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ABSTRACT

This thesis presents a computational framework for parsing video based on the notion of
"temporal units." Temporal units are formally defined as collections of frames under a
common theme, e.g. a shot, a dialogue, or a football play. Computational procedures are
devised to 1) identify the boundaries of certain types of temporal units and 2) cluster
them into hierarchies that reflect the temporal structure of the content. It is shown that, in
addition to enabling new modes of interaction with video, the resulting representation can
significantly improve the efficiency of search and retrieval operations. Interesting
applications of the new parsing technology are demonstrated on Minerva, a system that
suggests cooking recipes and provides users with video and textual instructions about
cooking a selected recipe. Minerva relies on object recognition technology to identify
ingredients that users want to use and, based on their preferences, returns recipes that
might interest them. Video parsing technology enables users to control and interact with
the video while following the instructions.
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Chapter 1: Introduction

The media and networking group at the Media Laboratory and others construct

audio and video systems that map the delivery of real-time entertainment information

onto the Internet. The vision is to make television a global resource. By distributing

programming to anywhere and at anytime, television can expand to become more than an

interaction between one family and its television set.

An important problem that bears on this vision is the selection and searching

mechanism. As more options become available, the selection of one that is of interest to

a viewer or group of viewers becomes increasingly complicated. Various schemes have

been attempted to provide a framework to facilitate the navigation through this space,

including the use of autonomous agents (Maes, etc), and elaborate program guides

(TiVo, etc). In this thesis, image similarity analysis is explored as an underlying

technology to present options in an interactive, activity-based manner to iteratively guide

a viewer through a visual programming space. Adding the notion of "temporal units" to

existing search systems will facilitate the automatic parsing of moving images into

frames, shots and scenes (defined more precisely below). Being able to identify these

different components of video will allow viewers to search through video in an efficient

and enjoyable manner. For example, viewers may be able to extract all the plays that a

particular player is involved in a football game or find all the scenes that take place in the

coffee shop of different "Friends" episodes.
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1.1 Defining a Temporal Unit

A temporal unit consists of a frame or a set of frames that are linked by a common

characteristic such as depicting a sequence, containing the same subject, or even

illustrating a common theme. The basic algorithm used by this video parser first breaks a

video down into its various temporal units and, using similarity matching, merges similar

sections in a bottom up fashion. The goal is to identify similarities among the different

components of the video and group similar parts together. Then, viewers can retrieve

particular segments of a video that pertain to a particular subject rather than trying to

search through the entire video themselves. These groups can then be compared and

again clustered together to form a higher level grouping, thus creating a hierarchical

structure for a video.

The most basic temporal unit is the individual frame. The next higher level is a

shot composed of a sequence of frames from an individual camera without harsh

transitions (such as switching to another camera). A scene is defined as a series of shots

that pertain to the same theme. For example, if the video deals with a conversation

between two people and involves switching cameras back and forth between the two

people, a new shot begins every time there is a transition to a different camera but the

whole exchange is classified as one scene. Although, these basic building blocks can be

combined into higher-level temporal units, this thesis will only deal with clustering

images at the shot and scene level. Solving this parsing problem involves three main

steps: finding a compact frame representation, identifying the boundaries of each

temporal unit, and using similarity functions to match units at the same level and to

cluster them into higher level temporal units.
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1.2 Modeling Temporal Units

The path chosen to solve this problem involves statistical modeling of the images

by mapping their features into probability density functions. An image's features are

measurements that allow a system to discriminate among other images with a different

content. Probability densities can be compared using Bayesian techniques and maximum

likelihood ratios are used to determine the likelihood that a particular set of features from

a query image is similar to the set of features from a database of images. In this way,

frames from the same temporal unit can be identified because their features will return a

higher probability of being similar. Transition points can be recognized when

consecutive frames are found to have a relatively small probability of being from the

same temporal unit. Finally, to create representations for higher order temporal units,

frames and their corresponding density functions from a lower level temporal unit can be

clustered. This will result in a more general representation of the feature information

stored in the densities of the lower level.

The Gaussian Mixture model has been shown to be an appropriate probabilistic

representation for the feature space [1]. This model approximates the underlying feature

density by creating a weighted sum of individual Gaussians. When dealing with a high

dimensional space and multimodal densities, this model proves more effective than

previously proposed solutions because it is less expensive computationally than the

histogram and more accurate than the Gaussian.

To cluster frames at a given temporal level into higher order temporal units, it is

necessary to calculate a representation, or probability density function, that describes the

all the frames with enough granularity to explain their important features. In this thesis,
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we analyze how the hierarchical mixture model, introduced by Vasconcelos can be used

to perform such clustering of temporal units [2]. This model utilizes the Expectation-

Maximization (EM) Algorithm and extends its capabilities to estimate the necessary

parameters in the density function of the clustered features.

1.3 Applying the Concepts

The resulting higher order temporal units can be utilized in several different ways.

Some applications include improvement in performance of image similarity matching and

to facilitate navigation between different temporal units after parsing a video. These two

applications can be seen in the implementation of the Minerva system.' The Minerva

system is an innovative approach to help everyday households decide what's for dinner.

Users place ingredients that they have, and feel like using for their meal, on a countertop

monitored by the system. Minerva recognizes the ingredients given and suggests recipes

that might be of interest to the user based on his stored profile. The user can then choose

the most appealing recipe to view video instructions of how to prepare the dish. The

hierarchical mixture models are utilized to improve the initial ingredient recognition.

Use of the hierarchical mixture models allows the system to create a general

representation for the various ingredients in its database. Therefore, it queries an

unknown ingredient with these general densities rather than using previously proposed

techniques. Furthermore, image similarity matching techniques are utilized to allow

users to navigate through the video instruction in a "smart" manner. Shots of similar

content can be identified and stored so that the video fast-forwards or rewinds to the next

1 Application developed by Shyam Krishnamoorthy, Sailabala Challapalli and Bryan Ly in the Digital Life
Group of the Media Laboratory of the Massachusetts Institute of Technology under the supervision of
Professor Andrew Lippman.
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shot rather than frame by frame. Also if the user pauses the video in the middle of a shot,

the system resumes play at the beginning of the shot, thus providing some continuity to

the presentation of the instruction.
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Chapter 2: Image Representation

The first step to providing a framework to the search and selection mechanism is

to characterize images comprising a video in a sufficient manner as to facilitate

discrimination among them. Because it is impractical to simply compare all of the pixels

in one image to another, it is necessary to transform the image pixel space to a feature

space that allows more efficient characterization. Once the image is transformed into a

feature space, a feature representation must be found that describes how each image

populates that feature space. It is important to note that these representations must be

compact because the complexity of evaluating image similarity directly impacts the

viability of a retrieval system. Much work has been dedicated to finding such a

representation and several researchers have shown that statistical modeling of an image's

features is more effective than the straightforward comparison of pixels [1]. The basic

algorithm involves mapping each image into a feature space and then finding a viable

feature representation. The final step of the search and selection mechanism is then to

find an appropriate retrieval measure that utilizes this compact feature representation to

assess the similarity among different images.

2.1 Features

An important step in the overall process is the mapping of an image adequately

from the pixel space into a feature space. Much research has been devoted to identifying

correct features for various types of images such as texture databases, object databases

and even databases used for face recognition. However, because a video parsing system

should be able to deal with all kinds of images, a map that that produces generic rather
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than domain specific features is required. Although it is impractical to hope for a perfect

generic feature selection algorithm, one that provides a good approximation is sufficient

when combined with the appropriate feature representation and retrieval measures. One

such algorithm is to use the coefficients from the Discrete Cosine Transform (DCT) [1].

This resulting framework is general and applies to all types of images.

The choice of DCT features has several interesting properties. First, DCT has

good decorrelating properties that result in a relatively small number of parameters

required to estimate the feature representation and a reduction in the complexity of the

similarity function. Second, the frequency decomposition of the coefficients gives a

natural order from coarse to detailed information that can be used for implementing

multistage retrieval strategies, again reducing the computational cost of retrieval. Finally,

experiments with various databases have shown that when combined with the appropriate

feature representation, the DCT features can perform as well as domain specific features,

2even in the domains for which these features were designed.

2.2 Feature Representation

In the past, the two most common statistical feature representations have involved

either characterizing features by their moments, such as their mean and covariance, or by

computing image histograms. The first method has been used typically when dealing

with texture recognition while histograms are more popular for object recognition and

image retrieval. Analyzing relatively homogeneous texture patches, such as those found

in the standard Brodatz3 database, generally results in the unimodal distribution of

2 For a more detailed discussion of the advantages associated with the choice of DCT coefficients as
features, see [1].
3 See Appendix A for sample images from Brodatz database.
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features that is well approximated by a Gaussian density characterized by the feature

mean and covariance. The Gaussian density is able to handle the high dimensional nature

of the feature space necessary to capture the spatial dependencies that characterize

texture. On the other hand, the histogram model fares better when dealing with the non-

homogeneous images found in typical image retrieval or object recognition databases,

such as the Columbia or Corel4 databases [1]. The multimodal nature of these images

cannot be described accurately by simply calculating a mean and covariance, and,

therefore, it precludes the use of single Gaussians to describe such images' features.

However, because the complexity of the histogram model increases exponentially with

the dimension of the feature space, the histogram cannot be used to characterize all types

of images. Although it performs well when dealing with low dimensional spaces, such as

pixel colors of images found in object recognition databases, the histogram model fails

when applied to the high dimensional spaces of images found in texture databases [3].

Figure 1 shows examples of two images that have the same histogram but are visually

distinct5 . The histogram fails because it cannot detect where the light and dark pixels are

relative to each other, only that the sum of the light and dark pixels is the same for both

images. A model that characterizes the higher dimensions of the feature space would be

able to recognize these spatial densities.

Figure 1: Two visually distinct images that have the same histogram.

4 See Appendix A for sample images from Columbia and Corel databases.
5 [3] Figure 2
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The constraints on these two popular representations led to the continued effort in

finding a better representation that can perform well for all types of images. In short, the

new representation must capture the multimodal nature of generic feature distributions

and also practically deal with high dimensional spaces. One model proposed by Nuno

Vasconcelos is the Gaussian mixture model that is essentially a weighted sum of

individual Gaussian densities. As shown in Section 3.2, the Gaussian mixture model

provides a bridge between the standard Gaussian and the histogram models by satisfying

both the conditions for a better representation [1].

2.2.1 Standard Gaussian Model, Histogram Model, and the Gaussian

Mixture Model

To better understand why the Gaussian mixture model is a better representation

than the standard Gaussian or the histogram model, a more rigorous analysis of the three

representations is necessary. By examining the tradeoff between complexity and

accuracy as applied to multimodal densities and high dimensional spaces, it becomes

clear that the Gaussian mixture model offers the best solution.

The standard Gaussian model characterizes features according to their sample

mean and covariance. Its feature probability density function takes the following form:

1 -1( TX- r'(x-p.)
P(xS = e(1)

(2,c"y Y

where P( x Si ) is the likelihood that the query x is from the source Si, pi is the mean for

class i, and Yj is the covariance for class i. 6

6 [1] Equation 9
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The histogram model quantizes the feature space into hyperrectangular bins and

then counts the number of feature points that fall into each of these bins. The feature

probability density for a feature space with a dimension n and bins the size of h x...x h,

takes on the following form7:

P(xS I)= LK(x - C,) (2)
k F

where k is the bin, fk is the number of features that fall on bin k, Ck is the central point of

bin k, F is the total number of features, and K(x) is a box function of the form:

if 1xi I< ',...,x,I< "n
K(x) h x...xhn 2 2 (3)

0 otherwise

For a constant h, the number of bins grows exponentially with the dimension of the

feature space. Therefore, although it is computationally inexpensive when dealing with

low dimensions, this model becomes impractical to implement at higher dimensions such

as those required by images in texture databases.

The mixture model, on the other hand, introduces the concept of a weighted sum

of class-conditional densities, weighted by the respective class densities. The feature

probability density function is then8:

C

P(x) = (4P)xW)P(W) (4
i=1

where C is the number of classes, Px wi)l is the sequence of class-conditional

densities, and {P(w, )} is the sequence of class probabilities [4]. It is apparent that the

14
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standard Gaussian model is a particular case of the mixture model where C = 1 and

P(xlwi) is the Gaussian density shown in Equation 1.

As described above, the standard Gaussian model was useful in analyzing texture

databases, but ineffective in typical object retrieval problems because its simplistic nature

failed to adequately model the multimodal nature of the feature spaces. Figure 2 offers a

qualitative explanation of how the Gaussian model can lead to high classification error

due to the great deal of overlap in class densities9 . While the histogram performed better

in the hypothetical object retrieval problem by returning a significantly better

approximation to the class densities, the exponentially growing complexity with

dimension does not allow its use when it is important to model spatial dependencies, as is

the case with texture databases.

a) b) C)

Figure 2: The results of a hypothetical two-dimensional retrieval problem with four image classes.
Figure a) represents the four class densities, b) represents the best Gaussian fit to each class density
and c) shows the histogram fits to each class density.

The best representation among these three options, therefore, proves to be the

Gaussian mixture model that deals with the shortcomings of the standard Gaussian and

the histogram model. It utilizes a weighted sum of the simpler Gaussian densities and

takes the formi'

15
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C

PIlS) kXrI /IG(x, p, , )(
C=1

where C represents the number of underlying classes in the data, 7i is the probability of

class i, and G(x, pi, Ii) is the probability density function for the Gaussian shown by

Equation 1.11 The weights allow the Gaussian mixture model to place densities in the

populated regions of the feature space to create a more efficient and less complex model

than the histogram model.

The Expectation-Maximization (EM) algorithm provides a standard method of

computing the model parameters such as the weights, mean and covariance of each

Gaussian [5]. This algorithm alternates between the E-step and the M-step. The E-step

calculates the posterior probabilities of the mixture components given the data and

current parameter estimates while the M-step updates these estimates. For Gaussian

distributions where all the classes are all a priori equally likely:12

E-step: h,'" = P(wI P(xm 1x'")P (6)

Ik=1 P(Xrn k (O )Pk

M-step: p"w = " h m  (7)

new = (Xp,"""7ewXM ynew )T

p 1 =hi

16

" [1] Equation 9
12 [5] Equations 4, 5



where h,' is the posterior probability that the mth sample belongs to class i. In short, the

Gaussian mixture model provides the ability to model multimodal densities for high

dimensional feature spaces using much more efficient and less complex methods.
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Chapter 3: Image Similarity

Given a suitable feature representation, the search and selection mechanism

requires an appropriate function to judge similarity among images. In general, systems

have used Euclidean distances or second order distance metrics, such as the Mahanolabis

distance, to determine image similarity [1]. Deterministic similarity metrics are used

because they seem to satisfy the criteria for a true metric: they are always positive,

symmetric and satisfy the triangle inequality. However, recent work has been dedicated

to discovering similarity functions that can fully exploit the accurate statistical

descriptions discussed in the previous chapter. Like the feature representations, these

functions are probabilistic in nature.

3.1 Using Bayesian Inference

One possible solution is to view the retrieval problem as one of Bayesian

inference. The goal is to find an optimal map g from the set of feature vectors x to the

image class y that minimizes the probability of error. This probability is defined as the

probability that when faced with a query from class y, the system returns images from

class g(x) different from class y. From decision theory, it is well known that the optimal

map is to select the class with the largest posterior probability:

g * (x) = arg max P(y = i lx) (8)

By applying Bayes rule: 13

g * (x) = arg max P(x Iy = i)P(y = i) (9)

18
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where P(xJ y = i) is the feature representation of features from the class i and P(y = i) is

the prior probability for class i.

There are several advantages of using such a retrieval framework.1 One

interesting property is that the P(y = i) term allows the system to incorporate prior

knowledge about the relevance of a particular class to the query during the retrieval

process. Therefore, if certain classes of object are more likely to be utilized then they can

be weighted accordingly. For example, the Minerva system could be designed to

incorporate users' preferences in its image recognition phase. If Minerva knows that user

A hates tomatoes but loves apples, then when a user places an object that could be either

a tomato or an orange, the system will return that the ingredient is an orange. However,

in this thesis, all classes are considered to be a priori equally likely. As a result, Equation

9 can be simplified to the standard maximum-likelihood (ML) classifier15

g(x) = arg max P(xI y = i), (10)

which, when querying N independent query features, X = {x1,..., xN), reduces t016

I N

g(X) = arg max I log P(xj I y = i) (11)
SN j=

To understand the advantages of the ML classifier, we analyze the simple

Gaussian model, for which Equation 11 reduces to17

- T T

g(X) = arg min log 1 I + trace[y x + x- p i x- u1  (12)

14 For a more detailed discussion of the advantages to using a Bayesian inference retrieval system see [1].
15 [3] Equation 3
16 [3] Equation 4
17 [3] Equation 6
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A A

The variables x and 1x are the sample mean and covariance of X, and p, and I,

represent the sample mean and covariance of P( x I y = i ). This mapping essentially

finds the Mahalanobis distance, the third term in Equation 12, augmented by the first two

terms, and this distance is used to measure the differences between the density of the

query feature space and the class feature space. As a result, the system determines the

most probable match by finding the class that minimizes these augmented distances.

These terms have been shown to have crucial importance for handling changes in

scale and orientation of the query density. The metric in Equation 12 is, therefore, much

more robust than the Mahalanobis distance. Furthermore, the probability of error of

Equation 12 tends to the probability of error of the Bayes classifier orders of magnitude

faster than the density estimates tend to the accurate densities. This characteristic allows

the use of coarser estimates than one would use with other algorithms, such as the

histogram intersection method, to return just as accurate results. Because density

estimation is so complex, using ML criteria can again lead to significant improvements in

retrieval accuracy. Although the above equation applies to the use of a single Gaussian,

it can be generalized to full mixtures of Gaussians. 1

20
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Chapter 4: Temporal Units

Given a framework to represent images and determine their similarities, we next

investigate how these tools can be applied to characterizing video. Video is obviously a

collection of individual frames viewed in a consecutive manner. It contains varying

levels of structure ranging from an entire clip being shot from the same angle to movies

containing scenes of different format, length and content. Therefore, in order to provide

a mechanism to navigate through video, these various temporal components must be

identified and modeled.

4.1 Definitions

The first step to modeling temporal units involves defining some of the different

levels that may exist. Although the idea of a temporal unit can vary greatly depending on

the context, there are some basic terms that can be defined. The most basic element is the

individual "frame." The next level, the "shot," consists of all the consecutive frames

dealing with a particular subject filmed by the same camera. This may involve panning

or zooming in and out, but the same camera is filming the subject continuously during

this period. The subsequent higher level is defined as the "scene." A scene consists of a

series of shots that pertain to the same theme, such as a conversation between two people.

Because it is a series of shots, a scene may include cameras switching back and forth

between different subjects as long as they obey some patterns and pertain to the same

topic. These are some of the basic terms that can apply to all kinds of video, but different

types of video can be characterized in other manners to better suit the content. For
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example, it would be more useful to characterize a football game based on temporal units

ranging from downs and possessions to quarters and halves rather than shots and scenes.

4.2 Parsing Video

Breaking a video into temporal units that can be retrieved as desired requires the

application of the algorithms discussed in the previous two chapters. Each temporal

segment must be transformed into appropriate representations that can be evaluated using

similarity functions. These functions will then be used to identify the appropriate

segments that a user is searching for. In addition to retrieving desired clips from movies,

the similarity measures can also be used to identify segments that pertain to the same

theme or are part of the same temporal unit by locating transitions to a new temporal unit.

All of the segments in between transitions can then be clustered to form more general

representations for higher-level temporal units using hierarchical statistical modeling.

The building of models for the differing levels of temporal units is best achieved when

proceeding in a bottom-up fashion. Starting with the bottom level, individual frames are

statistically modeled using the Gaussian mixture densities described in Chapter 3. These

densities can then be compared using the Bayesian inference algorithms discussed in

Chapter 4 to determine which frames belong to the same shot or when a transition has

occurred. Transition identification will be discussed in greater detail below in Section

5.1. The next step is to then cluster the frames from each particular shot and create a

mixture model that describes the content contained in all the frames. This step can be

performed using the Hierarchical mixture model described in Section 5.2. The video can

be modeled at higher-level temporal units by repeating the steps dealing with identifying
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transitions and clustering, although the implementation of these steps varies with each

level.

4.3 Identifying Transitions

A transition to a new temporal unit depends primarily on the level of the temporal

unit. This thesis focuses primarily on the identification of transitions between shots and

addresses some of the issues that arise when trying to implement theory. The procedure

for finding transitions between scenes will also be outlined. Once the demarcations

between different temporal units have been determined, the video can then be indexed

according to the different units it contains. This form of indexing will facilitate the

retrieval of entire units and the clustering of different segments into higher order

temporal units.

4.3.1 Shots

As stated above, a new shot occurs when there is a harsh transition between two

consecutive frames, such as changing the camera being used to shoot a particular subject,

changing the angle that it is shot or changing the subjects themselves. Therefore,

determining when transitions occur between shots involves comparing the representations

of consecutive frames. If the densities are similar within some threshold value, then it

can be inferred that no harsh transition has occurred. Although consecutive frames will

not be identical, these images have smooth changes in such characteristics as background,

lighting, and orientation of objects. Therefore, the similarity measure will return a

relatively low value. These frames can then be clustered together as part of the same
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shot. Once the system detects a harsh transition in the feature space, a flag will indicate

that a transition to a new shot has occurred.

The algorithm in determining shot transitions seems straightforward. However,

choosing the right similarity function and threshold value proves challenging because of

the many different kinds of transitions that can occur in a video. Frames can change

quickly and harshly to indicate a change (Figure 3), they can fade from one shot into the

new shot (Figure 4), or special graphics can be used that indicate a more gradual

transition between shots (Figure 5).19 These types of shot transitions occur in varying

degrees depending on the type of video that is being processed. For example, a movie

will contain more of the special effect transitions and fades than a video of a football

game does. Finding a universal measure that robustly identifies the three types of

transitions is a challenging question that is beyond the scope of this thesis.

Figure 3: Series of frames that represent a "harsh" transition.

Figure 4: Progression of frames that represents a "fade" transition.

19 All frames from Figures 3-5 are captured from [7].
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Figure 5: An example of using a special transition.

4.3.1.1 Identifying Parameters

As a result, in the search for finding a useful similarity function between

consecutive frames, several variables were experimented with. 0 The first decision

focused on which function to use, where the choices included calculating the correlation

between consecutive frames or finding the likelihood probability that consecutive frames

were similar. The next decision involved determining the number of dimensions to look

at when frames were compared. The final variable was the threshold value. If the

function value returned when comparing consecutive frames was below this threshold

value, then the second frame was considered a transition point and part of the next shot.

4.3.1.1.1 Finding a Similarity Function

The likelihood function can be used as a measure of the similarity between

consecutive frames in several different ways. This measure is used to return the

likelihood that the mixture model of a "query" image is similar to the mixture model of a

"database" or set of images that the system is trained on. Therefore, depending on which

frame is classified as the "query" image and which image is classified as the "database"

(or trained) image, there will be a different likelihood returned that the two images are

20 All experiments were conducted on frames extracted from a cooking show clip that teaches a viewer how
to make a bean casserole dish [7]. The original video is composed of on average 30 frames per second, and
every 7th frame was extracted to use in the experiments. The resulting set of frames contains 4 frames per
second of video, and adequately represents the entire video. It is important to note that when referring to
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similar. Therefore, the function must be evaluated when the images take turns being the

query image and the database image. At this point, either the minimum, maximum, or

average likelihood probability returned when the two images are interchanged can be

used as a measure. The following plots in Figure 6 show the results of using these

functions to identify the shot transitions.

Minimum Probability
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Average Probability

(c)

Figure 6: These plots show the minimum, maximum and average likelihood probabilities returned

for consecutive frames. The value for a frame number x is the likelihood probability that frame x

and the previous frame (from the set of sampled frames) are similar. The likelihoods are plotted

separately for frames where a transition should have been identified and where no transition actually

occurs.

Using correlation to measure the similarity between feature representations is an

alternate method. It is a symmetric measure and correlation coefficient between two

vectors X and Y can be calculated by

juxY 1 X uY
PXY 'Uy - XPY(13)

where o- and cr are the standard deviations of X and Y respectively. For general image

retrieval systems, similarity functions utilizing likelihood ratios as described in Chapter 4

to provide better performance when detecting image similarity. This class of similarity

functions is more robust to changes in image characteristics such as scale and rotation.

Furthermore, when images are mapped into feature spaces containing a high number of

dimensions, the points in these higher dimensions are more sparsely located. The great

deal of noise that can result in the higher dimensions require the use of a more robust

search criteria such as the likelihoods in the Bayesian inference algorithm. Therefore,

when comparing images of the same subject but with minor changes in these attributes,
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the image retrieval systems return more accurate matches especially when dealing with

mixtures containing higher dimensions. However, when evaluating consecutive frames

in a video, alterations in the frame such as the scale of the objects and their rotation are

precisely what the system is looking for. Therefore, using a measure such as correlation

that is more sensitive to these changes might provide better performance in this

application. Figure 7 shows the result of using the correlation measure on the same video

clip as the one used with the likelihood function.

Correlation

0.7
0.6 M M

2 0.4 * * N *transition

E 0.3 - .no transition

S0.2 -
0.1 %

3500 3700 3900 4100 4300 4500

Frame Number

Figure 7: This plot shows the results of identifying shot transitions using correlation as a metric.
Again, point (x,y) symbolizes the correlation between frame x and the previous frame. The
"transition" plot shows the correlation calculated for the pairs where a transition actually occurred
and the "no transition" plot shows the correlation calculated for all other pairs.

Upon examination of the transition probabilities returned when using the

likelihood and correlation as similarity functions, correlation does prove to be a more

reliable function. Figures 6 and 7 show the relationships between the two functions and

frames examined. The plots show that there is a great deal of variance in both the

functions. However, variation is more pronounced when likelihoods are used as the

similarity function because these vary greatly when there is no transition and when there

is a transition. Furthermore, because likelihood is a relative measure of how two frames
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may be similar, it cannot be used on an absolute scale. As a result, it is difficult to find a

general threshold value that would return consistent results. Correlation, on the other

hand, is an absolute measure that is calculated by directly applying the formula to the two

Gaussian mixture models rather than depending on Bayesian inference techniques.

Although the correlation varies greatly when no transition occurs, the variation is

relatively low for the frames where a transition does occur. Therefore, finding a general

cutoff point seems more feasible when using the correlation as a similarity measure.

4.3.1.1.2 Determining Dimension of Matching and Threshold

The next step is to determine how many dimensions to include when performing

the similarity matching. As described before, the number of dimensions is important in

detecting the spatial dependencies existing between image features and creating robust

search criteria that takes these characteristics into consideration. The search criteria

developed by Vasconcelos typically uses the first 64 dimensions of each mixture model.

Although individual mixture models contain many more dimensions than 64, the noise

contained in the higher dimensions actually degrades the search performance rather than

improve it. However, because of the nature of the similarity matching and the types of

differences that the system is looking for even 64 dimensions may prove to be too many

dimensions when applied to the task of shot detection. Similarly to why correlation

proved to be a better similarity function, using fewer dimensions might detect the

appropriate changes more effectively.

The last variable necessary to build a shot detection algorithm is the threshold at

which a frame is classified a transition. If the correlation between two consecutive
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frames is less than this threshold, then the system marks second frame of the pair as a

transition point and the beginning of the next shot. Finding an appropriate correlation

meant trading off between the number of false positives and the number of false

negatives that the system would detect. The performance was tested on different

dimensions with different threshold values. The number of dimensions tested range from

3 , analogous to using a simple color histogram, to 64, while the threshold values range

from 0.005 to 121. The results are shown in the Receiver Operating Characteristic (ROC)

plot of Figure 8.

Bean Casserole ROC Curve
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2 The dimensions tested were 3, 8, 16, 32 and 64. The threshold values tested were 0.005, 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
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Bean Casserole ROC Curve
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Figure 8: (a) shows the region of convergence plots for the bean casserole video clip. It contains the

ROC curves for different dimensions so that the effect of dimension size can be observed. It is

interesting to note the steep initial rise for all dimensions. (b) shows the interesting portion of the

original ROC curve.

The above plots show that using 3, 8 and 16 dimensions result in a similar

tradeoff between true positives and false positives. To analyze which dimension would

return the best for all types of video, a video clip from the movie "Clue" was also

explored. As stated above, different types of videos contain different types of transitions

in varying amounts. The clip from the cooking show contains many shots that fade into

each other interspersed with harsh transitions. The clip from "Clue," on the other hand, is

characterized by harsh transitions. Therefore, it is expected for the system to perform

better with this video clip. The ROC curve for "Clue" is shown below in Figure 9.
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Clue ROC Curves
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Figure 9: (a) shows the overall ROC plot while (b) again
pertaining to the clip from the movie "Clue."

shows the initial rise of the curves

It is interesting to note that for the "Clue" clip, using 3 dimensions actually

resulted in the worst performance, whereas with the bean casserole clip it returned the
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best results. Using 16 dimensions again performs fairly well, as does the higher

dimensions. As a result, for these types of video it is best to use 16 dimensions when

trying to identify shot transitions. The best threshold value for the two types of movies

was 0.6. The results when using this value are 95% true positives and 4.5% false

positives for the bean casserole clip and 100% true positives and 3.5% false positives for

the "Clue" clip.

4.3.2 Scenes

Once the shot structure of the video has been identified, it is possible to progress

to identifying the next higher-order temporal unit, the scene. Scenes are defined as a

collection of shots pertaining to the same theme or subject. By using the hierarchical

modeling described in the next section, it is possible to create representations for the

entire shot, or collection of frames, rather than simply the individual frame. Then these

representations can be compared to identify which shots belong to a particular scene and

where transitions to new scenes may occur. Determining transitions between scenes

requires the identification of this common theme between various shots that may not

appear similar at all. For example, some videos contain scenes where the camera

alternates back and forth between two or three different characters. A shot would consist

of all the frames that focus on a particular character, and a transition would occur when

the camera switched to someone different. The individual shots themselves would have

similar feature representations because their content is the same. Therefore, to identify

that this collection of shots constituted a scene, the system should recognize the pattern

existing among alternating shots. Because consecutive shots are not likely to match using

similarity functions, every other shot must be compared or every third shot and so on
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within some predetermined limit. If a pattern is detected, then those shots will be

clustered together into one scene. The transition to a new scene will be determined by

the appearance of a shot that does not fit into the pattern previously identified by the

system. This problem of detecting scene transitions is further complicated because

different scenes contain different patterns. Even if the system isolates the pattern of shots

composing one scene, the entire process must be repeated again for other scenes in the

video.

4.4 Creating a Hierarchy of Images

When deconstructing video, it is useful to model various levels of temporal units

(frames, shots, scenes, etc). This task is possible if after the video has been broken down

to the frame level, the most basic temporal unit, it is then reconstructed in a bottom-up

fashion by identifying all the components that belong to a single temporal unit and then

clustering them to create a higher-level representation. This higher-level representation

can then be used to compare and retrieve the entire temporal unit rather than simply its

components. This higher-level representation must capture characteristics of the features

of each subunit efficiently while minimizing the amount of information lost in the

transformation. Because the chosen representation involves statistical modeling of

features, to create a higher-level representation, it is necessary to create mixture

hierarchies of densities where the densities of the lower temporal unit are combined into a

more general probability density function.

To create the densities for higher-level temporal units, the hierarchical mixture

density model is used [2]. This model extends the standard EM algorithm, but
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generalizes it to compute hierarchical mixture models in a bottom-up manner. The data

is modeled in the form

C1
P(X)=> Ip(XJz =l,MJ) (14)

k=1

where I is the hierarchy level, M, is the mixture model at level 1, C represents the number

of mixture components, nT is the prior probability of the kth component, and Z1k is a binary

variable that has a value of 1 when sample X is drawn from the kth component. The

model is also subject to the following constraint, applied when node j of level 1 +1 is a

child node of node I of level 1:23

1+1 1+1 )T 1 (15)

The basic premise of this model is to compute mixture parameters at a given

level, 1, based on the knowledge of the parameters at the level, 1+1, below it. One method

involves running EM on a sample of mixtures from the lower level with the number of

classes from the higher level to estimate the necessary parameters. However, this method

does not guarantee that the resulting mixture hierarchy would have the desired structure

by violating Equation 15 for certain classes. Also, this method is computationally

expensive because a large sample would need to be drawn in order to relatively accurate

models in the hierarchy. As a result, Vasconcelos' work develops a new method that

finds the parameters for the mixture model for level 1 based on a virtual sample using EM

and then determines a closed-form relationship between these new parameters and those

from the model at level 1 +1. It assumes a sample X = {X 1,...,X,+1 } from model M1+1,

where each Xi is a virtual sample from one of the d&1 components from this model.
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There are N total virtual points and each virtual sample has size M = riN . Using this

virtual sample with Gaussian distributions, the update equations become

Yhj
1 C (16)

p __ _ __ _ _ (17)
~ hM

h- M, [ 1 1+ h11 M( 1l+1 -,.u 1 XJ - )j (18)

where hj is calculated by

= G(pJ:+ , p ,1 l -trae{(l' 2I 1+1 } jMi I(

h = - - - - (19)

As is evident from these update equations, the parameters for M, can be computed

directly from the parameters of Mj1+. This algorithm proves to be much more efficient

computationally than relying on real samples because the number of mixture components

in M1+1 is usually less than the sample size at the bottom of the hierarchy.

The hierarchic mixture model based on virtual samples of mixture models from

lower levels provides an efficient manner of creating a mixture hierarchy of densities in a

bottom-up fashion. This approach allows images to be mixed into as many hierarchy

levels as desired to structure video and model its temporal units as generally or as

specifically as necessary.

23 [2] Equation 2
24 [2] Equations 12-14
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4.4.1 An Alternate Application For the Hierarchical Mixture Model

In addition to creating representations for higher-level temporal units, the

generalized representations can also be used to improve search performance at a given

level. Images of a particular subject will have similar representations, but depending on

scaling, size of the picture and any small variations in the position of the subject, the

probability density function will vary. Therefore, the hierarchical mixture model can be

used to create general representations that encompass these various properties. For

example, the standardized databases such as Corel or Columbia contain dozens of

pictures of different image classes such as horses or cans. Computing Gaussian mixture

models for each image will result in a representation for that particular image only.

Therefore, retrieval systems will be comparing the density of a query image to the

densities of each individual image density to compute the likelihood of a match.

Querying in such a manner requires O(n) computations, where n is the number of total

images. However, if the densities for all the images within a particular image class can

be clustered to create a generalized density representing that class, the retrieval system

will then match the query's density to that one mixture model. Depending on how the

hierarchical mixture models are created, this leads to improvements in the efficiency of

the search by reducing the complexity from O(n) to O(log n). When dealing with image

databases containing thousands of images for each image class, this can lead to a

significant reduction in query time. Furthermore, because the query images are not likely

to be exactly similar to the images in the database, computing a generalized

representation may also lead to an improvement in the accuracy of the search. This

generalized representation should encompass possible values for variables such as scale,
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rotation of the objects, and lighting used in the picture. Therefore, a query image that

differs from images contained in the database in some or all of these factors will still

match to the correct image class.

To determine if the use of the hierarchical mixture model can improve image

retrieval accuracy, experiments were conducted on the Columbia and Corel databases that

tested the accuracy of determining image similarity when using databases built by using

hierarchical mixture models with a varying number of mixture components. Using the

Columbia and Corel2 databases gives an idea of the effects of the hierarchical mixtures

on standard object databases. Each database was divided into a set of training images and

a set of query images. Hierarchical mixture models were created for each image class

within the set of training images using the following number of mixture models: 8, 16,

32, 64, 128, 256, and 512. Increasing the number of mixture components in the

hierarchical model creates a density that better approximates the lower level densities.

The result is similar to fitting a polynomial curve to a set of data; using a higher degree

usually results in a better fit to the data. However, there can be a problem of overfitting

that actually results in a worse approximation. Overfitting results in a model that fits the

set of training data extremely well, but fails to identify a generalized model that works for

future data. If the same problem of overfitting occurs when the number of mixture

components is increased in the hierarchical mixture model, there will be a break point at

which using a higher number of mixture components actually results in a decline in

accuracy. Figure 10 below shows the results from the experiment.

25 The experiments were conducted using all the image classes from Columbia and the following image
classes from Corel: Arabian Horses, Auto Racing, Coasts, Diving, English Gardens, Fireworks, Glaciers
Mountains, Mayan Ruins, Oil Paintings, Owls, Pyramids, Roses, Ski, Stained Glass, Tigers.
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Figure 10: This shows the performance returned when using a varying number of mixture

components to create the training databases. The accuracy is the ratio of correct to total matches.

From the results, it is apparent that increasing the number of mixture component

does not result in a decline in accuracy. Further examination of how the hierarchical

mixture model is computed offers an explanation as to why the problem of overfitting

does not occur. This phenomenon would occur if as the number of mixture components

increased, the resulting Gaussians contained in the hierarchical mixture model were

characterized by progressively smaller variances. The mixture model would then be the

weighted sum of many Gaussians with small variances to describe each of the points in

the training data. The small variance of the Gaussians will result in gaps in the density

space that should normally be covered but are not. Therefore, although the mixture

model correctly identifies the data from the training set, a generalized representation has

not been created. The constraints and the update equations used to create the hierarchical

mixture model prevent the creation of Gaussians characterized by a smaller variance than

the Gaussian densities from the lower level mixture model. In particular, Equation 18

39



that shows that the covariance of the higher level mixture model is actually a sum of

covariances from the lower level mixture models.

Although the search accuracy improves as the number of mixture components is

used, from Figure 10 it is apparent that the search accuracy is still relatively high when

fewer mixture components are used. Therefore, the tradeoff of accuracy for a less

computationally expensive model can lead to an overall improvement in performance.
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Chapter 5: Applications

The applications for the algorithms described in the previous chapters can extend

to all types of video. Retrieval systems can be created that parse video to varying levels

of temporal units depending on the feasibility and the use for the structure. The Minerva

project is one such application that encompasses both the video parsing technology and

the use of hierarchical mixture models to improve search accuracy and efficiency. It

deals only with images of cooking ingredients and video clips containing cooking show

segments, but the technology can be expanded to deal with a variety of video ranging

from other types of educational programming to movies to sports programming.

5.1 Minerva

The Minerva system is a video cooking assistant that helps users decide what to

cook based on ingredients they have, preferences they specify and skills they exhibit.

Once a recipe has been chosen, the system then proceeds to show video instructions of

how to prepare the dish. This project is essentially an exploration into the expansion of

computing into areas of people's lives that is typically devoid of computer interaction. It

attempts to introduce computers in an unobtrusive manner into kitchens to simplify tasks

that can benefit from the vast resources available through the use of technology. Like all

complex systems, Minerva is a combination of the latest technologies in a variety of areas

ranging from object recognition, context-aware computing, and responsive media.
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5.1.1 System Overview

The physical components of Minerva include a countertop monitored by a small

camera and a touch screen monitor used to interact with the user. The user first logs into

the system, currently by selecting the appropriate login name on the touch screen.

Figure 11: The Minerva system's initial login screen.

Minerva then loads the user's preferences and begins by playing the user's favorite

movie.

Figure 12: Minerva playing the user's favorite movie.
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When the user is ready to proceed, he starts the system by pressing the button marked

"Minerva." This takes him to a screen showing the camera view of the countertop. The

user places the ingredients that he wants to use within the screen area and presses "Ok."

Figure 13: The countertop as Minerva sees it.

He can place multiple objects, either of the same ingredient or of multiple ingredients.

The system then attempts to identify the ingredients by comparing them to the training

database it contains. The next screen shows what the system thought the ingredients

were and shows three recipes that are most likely to be relevant.
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Figure 14: Minerva showing results of ingredient recognition. The screen shows the ingredients that
were identified, the top three possible recipes and what the finished products for those recipes should
look like.

The user can touch the recipe names to view how the finished product should look. If

none of the recipes look appealing, he can restart the system with a different set of

ingredients. Once he decides which recipe he is interested in, he touches the appropriate

one and then pushes the "Play" button. A screen containing a text version of the recipe

and the video segment of how to make the dish appears.

Figure 15: Final Minerva screen where text version of recipe is shown alongside the video
instructions. The user can manipulate the playback of the video using the buttons at the bottom of
the screen.

The user then proceeds to play the video and learns how to make the dish. He can jump

around within the video and replay segments as needed. At any time, the user can restart

the system by pushing the button marked "Exit" to return to the initial kitchen television

mode.
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5.1.2 System components

The Minerva system contains three main components: the user interface, image

recognition technology, and a database containing information about recipes, links to

video cooking show segments and information about user preferences. The user interface

was created using the Isis technology developed by Stefan Agamanolis, which is a

programming language designed to "support the development of demanding responsive

media applications" [8]. The image recognition technology and the way the system plays

the video cooking show segments use the algorithms discussed in this thesis.

5.1.2.1 User Interface

The user interface is a touch screen that simplifies the interaction between the

user and the system by removing the need for keyboards or mice. The user only has to

touch the appropriate button to perform the desired tasks. The interface is composed of

the series of screens described in the overview of the system that show the normal

kitchen television mode, the countertop, the recognized ingredients and possible recipes,

and finally the text version of the chosen recipe and the video segment of how to cook it.

The system takes the inputs given through the interface to feed the image recognition

technology and then query the database for the appropriate recipes. Using Isis has

several benefits including being able to handle complex two-dimensional compositions of

visual geometry, images and video. A screen can be created that contains components for

movies, images and other objects. Furthermore, movies can be converted to the Isis

format to facilitate the manipulation of how the video is played.
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5.1.2.2 Object Recognition Technology

The image recognition technology is used to identify the ingredients that the user

is interested cooking with. Vasconcelos developed the core components of the

technology, and the system uses modified versions of these components to satisfy system

requirements and constraints. The technology is built around a training database of

various ingredients26 consisting of a collection of images taken of each ingredient.

Mixture models were computed for each image and were combined into a training

database used as a reference for the images of the ingredients being queried. After the

user places his ingredients on the countertop, the system takes a picture of the countertop.

27The system then splits the images into subimages, each containing one object. These

subimages are then queried with the training database to determine the identity of the

object. The modifications to the original system designed by Vasconcelos will be

discussed further in the next section.

5.1.2.3 The Database

The database contains two main parts: information pertaining to the user and

information pertaining to the available recipes. All of the information is arranged in sets

of tables that organize the data efficiently to allow easy access. The tables pertaining to

the users contain basic information about the user, such as name, sex, age, and

information about the user's experience level and preferences. The user's preferences

include attributes such as "vegetarian" and "low-fat". The tables dealing with the recipes

26 Ingredient classes used in training database include: beef, butter, eggs, garlic, green beans, macaroni,
onions, oranges, pork, red bell peppers, tomatoes, and vegetable oil.
27 Shyam Krishnamoorthy developed the splitting technique used. A description of how the image is split
can be found in Appendix B.
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include information about the origin of the recipes, ingredients needed, and information

about how the recipe should be classified to match to possible user preferences. A

detailed description of the structure of the database is shown in the Appendix C.

The database also contains links pointing to where the video segments containing

instructions of how to create the dishes are located. The theories of temporal units and

parsing video are utilized to efficiently annotate the various clips so that the system can

play the video in a useful manner. By locating the transition points to different shots, the

user can jump around to different parts of the video easily to replay segments that he may

need to watch again or to skip ahead to other parts and bypass unnecessary instructions

that they have already seen. How these videos were annotated and how the user can

manipulate the playback is described further in the next section.

5.1.3 Modifications Implemented

Several modifications needed to be implemented to create a system that could

practically be used. The setbacks in performance stemmed from having to deal with

completely new query images every time the user wanted to find a recipe. He would put

new ingredients on the table that varied in composition and orientation. Therefore, each

new query image would have to be split into its sub-images and then mixture models

would have to be computed for these sub-images. Because the creation of mixture

models takes a significant amount of time, modifications to Vasconcelos' original system

needed to be implemented that would improve the speed of object recognition, but

maintain its accuracy as best as possible. The time involved in splitting the query image

and to query the sub-images with the database is relatively insignificant, so much of the
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effort in improving the speed of the object recognition was placed in computing mixture

models faster.

There are several factors that could be adjusted to reduce the time needed to

compute mixture models. The two main factors that were experimented with were size of

the query image and the number of data points used when computing the Gaussian

distributions. Each original image is 320 x 240 pixels, and to compute the mixture

models it is first divided into smaller blocks of 8 x 8 pixels. Then points from each of

these blocks are used as data points when computing the mixture models. In

Vasconcelos' original system, he used a step size of four, so he extracted a point every 4

pixels. With these parameters, the creation of mixture models took approximately 30

seconds. When the image size was halved and the step size was doubled (halving the

number of data points), the mixture models were created four times faster, in about 7

seconds. The question that remains is how these changes affect the accuracy of the

query. By reducing the image size, the resolution decreases and the resulting image does

not contain as sharp information as the original image. Reducing the number of data

points that are used to compute the Gaussian mixture models also affects the accuracy

slightly simply because there are not as many data points to fit the distributions to.

However, using a step size of eight still results in a large enough sample size that the

accuracy of the query should not be affected too much.

To test how these changes affected the accuracy, new training databases were

created that also incorporated these changes. Mixture models were created for the

original size training images using a step size of eight and a separate database was

created using images half the size of the original images. These two types of databases
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were then divided into four classes of databases: database using the Gaussian mixture

model ("normal"), a database using the hierarchical mixture model ("hierarchical"),

database created by splitting the original training images, using the same techniques that

are used on the query images, and then using the Gaussian mixture model ("split

normal"), and finally a database using the hierarchical mixture model on the split training

images ("split hierarchical"). These databases were queried with a set of 24 query

images from various ingredient classes.2 8 The results from these experiments are shown

below in Figure 16.
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Figure 16: This plot shows the results when the different types of databases were queried with a set
of query images from different ingredient classes. It shows that splitting the images and reducing
the image size improves the accuracy of the image recognition.

Figure 16 shows that the database created using the half size images actually

performed better than the original size images. Between the databases containing the

split images and the original images, the split databases seemed to do better, at least with

the original size images. Among the set of databases containing half size images, the

hierarchical, split normal and split hierarchical all performed equally. This might have

28 The ingredient classes tested were: beef, garlic, macaroni, oranges, pork, red bell peppers and tomatoes.
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been due to the relatively small sample size of query images or the types of images

contained in the training set. The final database chosen was the split hierarchical

database with half size images. This database performed as well or better than the other

databases, it incorporates the splitting technology to use images similar to the query

images, and it reduces computational complexity by utilizing the hierarchical mixture

model.

5.1.4 Use Of the Video Parsing Technology

Minerva uses the video parsing technology to play back the cooking show

segments in such a way as to help the users learn how to prepare the dishes better. Very

rarely can someone watch a cooking show straight through and follow precisely what the

chefs are doing. Therefore, if the user can skip around in the video, to either play back

certain portions or to move past a previously learned step, and pause the video so that

play is resumed at an appropriate position, he will be able to better benefit from the video

instructions. Being able to skip around the video implies that when the user selects the

fast-forward or rewind option, he is fast-forwarding or rewinding directly to the next shot

desired rather than the next frame in the video. Resuming play from the appropriate

position means that it is resumed from the beginning of the shot during which it was

paused. This is analogous to manipulating a person that is speaking. If the person is

asked to move ahead or move back, he will move to the next sentence or complete

thought rather than to the next word. Also, if a person is stopped in mid-sentence, he will

start from the beginning of the sentence or thought when he resumes speaking, rather

than simply from the precise point at which he stopped speaking. Playing the video in

this manner allows the user to experience some continuity while watching the video.
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Users will be able to access segments of the video at a time rather than trying to

manipulate the video frame by frame. This functionality is particularly useful for viewers

of cooking shows because if the user is inexperienced he will want to replay segments

often and if the user is experienced, he will want to skip ahead to relevant segments.

These features for the video playback are implemented using the shot transition

identification techniques described above in Section 5.1.1. This algorithm identifies

where shot transitions occur within a particular video segment. These transitions

represent the frame numbers of the first frame of each new shot. Shot transitions are

identified for all the relevant video clips and stored in the database as simple text files

containing the appropriate numbers. The system then accesses the corresponding shots

file for a particular video after the user has chosen a recipe. To implement the playback

features, the system simply keeps track of which frame it is currently playing and finds

the frame number of the beginning of the next shot it needs to play by finding the closest

frame in the stored file of frame numbers.
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Chapter 6: Future Extensions

Minerva is a fully functional system that can take a given set of ingredients as

inputs and output suggestions for recipes and video instructions about how to make a

desired recipe. However, there are many improvements that can be made to the system to

make it more practical and to give it more functionality. Furthermore, the topics

discussed in this thesis can be extended into other areas outside of media.

6.1 Minerva

The types of extensions for the Minerva project fall into four main categories: the

user interface, the object recognition system, the video playback system, and the

database. It is important to remember that the overall goal of the system is to introduce

computing in an unobtrusive manner into the kitchen.

In addition to simply upgrading the functionality, it is important to make the

system more fun to entice users to employ it. Making it more "fun" can involve simply

adding noises every time the user touches the screen, to playing catchy background music

while the system is functioning, to randomly displaying advertisements for various

products related to cooking while the system is querying or idle.

6.1.1 User Interface

The user interface can be changed in a variety of ways to make the system more

enjoyable and user-friendly. The current login procedure consists of touching the button

associated with a particular user's profile. This method is useful while the number of

users is relatively low, as is the case with most households, but problems can arise as the
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number of users grows to a more unmanageable level. There are many options for new

login procedures ranging from voice recognition to face recognition to simply hand

recognition (where the user passes his hand under the camera and the system recognizes

whose hand it is). Furthermore, the initial screen that comes up currently plays a clip

from the user's favorite movie. The system can be transformed to act more like a normal

kitchen television if it tuned into the user's favorite television station. Or the system can

transform itself into a kitchen radio and play some of the user's favorite songs.

6.1.2 Object Recognition Technology

Important extensions to the object recognition component of Minerva, besides

simply improving the technology to return more accurate results, are to provide ways to

deal with the incorrect identification of the ingredients and to "learn" about new

ingredients that the system previously had no knowledge about. Currently, the system

simply assumes that the ingredients it matched are correct and returns the most relevant

dishes based on that assumption. If the user does not like the choices he is given, then he

can start over with a new set of ingredients or try the query again by changing the way

the ingredients are placed to see if the system returns better matches. However, if the

system is consistently wrong in the recognition of ingredients, then the dishes it suggests

to the user are useless. Therefore, there has to be a mechanism to correct the system.

One possible mechanism is to again use voice recognition technology so that the user can

say the name of the ingredient and the system will recognize what it is. The system

should also provide a way for the user to teach it about new ingredients. This involves

taking pictures of the new ingredient, creating the necessary mixture models and

incorporating them into the existing library of mixture models. The tricky part lies in
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how the pictures are taken because the user might not know how to teach the system. To

overcome this problem, the system can give the user instructions about how they should

place the object and change it to get a complete set of images that can be used to train the

system.

6.1.3 Video Playback System

The video playback component can be improved upon and enhanced with new

technologies. In addition to being able to jump around to different shots within the video,

the concept of scenes can be implemented to give the user further control of how to play

the video. Also, irrelevant portions of the video clips, such as commercials, can be

removed from the clip altogether, so that the user does not have to worry about fast-

forwarding past them. Another interesting functionality that could be added is the

presence of multiple versions of a video that would depend on the user preferences such

as his experience level or whether he wants commercials or not. For example, there

could be two different versions of a video recipe that either gives very detailed

instructions or shows only the basic steps. These various streams would be useful to

users with different levels of experience since advanced cooks would not want to watch

the clip with detailed instructions every time and have to fast-forward through all of the

tedious sections. Having these options would also be useful if users are trying to make

the same recipe again because users will not want to watch the detailed video the second

or third time that they make the dish. An extremely useful feature would be the ability to

move back and forth between these various streams. This way the user could watch the

detailed instructions for the parts of the video that he needs more help on and watch the

basic video for the rest of the preparation of the dish. Viper is a system that allows the
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manipulation of multiple video streams and audio streams and "providing primitives for

assembling complex edits and transitions, such as L-cuts, audio and video inserts,

dissolves, graphic overlays, slow motion, and so on, and for finely adjusting these

elements in response to real-time response activity" [9] 29 Although the technology might

not be in place to realize all of these visions, using Viper and building on its technology

is a step towards the right direction.

6.1.4 The Database

Extensions to the system's database depend heavily on the types of changes

implemented in the other components. The purpose of the database is basically to store

all the information that the other components need to access and to return the appropriate

information efficiently. Therefore, any additions to the knowledge base the system

requires would need to be incorporated by the database. If the interface is converted to

be a kitchen television or radio then the database must store information about the users'

favorite television channels or radio stations. If the system is capable of learning about

new ingredients, then it needs to be able to return recipes that contain them. Furthermore,

the database can include information about whether the user has made a certain recipe

and how many times if so. With this information, a less detailed stream could

automatically be played if the user has experience with a particular dish.

6.2 Applications In Other Fields

Thus far, this thesis has only discussed the application of the search and selection

mechanisms examined to media. There are other far-reaching uses for these algorithms
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ranging from law enforcement to medicine. Any areas that rely on imaging and must

search through databases of images can utilize the improved techniques for searching and

selection.

Law enforcement uses pictures and video to identify criminals, observe trends in

victims, and characterize crime scenes. Using the object recognition technology to

retrieve images that relate to a particular individual or to a particular scene would give

officials greater resources to work with. One important tool that the police use to solve

crimes is looking at surveillance videos. If they can parse the video and extract all the

shots containing the suspect, they can compare those shots to previous videos to extract

more clues.

Physicians also rely heavily on imaging to make diagnoses and observe a patients

progress. Using the search and selection mechanism to retrieve records for other cases

with similar ailments might help make the doctor to make a better diagnosis or devise a

better treatment plan. For example, if an X-ray reveals a mass in a patient's lungs, the

doctor could search for other patients with a similar mass. He can then examine

everyone's records to come up with the best possible plan of attack.

Implementing these algorithms in other fields would be an exciting step toward

the future of image processing. However, many advances would need to occur in order

for such steps to be taken. The many components of the overall process from feature

selection to finding a compact feature representation to developing suitable similarity

functions would need to be examined further and optimized. Current systems retrieve

images with a great deal of accuracy but to apply these methods to threatening situations

such as those in law enforcement or to life and death situations found in medicine, the
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accuracy and efficiency of the systems need to be improved by orders of magnitude.

Nevertheless, each step brings us closer to achieving these previously inconceivable

notions.
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Appendix A: Examples from Standardized Databases

Images from Brodatz Database from two images classes:30

Images from Columbia Database from two image classes: 3 '

30 The image classes are (in order) D55 and D8.
3' The image classes are (in order) D35 and D77.
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Images from Corel Database from 3 image classes:32

32 The three image classes (in order) Arabian Horses, Fireworks, and Pyramids.
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Appendix B: Splitting an Image

The first step to splitting an image is to subtract the background from the original

image and then using flood-fill techniques the individual objects are extracted from the

resulting picture. The system goes through each pixel recursively to find a pixel that is

not part of the background and then finding dimensions of the corresponding object by

locating all of the neighboring pixels that are also part of the object. It then extracts this

object, fills the extracted region of the original picture with the background and begins

the procedure again with the first pixel that doesn't match to the background to find the

rest of the objects. The following diagram shows how a query image is split using the

method implemented by Krishnamoorthy [10].

Figure 17: The original query image is shown by tomatoes-1.jpg. After the splitting technique is
applied the two other images, tomatoes-1.1.jpg and tomatoes-1.2.jpg, are created.
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Appendix C: Structure Of miniSQL Database

The database component of Minerva was implemented using mini SQL 2.0 [11]. It

consists of a series of tables connected by the primary keys of each table. The following

is a description of its table structure:

shows:

episodes:

ingredients:

recipes:

recipecategories:

user-info:

userpreferences:

{showID (int, showname (char), chef (char))

{episodeID (int), showID (int), episodedate (date),
episodetitle (char), notes (char))

{recipeID (int), ingredient (char), ingredient wt
(int))

{recipeID (int), episodeID (int), recipename (char),
filename (char), recipe type (char),
ingredientcount (int), difficulty (int) }

{recipeID (int), category (char))

{userID (int), login (char), firstname (char),
last-name (char), age (int), experience (int)}

{userID (int), category (char), difficulty (int))
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