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Chapter 1

Introduction

Since the beginning of the era of communications, researchers have tried to find new

ways of improving the quality and secrecy of communications. A major breakthrough

was due to Shannon who showed that both reliable and private communication is

achievable as long as the transmission is less than a fundamental quantity, namely

the capacity. Unfortunately, Shannon's construction were worse case designs in the

sense that his channel codes lacked any structure and were random. Also, his ci-

phers were not the best constructive ciphers, since they had the structure of random

noise. Following the invention of random coding and cryptography by Shannon, many

researchers tried to improve upon his methods. For codes to be useful in communica-

tions they need to have structure and simple encoding and decoding techniques. For

cryptographic systems, they need to be computationally feasible and secure even if

partial information about the cipher is known.

1.1 Structure of Linear Codes

In 1960 Slepian [14] introduced the first structure theory for binary linear codes. He

proved that every linear code is the sum of indecomposable codes and that the best

codes for a given block length and dimension are indecomposable. (An indecompos-
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able code is any code that is not the direct sum of two other codes). His goal was to

derive a canonical form for the generator matrix of an equivalence class of codes, so

that he could read off the properties from the generator matrix. Although we now

know this is impossible, he raised the question on whether a suitable representation

theory existed for linear codes.

Following Slepian a somewhat more abstract approach was taken by E.F. Ass-

mus, H.F. Mattson [3] and Ross [12]. Recently the topic has been revisited by E.F.

Assmus [2]. Assmus defined what he calls critical indecomposable codes which is an

indecomposable code such that the removal of any column of the generator matrix

results in a decomposable code. He shows that every indecomposable code can be

obtained from a critical indecomposable code by appending columns to the generator

matrix. In this light, this improves upon Slepians method and moves one step closer

to a representation theory.

In this thesis, we develop a general theoretical framework for geometric systems

having error structures. Our main motivation will be to use this framework to study

classical codes over commutative rings and fields. To this end, we will use the basic

language of category theory to lay out the foundation. To integrate error structure

into our geometries, we introduce the notion of a diagram of group schemes over a

directed graph. This allows us to define classical coding errors and more general

geometric error structures. Our codes will be taken as the R-valued points of a

subscheme of A7 over a commutative ring R. In the case R = k is a field, the points

correspond to the k-rational points. Our definition of a code is motivated by the

fact that every non-singular algebraic variety X over the complex numbers C has a

natural structure as a complex manifold over it's C-rational points X(C). Therefore

every non-singular code X can be looked at as a submanifold X(C) - C".

The above definition of a code allows for a much broader analysis of coding and

error structures. Although we will not explicitly review quantum coding in this thesis,

the above complex analytic interpretation can easily fit to model quantum structures.
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Finally, we give a brief introduction to elliptic curve cryptography. Using the

Riemann-Roch Theorem and divisors we construct an abelian group over the rational

points of an elliptic curve. For a more complete account of cryptography we refer the

reader to the main reference, [8].

1.2 Thesis Outline

The outline of this thesis is as follows. In Chapter 2, we introduce classical algebraic

coding over an algebraically closed field. The ideas in Chapter 2 are intended to help

motivate Chapter 3, where we generalize our geometry to the more modern language

of schemes. We will place special emphasis on the functorial point of view, since

applications arise naturally in this setting. In Chapter 3, we review sheaves, schemes,

sheaves of modules, functor of points, groups schemes, and G-spaces. These topics

are needed for the next chapter where we discuss coding. In Chapter 4, we give a

general framework for geometric systems with error structures. Using this framework

we construct an equivalence between the category of geometric linear codes over

Spec k and linear codes over k. We also study the minimum distance properties of

codes under base changes and localisations. In Chapter 5, we give an introduction to

elliptic curve cryptography.

Included at the end, is an appendix on Category Theory. The first four chapters

assume Category Theory as a prerequisite. To fully obtain a complete coherence of

the material it is recommended that the reader have a background in commutative

algebra and algebraic geometry. One can find a more self contained treatment in any

of the main references- [4], [7], [10], or [11].
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Chapter 2

Classical Algebraic Geometry

As a preparation for scheme theory, we will first review the classical treatment of

algebraic geometry over an algebraically closed field. For a more complete account of

the material, we refer the reader to, [7], [11]. In the following section we will give a

brief introduction to sheaf theory and schemes. We will focus most of our attention

on the functorial point of view, since applications arise naturally in this setting.

2.1 Algebraic Sets

In the most naive sense, algebraic geometry may be described as the study of all

solutions to a system of equations

fi (X1,7... , Xn) = 0, i = 1,. .,

with coefficients in a field k. This is a rather vague statement, since simultaneous

solutions may not exist. For example in the case of the polynomial x2 +y 2 +1 = 0 over

the field of real numbers, there are no solutions. If the field is enlarged to include the

complex numbers then there are many solutions. This fact has a natural geometric

interpretation given by the Hilbert Nullstellensatz, which we will describe shortly.
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Definition 2.1.1. Let k be an algebraically closed field. The set of n-tuples (ai,... , an)

of elements k in kn, is called the affine n-space over k.

We will denote the set of all solutions to a system of equations as the set

V(f 1 ,... , fi) := { (a1,... , an) E A" I fi(ai,... , an) = 0 for each i = 1,... , 1}

Observe that if we take the ideal (fi,... , fl) C k[x1,... ,xnj generated by the

polynomials fi, then any element g E (fi, . .. , fl) is necessarily zero over V(f, . .. , fi).

Therefore we will view the set V(f 1, ... , fi) as the set of solutions of the ideal gener-

ated by the polynomials fi, i = 1, ... , 1.

Theorem 2.1.1 (Weak Nullstellensatz). Let k be any field. If m is a maximal

ideal of a polynomial ring k[xi,... , xn], then the residue field

k[xl,. .. , Xn/M= k(m)

is a finite dimensional vector space over k.

In the case our field is algebraically closed we have the following corollary.

Corollary 2.1.2. A maximal ideal of the polynomial ring k[x1, ... , xn] over an al-

gebraically closed field k has the following form,

(x1 - a,, ... , Xn - an),7 ai E k

Proof. Let m c k[x1, ... , xn] be a maximal ideal and consider the k-algebra homo-

morphism,

k - k[x 1,... ,xn]/m = k(m)

By theorem 2.1.1, k(m) is a finite dimensional vector space over k. Since k is alge-

braically closed the above map must be an isomorphism, since every finite extension

13



of an algebraically closed field is the original field. Taking the value xi = aj, a E k,

for each i, we have (xi - a1, .. , x- an) C M.

Therefore,

Corollary 2.1.3. If an ideal I in the polynomial ring k[x1,... , xn] over an alge-

braically closed field does not contain the identity, then V(I) : 0.

From the above corollary, we can conclude every system of polynomials fi, i =

1, ... , 1, that does not generate the unit element has a solution.

The sets {An \ V(I) I C k[x 1 ,... ,xn] } form a topology on A", since V(I) U

V(J) = V(I- J) and nV(Ia) = V(EI). We will refer to this as the Zariski Topology

on A. The Zariski topology is almost never Hausdorff, since open sets are very large.

For instance, every closed set in A' has a finite number of points and therefore every

open set has an infinite number of points. We will call the closed sets of the Zariski

topology algebraic sets. When a closed set is topologically irreducible we will call it

an irreducible algebraic set.

Ultimately, we would like to assign some algebra to our geometry. To do this we

define the ideal I(V) over an algebraic set V as,

I(V) = {If E k[xi, ... , xn] I f (a,, ... , an) = 0 for all (ai,,... , an) E V }

and the corresponding coordinate ring of V as,

k[V] := k[x,... , xn]I/I(V)

The ideal I(V) is necessarily a radical ideal since, fn vanishes on V implies f also

vanishes. A radical ideal is any ideal such that ffl E I implies f E I. We usually

write a radical ideal as j7. If A is any algebra with the property a" = 0 implies

a = 0, then we call it a nilpotent free algebra. Therefore, the coordinate ring k[V] is

a finitely generated nilpotent free k-algebra.
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Definition 2.1.4. A pair (V, k[V]) consisting of an algebraic set V and it's coordinate

ring k[V] is said to be an affine algebraic variety or more simply affine variety.

Proposition 2.1.5. For an algebraic set V, there exists a one-to-one correspondence

between the points on V and the maximal ideals in k[V].

Proof. Observe, by corollary 2.1.2 every maximal ideal of the coordinate ring,

k[V] = k[x1,... ,xn]/I(V)

has the form (x 1 - a 1,... , x, - an), ai E k. But, this implies (ai, . . . , an) c V.

Similarly give any point in V we can construct a maximal ideal containing I(V). El

A morphism between two affine varieties (V, k[V]) and (W, k[W]) is a pair (q, #),
with a continuous map # : V -+ W, and k-homomorphism ## : k[W] -+ k[V]

satisfying q#~'(ma) = mb for every maximal ideal ma and mb, whenever #(a) = b.

Note that for any k-homomorphism 4 : S -+ R between k-algebras, the inverse image

of a maximal ideal of R is a maximal ideal of S. This is clear, since for any maximal

m c R, the image S/,4r(m) -+ R/m = k is surjective.

We write a morphism as,

(#, #) : (V, k[V]) - (W, k[W])

If # is homeomorphic and q# a k-isomorphism, then the morphism (0, ##) is said to

be an isomorphism.

Example 2.1.6. Consider the curve C = V(y 2 _ X3) C A2 and the affine line A1 . We

define a morphism #$ A' -+ C, by the map a i (a2 , a3 ) and k-algebra homomor-

phism,

# : k[x, y]/(y 2 _ X3 ) -+ k[t]

f (x,y) ' f (t 2,t 3 )

15



Checking one discovers that q is a homeomorphism, but 0# is not an isomorphism.

Therefore two affine varieties that are topologically equivalent does not imply their

coordinate rings are. The above example fails since the curve y2 _ x3 has a singularity

at the point (0, 0).

We finish our discussion on classical algebraic geometry, by stating a classical

result that is at the very essence of Algebraic Geometry, since it constructs a bridge

between geometric objects and algebra. First, we need a lemma that shows that every

finitely generated nilpotent free k-algebra comes from an affine variety.

Lemma 2.1.7. For any finitely generated nilpotent free k-algebra A, there exists an

affine variety (V, k[V]) such that k[V] = A.

Proof. Since A is a finitely generated k-algebra there exists a surjective map,

k[x1,. .. , Xn] -*A

for some n. Taking the radical ideal J C k[xI, ... , xn] such that k[xi,... , xn]/J L A,

we claim that (V(J), k[V(J)]) is the desired affine variety. Indeed, it is enough to

check I(V(J)) = J. Let f E I(V(J)), then f(x) = 0 for every x E V(J). By

corollary 2.1.2, f E O ) m; but mjm = V = J. L

Proposition 2.1.8. Let (V, k[V]) be an affine variety. Then the contravariant func-

tor

(V k[V]) -- k[V]

taking an affine variety to it's coordinate ring induces an arrow reversing equivalence

between the category of affine varieties over an algebraically closed field k and the

category of finitely generated nilpotent free k-algebras.

For proof see §1.3.8 of [7].
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Chapter 3

Modern Algebraic Geometry

In the previous section we showed there is a one-to-one correspondence between affine

varieties and finitely generated nilpotent free k-algebras over an algebraically closed

field k. More generally we are interested in extending the above case by replacing

k-algebras with commutative rings. Naturally, this raises the question, of what type

of geometry is needed? The answer turns out to be a scheme.

The construction of schemes parallels the definition of a differentiable manifold.

Instead of taking a topological space M that is locally homeomorphic to an open

subset of R' and a sheaf of differentiable functions C (M), a scheme is a topological

space glued together by affine schemes with a corresponding sheaf of regular functions.

We begin by defining the spectrum of a ring, sheaf, and the associated structure

sheaf of a ring. This will eventually lead us to the definition of an affine scheme, and

more generally schemes.

Definition 3.0.9. Let A be a commutative ring with unit. We define SpecA called

the spectrum of A, to be the set of all prime ideals contained in A.

Each prime ideal p can be viewed as a point in the set Spec A. The spectrum of a

ring has a natural topological structure called the Zariski topology. A closed subset

17



with respect to an ideal I C A, is defined as the set of elements

V(I) = { p E SpecA I f(p) = 0 for all f E I}

The evaluation of f at a point p is the image of f in the residue field k(p) := AP/pAp

induced by the canonical map A --+ AP -+ Ap/pAp. We use the notation Ap to denote

the local ring at a prime ideal p. The local ring AP is defined as the ring of elements

r/s, such that r, s c A and s E A \ p, with equivalence relation r/s = r'/s' whenever

there exists t E A \ p satisfying t(rs' - r's) = 0.

To show SpecA is a topological space it is enough to check that both the intersec-

tion of an arbitrary collection of closed sets and the finite union of closed sets, is closed.

This follows immediately since for any two ideals I, J c A, V(I) U V(J) = V(I - J)

and for any arbitrary collection of ideals {I} in A, nV(I,) = V(EI,).

Example 3.0.10. Consider the affine line Ak = Spec k[t] over a finite field k. The

points in Al correspond to the (0) ideal and the irreducible polynomials contained in

k[t]. A point x is closed if and only if the residue field k(x) is a finite field extension

of k.

Definition 3.0.11. An important type of open set are the distinguished open sets.

A distinguished open set associated to an element f E A, is defined as D(f)

SpecA \ V(f) = SpecAf.

This corresponds to all the points in SpecA where f(p) = 0. The distinguished

open sets naturally forms a basis for the Zariski topology, since every open set has

the form U = SpecA \ V(I) = UfgID(f).

We remark that the spectrum of a ring is a basic generalization of the points

on an affine variety given by Definition 2.1.4. In fact, for any affine variety Y over

an algebraically closed field, the maximal ideals m-Spec k[Y] of the affine coordinate

ring k[Y] is naturally homeomorphic to Y, given the induced topology. So in general,

the spectrum of a ring adds more points, increasing the geometric information. This

18



is perhaps most clearly reflected in Example 3.0.10, if we take the field k to be

algebraically closed. In classical algebraic geometry the points on the affine variety

correspond to the maximal ideals {(t - a)}aEk. However, we have added one more

point in Spec k[t], namely the (0) ideal whose closure is all of A'.

3.1 Sheaves

An important concept in modern geometry is the notion of a sheaf. Sheaves are

classical structures, originating out of set theory and can be conveniently described

as a family of sets with certain relations. The main motivation for using sheaves in

algebraic geometry is to add local structure to our geometries. We begin by first

describing presheaves, a precursor to sheaves.

Definition 3.1.1. Let X be a topological space. A presheaf F of sets on X consists

of the following:

1. for each open set U C X, assign a set F(U)

2. for every nested pair of open sets V C U C X a restriction map puy,v : F(U) -4

Y(V)

satisfying

3. puu is the identity map

4. puy,v o pv,w = pu,w for all W C V C U C X.

Equivalently, we can define a presheaf to be a contravariant functor F : Top(X) -+

Sets taking open sets in X, to sets. A presheaf of abelian groups, rings, or algebras

are defined in a similar way by changing the category of Sets to the categories Ab,

Rngs, or Aig.
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Example 3.1.2. Consider Spec Z6 = {(2), (3)} consisting of two closed points. Define

.F(Spec Z6) = Z6, F((2)) = Z3, F((3)) = Z3, and F(0) = 0 with canonical map

Z6 -4 Z3. Then F defines a presheaf on Spec Z6.

The elements of F(U) are called the sections of F over U and global sections if

U = X.

Definition 3.1.3. A presheaf F on a topological space X is called a sheaf, if it

satisfies the following axiom. Namely for every open set V and open covering {U"}

of V with elements f, E F(Ua) satisfying Pu,,unuo (fca) = Pu,,unu, (fo), there exists

a unique f E F(V) such that pv,(f) := flu, = fa for every o.

Example 3.1.4. The above example does not form a sheaf since we can take 2 E

F((2)) nF((3)) which satisfies the criterion 21(2)n(3) = 0, however there does not exist

a unique element f E F(Spec Z6) whose restriction over the points {(2)} and {(3)}

give 2, since both 2, 5 E F(SpecZ 6) both map 21(2) = 51(2) = 2 and 21(3) = 51(3) - 2.

If we instead replace F((2)) with Z2, then we have a sheaf.

Definition 3.1.5. The stalk of a presheaf at a point x E X contains important

information about the presheaf. We define the stalk F, at x to be the direct limit

lim F(U)
xEU

Equivalently, the stalk is the initial object in the category of CoCones(E, Top(X))

over the filtered diagram of open sets containing the point x. Since the open sets

containing x are filtered under inclusion, it follows by corollary A.2.6, that FX has

a natural abelian group, ring, or module structure whenever the collection {F(U)}

are respectively abelian groups, rings, or modules. Moreover, the stalk can be looked

at as the collection of objects (V, t) E UxEusEF(u)(U, s)/ -, under the equivalence

relation (U, s) ~ (V, t) whenever there exists W C U n V with pu,w(s) = pV,w(t).

A morphism q : F -+ G between two presheaves on a topological space X is

defined as the collection of maps qU : F(U) -+ 9(U) satisfying the commutative

20



diagram

F(U) Ou 9(U)

Pu,v Puv

F(V) 9 (V)

for every inclusion U C V. Equivalently, we can say a morphism between two

presheaves is a natural transformation between the functors F,!9 : Top(X) - Sets.

Observe from the definition we have an induced map on the stalks 0_' F: - g. for

each x E X. The following proposition illustrates how stalks preserve information

about the sheaves.

Proposition 3.1.6. Let # F -+ 9 be a morphism of sheaves on a topological space

X. Then q is a monomorphism (respectively epimorphism) if and only if the induced

map on the stalk $ : F, -+ , is a monomorphism (respectively epimorphism).

See §11.1.1 [7] for proof.

There is a natural sheaf structure associated to the spectrum of a ring. Concep-

tually, we would like to make each element f E A behave as much like a continuous

function as possible. The only difficulty is that f takes values in different residue

fields for each point P E Spec A. Let A denote the local ring at p. For each open set

U C X = SpecA, we define Ox(U) which we will sometimes write as I'(U, Ox) to be

the set of all functions s : U -+ JJPEU Ap, with s(p) E A for each P E Spec A, such

that s is locally the quotient of elements in A. That is, for each P E U there exists

an open set W and elements r, t E A such that s = r/t for each q E W. Notice this

means that t q for each q E W. From the definition it is clear this forms a sheaf on

Spec A, with restriction maps pu,y : Ox(U) -+ Ox(V) taking a section s E Ox(U)

and restricting it to the open set V. The above sheaf Ox is called the structure sheaf
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of Spec A.

Proposition 3.1.7. Let A be a ring.

1. For any p E Spec A, the stalk OSpec A, of the sheaf OSpec A is isomorphic to the

local ring AP.

2. For any element f E A, the ring IF(D(f),Spec A) 2 Af, in particular,

F(Spec A,Ospec A) r A.

See §11.2.2 [7] for proof.

Definition 3.1.8. The pair (Spec A, OspecA) consisting of the spectrum of a ring and

it's structure sheaf will be called an affine scheme.

Notice the similarities between this definition and that of an affine variety. Instead

of a finitely generated nilpotent free k-algebra we replaced it with the structure sheaf

Ospec A which can be viewed as a Z-algebra over it's global sections.

In the following section we generalize the notion of an affine scheme/affine variety

by looking at more general geometric structures glued together by a bunch of affine

schemes. This is analogous to the case when we construct manifolds by gluing together

open subsets of R .

3.2 Schemes

A scheme X is a topological space together with a sheaf of rings Ox, that locally looks

like an affine scheme. In particular, for each point x E X there exists an open set

U containing x, such that the sheaf restricted to U a Spec A for some commutative

ring A. A morphism between two schemes X and Y is a continuous map f : X - Y

and a map of sheaves f# : Oy - f*Ox, defined by

SO(U) -+ f*Ox(U) :=Ox(f-1(U)) for each open U C Y
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such that the induced map f: : Oy,f(x) -+ O x,. of stalks is a local homomorphism of

local rings for each point x E X. That is, f: takes the maximal ideal mx in Ox,x to

the maximal ideal mf(x) in Oyjf(x). The local criterion ensures that a section s of the

structure sheaf Oy vanishes at a point f(p) in the residue field k(f(p)) if and only if

the section f# (s) also vanishes at p .

Example 3.2.1. Consider the affine line Ak = Spec k[t] and the parabola Spec k[x, y]/(y-

X9). We define a morphism 0 : Spec k[t] - Spec k[x, y]/(y - x) by the ring homo-

morphism c : k[x, y]/(y - X2) -- k[t], taking x -* t, y -+ t2 . The induced map on

their topologies is given by 0(p) := a-1 (p). It is not difficult to see that this in-

duces a local homomorphism on each of it's stalks. In fact, any ring homomorphism

q : R -+ S induces a local homomorphism, since the map Op : Rp-i(p) -* Sp of local

rings is naturally a local homomorphism. Therefore we have morphisms of schemes.

In fact you can check this is actually an isomorphism.

Let U be an open subset of X. Then the sheaf restricted to U is also a scheme on

U, since for each point x E U, we can find a distinguished open set D(f) containing

x in U with D(f) e Spec Af for some ring A and f E A.

We would like to have the notion of open and closed subschemes of a scheme.

Analogous to the case of manifolds, we have the following definitions.

Definition 3.2.2. An open subset U of X is called an open subscheme of X, with

the induced structure.

Definition 3.2.3. A closed immersion is a morphism f : Y -+ X of schemes such

that f induces a homeomorphism of Y with some closed subset of X and the induced

map of sheaves f# : Oy -+ fOx is surjective. A closed subscheme of a scheme

X is then defined as the equivalence class of closed immersions, where f : Y -+ X

and g : Y' -+ X are equivalent provided there is an isomorphism h : Y -+ Y' with

f = goh.

If X = Spec A is an affine scheme, then each ideal I c A represents a closed sub-
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scheme of X, since the map Spec A/I " Spec A induced by the ring homomorphism

A -+ A/I is a surjection on the stalks. Note there may be many closed subschemes

assigned to a closed subset in X. For instance V(I) and V(V7) are both equivalent

as topological spaces but they differ on their structure sheaf whenever I = V1.

Example 3.2.4. If fi,... , f m E k[ti, ... , tn] are a collection of polynomials then the

set V(f, ... , fin) is a closed subscheme of the affine n-space Ak. The structure sheaf

is given by the ring k[ti,... , t,]/(fi, ... , fm).

Definition 3.2.5. For each closed subscheme Y of X, there exists a closed subscheme

smaller than any other with the same underlying topological space as Y. We call this

closed subscheme a: Yed -4 X the reduced induced subscheme of Y.

It has the universal property that for any closed subscheme / : Y' " X with the

same underlying topological space Y, Yed factors through Y'. That is, there exists a

morphism 7r : Yed -+ Y' with # o 7r = a.

Example 3.2.6. For affine schemes Spec A the reduced induced subscheme associated

to the closed subscheme V(I), is the closed subscheme induced by the radical ideal

V(1F).

3.3 Connection Between Affine Schemes and Rings

Eventually, we would like to prove a more general statement of proposition 2.1.8

by replacing affine varieties with affine schemes and finitely generated nilpotent free

k-algebras with rings. First we need the following proposition.

Proposition 3.3.1. For any scheme X and any ring A, the morphisms

<: X -+ Spec A
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is in one to one correspondence with the homomorphism of rings

#: A - Ox(X)

Proof. It is enough to show that for any two scheme morphisms q, ' : X -± Spec A

that induce the same ring homomorphism of global sections are necessarily equal. Let

x E X. Taking the canonical map

A O x(X) Ox,

we define 4 : X -+ Spec A, as 0 (x) := (7rq#)-l(mx). The map 0 is continuous, since

the inverse image of any distinguished open D(f), with f E F(X, Ox) is equal to

-'(D(f)) = D(##(f))

We can define a morphism # of sheaves over the distinguished open of Spec A by,

Af (#,x)(D(f))=1F(D(##(f)),Ox)
a 0#(a)

f k # k

This is enough to give a unique morphism of sheaves Ospec A O #4Ox. Taking limits,

we have the induced map 0# : Ap(x) -+ Ox,,, which is a local morphism, since

-# 1 (mx) = -(m) -A(x) = (x) -Ao(x)

Hence, the pair (4, 0#) is a morphism of schemes and clearly q = 4. L

Corollary 3.3.2. The category of affine schemes is equivalent to the opposite cate-

gory of commutative rings with identity, with arrows reversed.
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The above corollary shows that every affine scheme has a dual interpretation as a

commutative ring and vice versa. As a result of proposition 3.3.1 the affine scheme

Spec Z is the terminal object in the category of schemes since every morphism b : X -+

Spec Z is the necessarily unique morphism induced by the ring map * : Z - O x (X).

Generally, when speaking about the categories of schemes we will usually mean the

category of schemes with terminal object Spec Z. If we replace Spec Z with another

object S and assign a unique morphism X -+ S for each scheme X, then we have

what we call S-schemes or schemes over S. In this category, S is the terminal object.

We can view a base change as replacing the Z-algebra structure of a structure sheaf

to an S-algebra whenever our base S is affine. Restricting ourselves to schemes over

a different base is useful since it may introduce a more natural interpretation of the

geometry. For instance, if we consider the point "0" corresponding to the maximal

ideal (t) on the affine line Spec C[t], we would expect that the automorphism group

of the point is trivial. In fact this is the case, when we consider it as a scheme over

Spec C. However, the automorphism group of the point over Spec Z is the Galois

group Gal(C/Q), which is very large.

A morphism of two S-schemes X and Y is a morphism X -+ Y making the

diagram commute,

X Y

S

We write the set of morphisms between two S-schemes X and Y as Mors (X, Y).

The fibered product of two S-schemes X and Y is defined as the pullback X xs Y

of the diagram

Y 01 "
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If X = Spec A, Y = Spec B, and S = Spec R are affine schemes then the fibered

product is the scheme Spec(A OR B). This follows since the functor F : R-Alg -+

R-Sch' given by,

A i-+ (Spec A, Ospec A)

induces an equivalence of categories with the functor taking global sections. By

proposition A.3.2, F must preserve colimits, and hence

Spec A XSpec R Spec B = Spec(A OR B)

More generally, the fibered product of arbitrary schemes exists and requires the

gluing of affine schemes over suitable open sets. For a more detailed account we refer

the reader to §11.3 [7].

Example 3.3.3. The fibered product of two schemes does not necessarily preserve the

fibered product of it's underlying set of points. The points in Spec C[x] correspond

to the maximal ideals {(x - a)}aec and the zero ideal (0). However, Spec C[x] xc

Spec C[y] = Spec C[x, y] contains irreducible polynomials that are not in the fibered

product of it's underlying sets.

An important application of fibered products is base extensions of schemes. Given

a morphism S' -+ S we can take the fibered product of an S-scheme X -+ S to get

an S'-scheme. Taking base changes is functorial since any S-morphism f : X -+ Y

induces a unique morphism f' : X x s S' -+ Y x s S'. This is useful for studying schemes

over different field extensions. Another important use is in studying morphisms under

base extensions.

Proposition 3.3.4. Open and closed immersions are stable under base extensions.

Therefore every open and closed subscheme, stays open and closed under base

change.
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3.4 Sheaves of Modules

Up until now we have only considered the structure sheaf associated to a scheme.

More generally, we are interested in constructing sheaves of modules over a given

scheme. Let (X, Ox) be an affine scheme. A sheaf of Ox -modules is a sheaf 7F on

X, such for each open set U C X, F(U) is an Ox(U)-module, and for each inclusion

of open sets V C U, the restriction homomorphism F(U) -+ F(V) is compatible

with the module structure. A morphism Y -+ g of sheaves of Ox-modules is a

morphism of sheaves, such that for each open set U C X, the map F(U) -+ 9(U) is

a homomorphism of Ox(U)-modules.

Definition 3.4.1. An Ox-module M is said to be quasi-coherent if it is locally pre-

sented. In other words there exists an open cover {U} such that for every a, Mlu,

is presented

OxIu. -+ mOxu, Mu. -+ 0
iEI1 iEIo

If we can choose 10, I1 finite, then M is called coherent.

Given an affine scheme (X, Ox) = (Spec R, Ospec R) and an R-module M, we

define the sheaf M associated to M to be the sheaf, such that M(D(f)) = Mf over

every distinguished open set D(f).

Proposition 3.4.2. Let R be a ring, and M an R-module, with associated structure

sheaf M on Spec R. Then,

1. M is an Ox-module

2. for each p E Spec R, the stalk (M), is isomorphic to the localized module Mp.

3. for any f E R, the Af-module M(D(f)) is isomorphic to the localized module

Mf
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4. F (Spec R, ) = M

See §11.5.1 [7] for proof.

Proposition 3.4.3. If N is a sheaf of Ox-modules on X = Spec R, and M is any

R-module, then the functor -) taking M to it's associated sheaf of modules is adjoint

to the functor F(X, -) taking global sections. ie

Homo (M, N) 2 HomR(M, F(X, N))

Proof. It is clear that the above is a natural transformation. The only non-trivial

part is showing that every homomorphism M -+ F(X, N) of R-modules induces a

morphism of Ox-modules. Let # : M -+ F(X, N) be a map of R-modules and

D(f) C Spec R, f E R a distinguished open set. Then there exists a unique map,

M - L(X,N)

Mf - -l(D(f), N)

extending #. This is enough to induce a unique morphism of Ox-modules and hence

the desired result follows.

In particular we can say that the functor ( gives an equivalence between the

category of R-modules and the category of quasi-coherent Ox-modules.

In the next section we introduce the functor of points of a scheme. The functor

of points will play an important role in laying a foundation for applying algebraic

geometry to coding.

3.5 The Functor of Points

For clarity, we introduce the functor of points in a more general categorical setting. In

many categories, objects can usually be viewed as sets with some additional structure.
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The underlying set of an object JXJ may be described as the set of morphisms from

a universal object to X. For instance,

" In the category of differentiable manifolds, the underlying set of any manifold

X may be described as the set of morphisms Mor(Z, X), where Z is the trivial

manifold consisting of one point.

" In the category of groups, a group G underlying set may be described as

Mor(Z, G).

" In the category of rings with unit, a ring R underlying set IR = Mor(Z[t], R).

The above suggests, it may be possible to conceive an objects underlying set as

the functor X '-+ Mor(Z, X) for some object Z. We remark though, that this makes

sense only if the functor is faithful. In other words, if two morphisms f, g : X - Y

produces the same map f', g' : Mor(Z, X) -+ Mor(Z, Y), then f = g.

Example 3.5.1. In the category of schemes, the most intuitive object to choose would

be the terminal object Spec Z. However, Mor(Spec Z, X) turns out to be very small,

and is not a faithful functor. Indeed no scheme is sufficient to give a complete de-

scription

The above suggests, there might be no hope in finding a remedy to this situation.

Grothendieck, suggested instead of looking at individual sets Mor(Z, X), why don't

we consider all the sets UZESchMor(Z, X)? In this way, we naturally obtain a faithful

functor from any category C to Sets, by associating an object X to the sets of the

form Mor(Z, X) together with, for each morphism f : Z -+ Z', the mapping from

Mor(Z', X) obtained by composing with f.

Definition 3.5.2. The functor of points of a scheme X is defined as the representable

functor

h: Sch - Fun(Sch*, Sets)

X 4 hx
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More generally, we will consider the case when we have an arbitrary base S

and representable functor h' : S-Sch -+ Fun(S-Scho, Sets). The set hx/s(Y) =

Mors(Y, X) is called the set of Y-valued points. We will usually denote this as Xs(Y).

The above idea is motivated by the k-rational points of a scheme X over a field k.

The k-rational points of a scheme X are defined as the points p whose residue field

k(p) is k. In this case, the k-rational points are in one-to-one correspondence with

k-valued points. Indeed, any map Spec k to X is a map Spec k into some affine open

subscheme Spec A of X, which is in turn determined by a k-algebra map A -4 k. This

results in a maximal ideal in A whose residue field is k and hence a rational point.

Similarly, it is easy to see any k-rational point gives rise to a morphism Spec k -+ X

of k-schemes.

The concept of an R-valued point generalizes the notion of a set of Diophantine

equations in a ring S. If we let S := Z[ti,... ,tn]/(fi,... ,fm ) and X = Spec S,

then a morphism Spec R -+ Spec S, is the same as a ring homomorphism S -+ R.

This morphism is determined by the images of tj in R. Therefore, this results in a

morphism if and only if the images ai of tj form a solution to the equations

fi(ai, ... , an) = - = fm(ai,... , an) = 0

It is important to draw a distinction between the dual use of the word "points".

In a arbitrary affine scheme X = Spec A, the points correspond to prime ideals in A,

which are not the same as the set of R-valued points, associated to X. Also, while

the set of points of IXI are absolute, the set of R-valued points are relative to the

base scheme we are working over. The following proposition shows, that it is enough

to look at the functor of points of affine schemes whenever the base scheme is affine.

Proposition 3.5.3. If R is a commutative ring, a scheme over R is determined by

the restriction of it's functor of points to affine schemes; in fact

h: R-Sch -+ Fun(R-Alg, Sets)
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is an equivalence of the category of R-schemes with a full subcategory of the category

of functors.

Proof. It is enough to show every natural transformation hx -+ h' comes from

a unique morphism f : X -+ X'. Let {Ui} be an open cover of X. Then each

inclusion Ui "+ X corresponds to a morphism fi : Ui -+ X'. Checking compatibility

over the intersections Ui n Uj, we see that the fi glue together to form a morphism

f X -+ X'. Now we want to show for any affine R-scheme T, and morphism

g T -+ X the natural transformation takes g to f og. Indeed, choose any affine open

cover {Vj} with Vij C f 1 (Ui). Then the induced map gI , : Vij -+ X, corresponds

to a morphism g'Jv, : Vij, -+ X'. Checking g' vi, = (fg)| Iv, we have the desired

result. D

3.6 Characterization of Schemes among Functors

In this section we want to consider the question of when a functor F : Rngs -

Sets is necessarily representable by a scheme. Since schemes are made up of open

affine subschemes it seems logical that a functor should be glued together by smaller

representable functors corresponding to an open affine cover. We will show under

certain circumstances they are. First we define the fibered product of functors.

Definition 3.6.1. If F, 9, and W are functors from a category C -+ Sets and if

a : F -+ and b : g -+ W are natural transformations, the fibered product F x- g is

the functor from C -+ Sets defined by setting for each object X of C, the set

(F x- 9)(X) = { (x, y) E F(X) x 9(X) I a(x) = b(y) in W (X) }

We say a functor g is a subfunctor of F provided there is a natural transformation

a g -+ F such that for every object X the induced map of sets 9(X) -+ F(X) is

injective. A subfunctor g : Rngs -+ Sets of a functor F is said to be an open
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subfunctor provided for each map 4: hspec R -4 F from the representable functor

hspec R, the fibred product

Go hSpec R

4 4
of functors yields a functor gp -+ hspec R, that is naturally isomorphic to a repre-

sentable functor hu for some open U C Spec R. If X is a scheme then the open

subfunctors of hx are precisely those given by open subschemes of X.

Definition 3.6.2. An open covering of a functor is a collection of open subfunctors

{Gj -+ F}, such that for each scheme X the open subsets representing the pullback

hut, of hx is an open cover of X.

For instance, if X is a scheme and {U} an open cover of X, then the collection

of open subfunctors {hu, -+ hx} is an open covering, since the fibered product of

functors hu1 X hx hspec R for any affine scheme Spec R is necessarily the representable

functor hu, xxspec R given by the fibered product of the morphism in hx (Spec R) and

hx(U) corresponding to the natural transformations in proposition A.0.11.

Lemma 3.6.3. Let {Gj -+ F} be a collection of open subfunctors of a functor F

Sch -* Sets. Then {Gi -4 F} is an open covering if and only if F(Spec k) =

UGj (Spec k) for every field k.

Proposition 3.6.4. A functor F : Rngs -+ Sets is of the form hx for some scheme

X if and only if

1. F is a sheaf in the Zariski topology, and

2. there exists rings Ri corresponding to open subfunctors hRi -± F such that, for

any fields k, F(Spec k) = UhRi (Spec k).
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3.7 Group Schemes

We have already seen that the product of two schemes does not necessarily preserve

the product of it's underlying set of points. This prevents us from making the points

of an arbitrary scheme into an abstract group. However, since the R-valued points

of a product of schemes, is the set product of it's R-valued points, it makes sense to

define a group structure here.

Definition 3.7.1. Let G be a scheme over a base S. G is said to be a group scheme

provided there exists a morphism p : G xs G -+ G (group operation), T : G -+ G

(inversion), and e : S -+ G (identity) making the following diagrams commute,

G xs G xsG idG X Gxs G

p x idG A

GxsG G

G-

E x idG

G xsG

G

G

idG X E-1

idG

A

GxsG

G

x sG idG X T G

EWG G

T x idG
GxsG GxsG
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In particular, if our schemes are affine, then the dual of the diagrams defines a

(commutative) Hopf-Algebra, see [1].

Example 3.7.2. The polynomial ring k[t] can be given the structure of a group as a

k-scheme, by defining the group operation g : k[t] -+ k[t] Ok k[t] as t '-+ t 0 1 + 1 & t,

T : t - -t, and E : k[t] -+ k as t - 0. The corresponding group is denoted Ga with

k-valued points isomorphic to the underlying additive group k. Similarly, k[t, t-] is

a group scheme over k by taking p : t - t t, T : t - t- 1, and E : tF-+ 1. In this

case, the affine algebraic group is denoted Gm and corresponds to the multiplicative

group kX.

Proposition 3.7.3. Let G be a scheme over S. Then G is a group scheme if and

only if for every S-scheme X, Mors(X, G) is a group under the operation f - g =

p(f x g)Ax, satisfying the condition; if Y is an S-scheme and A E Mors(Y, X), then

the mapping A* : Gs(X) -+ Gs(Y) given by f '-+ f A is a group homomorphism.

Example 3.7.4. We can define GL, as the integral group scheme of n x n matrices,

Spec Z[xig,][det(xig,)-]

by associating to every ring T the group GLn(T).

Definition 3.7.5. A closed subscheme H of a group scheme G, will said to be a

group subscheme of G provided for each scheme Y, hH(Y) is a subgroup of hG(Y).

Example 3.7.6. Suppose G is a group scheme over some affine base Spec R. Then

Spec R inherits a natural group subscheme structure of G by associating the trivial

group to Spec R and identifying it with the identity element of G.

3.8 Groups Acting on Schemes

An important concept, which we will later use to construct geometric error spaces, is

that of a group scheme acting on a scheme X.
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Definition 3.8.1. A G-space is a scheme X equipped with a left G-action that is

also a morphism a: G x s X -+ X, satisfying,

1. a(P x iG) a(1G x a) : G xs G XS G xs X -+ X.

2. a(E x 1x) = p: S xs X -+ X, where p is the projection map.

Example 3.8.2. Let Ga = Spec k[t] be the affine line with additive group structure.

Define the morphism a: Ga Xk Ga 4 Ga by the ring homomorphism k[t] -+ k[x] Ok

k[y] taking t -+ x 0 1 +1 0 y. It is easy to check Ga defines a group action on itself.

Indeed, on the k-rational level it is the action (k, k') - k + k'.

For more information on G-spaces and group varieties in general, see [15].
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Chapter 4

Codes

Thus far, we have reviewed the fundamentals of modern algebraic geometry. In this

section, we develop a general theoretical framework for geometric systems having

error structures.

We proceed first, by defining a diagram of groups schemes over a directed graph.

This will provide the necessary structure in which we can integrate errors into our

geometries. Throughout this section, we will assume all of our schemes are over an

arbitrary base S. When a distinction is relevant we will note otherwise.

4.1 Diagram of Group Schemes

Definition 4.1.1. Let I be a directed graph. A diagram of group schemes EG over

I is a family of group schemes {Gi}EI,that assigns each arrow i - j a corresponding

group scheme morphism gij E Mor(G, Gj).

A morphism between two diagram of group schemes EG and Ef, is a morphism

of the underlying graphs a : IG -+ IH,

1. taking each Gi E EG to a group scheme H(i) E EH, by way of a group scheme

morphism Ai : Gi -+ H*ti)
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2. and for each arrow gi,j : Gi -+ Gj an associated arrow h,(i),cey) : Ha(i) -+ Ha(4),

satisfying A9 o gi,j = h)(i),a(j) o Ai for every Gi, Gj E EG-

Definition 4.1.2. A EG-space over a diagram of group schemes EG is defined as a

pair (X, EG) consisting of the following data:

1. for every Gi E EG, there is a G-space action oi : Gi xS X -4 X,

2. for every arrow of group scheme morphisms gij : Gi - Gj, oj o (gij x idx) = -i.

Example 4.1.3. Consider the diagram of group k-schemes,

Spec k -4 Spec k[xll, x 12 , x 2 1 , x22 ][det(xij)- 1 ]

with arrow map g# taking x11 '-+ 1, x 12 '-4 0, x 21 '-+ 0, x22 -+ 1. The object

Spec k[x11 , x 12 , x2 1 , x22 ][det(xij)- 1 ] is the group scheme of invertible 2x 2 matrices GL 2

and Spec k the trivial group mapping to the identity matrix in GL 2. We view Spec k

as having a null-error structure and GL 2 as a single error structure. The direction

of the arrow map determines this. Taking the affine plane A = Spec k[x, y], we can

construct the EG-space (A, EGL2 ) by the k-valued action

(k,kD) k, k')(a b) ad - bc # 0
(c d)

At the k-valued level we have the two-dimensional vector space k2 with single error

actions determined by invertible transformations and null-error action given by the

identity.

Example 4.1.4. Consider the additive group scheme G" corresponding to the poly-

nomial ring k[xi, . .. , xn] over a field k. Let

Gi := Spec k[xi, ... , Xn]/Ejg (Xj)
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be the induced additive group subscheme of Gn. The k-rational points of Gi have

the form { (ai,... , an) E k' I a3 = 0 for j = i }. Consider the diagram scheme,

G, -.-.- Gi -.- G

Spec k

Taking the affine scheme Ak we define the EG-space as the pair (Ar, EG) with Gi

acting on Ak by addition. For each i, the map Gi Xk Ak - An is determined by the

ring homomorphism

x, F- x 1 1l0xi

We can view this on the k-rational level as the system of errors on k" taking an

element

with the restriction that errors cannot occur at more than one position.

Definition 4.1.5. A morphism of EG-spaces (X, EG) and (Y, EH) is a pair of mor-

phisms (f, a), f : X -+ Y and a: EG -+ EH such that for every map Ai : Gi H- i)

the following diagram commutes

Gi xsX - X

Ai x f f

Hiri) x s Y ,-a Y
Ja(i)

We will refer to the class of objects consisting Of EG-spaces and morphisms, as
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the category of EG-spaces.

If we are working over a base scheme S, the sets of the form Mors(X, S) contain

only one point. From this observation, it is clear the pair of objects (S, S) forms

a canonical EG-space. In fact, every EG-space (X, EG) has a unique morphism to

(S, S). Therefore (S, S) is the terminal object in the category of EG-spaces over S.

Proposition 4.1.6. Let (X, EG) and (Y, ZH) be ZG-spaces over a base scheme S,

then the fibered product over the terminal object (S, S) exists and has the form (X x s

Y, EGx H), where EGxH is the product of the diagram schemes EG and H.

Note, the fibered product in general does not exist if we replace the object (S, S)

by another EG-space.

Example 4.1.7. Let G : H and (X, G), (X, H) two distinct EG-spaces over the trivial

graph containing one point. Take the object (X, {G, H}) where G and H lie over the

discrete graph consisting of only two points. Then we have canonical maps from

(X, G) and (X, H) to (X, {G, H}). However, a pullback does not exist.

Example 4.1.8. Consider the EG-space (Ak, Ek), where Ek is defined as the diagram of

group schemes g : Spec k -+ Ga with g# : k[t] -+ k, taking t i-+ 0. The group scheme

Ga acts on Ak by addition. The product of (Ak, Ek) with itself over (Spec k, Spec k)

is the EG-space corresponding to the diagram of group schemes,

g x E
Ga Ga X k Ga

g 6 x g

Spec k . Ga
9

acting on Ak. The above can be viewed as the product of two classical single error

coding spaces.
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4.2 Geometric Codes

Definition 4.2.1. Let (X, EG) be an EG-space, and C a subscheme of X. A code C

over the EG-space (X, EG) is defined as the triple (C, X, EG).

In a similar way to the definition of an open and closed subscheme, we define a code

to be open or closed, provided it is an open or closed subscheme of X. By Yoneda's

Lemma A.0.11, each code has a dual interpretation as a representable functor over it's

Y-valued points. For application purposes we will restrict ourselves to a particular

layer of Y-valued points. Namely, given our base scheme is S, we will only consider

the S-valued points. Recall the S-valued points are the morphisms p : S -+ C,

satisfying 7rc o p = ids.

The definition of a code is motivated by the fact that every non-singular algebraic

variety X over the complex numbers C has a natural structure as a complex manifold

over it's C-rational points X(C). Therefore every non-singular code X C A can be

viewed as a submanifold X(C) -+ C". The S-valued points is a generalization of this

idea.

Definition 4.2.2. A morphism between two codes (C, X, EG) and (D, Y, EH) is a

triple (g, f, a), with g : C -+ D, f : X -+ Y, and a : EG - H satisfying the

condition that the pair (f, a) is a morphism of EG-spaces, and such that f oic = iD09.

If we take both EG and EH to have the null error diagram consisting of only the

trivial group scheme Spec R, then the above definition is based on the category of

pairs of topological spaces Top2 . Here the objects are all ordered pairs (C, X), with

X a topological space and C a subspace of X. A morphism f : (C, X) -+ (D, Y) is

an ordered pair (f, g), whenever f : X -+ Y is continuous and f o iC = iD 0 9-

Observe, following the same reason the pair (S, S) was a terminal object in the

category of EG-spaces, the triple (S, S, S) is a terminal object for every geometric

code.
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Proposition 4.2.3. Let (C, X, EG) and (D, Y, EH) be two geometric codes, then the

fibered product over the terminal object exists and has the form (C xs D, X xS

Y, ZGxH)-

At the end of section 3.2, we discussed base extensions of schemes. Using the

same reasoning, we would also like to apply this same idea to codes by replacing the

terminal object (S, S, S) by the object (S', S', S'), such that S' also has a trivial group

structure. Given a morphism S' - S , we define

(C XS S', X XS S, EGxsS')

to be the code obtained by taking the fibered product of C, X, and EG- The new

object is again a geometric code since the schemes G, xs S', G, e EG have a natural

group scheme structure over S' and the maps G, x s S' --+ G x s S' are again groups

scheme morphisms. Therefore EGxsS' is a diagram of group schemes. Similarly, since

taking base changes over schemes is functorial, it follows that taking base changes

with respect to codes is also a functor, since code morphisms are a family of scheme

morphisms. In fact, any closed or open code stays closed or open, by proposition 3.3.4.

Example 4.2.4. Following Example 4.1.8, let k = R be the field of real numbers. The

EG-space (A, E) defines a classical error space structure over the two-dimensional

vector space R2 . Let

C = Spec R[x, y]/(x 2 + y 2 )

then the triple (C, AR2, ER) is a geometric code. The R-rational points of the code is

the single point (0, 0) E R2 . Let C be the complex numbers and R " C the natural

embedding. Taking the base change Spec C -+ Spec R we have the new code

( C xR Spec C, AR x Spec C, ER x Spec C)
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Since C is an affine scheme

C xp Spec C = Spec(R[x, y]/(x 2 + y2 ) (g C)

= Spec (C[x, y]/(x 2 + y 2))

Similarly we have Aj x Spec C = A and ER x Spec C = Er. The new code (C xR

Spec C, A2, EC) has classical error structure over the two-dimensional vector space C2

and rational points { (a, ai), (a, -ai) I a E C}.

4.3 Classical Algebraic Coding

Our approach up until now has been deliberately general for the following reasons:

" The ability to model other geometric error structures.

" Scheme theoretic approach has made the definitions and arguments much more

refined.

* Has allowed for a convenient way to study the geometry of codes over commu-

tative rings and fields.

" The powerful tools of algebraic geometry and number theory can easily be used

within this framework.

In this section we begin first by defining the error diagram of classical codes.

This will allow us to precisely define what we mean by single, double, and n-errors.

The diagram structure will also play an important role in determining the distance

between code words.

Consider the additive group scheme G" corresponding to the polynomial ring

R[x, ... , xn] over some commutative ring R. Define

G......,ik) := Spec R[x 1 , ... , Xn]/Egi,..,k (x,)
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as the induced additive group subscheme of G" over all tuples (i, , I ). In this

way, we obtain a natural diagram structure, consisting of vertices G(,1 ,...,ik) and arrow

maps G(jl,...,i 1) -+ G(-...,.ik, whenever {i,... , i} {i1 , . .. , ik}. If n = 3, the above

suggests that we have a commutative diagram of the form

G(1,2,3)

G(1, 2 ) G(1, 3 ) G( 2,3 )

X X
G(i) G(2) G(3)

SpecR

The above diagram structure of group schemes can be viewed as a generalization

of the G-space G3 acting on itself by addition. The added structure allows one to

define single, double, and triple errors. At the R-valued level the above diagram

translates to,

Rx

RxRxO Rx

Ox

R x 0x0 0 x

0 x

RxR

OxR OxRxR

RxO Ox~xR

OxO
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We will denote the above diagram scheme as E'. The pair (Ak , En), then be-

comes an EG-space with group schemes G(gi,..iA) acting on A by addition. A

code in (AR, Eni) is by definition a subscheme of A. If C is a closed code, then

C = Spec (R[x,... , xn]/I) for some ideal I C R[x 1,... , xn]. The R-valued points

of A correspond to ring homomorphisms R[x 1, ... , xn] -* R. Since each ring homo-

morphism is uniquely determined by the values xi '-+ ri, there is a one-to-one corre-

spondence between the R-valued points of Al and points in R". In a similar way, the

R-valued points of a code, can be viewed as the set of points (a,... , an) E R" such

that f(ai,. . . , an) = 0, for every f E I.

Definition 4.3.1. A linear geometric code is a closed subscheme corresponding to

an ideal generated by degree one linear forms.

Example 4.3.2. Let I = (x 1 + x 2 + x 6 ± x 7 , 2 + X 2 + +x, x1 - x 3 + x 4 + X7 ) C

F2 [x1 , . . . , x7]. Then the F2 -rational points of the scheme C = Spec(F2 [x1 , . . . , x 7]/I)

corresponds to the [7,4] binary Hamming code.

A special property that all linear codes share, is stated in the following proposition.

Proposition 4.3.3. Suppose R is a Noetherian ring and C a closed subscheme of

A given by an ideal generated by degree one linear forms. Then for every R-scheme

X, the representable functor CR(-) is a sheaf of Ox-modules. In the special case that

X = Spec S is an affine scheme, CR(-) is the associated sheaf CR(-) induced as an

S-module.

Proof. Let X be a scheme and C = Spec(R[x1,... ,xn]/I) a closed subscheme of

A with ideal I generated by degree one linear forms. By Proposition 3.3.1 each

morphism X -+ C is uniquely determined by the ring homomorphism of it's global

sections

R[x,.. . , xn]/I -+ F(X, Ox)
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Since the above ring homomorphism is uniquely determined by it's values xi i-* a E

F(X, Ox), it follows that each f E CR(X) has a natural representation as an n-tuple

(a,... , an) E F(X, Ox)". We define the addition of two morphism f, g E CR(X) in

the obvious way by taking

f + g := (a,,... , an) + (bi, ... , bn)

This is well defined since the ideal I is generated by degree one linear forms. It is also

clear af E CR(X), for every a E Ox(X). Therefore CR(X) is an Ox(X)-module. If

U C X is open, then in the same way we obtain CR(U) is an Ox (U)-module. Checking

compatibility with the structure sheaf Ox, we conclude using Proposition 3.6.4 that

CR(-) is a sheaf of Ox-modules.

Let X = Spec S be an affine scheme. To show CR(-) is the associated sheaf CR(X)

as an S-module, it is enough to check CR(X)f ~ CR(D(f)) over each distinguished

open D(f), with f E S. We define a map

CR(X)f - CR(D(f))

(a, a) (a an
f k fk.. fk)

The only non-trivial part is showing this map is surjective. Let (b,... ,) E

CR(D(f)). Since R is a noetherian ring the ideal I = (91,... ,g) is finitely gen-

erated. For each j = 1, ... , k there exists f 1, 1j > 0 such that

b, b
f1jg 9(_ , .. ,D = 0

Let 1 := k + 11 + -+ 1k. Then the tuple (aif',... ,anf') E CR(X). Taking

1
fl+kr(aif',... , anf') E CR(X)f, we have the desired result. l

A morphism between two linear codes (C, A , En) and (D, Am, E') is a morphism

of codes (f, g, a) such that the maps g* : CR(X) - DR(X) and f* A (X) - AW (X)
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induces a morphism of Ox-modules for every scheme X. We can form the subcategory

of geometric linear codes with classical error structure by restricting ourselves to the

objects corresponding to linear codes and linear morphisms. In this way, the above

structure becomes much closer to the standard definition of a linear code. In fact we

will show over an arbitrary field the two categories are equivalent. First we need to

define the category of linear codes.

In a similar fashion, we define the category of linear codes as the objects (C, k, E)

consisting of a linear subspace C C k" and diagram E' of vector spaces. The diagram

of vector spaces is equivalent to it's geometric counterpart, if we replace the group

schemes G( 1,...,m with m-dimensional vector spaces and group scheme morphisms

with k-linear maps. The actions of the vector spaces in the diagram E' do not

act linearly on k. We will sometimes view k" as a set rather than a vector space

with E' acting on k as a set. The diagram E' can also be interpreted as a quiver

representation over a directed graph or in a dual sense as a kQ-module, where kQ

is the non-commutative k-algebra generated by the paths. This insight will play

an important role in code representations, but we leave this for another time. The

definition of a morphism between linear codes is clear.

Proposition 4.3.4. Let k be a field. Then the category of linear geometric codes

over Spec k and the category of linear codes over k are equivalent.

Proof. To show the equivalence of the two categories we will first construct a functor

S from the category of linear geometric codes to the category of linear codes. Let k

be a field and S denote the map taking a linear geometric code

(C, Ak, En) _ (C(k), k", En)

to it's k-rational points and a morphism

(g,f,)k: (C,A", E) -+ (D, A", y)
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to S(f, g, a) = (fk, gk, ak), where 9k : C(k) -+ D(k), fk : k" -+ km , and ak : E' - E

are the induced maps over the k-rational points. Observe that both fk and 9k are

linear maps by definition. The morphism, ak also induces a family of k-linear maps.

It is easy to check S preserves morphism composition and maps the identity map to

the identity map. Therefore S is a functor.

To construct the inverse, consider the map

(C, k", E7) i-4 (Spec(k[xi,... , xk]/Ic), A, E)

where 1 c is the ideal generated by all degree one linear forms f E k[xl, ... , xn] such

that f(ci,... , Cn) = 0 for every (c1 ,... , Cn) E C. In order for us to construct an

inverse functor T, we need to show every morphims of linear codes over k

(fk g A, ak) : (C k"n, En) -* (D, km, m

extends to a morphism of geometric linear codes

(f, g, a) : (Spec(k[x 1,... , x,]/Ic), A, 'En ) -+ (Spec(k[x 1 , ... ,Xm]/ID), A, Em)

It is enough to construct a commutative diagram of ring homomorphisms

k[x1, ... , XM] f# k[x1, ... , x,,]

k[x1,7. .. ,xm]/ID - 1,.. xR-- , ln C

using the diagram of k-linear maps

k" km

C AD
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For each canonical basis element ej E k1, i = 1,... , n, compute fk(ei) = E aikek.

We define f#(xi) := E_ akixk and g#(ai) :=E akiXk, for each i = 1, ... , n. To

show g# is well defined, it is enough to show every linear form 1 E ID maps to a linear

form f#(l) E Ic. Let 1 = bix 1 + - bmxm and (ci, ... , c,,) E C. Then

(f#(l))(ci,... ,cn) = bi(Z aick)
i=1 k=1
m

= Zbifk(c,... ,c)
i=1

= (fk (Ci, ... ,Cn))

=0

Since this holds for any (ci,... , cn) E C, f # (l) is zero on all of C. If f#(1) Ic,

then f#(1) is linear independent from the linear forms generating Ic and so the

ideal (Ic, f#(l)) induces a vector space of k-rational points with dimension equal to

dim C - 1. This contradicts the fact that every element (ci, ... , cn) E C vanishes over

the ideal (Ic7 f#(l)). Hence f#(l) E Ic and g# is well defined. We can construct a

diagram morphism a: En -+ Em by iterating the above process. Therefore we finish

the construction of T be defining T(fk, gk, ak) = (f, g, a). It is clear, T preserves

both morphism composition and the identity map. Hence T is a functor.

To complete the proof, all we have left to show is that ST = I and TS = I, but

this is clear from the constructions of S and T.

The above proposition is analogous to Corollary 3.3.2 in which we showed the

category of affine schemes is equivalent to the category of commutative rings with

arrows reversed. In this particular case, we showed all the geometric information

for linear codes lies in it's k-rational points. So using either the geometric or vector

space view point is equivalent since we can exchange information freely between the

two systems. The above proposition will not generalize to non-linear codes over

an arbitrary field since taking k-rational points does not induce a faithful functor.
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Therefore for the non-linear case we must use the geometric interpretation.

4.4 Error Correcting

Definition 4.4.1. A code can correct an error in G(i1 ,...,i,) provided the composition

G(gi,...,ik) X Spec R C -+ G(i 1,... ,A) XSpecR AR -4 A

is monomorphic.

From the definition it easily follows that whenever C can correct an error in

,ik), then it can also correct all other errors corresponding to vertices G(31 . ,

with {ii, . . . , il} c_ {ii, . .. , ik}.

Definition 4.4.2. The height h(G(gi,...,A) ) of a vertice in EG is defined as the size

of the longest chain from Spec R to G(4, . ik). The minimum distance of a code C is

defined as

dc:= minh(G)
GEI

over the set I :={G E EGI C x G c4+ An}.

Proposition 4.4.3. Let (C, Ana, En) be a closed code over a affine Noetherian scheme

Spec R. Then

min dc(R,) < dc(R)
pESpec R

In particular, if the code is linear then we have equality.

Proof. Let p E Spec R and C a closed subscheme of A . By Proposition 3.6.4, the

representable functor MorR(-, C) is a sheaf on the Zariski topology in Spec R. If we

can show

50



(1) colimVE MorR(U, C) e MorR(Spec Rp, C) = C(RV)

then the inequality will follow by Proposition 3.4.2. To show (1) we will prove the set

MorR(Spec Rl, C) is the initial object in that category of CoCones over the diagram

of open sets containing the point p. It is enough to look at only the distinguished

open sets containing p, since they form a basis on Spec R. Let X be a CoCone over

the diagram of open sets containing p. Then we have the commutative diagram,

C(RP) ----- X

\ 
af 

3
f

C(Rf)

C(Rfg)

with fg E R \ p. To show C(Rp) is the initial object we must show there exists

a unique map h making the diagram commute. We will construct h by showing

each A G C(R,) extends to a morphism over a distinguished open set D(f) for some

f p. Let A E C(Rp). Then the ring homomorphism A# : R[x1,... , xn]/I -+ R, is

determined by it's values xi '-+ a/fi. Taking f := fi ... fa, we can replace each fi

with a common denominator f so that for each i, xi -+ a'il/f. Since R is assumed to be

Noetherian, the ideal I = (g1,... , g) is finitely generated. So for each j = 1,... , k

there exists 1j E R \ p such that

lj gj (a, 7... a),= 0

Let 1 := 1. -k and f' := if. Then

a' 1 a/ 1
f' g (1 , ... , , ) = 0  for each =1 ... , k

Therefore there exists an extension Afi over the distinguished open set D(f') making
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the diagram commute

Spec R, - C

I Af
Spec Rf

Define h(A) := #f(Ar). This is well defined since any other representation Af/ must

be equal to Af over the open set D(f') n D(f"). Therefore

f3fI(Ap) = / 3 f"f(ApD(f'f"))

= /f1(Ap)

Moreover the uniqueness of h, follows since every map h' satisfying h'af = of for

every f R \ p, must be equal to h, since every A E C(Rp) can be represented by

some Af with A = af(Af). Hence by the universality of colimits (1) holds.

Since each Spec R , G E V(EG) is isomorphic to AkR for some k > 0, the product

G X R C is a closed subscheme of A7+k. Therefore we can use the above argument for

evaluating stalks. By proposition 3.1.6 the morphism of sheaves

(2) (G X R C)(-) -+ AnR (-)

is monomorphic if and only if it is monomorphic at the stalks. Hence

min dc(Ry) dc(R)
PESpecR

Next, suppose C is a linear geometric code. Then the product G XR C is a closed

subscheme of A7R+k, corresponding to an ideal generated by degree one linear forms.

By Proposition 4.3.3 the sheaf (G X R C) (-) is a sheaf of modules over Spec R. Since

Spec R is an affine scheme, we know further that it's sheaf structure is the associated

sheaf (G X R C)(- induced as an R-module. Similarly it follows that the sheaf An(-)

also has the associated sheaf structure AnR-). Since the action of G on C is addition,
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it follows that the morphism in (2) is actually a morphism of OSpec R-modules. By

Proposition 3.4.2 and the argument above, we have

(G X R C)N, (G x C)(R), - (G x C)(Rp)

Therefore

0 - (GX xRC) (R) -+A7(R)

is injective as R-modules if and only if

0 - (G x C)(R) ® R,* A7(R) ® R,

is injective for every p E Spec R. Hence, equality holds. 1:1

The above proposition does not hold in general if the code is non-linear.

Example 4.4.4. Let R = Z be the ring of integers and consider the code C =

Spec(Z[x, y]/(x, y(2y - 1)) C A2. Then the Z-valued point is C(Z) = {(0, 0)} which

by definition has minimum distance dc(z) = 2. Taking the local ring Z(o) = Q, it

follows that C(Q) = {(0, 0), (0, 1/2)}. This has minimum distance 1 and therefore

equality does not hold in general.

Proposition 4.4.5. Let (C, A, E) be a code over Spec R with minimum distance

dc, and R -- S a ring homomorphism. Then the code

(C x spec RSpec S, A, En)

under base change has minimum distance dc _< dcxspecs.

Proof. If G X R C -- A7 is monomorphic, then (G X R C) x R Spec S -+ An X R Spec S

is also monomorphic, since base changes preserve monomorphisms. Hence

dc 5 dCxSpecS
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Chapter 5

Elliptic Curve Cryptography

Continuing with the theme of the previous sections, we introduce applications of

algebraic geometry to cryptographic systems. We begin by discussing public key

cryptography and the Diffie-Hellman problem. We outline the key problems and

discuss how elliptic curves are used. Finally we will show how one can naturally

construct an abelian group over the rational points of an elliptic curve using divisors

and the Riemann-Roch theorem.

5.1 Public Key Cryptography

Increasing demand in secure communications over large networks, has made public

key cryptography a viable way of exchanging information secretly. The ideas behind

public key cryptography is conceptually simple and based on the following scenario.

Suppose two users X and Y are interested in sending each other information. We

suppose there is an eavesdropper who has access to the information user X and Y send

each other. User X picks at random a function f, which converts plaintext messages

to an encrypted one. User X publicly announces their choice of f. User Y, then

takes a message m and computes f(m), and sends it back to user X. The system is

insecure if it is "easy" to invert f(m) without knowing any extra information. We use
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the word easy to mean that in some realitivistic sense it is computationally feasible

to find the inverse. The function f is called, a public key encryption function. The

advantage of this system is that any two users can send information between one

another without any prior contact.

An example of how the above scenario is implemented in practice is based on

the Diffie-Hellman key exchange. Suppose both users X and Y agree publicly on an

element g in the multiplicative group F' of some finite field. User X, secretly chooses

at random an integer km, computes gk,, and sends this to user Y. In the same way,

user Y sends X the value gky for some randomly chosen integer ky. The agreed upon

key will be the value g kk, which both user X and Y can compute. The problem

of the eavesdropper is to find g k,, given only g, gk,, and g k. The problem can be

solved provided they know how to compute discrete logarithms. That is they can find

for any two pair of values g, y E Fg , an integer k if it exists, such that y = gk. For

practical purposes the Diffie-Hellman key exchange is said to be secure provided that

finding the discrete logarithm is not computationally feasible.

The problem with the above scheme is that it rests upon computing elements in the

group F'. Recent progress in computing finite field discrete logarithms have made key

sizes grow substantially. An alternative solution proposed by Victor Miller and Neal

Koblitz in 1985, is based on the abelian group of rational points of an elliptic curve.

The advantage of using these groups, is that there are a large diversity of groups

to choose from, and there are no current known sub-exponential time algorithms

for finding discrete logarithms on supersingular curves. Before we introduce elliptic

curves, we will briefly discuss projective schemes.
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5.2 Projective Schemes

Let S = R[xo,... , Xn] be a polynomial ring in n + 1-variables over a commutative

ring R. S has a natural grading as a ring given by,

S= GSd
d>O

satisfying

Sd - Se C S+e

The elements of Sd are all the homogeneous polynomials of degree d. An ideal I C S

is said to be a homogeneous ideal provided every element can be written as the sum

of homogeneous components. A homogeneous ideal is said to be prime provided it is

prime in the ring S. We define,

P'a = { p I p E Spec S is a homogeneous prime ideal of S, p S+}

where

S := (@Sd

d>1

In the same way, we defined closed sets over an affine scheme we put,

V(I) =I{pE Pp I}

to be a closed set for any homogeneous ideal I C S. Checking one can show this forms

a topology on PIa. The structure sheaf pn is the sheaf induced by the sheafication
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of the presheaf defined by,

F(D+(f), 0) = {g/f m I f E Sd, g E Smdm > 0 } = 43

where S(0) is the degree zero elements in the local ring Sf. From the definition

it follows that the restriction (D+(f), OI- D+(f)) Of P' over the open set D+(f) is

isomorphic to the affine scheme (Spec(S 4)), 0 so>). Therefore Pa is a scheme,
f Spec Sfo)-TeeoePRiascm,

since it is locally affine. Taking the open sets D+(xi) for each i, one can show

(D+ (xi), Opn |D+(xi)) ~- Spec R [3 " -
Xi Xi

So we can view projective space as the gluing of affine n-space's over suitable open

sets.

If we let R = k for some field, then the k-rational points,

lF (k) = { (ao,... , an) E k"\{0} (ao, ... , an)- (bo, . . . , bn) provided there exists

k 0 0 such that ai = kbi for every i}

We write the points in Pk (k) as (ao n....a). This confirms the classical definition

of projective space, where points correspond to one-dimensional subspaces of kn+1.

A Weierstrass equation over the projective scheme Pk is defined as the homoge-

neous equation of the form

Y 2Z + a1XYZ + a3Y Z2 = X 3 + a2X 2Z + a4XZ 2 + a6Z 3

with ai E k. The curve f is said to be non-singular or smooth if the rank of the

Jacobian

rk(af /Dxi) = 1
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That is, for each point on the curve there exists a tangent space at that point. An

elliptic curve is defined as a non-singular Weierstrass equation over projective space

Pl. There is a natural abelian group structure on the rational points of a elliptic

curve, which we describe next.

5.3 Group Law of Elliptic Curves

Suppose f is an elliptic curve over an algebraically closed field and E c P is the

closed subscheme corresponding to f. A prime divisor over E is a closed integral

subscheme P of codimension one. Since f is a non-singular curve, the prime divisors

correspond to the closed points in E and hence the k-rational points. A Weil divisor

is an element of the free abelian group Div(E) generated by the prime divisors. A

divisor over E is written as a finite sum D = E ni - P , where ni are integers, and

Pi are rational points. If P is a prime divisor, and x E P it's generic point, then

the local ring OxP is a discrete evaluation ring with quotient field k(E), equal to the

function field of E. Let f E k(E) X be a non-zero meromorphic function on E. Then

vp(f) is an integer. If it is positive, f is said to have a zero at P, and negative if f
has a pole.

Proposition 5.3.1. Let f E k (E) X be a non-zero function on E, then vp(f) = 0 for

all except finitely many prime divisors P.

The divisor associated to f, is defined as ,

div(f) := Zvp(f) - P

where the sum is taken over all primes divisors over E. Any divisor which is equal

to the divisor of a function is said to be a principal divisor. Two divisors D and D'

are linearly equivalent, if D - D' is a principal divisor. The group of divisors, Div(E)

factored over the equivalence relation D - D', whenever D - D' is a principal divisor,
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is again a group and is called the divisor class group, Cl(E). We define a partial

ordering on Div(E) by,

ZnpP Zmp-P if and onlyif np > mp forallP

In particular if, E np - P > 0, then the divisor is called effective.

Given a divisor D, we define

L(D) = { f E k(E)X I div(f) + D > 0 } U {0}

For example, if D = P + 2Q, then L(D) consists of the meromorphic functions having

no poles outside {P, Q} and having at most a single pole at P and a double pole at

Q. Each, L(D) is a finite dimensional vector space over k. We denote it's dimension

by I(D).

Proposition 5.3.2 (Riemann-Roch). There exists an integer g, such that for all

divisors D,

(D) > degD± 1 - g

with equality if deg D > 2g - 2.

The integer g in the above theorem is the genus of E. Since elliptic curves are

non-singular projective curves of degree 3, they will have genus 1. Accordingly, the

Riemann-Roch theorem states,

I(D) = deg(D) if degD > 1

Proposition 5.3.3. Let E be a elliptic curve and 0 E E(k) the point at infinity.
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The map

E(k) -+ C1 (E)

P P-Q

is bijective.

Proof. We define an inverse. Let D be a divisor of degree 0. Then D + 0 has degree

one, and so there exists a meromorphic function f, unique up to multiplication be a

nonzero constant, such that div(f) + D +0 > 0. The only divisors > 0 of degree one

are of the form P. Hence there is a well-defined point P such that D + 0 ~ P. L

Following the above proposition, the rational points E(k) inherit a natural abelian

group structure. The above group can also be determined geometrically, using the

following argument.

Proposition 5.3.4 (Bezout). , Let C and D be projective curves of degrees m and

n respectively over an algebraically closed field, and assume they have no irreducible

component in common. Then they intersect in exactly mn points.

Let P and Q be two points on an elliptic curve E and L1 the line passing through

both P and Q. If P = Q take the tangent line at P. By proposition 5.3.4 the line L1

and E intersect in exactly 3 points counting multiplicity. Let R be the third point

and define L 2 to be the line passing through R and the point at infinity 0. Call the

third point of intersection S, and define P + Q := S. Regarding the lines L1 and L 2

as linear forms in X, Y, Z, let f = L 1/L 2. Then f has zero at P, Q, R and poles at

0, S, R and so

div(f)=P+Q+R--S-R=P+Q-S-0

Hence P + Q ~ S + 0 which implies P + Q = S according to the group structure

defined by the bijection.
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Appendix A

Category Theory

In this section we give a brief introduction to Category Theory, placing special em-

phasis on the theoretical concepts used throughout the paper. The material presented

here is self-contained and only requires a minimal background in set theory and al-

gebra. For a more complete account of Category Theory, we recommend the reader

to the following reference [9].

Category Theory is the study of mathematical systems, their structures, and their

relations to other systems. Its origins are based on the idea that many mathematical

systems or at least the ones we are interested in studying, have a basic underlying

foundation, consisting of objects and relations. The information gained from the

machinery of Category Theory, is macroscopic in nature, and is essential in gaining

a perspective of mathematics on a much grander scale. This is perhaps most clearly

reflected in the trend of modern geometry in the past century. Up until the early

half of the twentieth century, geometry was based largely on deductive reasoning

and human intuition. It wasn't until a connection was drawn between geometry and

algebra, that the field began to make very exciting progress. Today modern algebraic

geometry is one of the fastest growing and exciting mathematical fields.

There are many natural mathematical systems, that are categories. One familiar

example would be of sets. Individual sets can be viewed as objects in a system with
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relations corresponding to set maps. The relations between objects often play as

important role as the objects themselves, since they carry information. For instance,

any set can be realized by just knowing the maps between it and any other set. This

is most clearly reflected, by considering the one point set. For instance, the one point

set has the unique property that there exists a unique map to it from every non-empty

set. Any other set with this property, is necessarily a one point set.

A more interesting example with slightly more structure are graphs. A directed

graph G consists of a set of vertices V, arrows A, and a pair of functions

dom
AP V

cod

Each arrow f has two vertices consisting of it's domain and codomain.

Two directed graphs G and G' are related if we can construct a graph morphism

between them. By a graph morphism, we mean a pair of maps UA : A -+ A' and

-v : V - V' satisfying the relation,

crvcod(f) = cod UA(f) and avdom(f) = domUA(f)

for any arrow f E A.

Notice the above two examples have the property that any two relations between

objects A -+ B and B --+ C compose to give a relation from A -+ C. Further it

is easy to check these compositions are associative and every object has an identity

relation. The above properties can be stated as a collection of axioms.

Definition A.0.5. Let C be a class of objects ObC, such that

1. for each pair of objects (A, B), there is a set Morc(A, B) whose elements are

called morphisms, with the property Morc(A, B) = Morc(C, D) if and only if

A = C and B = D.
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2. there is a composition operation

Morc (A, B) x Morc (B, C) -+ Morc (A, C)

that takes the pair (f, g) -+ fg.

C is called a category if it satisfies the following axioms:

3. Associativity: For all objects A, B, C, D E Ob C and all morphisms f E Morc (A, B),

g E Morc (B, C), and h E Morc (C, D) we have

h(gf) = (hg)f

4. Identity: For each object A, there is an identity morphism 1A E Morc(A, A) for

which,

lAf =f, glA = g

From the definition, one can deduce that both sets and directed graphs form

categories. Other familiar categories are:

Grps The category of groups; objects are groups and morphisms are group homo-

morphisms.

Top The category of topological spaces; objects are topological spaces, and mor-

phisms are continuous maps.

R-mod The category of R-modules; objects are R-modules and morphisms are R-

linear maps.

CO-Man The category of CO manifolds; objects are differentiable manifolds, and

morphisms are diffeomorphisms.
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We also have the notion of a subcategory. A category D is called a subcategory of

C if,

ObD C ObC and MorD(A, B) C Morc(A, B)

for all A, B E Ob D, such that the composition morphisms in D coincide with those

in C, and the identity morphism of each object in D is also the identity object viewed

in C. We say a subcategory D is a full subcategory of C if for any objects A and B

in D, all of Morc (A, B) is also in Morv (A, B). An example of a full subcategory, are

a collection of objects satisfying an additional property. For example in the category

of groups, the abelian groups form a full subcategory.

The ability to compare categories is a very important concept in Category Theory.

It allows us to build a bridge between different mathematical systems. For instance,

Algebraic Geometry depends on the mutual exchange of information between geome-

try and algebra. This natural translation allows us to relate certain geometric idea's

in a purely algebraic setting. We can also use this natural exchange of information

to translate a difficult problem in one mathematical system, to another problem that

may be more tractable. In Algebraic Topology, the Brouwer Fixed Point Theorem,

states for every continuous function from the disk f : D1 - D1 , there exists a fixed

point x, with f(x) = x. The proof of this is based on a simple connectedness argu-

ment. A problem occurs, however when trying to generalize this proof to the case

of continuous functions f : D" - D' on n-dimensional disks. In algebraic topology,

we can assign each topological space X to an abelian group Hn(X) called its homol-

ogy group and each continuous function f : X -- Y to a homomorphism of groups

Hn(f): Hn(X) -+ Hn(Y). The proof then becomes easier, and depends on showing

that for n > 0, the n-dimensional sphere Sn is not a retract of Dn+1, using the fact

that Hn(Dn+1) = 0 for every n > 1 and Hn(S") 0 0 for every n > 1. The above

concepts are based on the following definition.
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Definition A..6. A functor T : C -+ D between two categories C and D consists of

a map

1. ObC D A - T(A) c ObD

2. If f : A -± B in C, then T(f) : T(A) -+ T(B) in D

such that,

3. For any morphism f, g in C, for which gf is defined, then

T(gf) = T(g)T(f)

4. T(1A) = 1T(A) for every object A E ObC.

Functors that satisfy (a) through (d) are often referred to as covariant functors.

A functor is said to be contravariant if in part (c) we instead say T(gf) = T(f)T(g)

for all f E Morc(B, C), g E Morc(A, B) and for all A, B, C E ObC

Example A. 0.7. Consider the category of all finite dimensional vector spaces over

some fixed field k. We define a functor T : Vct -+ Vct by taking a vector space

V - V* := Hom(V, k) to its dual space of all linear functions from V to k. T is con-

travariant since every morphism f : V -+ V', corresponds to a natural homomorphism

Hom(V', k) f Hom(V, k) taking 7r E Hom(V', k) '-+ irf E Hom(V, k).

Naturally we can place a category on the set of functors, by introducing the

notion of a Natural Transformation. A natural transformation between two functors

S, T : C -+ D is a function which assigns to each object A E C, a morphism TA :
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S(A) -4 T(A) in such a way that the diagram commutes

S(A) .W S(B)

TA TB

+ T(f )
T(A) T(B)

Example A.0.8. Taking a vector space V '-4 (V*)* to it's double dual is a natural

transformation.

In the category of functors, objects are functors and morphisms are natural trans-

formations. Two functor's S, T : C --> D are said to be naturally isomorphic if there

are natural transformations V) and # satisfying, V)q = ids and #0 = idT.

Definition A.0.9. A functor T : C -+ Sets is called representable if for some object

A E C, T is isomorphic to the covariant functor hA(-) := Morc(A, -).

Example A.0.10. Let T : Grps -+ Sets be the forgetful functor that strips away the

group structure. We claim that T is representable by the covariant functor hz, where

Z is the integers under addition. This is clear since any element g E T(G) can be

mapped to 7rg E Mor(Z, G) with 7r(1) := g. Similarly any morphism A E Mor(Z, G)

can be represented by some 7rg, g G G. Checking the conditions, we see that they are

naturally isomorphic.

Proposition A.O.11 (Yoneda's Lemma). Let C be a category and let A, B be ob-

jects of C.

1. If T is any contravariant functor from C to the category of sets, the natural

transformations from Morc(-, A) to T are in one to one correspondence with

elements of T(A).

2. If the functors Morc(-, A) and Morc(-, B) from C to the category of sets are

isomorphic, then A e B
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Proof. (1) Let T : Morc(-, A) -+ T(-) be a natural transformation. We define a map

Nat(Morc(-,A),T(-)) - T(A)

T 7 T(1A)

In the opposite direction, given an element p E T(A) we can form a natural trans-

formation by taking f c Morc(X, A) to T(f)(p) E T(X). Checking, one can see the

above two maps are inverses of each other.

(2) If we let T = Morc(-, B), then in part 1 we showed every natural transformation

T : Morc(-, A) - Morc(-, B) corresponds to an element p E Morc(A, B) such that

for any h: X -+ A, T(h) =p o h. If

r
Morc (-, A) ' Morc (-, B)

7-1

are isomorphic as functors, define f r(1A) and g := r-1(1B). Then it follows

f o g = rr-1 (1B) and g o f = T- 1T(1A) = El

A.1 Objects and Morphisms

In this section we introduce a special class of objects and morphisms, that are univer-

sally defined in every category. Important general properties concerning all categories,

can be proven as a result of these definitions.

A morphism f in a category C is called a monomorphism if for all pairs (g, h) of

C,

fg=fh ifandonlyif g=h
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A morphism f' in a category C is called an epimorphism if for all pairs (g, h) of C,

gf' = hf' if and only if g = h

Example A.1.1. In the category of sets f is an epimorphism if and only if it is sur-

jective as a map. In the category of commutative rings, f epimorphic, does not

necessarily imply it's underlying set map is surjective. For instance, if we consider

the canonical map f' : Z -+ Q. Then clearly for any pair of ring homomorphisms

g, h : R -+ Z, f'g = f'h implies g = h, but the homomorphism from Z to Q is not

surjective.

A morphism f E Morc (A, B) is called an isomorphism if there exists a morphism

g E Morc(B, A) such that fg = 1
B and gf = 1

A. Two objects, A and B are said to

be isomorphic if Morc (A, B) contains an isomorphism. If f is an isomorphism, then

f is both a monomorphism and epimorphism. The converse is not true in general.

An object X in a category C is called terminal, if for every object Y E ObC,

there is exactly one morphism Y -+ X. Terminal objects do not necessarily exist in

every category. When they do exist however, any two terminal objects are necessarily

isomorphic with one isomorphism between them. Dually, we can define an initial

object by switching the arrows in the opposite direction.

Example A.1.2. In the category of commutative rings, Z is an initial object, since for

any commutative ring R there exists a unique morphism Z -+ R.

Let {X}~iE be a family of objects in C. A product of this family is an object X

with morphisms pi : X -+ Ai such that for any family fi : Y -+ Ai, i E I, there is

exactly one morphism f : X -+ Y with pif = fi for every i E I. We denote X by,

Hj1I Xi.

The coproduct of a family of objects {Xi} is naturally defined to be the dual of

the product, by reversing the arrows. We denote the coproduct byREI Xi.

Example A.1.3. The product of two directed graphs G and G' is the set product of the
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vertices V x V' and arrows A x A' such that dom(i x i' -+ j x j') = dom(i) x dom(i') E

V x V' and cod(i x i' -+ j x j') = cod(j) x cod(j') E V x V'.

A category is said to have equalizers if every pair of morphisms f, g : X -+ Y,

there exists an object Z and morphism h : Z -+ X, such that fh = gh, and for every

morphism v Y' - X with fv = gv, there is exactly one morphism w : Y' - Z

such that v = hw. Equivalently, we say Z is the universal object in the commutative

diagram

YY

f,g

h

More generally we define the fibre product of two morphisms f and g with the

same codomain to be the pullback P of the commutative diagram

P - X

r f
1 9 ' Z

such that for any object D with morphisms u D -+ X and v : D - Y satisfying

f u = gv, there is exactly one morphism w : D - P with sw = u and rw = v.

We can define coequalizers and pushouts by reversing the arrows of equalizers and

fibre products

A.2 Limits

A diagram E over a directed graph I is a collection of objects {X}I in a category C,

such that for each arrow i -+ j there is a corresponding morphism fij E Morc(Xi, Xj).

An I-diagram E in C is behaves very much like a subcategory of C, with the exception
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that identities need not exist and compositions are not necessarily closed.

Definition A.2.1. Let C be a category and E an I-diagram with objects Xi E C,

i E I. A cone to the diagram E is an object X E C and a family of morphisms

gi : X -+ Xi, such that for each arrow fi, : Xi -+ Xj, fij o gi = gj for every i, J E I.

The cones over a diagram E form a category Cones(E, C). A morphism between

two cones X and Y over a diagram E is a morphism 7r : X -+ Y, such that the

families of morphisms gi : X -+ Xi and hi : Y -+ Xi factor through 7r.

The limit of an I-diagram E is said to exist, if there exists a terminal object in

Cones(E, C). Equivalently we say X is a limit in Cones(E, C) if for any cone Y there

exists a unique morphism h making the diagram commute,

X --- -! ---- Y

gi 

hi

Xi

Colimits are defined naturally to be the dual of the limit. Instead of taking the ter-

minal object in the category Cones(E, C), we take the initial object in CoCones(E, C).

For our purposes, we will be interested in a particular type of limit that is more

well behaved.

Definition A.2.2. A directed graph I containing identities and closed under com-

position, is said to be filtered if:

1. for every vertice i, j in I, there exists a vertice k with arrows i -+ k and j -+ k.

2. for every pair of arrows u, v : i -+ j, there exist an arrow j -'+ k, such that the

arrow wu = wV.
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Example A.2.3. The set of open sets Top(X) of a topological space X are filtered

under inclusion.

Proposition A.2.4. Let C be the category of Sets and E a filtered I-diagram. Then

colim1X2 =({JjiEI Xj)/ ~, under the equivalence relation xi E Xi ~ x3 E Xj; if there

exists k, with i -+ k, j - k, taking xi '-± Xk and xj -4 4x.

The limit of a filtered I-diagram of sets is the equalizer

limXi -4J 1XT =JX'1
iEI iEI idi'

If I is finite we can construct lim Xi by iterated fibre products.

Proposition A.2.5. If I is filtered, J finite, and if Xi,, is an I x J-diagram then we

have an isomorphism

colim lim Xi 7.j 4 lim colim Xjj
I J J I

ie Filtered colimits and finite limits of sets commute.

Corollary A.2.6. The underlying set of a filtered colimit of rings (resp. modules) is

the colimit of the underlying set.

The above is not true for general I-diagrams. For instance, if we choose I with

(1, 0) and (2, 0), then

Sets: colim1 Ri = R 1 fj R 2

Commutative Rings: colimRi = R, ®z R 2

Abelian Groups: colimRi = R, e R 2
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A.3 Adjoints

If F : C --+ D and G : D -+ C are functors, then we say that F is a left ad-

joint for G (equivalently: G is right adjoint for F) if there is natural isomorphism

Morc(-, G(-)) ! MorD(F(-), -) of the bifunctors from C' x D into Sets. This

means that for every pair of objects A of C and B of D there is an isomorphism

JA,B : Morc(A, G(B)) e Morv(F(A), B) such that for every morphism of objects

f : A -+ A' in C and g : B -+ B' in D, the diagram,

Morc (A', G(B)) * (g) Morc(A, G(B'))

7A',B 7rA,B'

(F(f)*) g*) +
MorD(F(A'), B) ' g Morv(F(A), B')

commutes. We say that (F, G) is an adjoint pair of functors. Pairs of adjoint functors

occur very frequently in mathematics.

Example A.3.1. (a) Let R be a ring and M any R-module. The functor N - M OR

N from the category of R-mod to itself is the left adjoint to the functor N -

HomR(M, N).

(b) Let R be a commutative ring, and R-Alg be the category of commutative R-

algebras. Let F : R-Alg -+ Sets be the forgetful functor that associates to each

R-algebra its underlying set. Then the functor G : Sets -+ R-Alg that takes a set X

to the polynomial ring R[X] whose indeterminates are elements of X is a left adjoint

of F.

(c) Let F : Cat -+ Grph be the forgetful functor from categories to directed graphs.

Then the functor H : Grph -+ Cat which assigns each graph G, it's free category is

a left adjoint of F.

Proposition A.3.2. Suppose (F, G) is an adjoint pair. Then F preserves colimits

and G preserves limits.
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