

decreases as for a signal-to-noise ratio defined as , maximum reflected power
SNR A

to receiver noise power. This ratio is a function of the peak power transmitted, as well as

of the cross-section of the reflecting surface. Also, the angular range over which an
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estimate can be made is a strong function, obviously, of the angular width over which the

-e o

reflection occurs. The CRB can be rewritten 2 K 2
o

2  to show the dependence more

explicitly. From the physical model, this a parameter will increase as the size of the

reflecting surface decreases. A decrease in the surface's area then has two opposing

effects, the decrease in SNR acting to cancel out some of the increase in angular width

for reflection.

For multiple blocks whose reflections appear in different range bins and therefore

cause no interference, the Fisher Information from each face can be added in order to

compute a complete Cram6r-Rao bound. This specular model can even be extended to a

target with many small reflecting facets. Each plate may have a different placement on

the target and therefore cause specular reflection at different orientation angles. To

determine the radar return, however, the effects of interference, shadowing, and reflection

off of multiple surfaces must be taken into account and the Fisher Information will take a

more complicated form.
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Chapter VI

Conclusions

In this thesis, we have created statistical models, based on physical principles, of

High Range-Resolution Radar return profiles. Two limiting cases of reflectivity were

studied, the rough-surface Lambertian reflection model and the smooth-surface, specular

reflection model. We also determined how to compute the parameters of each statistical

model for an arbitrary target composed of rectangular blocks, and then did so for a

standard blocks-world model of a tank. Since these parameters vary as the orientation of

the tank changes, the data from the statistically-generated range profiles can be used to

make an estimate of that orientation angle.

The thesis then continues by determining performance bounds on the accuracy of

algorithms intended to estimate that orientation. First, we determined the process by

which to compute these bounds for the particular models used, and then evaluated the

bounds for the tank target. We found the dependence of the bounds on the physical

parameters of the system and showed how the error variance decreases inversely with

increasing signal-to-noise ratio. The lower bounds were also compared to empirical

estimates obtained, using the statistical models, via Monte-Carlo simulation.

There are, however, some remaining issues that would be helped by more elegant

solutions. The most glaring of these is the specular return model, in which we

approximated a sinc function as a Gaussian, and artificially and arbitrarily determined the

width of the function. This model may actually have behavior conforming to reality, but

without a more detailed analysis of reflection from a multi-faceted target there is little by
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which to judge its accuracy. On a similar note, there is no Cram6r-Rao analysis of a

composite reflection surface, which reflects some portion of the radar beam coherently

and the rest incoherently. The lack of a tractable approximation to the Rice distribution

when the m2 and X parameters are of comparable magnitudes makes that particular

project difficult to approach. Analysis of the pure specular case would also be aided by

such an approximation, so that the Cram6r-Rao bound not be restricted to the regime in

which the reflected power is an order of magnitude or more greater than the power

inherent in the receiver noise.

Additionally, we identified problems with the Cramdr-Rao bound itself because it

acts on the linearization of the distribution around at a specific value of the unknown

parameter. Often, as we showed at the extreme orientations 6 = 0 and 6 = ;--, the ability
2

to make an estimation of the parameter is not limited by the curvature of the distribution

at that point. A biased estimate, which this version of the CRB cannot consider, could in

fact provide a much smaller mean-squared error than the minimum variance unbiased

estimator.

Finally, sensor fusion could be attempted, in which the information from a High

Range-Resolution Radar profile is optimally combined with the data from a Laser Radar

or an Infrared Thermal sensor image. That analysis could identify performance trade-offs

and highlight any particular benefits of using multiple sensors to obtain images of a

particular target. For example, the inability of HRR to judge the transverse positioning of

a reflector could be compensated for by adding another kind of sensor.
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