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Abstract

Extensible syntax systems can be powerful programming tools. They allow program-
mers to create domain-specific languages, capture common patterns of code generation
and implement complex user languages in terms of simple kernel languages. Unfor-
tunately, traditional extensible syntax systems, like the C preprocessor, suffer from
severe usability problems. Previous work on hygienic macro systems solved the us-
ability problems associated with the use of identifiers by syntax extensions. This work
develops extensions to hygienic macro technology that solve the problems associated
with the static analysis of programs that use syntax extensions. These extensions
have been used to build a macro system for a Scheme-like language that statically
analyzes programs using Hindley-Milner type inference. The distinctive feature of
this macro system is that macros can report type errors about their uses in terms of
original source code instead of macro-expanded code.
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Chapter 1

Introduction

Extensible syntax systems can be powerful programming tools. They allow program-
mers to create domain-specific languages, capture common patterns of code generation
and implement complex user languages in terms of simple kernel languages. Unfor-
tunately, traditional extensible syntax systems, like the C preprocessor, suffer from
severe usability problems. Previous work on hygienic macro systems solved the us-
ability problems associated with the use of identifiers by syntax extensions. This work
develops extensions to hygienic macro technology that solve the problems associated
with the static analysis of programs that use syntax extensions. These extensions
have been used to build a macro system for a Scheme-like language that statically
analyzes programs using Hindley-Milner type inference. The distinctive feature of
this macro system is that macros can report type errors about their uses in terms of
original source code instead of macro-expanded code.

1.1 Extensible syntax

1.1.1 Motivation

Extensible syntax systems have a long history. They began with the macro systems
of early assemblers. These macro systems allowed assembly-language programmers
to define new instructions, or macros, that expanded into sequences of more primitive
machine instructions. Assembly-language programmers used macros to structure their
programs and to make them easier to understand. Macro assemblers were eventually
marginalized by high-level languages, but high-level language programmers found
their own uses for extensible syntax [17].

The most widely used extensible syntax system is the C preprocessor, cpp. C
programmers typically use cpp for a variety of straightforward tasks: controlling
compilation, defining constants, hiding platform details, abbreviating frequently used
code sequences, and so on. However, the preprocessor is a much more powerful tool.
A book on scientific computing, Numerical Recipes in C, uses the preprocessor to
create domain-specific extensions to C that are used in its example programs [16].
The C preprocessor has also served as a vehicle for language experimentation. For
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instance, early versions of "C with Classes" (which became C++) were implemented
using cpp [201.

1.1.2 Problems

The power of the C preprocessor reflects the power of extensible syntax. Unfortu-
nately, the problems of the C preprocessor also reflect the problems faced by extensible
syntax systems. cpp is known as a source of subtle and hard-to-find bugs. In fact,
the usability problems of cpp are so severe that one of the influences on the design
of C++ has been a desire to eliminate the need for a preprocessor [20]. One class
of usability problems faced by cpp macros involves the identifiers used in a macro.
A cpp macro that swaps two integers (defined in Figure 1-1 and used in Figure 1-2)
illustrates the problem.

#define swap(a,b) { \

int temp = (a); \

(a) = (b); \
(b) = temp; \

}

Figure 1-1: A C preprocessor swap macro

The intended meaning of the macro use in Figure 1-2 is straightforward. The
code should swap the temperatures in the variables temp and high-temp if today's
temperature (temp) exceeds the high temperature (high-temp). If the definition of
the swap macro is not taken into account, the code looks correct.

int temp = today.weather.temperature;
if (temp > high-temp) swap(high.temp, temp);

Figure 1-2: An erroneous use of the C preprocessor swap macro

Unfortunately, when the definition is taken into account, the preprocessed version
of the code (Figure 1-3) reveals a problem. There is a conflict between the variable
temp used to store today's temperature and the internal variable temp used by the
swap macro. This conflict prevents the temperatures from being swapped. This
is a problem with the swap macro itself because changes in programs that use the
swap macro (using or not using a variable named temp) can unexpectedly change the
macro's behavior. Users of the C preprocessor try to avoid this class of problems
by choosing obscure names for the identifiers that their macros introduce. This is a
brittle solution that makes their macros harder to understand and maintain.

As mentioned earlier, one approach to the problems of the C preprocessor is to
eliminate the need for a preprocessor altogether. Along those lines, C++ has intro-
duced constants, templates, inline functions, and namespaces as new language fea-
tures that replace common uses of the preprocessor. One problem with this approach
is that it results in a complex, kitchen-sink language that is difficult to specify and
implement. Another problem is that the other benefits of syntax-extension are lost:

10



int temp = today.weather.temperature;
if (temp > high-temp) {

int temp = (hightemp);

(high-temp) = (temp);
(temp) = temp;

Figure 1-3: The preprocessed C code corresponding to Figure 1-2

language experimentation becomes much more difficult and domain-specific languages
cannot be created by users.

A better approach to these problems is to create improved syntax-extension
technology to solve them. This is the approach taken by hygienic macro systems
[2, 4, 5, 7, 8, 12]. A hygienic macro system gives macro writers some control over the
resolution of the identifiers that their macros use. This control enables the creation
of syntax extensions whose behavior does not depend on the programs in which they
are used'. For example, a hygienic version of the swap macro would manipulate the
identifier for its internal temporary variable so that it would never conflict with any
program variable.

1.2 Static analysis

1.2.1 Motivation

Static program analyses are programs that statically deduce information about other
programs. They can be powerful programming aids. Perhaps the most familiar form
of static program analysis is type-checking. From one point of view, a type-checker is
a program that verifies that a programmer's mental model of a program (expressed
through the types that program uses) is consistent. If the model is not consistent,
a type-checker explains the inconsistencies. Type-inference is an advanced form of
type-checking, that deduces the types of program expressions whenever possible, re-
lieving programmers of the burden of explicitly specifying their model. Other static
analyses enhance compilation. For instance, data-flow analyses gather information
that compilers can use to generate optimized output code.

1.2.2 Problems

Unfortunately, static analyses do not interact well with extensible syntax systems.
The fundamental problem is that traditional static analyses do not understand the
extended syntax a program may use. This means that they must operate on the
expanded version of a program, where all the uses of syntax extensions have been

'Hygienic macro systems can also enable the creation of syntax extensions that interact with
program identifiers in controlled ways. For example, a syntax extension could create a new binding
for some specific variable.
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replaced by the core language constructs that implement those extensions. Unfortu-
nately, the expanded version of a program is usually larger, more complicated and
less precise than the original program. This means that it is more difficult for a static
analysis to recover information from the expanded version. In some instances, infor-
mation that is easy to recover in the original program might even be impossible to
recover from the expanded program. Even worse, because the expanded program is
less precise, any information that is recovered tends to be less useful than the infor-
mation that can be recovered from the source program. For an example of this class
of problem, look at the use of the cpp swap macro in Figure 1-4.

float c.temp = today.weather.temperature;
if (ctemp > hightemp) swap(high-temp, c-temp);

test.cpp:32: warning: initialization to 'int' from 'float'

Figure 1-4: A use of the swap macro that generates a type warning

This use of the swap macro has changed a program identifier to avoid identifier
conflicts, but there is a new problem. When this code is compiled, it generates a
confusing type warning about a conversion between an integer and a float. This
warning is confusing because it is not in terms of the source code that was written.
That source code does not directly contain a conversion from an integer to a float. The
underlying problem is that the temporary variable used by swap has integer type, so
the swap macro should not be used to swap floating-point numbers2 . Unfortunately,
the information that would help a programmer understand this problem, that the
swap macro only supports swapping integers, is not available in the macro-expanded
version of the program because there are no references to swap at all in that version.
This means the only way for a programmer to understand this problem, as in the case
of the identifier conflicts discussed earlier, is for the programmer to study the source
code for swap directly, destroying the abstraction swap is meant to provide.

This particular example might seem trivial, but this kind of problem quickly be-
comes severe as the macros involved become more complex. It might be reasonable
to expect programmers to study the swap macro in order to understand problems
related to it, but programmers do not want to study the macros that implement a
powerful set of complex syntax extensions to understand problems that arise when
those extensions are used. Instead, as with the identifier conflicts described earlier,
programmers limit their use of syntax extensions to manage this class of usability
problems. Again, a better solution would be to extend syntax-extension technology.
In this case, improved extension technology should include extensible static analyses.
Extensible static analyses are analyses that can be extended to analyze syntax ex-
tensions directly. This means an extensible static analysis can analyze a program in
terms of its original source code, so its results are more precise and more useful than
an analysis of the expanded version of that program.

2 If swap is used to swap two floating-point numbers, the results will depend on how floating-point
numbers are converted to integers and back again.
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In the particular case of type-checking, an extensible type-checker should enable
the creation of type-aware macros. A type-aware macro is a macro that is aware of
the constraints a type system imposes on its uses and can control the errors those
constraints generate. A minimally type-aware version of the swap macro above would
report an error whenever it was used to swap two non-integers. This is a clearer and
more useful error message than the type warning above, but ultimately unsatisfying
because swapping is a concept that can be applied to more than integers. A more
advanced type-aware swap macro could use type information about the variables being
swapped to control the type of its internal variable, and only report an error when
the variables swapped are of incompatible types.

1.3 Thesis

My thesis is that extensible static analyses can be successfully combined with hygienic
macro systems. This combination makes it possible to bring the full benefits of
syntax extension (including language experimentation, modular language design and
domain-specific languages) to programming languages with significant static analyses.
This is important because many programming languages have a significant static
analysis, usually some form of type-checking. For those programming languages, this
technology can be used to create type-aware macros, macros that report type errors
in terms of original source code rather than macro-expanded code.

I will prove my thesis by describing the syntax-extension framework that I have
built and showing how I can use this framework to build a hygienic, type-aware macro
system for a statically-typed programming language. My demonstration language will
be a variant of Scheme typed using Hindley-Milner type-inference. Since Hindley-
Milner type-inference is a complex static analysis and my framework is not analysis-
specific, this demonstration will also show that my framework supports arbitrary
extensible static analyses.

1.3.1 do

The macro I have written that best illustrates the promise of extensible type-checking
(and, by implication, extensible static analyses in general) is a variant of the Scheme
do macro [9]. I have used my type-aware macro system for a statically-typed dialect
of Scheme to write this type-aware version of do. The implementation is given in
Appendix A. The exciting thing about this macro is that it reports specific type
errors in terms of the do expression itself. For example, in Figure 1-5 (where the
variable x is bound to an integer list), the macro precisely finds the mistake in a loop
meant to sum the elements of a list. This is a dramatic improvement over a version
of do that is not type-aware, as in Figure 1-6.
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Expression: (do ((x x (car x)) ;; BUG: car should be cdr
(sum 0 (+ sum (car x))))

((null? x) sum))

Type inference failed
do : types of variable and step expression incompatible
Type clash between:
(listof int)
int
In form: (x x (car x))

Figure 1-5: A type-aware do macro generates precise and useful type-error messages

Expression: (do ((x x (car x))
(sum 0 (+ sum (car x))))

((null? x) sum))

Type inference failed
Inconsistent variable types in letrec bindings
Type clash between:

-> (int int) int)
C-> ((listof int) int) int)

In form: (letrec ((do-loop.294
(lambda (x.297 sum.297)

(if (null? x.297)
sum.297
(do-loop.294 (car x.297)

(+ sum.297
(car x.297)))))))

(do-loop.294 x.293 0))

Figure 1-6: A non-type-aware do macro generates vague and unhelpful type-error
messages
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1.3.2 Structure of thesis

The first step towards proving this thesis is building a framework capable of support-
ing syntax extensions and extensible static analyses. There are three primary design
requirements I have for this framework:

1. It must be a complete syntax-extension framework, including support for hy-
gienic syntax extensions, so that it is not a step backward in syntax-extension
technology.

2. It must be a general system, capable of supporting any reasonable static anal-
ysis, so that the framework can be reused even as analyses change.

3. It must support languages with many different language elements, so it can be
used with languages more complex than dialects of Scheme.

Chapter 2 describes the design and implementation of a framework that meets these
design requirements. The following chapter describes how I use the framework to im-
plement a demonstration language and its associated static analysis. Chapter 4 builds
three different syntax-extension interfaces on top of that implementation and discusses
the strengths and weaknesses of each interface. The remaining chapters describe re-
lated work and potential directions for future research based on this syntax-extension
framework and its associated language implementation and syntax-extension inter-
faces.
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Chapter 2

Syntax-Extension Framework

This chapter discusses the design and implementation of my syntax-extension frame-
work. As discussed in the introduction, this framework is the infrastructure I use
to build syntax-extension interfaces that solve the problems faced by syntax exten-
sions in the presence of static analysis. The first section of this chapter discusses a
simplified version of my framework. By focusing on the simpler version, my frame-
work's essential features are easier to describe. The second section of this chapter uses
this simplified framework to implement an extension system that is used with a toy
static analysis of Scheme. The following section adds the features necessary to resolve
hygiene problems to the simple framework. Without these features, the framework
would be a step backwards from existing Scheme macro technology. The next section
generalizes the framework to support languages with arbitrary kinds of language ele-
ments. The final section discusses some additional features of the framework that do
not fit in the main line of discussion.

2.1 Simple framework

This section describes a simplified syntax-extension framework that is the core of the
complete framework. It is simplified in two different respects:

9 It has no mechanisms for controlling conflicts between identifiers in the source
program and identifiers that might be introduced by syntax extensions. This
means that it is impossible to write hygienic syntax extensions. These mecha-
nisms will be added to the system in section 2.3.

* The framework can only represent languages that have two kinds of language
elements - keywords and expressions. The framework will be generalized to
support arbitrary kinds of language elements in section 2.4.

This simple version of my syntax-extension framework was developed by studying an
existing Scheme macro system written by Bawden [1]. Like that system, my frame-
work is organized as a compiler written in a dialect of Scheme (Scheme 48) [11]. The
compiler has two phases. In the first phase, an input program, in some source language
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(represented using S-expressions), is processed to create an abstract representation
of that program. This abstract representation includes semantic information that is
used by static analyses that are performed on the program. In the second phase,
the abstract representation is used to create an output version of that program, for
some target machine. To understand the features of this framework, imagine that it
is being used to implement a syntax-extension system for Scheme (as it will be in the
next section).

2.1.1 Nodes

The abstract representation of a program is too complicated to construct directly.
Instead, input programs are recursively decomposed into forms, the distinct syntactic
entities whose meanings will determine the meaning of a program. The details of
the recursive decomposition process will be explained later. For Scheme, examples of
forms include:

* primitive expressions like 5 and car,

" syntactic keywords like define and if,

" and compound expressions like(+ x 1) and (if (> y 0) y (- y)).

Nodes are the objects that are used to abstractly represent forms. Nodes are rep-
resented as structures that contain three fields: a kind field, a converter field and a
data field. The roles of these fields are explained below:

kind The kind field of a node contains a symbol that distinguishes the kind of form
the node represents. In the simplified framework, only two kinds of forms are
distinguished - keywords (which have the kind keyword and can represent
Scheme's syntactic keywords) and expressions (which have the kind exp and
can represent all the other elements of a Scheme program). The procedure
node/kind is used to extract the kind of a node.

converter The converter field of a node contains a conversion procedure. A node's
conversion procedure is used to create a "lower-level", or converted, represen-
tation of that node. Conversion procedures are used to implement the second
phase of the compiler described above. In particular, the converted represen-
tation of the node that represents the entire program is a target-machine ver-
sion of that program. Nodes are converted using the procedure node/convert.
node/convert extracts the conversion procedure from the node to be con-
verted and uses it to create the converted representation. The first argument to
node/convert is the node to be converted. The rest of the conversion protocol
is determined by the kind of the node. For Scheme, the conversion procedure
for an expression node would generate output code that implements that ex-
pression. The conversion procedure for a keyword node is a keyword procedure
that will be explained in the next subsection.
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attributes The attributes of a node organize the semantic information associated
with that node. Each attribute of a node is named by a symbol. This symbol
is used to access (or modify) the attribute it names through the procedures
node/attribute-get and node/attribute-set !. For expression nodes, a use-
ful attribute might be a variety attribute that indicates the particular variety
of expression a node represents (variable, constant, conditional, sequence, etc.).
Some attributes of a node might be maintained to help conversion. In general,
however, most of the attributes of a node will be defined by the static analyses
that are implemented for a particular language. For instance, a type-checking
static analysis could define a type attribute to store the deduced type of an ex-
pression'. The kind of a node will determine at least a minimal set of attributes
that the node provides2 .

The specific features of nodes were chosen to so that nodes provide a reusable frame-
work for extensible syntax systems. The possible set of node attributes is left un-
specified so that no particular static analysis is built into the framework. Instead, as
will be described later in the chapter, authors of static analyses can define their own
attributes and use them to create interfaces between their static analyses and syntax
extensions. Nodes construct their converted representations by using conversion pro-
cedures because semantic or contextual information that is not available when a node
is constructed might be required to convert that node. For example, some conversion
procedures could use information about variable references (gathered through a static
analysis) to eliminate dead code in the converted representations they return. Con-
version procedures enable nodes to "promise" that they can be converted in the future
(during the second phase of compilation), without having to construct their converted
representation in the present (during the first phase). This means that compilation
strategies that use the results of static analyses are possible. Also, since the protocols
implemented by node conversion procedures are left unspecified', the framework can
be used with different conversion strategies, source languages and target machines.

2.1.2 Process

The process procedure is the procedure that recursively decomposes programs into
forms. It implements the recursive decomposition so that it can construct nodes that

'In some type systems, including Hindley-Milner type inference, it is not convenient to deduce
the type of an expression when constructing its corresponding node. In that case, a type analysis
could define an attribute that will compute the type of an expression at a later time.

2 At this point, it should be clear the kind field of a node is actually a type that determines the
organization of the rest of the node object. Given that, it might seem natural that this framework
should be implemented in an object-oriented style where different kinds of nodes become different
types of objects. The primary reason the system was not built in a more directly object-oriented
style is that Scheme 48 (my implementation language) does not come with a good object system.
Also, it is not clear whether or not an inheritance hierachy could be constructed that would correctly
capture all of the important relationships between different kinds of nodes.

'Except for the keyword procedures described in the next subsection, which are used to implement
extensible syntax.
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represent the meanings of these forms. It will be revised extensively as the extension
framework is improved. Figure 2-1 contains the source code for the simplest version
of process.

(define (process form env)
(cond ((symbol? form)

(environment/lookup env form
(lambda (var)

5 (syntax-fail "Unbound variable"
var))))

((constant? form)

(make-constant-node form))

((list? form)
10 (let ((op-node (process (car form) env)))

(if (eq? (node/kind op-node) 'keyword)
(node/expand op-node form env)

(make-combination-node op-node form env))))

(else (syntax-fail "Unknown syntax" form))))

Figure 2-1: The initial version of process

This version of process takes two arguments - a form and a syntactic environment.
It returns a node that represents the meaning of the input form. process is also
responsible for checking the syntax of the input form. For process itself, this just
means signaling a syntax error (using the procedure syntax-f ail) when it encounters
an input form it does not recognize. The syntactic-environment argument is used to
determine the meanings of forms that are symbols (see section 2.1.3). For constant
forms, the meaning is constructed using the procedure make-constant-node. For
Scheme, this procedure would construct a node whose conversion procedure returns
the code for a constant expression in the target language (in some manner determined
by that target language).

The part of process that enables syntax extension is the part that determines
how to construct the meaning of forms that are lists. The first step in constructing
the meaning of a list form is using process recursively to determine the meaning
of the first element of that list'. If the node representing the meaning of the first
element is not a keyword node, the meaning of the input form is constructed by
make-combination-node. For Scheme, this procedure would construct a node that
can be converted into target-language code that implements the appropriate proce-
dure call. The interesting case is when the first element's node is a keyword node.
In that case, the conversion procedure of the keyword node (the keyword procedure
mentioned earlier) is used as a "virtual subroutine" of process. It is called with the
arguments of process (the form and the syntactic environment), and has all respon-
sibilities of process - returning a node that represents the meaning of the form and
checking the syntax of the input form. This special behavior of process enables
syntax extension because when process "finds" new keyword nodes, the syntax of
the language has been extended.

4The empty list is considered a constant, so the list must have a first element.
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Figure 2-2 contains skeleton code that illustrates what constructing a keyword
node to implement Scheme if expressions might look like.

(define $if
(make-keyword-node
(lambda (form env)

(if (not (= (length form) 4))
5 (syntax-fail "If expression incorrect size" form))

(let ((test-node (process (cadr form) env))
(then-node (process (caddr form) env))
(else-node (process (cadddr form) env)))

(make-exp-node

10 ...

Figure 2-2: Skeleton code to implement a Scheme if expression

The procedures make-keyword-node and make-exp-node (used in the skeleton
code) are shorthand for creating keyword nodes and expression nodes, respectively.
The only argument to make-keyword-node is the associated keyword procedure. The
arguments to make-exp-node depend on the target language and any static anal-
yses that may be performed, so the call is left unspecified here. The first part of
the if keyword procedure performs syntax checking (lines 4-5). The next part of
the keyword procedure recursively constructs the nodes for the parts of the if ex-
pression. In a complete keyword procedure, these nodes would be used to construct
the expression node that is returned. These calls are performed before the call to
make-exp-node because they also perform necessary syntax checking. These calls
use process recursively, so they check the syntax of the subexpressions of the if.

2.1.3 Syntactic environments

The only part of process that has not been completely explained is how mean-
ings are determined for forms that are symbols. As mentioned above, the syntactic-
environment argument to process is used to determine the meanings of symbols that
are processed. Specifically, syntactic environments bind symbols to nodes that rep-
resent the compile-time meaning of those symbols. These nodes are returned when
those symbols are looked up by process. Syntactic environments are represented as
structures that contain three fields: a parent field, a frame field and an envid field.
The fields of an environment are used as follows:

parent This field stores the parent environment of the current syntactic environment.
If a symbol is unbound in the frame of the current syntactic environment, it
is looked up in the parent environment. This allows syntactic environments to
implement nested scopes. For Scheme, these scopes would be lexical scopes. If
the parent environment is #f, then the environment has no parent (it would be
a global syntactic environment).
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frame The frame field of a syntactic environment contains a table that stores the
bindings of the innermost frame of that syntactic environment. If a symbol is
bound in the frame, that binding overrides any binding that might be found by
looking in the parent syntactic environment.

envid The envid field of a syntactic environment contains a number that is different
for each syntactic environment. This number can be used to generate distinct
output code for the same symbol in different syntactic environments. One reason
this might be necessary is that the target language might not have the same
kind of scoping as the source language, so symbols which do not conflict in the
source might conflict in the output without this ability to distinguish them.
This field is also used in implementing support for hygienic syntax extensions,
discussed in section 2.3.

Syntactic environments are accessed and manipulated through the procedures
environment/lookup, environment/bind!, and environment/extend. The proce-
dure environment/lookup was used in the first version of process. It takes three
arguments: the syntactic environment, the symbol to look up, and a procedure to
call if that symbol is unbound. In the case of process that third argument is used
to signal a syntax error (see Figure 2-1). environment/bind! takes four arguments:
the environment, the symbol to bind, the node to bind it to, and a procedure to
call if the symbol is already bound in the innermost frame of that environment.
environment/extend takes one argument, an existing syntactic environment, and
returns a new syntactic environment with an empty innermost frame. The parent of
the new syntactic environment is the environment supplied.

At this point, it is possible to see the role syntactic environments play in syntax
extension. In the previous discussion of process, syntax extensions became avail-
able when process 'found" new keyword nodes while processing. process can "find"
new keyword nodes if they are added to an existing syntactic environment by parts
of a language implementation. Specifically, language implementations provide syn-
tactic environments that bind symbols to keyword nodes that implement the core
syntax of a particular language. For example, implementations of Scheme's core syn-
tax would provide a syntactic environment that binds lambda, if, define, set!,
and quote. Other syntactic environments could implement Scheme's derived expres-
sions in terms of the core syntax. Implementations of def ine-syntax, let-syntax,
and letrec-syntax would use environment/bind! (on the appropriate syntactic
environment) to bind new keyword nodes for process to "find."

Finally, it is important to note that syntactic environments store more than syn-
tactic keywords. They also store the meaning of non-keyword symbols. These non-
keyword symbols follow the same scoping rules that syntactic keywords do. This is
probably what is desired for most language implementations because multiple sets
of scoping rules are confusing for programmers. In the implementation described so
far, syntactic keywords and non-keyword symbols share the same namespace. This
is exactly what is desired when implementing Scheme because Scheme keywords and
Scheme variables (the non-keyword symbols that will be bound for Scheme) are sup-
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posed to share a single namespace. This may not be desired when implementing other
languages. A mechanism for avoiding such conflicts is described in section 2.4.2.

2.2 Example: Analyzing Scheme code

This section describes how to use the simplified framework to implement a syntax-
extension system that is used with a toy static analysis of Scheme. To motivate my
example static analysis, consider implementing a source-code debugger for compiled
Scheme programs. When compiling a debugging version of a program, the target lan-
guage would connect object code to its associated source code. For this to be possible,
however, the code generators must have access to the source form of an expression.
In the presence of syntax extensions, this may not always be easy to guarantee, but
a static analysis could gather that information. This is a trivial static analysis, and
an improved version of process does this automatically (see section 2.5.2), but its
implementation will serve to illustrate how my framework supports implementing
and extending static analyses. These same techniques will be used in Chapter 3 to
implement Hindley-Milner type inference for my demonstration language.

The following steps describe how to use the framework to implement a static
analysis for some source language (these steps will generalize to the full framework):

1. You should decide how to represent the various elements of your language using
nodes, attributes and syntactic environments.

2. You should write keyword procedures that implement the core syntax of your
language, including generating any attributes that your language's static anal-
yses need. You should also construct the syntactic environments that your
language needs and bind your keyword procedures (and any other necessary
nodes) appropriately in those environments.

3. At this point, if your goal is create an extended user syntax implemented in
terms of your core syntax, then all you need to do is write the keyword pro-
cedures for the extended syntax and bind them appropriately. If, on the other
hand, you want to export a syntax-extension interface, you need to decide on
an interface for creating and binding keyword procedures. The simplest inter-
face to implement is to allow users to create keyword procedures by writing
Scheme 48 code that directly manipulates nodes and attributes. However, for
most language representations, this is a cumbersome and hard-to-use interface.
You should try to develop simpler interfaces for syntax extension.

5This is easier said than done. See Chapter 4 for a discussion of the challeges in creating an
easy-to-use syntax extension interface that allows users to improve static analyses.
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2.2.1 Representing Scheme

To review, these are the key ways the framework of the previous section can be used
to represent Scheme 6:

" The meaning of Scheme language expressions can be represented using expres-
sion nodes. As mentioned before, expression nodes are constructed with the pro-
cedure make-exp-node. For this language and static analysis, make-exp-node
takes three arguments:

1. An expression variety - a symbol describing the variety of Scheme ex-
pression (conditional, assignment, constant, etc.) that the expression node
represents. This is stored in the variety attribute of the expression node.

2. A conversion procedure that would generate target-machine code that cor-
responds to the Scheme expression. To simplify the presentation, the con-
version procedures will be omitted from calls to make-exp-node 7 .

3. An S-expression that is the source language form corresponding to the ex-
pression that the node represents. This will be stored in the f orm attribute,
and the goal of the static analysis is to put the correct S-expression in the
f orm attribute for each expression node.

" The nested scopes provided by syntactic environments can be used to represent
Scheme's lexical scoping.

" Nodes that implement program variables and syntactic keywords are bound in
these syntactic environments. Keywords and variables are bound in the same
syntactic environment, so they share the same space of identifiers, as they should
(for Scheme).

2.2.2 Implementing Scheme's core syntax

At this point, I have completed step 1 of implementing a static analysis for Scheme.
The next step is to implement the core syntax of my source language (Scheme),
omitting the conversion procedures (as discussed previously). Two different things
must be done to implement the core syntax of Scheme:

* The procedures make-constant-node and make-combination-node must be
written8 .

'The syntactic restrictions on definitions required by Scheme cannot be naturally implemented
using the simplified framework. Implementing those restrictions using the complete framework will
be discussed in section 2.4.4.

71ncluding the converters would involve discussing the debugger that would use the source code
information that the analysis collects - an unnecessary distraction from discussing the framework
itself.

'In the simplified system, these procedures are hardwired into process, so it is not clear why
an implementation of Scheme's core syntax should provide them. They are being discussed be-
cause, in the full system, these procedures will not be hardwired into process, so any core syntax
implementation will be required to provide them.
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e The keyword procedures, which implement the rest of Scheme's core syntax
must be written and bound in an appropriate syntactic environment.

The implementation of make-constant-node will be omitted because it triv-
ial without a conversion procedure. Figure 2-3 contains the implementation of
make-combination-node.

(define (make-combination-node op-node form env)
(let ((operand-nodes (map (lambda (op-form)

(process op-form env))
(cdr form))))

5 (make-exp-node
'combination
;;; Omitted conversion procedure
(map get-form (cons op-node operand-nodes)))))

Figure 2-3: Implementation of the make-combination-node procedure for the exam-
ple static analysis

The first thing to notice about make-combination-node is that it is not a keyword
procedure. Instead, it is a procedure hardwired into process for processing combi-
nations whose operator does not represent a keyword. It takes three arguments:
the operator node, the form that represents the combination and the syntactic envi-
ronment in which to process that combination. The operator-node argument allows
make-combination-node to take advantage of the work that process has already
done in processing the operator of the combination. The procedure uses its f orm
argument to construct the nodes that represent the operands of the combination,
as shown on lines 2-4. The source-code form corresponding to the combination is
constructed on line 8. The get-form procedure is convenient shorthand for a call
to node/attribute-get that extracts the form attribute of a node. By mapping
get-form over a list that contains the operator node and the operand nodes of the
combination, the source code of the combination is reconstructed. It would be simpler
to use the argument f orm directly, instead of reconstructing the source code. This
implementation, however, demonstrates how nodes that represent parts of a form can
be used to construct attributes for the entire form. This will be important, in Chap-
ter 3, when the static analysis (Hindley-Milner type inference) is more difficult than
source-code reconstruction.

The other part of implementing Scheme's core syntax is writing the keyword pro-
cedures that implement Scheme's primitive special forms. Figure 2-4 contains one
example of a keyword implementation. The source code in that figure creates a key-
word node for lambda that reconstructs the source form of a lambda expression.

The first thing to notice in that source code is the call to make-keyword-node
on line 2. As discussed earlier, this call creates the keyword node from the supplied
keyword procedure. On lines 4-8 there is code that checks the syntax of the lambda
expression. This code only checks the surface syntax of the lambda expression. As in
the skeleton keyword procedure for if (Figure 2-2), syntax-checking on subexpressions
of the lambda will be performed by recursive calls to process.
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(define $lambda

(make-keyword-node
(lambda (form env)

(if (or (< (length form) 3)
5 (not (var-list? (cadr form))))

(syntax-fail
"Illegally formatted lambda expression"
form))

(let* ((vars (cadr form))
10 (body (cddr form))

(new-env (environment/extend env))

(var-nodes (map
(lambda (var)

(make-variable var new-env))
15 vars)))

(for-each
(lambda (var node)

(environment/bind!
new-env var node

20 (lambda (var)
(syntax-fail

"Duplicate variable use in parameter list"
form))))

vars
25 var-nodes)

(let* ((body-node (make-sequence-node
(process-body body new-env)
form))

(body-sequence (exp-node-sequence body-node)))

30 (make-exp-node
abstraction

;; Omitted code generator that uses body-node
'(lambda ,(map get-form var-nodes)

,@(map get-form body-sequence))))))))

Figure 2-4: Implementation of the lambda keyword for the example static analysis
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The let* bindings on lines 9-15 bind variables that are used to create the lambda
node itself. The variable vars stores the symbols that name the parameters of the
procedure that will be constructed. The variable body holds the list of forms that
form the body of the lambda expression. The procedure environment/extend is used
to create an extended syntactic environment for the body of the lambda expression,
implementing lexical scoping for the lambda. That syntactic environment is stored in
the variable new-env. Finally, the list var-nodes holds the list of variable nodes that
the variable identifiers will be bound to in the environment new-env. These variable
nodes are ordinary expression nodes of the expression variety variable. They are
created using the procedure make-variable, which can create a variable node given
a symbol and a syntactic environment. The syntactic environment should be the
environment in which the new variable node will be bound. It is used by that node
to generate distinct code even for variables with the same symbol, as discussed in
section 2.1.3.

The for-each statement (lines 16-25) following the bindings completes the pro-
cess of setting up the syntactic environment for the body of the lambda expression.
Each of the variable identifiers is bound to the variable node that was created from it
using the procedure environment/bind!. If the same identifier is bound more than
once, it is detected by environment/bind! and a syntax error is signaled. Otherwise,
the new syntactic environment is ready to be used to create the body of the lambda
expression.

The final part of the keyword procedure constructs the output expression node.
Lines 26-29 bind the variables needed. First, they bind the node that represents
the body of the lambda to the variable body-node. This node is created using the
procedures process-body and make-sequence-node. The procedure process-body
uses process to process a list of forms that represent a list of expressions that will
be executed sequentially. It is the procedure that detects and flattens nested ex-
pression sequences, and it returns the flattened list of expression nodes. The call
to make-sequence-node creates a sequence node from that list of expression nodes.
Then, the procedure exp-node-sequence is used on the sequence node to recover the
list of nodes that represents the body of the lambda expression. That list is stored in
the variable body-sequence. Finally, on lines 30-34, make-exp-node is called. As in
the implementation of make-combination-node (Figure 2-3), the S-expression source
code is reconstructed from the nodes that represent parts of the lambda expression.

2.2.3 Adding syntax extensions

Assuming keyword procedures are written for the other parts of the core syntax of
Scheme, step 2 of the plan from the beginning of this section is also complete. The final
step is to develop an interface for defining syntax extensions. As discussed in section
2.1.3, all syntax extensions ultimately end up binding new keyword nodes in some
syntactic environment. Once the new keyword nodes have been bound, code processed
in that syntactic environment can use the extended syntax. Keyword nodes implement
syntax extensions through the keyword procedures that they contain. Therefore, to
understand the features and limitations shared by all syntax-extension interfaces built
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(define-syntax 1+
(lambda (form env)

(if (not (= (length form) 2))
(syntax-fail "1+ form incorrect size" form))

5 (let* ((arg (cadr form))
(output-node (process '(+ ,arg 1) env))
(real-form '(1+ ,arg)))

(set-form! output-node real-form)
output-node)))

Figure 2-5: Syntax definition for 1+, first version

using this framework, it is only necessary to study a "raw" interface where the user
directly writes the keyword procedures that are used to construct keyword nodes.
Any other interface would end up transforming user input into a keyword procedure
to be bound, so it will share the features and limitations of the "raw" interface.

To make this discussion concrete, for the rest of the chapter, syntax exten-
sions will be defined with the following define-syntax form: (define-syntax
<keyword> <keyword-proc>), which binds the identifier <keyword> to a keyword
node whose keyword procedure is the Scheme 48 procedure created by evaluating
<keyword-proc>. Although both the source language being represented and the lan-
guage that keyword procedures are written are dialects of Scheme, it is important to
remember that they are distinct languages. For this framework, the source language
could be any language with S-expression syntax, not just Scheme. For the simpli-
fied system, <keyword-proc> is evaluated in a Scheme 48 environment that contains
special bindings for syntax-extension keyword procedures (as opposed to core-syntax
keyword procedures).

The Scheme 48 environment in which syntax-extension keyword procedures are
evaluated is closely related to the environment in which core-syntax keyword proce-
dures are evaluated. The most important difference between the two environments
is that the procedures that create particular kinds of nodes (like make-exp-node)
are not available in the syntax-extension environment. This means syntax extensions
must use process to create the node that represents the meaning of their extended
syntax. This output expression node will be converted based on the form that is pro-
cessed, so syntax extensions will not directly depend on the details of conversion (code
generation). To create that output node, process requires a form (as well as a syn-
tactic environment). This requirement means that syntax extensions are constrained
to implement themselves in terms of existing syntax, as they should be.

A simple syntax definition that defines a macro 1+ (that adds one to a single
expression) is given in Figure 2-5. This 1+ macro, if used legally, builds a node that
represents adding one to the body of a 1+ expression. This can be seen from the call to
process on line 6 of the syntax definition. The call to set-f orm! on line 8 is where
the macro semantically improves its output node. The procedure set-form!, like
get-form, is convenient shorthand for node manipulation. In this case, set-form!
is shorthand for a call to node/attribute-set! to set the form attribute of an
expression node.
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The source form used to improve the output node is constructed on line 7 of Figure
2-5. It gets the source code of the argument form of the 1+ macro directly from the
variable arg. The variable arg gets its source code from the input variable form (on
line 5 of Figure 2-5). This is not the right way for a macro to construct semantic
information for a static analysis. The only reason it works is because the static
analysis under consideration is source-code reconstruction - and the source form of
an expression is easy to access. It will not generalize to other static analyses, such
as type-checking, where semantic information is harder to construct. The following
subsection explains how to fix this problem with the 1+ macro, using the technique
of node insertion.

2.2.4 Fixing the 1+ macro: Node insertion

The problem with the 1+ macro from the previous subsection is that it is not con-
structing its semantic information recursively. What the 1+ macro should be doing is
extracting a source form from a node that represents the argument expression of the
1+ macro, the way make-combination-node and the keyword procedure for lambda
extract source code from nodes that represent their parts (Figures 2-3 and 2-4). The
reason this is difficult is because the node the 1+ macro needs to access is a subnode
of the output node that represents the macro-expanded code, and that output node
does not provide access to its subnodes'. The desired subnode could be constructed
by processing the argument form separately, but, in the system described so far, there
is no way to connect that node to the output node of the keyword procedure. One
solution would be to process the body form twice: once to extract the semantic in-
formation and once (as part of a larger form) to create the output node. This is not
a good idea for two reasons:

1. Equivalent body nodes should be created both times, so it is inefficient to process
it more than once (especially as the body form might use other macros that
could also be redundantly processing their subforms).

2. The semantic information from the first body node might not be consistent with
the semantic information with the second body node. For example, constructing
the semantic information for the body node might involve side effects' 0 . In that
case, incorrect semantic information might break (or at least fail to improve) a
static analysis.

As suggested earlier, a better solution is to provide a way to connect the body node
with the output node of the keyword procedure. The second version of process, given
in Figure 2-6, does that. The only difference between the two versions of process is

'In fact, other than sequence nodes, no nodes provide access to their subnodes. This is a feature
to consider adding in a future version of the framework.

"0 One example of a static analysis that uses side effects to construct its semantic information is
the implementation of Hindley-Milner type inference in Chapter 3. Side effects are used to keep
track of the constraints on the types of source-code variables.
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(define (process form env)
(cond ((node? form) form)

((symbol? form)
(environment/lookup

5 env

form
(lambda (var)

(syntax-fail "Unbound variable" var))))

((constant? form)
10 (make-constant-node form))

((list? form)
(let ((op-node (process (car form) env)))

(if (eq? (node/kind op-node) 'keyword)
(node/expand op-node form env)

15 (make-combination-node op-node form env))))
(else (syntax-fail "Unknown syntax" form))))

Figure 2-6: A version of process that supports node insertion

(define-syntax 1+
(lambda (form env)

(if (not (= (length form) 2))

(syntax-fail "1+ form incorrect size" form))

5 (let* ((arg-node (process (cadr form) env))
(output-node (process '(+ ,arg-node 1) env))

(real-form '(1+ ,(get-form arg-node))))

(set-form! output-node real-form)
output-node)))

Figure 2-7: Syntax definition for 1+, second version

the clause on line 2 of the second version. This line says that if process discovers
that the form it is processing is already a node, then process should just return that
node. Since the goal of process is to transform forms into nodes, no further work
needs to be done. This is a simple idea, but it has powerful consequences. It means
that syntax extensions can transform their input forms into output nodes in multiple
steps. Consider a second version of the 1+ macro (Figure 2-7).

The differences between the two versions are found on lines 5-7 of the second
version. Now the output node is constructed in two steps. First, a node representing
the argument form of the 1+ expression is constructed. Then, using that node, the
node that represents the entire expression is constructed. On line 7, the source code
corresponding to the argument form is extracted directly from the argument node
and used to construct the source code for the entire 1+ expression. This source code
is used to improve the output node before it is returned.

Node insertion is the technique illustrated by the second version of the 1+ macro.
However, node insertion can be used for more than just extracting semantic informa-
tion that corresponds to part of a macro. As will be seen in the next section, node
insertion is one of the techniques that makes it possible to write hygienic macros.
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2.3 Hygienic macros

Experienced users of Scheme macro systems will notice that the 1+ macros discussed
in the previous section have one serious flaw - they are not hygienic [2, 4, 5, 7, 8, 121.
Specifically, if either version of the macro is used in an environment where the symbol
+ is not bound to the system's addition procedure, they will behave in unexpected
ways. Consider the following example code:

(let ((+ string-append))

... ;; Omitted code that does string processing
(1+ C- (string-length result-string)

(string-length prefix-string))))

The example code locally binds + to the procedure string-append so it can
simplify the appearance of some (omitted) string processing code. However, it
wants to return the difference in length between the strings result-string and
pref ix-string plus one. It tries to use the 1+ macro to do this, but this will not
work because + is bound to an unexpected procedure. The problem is that the symbol
+ inserted by the 1+ macro ends up being looked up in the currently active environ-
ment.

2.3.1 Hygienic macros through node insertion

Ideally, in any expansion of the 1+ macro, the symbol + would always be looked up in
the global environment so the macro's behavior would not depend on the environment
in which it is used. This would make the 1+ macro hygienic. At first glance, it is
not obvious how to guarantee that the + inserted by 1+ always refers to the global
binding for +. After all, the procedures that process a particular form decide the
syntactic environments in which parts of that form are processed. The if keyword
procedure discussed earlier (Figure 2-2) decides that the parts of an if expression
are processed in the same syntactic environment as the if itself. On the other hand,
the lambda keyword procedure (Figure 2-4) decides that the body of a lambda is
processed in a new syntactic environment that the keyword procedure constructs. In
the current case, make-combination-node (from process) decides that the operator
of the expression, the symbol +, will be processed in the current syntactic environment.

By using node insertion, the 1+ keyword procedure can overrule
make-combination-node. Figure 2-8 contains a hygienic version of the 1+
macro. This version of 1+ uses node insertion to guarantee that the expression nodes
it constructs find the correct version of +.

This version of 1+ uses the variable global-env to access the global syntactic
environment, so that the symbol + can be processed there. The node, %+, that 1+
inserts is processed in the current syntactic environment by make-combination-node,
but %+ is already a node so the syntactic environment in which it is processed does
not affect the node process returns".

"A simpler way to make the 1+ macro from Figure 2-7 hygienic would be to create its output node
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(define-syntax 1+

(lambda (form env)
(if (not (= (length form) 2))

(syntax-fail "1+ form incorrect size" form))

5 (let* ((arg-node (process (cadr form) env))
(%+ (process '+ global-env))
(output-node (process '(,%+ ,arg-node 1) env))
(real-form '(1+ ,(get-form arg-node))))

(set-form! output-node real-form)
10 output-node)))

Figure 2-8: Syntax definition for a hygienic version of the 1+ macro.

2.3.2 The procedure capture-env

As described so far, node insertion allows macro writers to write hygienic macros. A
macro can control what symbols in its expansion mean by processing those symbols

(or forms that contain them) in an appropriate syntactic environment. The problem
with this solution is that it is inflexible - the only environments to which a macro
writer has access are the current syntactic environment (which is usually the source of
an undesirable conflict) and a limited set of "well-known" environments, like the global
syntactic environment. In particular, there are times when a macro writer wants to
process a form in the syntactic environment created for the body of a lambda, let or
other local binding expression. This allows the symbols in the form processed to refer
to some locally bound identifiers, but not others. In order to allow macro writers
to capture such environments (so they can be used for processing), the procedure
capture-env is provided12 . This procedure is essentially the same as the procedure
capture-syntactic-environment in the syntactic closures macro system proposed
by Hanson [6].

The procedure capture-env takes a single argument, a procedure. capture-env
uses its argument procedure to construct a special sort of form, which capture-env
returns. This argument procedure takes one argument, a syntactic environment, and
it returns a form. When the special form created by capture-env is processed, the
argument procedure that was used to construct it is called with the current syntactic
environment. This means the argument procedure can use the syntactic environment
in which the special form was processed (a syntactic environment to which the macro

by processing its expansion in the global syntactic environment. This would work because the only
part of that expansion which needs access to local bindings is the previously processed argument
form. The benefit of the strategy described in this section is that it is easier to generalize to macros
more complex than 1+.

2 Another solution that might occur to some readers is for a macro writer to use
environment/extend and environment/bind! to create a desired local environment. The problem
with this solution is that macros should not arbitrarily modify syntactic environments. Language
implementations should be able to enforce invariants about bindings that macros cannot destroy.
In the next version of the system (section 2.4), syntactic environments will be extended so that
language implementations can control access to them - so macros will not be able to construct the
local environments they may need.
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would otherwise not have access) to construct its output form. The form returned
by that procedure is then processed (in the same syntactic environment) and the
resulting node is returned. Implementing capture-env does not require any changes
to process. The special form that capture-env creates is a list form with a single
element - a keyword node. The keyword procedure of the keyword node is what
invokes the argument procedure and processes its result.

(define-syntax swap
(lambda (f orm env)

(if (not (= (length form) 3))
(syntax-fail "swap expression incorrect size"

5 (if (not (and (symbol? (cadr form))
(symbol? (caddr form))))

(syntax-fail "argument of swap not a variable"
(let* ((a (cadr form))

(b (caddr form))

10 (let (process 'let global-env))
(%set! (process 'set! global-env))
(%begin (process 'begin global-env))

(swap-form
'(,%let ((temp ,a))

15 ,(capture-env
(lambda (temp-env)

(let ((%temp (process 'temp temp-
'(,%begin

,(process '(,%set! ,a ,b) env
20 ,(process '(,%set! ,b ,%temp)

(process swap-form env))))

form))

form))

env)))

)
env))))))))

Figure 2-9: A hygienic swap macro, using capture-env

The macro defined in Figure 2-9 is a hygienic macro that swaps the values con-
tained in two variables. It uses capture-env to create a temporary variable that
cannot be accessed by code outside of the macro. To keep the focus of this example
on the use of capture-env, this macro does not include any semantic improvements.

Through node insertion, this swap macro creates a form that binds a variable
whose body is processed in a syntactic environment without that binding. Instead,
capture-env is used to capture the syntactic environment that contains the tempo-
rary variable's binding in the variable temp-env. Only forms that the swap macro
specifically processes in temp-env can see the binding, so the macro is hygienic.
Though capture-env has other uses, it is a cumbersome way to hygienically create a
temporary variable. A simpler way to create temporary variables is described in the
next subsection.

2.3.3 Generating identifiers

The problem with macros that want to bind temporary, internal variables is that
the symbols that name those variables can conflict with symbols in user programs,
making those macros unhygienic. The procedure genid can solve that problem by
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constructing a fresh identifier (that can be bound in a syntactic environment) that is
not a symbol. It is called with one argument, a symbol that is used as the basis of
the generated identifier. The major implementation overhead of having identifiers is
in changing the environment operations (see section 2.1.3) so that they understand
identifiers as well as symbols. Figure 2-10 contains source code for a hygienic swap
macro that uses generated identifiers instead of capture-env.

(define-syntax swap
(lambda (f orm env)

(if (not (= (length form) 3))
(syntax-fail "swap expression incorrect size" form))

5 (if (not (and (identifier? (cadr form))

(identifier? (caddr form))))

(syntax-fail "argument of swap not a variable" form))
(let ((%temp (genid 'temp))

(a (cadr form))

10 (b (caddr form))
(%let (process 'let global-env))
(%set! (process 'set! global-env)))

(process

'(,%let ((,%temp a))
15 (,%set! ,a ,b)

(,%set! ,b ,%temp))
env))))

Figure 2-10: A hygienic swap macro, using generated identifiers

Besides the direct use of generated identifiers, one other thing to notice in Figure
2-10 is the identifier? procedure. It is used in the place of the symbol? procedure
used by the first version of swap to check if the arguments to swap are legal variable
names". The change is necessary because, in the presence of generated identifiers,
symbols are not the only legitimate variable names.

2.3.4 The envid field revisited

The conversion procedures that generate target-machine code use syntactic environ-
ments to prevent identifier conflicts in that target-machine code. The techniques
described in this section (which can be used to write hygienic macros), all involve
manipulating syntactic environments in new ways. If the conflict-resolution mecha-
nisms provided by syntactic environments fail to work (because of the way a macro
manipulates them), then incorrect target-machine code will be generated. Fortu-
nately, the conflict-resolution mechanisms will not fail. This is because syntactic

13The testing strategy used by both versions of the swap macro is actually incomplete. It does
not signal a problem if a variable is unbound or bound to a keyword node instead of a variable node.
A better test would process the arguments to swap in the current syntactic environment and verify
that the resulting nodes are expression nodes that represent variables. Such a test was not used

here because it would not have changed between the two versions of the swap macro, eliminating
the opportunity to explain the identifier? procedure.
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environments use their envid field to create distinct output identifiers for symbols
bound in different syntactic environments. Since each syntactic environment has a
distinct envid, these output identifiers will not conflict, no matter how syntactic en-
vironments are manipulated. The only remaining question is whether there will be
conflicts caused by generated identifiers. In order to ensure that there are not, each
generated identifier also has its own envid, that is used to generate target machine
code for that identifier. This envid is separate from the envid of any other syntactic
environment (including any syntactic environment in which the generated identifier
might be bound), and separate from that of any other generated identifier. This sepa-
ration ensures that generated identifiers also cannot cause conflicts in target-machine
code.

2.4 Additional language elements

Now that the simplified version of the framework has been discussed, it is possible to
explain the generalizations that allow the complete framework to support language
elements that are not keywords or expressions. This support can be used in repre-
senting languages that are more complex (have additional language elements such as
types, patterns, or declarations) than Scheme, or it can be used to support embedding
other languages inside Scheme (or another S-expression language). The framework
will be generalized to support additional language elements in three steps:

1. The limitations that the current version of process imposes on the use of
different language elements are discussed and the points at which process needs
to be generalized are identified.

2. Syntactic environments are extended with namespaces, tokens that allow mul-
tiple languages to coexist without their bindings conflicting.

3. The extensions are organized into contexts, objects that encapsulate the knowl-
edge about how to process different parts of a program.

To motivate these generalizations, consider using the complete framework to add an
extensible notation for describing regular expressions to Scheme. An example of such
a regular-expression notation (that, as currently implemented, is not extensible) is
the Symbolic Regular Expression (SRE) notation developed by Shivers [19]. In addi-
tion to extensibility, there is a second advantage to re-implementing SREs using this
framework. SREs distinguish between regular expressions that represent character
classes and ones that do not by performing a simpleminded "type" analysis". In the
current SRE implementation, this analysis complicates regular-expression parsing.
Using this framework, this analysis could be implemented naturally.

The final part of this section will explain another use for the extended framework:
enforcing the syntactic restrictions Scheme imposes on definitions.

AThis distinction is made because some SRE operations are only allowed on character classes.
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2.4.1 Generalizing process

The current version of the process procedure is the key bottleneck that makes
it difficult to use the simplified framework for languages that have elements other
than keywords or expressions. Several different aspects of the process procedure
limit the ways in which it can be used to construct non-expression nodes (that
represent non-expression language elements). First, process uses the procedures
make-constant-node and make-combination-node to process constants and lists,
respectively. Both of these procedures return expression nodes. This means that
non-expression nodes cannot be constructed by process from constants or from lists
that do not begin with a keyword. In addition, process generates a syntax error
when it encounters unbound identifiers. This means non-expression nodes that are
described by unbound identifiers cannot be constructed using process, either.

These limitations mean that language designers who want additional language
elements have two choices in the simplified framework:

1. Avoid using the process procedure to construct the nodes corresponding to
non-expression forms.

2. Accept the limitations that the current version of process imposes on how
non-expression nodes can be described.

Both of these choices are bad. The first choice means that the bulk of the lan-
guage implementation would not take advantage of the syntax-extension framework.
Non-expression forms would not allow syntax extensions unless the designer of the
non-expression language implemented his own syntax-extension mechanism. Imple-
menting such a mechanism would be largely redundant work because any syntax-
extension mechanism would have to resolve the same problems the core framework
resolves. On the other hand, the second choice would mean that non-expression nodes
could not be described by full-fledged languages of their own. In the case of keywords,
these limitations are not severe because keywords are intended to be accessed only
as identifiers. For more complex languages, like the SRE regular-expression notation,
these limitations would be severe. For example, the SRE notation uses constants
(characters and strings, in particular) to describe primitive regular expressions. If
those constants had to be surrounded by keywords, the SRE notation would be much
harder to use.

To summarize, different kinds of language elements need to be able to specify
three things:

* how process constructs nodes from constant forms,

" how process constructs nodes from lists (that do not begin with a keyword),

" and how process handles unbound symbols,

in order for the framework to support specifying new elements for different, extensible
languages.
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2.4.2 Namespaces

The generalization of the process procedure described above is intended to allow
the framework to support new language elements, including elements of embedded
programming languages. The next question to consider is the relationship between
the identifiers used by the different embedded programming languages that could
coexist in the framework". If the syntactic-environment system were not changed,
all of the embedded languages would share a common space of identifiers, the way
Scheme keywords and variables do. The advantage of this choice is that programmers
reading source code only have to consider one thing when trying to figure out the
meaning of an identifier: the scope in which that particular identifier is enclosed.

The disadvantage of this choice is that different embedded languages do not have
the flexibility that they might desire in choosing the identifiers they use. For exam-
ple, in the SRE notation the identifier * is a regular-expression keyword. It means
"construct a regular expression that matches zero or more occurrences of the rest
of the SRE form." If the SRE notation were embedded inside Scheme, there would
be an identifier conflict because Scheme uses * to refer to the built-in multiplication
procedure. A programmer implementing an embedded regular-expression language
might try to resolve the conflict by processing regular expressions in a special syn-
tactic environment. In that environment, the identifiers that are regular-expression
keywords would be bound to the appropriate keyword nodes. However, this solution
means that embedded languages break the nested scopes that syntactic environments
otherwise provide. This would mean that the identifiers used in embedded languages
would not be scoped in the way programmers would expect them to be. Even worse,
if the embedded language permitted embedding expressions inside of it (as the SRE
notation does), the identifiers used in those expression would also not be scoped cor-
rectly". With these scoping problems, embedded languages would be hard to use, so
creating special syntactic environments for embedded languages is not a reasonable
solution.

A better way to allow embedded languages to control the identifiers they use
is to extend the syntactic-environment system with namespaces. A namespace is a
unique token created by a particular invocation of the procedure namespace/create.
These tokens are combined with identifiers to turn syntactic environments into two-
dimensional structures. Specifically, each binding in a syntactic environment becomes
a mapping from an identifier and a namespace to a node. When syntactic envi-

"This seems to omit consideration of the top-level language in which the other languages are
embedded. However, there is no reason why the apparent top-level language cannot be embedded
in some of the other languages, so the choice of a top-level language is a matter of perspective. In
the following subsection, I will explain how to choose different top-level languages.

"One might think that this could be solved by keeping track of two syntactic environments:
one for processing the embedded language itself and one for processing expressions inside of the
embedded language. However, there are three problems with this solution. First, it is difficult to use
process to communicate more than one syntactic environment at a time. Second, more syntactic
environments must be kept track of if more embedded languages are used. Third, it does not solve
the problems faced by multiple levels of embedding (what are the appropriate environments in that
case?).
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ronments are extended with namespaces, the procedures environment/bind! and
environment/lookup both take an additional namespace argument that completes
the binding that they are creating or indexing. However, no additional argument is
added to the procedure environment/extend, so all of the different namespaces of
identifiers share the same nested scopes.

To resolve identifier conflicts, each embedded language is allowed to specify the
namespace that is used to look up identifiers when forms in that language are be-
ing processed. One advantage of this solution is that it resolves identifier conflicts
without breaking the scoping of embedded languages. This is because, as mentioned
earlier, all of the different namespaces of identifiers share the same nested scopes.
A second advantage of this solution is that the extended framework can be used to
represent languages that have multiple namespaces, like Common Lisp. A third ad-
vantage of this solution is that languages with a private namespace can use the token
that controls access to that namespace to control how identifiers that affect their
language are bound. For example, an implementation of Scheme could ensure that
all Scheme identifiers are bound though either lambda, def ine, or def ine-syntax
- making it possible to maintain invariants about those bindings. One disadvantage
of this solution is that programmers have to consider two things when figuring out
the meaning of an identifier: the scope in which that identifier is enclosed and the
embedded language the identifier is being used in (including the particular element of
that embedded language the identifier is being used to describe). Another disadvan-
tage of this solution is that making syntax-extension interfaces that support hygienic
syntax extensions can become more complicated. To minimize this disadvantage the
environment/f orward! procedure is provided.

environment/forward!

The problem with creating syntax-extension interfaces after namespaces have been
introduced is subtle. Syntax-extension interfaces that support hygienic syntax ex-
tensions must provide some method for managing identifier conflicts. This gener-
ally involves providing ways for syntax extensions to decide the syntactic environ-
ment in which particular identifiers should be resolved. The problem is that when
a syntax-extension interface manipulates an identifier it will often not know the role
the identifier plays. That is, the interface will not know whether the identifier is
being bound or resolved, and the interface will not know the namespace associated
with that identifier use. This means the interface cannot use node insertion to imple-
ment its environment-control methods (because the identifier might be being bound).
Creating new bindings to implement environment-control is more promising (new
bindings can be shadowed if an identifier is being bound), but a syntax-extension
interface does not know the namespace in which to create a new binding. To get
around this, the environment/f orward! procedure makes it possible to create a new
binding for an identifier that forwards all references to that identifier to another en-
vironment, regardless of namespace. This means syntax-extension interfaces can use
environment/forward! without worrying about namespaces directly.

environment/f orward! takes five arguments. The first argument is the syntactic

37



environment in which to create the new binding and the second is the identifier
to be bound. The third argument is the environment to which references should
be forwarded to and the fourth is the particular identifier within that environment
to reference (it does not need to be the same as the identifier bound). The fifth
argument to environment/forward! is a procedure to call if the identifier to be
bound is already bound in the first environment. In that case, since identifiers cannot
normally be rebound in syntactic environments, no new binding is made.

There is one other thing that is special about the bindings created by
environment/forward!. Unlike other bindings, they can be rebound. This allows
syntax-extension interfaces to use environment/f orward! even if there is a chance
that the identifier being forwarded will be bound in the same environment. This
makes using environment/forward! easier for them because, as mentioned earlier,
they often will not know whether or not an identifier is being bound.

The macro-by-renaming and macro-by-attributes syntax-extension interfaces dis-
cussed in Chapter 4 use environment/forward! to implement their identifier man-
agement, so they can coexist with multiple namespaces.

2.4.3 Contexts

At this point, I have described several different ways in which embedded languages
should be able to control the behavior of the process procedure. The next step is to
understand the new version of process that allows embedded languages this control.
This new version of process takes three arguments. The first two arguments are
the form and syntactic environment, as in the old version. The third argument is
a context, an object that organizes the information used to control the behavior of
process. Four fields of a context have already been described. They are:

" a procedure that constructs nodes from constant forms,

* a procedure that constructs nodes from list forms that do not begin with a
keyword,

" a namespace that specifies how identifiers are looked up,

" and a procedure that is called when process encounters an unbound symbol.

These different fields are extracted from a context by using the procedures
context/constant-handler, context/list-handler, context/namespace, and
context/unbound-handler. These fields of a context are immutable so that users
of a context cannot damage that context. Figure 2-11 contains a first attempt at a
context-sensitive version of process.

This attempt at a new version the process procedure makes most of its decisions
by extracting information from its context argument, as expected. However, line 11
of this procedure exposes a latent decision that a context-sensitive version of process
needs to make. This decision is how to process the operator of a list. In the previous
version of process, there was only one way to process a form, so no decision needed
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(define (process form env context)
(cond ((node? form) node)

((identifier? form)
(environment/lookup env

5 (context/namespace context)

form
(context/unbound-handler context)))

((constant? form)

((context/constant-handler context) form))

10 ((list? form)
(let ((op-node (process (car form) env context)))

(if (eq? (node/kind op-node) 'keyword)
(node/expand op-node form env context)
((context/list-handler context) op-node form

15 env
context))))

(else (syntax-fail "Unknown syntax" form))))

Figure 2-11: First attempt at a context-sensitive version of the process procedure

to be made. In the new version of process, forms are processed differently depending
on the contexts in which they are processed, so some part of the framework needs to
decide how to process the operator of a list form. The listing above assumes that the
operator of a list form is processed in the same context in which the entire form is
processed. However, there are languages where the operator of a list form and the
operands of a list form should not be processed in the same way because they represent
different kinds of language elements. One example of such a language is Common
Lisp, which uses symbols in the operator position to refer to functions (among other
things) and uses symbols in an operand position to refer to variables. To allow such
languages to be represented by this framework, contexts include another field: an
operator context for processing the operators of list forms. These operator contexts
will be used in the next subsection, as part of enforcing Scheme's syntactic restrictions
on definitions.

The operator context of a context can be extracted using the procedure
context/op-context. There is also a procedure context/init-op-context! that
can be used to set the operator context of an existing context. This procedure is
necessary because some contexts are recursive (or mutually recursive with other con-
texts) in their operator contexts. However, context/init-op-context! could allow
clients of an embedded language to damage that language's contexts. To prevent this,
context/init-op-context! is written so that it can only be used if a context does
not contain a valid operator context. If context/init-op-context! is called on
a context that contains a valid operator context, then context/init-op-context!
signals a system error.

Figure 2-12 contains a second attempt at a context-sensitive version of the process
procedure. The only differences between this attempt and the previous one are found
on lines 11-12 of Figure 2-12. On those lines, the operator context contained in the
context argument of process is extracted and used to process the operator of a list
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(define (process form env context)

(cond ((node? form) node)
((identifier? form)
(environment/lookup env

5 (context/namespace context)

form
(context/unbound-handler context)))

((constant? form)
((context/constant-handler context) form))

10 ((list? form)
(let* ((op-context (context/op-context context))

(op-node (process (car form) env op-context)))
(if (eq? (node/kind op-node) 'keyword)

(node/expand op-node form env context)
15 ((context/list-handler context) op-node form

env
context))))

(else (syntax-fail "Unknown syntax" form))))

Figure 2-12: Second attempt at a context-sensitive version of process

(define (process form env context)
(define (process-int form env context)

;; Internal subroutine - body omitted
)

5 (let ((processed (process-int form env context)))
(if (not (eq? (node/kind processed)

(context/kind context)))
(syntax-fail

"Kind of form does not agree with enclosing context"
10 form)

processed)))

Figure 2-13: A kind-checking version of the process procedure

form.
There is one final aspect of contexts to discuss. In the version of process in

Figure 2-12, there are no constraints on the kinds of nodes that a call to process
could return. This makes writing robust clients of process difficult, because the client
would not know what kinds of nodes to expect from process. To make matters worse,
even the context does not have any control over the kind of node that is returned
- the context could be overruled by an inserted node. To control this complexity,
contexts are required to fix the kind of node that they return. They accomplish this
through a kind field, that can be extracted with the procedure context/kind.

The kind field of a context contains a symbol that must match the kind of every
node that is returned from a call to process using that context. The node kind
is checked by a wrapper procedure that is the true public interface to process. If
the kind of node and the kind of context do not match, process signals a syntax
error. The process procedure that has been previously discussed is really an internal
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subroutine of the public process. This internal subroutine calls itself recursively and
does not check the kinds of nodes it is creating17 . Figure 2-13 contains a kind-checking
version of the process procedure. It includes the wrapper procedure that performs
the kind checking, but omits the details of the internal subroutine that has already
been explained.

Kind checking might appear to limit the ways in which programmers can create
embedded languages. In fact, as discussed earlier, kind checking a limited form of
"syntactic type-checking" that makes it easier to write robust embedded languages.
For instance, in the complete framework, kind checking is what signals a syntax error
if a keyword (like lambda) is used where an expression is expected. If kind checking
is too restrictive for a particular embedded language, it can always be avoided by
making the elements of the language have the same kind and using attributes to
distinguish between language elements.

2.4.4 Implementing definitions

The implementation of Scheme's core syntax discussed in section 2.2.2 was incomplete
in one important respect: it did not implement the syntactic restrictions that Scheme
imposes on definitions. This section will use contexts and the new version of process
to implement those restrictions. At the level of core syntax, Scheme only allows
definitions in two places:

* at the top level of a program,

* and in the body of a lambda expression.

In addition, begin expressions are supposed to be transparent to definitions. This
means if a definition would be allowed where a begin expression occurs, definitions
are allowed in the sequence of expressions that form the body of that begin.

Two different contexts will be used to implement these syntactic restrictions. The
context exp-context will be used wherever a definition is not allowed, and the context
def-context will be used wherever a definition is allowed. Among other things, this
means that forms at the top level of a program will be processed using def -context.
The next question to consider is the kind of node each context will accept. It might
seem natural for the expression context (exp-context) to return expression nodes
and for the definition context (def -context) to return definition nodes. However,
expression nodes and definition nodes should share the same conversion procedure

1 7 At first glance, it is not obvious why the internal version of process does not check the kind of
the operator node it creates. The problem is checking the operator node when it is a keyword node.
It is not enough to know that the operator node is a keyword node, the internal version of process
should also check that the keyword procedure of that keyword node will return the expected kind
of node when called. However, it is not possible to check the kind of node a keyword procedure
returns without calling it, so the internal version of process does not try to perform incomplete
checks on the operator node. The internal part of process could check keyword nodes by checking
an attribute of the keyword node that indicates the kind of node the keyword procedure promises
to return, but this has not been implemented yet.
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(define scheme-namespace (namespace/create))

(define exp-context (context/create 'scheme #f
scheme-unbound-identifier

5 make-constant-exp
make-combination-exp
scheme-namespace))

(context/init-op-context! exp-context exp-context)
10

(define def-context (context/create 'scheme exp-context
scheme-unbound-identifier
make-constant-exp
make-combination-exp

15 scheme-namespace))

(define (definition-context? context)
(eq? context def-context))

Figure 2-14: Source code that creates the contexts exp-context and def-context

protocol (since expressions are legal wherever definitions are) and will likely also share
many of the same attributes. This means that it is simpler to implement expressions
and definitions as different varieties of the same kind of node. Since these nodes are
used to implement Scheme they will have the kind scheme.

Since both exp-context and def-context will be used to create these nodes,
both contexts will also have kind scheme. They will also both have the operator
context exp-context because definitions are never allowed in the operator position
of a form (whether or not the form itself can be a definition). They will share the
namespace scheme-namespace because they both look up (and bind, in the case of
definitions) identifiers in the same namespace. The two contexts will also share an
unbound symbol handler, a list handler and a constant handler because unbound
symbols, lists that do not begin with keywords, and constants are processed in the
same way (and mean the same thing) in the two contexts.

Figure 2-14 contains source code that creates the contexts exp-context and
def-context that are described above. The code assumes that the names
scheme-unbound-identifier, make-constant-exp, and make-combination-exp
are bound to appropriate handler procedures. The procedure context/create is
used to assemble the various fields of the context into a context object. The con-
stant #f is used as a placeholder for an invalid operator context when exp-context
is created. On line 9 of the figure, context/init-op-context! is used to insert
the recursive reference to exp-context as its own operator context. The procedure
definition-context? will be used in the keyword procedure for def ine to check
whether definitions are legal in some context.

Figures 2-15, 2-16, and 2-17 contain skeleton code that illustrates what construct-
ing keyword nodes for some Scheme keywords (that implement the syntactic restric-
tions Scheme imposes on definitions) would look like. These keyword nodes use
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(define $if
(make-scheme-keyword
(lambda (form env context)

(if (not (= (length form) 4))
5 (syntax-fail "If expression incorrect size" form))

(let ((test-node (process (cadr form) env exp-context))
(then-node (process (caddr form) env exp-context))

(else-node (process (cadddr form) env exp-context)))

(make-scheme-node
10 ;; Omitted details

Figure 2-15: Skeleton code for a Scheme if keyword that uses contexts

the new version of process as well as exp-context and def -context. The proce-
dure make-scheme-node is like make-exp-node from the simplified framework, only it
makes nodes of kind scheme (expressions and definitions) instead of just nodes of kind
exp (expressions). The details of calls to make-scheme-node are omitted in all of the
figures. The first thing to notice about these keyword procedures is that, like the new
version of process, they take three arguments: a form, a syntactic environment and
a context. The procedure make-scheme-keyword is a variant of make-keyword-node.
It is used to create keyword nodes whose keyword procedures should return scheme
nodes when called18 . Figure 2-15 contains skeleton code for the if keyword. The
interesting thing to notice about if is that all of its subexpressions are processed in
exp-context, ensuring that definitions cannot be direct subforms of an if.

Figure 2-16 contains skeleton code for a primitive def ine keyword. This def ine
keyword does not implement any of Scheme's syntactic sugar for defining procedures.
On line 7 of the figure, the procedure def inition-context? is used to check whether

or not definitions are allowed in the context in which the def ine form is being pro-
cessed. If definitions are not allowed, a syntax error is signaled. If they are, the

node that represents the define expression is constructed. The variable that is

bound by the def ine is added to the current syntactic environment using the proce-
dure scheme-bind!, which is shorthand for calling the procedure environment/bind!
with the namespace scheme-namespace. The call signals a syntax error if a variable
bound in the innermost frame of the current syntactic environment is being rede-
fined. The variable is bound before the expression that computes the initial value
of the variable is processed, so that expression can contain recursive references to
the variable. That expression is processed in exp-context so it cannot be another
definition.

Figure 2-17 contains skeleton code for the begin keyword. Unlike the keywords
we have seen so far, begin uses the context it receives to process its subexpres-
sions (through the call to process-scheme-body). The use of the argument con-
text is how begin expressions are made transparent to definitions. The procedure

' 8 Creating keyword procedures with procedures like make-scheme-keyword will be useful if
process is changed so that it internally checks keyword nodes (by checking the kind of node they
promise to return).
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(define $define
(make-scheme-keyword

(lambda (form env context)
(if (or (not (= (length form) 3))

(not (identifier? (cadr form))))
(syntax-fail "Illegally formatted definition" form))

(if (not (definition-context? context))
(syntax-fail "Definition in illegal context" form))

(let* ((var (cadr form))
(dexp (caddr form))

(var-node (make-variable var env)))
(scheme-bind! env var var-node

(lambda (var)
(syntax-fail "Illegal redefinition:

form)))
(let ((dexp-node (process dexp env exp-context)))

(make-scheme-node
;; Omitted details))))))

Figure 2-16: Skeleton code for a Scheme define keyword that uses contexts

(define $begin

(make-scheme-keyword
(lambda (form env context)

(if (< (length form) 2)

(syntax-fail
"Begin expression has too few subexpressions"

form)
(make-sequence-node

(process-scheme-body (cdr form) env context)
form)))))

Figure 2-17: Skeleton code for a Scheme begin keyword that uses contexts
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process-scheme-body is a variant of the process-body procedure discussed in the
simplified framework. The change in name indicates that the new procedure can
only be used to process lists of forms where each form represents a scheme node.
The procedure process-scheme-body is also used to process the body of a lambda
expression, where it would be called with def -context explicitly, to indicate that
definitions are allowed in the body of a lambda (whether or not they are allowed in
the context in which the lambda itself is processed).

2.5 Additional features

This section describes additional features of my framework that simplify the task of
writing syntax extensions and syntax-extension interfaces. The first part of this sec-
tion describes node futures, special objects that make it easier to recover nodes that
correspond to parts of a form. The second part describes modifications to process
that enable the automatic recovery of the source code that corresponds to a particular
node. The following part describes advanced features of my framework's system for
generating and handling syntax errors. These features allow users of my framework
to replace low-level syntax errors with equivalent higher-level errors. The final part of
this section describes the interface to the Scheme 48 module system that my frame-
work provides. This interface is intended for the use of creators of syntax-extension
interfaces. It allows them to precisely control the Scheme 48 environments in which
syntax extensions are evaluated.

2.5.1 Node futures

In section 2.2.4, a simple strategy was presented to allow macros to recover nodes
that represent parts of a form:

1. Process the parts of a form whose nodes are desired separately.

2. Build the node that represents the entire form by using node insertion to reuse
the processed parts of the form.

In order for this strategy to work, a macro must be able to process the parts of a form
correctly. This means that a macro must have access to the syntactic environment
and context in which these forms should be processed. Accessing the context in which
a form should be processed should not be difficult, because there should only be a
limited number of contexts - roughly corresponding to the different kinds of language
elements that can be created. Accessing the syntactic environment, on the other hand,
can be more difficult. In particular, when a node that represents part of a local binding
form is desired, recovering the node using the tools that have been described so far
is cumbersome. This is demonstrated by the catch macro in Figure 2-18. catch
is a convenient shorthand for a use of Scheme's call-with-current-continuation
(abbreviated call/cc).
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(catch <var> <body> ... ) =>
(call/cc (lambda (<var>) <body> ... ))

(define-syntax catch

5 (lambda (form env context)
(if (not (= (length form) 3))

(syntax-fail "catch form incorrect size" form))
(if (not (identifier? (cadr form)))

(syntax-fail

10 "catch: attempt to bind continuation to non-identifer"
form))

(let*
((%lambda (process 'lambda global-env exp-keyword))
(%call/cc (process 'call/cc global-env exp-context))

15 (var (cadr form))
(body (caddr form))

(body-node #f)
(var-node #f)
(output-node

20 (process
(,%call/cc

(,%lambda
(, var)

,(capture-env
25 (lambda (body-env)

(set! var-node
(process var body-env exp-context))

(set! body-node
(process body body-env exp-context))

30 body-node))))
env exp-context)))

(set-form! output-node
'(catch ,(get-form var-node)

,(get-form body-node)))
35 output-node)))

Figure 2-18: Syntax definition for a source-code reconstructing catch macro
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The catch macro wants nodes that represent the identifier bound and the body of
the catch expression, so that it can use them to reconstruct its source code. The en-
vironment required to create these nodes is made available by the use of capture-env
on lines 24-30. The nodes themselves are made available to the rest of the macro by
mutating the placeholder variables body-node and var-node. As can be seen from
figure, this is difficult code to write, but a bigger problem is that this code is even
more difficult to automatically generate - as a syntax-extension interface might want
to do. In order to automatically generate this code, it is necessary to know not just
the subforms whose node is desired, but also the syntactic environment and context
in which these forms should be processed.

Node futures provide a simpler way to access nodes that correspond to parts of
a form. The idea behind node futures is to extend the strategy of node insertion
to those cases when the appropriate node cannot be created in advance. Instead of
inserting an unavailable node into a form, a node future can be inserted. After the
form has been processed, the node future can be used to recover its corresponding
node. From this point of view, the strategy from Figure 2-18 is a complex, brittle
and error-prone way to construct a node future - using capture-env to interrupt
processing (and recover an environment) and mutating a local variable to provide
access to the new node.

Node futures are implemented using data structures that store a form and, once
it has been discovered, its associated node. They are created using the procedure
node-future/create. This procedure takes a single argument: the form around
which to build a node future. When process discovers that the form it is processing
is a node future, it extracts the form to process from it. The extracted source code
is then processed and the resulting node is saved in the node future (before the node
is returned). Since process has access to the current syntactic environment and
context, they do not need to be deduced. The creator of a node future can access the
saved node after process returns. The clause of the internal process procedure that
handles node futures is presented in Figure 2-19.

((node-future? form)

(let* ((source (node-future/source form))
(processed (process-int source env context)))

(node-future/set-node! form processed)
5 processed))

Figure 2-19: Source code for the internal process clause that handles node futures

The clause uses the procedure node-future/source to extract the source form
stored in a node future. It uses the procedure node-future/set-node! to save a
node in the future. It is important to note that only one node can be saved in a node
future. This should be expected because only one node can be the "future instance"
of a particular node future. However, just as in certain cases S-expressions might be
processed multiple times, node futures might be processed mode than once as well.
As implemented, only the first call to node-future/set-node! (the first time the
node future is processed) successfully saves a node. The nodes that later calls attempt
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to save are lost. process could return the previously saved node when it encounters
a node future that already has a node associated with it, but that would mean that
node futures would not be transparent to the core keywords and syntax extensions
that did not use them. Transparency would be lost because the node returned after
processing a node future would depend on whether or not that node future had a saved
node. This is a tradeoff made when using node futures instead of node insertion. In
the case of node insertion, the inserted node is unambiguous and can be reused, as
long as it can be created in the first place. In the case of node futures, a node does
not have to be created, but when a node future is used more than once the desired
node may be lost 19.

(define-syntax catch

(lambda (form env context)

(if (not (= (length form) 3))

(syntax-fail "catch form incorrect size" form))

5 (if (not (identifier? (cadr form)))
(syntax-fail
"catch: attempt to bind continuation to non-identifer"

form))

(let*
10 (('lambda (process 'lambda global-env exp-keyword))

(%call/cc (process 'call/cc global-env exp-context))
(var-fut (node-future/create (cadr form)))

(body-fut (node-future/create (caddr form)))

(output-node

15 (process
'(,'call/cc

(,%lambda (,var-fut) ,body-fut))
env
exp-context))

20 (var-node (node-future/node var-fut))
(body-node (node-future/node body-fut)))

(set-form! output-node
'(catch ,(get-form var-node)

,(get-form body-node)))
25 output-node)))

Figure 2-20: Syntax definition for a catch macro that uses node futures

A second version of the catch macro, that uses node futures, is presented in
Figure 2-20. It uses the procedure node-future/create to create node futures that
encapsulate the identifier bound and the body of the catch expression (lines 12-13).
It uses the procedure node-future/node to extract the nodes that correspond to the

19 Constructs (syntax extensions or core syntax) that reuse forms usually assign the same "meaning"

(associate the same node) with that form, such as when a variable node is bound and that binding
is used. In that case, the limitations of node futures are not a problem. The case where there is a

problem is if a construct reuses a form with a different meaning for each use. One example of such

a construct would be an assertion macro that uses an input form as an asserted predicate as well as

part of its error message if the assertion fails.
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subforms. One thing to mention is that the node future corresponding to the identifier
bound does not get its node from process. The only way that node future is used is
when the keyword procedure for lambda binds it to a variable node. However, binding
an identifier is another way of associating a meaning with it. The future instance is
no less valid because it comes from a binding, so the procedure environment/bind!
must also be modified to handle identifier node futures. If a node future that contains
an identifier is bound, the node to which it is bound to is also saved. Just as in the
case of node futures that are processed, node futures that are bound only capture a
single future instance.

It is possible for a syntax-extension interface to generate code similar to the catch
macro in Figure 2-20. If the interface decomposes a macro use into its component
subforms, they can be encapsulated in node futures. These node futures can be used
to construct the expanded code that corresponds to a macro use. This expanded
code can then be processed to create an output node that represents the macro use.
After processing, the nodes that correspond to the subforms can be extracted and
used to construct improved semantic information for that output node. An example
of a syntax-extension interface that follows this strategy is the macro-by-attributes
interface described in Chapter 4.

2.5.2 Automatic source code recovery

Static analyses which perform semantic error-checking, such as type-checking, manip-
ulate nodes because they contain the semantic information that the analyses check.
However, such analyses often want the source code that corresponds to a node. They
can use a node's source code to generate more specific and more useful error mes-
sages for a user. As demonstrated by the sample static analysis, syntax extensions
could reconstruct their source code for such a use. However, every syntax extension
would have to include source-code reconstruction steps for this to work. Otherwise
there would be nodes whose source code cannot be reconstructed. It is easier for the
framework to automatically associate source code with nodes because the framework
is responsible for processing source code into nodes in the first place.

The framework can be modified to automatically save source code in the f orm
attribute of a node by making some small changes to the process procedure. First,
the wrapper procedure is changed to set the f orm attribute of a node to the form
processed, as long as that form is not a node, node future, or a form generated
by the capture-env procedure (see section 2.3.2). Embedded nodes should already
have their form attribute set because they are created by other calls to process.
capture-env also uses process to transform the source code it generates into a
node, so the nodes returned from its forms also have their f orm attribute set. Node
futures, on the other hand, are directly processed by the internal part of process
(because they may be a part of an expression whose kind should not be checked), so
the code that handles node futures also has to set their form attribute. The changes
to process that implement automatic source code recovery are listed in Figure 2-21.
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(define (process form env context)
(define (process-int form env context)

... ;; the syntax-object clause is the only one changed
((node-future? form)

5 (let* ((source (node-future/source form))
(processed (process-int source env context)))

(node-future/set-node! form processed)
(node/attribute-set! processed 'form source)
processed))

10 ... Other omitted clauses
)

;; The wrapper procedure is changed as well
(let ((processed (process-int form env context)))

... ;; Omitted kind-checking
is (if (and (not (node? form))

(not (node-future? form))
;; check for capture-env forms
(not (special-form? form)))

(node/attribute-set! processed 'form form))
20 processed))

Figure 2-21: Changes to process that implement automatic source code recovery

2.5.3 Advanced syntax error handling

In discussing the framework so far, I have explained how the syntax-f ail procedure
can be used to generate syntax errors, but I have not explained how those syntax errors
are handled. The reason this has not been explained is that handling syntax errors is
one of the responsibilities of a user of the framework (a compiler driver, interpreter,
etc.). However, the framework does have to supply a method for installing a syntax-
error handler. This is provided through the fluid variable syntax-fail-handler.
The initial value of this fluid variable is a procedure that signals a system error
because no syntax-error handler is installed. Users of the framework should set it to
an escape procedure that handles syntax errors. Usually that means the procedure
does not return to its caller and, instead, reports an error to the user. The escape
procedure takes two arguments: a message that describes the syntax error and the
form that is syntactically invalid.

The reason the syntax-error handler is stored in a fluid variable is so that the
handler can be locally overridden. This is accomplished through the procedure
chain-syntax-fail. This procedure takes two arguments: a local syntax-error han-
dler and a thunk. The value chain-syntax-fail returns is the value obtained when
its thunk argument is called - unless there is an error. Instead, all syntax errors
generated while calling the thunk are handled by the local handler. Just as with
the syntax-error handlers described in the previous paragraph, a local syntax-error
handler takes two arguments: a message and a form. The difference is that the local

20Fluid variables are a feature of Scheme 48. Essentially, they are mutable, dynamically scoped
objects. They are described in greater detail in the library-code section of the Scheme 48 user's
manual [10].
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handler is not an escape procedure. Instead, it also returns two values: a syntax-
error message and a form that is syntactically invalid. This message and form are
passed to the syntax-error handler that was in effect before the local handler was
installed. This allows keyword procedures to raise the level of the syntax errors they
generate, without allowing them to suppress syntax errors completely. More impor-
tantly, this allows a syntax-extension interface to check (and possibly improve) the
syntax errors that syntax extensions created with that interface report. In section
4.2, chain-syntax-fail is used in this manner by the macro-by-renaming syntax-
extension interface.

2.5.4 Using the Scheme 48 module system

Syntax-extension interfaces that are based on my framework must provide methods
for creating keyword procedures that process syntax extensions21 . As mentioned
earlier, these keyword procedures are Scheme 48 procedures, so they need to be
created by evaluating Scheme 48 expressions. Extension interfaces want to control
the environments with which keyword procedures are created for two reasons:

1. They want to provide access to procedures (like process) and other data objects
(like specific contexts) that keyword procedures need in order to function.

2. They want to deny access to procedures (like make-exp-node) and data that
would allow keyword procedures to depend on internal parts of a language
implementation.

My framework provides two procedures that allow extension interfaces to create con-
trolled environments in which keyword procedures can be evaluated: load-module
and create-environment. Both procedures depend on internal details of the ver-
sion of Scheme 48 with which my framework was developed, so they would need to
be rewritten to port the framework to another version of Scheme, or possibly even
another version of Scheme 48.

The two procedures use the Scheme 48 module system [181 to enable the creation of
controlled environments. The first procedure, load-module, takes a single argument:
a file specification (a symbol or list that specifies a relative path to a file). It loads that
file into the configuration package of the Scheme 48 system on which the framework
is running. That makes the structures and interfaces defined in that file available
to an extension interface. Through the use of create-environment, an extension
interface can make those structures available to the syntax extensions defined using
that interface. create-environment takes one argument: a list of symbols that name
Scheme 48 structures. It returns an environment that contains the bindings exported
by those structures, in addition to bindings for the standard Scheme procedures. One
use of load-module and create-environment would be to create mechanisms to
allow complex syntax extensions to use the Scheme 48 module system to structure
their implementations.

"These keyword procedures are used to create keyword nodes that, when bound in an appropriate
syntactic environment, implement a syntax extension.
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Chapter 3

Language Implementation

In this chapter I use my syntax-extension framework to implement a language with a
non-trivial static analysis. This serves two purposes. First, it demonstrates that my
framework can handle complex static analyses. Second, it builds a foundation for the
discussion of syntax-extension interfaces in Chapter 4.

The language I chose to implement is Scheme/R, a demonstration language dis-
cussed in MIT's graduate programming languages class. Scheme/R is a statically-
typed variant of Scheme that uses Hindley-Milner type inference. My implementation
of Scheme/R uses Hindley-Milner type inference for two separate, but closely related
purposes: to assign types to program expressions and to explain what is wrong with
program expressions that are not well-typed.

The first section of this chapter is an overview of the type-manipulation library
used by my language implementation. The purpose of this discussion is to make the
language representation and keyword procedures described in the rest of the chapter
easier to understand. The second section describes how the representation of Scheme
described in Chapter 2 is modified to represent Scheme/R. The third section describes
the implementation of Scheme/R in more detail. This includes a discussion of several
keywords and the syntactic environments in which those keywords are bound.

3.1 Type library

The type-manipulation library is a set of procedures for creating, printing and uni-
fying Hindley-Milner types. The type library began as a group of procedures that
manipulated S-expression representations of Hindley-Milner types.

Since that beginning, the evolution of the interface to the library has been driven
by two desires. The first desire is, eventually, to provide parallel unification technology
in the library. This technology can make it easier to distinguish between type errors
that are contained within a part of an expression and type errors that result from the
interactions between parts of an expression [151. Distinguishing between these sorts
of type errors makes it easier to distinguish between type errors caused by argument
forms of a syntax extension and type errors caused by the use of the extension itself.
The second desire is, in the future, to implement the type library using my syntax-

52



extension framework. Types could be represented using type nodes, constructed by
processing type forms. This would make it easier to naturally represent languages
where types are written down as parts of programs. In addition, implementing a type
system using my framework would make it easier to make the type system extensible.

Each of the parts of this section describes a different aspect of the type library.
The first part describes how types are represented. The second part describes type
variables and the role they play. The final part of this section describes the routines
provided for unifying types.

3.1.1 Describing types

The first goal of the library is to connect type forms, the S-expressions that describe
types, and the types themselves. The procedure create-type can be used to turn
a type form into a type. In the current implementation, create-type does nothing
more than verify that a form describes a valid type before returning it. However, in
a future version, create-type would be an interface to the process procedure. As
it does with other forms, process would create a type node from a type form, using
a syntactic environment and a type context (which could select a private namespace
for types). However, if types are created by processing, the type described by a type
form could depend on local environment bindings in the type namespace. This is a
problem for syntax extensions that want to use types because they may not get the
type they expect when they process type forms in the current syntactic environment.
For example, if there is a local binding in the type namespace for the symbol int, a
syntax extension might not be able to access the global integer type. This is another
version of the hygiene problem described in section 2.3. To resolve these problems
for syntax extensions, create-type would process type forms in a global syntactic
environment. This means create-type would be an interface for hygienically creating
types'.

In addition to creating primitive types from symbols (such as int (integers), bool
(booleans), string (strings), and unit (the unit type)), create-type can also be
used to create types from the following S-expressions:

" (listof T) - lists of some type, T,

" (pairof T, T2)- pairs with left elements of type T and right elements of type
T2,

" (contof T) - continuations that expect the type T,

( (-> (T...T) T,) - procedures with argument types T,...T., that return type
T,,

'process itself would also be available for syntax extensions that wanted access to local type
bindings - to construct a type from an argument form, for example.
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* and (generic (,1...I,) Tb) - polymorphic types with a body type Tb. Tb uses
the identifiers I ...I, as placeholders for the argument types that are substituted
in that body type when the polymorphic type is instantiated.

Just as process supports node insertion, create-type supports type insertion: cre-
ating types from type forms that have types where subforms are expected. For ex-
ample, a type that describes a list of integers could be created using the expression
(create-type ' (listof , int-type), where the variable int-type is a variable that
contains a reference to an integer type. The primary use of type insertion is to cre-
ate types that contain type variables as placeholders for parts of their type. Type
variables are a special variety of type discussed in more detail in the next subsection.

3.1.2 Type variables

Type variables are types that are used as placeholders for unknown types during type
inference. In the library, type variables are created using the procedure type-var.
This procedure takes a single argument, a form that is intended to describe the
expression whose type for which the type variable is a placeholder. The form can
be extracted using the procedure type-var/form. In the current implementation
of my demonstration language this form is stored, but not used. It is intended to
allow clients to generate clearer and more specific error messages when type errors
are discovered by allowing them to connect the type variables associated with a type
error to parts of a source program. Type variables are an important part of unification.
They keep track of the constraints discovered on the unknown types for which they
are placeholders.

3.1.3 Unification and type errors

The most important ability the type library provides is the ability to unify types.
Unification is an essential part of Hindley-Milner type inference. It allows parts
of a program to implement type inference by incrementally adding type constraints
to the type variables that are placeholders for their types. The primary interface
to the unification system is the procedure unify-types. It takes two arguments:
the two types to be unified. There is also secondary interface to the unification
system, unify-type-lists, that unifies the corresponding members of two lists of
types. unify-type-lists, though currently implemented as a serial unification,
allows users to express unifications that are logically parallel. This means they could
take advantage of parallel unification technology in the future without changing their
type-inference routines. With both procedures, if unification is successful, it mutates
the type variables (as necessary) to make the types to which they refer equivalent and
returns an unspecified value. If unification is unsuccessful, it generates a type error
by (indirectly) calling the procedure type-fail.

The procedure type-f ail is an interface to a type-error handler in the same way
that syntax-fail is an interface to a syntax-error handler (section 2.5.3). A fluid
variable, type-fail-handler, allows a user of the library to install a procedure that
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handles type errors. The procedure chain-type-fail allows macros and extension
interfaces to install methods for replacing low-level type errors with higher-level errors.
Unlike syntax-f ail, type-f ail takes three arguments: a message describing the
type error, a data structure describing the type conflict in the form (usually a pair
of the two types that fail to unify), and the form that is blamed for the type error.
To understand how the details of how type errors are generated, the representation
of Scheme/R that is used with the library must first be considered.

3.2 Representing Scheme/R

This section describes how my demonstration language, Scheme/R, is represented
using my framework. The first part of this section describes how the representation
of Scheme from Chapter 2 is modified to represent Scheme/R. It focuses on the
differences between Scheme and Scheme/R nodes and attributes. The second part of
this section describes how the new Scheme/R nodes and attributes are used to build
a type-inference (and type-error reporting) system. The final part of this section
discusses Scheme/R variable nodes and the additional features they have in order to
support inferring polymorphic types.

3.2.1 Scheme/R nodes and attributes

The representation of Scheme/R is based on the representation of Scheme that linked
the examples in Chapter 2. As in section 2.4.4, two contexts (exp-context and
def -context) are used to implement syntactic restrictions on definitions. Just as with
Scheme, the core syntax of Scheme/R has two kinds of language elements represented
by two different kinds of nodes: keywords and Scheme/R nodes. The Scheme/R
nodes follow the Scheme nodes in representing expressions and definitions as different
varieties of the same kind of underlying node.

However, there are also substantial differences between the Scheme and Scheme/R
nodes. This is why the Scheme/R nodes described in this chapter have kind scheme/r,
instead of the kind scheme, as the Scheme nodes have. This also means they are con-
structed using the procedure make-scheme/r-node instead of make-scheme-node.
One difference between the Scheme and Scheme/R nodes is the machine each kind
of node targets. The Scheme nodes from Chapter 2 targeted an unspecified Scheme
debugger, so their conversion procedures were omitted and the conversion procedure
protocol was not described. The Scheme/R nodes, on the other hand, target a ma-
chine that accepts Scheme programs, and their compilation model is described in
more detail below. Following that, the attributes that Scheme/R nodes are discussed
in more detail, to prepare for a discussion of type inference.

Compiling Scheme/R

The first difference between the Scheme nodes described in Chapter 2 and the
Scheme/R nodes described here is found in their conversion procedures. The
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Scheme/R nodes generate code for code for a virtual machine that accepts programs
in R5RS Scheme [9]. To be specific, the conversion procedures for Scheme/R nodes
are procedures of no arguments that return target-machine Scheme code. The next
question to consider is how the target-machine code will implement Scheme/R. The
choices made include:

* The generated Scheme code will not use any of Scheme's syntax extension facili-
ties (def ine-syntax, let-syntax, or letrec-syntax). This restriction ensures
that the syntax-extension mechanisms provided by the framework are complete.

* Scheme/R procedures are represented using target Scheme procedures. For
simplicity, the generated Scheme procedures have the same arguments, in the
same order, as the original Scheme/R procedures2 . Among other things, this
makes it easy to use procedures from the target Scheme implementation as
library procedures for Scheme/R (see section 3.3.5).

e Recursion is implemented using recursive forms from the target Scheme (def ine
and letrec). The advantage of this is simplicity: Scheme/R conversion pro-
cedures for recursive constructs do not need to choose how to "unwind" the
recursion. However, this means the run-time semantics of recursion are inher-
ited from the target language as well. Recursive constructs that are illegal in
the target language, such as (define foobar (+ foobar 1)), will generate
target-language errors at run-time. To the extent that the goal of this exercise
is to replace lower-level errors with higher-level ones, this is disappointing.

Scheme/R attributes

The second difference between the Scheme and Scheme/R nodes is that the Scheme/R
nodes have two additional attributes: w-check and unify-fail-msg. Both of these
attributes are used to control type inference. The w-check attribute contains a type-
checking procedure that is used to implement a type-inference rule. The type-checking
attribute is named w-check because the type-checking procedure it stores is used
to implement type-inference Algorithm W for Scheme/R [15]. The unify-fail-msg
attribute is used to control the generation of type-error messages - which are usually
caused by unification failures. The attributes are discussed in greater detail in the
next part of this section, which describes the type-inference system in greater detail.

3.2.2 Type inference and type errors

This section describes how the Scheme/R nodes and attributes described above are
used to implement a type-inference and type-error system. First, the type-checking
procedure stored in the w-check attribute is explained. Then that attribute is used to
build an interface for type inference that allows authors of type-checking procedures
to control how nodes and type errors are associated. Finally, the generation of specific
type errors, using type-error codes and the unify-f ail-msg attribute is explained.

2The order of operand evaluation is also inherited from the target Scheme machine.
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The w-check attribute

As mentioned in section 3.2.1, the w-check attributes of a Scheme/R node stores a
type-checking procedure that implements a type-inference rule. The implementation
of an inference rule for some node has two parts:

1. Imposing the type constraints generated by the expression that the node rep-
resents. This is handled in a w-check procedure by having the procedure use
unification (and, possibly, other parts of the type library) to impose constraints
on the types of parts of an expression - recursively building the w-check at-
tribute the way a static analysis should (see section 2.2.4). If the imposed
constraints do not generate a type error, the expression is well-typed.

2. Deducing the type of the node's expression. This type is returned by the node's
w-check procedure, assuming the node is well-typed.

Type-inference interface

The next step in building a type-inference system is to build an interface for using the
w-check attribute. The purpose of this interface is to simplify the task of generating
clear and specific error messages when type errors occur. The problem is that type
errors are generated by the unification system, and it does not know anything about
the connection between the types it is unifying and the program being type-checked.
Nor should it - the unification system should be independent of any particular
programming language, so it can be used for any Hindley-Milner language. The
solution is to use a language-specific interface for type inference that keeps track
of the connection between unification and the expression (or definition) being type-
checked.

The type-inference interface consists of two procedures:

type-check The type-check procedure is a procedure of a single argument: a
Scheme/R node. When called, type-check does two things. First, it saves the
node being checked in the fluid variable type-f ail-node. Second, type-check
invokes the type-checking procedure of that expression node and, as long as
type-checking succeeds, returns the resulting type. The dynamic binding of the
fluid variable is what makes it possible to recover the problematic node when
there is a type error. It makes the current value of type-fail-node mirror
the node whose type-inference procedure is generating type constraints (i.e.,
calling the unification system). When a recursive call to type-check is made,
the value of type-fail-node is temporarily overridden, because a new node
is responsible for the constraints introduced. When type-check returns, it re-
turns to a previous node's type-checking routine, and the corresponding node
is restored in type-fail-node. Another way to think about the fluid vari-
able type-f ail-node is as a "hidden" parameter passed through the unification
engine to the type-error system. It is hidden for two reasons:
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1. As mentioned earlier, the unification system should not be responsible
for the language-specific task of tracking the connections between type
constraints and the program nodes that generate them.

2. The parameter has a reasonable default value: the node whose type-
inference routine is currently executing. Hiding the parameter makes it
easy to give type-fail-node its default value and only type-inference
routines that need to override that default behavior need to worry about
it.

One reason to override this default behavior is to "invisibly" type-check a node.
Syntax extensions may want to do this because it allows them to hide their ex-
panded code during type inference. With this interface, a node can be "invisibly"
type-checked by directly using its w-check attribute. If the w-check attribute is
used instead of the type-check procedure, then the value of type-fail-node
is not changed. This means that type errors generated by newly imposed con-
straints will be connected with the parent of that node, not the node that is
actually being checked, hiding the node whose type-inference routine is execut-
ing.

unif y-node The second part of this interface is the unify-node procedure. It takes
two arguments: a type and a Scheme/R node. The unify-node procedure
uses type-check to infer the type of its argument node. As discussed above,
this means that if the argument node is not well-typed, the type error will
be associated with that argument node. unify-node then uses the unification
system (unify-types in particular) to require that the type of its argument
node be compatible with its argument type. If a type error is generated here,
the error is associated with the node that was in type-fail-node when the
call to unify-node was made - the node responsible for the new constraint.
There is also a parallel version of unify-node, unify-nodes, that takes a list
of types and a list of expression nodes and uses unif y-type-lists to constrain
the types of those nodes.

Generating type errors

Now that the interface for type inference has been explained, the generation of type
errors can be discussed in greater detail. As mentioned in section 3.1.3, type errors are
ultimately generated by calls to the procedure type-fail, the way syntax errors are
generated by calls to syntax-fail (section 2.5.3). The unification system generates
type errors by calling type-fail through the procedure unify-fail (Figure 3-1).
unify-fail uses two fluid variables (type-fail-node and type-fail-msg-code)

'This use of the type-inference interface assumes that the subnodes of the node being "invisibly"
type-checked can be exposed. This tends to be the case for syntax extensions because subnodes of
expanded code tend to be generated from parts of a syntax extension's argument form - which can
be exposed. If this is not the case, a syntax extension will need to use more complicated techniques
to hide the type-checking of its expansion.
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(define (unify-fail typel type2)
(let ((node (fluid type-fail-node))

(types (cons typel type2)))
(let ((form (node/attribute-get node 'form))

5 (msg (node/attribute-get node 'unify-fail-msg)))
(if (string? msg)

(type-fail msg types form)
(type-fail (msg (fluid type-fail-msg-code))

types form)))))

Figure 3-1: The procedure unify-fail that reports unification errors

to generate type errors. It uses Scheme 48's fluid procedure to extract the val-
ues of these fluid variables (lines 2 and 8 of Figure 3-1). As discussed above,
type-fail-node contains the node blamed for the type error. The f orm attribute of
that node is reported as the source code responsible for the type error (line 4).

The unify-f ail-msg attribute of the failure node is used to determine the error
message to print. If that attribute is just a string (a common case), then that is the
error message. Otherwise, the attribute must be a procedure of a single argument.
That procedure is passed the failure code contained in type-f ail-msg-code. Nodes
that use failure codes are responsible for setting this fluid variable. For example
of this, see the Scheme/R if keyword procedure (discussed in section 3.3.2). In
this case, a default value of the "hidden" parameter type-fail-msg-code does not
need to be provided. This is safe because the default action is to ignore it (when
unify-fail-msg is a string).

3.2.3 Scheme/R variable nodes

Unfortunately, the representation of Scheme/R described so far is not powerful enough
to implement Hindley-Milner type inference. Specifically, it cannot support inferred
polymorphism. The problem with supporting inferred polymorphism is that there is
no representation of a type environment 4. A type environment is necessary for infer-
ring polymorphism because, in Hindley-Milner type inference, the free type variables
of the current type environment constrain how potentially polymorphic types can be
generalized. Specifically, a type cannot be generalized along any type variables that
are free in the current type environment. This restriction is necessary because those
type variables could be constrained in ways that have not yet been discovered. If
a type were generalized along those type variables future type constraints on those
variables could be violated - allowing type-incorrect programs to type-check.

The solution to this problem is to find a way to represent a type environment
for Scheme/R. Just like a syntactic environment, a type environment stores compile-
time binding information about a program. Unlike a syntactic environment, a type
environment only stores information about the variables of a program. It is not
interested in any other parts of a program (keywords, embedded languages, etc.).

4an environment that binds program variables to types
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(define (make-variable name type env)
(let ((genvar (identifier->symbol name env)))

(define self (make-scheme/r-node
'variable

5 (lambda ()

(instantiate
(node/attribute-get self 'type)))

"Type checking should not fail at a variable"
(lambda () genvar)))

10 (node/attribute-set! self 'type type)
(node/attribute-set! self 'name name)
self))

Figure 3-2: The definition of the make-variable procedure for Scheme/R

This means a natural way to represent a type environment is to add a type attribute
to Scheme/R variable nodes. The type attribute allows syntactic environments to
double as type environments - so the appropriate set of free type variables can be
determined by iterating over a syntactic environment's bindings. This is an example
of variety-specific information that a static analysis (in this case, type inference) might
use attributes to store.

To make the discussion of variable nodes more concrete, the definition of the
make-variable procedure for Scheme/R is given in Figure 3-2. As mentioned in
section 2.2.2, make-variable is the procedure used to create nodes that represent
variables. The Scheme/R version of make-variable takes three arguments: an iden-
tifier to name the variable, the type that should be associated with that variable and
the syntactic environment in which the variable node will be bound. The syntactic
environment argument is necessary because, as discussed in sections 2.1.3 and 2.3,
syntactic environments are used to ensure that unique target-machine code is gen-
erated for each identifier. This happens on line 2 of the make-variable definition,
where the procedure identif ier->symbol creates a unique symbol for a new variable
node from that node's identifier and syntactic environment.

On lines 3-9 of make-variable, make-scheme/r-node is called to create the new
Scheme/R variable node. This procedure takes four arguments: the variety of the
Scheme/R node that is being created, a type-checking procedure for the w-check
attribute of that node, a value for the unify-fail-msg attribute of that variable
node, and a conversion procedure that generates Scheme code for that node. The
type-checking procedure for a variable node, on lines 5-7 of Figure 3-2, is notable.
It retrieves the type stored in the type attribute of its variable node and returns
an instantiated version of that type'. This ensures that if the type attribute of a
variable node is changed, the variable node will be type-checked according to its
new type. Allowing the type of a variable to change as type inference proceeds,
while ugly, is necessary to support type inference for polymorphic mutually recursive

'Instantiation is the conversion of a polymorphic type into a monomorphic type by substituting
fresh type variables for the identifiers in the body of the polymorphic type.
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(define (make-constant-exp datum)

(if (null? datum)
(syntax-fail "Empty expressions are illegal" datum))

(make-scheme/r-node
5 2constant

(let ((datum-type (constant-type datum)))
(lambda ()
datum-type))

"FATAL ERROR : Constants must type check!"
10 (lambda () datum)))

Figure 3-3: make-constant-exp for Scheme/R

bindings (see the implementation of letrec in section 3.3.4). The instantiation itself
is necessary to correctly constrain uses of variables that have polymorphic types. The
rest of make-variable sets up the variable-specific attributes of the new node before
returning it. The name attribute of a variable node stores the original identifier used
to create that node. It is not a significant part of the current system.

3.3 Implementing Scheme/R

This section completes the discussion of my implementation of Scheme/R (and its as-
sociated static analysis) by describing the procedures that implement the core syntax
of Scheme/R and how they are used. The first four parts of this section describe the
procedures that implement constant expressions, conditionals (if), definitions, and
the two different local binding forms (let and letrec). The implementations of pro-
cedure expressions (lambda), procedure calls (make-combination-exp) and sequence
expressions (begin) are not discussed in greater detail because those implementations
are straightforward modifications of the corresponding implementations for Scheme,
described in sections 2.2.2 and 2.4.4. After the procedures have been described, the
process of assembling them into a global environment that implements keywords and
provides access to library procedures is discussed in greater detail. The chapter con-
cludes with a discussion of the implementation of the define-syntax keyword, that
is used to create syntax-extension interfaces in Chapter 4.

3.3.1 make-constant-exp

The most primitive elements of Scheme/R are its self-evaluating constant expressions.
The Scheme/R version of the procedure make-constant-exp (first introduced in sec-
tion 2.4.4) creates Scheme/R nodes that represent constant expressions. The source
code for make-constant-exp is in Figure 3-3.

As expected, creating a constant node is a simple use of make-scheme/r-node.
The procedure constant-type, exported by the type library, is used to recover the
type of the constant expression (line 6). Since the implementation uses type infer-
ence Algorithm W, nodes that represent constant expressions can never generate type
errors. This is why the unify-f ail-msg attribute of a constant node (line 9) is a
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string that indicates a fatal error in the type system. Instead, constant nodes con-
strain expressions that include them by returning their fixed type. The conversion
procedure for constants (line 10) is also simple. Constants in Scheme (the target
language) are also self-evaluating expressions, so the conversion procedure just gen-
erates the Scheme constant that corresponds to the Scheme/R constant. The only
unusual part of make-constant-exp is the syntax check on lines 2-3. This is re-
quired because (as mentioned in section 2.1.2) the framework considers an empty list
to be a constant expression. Since the empty list is not a valid Scheme/R expres-
sion, make-constant-exp must ensure that a syntax error is generated when it is
encountered.

3.3.2 if

The implementation of the if keyword for Scheme/R fills in the skeleton implemen-
tation of if from Figure 2-15 (discussed in section 2.4.4). Minor differences between
the two versions of if include the expression contexts and node creation procedures
they use. The source code that creates the keyword node for the Scheme/R if is
given in Figure 3-4.

Scheme/R if expressions have a more complex type-inference rule than the con-
stant expressions described earlier. This inference rule is implemented by the proce-
dure on lines 12-21 of Figure 3-4. The rule introduces two type constraints:

1. The predicate (first subexpression) of the if must have type bool.

2. The types of the consequent (second subexpression) and alternative (third
subexpression) of the if must be compatible.

Constraint 1 is implemented on lines 13-16 of the figure. unify-node is used to con-
strain the type of the node that represents the predicate. Constraint 2 is implemented
on lines 17-21. There, the type of the consequent expression is inferred and unified
with the type of the alternative expression. If both constraints are satisfied, the type
shared by the consequent and alternative expressions is returned as the type of the
if (line 21).

In the type-checking procedure for if, the Scheme 48 procedure let-fluid is
used to dynamically bind different values for the fluid variable type-f ail-msg-code.
The procedure let-fluid takes three arguments: the fluid variable to be bound, the
value to bind it to, and the thunk to execute while that dynamic binding is active. The
unify-node calls that impose the different constraints of the rule are inside thunks
passed to different let-fluid bindings of type-f ail-msg-code. This means they see
different values of that fluid variable, allowing a conditional node to report different
error messages depending on which constraint is violated. These error messages are
generated by the unify-f ail-msg attribute of the node, created on lines 22-27 of
the keyword node definition.

The final part of the if keyword node to consider is its conversion procedure,
on lines 28-31 of Figure 3-4. The Scheme code generated by this procedure to im-
plement an if expression is not remarkable, but the use of the codegen procedure
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(define $if
(make-scheme/r-keyword
(lambda (form env context)

(if (not (= (length form) 4))
(syntax-fail "Illegally formatted if expression"

form))

(let ((test-node (process (cadr form) env exp-contex

(then-node (process (caddr form) env exp-conte

(else-node (process (cadddr form) env exp-cont

(make-scheme/r-node

'conditional

(lambda ()
(let-fluid type-fail-msg-code 'test-fail

15

(let-fluid

20

25

(lambda ()
(unify-node (create-type 'bool)

test-node)))
type-fail-msg-code 'branch-fail
(lambda ()

(let ((then-type (type-check then-node)))
(unify-node then-type else-node)

then-type))))

(lambda (code)

(case code

((test-fail)

"If predicate not a boolean")
((branch-fail)
"If branches have incompatible types")))

(lambda ()
'(if ,(codegen test-node)

,(codegen then-node)
,(codegen else-node))))))))

Figure 3-4: The keyword node for the Scheme/R version of if

30

is. The codegen procedure is shorthand for invoking the conversion procedure of an
expression node. The conditional node created by the if keyword applies codegen to
its subnodes to construct the target-machine code it needs to create target-machine
code for the if expression, in this case, a Scheme if.

3.3.3 def ine

Figure 3-5 contains Scheme 48 code that constructs a keyword node for the Scheme/R
version of def ine. One difference between this version of def ine and the ver-
sion in Figure 2-16 (discussed in section 2.4.4) is that, like if, the Scheme/R ver-
sion of define uses make-scheme/r-node and make-scheme/r-keyword instead of
make-scheme-node and make-scheme-keyword. Another difference between the two
versions of define is that the Scheme/R version creates a type variable (on line 11
of Figure 3-5) as a placeholder for the type of the variable bound by the definition.
This type variable must be created because the Scheme/R version of make-variable
requires a type for the variable node it creates. For simplicity, this version of def ine
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(define $define
(make-scheme/r-keyword
(lambda (form env context)

(if (or (not (= (length form) 3))
5 (not (identifier? (cadr form))))

(syntax-fail "Illegally formatted definition" form))
(if (not (definition-context? context))

(syntax-fail "Definition in illegal context" form))

(let* ((var (cadr form))
10 (dexp-form (caddr form))

(var-type (type-var var))

(var-node (make-variable var var-type env)))
(scheme/r-bind! env var var-node

(lambda (var)

15 (syntax-fail
"Illegal redefinition:
form)))

(let ((dexp-node (process dexp-form env exp-context)))
(make-scheme/r-node

20 'definition
(lambda ()

(unify-node var-type dexp-node))

(create-type 'unit))

"define: inconsistent defined variable type"
25 (lambda ()

'(define

,(codegen var-node)

,(codegen def-node))))))))

Figure 3-5: The keyword node for the Scheme/R version of def ine

does not generalize potentially polymorphic variable types. Instead, let and letrec
are used for polymorphic bindings.

The type-inference routine for definitions, on lines 21-23 of the figure is straightfor-
ward. The only complication is that definitions can be recursive, so the type-inference
routine must ensure that the definition is consistent with the assumed type of a de-
fined variable. That is why it unifies the type of dexp-node (the node that represents
the expression that provides a value for the definition's variable) with the type of the
variable being bound. As long as this unification is successful, the definition itself is
given the unit type'.

'This suggests that the type system allows definitions to be used as expressions. This is usually
not a problem because definitions are syntactically prevented from appearing as expressions. A more
accurate, but also more complex, solution would be to create a distinguished "invalid-type" object
and check that no program types are constructed with it. This could catch the (currently ignored)
error when a definition is the last subform in the body of a procedure or local binding form. In this

position a definition is syntactically legal, since definitions are permitted at the top level of bodies,
but semantically illegal because a definition does not return a value.
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3.3.4 let and letrec

Unlike Scheme, in Scheme/R, let and letrec are not derived expressions - they
are part of the core language. The reason let and letrec are part of the core
language is because, as built-in expressions, they can infer polymorphic types for the
variables they locally bind. In a Hindley-Milner type system, procedures cannot infer
polymorphic argument types. This means that if let and letrec were ultimately
derived from lambda, they would not be able to provide inferred polymorphism.

The definition of the keyword node that implements letrec is given in Figure
3-6. Since the keyword node that implements let is very similar to the one that
implements letrec, it is omitted. The keyword procedures of these keyword nodes
follow the same pattern. First, they check the syntax of their input form. Then, as
long as the input form is syntactically valid, they extract the different pieces of the
input form. In particular, they extract a variable list that is used to create a set of
variable nodes. These variable nodes are bound in a syntactic environment intended
for the body of the form. They also both build nodes for their value expressions (the
expressions that provide values for the locally bound variables) and build a node for
the body of the form using the appropriate syntactic environment. Finally, these
nodes are used to construct an output expression node for the let or letrec. The
type of this output expression node is determined by the inferred type of the body
node of the let or letrec.

The first difference between let and letrec is in the syntactic environment used
to construct expression nodes for the value expressions. For let, this syntactic envi-
ronment does not contain the bindings of the locally bound variables, and for letrec
(since the binding form is recursive), it does. The second difference between let
and letrec is found in their type-inference routines. In the case of let, the initial
types given to the variable nodes are irrelevant. The types of the value expressions
are inferred and then generalized (by using the generalize procedure) and the type
attributes of the let variable nodes are mutated to give those nodes their true types.
The let bindings do not need to be type-checked separately because they could only
cause a type error when a value expression is not well-typed (and that case has been
handled by inferring the types of the value expressions).

In the case of letrec, however, these initial types are significant. They are
used to check the consistency of the letrec bindings. Since letrec, like define,
is a recursive binding form it is necessary to check that inferred type of each bound
variable is consistent with the assumed type that was used to generate that inferred
type. This check is performed by the unification on line 37 of the letrec keyword-
node definition. One important consequence of this consistency check is that letrec-
bound variables can only be used monomorphically in the letrec bindings. After the
check, the letrec-bound variables are generalized for use by the letrec body.

7 This is not strictly true for the current version of the system. As discussed in Chapter 4, two
of the syntax-extension interfaces I have built for Scheme/R do not protect the type system from
macros that deliberately break it. This means let and letrec could be implemented as macros
that break the type system, but that is obviously the wrong thing to do.
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(define $1etrec
(make-scheme /r-keyvord
(lambda (form env context)

(if (not (and (> (length form) 2)
5 (let-list? (cadr form))))

(syntax-fail "Illegally formatted letrec expression"
form)

(let* ((bindings (cadr form))
(vars (map car bindings))

10 (exps (map cadr bindings))
(body (cddr form))
(nev-env (environment/extend env))
(types (map type-var vars))
(var-nodes (map (lambda (var type)

15 (make-variable var type
nev-env))

vars types)))
(for-each (lambda (var var-node)

(scheme/r-bind! nev-env var var-node
20 (lambda (var)

(syntax-fail
"Duplicate variable - letrec:
var))))

vars var-nodes)
25 (let ((exp-nodes (map (lambda (exp)

(process exp nev-env
exp-context))

exps))
(body-node (make-sequence -node

30 (process -scheme /r-body body nev-env
def-context)

form)))
(make-scheme /r-node
Iletrec

35 (lambda ()
(let ((var-types (map variable-type var-nodes)))

(unify-exps var-types exp-nodes)
(for-each (lambda (var-node type)

(node/attribute-setI var-node 'type
40 (generalize type env exp-context)))

var-nodes var-types)
(type-check body-node)))

"Inconsistent variable types in letrec bindings"
(lambda ()

45 '(letrec ,(map (lambda (var-node exp-node)
'(,(codegen var-node)

,(codegen exp-node)))
var-nodes exp-nodes)

,(codegen body-node))))))))))

Figure 3-6: The keyword node for the Scheme/R version of letrec
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3.3.5 Populating the global environment

The global environment of Scheme/R contains bindings for keyword nodes that im-
plement Scheme/R's core forms as well as variable nodes that make it possible for
Scheme/R programs to use Scheme library procedures from the target machine. Pop-
ulating the global environment with keyword bindings is straightforward - all that
is necessary is to use scheme/r-bind! on the global environment to bind a key-
word node to the desired identifier in the Scheme/R namespace. For Scheme/R,
globally bound keywords include if, lambda, let, begin, letrec, define, and
define-syntax.

Globally bound variable nodes (that do not have associated definitions) are used to
access Scheme library procedures. The implementation trick that makes this possible
is that globally bound identifiers that are symbols are not mangled in the target-
machine Scheme code. This is only safe to do for a single frame (a single envid value)
because otherwise, as suggested in section 2.3.4, environment manipulation by syntax
extensions could create undesired identifier conflicts in the target-language code8 . By
globally binding variable nodes that name standard Scheme procedures (and giving
those procedures appropriate Scheme/R types), these procedures can be "linked" to
the target-machine code for a Scheme/R program.

3.3.6 def ine-syntax

The keyword node that implements the define-syntax form is defined in Figure 3-7.
A def ine-syntax form has three parts: the def ine-syntax keyword, the identifier to
be defined, and a macro specification. Just like define, define-syntax can only be
used in a definition context. def ine-syntax uses the make-macro procedure (Figure
3-8) to turn a macro specification into a keyword procedure. It then takes that
keyword procedure and uses it to create a keyword node that is bound to the supplied
identifier, in the current environment and the expression namespace. def ine-syntax
returns an empty node as its output expression node because there is no target-
machine code that corresponds to a define-syntax form.

A macro specification is an S-expression whose first element is a symbol. That
symbol is used by make-macro as an index into a table of macro-making procedures.
If no corresponding procedure is found for some symbol, then make-macro signals a
syntax error. If a macro-making procedure is found, it is called with the entire macro
specification, as well as the currently active syntactic environment (the environment of
macro definition). It is expected to return a keyword procedure that define-syntax
will use. By adding macro-making procedures to the table of macro-makers, new
syntax extension interfaces (for creating expression macros) can be implemented.
This table of macro-makers is used to implement the three syntax-extension interfaces

'If a completely safe implementation is desired, the character used to mangle identifiers (in my
implementation, the '.' character) should be disallowed in source language identifiers when this
trick is used. Otherwise, an unintentional identifier conflict involving a globally bound identifier is
possible, though it would probably be rare.

67



(define $define-syntax
(make-scheme/r-keyword

(lambda (form env context)
(if (or (not (= (length form) 3))

5 (not (identifier? (cadr form))))
(syntax-fail "Illegally formatted syntax definition"

form))
(if (not (definition-context? context))

(syntax-fail "Syntax definition in illegal context"

1o form))
(let ((transformer (make-macro (caddr form) env)))

(scheme/r-bind! env
(cadr form)
(make-exp-keyword transformer)

15 (lambda (var)
(syntax-fail "Illegal redefinition" form)))

$empty-node))))

Figure 3-7: The keyword node for the Scheme/R version of def ine-syntax

(define (make-macro form env)
(if (or (null? form)

(not (list? form))

(not (symbol? (car form))))

5 (syntax-fail "Illegally formatted macro specification"
form))

;; should be a macro-making procedure
(let ((macro-maker (assq (car form) makers)))

10 (if macro-maker
((cadr macro-maker) form env)
(syntax-fail "Unknown macro specification" form))))

Figure 3-8: The make-macro procedure used by the implementation of
define-syntax

described in Chapter 49.

9 The ability to create new syntax-extension interfaces is not exported to a Scheme/R user in the
current implementation (ignoring the ability to create forms that expand into uses of def ine-syntax,
which cannot be easily used to build a general extension interface). This is unfortunate because,
as the discussion in Chapter 4 will demonstrate, future experimentation with extension interfaces is

desired so that this system can be made easier to use.
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Chapter 4

Syntax-Extension Interfaces

This chapter describes the three syntax-extension interfaces that I have developed us-
ing the syntax-extension framework described in Chapter 2 and the implementation
of Scheme/R described in Chapter 3. The first interface is the macro-by-procedure
interface. It was developed to demonstrate that my framework can support type-
aware macros for Scheme/R. However, while this interface was an important proof-
of-concept, it is a needlessly complex interface. The second interface is the macro-
by-renaming interface. It was developed as a simpler alternative to the macro-by-
procedure interface. Unfortunately, for many macros, the macro-by-renaming inter-
face is not powerful enough. The macro-by-attributes interface is a third attempt to
strike a balance between power and usability.

4.1 Macro-by-procedure

The macro-by-procedure syntax-extension interface allows programmers to create
syntax extensions by creating keyword procedures that implement those syntax ex-
tensions. Like the "raw" syntax-extension interface from Chapter 2, the macro-by-
procedure interface is a syntax-extension interface (rather than a compiler-extension
interface) because its keyword procedures are required to use process to create their
output expression nodes. This restriction ultimately forces those nodes to be imple-
mented in terms of existing syntax.

The first part of this section is an overview of the macro-by-procedure interface.
After the overview, two examples of macros written using the interface are presented.
These macros demonstrate that my framework can support type-aware macros for
Scheme/R. Since the static analysis for Scheme/R (Hindley-Milner type-inference)
is complex and my framework is not analysis-specific, this demonstration supports
the claim that my framework can be used to implement arbitrary extensible static
analyses. This section concludes by assessing the advantages and drawbacks of the
macro-by-procedure interface.
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4.1.1 Overview

The macro-by-procedure interface is a slightly more complicated version of the "raw"
syntax-extension interface from Chapter 2. Like that interface, the goal of the macro-
by-procedure interface is to allow macro writers to specify the keyword procedures
that implement their syntax extensions as directly as possible. There are three ma-
jor differences between macro-by-procedure macros and the "raw" macros discussed
earlier:

1. Since this chapter discusses three different syntax-extensions interfaces, macro-
by-procedure macros are specified using a list that begins with with the symbol
procedure. This list also contains the Scheme 48 expression used to construct
the keyword procedure.

2. Macro-by-procedure macros can contain an optional open clause that allows
them to interface to the Scheme 48 module system. Neither of the sample
macros uses the open clause, so this kind of clause will not be discussed in
greater detail.

3. The keyword procedure is constructed from the macro-creating expression in
two steps. First, the expression is evaluated to yield a Scheme 48 procedure
of a single argument. Then the resulting procedure is called with the syntactic
environment in which the macro is being defined. The value returned by that
call should be the keyword procedure that implements a macro. The two-step
creation allows syntax extensions to access the syntactic environments in which
they are defined and to perform actions at the time of macro definition.

The bindings available in the Scheme 48 environment in which a macro-creating
expression is evaluated are an important determinant of the power of the keyword
procedures that can be created by that expression. By default, the Scheme/R imple-
mentation provides a rich set of bindings for macro-by-procedure macros to use. Some
of the more important bindings provided (beyond the basic set of Scheme bindings)
include:

* the procedures provided by the framework for node, context and environment
manipulation, 1,

* the process procedure,

'In the current Scheme/R implementation, the availability of these procedures does allow macro-
by-procedure macros to create expression nodes without using process (as long as they implement
the correct conversion procedure protocol). However, this is a defect of the language implementation,
not of the macro-by-procedure interface. The language implementation should protect itself from
"forged" nodes (and framework support might make that task easier). The interface should not be
forced to deny macro writers access to generic node-manipulation procedures because those generic
procedures are part of the toolkit that allows macro writers to create extensible embedded languages.
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" the procedures provided by the type library for type construction and manipu-
lation (create-type, type-fail, etc.),

* and the procedures (such as unify-exp and type-check) and contexts
(exp-context, def-context, and exp-keyword2 ) that are essential parts of
the Scheme/R implementation.

4.1.2 Sample macros

Two sample type-aware macros were implemented using the macro-by-procedure in-
terface: n+ and arith-if. The n+ macro implements an addition form that can total
an arbitrary number of numeric subexpressions'. The arith-if macro implements
conditional expressions that have three different branches. The "predicate" of an
arith-if expression should evaluate to an integer and the branch of the arith-if
to execute is chosen based on whether that integer is negative, positive or zero.

n+

The first sample macro is the n+ macro. A macro-by-procedure definition of n+ is given
in Figure 4-1. The syntax check for n+ (lines 6-9) is simple: an n+ form must have
subforms other than the keyword. After syntax-checking, the n+ macro constructs an
expansion (lines 10-19). It builds nodes corresponding to the subexpressions of the n+
expression (using the current syntactic environment so these subforms have access to
local bindings) and assembles those nodes into nested addition expressions. It creates
its output node (the node that represents the n+ expression itself) by processing
this expansion. The n+ macro is hygienic because the expansion is processed in the
global environment (so the appropriate binding for the inserted identifier + is found).
Processing the assembled form in the global environment is not a problem because the
nodes that represent the n+ subexpressions have already been constructed (so they
are not affected by the environment in which they are processed). After the output
node has been created, its w-check and unify-f ail-msg attributes are mutated to
improve the type-checking of the n+ expression. This mutation is necessary because
macros cannot (and, as syntax extensions, should not be able to) create nodes with
improved attributes directly.

The type-checking rule for n+ is straightforward. All of the subexpressions of an
n+ expression must have integer type, and so must the n+ expression itself. However,

2The exp-keyword context is a part of the Scheme/R implementation that is only used by syntax
extensions. It is needed because process checks the kind of the node it returns and some syntax
extensions may need to use process to look up expression keywords they wish to insert hygienically.
The context exp-context is not suitable because kind-checking will cause process to signal a syntax
error if a keyword node is returned from processing in an expression context. As mentioned earlier,
kind-checking does not normally cause problems with keywords because most keyword nodes are used
internally by process and the internal subroutine of process does not implement kind-checking.

3An n-argument version of + must be implemented as a macro in my version of Scheme/R
because my implementation of Scheme/R does not support procedures that take a variable number
of arguments.
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(define-syntax n+

(procedure

(lambda (def-env)
(lambda (form env context)

(let ((args (cdr form)))

(if (null? args)
(syntax-fail
"n+ expression has no arguments"
form))

(let* ((nodes (map (lambda (arg)
(process arg env

args))

exp-context))

(expansion
(let loop ((nodes nodes))

(if (null? (cdr nodes))
(node/copy (car nodes))
'(+ ,(car nodes) ,(loop (cdr nodes))))))

(output-node
(process expansion global-env exp-context)))

(node/attribute-set!
output-node 'w-check
(lambda ()

(unify-exps
(map (lambda (node) (create-type 'int)) nodes)
nodes)
(create-type 'int)))

(node/attribute-set!
output-node 'unify-fail-msg
"n+ subexpression does not have type int")
output-node))))))

Figure 4-1: Defining an n+ macro using the macro-by-procedure interface
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implementing this type-checking rule (lines 22-26) is not completely straightforward.
In order to understand why, it is important to recall that type-inference for Scheme/R
is implemented recursively: expressions use the type information of their subexpres-
sions to type-check themselves. In the case of an n+ expression, this means using the
subexpression nodes (and their associated type-checkers) to construct an improved
type-checker for the entire n+ expression. This improved n+ type-checker uses the
subnode type-checkers to ensure that each subnode has integer type before return-
ing the type for the n+ expression itself. This implicitly assumes that the node that
represents an n+ expression is distinct from the nodes that represent its subexpres-
sions. If this is not the case, the constructed type-checker for an n+ expression would
recursively call itself (as the type-checker of a subexpression), leading to an infinite
loop.

In many typical uses of the n+ macro, this problem does not arise because new
nodes are constructed to add the subexpressions together. However, there is one
boundary case that is a problem: n+ of a single subexpression. In that case, no
addition is necessary, so the node that represents the expanded n+ expression is also
the node that represents the single subexpression. The use of node/copy on line
16 of the n+ macro prevents the potential conflict by copying the last node in a list
of n+ subexpressions. That way, even when n+ is used with a single subexpression,
the node that represents the n+ (the copied node) and the node that represents its
subexpression are distinct, so the type-checker does not go into an infinite loop.
There are several other ways to solve this problem. Using the n+ macro with a single
subexpression could be made syntactically illegal, the expansion constructed could
add all of the subexpressions to zero to ensure a new node is created, or the case
of a single subexpression could be handled separately. This method was chosen to
highlight the problems authors of syntax extensions face when mutating nodes in the
macro-by-procedure interface.

Figure 4-2 contains some sample uses of the macro-by-procedure n+ macro. Notice
that the error messages for invalid uses are clear and specific and are in terms of the
problematic source code expression. These error messages demonstrate that this n+
macro is type-aware. The error-reporting does have one flaw: In the case of non-
integer subexpressions, no specific source-code expression is highlighted as the cause
of the problem. For simple uses of n+, as in the example, this is not an issue, but large
n+ expressions could be difficult to debug. Techniques similar to the ones used by the
do macro in Appendix A could fix this, but they would make the macro definition
more complex and harder to understand.

arith- if

Figure 4-3 contains a macro-by-procedure definition of the second sample macro: an
arith- if macro. It is very similar to the Scheme code that implements the Scheme/R
if keyword (Figure 3-4). Like if, arith-if processes its argument form in pieces and
signals a syntax error if it has the wrong number of subforms (lines 5-13 of Figure
4-3). There is one key difference between the implementation of the if keyword
and the implementation of this arith-if macro. The arith-if macro (on lines
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Expression: (n+ 1 2 3 4)

Expression type: int

Expression: (n+)

Syntax error: n+ expression has no arguments
(n+)

Expression: (n+ 1 2 #t 4 5)
Type inference failed
n+ subexpression does not have type int
Type clash between:

int
bool
In form: (n+ 1 2 #t 4 5)

Expression: (n+ #t)

Type inference failed

n+ subexpression does not have type int
Type clash between:
int
bool

In form: (n+ #t)

Figure 4-2: Using the macro-by-procedure n+ macro

15-22) constructs its output node by processing its expansion. To ensure that the
arith-if macro is hygienic, its expansion is processed in the global environment,
ensuring that the inserted let, if, <, and = identifiers are resolved correctly. As with
the n+ macro, this is safe because the nodes that represent its subexpressions have
already been processed. Even the inserted identifier temp, that is bound to the value
of the "predicate" subexpression, is not a problem because the syntactic environment
in which the subexpressions are processed does not contain a binding for the inserted
temp.

The type-checking procedure for arith-if (lines 25-35) implements the expected
type-checking rule for arith-if expressions. The first part of the rule (line 29)
requires that the "predicate" expression of an arith-if have a numeric type4. The
next part of the rule (lines 30-34) requires that the branches of an arith-if have
compatible types. The final part of the rule (line 35) reports the type of an arith-if
expression as the type shared by its branches. The rest of the type-checking procedure
sets up failure codes used by the type-error-message procedure for arith-if.

Figure 4-4 contains some sample uses of the macro-by-procedure arith-if macro
(both valid and invalid). The invalid uses of arith-if include both syntactically
invalid and type-incorrect uses. Again, the error messages are clear and specific, mak-
ing no reference to the macro-expanded code. This demonstrates that this arith-if
macro is type-aware, as well.

4 1n my implementation of Scheme/R, the only available numeric type is integer.
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(define-syntax arith-if

(procedure
(lambda (def-env)

(lambda (form env context)
(if (not (= (length form) 5))

(syntax-fail "arith-if expression incorrect size"

form))

(let* ((pred-node (process (cadr form) env exp-context))

(minus-node (process (caddr form) env exp-context))
(zero-node (process (cadddr form) env exp-context))

(plus-node (process (car (cddddr form))

env
exp-context))

(output-node
(process
'(let ((temp ,pred-node))

(if (< temp 0)
,minus-node

(if (= temp 0)
,zero-node
,plus-node)))

global-env exp-context)))

(node/attribute-set!
output-node 'w-check

(lambda ()
(let ((result-type (type-var form)))

(let-fluid type-fail-msg-code 'pred-fail
(lambda ()

(unify-exp (create-type 'int) pred-node)))

(let-fluid type-fail-msg-code 'branch-fail

(lambda ()
(unify-exps

(list result-type result-type result-type)
(list minus-node zero-node plus-node))))

result-type)))

(node/attribute-set!

output-node 'unify-fail-msg
(lambda (code)

(case code
((pred-fail)

"arith-if: predicate does not have integer type")

((branch-fail)
"arith-if: branches have incompatible types"))))

output-node)))))

Figure 4-3: Defining an arith-if macro using the macro-by-procedure interface

75

30

35

40



Expression: (arith-if 0 1 2 3)
Expression type: int

Expression: (arith-if #t 1 2 3)
Type inference failed
arith-if: predicate does not have integer type
Type clash between:

int
bool
In form: (arith-if #t 1 2 3)

Expression: (arith-if 0 #f 1 2)
Type inference failed

arith-if: branches have incompatible types

Type clash between:
bool
int
In form: (arith-if 0 #f 1 2)

Expression: (arith-if 0 1 2)

Syntax error: arith-if expression incorrect size

(arith-if 0 1 2)

Figure 4-4: Using the macro-by-procedure arith- if macro

4.1.3 Assessment

The most important thing that these macro-by-procedure macros demonstrate is that
it is possible to create type-aware syntax extensions. In addition, these macros help
demonstrate that the macro-by-procedure interface is a powerful one. In this interface,
macros can precisely control conflicts between identifiers they insert and identifiers
in their argument forms. Both sample macros were hygienic, but it should be easy
to see how that could be changed. Macros can also precisely control the type errors
they generate. For instance, the arith-if macro uses type-error codes to generate
different error messages for different illegal uses. In fact, the do macro described
in the introduction (the most powerful type-aware macro I have written to date) is
implemented using this interface. In this interface, macros can also take advantage of
the semantic information available in their expansion. The arith-if and n+ macros
use this information to deduce the types of subexpressions, but other macros could
use it in more creative ways. In fact, macro-by-procedure syntax extensions are as
powerful as syntax extensions can be in my framework because, however a syntax
extension is specified, it eventually is implemented using a keyword procedure (or set
of related keyword procedures).

However, specifying syntax extensions by directly writing keyword procedures has
some disadvantages, as well. Each of the keyword procedures has to manipulate nodes
and attributes "by hand" to generate its output nodes. This can be complex and error-
prone, as the n+ macro and its struggles with copying nodes demonstrate. Worse,
this interface forces macro writers to think about their macros at the wrong level
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of abstraction. They should be thinking in terms of expansions and type-checking
rules without having to think about the details of how nodes and attributes must be
assembled to implement those expansions and type-checking rules.

These keyword procedures can also be too powerful. For example, in the case of
Scheme/R, they can break the type system by making "illegal" changes to Scheme/R
nodes and attributes. A keyword procedure could mutate the type attribute of a
variable node, changing the type associated with a variable in the middle of type
inference. Or the type-checking procedure that a keyword procedure inserts (for its
output node) could return a type that does not agree with the type of the expanded
code. Removing this flexibility is difficult because these syntax extensions create
their improvements by manipulating nodes and attributes. One solution might be to
rigidly specify how syntax extensions can modify their output nodes (perhaps with
attribute permissions) so syntax extensions cannot make "illegal" changes to a node.
This is a general solution that could be adapted to protect the results of any static
analysis. A disadvantage of this solution would be that it could make it more difficult
for syntax extensions to improve their output nodes. Another solution might be to
re-type-check the expanded version of a program to catch any type errors syntax
extensions miss. An advantage of this solution would be that it would make it easier
to debug the type-checking improvements of syntax extensions. Disadvantages would
include the largely redundant work of type-checking and the difficulty of generalizing
this strategy to other static analyses.

4.2 Macro-by-renaming

The second syntax extension interface I have implemented is the macro-by-renaming
interface. This interface was created as a reaction to the disadvantages of the macro-
by-procedure interface. This interface is easier to use than the macro-by-procedure
interface, but it is also less flexible. It was inspired by the explicit-renaming macro
system introduced by Clinger [4]. The first part of this section is an overview of the
macro-by-renaming interface. The second part implements the same sample macros

(n+ and arith- if) using the new interface. The section concludes with an assessment
of the power and usability of the macro-by-renaming interface.

4.2.1 Overview

A macro specification in the macro-by-renaming interface has three parts:

" the symbol rename that indicates the kind of macro specification,

" an explicit-renaming transformer that implements the syntax extension,

" and optional clauses that control the error messages generated by a syntax
extension.

The explicit-renaming transformer is at the heart of the macro-by-renaming interface.
It is a procedure that takes three arguments: the form to be transformed, a renaming
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procedure and syntax-error procedure. It returns a transformed version of the argu-
ment form. This form is processed to create the node that corresponds to the use of a
syntax extension. The syntax-error procedure argument is just the syntax-f ail pro-
cedure (first described in section 2.1.2). It is necessary because the explicit-renaming
transformer is evaluated in an environment that has only the basic Scheme bindings
and macro-by-renaming macros must be able to generate syntax errors.

The renaming procedure is what allows hygienic macros to be defined in the
explicit-renaming interface. The argument of the renaming procedure is an identifier
to be renamed. It returns a new identifier that is meant to be used in the transformed
version of the argument form. If this new identifier appears free in the output of the
transformer, it has the same meaning as the original identifier has in the syntactic
environment in which the macro was defined 5 . This identifier can also be bound,
and bound uses of the identifier get their meaning from their binding. The renaming
procedure allows the explicit-renaming transformer to control the conflicts between
identifiers that appear in the transformed version of the argument form - making
hygienic macros possible (as well as controlled unhygienic macros).

The optional error message clauses allow macro-by-renaming syntax extensions
to improve the error messages they generate. Each clause consists of a symbol (that
indicates the kind of clause) and a string (that is an improved error message). If an
error is traced to code inserted by the explicit-renaming macro transformer, and there
is a clause in the macro specification corresponding to that kind of error, then the
clause overrides the error message generated. Specifically, the error message string is
taken from the string of the clause and the form for which an error is reported is the
original use of the syntax extension. This allows a macro-by-renaming macro to hide
its expanded code when errors are generated by that code (by having clauses that cor-
respond to the errors). In the current implementation there are two kinds of clauses,
syntax-error clauses and type-error clauses, indicated by the symbols syntax-error
and type-error, respectively. Type-error clauses are what make it possible to create
type-aware macros with this interface. Each kind of clause can appear at most once
in a macro-by-renaming specification, in any order.

4.2.2 Sample macros

This section will discuss the implementation of the two sample macros using the
macro-by-renaming interface. As before, the first macro implemented will be an n+
macro, followed by an arith-if macro.

n+

Figure 4-5 contains a macro-by-renaming implementation of the n+ macro. The macro
is broadly similar to the macro-by-procedure n+ macro in Figure 4-1. It performs the
same syntax check and loops through the argument forms to build an expansion. The
macro-by-renaming n+ macro also explicitly manages identifier conflicts, the way the

5This is true even if the original identifier was unbound in the environment of macro definition.
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macro-by-procedure n+ macro does. The only difference in identifier management is
that macro-by-procedure macro uses node insertion to control the identifier + and
macro-by-renaming macro uses a renaming procedure.

(define-syntax n+
(rename (lambda (form rename syntax-fail)

(if (= (length form) 1)
(syntax-fail

5 "n+ expression has no arguments"
form))

(let ((+ (rename '+)))
(let loop ((args (cdr form)))

(if (null? (cdr args))
10 (car args)

'(,%+ ,(car args) ,(loop (cdr args)))))))
(type-error "n+ subexpression does not have type int")))

Figure 4-5: A macro-by-renaming version of the n+ macro

The major differences between the two versions of n+ are found in what the macro-
by-renaming version excludes. It does not need to manage processing, explicitly copy
nodes, or create a type-checking procedure the way the macro-by-procedure n+ macro
does. Instead, the macro-by-renaming interface manages processing and error han-
dling and provides simple hooks for user control of error messages. For n+, this
simplicity does not adversely affect the resulting macro, as the sample uses of the
macro-by-renaming n+ (in Figure 4-6) show6 . The only odd case in those uses is
the expression (n+ #t), which the macro-by-procedure macro rejects because n+ ar-
guments should have integer type. In the case of the macro-by-renaming n+, since
nothing is actually added to #t in the expansion, the macro-by-renaming interface ac-
cepts it as well-typed7 . This highlights the difference between the macro-by-renaming
interface and the macro-by-procedure interface. In the macro-by-procedure interface,
a macro writer is in complete control of a macro's type-checking (and any other as-
pects of its expansion). In the macro-by-renaming interface, the interface type-checks
the expansion and only after the fact decides whether or not to use a macro-writer's
improvements.

arith-if

Figure 4-7 contains a macro-by-renaming implementation of the arith-if macro.
Like the macro-by-renaming n+ macro, the macro-by-renaming arith-if macro is
broadly similar to its macro-by-procedure counterpart, checking the syntax of its

"However, unlike the macro-by-procedure interface, a version of n+ that reported the specific
subexpression responsible for a type error could not be implemented in the macro-by-renaming
interface.

"One way to solve this problem would be to add the n+ subexpressions to zero, so the #t would

generate a type error (because a boolean cannot be added to a number).
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Expression: (n+ 1 2 3 4)
Expression type: int

Expression: (n+)

Syntax error: n+ expression has no arguments

(n+)

Expression: (n+ 1 2 #t 4 5)

Type inference failed

n+ subexpression does not have type int
In form: (n+ 1 2 #t 4 5)

Expression: (n+ #t)
Expression type: bool

Expression: (n+ 1 #t 2 #f 4 5)
Type inference failed
n+ subexpression does not have type int
In form: (n+ 1 #t 2 #f 4 5)

Figure 4-6: Using the macro-by-renaming n+ macro

(define-syntax arith-if
(rename

(lambda (form rename syntax-fail)
(if (not (= (length form) 5))

5 (syntax-fail "arith-if form incorrect size" form))
(let ((/if (rename 'if)) (htemp (rename 'temp)))

'(,(rename 'let)
((,%temp ,(cadr form)))
(,%if

10 (,(rename '<) ,%temp 0)
,(caddr form)

(,%if
(,(rename '=) ,%temp 0)
,(cadddr form)

15 ,(car (cddddr form)))))))
(type-error "Type error in an arith-if expression")
(syntax-error "Syntax error in an arith-if expression")))

Figure 4-7: A macro-by-renaming arith-if macro
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uses and explicitly managing identifier conflicts. Again, the first difference is in us-
ing a renaming procedure instead of node insertion to manage identifier conflicts.
The other differences are found in the tasks omitted: processing subexpressions and
manual attribute manipulation. Unlike the macro-by-renaming n+ macro, this sim-
plicity adversely affects the macro-by-renaming arith-if macro. This is illustrated
in Figure 4-8, which contains some sample uses of the macro-by-renaming arith-if.
Unlike the macro-by-procedure arith-if, the macro-by-renaming arith-if cannot
distinguish between type errors caused by the "predicate" subexpression and type er-
rors caused by conflicts between the types of the branch subexpressions. The reason
for this is that in the macro-by-renaming interface a macro can only choose the er-
ror message to report when a type error is encountered - it cannot tailor the error
message to the type error as a macro-by-procedure macro could.

Expression: (arith-if 1 2 3 4)
Expression type: int

Expression: (arith-if #t 1 2 3)
Type inference failed

Type error in an arith-if expression
In form: (arith-if #t 1 2 3)

Expression: (arith-if 0 #f 1 2)

Type inference failed

Type error in an arith-if expression
In form: (arith-if 0 #f 1 2)

Expression: (arith-if 1 2 3)
Syntax error: arith-if form incorrect size
(arith-if 1 2 3)

Figure 4-8: Using the macro-by-renaming arith-if macro

4.2.3 Assessment

The sample macro-by-renaming macros demonstrate three things:

1. Macro-by-renaming macros are much easier to create and understand than
macro-by-procedure macros.

2. Type-aware macros can be created in the macro-by-renaming interface, since
both sample macros reported type errors in terms of source code, not expanded
code.

3. Macro-by-renaming macros give a macro writer much less control over type-
checking than macro-by-procedure macros. This lack of control can be a dis-
advantage (because it makes error messages less detailed) and an advantage (a
macro-by-renaming macro cannot break the type system the way a macro-by-
procedure macro can).
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In a sense, the macro-by-renaming interface is the opposite of the macro-by-procedure
interface. It does not suffer from the major disadvantages of macro-by-procedure.
Macros are written at a higher abstraction level (involving source-code transforma-
tions and error messages rather than nodes and attributes) and macros cannot damage
the type system. However, the macro-by-renaming macros are also much less powerful
than macro-by-procedure macros. This means that the macro-by-renaming interface
is good for macros where users can easily deduce the sources of macro-related type er-
rors. For macros with complex type rules, however, the macro-by-renaming interface
limits what macros can do to help users understand type errors. One way to resolve
this would be to extend the macro-by-renaming interface (though how to do so is
not obvious). Another way to resolve this, demonstrated by the final interface, is to
attempt to develop a new interface that balances the strengths of macro-by-renaming
and macro-by-procedure, while minimizing their weaknesses.

4.3 Macro-by-attributes

The macro-by-attributes syntax-extension interface is the third syntax-extension in-
terface I have implemented. It is a partially successful attempt to strike a balance
between the power of the macro-by-procedure interface and the simplicity of the
macro-by-renaming interface. It was inspired by the syntax-case macro system cre-
ated by Hieb, Dybvig, and Bruggeman [7]. At this point, however, the relationship
between the two interfaces is probably difficult to see. The first part of this section
describes the macro-by-attributes interface. The second part of this section imple-
ments the arith- if and n+ macros in the macro-by-attributes interface. The final
part of this section assesses the macro-by-attributes interface.

4.3.1 Overview

A macro-by-attributes macro specification has up to four parts:

1. the symbol attributes that indicates the kind of macro specification,

2. a list of symbols, whose purpose will be explained later,

3. an optional open clause, that allows a macro-by-attributes macro to interface
to the Scheme 48 module system (as in the discussion of macro-by-procedure,
this clause will not be discussed in greater detail.),

4. and a list of transformation rules.

Each transformation rule begins with a pattern. The language that describes
these patterns is closely related to the pattern language used by R'RS Scheme's
syntax-rules macros [9]. The differences between the two languages are that this
pattern language includes wildcards and that it does not include vector or constant
patterns. In this pattern language a pattern can be:
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* an identifier,

" a wildcard (the symbol _),

* a list of one or more patterns,

" or a list of one or more patterns followed by an ellipsis (the symbol ... ).

The pattern at the beginning of a transformation rule is matched against forms that
attempt to use its associated syntax extension. The first transformation rule in a
macro's list of rules whose pattern matches is the transformation rule that is used
to create an output node. If no pattern matches, a syntax error is reported. The
matching semantics for particular identifiers are controlled by the list of symbols that
is the second part of the specification. If an identifier appears in that list of symbols,
it only matches itself. If an identifier does not appear in that list, it matches any form
and binds that identifier in the remainder of the transformation rule. The details of
that binding are explained below. It is a syntax error for an identifier to be bound
more than once by a pattern. Wildcards match any form and do not bind anything.
A list of patterns matches a form if the form is a list of the same length and each
part of the form matches its corresponding pattern.

A list of patterns is terminated by an ellipsis is the most complicated variety
of pattern. They behave just like the ellipsis patterns in Scheme's syntax-rules
macros. Ignoring the last pattern in the list, the first n-1 patterns of an ellipsis
pattern must match the first n-1 elements of a form for a successful match. Any
remaining elements of a form must each match the last pattern of an ellipsis pattern
separately. Any variables bound by that last pattern are bound to lists of what they
otherwise would have been bound to. Each element of any of these lists is taken from
the match of the last pattern and the corresponding element of the tail of the form.

After the pattern, several different clauses can appear in a transformation rule.
Collectively, these clauses specify how to construct the output node that corresponds
to a particular transformation rule.

bind A bind clause binds variables that can be used by the rest of the transforma-
tion rule. bind clauses can appear anywhere in a transformation rule after that
rule's pattern. A bind clause consists of the symbol bind, followed by a list of
bindings. Each binding consists of a symbol and a Scheme expression. In the
remainder of the transformation, each symbol is bound to the value obtained
by evaluating the corresponding expression8 . The bindings of a bind clause are
evaluated sequentially so that earlier bindings are available to later expressions.
Neither of the sample macros use a bind clause, but they are an important fea-
ture of the macro-by-attributes interface. They are essential when intermediate
values need to be saved in a transformation rule.

'Variables bound by a bind clause should not conflict with variables bound by the pattern of a
transformation rule, or there will be unpredictable results.
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form Every transformation rule must have exactly one form clause. A form clause
consists of the symbol f orm, followed by a Scheme expression. Before and inside
the f orm clause of a transformation rule, the pattern variables of a pattern are
bound to node futures (or trees whose leaves are node futures) that encapsulate
the different forms (or trees of forms in the case of ellipsis patterns) into which a
matching form was decomposed. The expression of a f orm clause is evaluated to
produce the expansion corresponding to the use of the clause's transformation
rule. Any identifiers in the expanded form will automatically be resolved relative
to the defining environment of the syntax extension unless those identifiers are
encapsulated in a node future. By default, only the decomposed parts of the
input form are encapsulated in node futures, so macro-by-attributes macros are
hygienic by default. This default can be overridden by encapsulating other parts
of an expansion in node futures.
After any necessary identifier forwarding, this expanded form will be processed
in the syntactic environment and context in which the original syntax extension
(that contains the transformation rule) was used. After the f orm clause of
a transformation rule, the pattern variables that were bound to node futures
used in the expansion become bound to the corresponding future nodes (and
similarly for variables bound to trees of node futures used in the expansion).
Pattern variables that refer to node futures that were not used in the expansion
should not be used in the remainder of the transformation rule, since they have
no corresponding future nodes.

attribute clauses An attribute clause begins with a symbol that is not bind or
form. This symbol names the attribute created by the clause. Attribute clauses
can only appear after the f orm clause of a transformation rule. After the symbol,
an attribute clause contains a Scheme expression. This expression is evaluated
and the value is stored in the appropriate attribute of the output node of the
syntax extension. Attributes should only be set by one clause of a transforma-
tion rule, though this restriction is not enforced. Attribute clauses should use
the nodes that correspond to parts of the input form to construct their improved
attributes.

4.3.2 Sample macros

As above, two sample macros are implemented using the macro-by-attributes inter-
face: the n+ macro and the arith-if macro.

n+

Figure 4-9 contains a macro-by-attributes version of the n+ macro. This macro is
implemented recursively using two transformation rules. The first rule (lines 4-10)
is the base case for the n+ macro. In this case, the n+ macro has only one argument
expression. This argument expression is the expansion of n+, and is required to be
of numeric type. The second rule (lines 11-21) is the recursive case. This rule only
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(define-syntax n+
(attributes

()
((_ exp)

5 (form exp)
(w-check
(lambda ()

(unify-exp (create-type lint) exp)
(create-type 'int)))

10 (unify-fail-msg "n+ subexpression must have numeric type"))
((_ exp exps ...)

(form '(+ ,exp (n+ ,Cexps)))
(w-check

(lambda ()
15 (unify-exp (create-type 'int) exp)

(for-each (lambda (exp)

(unify-exp (create-type 'int)
exp))

exps)

20 (create-type 'int)))

(unify-fail-msg "n+ subexpression must have numeric type"))))

Figure 4-9: Defining an n+ macro using the macro-by-attributes interface

matches n+ expressions that have at least two subexpressions because the case of one
subexpression is handled by the first rule. The expansion adds the first subexpression
to an n+ of the remaining subexpressions. The type-checking rule checks that all
subexpressions (not just the first) have numeric type, so that type errors are not
reported by the recursive uses of n+. As in the previous two interfaces, sample
uses of the current n+ macro demonstrate that it is type-aware. Unlike the previous
two interfaces, neither explicit syntax-checking nor manual identifier-management is
necessary.

arith-if

The macro-by-attributes version of the arith-if macro (Figure 4-11) is a straight-
forward translation of the macro-by-procedure version of the arith-if macro (Figure
4-3). It consists of a single transformation rule, that decomposes an arith-if ex-
pression into its parts. The f orm clause of the rule reassembles these parts into an
arith-if expansion (5-9). The only differences from the macro-by-procedure version
are found in the lack of explicit syntax-checking and manual identifier-management.
The type-checking procedure from the w-check attribute clause of the rule is almost
identical to the type-checking procedure from the macro-by-procedure arith-if.
Only the names of the variables that refer to the nodes that represent parts of an
arith-if expression differ in the two procedures and corresponding variables re-
fer to the same part of an arith-if. Similarly, the error-message procedure from
the unify-fail-mag attribute clause of the macro-by-attributes arith-if is iden-
tical to the error-message procedure from the macro-by-procedure arith-if. As
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Expression: (n+ 1 2 3)
Expression type: int

Expression: (n+)

Syntax error:

(n+)

Expression: (n+ 1 2 #t 4 5)
Type inference failed

n+ subexpression must have numeric type
Type clash between:

int
bool
In form: (n+ 1 2 #t 4

Expression: (n+ #t)

Type inference failed

n+ subexpression must
Type clash between:
int

5)

have numeric type

bool
In form: (n+ #t)

Expression: (let ((+ 1)) (n+ 1 2 3 4))
Expression type: int

Figure 4-10: Using the macro-by-attributes n+ macro
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(define-syntax arith-if
(attributes

()
((arith-if pred minus zero plus)

5 (form
'(let ((temp ,pred))

(if (< 0 temp)
,minus
(if (= 0 temp) ,zero ,plus))))

10 (w-check
(lambda ()

(let ((result-type (type-var form)))

(let-fluid type-fail-msg-code 'pred-fail

(lambda ()
15 (unify-exp (create-type 'int) pred)))

(let-fluid type-fail-msg-code 'branch-fail
(lambda ()

(unify-exps

(list result-type

20 result-type
result-type)

(list minus

zero

plus))))
25 result-type)))

(unify-fail-msg
(lambda (code)

(case code
((pred-fail)

30 "arith-if: predicate does not have integer type")
((branch-fail)

"arith-if: branches have incompatible types")))))))

Figure 4-11: Defining an arith-if macro using the macro-by-attributes interface
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might be expected from similar implementations, the type-error messages from using
the macro-by-attributes arith-if are the same as the type-error messages from the
macro-by-procedure arith-if. The syntax-error messages only differ because the
macro-by-attributes arith-if does not include any explicit syntax-checking.

Expression: (arith-if 0 1 2 3)
Expression type: int

Expression: (arith-if #t 1 2 3)
Type inference failed

arith-if: predicate does not have integer type

Type clash between:

int
bool
In form: (arith-if #t 1 2 3)

Expression: (arith-if 0 #f 1 2)
Type inference failed
arith-if: branches have incompatible types
Type clash between:

bool
int
In form: (arith-if 0 #f 1 2)

Expression: (arith-if 0 1 2)
Syntax error:

(arith-if 0 1 2)

Figure 4-12: Using the macro-by-attributes arith-if macro

4.3.3 Assessment

The arith- if macro illustrates the first advantage of the macro-by-attributes inter-
face: it can be convenient shorthand for constructing expansions and nodes. The
pattern-matching aspect of the interface provides a default level of syntax-checking
that is better than that provided by the other two interfaces. In those interfaces,
if an input form is syntactically invalid, syntax errors must manually be signaled
while taking apart the form or constructing expanded code from it or syntax errors
involving expanded code and/or system errors (like taking the car of an empty list)
will be generated. In the macro-by-attributes interface, syntactically invalid forms
generate their own syntax errors, and specific syntax-error handling is only needed if
a macro writer wants to provide detailed syntax-error messages. Another convenience
is the automatic identifier forwarding of the interface. That forwarding means that
hygienic macros require no explicit identifier management. Attributes are specified
quasi-declaratively, which at least obscures the details of mutating a node'. This

'In fact, the macro-by-attributes interface performs a small amount of node copying so that users
of the interface do not have problems as the output node is mutated with new attributes.
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shorthand can even be an advantage relative to them macro-by-renaming interface
because that interface requires explicit syntax-checking and identifier management.

The n+ macro illustrates the second advantage of the macro-by-attributes inter-
face: it makes it easier for a macro writer to structure the implementation of a syntax
extension. If an implementation can be logically separated into distinct rules, like n+
was, the implementation will be easier to understand in macro-by-attributes than in
macro-by-procedure or macro-by-renaming (where code that distinguishes different
rules will be mixed in with code that implements different rules).

The advantages of the macro-by-attributes interface come from the new concept
it introduces: the transformation rule. Transformation are rules simple, yet powerful
units out of which macro implementations can be built. Transformation rules are also
a framework that can incorporate many different conveniences including:

* pattern variables that connect pieces of a macro's source form to the nodes that
represent their meaning, making it easier to access semantic information about
those pieces,

9 automatic renaming of inserted identifiers, so that, by default, macros are hy-
gienic,

* and attribute clauses, a simpler syntax for modifying the attributes of the output
node.

What is disappointing about the macro-by-attributes interface is that the transfor-
mation rule is the only new concept it introduces. There are no new concepts related
to attribute-generation, in general, or type-checking, in particular, so writing macro
type-checkers is no easier than in the macro-by-procedure interface. Attribute clauses
may make attributes easier to specify, but they do not make attributes any easier to
think about. This is in contrast to the macro-by-renaming interface, which introduces
the concept of error-message clauses to allow macros to control their error messages.
This concept makes it easy to write simple type-aware macros, at the cost of making
complex type-aware macros harder to use. This assessment is, in the end, disappoint-
ing, not because the macro-by-attributes interface is itself disappointing, but rather
because it says that the right set of concepts for creating type-aware macros has not
yet been invented.
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Chapter 5

Related Work

My syntax-extension framework and syntax-extension interfaces were invented to
solve two problems that existing Scheme macro systems did not solve: combining
syntax extension with static analyses and extending the syntax of languages with
many kinds of language elements. There are many other systems that attempt to
solve similar problems. Staged-computation systems are one kind of related system.
Extensible-grammar systems are a second kind of related system. Two other systems
related to my syntax-extension framework are not as easy to categorize.

5.1 Staged-computation systems

Staged-computation systems allow programmers to separate their programs into dis-
tinct stages. The benefit of this separation is that programs in earlier stages can
construct and manipulate representations of programs in later stages, allowing them
to control the code executed in those stages. This often leads to significant perfor-
mance improvements, as earlier stages specialize later stages to the task at hand.
Examples of staged-computation systems include Wickline, Lee and Pfenning's ML0

[221 and Taha and Sheard's MetaML [211. Syntax-extension systems, like my frame-
work, deal with computations in two stages: compile-time, when syntax extensions
are expanded, and run-time, when expanded code is executed. However, there are
also significant differences that make syntax extension more than a limited form of
staged computation:

9 Staged-computation systems allow programmers to transform and manipulate
programs. Syntax-extension systems, by contrast, allow programmers to trans-
form and manipulate syntax. This means syntax-extension systems allow pro-
grammers to add new syntactic forms to a base language. Staged-computation
systems, while they extend a base language with new program-manipulation
operators, do not make the resulting language extensible. Some uses of staged
computation may mimic new syntactic forms, but, among other limitations,
they cannot mimic forms that bind variables.

* Staged-computation systems only permit limited cross-stage communication.
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At best, when a representation of a later-stage program is constructed in an
earlier stage, any earlier-stage variables it refers to are frozen. Those variables
cannot be affected by the environment in which that program is eventually ex-
ecuted. From the viewpoint of hygienic macro systems, this means that staged-
computation systems are automatically hygienic and that this hygiene cannot
be overridden.

Since multi-stage programming is difficult, staged-computation systems usually have
associated multi-stage type systems to assist multi-stage programmers. In particular,
the staged-computation systems based on ML, mentioned above, have multi-stage
type-inference systems. My syntax-extension interfaces, by contrast, do not provide
a type system for macro writers, and rely on macro writers to correctly type-check the
output of their syntax extensions. This is probably where future syntax-extension re-
search can best learn from staged-computation research. Staged-computation systems
are very close to automatically hygienic macro systems (like Scheme's syntax-rules
system [9]) and their multi-stage type systems solve the problem of typing program
transformations, which are similar to syntax transformations. This suggests that a
system that infers typing rules for automatically hygienic macros could be developed
by studying the multi-stage type systems used by staged-computation systems.

5.2 Extensible-grammar systems

Staged-computation systems are related to my framework because they try to solve
problems associated with transformations and static analyses. Extensible-grammar
systems, on the other hand, are related to my framework because they try to solve
problems related to syntax extension and multiple language elements. The fundamen-
tal idea of extensible-grammar systems is to provide extended user languages through
grammars that transform those user languages into simpler base languages. Cardelli,
Matthes, and Abadi developed a particularly interesting extensible-grammar system
[3]. Notable features of their system include:

" Their system automatically renames the identifiers in grammar rules, so that
the transformations those rules create are hygienic. The system does not allow
this automatic hygiene to be overridden, but that would be simple to add.

" In their system, grammar definitions are statically "type-checked." This "type-
checking" is used to guarantee that the output of grammar productions is syn-
tactically valid. By contrast, my untyped framework provides no guarantee that
the expansion of a syntactically valid program will itself be syntactically valid.

" Their system keeps track of when identifiers are used as part of a binding and
when identifiers are used to refer to a binding. This information makes correctly
renaming the identifiers in grammar rules simpler.

" Their system allows grammar definitions to introduce syntax restrictions as well
as syntax extensions. Syntax restrictions can be used to create languages that
are easier to implement or understand.
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One possible way to use extensible grammars would be to extend them with semantic
actions and attribute manipulations. This would make it possible to adapt my frame-
work to languages that are not based on S-expressions. Another interesting possibility
suggested by extensible grammars is a typed interface for creating syntax extensions.
A well-designed typed syntax-extension interface could guarantee that syntactically
valid expanded code would be produced for every syntactically valid input program.

5.3 Other similar systems

Two other systems related to my syntax-extension framework have been based on
hygienic macro technology. The first system is Maddox's semantic macro system
[14]. His semantic macro system is the oldest system I am aware of that permits
type-aware macros of any kind. The distinctive feature of Maddox's system is that
his improved syntax-extension technology is embedded inside of a new programming
language and its associated programming environment. My approach, on the other
hand, is to provide a framework for constructing extensible programming languages
and their associated extensible static analyses. These differences make Maddox's sys-
tem more complete, since there is a base programming language and environment to
work with, but also make his system less flexible because his improved extension tech-
nology cannot be easily separated from his programming language and programming
environment.

The other related system is the McMicMac system of Krishanmurthi, Felleisen
and Duba [13]. This system was also designed to allow embedded programming lan-
guages to be easily created. McMicMac and my syntax-extension framework are
very similar - both can be used as general compiler-extension interfaces. The primary
difference between the two systems is in how their technology is applied. In McMic-
Mac, the power of a general compiler-extension interface is exposed through micros
that allow authors of extensions to directly create and access elements of the com-
piler's intermediate representation of a program. My interfaces, on the other hand,
limit access to the elements of my compiler's intermediate representation (nodes) so
that general complier-extension features are suppressed and only syntax-extension
features are exposed. The disadvantage of my approach is that compiler-extensions
expressed through micros can be more powerful than syntax-extensions expressed
through macros. The advantage of my approach is that the coupling of language
extensions to the compiler implementation can be weaker.
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Chapter 6

Future Work

The system described in this thesis is a proof-of-concept system. It was created to
demonstrate that combining hygienic macro technology with extensible static analyses
is possible and valuable. This proof opens up many possibilities for future research.
Broadly speaking, this future work can be separated into three different categories:
research on syntax-extension frameworks, research on user-language implementation
and research on syntax-extension interfaces. These categories must overlap, however,
because the goal of this research is to create better user languages through syntax
extension, which necessarily involves a syntax-extension framework and a syntax-
extension interface built on top of that framework. In the discussion below, ideas
have been organized according to my impression of the focus of their work, but,
because of the overlap, this organization can only be approximate.

6.1 Framework research

There are a many different projects that could be based on my syntax-extension
framework. First, there are a number of different ways the existing framework can
be made more powerful and usable. Second, there are interesting benefits that can
result from combining this syntax-extension framework with other systems. Finally,
an object-oriented re-implementation of my syntax-extension framework might make
this new syntax-extension technology easier to develop and use.

6.1.1 Improving the existing framework

Probably the most significant way to improve the existing framework would be to re-
design the context system. In the current implementation, contexts are very powerful,
but their design is oriented towards the creation of full-fledged embedded languages.
Simpler uses of contexts (like syntactically restricting definitions) are much harder
than they need to be. With the exception of permitting definitions, the definition
context created in section 2.4.4 is identical to the expression context it is based on.
In the current system, however, making that small change required specifying every
detail of the new context (see Figure 2-14). In a redesigned context system, it should
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be easy to create variations of existing contexts. That sort of redesign would make it
easier to take advantage of the potential power of contexts.

Another way to to improve the existing framework would be to simplify it. The
existing framework has many partially redundant features. For example, both node
insertion and node futures can be used to access nodes that represent parts of an
output form. Both the procedure capture-env and generated identifiers can be used
to hygienically create temporary identifiers for use in macro-expanded code. This
redundancy suggests that a smaller, simpler framework could be as powerful as the
existing one. The challenge here would be to create the smaller, simpler feature set
for that framework.

One of the problems with the existing framework is that it is difficult for language
implementations to protect their semantic information from syntax extensions that
might damage it. In the current framework, all semantic information is stored as an
attribute of some node. Once a syntax extension has access to a node, they can read
or modify all of that node's attributes, so they can damage or destroy that node's
semantic information. Syntax extensions do not even need to be malicious to cause
problems, the complete lack of protection means that buggy syntax extensions can
be just as bad as malicious ones. Denying syntax extensions access to nodes, as in
the macro-by-renaming interface, solves this problem, but only at the cost of sharply
limiting the power of syntax extension. A better solution would be to extend the
framework with some way to finely control access to nodes and attributes. This would
allow language implementations (and their associated static analyses) to create finer-
grained interfaces to their semantic information. Through these interfaces syntax
extensions could be prevented from damaging critical semantic information without
significantly limiting their ability to improve static analyses.

The error-reporting system in the current framework is also one of its limitations.
It mandates a fixed style of error reporting that limits languages and the program-
ming environments built around them. Instead, the error system should mandate a
minimum amount of error information that can be added to, if desired. This would
allow clients of the framework to tailor error reporting to their needs without destroy-
ing the incentive to provide rich error information that is in the current version of
the framework.

Another potential improvement to the existing framework would be to implement
new node operations. New node operations might include extracting the parent node
and child nodes of a particular node. Those operations would make it easier to write
procedures (particularly static analyses) that traverse the nodes of a program. If
the parent and child information could also be modified, traversals that rebuilt the
nodes that constitute a program (such as an optimization pass of a compiler) would
also be possible. Other new operations could generalize the conversion procedures
of the current node implementation. In the current framework, since each node
only has a single conversion procedure, each language implementation is limited to
a single target machine language for its output code. If conversion procedures were
generalized, then one language implementation could support many target languages,
making languages implemented with the framework more flexible and useful. New
node operations would make nodes a more powerful and more attractive intermediate
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representation for a compiler.

6.1.2 Combining the framework with other systems

One aspect of the current framework implementation that will limit its use is the
framework's dependence on S-expressions. Many popular programming languages
are not based on S-expressions, and in its current form, the framework cannot be
used to create syntax-extension interfaces for them. This is particularly unfortunate
because the framework removes one important barrier to using syntax extension with
popular programming languages: the conflict between syntax extension and static
analyses. One solution to this problem would be to create S-expression variants of
existing programming languages for the framework to operate on, but those variants
might not be accepted. Another possibility would be to extend the framework so that
it can support languages that are not based on S-expressions. This probably would
involve combining the existing framework with extensible-grammar technology [3].

One of the things that is demonstrated by Maddox's semantic macro system [14]
(and, to a lesser extent, by C compilers and Scheme systems) is that there is a
great deal to gain from integrating syntax-extension technology into a programming
environment. Among other things, integrated extension technology makes program-
ming in extended languages seem natural. A well-designed programming environment
would make language experimentation using this framework much easier. The chal-
lenge here is to retain the full flexibility of the original framework (including language
and analysis independence) while taking advantage of what a programming environ-
ment can offer. Probably the simplest way to build a programming environment for
this framework is to replace the syntax-extension system of Scheme 48 with a system
based on this framework.

6.1.3 Object-oriented framework

An ambitious way to improve my syntax-extension framework would be to re-
implement it in a statically-typed, object-oriented language. The main benefit of
static typing would be in the compile-time checking of node and attribute manipu-
lation. In the current framework, small errors in the kind of node produced or in
the kind of attribute data used can be very difficult to understand or debug. On
the other hand, one of the important sources of flexibility in the existing framework
is found in the ability to create new kinds of nodes and to attach new varieties of
information to existing nodes. In order to retain that flexibility in a statically-typed
framework, an inheritance mechanism would be necessary. This is what suggests an
object-oriented re-implementation. Even with inheritance, retaining the flexibility of
the existing framework will be difficult because, as mentioned earlier, it is not obvious
how to capture all of the important node relationships.

Many of the previously described improvements would fit naturally into an object-
oriented re-implementation of the framework. Object-oriented languages allow ob-
jects to finely control access to their private data, so protecting semantic information
would be easier. They usually have rich exception systems that could form the basis
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of an improved error-reporting system and an object-oriented reconsideration of the
node abstraction would be a natural time to add new node operations. Nevertheless,
it is important to recognize that an object-oriented re-implementation, no matter how
natural it may seem, is a radical reorganization of the framework which will present
many new design challenges.

6.2 Language research

There are a number of ways that my demonstration language could be improved to
make it a more interesting and usable language. One set of improvements centers
around improving the type system that the language uses. Other improvements
would allow the language to take greater advantage of possibilities offered by my
syntax-extension framework.

6.2.1 Improving the type system

The most important change that could be made to my demonstration language's
type system is to implement it within my syntax-extension framework, using type
nodes and a type context or contexts. The immediate benefit of this change is that
it would become possible to have language forms that include types. Among other
things, these kinds of forms could be used for optional type annotation, either by
programmers who don't want to use type inference or by type-aware macros that
want to control how their expansions are type-checked. In particular, optional type
annotation would be one way to improve the macro-by-renaming interface to make it
more powerful.

Another change that should be made to the type system is the incorporation of
parallel unification technology [15]. As described in Chapter 3, parallel unification is
the only way to reliably distinguish between type errors caused by the argument forms
of a macro and type errors caused by using a macro on a particular set of argument
forms. The ability to make this distinction would make it possible to provide users
of macros with more precise type-error messages.

The remaining problems of my demonstration language's type system come from
the features it is missing because it is a prototype implementation. It supports only
a limited set of primitive types, though that set could be easily extended. Its support
for product types is weak (it only supports pairs) and it does not support any sum
types. The type system also does not support recursive types, and the base set of
types is not extensible. To a large extent, the lack of extensibility would be resolved
by implementing the type system within the framework, but the other limitations
need to be addressed separately.

6.2.2 Other improvements

Another way to improve the current language implementation would be to make it
more comprehensively use the framework's support for multiple language elements.
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There are a number non-expression language elements in the core language that are
not accessible in the current implementation. They include: procedure parameter
lists, the binding clauses used by let and letrec, and, most significantly, macro
specifications. Exposing these things as language elements in their own right would
make it much easier to experiment with and improve their syntax. This is par-
ticularly important in the case of macro specifications because experimenting with
syntax-extension interfaces is probably the most important thing to do to make this
technology more usable. What makes implementing macro specifications within the
framework particularly difficult is that they include Scheme code interpreted by the
underlying Scheme 48 system. One solution to this would be to change the frame-
work so that it "bootstraps" its own extension language, the way the system the
framework is based on [1] does. That way, the extension language would end up
based on nodes, contexts and attributes and would be as extensible as the rest of the
system. A closely related way to improve the current language implementation would
be to implement Scheme's derived expressions as syntax extensions that introduce
new language elements where appropriate.

Adding a module system to the language would be another way to improve the
language implementation. It would be a large step towards making the demonstra-
tion language a reasonable language to program in. A module system would also
make importing procedures from the underlying Scheme system simpler. Right now
accessing these procedures depends on a trick using the global environment. Instead,
the underlying system could be exposed as a Scheme module that other parts of the
language could use. The biggest problem here is that the current implementation of
syntactic environments may not interact well with modules, and so it may need to be
changed.

6.3 Interface research

The final kind of research that my syntax-extension framework makes possible is
research into syntax-extension interfaces for extensible static analyses and multiple
language elements. This research is particularly important because all of the syntax-
extension interfaces I have implemented so far have significant drawbacks that make
them hard to use in some important cases.

One kind of interface that would be interesting to develop is an interface like
Scheme's syntax-rules [9]. The results of staged-computation research suggest that
in an interface where hygiene is enforced, like syntax-rules, it may be possible to
infer the type-checking rule for a syntax extension. Even if that is not the case,
a developing a high-level language for type-checking that goes with the high-level
syntax-extension language of syntax-rules could be a very good way to create a
powerful and usable extension interface for type-aware macros.

Another interesting interface experiment would be to create a statically-typed
syntax-extension interface. A well-designed typed interface could help authors of
syntax extensions control the transition from input syntax to objects that repre-
sent the meaning of that syntax. Then, instead of manipulating generic nodes to
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improve the analysis of their expanded code, syntax extensions could manipulate
specific language objects, making analysis improvements easier to understand and
debug. This might work most naturally in an object-oriented re-implementation of
the existing syntax-extension framework (see section 6.1.3), but a statically-typed
syntax-extension interface need not depend on such a framework.

Another major limitation that all the current syntax-extension interfaces share is
their weak support for developing and implementing (rather than using) embedded
languages. The macro-by-renaming interface does not support developing or imple-
menting embedded languages at all, and the other two interfaces rely on an author
of a syntax extension manually controlling the contexts in which their syntax is pro-
cessed. This is another improvement that could be guided by Maddox's semantic
macro system [14]. Maddox's system has an elegant extension of quasiquotation that
allows macros to manipulate multiple kinds of language elements at the same time.
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Appendix A

Implementing do

The do macro is the most ambitious type-aware macro I have written for my demon-
stration language, Scheme/R. It implements an iteration form that is a variant of the
R5RS Scheme do macro [9]. Other than the underlying typed language, the major
difference between this version of do and the Scheme do is that this version inserts
a non-hygienic binding for the identifier return. That identifier is bound to a con-
tinuation that can be used to escape from the do loop. In Scheme/R, continuations
cannot be typed correctly if they are represented as procedures, so they are given by
types of the form (contof T) and are invoked using the throw procedure. Figure
A-1 contains some sample legal and illegal uses of this do macro.

This do macro was implemented using the macro-by-procedure syntax-extension
interface (section 4.1) because it was written before the other interfaces had been
developed. The implementation of the do macro is complex, so it will be described
in several stages. First, the syntax-checking and decomposition of a do form will be
discussed. After that, the construction of the expanded code for do will be explained.
Following that, the procedures that type-check a do expression will be described.
Finally, the procedure that assembles these pieces into a functioning macro will be
presented.

A.1 Syntax-checking and decomposition

The procedure syntax-do (Figure A-2) is used to syntactically check and decompose a
do expression. It takes a single argument: the do form to be checked and decomposed.
Lines 2-17 contain the syntax-checking code. Most of the syntax-checking is self-
explanatory. A do expression must have at least three parts:

1. the do keyword itself,

2. a list of variable clauses,

3. and a termination clause.

The termination clause contains a test expression and a list of termination expressions.
The test expression is evaluated at the beginning of every iteration of the loop. If
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Expression: (do ()
(#f 5))

Expression type: int

;; Infinite loop

Expression: (let ((x (cons 1 (cons 3 (cons 5 (null))))))

(do ((x x (cdr x)) (sum 0 (+ sum (car x))))
((null? x) sum)))

Expression type: int
Expression value: 9

Expression: (let ((x (cons 1 (cons 3 (cons 0 (cons 5 (null)))))))
(do ((x x (cdr x)) (sum 0 (+ sum (car x))))

((null? x) sum)
(if (= (car x) 0)

(throw return sum)
(set! x x))))

Expression type: int
Expression value: 4

Expression: (let ((x (cons 1 (cons 3 (cons 0 (cons 5 (null)))))))

(do ((x x (car x)) (sum 0 (+ sum (car x))))

((null? x) sum)
(if (= (car x) 0)

(throw return sum)
(set! x x))))

Type inference failed

do : types of variable and step expression incompatible

Type clash between:

(listof int)

int
In form: (x x (car x))

Expression: (let ((x (cons 1 (cons 3 (cons 0 (cons 5 (null)))))))

(do ((x x (cdr x)) (sum 0 (+ sum (car x))))
(x sum)

(if (= (car x) 0)
(throw return sum)
(set! x x))))

Type inference failed

do : test expression must have type bool

Type clash between:

bool
(listof int)
In form: x

Figure A-1: Sample uses of a type-aware do macro
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the test expression evaluates to true, the termination expressions are evaluated in
order and the value of the last expression is returned as the value of the entire do.
This means there must be at least one termination expression after the test in a
termination clause.

The procedure do-vars? used on line 6 of syntax-do checks the syntax of the do
variable clauses. The first element of a variable clause must be the identifier bound
by that clause. The second element of the variable clause is an init expression that
supplies an initial value for that variable. Optionally, a variable clause can also have a
third element, a step expression. The step expression of a variable clause is evaluated
at the end of every loop iteration and supplies the value that the clause's variable is
bound to in the next loop iteration. If a variable clause has no step expression, the
variable itself is used as the step expression. In that case, except for side-effects, that
value of that clause's variable does not change as the loop is executed. The procedure
do-vars? also checks that no two variable clauses use the same identifier for their
variable.

(define (syntax-do form)
(if (not (> (length form) 2))

(syntax-fail

"do expression has incorrect size"

5 form))
(if (not (do-vars? (cadr form)))

(syntax-fail
"do expression has illegally formatted variable bindings"
(cadr form)))

10 (if (< (length (caddr form)) 1)
(syntax-fail
"do expression must have a test expression"
(caddr form)))

(if (< (length (caddr form)) 2)

15 (syntax-fail
"do expression must have a termination expression"

(caddr form)))
(let ((do-vars (map do-var-fix (cadr form))))

(let ((test (car (caddr form)))

20 (exps (cdr (caddr form)))
(commands (cdddr form))
(vars (map car do-vars))
(inits (map cadr do-vars))
(steps (map caddr do-vars)))

25 (values test exps commands vars inits steps))))

Figure A-2: The procedure syntax-do that syntactically checks and decomposes a
do expression

After syntax-checking, the remainder of the syntax-do procedure separates the
input form into the different components used to expand and type-check a do expres-
sion. The procedure do-var-fix (used on line 18) adds the default step expression
(the variable itself) to variable clauses do not have a step expression. The remaining

101



bindings (lines 19-24) bind the various components of a do expression to different
variables. The only variable that is not self-explanatory is the commands variable.
This variable contains the list of commands for the do loop, which comes from the
list of expressions after the termination clause of a do expression. When the test ex-
pression is false, these commands are evaluated for effect before the step expressions
are evaluated to prepare for the next loop iteration. At the end of syntax-do (line
25) a multiple-value return is used to give the different components of the input do
expression to the caller of syntax-do.

A.2 Expansion

The procedure expand-do (Figure A-3) is used to assemble the pieces of a do expres-
sion into the expanded code that implements it. It takes as arguments the pieces of a
do expression that are returned by syntax-do with one addition: an identifier to bind
the return continuation to'. The first part of the expand-do definition (lines 3-7) is
evaluated before the expand-do procedure is created. This preamble binds variables
that capture the global meanings of some identifiers used in do expansions 2 . This
preamble is used because these global meanings should not change, so the do macro
should not look them up every time it is expanded. The preamble is awkward and
inconvenient and there are two other ways the same effect could have been achieved:

1. Save these global meanings through an action performed at the time the do
macro is defined (taking advantage of the two-step keyword procedure creation
of the macro-by-procedure interface). This was not done because the only con-
venient way to access these saved meanings would be to include expand-do in
the keyword-creating procedure of the do macro and that procedure is already
too large and too complex.

2. Change the language implementation and the macro-by-procedure interface so
that important global meanings like these are included in the environment
made available to macro-by-procedure macros. This improvement to the cur-
rent macro-by-procedure interface implementation has not been made because
I was more interested in exploring new syntax-extension interfaces than I was
in making small improvements to the macro-by-procedure interface.

'As will be seen in section A.4, the arguments of expand-do are not the same values that are
returned from syntax-do. Instead, node futures encapsulate the forms contained in those values so
that the nodes corresponding to those forms can be recovered for type-checking. This detail does
not affect expand-do, however, because node futures are processed exactly the way the forms they
encapsulate would be processed.

2An careful reader will notice that call/cc, an identifier that refers to the global
call-with-current-continuation procedure, is also accessed as an expression keyword, using
the context exp-keyword, instead of the expected context exp-context. The reason call/cc is
accessed through the context exp-keyword is that, due to a quirk in the language implementation,
call/cc is implemented as an expression keyword.
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After the preamble, the actual expand-do procedure is created. When called, the
first thing this procedure does is generate a fresh identifier to name the procedure
that implements iterations of the do loop (line 9). A quasiquoted template is used
to construct the do expansion on lines 10-22 of expand-do. The first part of the
expansion uses call/cc to capture and bind a return continuation for the do loop.
Then the procedure that implements an iteration of the loop is recursively bound.
The body of that procedure evaluates the test expression and then evaluates the
termination expression or the rest of the loop, as appropriate. The loop is started by
calling its implementation procedure with the appropriate initial values (line 22).

(define expand-do
(let

((%begin (process 'begin global-env exp-keyword))
(Mletrec (process 'letrec global-env exp-keyword))

5 (%lambda (process 'lambda global-env exp-keyword))
(%if (process 'if global-env exp-keyword))
(%call/cc (process 'call/cc global-env exp-keyword)))

(lambda (test exp commands vars return inits steps)
(let ((/do-loop (genid 'do-loop)))

10 '(,%call/cc
(,%lambda
(,return)

(,%letrec ((,%do-loop
(,%lambda

15 ,vars
(,%if ,test

exp

(,%begin
,C(append

20 commands

'((,%do-loop ,@steps))))))))
(,%do-loop ,Cinits))))))))

Figure A-3: The procedure expand-do that assembles the expansion of a do expression

A.3 Type-checking

There are four procedures used to implement the type-checking and type-error
messages of the do macro. They are named return-check, make-var-check,
make-test-check, and do-fail-msg. The definitions of these procedures are given
in Figures A-4-A-7. The code that explains how these procedures are assembled into
a complete type-inference routine will be explained in the following section, but these
procedures are responsible for most of the type-checking and type-error generation in
this do implementation.

The first procedure is the return-check procedure (Figure A-4). This procedure
ensures that the variable node that represents the variable bound to the return con-
tinuation of a do expression has a continuation type. Before return-check, the type
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of that variable node is unconstrained. In return-check, that variable node is uni-
fied against a continuation of some specific, but currently unconstrained type. This
unification will never fail because the variable node starts out unconstrained. The
important thing is that this constraint ensures that any non-continuation use of the
variable that is bound to the return continuation will generate a type error.

(define (return-check return-node)
(unify-exp
(create-type '(contof ,(type-var 'return)))
return-node))

Figure A-4: The return-check procedure used in the type-checking of a do expression

The next part of type-checking is the make-var-check procedure (Figure A-
5). This procedure creates a procedure that can type-check a variable clause and
can generate a specific error message if that variable clause is not well-typed. The
make-var-check procedure takes a single argument: the do expression being type-
checked. This form is used to distinguish type errors blamed on subexpressions of
the do expression from type errors blamed on the do itself. This information will be
used to improve type errors caused by incorrect variable clauses. The type-checking
procedure returned by make-var-check takes four arguments: nodes that represent
the variable, init expression, and step expression of a variable clause, as well as the
original variable clause those nodes were derived from.

The body of the type-checking procedure is a call to chain-type-fail (section
3.1.3). The handler procedure passed to chain-type-fail (lines 4-7) is the part
of the variable-clause type-checker that improves the type-error messages associated
with variable clauses. When a type error is signaled, the form blamed for that type
error is compared to the do form being type-checked. If they are different, the type
error was not caused by the do (and, hence, was not caused by a variable clause of the
do), so the type-error information is not changed. When the forms match, the current
variable clause being type-checked must have caused the type error since that is the
only part of the do that introduced a new type constraint. To make the error message
more specific, the form blamed for the type error is replaced with the variable clause
being type-checked.

The thunk passed to chain-type-fail (lines 8-15) contains the code that intro-
duces the type constraints associated with a variable clause. The first constraint is
that the type of the variable of a clause must be compatible with the type of the init
expression of that clause. The second constraint is that the type of the variable of a
clause must be compatible with the type of the step expression for that clause. Fluid
bindings of type-fail-msg-code are used to generate different type-error messages
when those two constraints are violated.

Since the test expression of a do follows the variable clauses of a do,
make-test-check is used after make-var-check. This sort of ordering is one way to
make the results of a type-checking procedure easier for programmers to understand.
If a type-checking procedure introduces type constraints in the order a programmer
reading the code would introduce type constraints, then the type-error messages gen-
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(define (make-var-check form)

(lambda (var-node init-node step-node do-var)
(chain-type-fail
(lambda (current-msg current-types current-form)

5 (if (eq? current-form form)
(values current-msg current-types do-var)

(values current-msg current-types current-form)))
(lambda ()

(let ((var-type (variable-type var-node)))
10 (let-fluid type-fail-msg-code 'init-fail

(lambda ()
(unify-exp var-type init-node)))

(let-fluid type-fail-msg-code 'step-fail
(lambda ()

15 (unify-exp var-type step-node))))))))

Figure A-5: The make-var-check procedure used to type-check do variable clauses

(define (make-test-check test-node form)
(lambda ()

(chain-type-fail

(lambda (current-msg current-types current-form)

(if (eq? current-form form)
(values current-msg current-types (car (caddr form)))

(values current-msg current-types current-form)))
(lambda ()

(unify-exp (create-type 'bool) test-node)))))

Figure A-6: The make-test-check procedure used to type-check the test of a do
expression

erated from those constraints will seem more natural than the type-error messages
generated from any other order of type constraints.

The make-test-check procedure (Figure A-6) takes two arguments: the node
that represents the test expression to check and the do form being type-checked. It
returns a procedure of no arguments that type-checks the test expression of that
do. Like make-var-check, the body of the type-checking procedure created by
make-test-check is a call to chain-type-fail. Also as in make-var-check, that
call is used to improve the form associated with type-error messages caused by the
do. In the case of make-test-check, the new form is the form from which the test
node was created. The only constraint introduced by this type-checking procedure is
that the test expression must have boolean type (line 9).

The final procedure used by the type-inference routine for do is the do-f ail-msg
procedure (Figure A-7). This is the procedure that generates different type-error mes-
sages for the different reasons a do expression can fail to type-check. The procedure
has four different cases since there are four reasons a do expression might not be well-
typed. The do-f ail-msg procedure will be stored in the unify-f ail-msg attribute
of the node that represents the do, so that the type-error messages it generates will
be used (see section 3.2.2).
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(define (do-fail-msg code)

(case code
((test-fail)
"do : test expression must have type bool")

5 ((init-fail)
"do : types of variable and init expression incompatible")
((step-fail)
"do : types of variable and step expression incompatible")
((call/cc-fail)

10 "do : incompatible type thrown to return continuation")))

Figure A-7: The do-f ail-msg procedure used to generate type-error messages for do
expressions

A.4 Assembling the keyword procedure

The final step in implementing the do macro is creating a keyword procedure from
the pieces that have been described so far. The procedure, $do, that creates the do
keyword procedure is given in Figure A-8. The first thing that $do does is save the
global meaning of the begin keyword in the variable %begin (line 3). The rest of
the $do procedure consists of a lambda expression for the keyword procedure that
actually implements do (lines 4-45).

The keyword procedure begins by calling syntax-do to syntactically check and de-
compose its input form. The components of the input do form returned by syntax-do
are bound using a receive macro. The next thing the keyword procedure does is
to create node futures that will be used to recover the future nodes corresponding
to the forms contained in the different components of the input form (lines 8-13).
Parts of the input form that consist of a single subform (like the test expression) are
encapsulated inside of a single node future. Parts of the input form that are lists of
subforms (like the init and step expressions of a do) turn into lists of node futures.
The list of termination expressions contained in the input form is an exception. The
type-inference routine for do does not need to access the termination expressions in-
dividually, so they are encapsulated inside of a begin expression contained in a single
node future (line 9). A node future for the identifier that will be bound to the loop's
return continuation is also created (line 11).

After the node futures have been created, they are passed to the procedure
expand-do so that they will be used in the expanded code for the do expression
(lines 14-15). After the expansion has been created, it is processed, and then the
future nodes are extracted from the node futures that were used in the processed ex-
pansion (lines 16-26). The unimproved type-inference routine for the do expression
is also extracted from the node that represents the expanded do (lines 19-20).

The type-inference routine for do expressions (lines 30-40) uses the procedures
described in section A.3 to implement the appropriate type-checking rule. The first
step is to use the procedure return-check to constrain the type of the node that
represents the loop's return continuation (line 31). The second step is to create a
variable-clause type-checker and use it to type-check the variable clauses of the do
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(define $do

(lambda (def-env)
(let ((%begin (process 'begin global-env exp-keyword)))

(lambda (form env context)

5 (receive
(test exps commands vars inits steps)
(syntax-do form)
(let* ((test (node-future/create test))

(exp (node-future/create '(,%begin ,Cexps)))
10 (vars (map node-future/create vars))

(return (node-future/create 'return))
(inits (map node-future/create inits))
(steps (map node-future/create steps))

(output-code (expand-do test exp commands vars

15 return inits steps))
(output-node (process output-code

env
context))

(output-check (node/attribute-get output-node
20 'w-check))

(return-node (node-future/node return))
(test-node (node-future/node test))
(var-nodes (map node-future/node vars))
(init-nodes (map node-future/node inits))

25 (step-nodes (map node-future/node steps))
(exp-node (node-future/node exp)))

(node/attribute-set!
output-node

'u-check

30 (lambda ()
(return-check return-node)

(for-each
(make-var-check form)
var-nodes init-nodes step-nodes (cadr form))

35 (let-fluid
type-fail-msg-code 'test-fail
(make-test-check test-node form))
(lets-fluid
type-fail-msg-code 'call/cc-fail

40 output-check)))
(node/attribute-set!
output -node
'unify-fail-msg
do-f ail-msg)

45 output-node))))))

Figure A-8: The $do procedure that creates a keyword procedure that implements
do expression
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expression (lines 32-34). The variable-clause type-checker is called with each variable
clause from the input do form (to ensure any clause blamed for a type error does not
contain an originally omitted step expression) as well as the corresponding elements
of the var-nodes, init-nodes, and step-nodes lists. After the variable clauses
have been checked, the type-checker moves on to check the test expression of the
do expression. It uses make-test-check to make a thunk that type-checks the test
expression and calls that thunk inside a fluid binding for type-fail-msg-code so
that an appropriate type-error message is generated if the test expression does not
type-check (lines 35-37).

At this point there is only one more type-constraint left to implement in the
type-inference rule for do expressions: the types of any values thrown to the loop's
return continuation must be compatible with the type of any values returned from
the do (through the last termination expression). Instead of directly checking this
constraint, the improved type-inference routine for do uses the unimproved type-
inference routine to ensure that this remaining constraint is satisfied (lines 38-40).
Since all the other type constraints have been checked, if the unimproved type-checker
signals a type error (that is blamed on the do expression) that type error must be
caused by a conflict between the type of the return continuation and the type of any
values returned. The final part of the keyword procedure returns the improved node
that represents the expanded do expression (line 45).
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