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Abstract

Chromatic dispersion limits the performance of modem optical communications systems. Chro-
matic dispersion causes pulse broadening over long transmission distances, which constrains the
bit-rate.

A Virtually Imaged Phased Array (VIPA) in conjunction with a lens and mirror compensates for
distortion induced by chromatic dispersion. The VIPA compensator processes all wavelength-
division-multiplexed channels in a fiber in parallel. A VIPA is generated from multiple reflections
within an etalon that is partially transmissive on one surface and perfectly reflective on the other
(aside from an anti-reflection coated input/output window). The virtual images interfere to pro-
duce angular dispersion, which is converted to chromatic dispersion by a lens and mirror.

This thesis uses numerical simulation to explore and evaluate the performance of different VIPA
compensator configurations. Results demonstrate that the system mirror can be designed to cor-
rect arbitrary chromatic dispersion, and that insertion loss is independent of dispersion bias,
though mode-shaping through etalon transmissive coating design can permit wide bandwidth and
low insertion loss systems.

Thesis Advisor: Hermann A. Haus

Title: Institute Professor
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Etalon

Collimating lens Focusing lens

Fiber

Mirror

Line-focusing lens

Figure 1-1: Schematic of VIPA compensator

1.0 Introduction

Chromatic dispersion in optical fibers limits the bandwidth or transmission distance of

high performance communications systems. Chromatic dispersion arises from the physical reality

that different wavelengths travel at different group velocities through an optical fiber. Although

this effect is small, the resultant pulse broadening becomes substantial over long distances or at

high bit-rates. Pulses that will spread need to be spaced farther apart than pulses that will not

spread, to avoid pulse overlap and subsequent detection errors. Greater space between pulses

translates to lower bit-rate. A Virtually Imaged Phased Array (VIPA)' provides a low loss, com-

pact, and tunable solution to the problem of chromatic dispersion compensation [1,2]. The VIPA

compensator also simultaneously processes all wavelength-division-multiplexed channels in an

optical fiber.

1. The Virtually Imaged Phased Array (VIPA) was invented by Dr. Masataka Shirasaki at Fujitsu Laborato-
ries, Japan, in 1995.
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1.1 Current technology

The conventional method of compensating for chromatic dispersion is to use Dispersion

Compensating Fiber (DCF) [3]. Standard optical fibers have positive dispersion, whereas DCF

has negative dispersion. However, the length of DCF needed to compensate a given amount of

chromatic dispersion is comparable to the length of the fiber generating the chromatic dispersion,

on the order of 25 km of DCF per 100 km of standard single-mode fiber. This large length of DCF

eliminates the possibility of a compact compensator. In addition, DCF is lossy and introduces its

own distortion through a large nonlinear effect, due to its narrow core size. Finally, DCF is not

tunable, which hampers the flexibility of systems incorporating such fibers. A VIPA based system

can produce large, tunable chromatic dispersion with low loss and no nonlinear effects in a com-

pact module.

Alternative technologies based on diffraction gratings or Bragg grating filters [4] have

other limitations. Diffraction gratings with enough angular dispersion to be useful have polariza-

tion dependent loss. Bragg grating filters provide chromatic dispersion only in discrete steps.

They are also very long, on the order of tens of meters. A compensator built with a VIPA has no

polarization dependent loss and provides continuous dispersion over wavelength.

1.2 VIPA description

A VIPA is generated by an etalon, made of air or glass, with reflection coatings on both

sides. The reflective side has a 100% reflection coating except for an input/output window which

is anti-reflection coated. The transmissive side is only partially reflective with a coating that can

have an arbitrary functional form (this research considers constant, linear amplitude (parabolic

intensity), and multi-level transmissivity profiles).
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Reflective side t
R2= 100%

--- 0
Virtual images =

Input light--...a asmsa - - - - -- - - - .

Incident Beam

Line-focusing lens Window (R2 = 0) Transmissive side

Etalon T2(y)

Figure 1-2: Virtually imaged phased array generation

The input is a Gaussian beam from a single-mode optical fiber. This light is first allowed to

diverge and is then collimated using a spherical lens. It is then line focused, through a semi-cylin-

drical lens, into the VIPA plate. The etalon is tilted at an angle E so that the multiple reflections

within the etalon create an array of virtual images that interfere on the etalon's transmissive sur-

face (see FIGURE 1-2). Notably, these virtual images are in phase since they all originate from the

same initial image. This fact is central to determining the wavelength dependent transmission

angle (D (presented in SECTION 2).

A lens and mirror complete the system. The lens transforms the etalon's angular disper-

sion into a lateral translation in the focusing lens's focal plane, where the mirror is placed. The

reflection from a flat mirror back through the lens and onto the etalon's transmissive surface is

flipped and shifted. The shift depends on the initial angular dispersion, which is dependent on

wavelength. This shift generates negative chromatic dispersion because different wavelengths

travel different path lengths within the etalon while returning to the optical fiber. Blue light is

12



blue light travels more

red light travels less

Figure 1-3: Light paths for different wavelengths

deflected upwards and is reflected farther up the etalon. In order to exit the etalon through the win-

dow and return to the optical fiber, it must bounce back and forth between the etalon's mirrors

more times than red light; it therefore encounters a longer path length (see FIGURE 1-3).2 By

changing the shape of the mirror, this basic effect can be magnified. By changing the detailed pro-

file of the mirror, the functional form or shape of the dispersion can be modified. Finally, by

changing the distance between the etalon and lens (and keeping the lens-mirror spacing fixed), the

dispersion can be tuned.

The etalon can be thought of as a mode transformer. It takes the mode of an optical fiber (a

Gaussian beam) and transforms it into some transmission mode on its transmissive surface. The

lens and mirror merely feed a modified version of this transmission mode back into the etalon. By

reversing the operation of the etalon, the ideal mode that would produce a Gaussian beam at the

optical fiber can be defined. With this definition, the integral of the overlap between the reflection

mode and the ideal mode yields the coupling loss of the modes as well as the group delay. The

2. The ray trace in FIGURE 1-3 only shows what happens to the virtual image source along the lens axis. As
will be shown in SECTION 2, the light path is independent of the initial virtual image. Therefore, following
only one image completely describes the compensator's operation.
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dispersion is the derivative of the group delay with respect to wavelength. The ideal mode is the

conjugate of the transmission mode. Since the dispersion comes from the shift of the reflection

mode relative to the ideal mode, greater shift means more loss since the overlap integral is smaller

if the two modes are spaced farther apart.

A VIPA can also be used to perform wavelength division multiplexing/de-multiplexing.

References [5]-[7] describe this function and provide relevant insight into the chromatic disper-

sion compensation application.

1.3 Design considerations

Seven variables determine the performance specifications of the VIPA chromatic disper-

sion compensator. These are the input beam waist wo, the input angle (E in air and 0 in etalon),

the etalon's thickness t, the etalon's index of refraction n, the width of the transmission mode

(related to the transmissivity profile of the etalon's transmissive surface T(y)), the focal length of

the lens f, and the shape of the mirror c(y). These variables determine the dispersion bias,3 the

shape of the dispersion profile, the insertion loss, the bandwidth, and the free spectral range (FSR)

of the VIPA compensator.

Of these five performance specifications, two involve no substantial trade-offs: dispersion

shape and FSR. Shaping the dispersion profile by changing c(y) will not greatly affect the band-

width as long as the dispersion bias is unchanged. The bandwidth may be improved or degraded

depending on whether the dispersion at the band edges is decreased or increased respectively.

3. In general, the dispersion generated by the VIPA compensator will not be constant over wavelength. In
order to provide a useful reference for comparison between different VIPA compensator configurations,
dispersion bias has been defined as the dispersion at the center wavelength of the center WDM channel.
Furthermore, the center wavelength is defined as the wavelength in the center of the -1 dB band. This
wavelength may be different from the undeflected wavelength whose transmission angle cD is equal to E.
Subsequent sections will further develop this point.
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Since the FSR is set by industry standard (100 GHz or 0.8 nm), the values of t and n must be cho-

sen to ensure that the transmission angles of wavelengths differing by an integer multiple of the

FSR are identical (see SECTION 2).

The index of refraction is the overall performance limiting factor. The etalon thickness and

index of refraction determine the FSR, but larger n greatly increases the potency of the compensa-

tor. As will be seen in SECTION 2, the compensator's dispersive ability is proportional to the fourth

power of the etalon's index of refraction.

Having discussed the dispersion shape and FSR, there are only three fundamental metrics

left to consider: insertion loss, bandwidth, and dispersion bias. In fact, the only trade-off will be

between bandwidth and dispersion. As will be shown, the insertion loss is independent of both.

Herein lies perhaps the most important advantage of the VIPA compensator over DCF. The loss

(in dB) of DCF increases linearly with dispersion. For large amounts of dispersion, the VIPA

compensator will undoubtedly have less loss than DCF. The price for this freedom is bandwidth

narrowing. DCF has no bandwidth limitations. The transmission spectrum of DCF over a single

WDM channel is completely flat.

Characteristic waist wo

The input to the VIPA compensator is assumed to be the output of a single-mode optical

fiber. The amplitude profile can be approximated by a Gaussian. To a first-order approximation,

the input window loss is minimized when the beam is line-focused onto the transmissive surface

of the etalon along the same line where the highly reflective coating is applied on the reflective

surface (see FIGURE 1-4). Any other point of focus will increase the input window loss or first

reflection loss by more than it reduces the other.

15



Etalon

0

o et

Figure 1-4: Initial window loss
The waist that minimizes the initial window loss at the undeflected wavelength is the most

narrow waist at the etalon's reflective surface (see EQUATION 1.1). The beam waist of the power

profile is equal to this value divided by 12. Using trigonometry, the offset can be computed from

the refractive index adjusted incident angle 0 in the etalon. This offset is the distance between the

beam center and the reflective surface coating discontinuity. All of the power that falls above the

coating is lost.

Minimal window loss characteristic waist computation

2 2;[ nrfI] [11

2 2
dw 2X, Z

= 2w 0 - 2 2 = 0d 0 0

0n

CA
(A
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Estimated window loss4

offset = t - tanO

offset- erf .Kpow e rWa ist)
windowLoss =2 [1.2]

Input angle E

Smaller incident angles increase the dispersion bias but also increase the window and eta-

lon losses, since more initial power is cut off and more power can escape during subsequent

reflections. The bandwidth also decreases with decreasing angle of incidence since larger disper-

sion means the reflected mode is displaced farther from the ideal mode and therefore does not

couple as well.

Transmission profile T(y)

The transmission profile shapes the VIPA modes (transmission and reflection). Wider

modes overlap better at the band edges (higher bandwidth), but sacrifice dispersion bias (see SEC-

TION 2). The presence of non-centralized peaks in the mode profile enhances bandwidth, and sym-

metric modes have lower insertion loss than asymmetric modes.

Focal length f and mirror shape c(y)

The focusing lens converts the VIPA's angular dispersion into chromatic dispersion by

mapping the different etalon transmission angles to different positions in the focal plane where the

mirror is located, and therefore to different traveling distances. Largerf or smaller radius of curva-

ture results in higher dispersion but lower bandwidth, since the displacement between the reflec-

tion mode and the ideal mode will increase more rapidly over wavelength with largerf or smaller

radius of curvature.

4. This can also be computed numerically. SECTION 4-2 details the numerical computation.
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Other considerations

In addition to providing a quantitative way of evaluating insertion loss, bandwidth, and

dispersion, this thesis provides insight into engineering the shape of the VIPA mirror. The VIPA

chromatic dispersion compensator tends to produce greater negative dispersion for longer wave-

lengths. This trend may or may not have anything to do with the dispersion to be compensated. To

be truly useful, there must be an easy way to design a mirror to produce a compensation profile

that is matched to the particular application. In the tunable case, this mirror shape will have to be

a compromise over the range of operation unless the mirror can also be tuned.

One final consideration is the deviation of compensation of the system for different chan-

nels. The VIPA is optimized for the center channel in a WDM band. Other channels have slightly

different wavelengths and therefore react differently to the various components of the VIPA com-

pensator. Other channels also have different dispersion. The VIPA compensator corrects each

channel in the same way. All channels are improved, but only the center channel is completely

compensated.

18



2.0 Theoretical Dispersion

While the insertion loss of the VIPA compensator is hard to predict analytically, the dis-

persion performance can be readily described using straightforward ray optics.

mnl/n

2t

Figure 2-1: Transmission angle in etalon ($)

As mentioned in SECTION 1.2, the virtual image sources of the VIPA are all in phase. This

reduces the calculation of the wavelength dependent transmission angle to an antenna problem.

The differential path length between two sources must be an integer multiple of the index adjusted

wavelength in order to have constructive interference:

(D n$, cos$ = MX >n [2.1]

The FSR is also implicitly contained in EQUATION 2.1. When X is varied by an integer mul-

tiple of the FSR, D must remain constant. Therefore, (m - k)(Xm + k - FSR) where k is some

integer must stay fairly constant as k is varied over the integers. This constrains the value of nt,

since nt determines m when (D, Xm, and the FSR are fixed.

The light path from the virtual image along the lens axis to the mirror and back can be

approximated by EQUATION 2.2, where a is the distance between the axial or center virtual image

and the lens, and c(y) is the shape of the mirror (see FIGURE 2-2). FIGURE 2-2 is somewhat mis-
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c(y)

ab

cos(D -E)

a x cos((D -E))

axial (center) virtual image f

Figure 2-2: Light path

leading because the angle (c-E) is too small to be accurately depicted. In the limit where (c-e)

is very small:

lightPath = 2 a - cos( -E) + )+ c(y)] [2.2]
L cos((D - E))

y = f((D-E))

The system geometry demonstrates that this light path applies to all light of a specific

wavelength from each of the virtual images. FIGURE 2-3 shows the undeflected case, but the result

is general. The optical paths to the right of the lens are all equal because of the effect of the lens,

and the optical paths to the left of the lens are equal because the sum of the distances between any

complementary pair of images and the lens is always 2a.

The phase advance for each wavelength is:

phaseChange = lightPath

~ 2 ( 2phase Change =y = T [ 2(f + a) + (f - a)((D -0E) + 2c(y)] [2.3]

20



a+A

A Focusing lens

a-A

Figure 2-3: Light paths of complementary virtual images

The derivative of y with respect to o yields the group delay:5

groupDel

G -2X[(
G=C(

dy=G = -
dw

ay
-X 2 dy
2ncdX

f a)(D- E))+ h(y)dY d(D

d
h(y) = d c(y)

dy

2

G =I (f - a)((D - E) + fh(y) } [2.4]

Finally, the derivative of the group delay with respect to wavelength is the dispersion:

dispersion = D = dG
dA

2n [3(f - a)F +f 24Jd h(y) - fh(y)]
cX(D3I dyI

This expression explains why wider transmission modes have lower dispersion. Wider

modes are centered farther up the etalon. This increases the value of a which decreases the magni-

tude of the dispersion. Also, the dispersion is proportional to n4, which calls for high-n etalons.

5. The first term is ignored since it is roughly constant over the WDM channel and only the change in group
delay is important (see APPENDIX B).
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3.0 Mirror Design

The mirror placed in the focal plane of the focusing lens has a profound effect on the dis-

persion produced by the VIPA compensator. Placing a convex mirror, for example a simple para-

bolic mirror, in the focal plane will augment the overall dispersive effect. More complicated

mirrors can shape the dispersion as a function of wavelength. For example, the natural tendency of

the VIPA is for longer wavelengths to have greater dispersion. The correct mirror can cancel this

tendency and provide constant dispersion over the range of operation.

3.1 Parabolic mirror

For a parabolic mirror, EQUATION 2.5 yields:

2

c(y) = Y2r

D = - n(f-a)+f}
cX(D3 r

This dispersion can vary over a 0.6 nm band by nearly an order of magnitude.

3.2 Constant dispersion mirror

A more interesting case is uniform dispersion over the WDM channel. Since X changes

very slowly over the band, the dispersion will be very uniform if the multiplicand in brackets in

EQUATION 2.5 is proportional to D3.

2d 3 2n4 K0(f - a)D + f 2 DI- h(y) - fh(y) = K= Do 2 4 K
dyc A
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By assigning the initial condition h(O) = 0 and solving this differential equation in y, the

shape of the required mirror can be derived:

D f E+
f

f 2r1+0 'h 0 (y)- fh(y) ='f) dy
-(f -a)9

ho (O) = 0

K0 3 3KOE 2 KO)2 - (f -a)
ho (y) 4 y + Ty + 2 7

2f 2f f
2

d hO(Y) = 3K2 3KOE K0 -(f-a)

d 2f f f2

cO(y) = K 4
8f

K 0 E 3
+ 3 y

2f

-4 -3 -2 -1 0
y (mm)

2
K 0  -(f -a) 2

2f
2

1 2 3 4 5

Figure 3-1: Shape of two constant dispersion mirrors (K=45, 70)
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3.3 Arbitrary Dispersion Mirrors

More complicated mirrors can produce arbitrary dispersion profiles. The process is indi-

rect since the mirror shape is most easily described as a function of y which is proportional to JX.

The basic method of computing these mirror shapes as a function of y begins with assuming a pro-

portionality relationship, as in the previous section for the constant dispersion case. Here, a few of

the lower-order cases are presented.

First-order mirror

(f-a)D+f 2 h(y)-fh(y) = K y -> DI 2n Ky
dy cx

KI 4 5K 1 e 3hI(y)= -y+ 3 y+
3f 6f

K1 5 5K 1 4
y 4 y + 3 y +

15f 24f

KI E)2 227

2f 2

2 3

6f 2

Second-order mirror

2d 3 2
(f -a)D+f 2 h(y)-fh(y) = K20 y

dy

4 2
2n K 2 y

cx

h2 (y) = K 2 5 +

c2(y) = K~ 6
4fy +

24f

7K 2 E 4 K20 3
Sy + 2 '

12f 3f

7K 2 E5 K 2 E 24
3 y+ 2-

60f 12f

Third-order mirror

2 d3 3(f -a) +f - h(y)-fh(y) = K3c y -
dy

K3 6 9K 3 E 5 K 3 E2 4
h3 (y)= y + 3 y + 2 Y

5f 20f 4f

K3 7 3K3 E 6 K3 9 2 5
c3 (y) = gy + y + 2

35f 40f 20f

2n 4 K 3y 3

= cX
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Fourth-order mirror

(f -a) +f 2D+h(y)- fh(y) = K43 y -
dy

K 4 7 lIK4 6 K462 5
h 4 (y)= -- y + 3 y+ 27"

6f 30f 5f

K 4 8 lIK40 7 K42 6

48f 210f 30f

2n4 K 4y4

D4 = -

Table 3-1: Coefficients of mirror shape, c(y)

Order (n) y(n+4) y(n+3) y(n+2)

0 K0 / 8
4  K0E/ 2f [K0e

2-(f-a)] / 2j2

1 K1 / 15fi 5K1 E/ 24f K1E2 / 6j

2 K2 / 24
4  7K2E/ 60f K2E2 / 12f

3 K3 / 35f 3K3E/ 40f K3E2 / 20#

4 K4 / 48f 11K 4E/ 210f K4 E2 / 302

The most straightforward way to use these equations is to map the desired dispersion as a

function of wavelength to the desired dispersion as a function of y. Then, a linear least squares

superposition of these mirrors would yield the desired profile.

(- 2 tx
'2 22nt

y=f(Q-e)

y=f n 2- -

O=n 2-
nt
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As an example, assume that some application requires dispersion compensation of -1,700

ps/nm at 1550.0 nm with a slope of -100 ps/nm2. TABLE 3-2 lists the K, coefficients for succes-

sively higher orders of linear least squares approximations to the reference line. FIGURE 3-2 plots

the results. In this particular example, the 3rd and 4 th order terms are not needed.6

Table 3-2: Linear dispersion mirror

Order K0  K1  K 2  K3  K 4

0 37.7 - -

1 37.6 -879 -

2 37.7 -925 -212,000 -

3 37.7 -925 -212,000 0

4 37.7 -925 -212,000 0 0

-1660 r

-1720

-1730

-1740
-0.2 -0.1

x0th order
+ 1st order
o 2nd order

+ + - reference

- + 

0 0.1 0.2 0.3
X - 1550.0 (nm)

Figure 3-2: Linear dispersion mirror

6. The dispersion over a single WDM channel is essentially constant. The usefulness of arbitrary dispersion
mirrors turns out to be in so-called "dispersion slope compensators" (also built around a VIPA) which
produce different dispersion for different WDM channels. The VIPA compensator discussed in this work
corrects each WDM channel in exactly the same way. Further discussion of dispersion slope compensa-
tors is beyond the scope of this thesis.
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4.0 Numerical Model

The VIPA compensator is a simple device. Its dispersion performance is accurately pre-

dicted by ray optics. Only basic diffraction-limit optics theory is needed to fully describe the

VIPA compensator's operation. Haus's text provides an excellent description of these theoretical

tools [8]. For this thesis, this diffraction limit model was programmed using MATLABTM in order

to sketch the compensator's transmission spectrum. The simulation also calculated the dispersion

performance in order to confirm the ray optics results.

4.1 Parameters

Table 4.1: List of parameters

Parameter Symbol

index of etalon n

etalon thickness t

wavelength in free space X

beam waist wo

incident angle in air, in etalon E, 0

transmission angle in air, in etalon CD, $

focal length of focusing lens f
distance between etalon and lens I

distance between center virtual image and lens a

transmission coating T(y)

shape of mirror c(y)

4.2 Inside the etalon

Since the VIPA is operating in the paraxial limit, the Fresnel diffraction integral describes

the behavior of the input light within the device. Application of the Fresnel diffraction integral is

equivalent to multiplication by a phase factor in the frequency domain.
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Fresnel diffraction equations7

u(y, z) = exp(jkgassz) f u0 (yo)exp zgss(Y -yo) dy

2
U(k,, z) = U0 (k,)exp(jkgiassz)exp -j2kglass )

Phase factor forforward propagation:

k 2
phaseFactor = P(z) = exp(jknz)exp Y-jz

Using the phase factor with z = -t on an ideal focused Gaussian beam, with linear phase

offset due to the tilt E of the VIPA compensator, the unobstructed input just before the reflective

surface of the etalon can be calculated. If the input light before incidence is normalized, with nor-

malization constant A, the window loss can be computed. The result of the integral must be

squared since power will be lost through this mechanism on the return path as well. Subsequently,

the phase factor with z = +t and reflection factors (RL, left or reflective side, and RR, right or trans-

missive side) are repeatedly applied to obtain the complete field profile on the etalon's transmis-

sive surface, TTotal.

Window loss
00 2

windowLoss = 1 - | UInitialLeft 2dJ

7. All of the following formulae were implemented using their discrete equivalents. This introduced some
numerical complications that are not central to the theory. For clarity, pertinent commentary is presented
only in the code included in APPENDIX C. Also for clarity, X always refers to the free space wavelength.
The refractive index will always be carried explicitly throughout this work.
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Iterative propagation calculation

U ~-1 F A xp (YY)2 P-)
UInitialLeft = (1 - RL)F F AexP 2 }P(t)LPhase

0/

LPhase = exp(j(y-y 0 )kgasssin(O))

A =

4 exp (Y - jO) 2 dy

UlR = BF~1 {F{ UInitialLeft}PWt)

B =

IF-1 {F{UInitialLeft}P(t)} 2 dy

UIL = F- ({F{RRUlR}Pt)}

U2R = F1 ({F{RLUL}P(t)})

N

UTotal= EUnR

After enough8 iterations N, the UnR vectors are added to yield the total field profile UTotal

before transmission through the etalon's transmissive surface. This sum is multiplied by T(y),

where T(y) is the transmissivity of the transmissive surface, to yield TTotal. Each reflection results

in power loss through the window as well as deviation from the virtual image ideal (see FIGURE 4-

1). The total etalon loss is calculated by normalizing the input power after the initial window loss,

using normalization constant B, and evaluating the final transmitted power. Again, this result must

be squared to account for the return loss by the same mechanism.

8. "Enough" iterations to provide an accurate representation of UTotai in the constant transmissivity case is

generally 400. This number depends on the overall transmissiveness of the transmissive coating. A more

transmissive coating requires fewer iterations, as light is rapidly lost with each reflection. A less transmis-

sive coating requires more.
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Etalon loss

e o 2

etalonLoss = I - |IT Totall 2dy

-1 0 1 2 3 4 5 6

x 10~4

-1 0 1 2 3 4 5 6

y (mm) x 10-

Figure 4-1: Reflections at the etalon transmissive surface.
(a) First 10 reflections (2.0 % Transmissivity, E = 2.50).

(b) 1st, 3rd, 5th, 7th, and 9th actual and ideal reflections.
Ideal reflections assume no window.
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4.3 Lens and mirror 0.35

The effect of the lens can be deter- red 10 blue
0.3-

mined by first calculating the Fourier trans- Undeflected X

form VTotal of TTotal. Given VTotal, VMain for 0.25-

the undeflected wavelength is the lobe with 2 0.2

the highest power.9 For the other wave- -) +1
0.15-

lengths, VMain is the lobe appropriately sit-

0.1 -
uated with respect to the undeflected

wavelength's main lobe. VMain for longer 0.05. 1+2

L Ih 1+31+
wavelengths will be the first lobe to the left - 14

0
0 2 4 6

of the undeflected wavelength's main lobe ky (m- 1) X 10 5

and VMain for shorter wavelengths will be Figure 4-2: Lobes of VTotaI in the focal plane

the first lobe to the right of the undeflected wavelength's main lobe (see FIGURE 4-2). These main

lobes are referred to collectively as the 10 lobes; other lobes have different indices. 10 By first nor-

malizing VTotal, using the constant C, the residual power in VMain and therefore the lobe loss can

be found."1 The inverse Fourier transform of VMain yields TMain, normalized with constant D.

VMain needs to be recalculated from TMain, accounting for lens alignment and phase advance.

9. In general, the undeflected wavelength, defined as the wavelength propagating at CD = E,will not have the
least lobe loss. Predicting which wavelength will have the greatest power in its main lobe is impossible
without simulation. Because the array of images in the VIPA are not actually ideal Gaussian beams, the
profile VTotal cannot be reliably predicted analytically (see SECTION 6.1).

10.10 refers to the lobe with the most power. 1i o denotes lobes at higher transmission angles and 1i < 0

denotes lobes at lower transmission angles. In FIGURE 4-2, no negative lobes exist.
11 .The transmission of the etalon at the mirror has multiple lobes. The light reflected back into the device by

the mirror consists of only the main lobe. The rest of the power is lost and can be computed by normaliz-
ing the total transmitted power and then subtracting the power left in the main lobe. This power is actually
lost "twice", so this loss factor must be squared.
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Determination of TMain without lens alignment

VTotal = CF{TTotal}

C =I
00 1

SF{ TTotal} 2 dky

TMain = DF-1 {VMain}

D =1

D= 00 1JF- {Vain 2 d

Lobe loss
00 2

lobeLoss = 1 - VMain 2

The focusing lens is tilted at -E with respect to the etalon, so that it is parallel to the colli-

mating and line-focusing lenses and perpendicular to the optical fiber. The focusing lens axis is

aligned with the power center of TMain of the undeflected wavelength (see FIGURES 4-3 and 4-4). 12

Now, VMain can be recalculated using the phase-adjusted and centered TMain. This time, a phase

progression factor for the distance traveled from the light center to the mirror is included.

Power center of TMain

700
center = such that f T(y)T(y,0-y)dy is maximized.

2

12.The power center of TMain at the undeflected wavelength should be normally incident onto the center of

the lens for minimal coupling loss at the undeflected wavelength. However, this is not necessarily the
optimal alignment for a given application. Changing the tilt of the lens and the position of the lens axis
with respect to the etalon will move the coupling loss spectrum. Changing the position of this spectrum
with respect to the other loss spectra allows trading between insertion loss and bandwidth (see figures in
SECTION 5). Development of this possibility is beyond the scope of this thesis.
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Figure 4-3: Illustration of the power center of TMain-

T Main and VMain including lens alignment

TMain Tuainexp(-jysin(0)kair)
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Mirror = exp -j2kair T k
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Figure 4-4: Focusing-lens alignment

33

wer cen

15

Mirror

t k

- -

FC
e



Lens phase progression factor

PLens = eXp j lCos kair
Cos

k;aji 

The light reflected from the mirror will eventually couple into the output fiber. The loss

through this transfer and the dispersion can be derived from the overlap integral between the

reflected light RMain, normalized with constant E, and the ideal fiber mode (which is the conjugate

of TMain). In this section, the subscript Main distinguishes the main mode of the relevant profile.

The rest of this thesis does not require this convention; the subscript Mode shall always refer to

the main mode.

Derivation of RMain

RMain = EF{VMainPLens}

E =

JF{VMainLens 2 y

Coupling loss and dispersion

overlap = Ideal*RMaindy

Ideal = TMain

couplingLoss = 1- loverlap|2

y = Phase(overlap)

12
groupDelay = 2dX

d nd
dispersion = dgroupDelayTxruPea
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5.0 Simulation Results

The simulations evaluated three different transmissivity profiles (constant, linear, and

multi-level), two mirror designs (parabolic and constant dispersion), as well as three different

input angles (2.20, 2.5', and 2.80). The program also explored the VIPA compensator's perfor-

mance in the tunable case by varying 1, the distance between the etalon and the lens. In most

cases, bandwidth increases and insertion loss, dispersion bias, and the normalized dispersion stan-

dard deviation cn all decrease as E increases. 13 Also, the bandwidth is wider and the dispersion-

bias smaller for less transmissive coatings, since they generate wider transmission modes (see

SECTION 2). For all results,f= 5 cm, n = 1.8, t = 800 ptm and wo = 14.8 [tm (see SECTION 1.3).

The primary objective of the simulation is to generate transmission spectra for different

VIPA compensator configurations. The secondary objective is to confirm the closed form ray

optics dispersion formula (EQUATION 2.5). Agreement between these two techniques also provides

confidence that the computed transmission spectra are correct.

The numerical dispersion calculation is subject to many computational artifacts. The sim-

ulation uses discrete approximations of continuous variables and functions. This naturally intro-

duces noise-like errors. The phase of small complex numbers is especially sensitive to these

fluctuations. 14 Finally, derivatives tend to amplify the effects of random errors. The way around

these complications is to perform some kind of averaging. The simulation implements this correc-

tive action in the difference equation used to compute the group delay from the phase y.

13.Transmission spectrum clipping occurs at G = 2.80 because secondary lobes are not as well suppressed as
they are in smaller angles (see SECTION 6.2). This effect runs counter to the expected trend that bandwidth
increase as E increases, but it only appears when the bandwidth is already large (around 0.4 nm).

14.This error mechanism is influential at the transmission band edges where the overlap integral between the
transmission and reflection modes is small. All of the major disagreement between the theory and simula-
tion occurs in these high-loss regions (see following figures).
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-=X2 dy AX2 Y (n + 1) Y (k) 2AY

27rcdX 2tc( Xn+ _- ) 27ccAX

By making AX large, much of the numerical noise can be filtered out, and excellent corre-

spondence between the theory and simulation can be accomplished. Unfortunately, a large A)

means that Ay is also large. The danger is that y will change by more than 27t over AX, which will

cause a large discrepancy between the theory and simulation, since the software is unable to dis-

tinguish changes in y greater than 27t from the equivalent change that is less than 27E. This error

can be detected by inspection. When substantial errors occurred in the transmission passband,

they were corrected; otherwise, they were ignored.

5.1 Constant transmissivity

Of all the possible transmissivity profiles, constant transmissivity is the easiest to manu-

facture. The main problem with constant transmissivity is high insertion loss. For the constant

coating, the transmission modes are decreasing exponentials. Their asymmetry limits the mode

coupling to about 50%, or -3 dB. Combined with the other losses built into the system (window,

etalon, and lobe losses that are independent of coating), the maximal theoretical system perfor-

mance is roughly -4.5 dB. However, since the transmission modes have non-centralized peaks,

the bandwidth of constant transmissivity configurations is wide.

TABLE 5-1 summarizes the results of twelve different system configurations with constant

transmissivity. These results confirm the expected trends described in SECTION 2 with the excep-

tion of unexpected bandwidth reduction at 9 = 2.8' (see SECTION 6.2). Moreover, the constant dis-

persion mirror generates very little dispersion deviation over wavelength. Unfortunately, the

simpler parabolic mirror suffers from very large deviations over a 0.2 nm range.
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Table 5-1: Constant transmissivity scenarios

Ea Coatingb Mirrorc Dispersion Biasd a (ps/nm)e an f Insertion Loss9 Bandwidthh

2.20 2.0% r= 3 cm -1,725 ps/nm 358 0.2078 -4.91 dB 0.36 nm

2.50 2.0% r= 3 cm -1,419 ps/nm 232 0.1637 -4.61 dB 0.38 nm

2.80 2.0% r= 3 cm -1,289 ps/nm 182 0.1412 -4.50 dB 0.36 nm

2.20 2.0% K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -4.96 dB 0.26 nm

2.50 2.0% K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -4.71 dB 0.27 nm

2.80 2.0% K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -4.62 dB 0.26 nm

2.20 1.5 % r = 3 cm -1,342 ps/nm 266 0.1983 -4.79 dB 0.40 nm

2.50 1.5 % r = 3 cm -1,165 ps/nm 191 0.1637 -4.55 dB 0.42 nm

2.80 1.5 % r= 3 cm -1,061 ps/nm 150 0.1412 -4.45 dB 0.37 nm

2.20 2.5 % r = 3 cm -2,037 ps/nm 445 0.2184 -4.96 dB 0.29 nm

2.50 2.5 % r = 3 cm -1,690 ps/nm 293 0.1735 -4.69 dB 0.33 nm

2.80 2.5 % r = 3 cm -1,424 ps/nm 201 0.1412 -4.56 dB 0.34 nm

a. Incident angle.
b. Power transmissivity of transmissive coating.
c. When r is specified, the mirror is parabolic and r is the radius of curvature. When K is specified, the

mirror is a constant dispersion mirror and K is the scaling constant (see SECTION 3.2).
d. Dispersion at the center wavelength defined as the wavelength in the center of the -1 dB band (dif-

ferent from the undeflected wavelength).
e. a is the standard deviation of the dispersion where Xk = XO + 0.01k in nanometers. Note that this

computation uses theoretical values.

10

I(D(Xk) - D(Xo))
_ k=-10

21

f. a1n is the normalized standard deviation of the dispersion. See above for further explanation

10

D(Xo
2 _ k=-
n 21

g. Insertion loss at the peak wavelength which is not necessarily equal to the center wavelength.
h. -1 dB bandwidth.
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Figure 5-1: 2.0 % transmissivity,
r = 3 cm parabolic mirror

(e = 2.20, 2.50, 2.80).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for E = 2.50 (dB).
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Figure 5-2: 2.0 % transmissivity,
K = 70 constant dispersion mirror

(E = 2.20, 2.50, 2.80).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for E = 2.50 (dB).
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Figure 5-3: 1.5 % transmissivity,
r = 3 cm parabolic mirror

(e = 2.20, 2.50, 2.80).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for E = 2.50 (dB).
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Figure 5-4: 2.5 % transmissivity,
r = 3 cm parabolic mirror

(0 = 2.20, 2.50, 2.80).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for E = 2.50 (dB).
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Figure 5-5: 2.0 % transmissivity,
r= 3 cm parabolic mirror,

transmission and reflection modes
at E = 2.50 (a.u.).

(a) Xud - 0.3 nm. (b) Xud. (c) Xud + 0.3.

5

(a)

-V

-0.2 0 0.2
(b)

-0.2 0 0.2
(c)

-0.2 0
X - Undeflected X (nm)

0.2

Figure 5-6: 2.0 % transmissivity,
r = 3 cm parabolic mirror,

dispersion derivation (E = 2.50)
(a) Phase of TMode and RMode overlap (y in
radians). (b) Group delay (G = dy/do) in
ps). (c) Dispersion (D = dG/dX in ps/nm).

15.As will be seen in later figures as well, the modes for longer wavelengths are always more narrow than
the modes for shorter wavelengths. This is a direct result of the system geometry (see SECTION 6.6).
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5.2 Linear transmissivity

The only currently observable difference between the linear and constant transmissivity

coatings is that the linear coatings have lower insertion loss with nearly 0% coupling loss. This

permits a theoretical limit of -2 dB overall insertion loss. Unfortunately, a linear transmissivity

coating is difficult to manufacture. Further comparison is performed in SECTION 5.4.

Table 5-2: Linear transmissivity scenarios

e Coatinga Mirror Dispersion Bias Y (ps/nm) Gn Insertion Loss Bandwidth

2.20 40 %/cm r = 3 cm -879 ps/nm 214 0.2433 -2.40 dB 0.22 nm

2.50 40 %/cm r= 3 cm -866 ps/nm 163 0.1885 -2.12 dB 0.25 nm

2.80 40 %/cm r= 3 cm -815 ps/nm 123 0.1508 -1.99 dB 0.27 nm

2.20 40 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -2.46 dB 0.13 nm

2.50 40 %/cm K=70 -3,161 ps/nm 0.1235 3.907 E-5 -2.20 dB 0.13 nm

2.80 40 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -2.06 dB 0.14 nm

2.50 20 %/cm r = 3 cm +144 ps/nm 25 0.1735 -2.01 dB 0.36 nm

2.50 40 %/cm r = 3 cm -866 ps/nm 163 0.1885 -2.12 dB 0.25 nm

2.50 60 %/cm r= 3 cm -1,358 ps/nm 268 0.1970 -2.17 dB 0.18 nm

2.50 80 %/cm r= 3 cm -1,657 ps/nm 334 0.2016 -2.18 dB 0.15 nm

2.50 10 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -2.32 dB 0.21 nm

2.50 20 %/cm K=70 -3,161 ps/nm 0.1235 3.907 E-5 -2.16 dB 0.17 nm

2.50 40 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -2.21 dB 0.13 nm

2.50 60 %/cm K=70 -3,161 ps/nm 0.1235 3.907 E-5 -2.20 dB 0.11 nm

2.50 80 %/cm K=70 -3,161 ps/nm 0.1235 3.907 E-5 -2.20 dB 0.10nm

2.5' 10 %/cm K = 45 -2,032 ps/nm 0.0794 3.907 E-5 -2.29 dB 0.24 nm

2.50 20 %/cm K = 45 -2,032 ps/nm 0.0794 3.907 E-5 -2.15 dB 0.21 nm

2.50 40 %/cm K = 45 -2,032 ps/nm 0.0794 3.907 E-5 -2.17 dB 0.17 nm

2.50 60 %/cm K= 45 -2,032 ps/nm 0.0794 3.907 E-5 -2.18 dB 0.15 nm

2.50 80 %/cm K= 45 -2,032 ps/nm 0.0794 3.907 E-5 -2.19 dB 0.13 nm

a. Amplitude transmissivity.
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Figure 5-7: 40%/cm transmissivity,
r = 3 cm parabolic mirror

(E = 2.20, 2.50, 2.80).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for E = 2.50 (dB).
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Figure 5-8: 40%/cm transmissivity,
K = 70 constant dispersion mirror

(E = 2.20, 2.5*, 2.80).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for E = 2.50 (dB).
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Figure 5-9: Varied linear transmissivity,
r = 3 cm parabolic mirror

(slope = 40, 60, 80 %/cm, e = 2.50).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for slope = 60 %/cm (dB).
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K = 70 & 45 constant dispersion mirrors
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bols) dispersion (ps/nm). (b) Trans. spectra
and -1 dB limits (K = 70) (dB). (c) Trans.
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43

3



(a)

-/

-0.2 0 0.2
(b)

0.06 -

0.04-

0.02-

0-
-5

0.06

0.04 -

0.02 -

-0.2 0
X - Undeflected X (nm)

0.2

Figure 5-11: 40%/cm transmissivity,
K = 70 constant dispersion mirror,

transmission and reflection modes
at E = 2.50 (a.u.).

(a) Xud - 0.3 nm. (b) Xud. (c) Xud + 0.3.

Figure 5-12: 40%/cm transmissivity,
K = 70 constant dispersion mirror,
dispersion derivation (E = 2.50).

(a) Phase of TMain and RMain overlap (y in
radians). (b) Group delay (G = dy/dw in
ps). (c) Dispersion (D = dG/dX in ps/nm).
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5.3 Multi-level transmissivity

The multi-level transmissivity is an

approximation of the linear transmissivity case

that is easier to manufacture. However, the levels

do not approximate the linear amplitude transmis-

sivity of the linear case templates; they approxi-

mate the parabolic power transmissivity.

Intuitively, this is because the performance of the

compensator is measured with respect to power,

and therefore the power response should be

approximated. For the following 2-level cases, the

junction is located at roughly 1/2 of the linear

(a)

E

0

0.04

0.03

0.02

0.01

0

0.1

0.05

5 0 5 10 1X

(b) x 10-3

U-
-5 0 5 10 1

y (m) x 10-

Figure 5-13: 2-level transmissivity
determination

(a) Linear template TMode-
(b) 2-level profile with window at y = 0.

template undeflected wavelength transmission mode width, and the power transmissivity levels

are the arithmetic means of the parabolic endpoints of each region (see FIGURE 5-13).16 The same

method is repeated for the 3-level cases, except that the linear template undeflected wavelength

transmission mode width is divided into thirds. The main distinction of the multi-level cases is

that the insertion loss hovers around -3.0 dB. For the 3-level cases, the transmission spectra can

be designed to have a dip in the middle. This would increase the effective bandwidth of the VIPA

compensator cascaded with a device that has a more typical transmission spectrum with a peak in

the center.

16.This level determination algorithm only provides an initial guess for good designs. By exploring the junc-
tion-level combinations in the neighborhood of this guess, low insertion loss and wide bandwidth config-
urations can be found.
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Table 5-3: 2-level transmissivity scenarios

e Template Mirror Dispersion Bias a (ps/nm) Cn Insertion Loss Bandwidth

2.5' 40 %/cm r = 3 cm -1,213 ps/nm 207 0.1701 -2.97 dB 0.32 nm

2.50 60 %/cm r = 3 cm -1,573 ps/nm 284 0.1806 -3.12 dB 0.27 nm

2.50 80 %/cm r = 3 cm -1,773 ps/nm 327 0.1845 -3.10 dB 0.22 nm

2.50 10 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -2.97 dB 0.30 nm

2.50 20 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -3.00 dB 0.26 nm

2.50 40 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -3.01 dB 0.18 nm

2.50 10 %/cm K=45 -2,032 ps/nm 0.0794 3.907 E-5 -2.95 dB 0.36 nm

2.50 20 %/cm K =45 -2,032 ps/nm 0.0794 3.907 E-5 -2.97 dB 0.33 nm

2.50 40 %/cm K=45 -2,032 ps/nm 0.0794 3.907 E-5 -3.00 dB 0.25 nm

Table 5-4: Level values and junction location for 2-level transmissivity

T02 J, Ti 2

0.98 % 0.35 cm 4.90 %

1.12% 0.25 cm 5.63%

1.28% 0.20 cm 6.40%

0.32% 0.80 cm 1.60%

0.60 % 0.55 cm 3.02 %

0.98 % 0.35 cm 4.90 %

0.32% 0.80 cm 1.60%

0.60 % 0.55 cm 3.02 %

0.98 % 0.35 cm 4.90 %
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Figure 5-14: 2-level transmissivity,
r = 3 cm parabolic mirror

(template = 40, 60, 80 %/cm).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for slope = 60 %/cm (dB).
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Figure 5-15: 2-level transmissivity,
K = 70 constant dispersion mirror

(template = 10, 20, 40 %/cm).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for slope = 20 %/cm (dB).
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Figure 5-16: 2-level transmissivity,
K = 45 constant dispersion mirror

(template = 10, 20,40 %/cm).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for slope = 20 %/cm (dB).

Figure 5-17: 20%/cm 2-level trans.,
K = 70 constant dispersion mirror,

transmission and reflection modes,
at E = 2.5* (a.u.).

(a) Xud - 0.3 nm. (b) X. (c) Xd + 0.3.
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Table 5-5: 3-level transmissivity scenarios

E Template Mirror Dispersion Bias a (ps/nm) Cyn Insertion Loss Bandwidth

2.50 40 %/cm r = 3 cm -1,203 ps/nm 205 0.1701 -3.00 dB 0.34 nm

2.50 60 %/cm r= 3 cm -1,573 ps/nm 284 0.1806 -3.03 dB 0.26 nm

2.50 80 %/cm r = 3 cm -1,796 ps/nm 354 0.1970 -2.53 dB 0.14 nm

2.50 10 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -2.90 dB 0.24 nm

2.50 20 %/cm K= 70 -3,161 ps/nm 0.1235 3.907 E-5 -3.17 dB 0.21 nm

2.50 40 %/cm K=70 -3,161 ps/nm 0.1235 3.907 E-5 -3.10 dB 0.20 nm

2.5' 10 %/cm K = 45 -2,032 ps/nm 0.0794 3.907 E-5 -2.87 dB 0.29 nm

2.50 20 %/cm K= 45 -2,032 ps/nm 0.0784 3.907 E-5 -3.16 dB 0.24 nm

2.50 40 %/cm K = 45 -2,032 ps/nm 0.0784 3.907 E-5 -3.06 dB 0.27 nm

Table 5-6: Level values and junction locations for 3-level transmissivity

T0
2  Ji T 1

2  J2 T2

0.89 % 0.33 cm 4.44% 0.67 cm 11.56%

1.125 % 0.25 cm 5.625% 0.50 cm 14.625%

8.889 % 0.17 cm 4.444% 0.33 cm 11.56%

0.22 % 0.67 cm 1.11 % 1.33 cm 2.89 %

0.50 % 0.50 cm 2.50 % 1.00 cm 6.50 %

0.89 % 0.33 cm 4.44% 0.67 cm 11.56%

0.22 % 0.67 cm 1.11 % 1.33 cm 2.89 %

0.50 % 0.50 cm 2.50 % 1.00 cm 6.50 %

0.89% 0.33 cm 4.44% 0.67 cm 11.56%
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Figure 5-18: 3-level transmissivity,
r = 3 cm parabolic mirror

(template = 40, 60, 80 %/cm).
(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for slope = 60 %/cm (dB).
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Figure 5-19: 3-level transmissivity,
K = 70 constant dispersion mirror
(template = 10, 20, 40 %/cm).

(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for slope = 20 %/cm (dB).
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Figure 5-20: 3-level transmissivity,
K = 45 constant dispersion mirror
(template = 10, 20, 40 %/cm).

(a) Theoretical (lines) and numerical (sym-
bols) dispersion (ps/nm). (b) Transmission
spectra and -1 dB band limits (dB). (c) Loss
decomposition for slope = 20 %/cm (dB).
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Figure 5-21: 20%/cm 3-level trans.,
K = 70 constant dispersion mirror,

transmission and reflection modes
at E = 2.50 (a.u.).

(a) Xud - 0.3 nm. (b) Xud- (c) Xud + 0.3.
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5.4 Constrained coating comparison

These three coating designs must be constrained in order to be meaningfully compared.

The two constraints in this exercise are that they produce the same dispersion (using a constant

dispersion mirror) and that their transmission mode widths be the same. The transmission mode

widths should be the same so that all three configurations can use an etalon of the same size. FIG-

URE 5-22 shows the transmission and reflection modes for the

the transmission spectra and -1 dB bands for the three cases.
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Figure 5-22: Constrained coating comparison
(a) Transmission and reflection modes at undeflected wavelength

(b) Transmission spectra and -1dB bands
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TABLE 5-7 summarizes the simulation results. The constant case has wide bandwidth, but

suffers from high insertion loss. The linear case exhibits low insertion loss, but has narrow band-

width. The 2-level case is superior to both, since it has low insertion loss and wide bandwidth.

Table 5-7: Constrained coating comparison

Coating Insertion loss Bandwidth Dispersion

Constant power (1.8%) -4.7 dB 0.29 nm -3,200 ps/nm

Linear amplitude (20%/cm) -2.2 dB 0.17 nm -3,200 ps/nm

2-level (20%/cm template) -3.0 dB 0.26 nm -3,200 ps/nm

To put these numbers in context, -3,200 ps/nm is enough dispersion to compensate 200

km of standard single mode fiber. The same task would require on the order of 50 km of DCF. The

transmission spectrum of DCF is flat over a single WDM channel but the insertion loss would be

in the vicinity of -20 dB. Even the constant coating is better in this respect by a wide margin.

The fundamental reason for the VIPA compensator's superiority is that its insertion loss is

independent of dispersion. The preceding tables (TABLES 5-1, 5-2, 5-3, and 5-5) show that inser-

tion loss depends only on coating type. Insertion loss is related to bandwidth insofar as coating

type influences bandwidth, but there is no direct relationship between bandwidth and insertion

loss. The system trade-off is between bandwidth and dispersion. The bandwidth decreases as dis-

persion increases, but insertion loss stays fixed. Since insertion loss is independent of dispersion,

using a VIPA compensator can reduce the number of optical amplifiers needed along a communi-

cations link.
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5.5 Tunable compensator

The VIPA compensator can be tuned over a range of as much as 1,500 ps/nm by varying

the distance 1 between the etalon and the lens by as little as 10 cm. This varies the parameter a that

appears in the dispersion formula.

Table 5-8: Tunable compensator (r = 3 cm)

1 (cm) E Coating Mirror Dispersion Bias a (ps/nm) Y, Insertion Loss Bandwidth

0.5 2.50 2.0% r= 3 cm -1,419 ps/nm 232 0.1637 -4.61 dB 0.38 nm

1.0 2.50 2.0% r= 3 cm -1,336 ps/nm 219 0.1637 -4.60 dB 0.39 nm

2.0 2.50 2.0% r= 3 cm -1,169 ps/nm 191 0.1637 -4.58 dB 0.40 nm

3.0 2.50 2.0% r= 3 cm -1,001 ps/nm 164 0.1637 -4.55 dB 0.41 nm

4.0 2.50 2.0% r= 3 cm -813 ps/nm 131 0.1607 -4.53 dB 0.42 nm

5.0 2.50 2.0% r= 3 cm -650 ps/nm 105 0.1607 -4.51 dB 0.43 nm

6.0 2.50 2.0% r= 3 cm -488 ps/nm 78 0.1607 -4.50 dB 0.43 nm

7.0 2.50 2.0% r= 3 cm -325 ps/nm 52 0.1607 -4.48 dB 0.44 nm

8.0 2.50 2.0% r= 3 cm -158 ps/nm 25 0.1578 -4.47 dB 0.44 nm

9.0 2.50 2.0% r= 3 cm +0.93 ps/nm 0.1465 0.1578 -4.47 dB 0.44 nm

10.0 2.50 2.0% r=3cm +160 ps/nm 25 0.1578 -4.47 dB 0.44 nm

-1 dB bandwidth

I-7..0 cm

1 .0 cm

-N

7 - - -- -- - - - -- -- --

1 - 0.

I = 0.5 cm
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The parabolic mirror's ay stays large but constant over the tuning range. The constant dis-

persion mirror's an increases towards the tuning range extremities. In both cases, insertion loss

and bandwidth remain fairly constant.

Table 5-9: Tunable compensator (K = 30)a

1 (cm) E Coating Mirror Dispersion Bias a (ps/nm) Un Insertion Loss Bandwidth

1.0 2.50 2.0% K= 30 -2,079 ps/nm 126 0.0604 -4.65 dB 0.34 nm

2.0 2.50 2.0% K= 30 -1,898 ps/nm 94 0.0496 -4.64 dB 0.35 nm

3.0 2.50 2.0% K= 30 -1,707 ps/nm 60 0.0351 -4.61 dB 0.37 nm

4.0 2.50 2.0% K= 30 -1,531 ps/nm 30 0.0196 -4.59 dB 0.38 nm

5.0 2.50 2.0% K= 30 -1,355 ps/nm 0.0529 3.907 E-5 -4.57 dB 0.39 nm

6.0 2.50 2.0% K= 30 -1,183 ps/nm 29 0.0242 -4.55 dB 0.40 nm

7.0 2.50 2.0% K= 30 -1,021 ps/nm 55 0.0536 -4.53 dB 0.41 nm

8.0 2.50 2.0 % K= 30 -853 ps/nm 82 0.0962 -4.51 dB 0.42 nm

9.0 2.50 2.0% K= 30 -683 ps/nm 109 0.1595 -4.49 dB 0.43 nm

10.0 2.50 2.0% K= 30 -541 ps/nm 131 0.2421 -4.48 dB 0.43 nm

a. Mirror optimized for I = 5.0 cm.
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Figure 5-24: Tunable dispersion variation for constant dispersion mirror
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6.0 Finer Points

This section describes some of the more subtle and practical considerations regarding the

design of a VIPA compensator.

6.1 Predicting center wavelength

All of the simulation results presented in the previous section were designed so that (D for

the undeflected wavelength X = 1550 nm was equal to . The focusing lens was aligned to mini-

mize coupling loss at that same wavelength as well. 17 Unfortunately, the lobe loss is not, in gen-

eral, minimized at (D = ); it is minimized when (D > E, which corresponds to X < X1550 . This is

because the light bouncing back and forth between the etalon surfaces rapidly loses its Gaussian

shape, so that the virtual image approximation is not quite valid (see FIGURE 4-1). This deviation

from the ideal is responsible for the shift between the wavelength with the least lobe loss and the

undeflected wavelength.

The VIPA idealization for the constant coating assumes an array of in phase Gaussian

beams of decreasing magnitude offset by 2t and propagating at e (see FIGURE 6-1).

2t

Figure 6-1: VIPA Gaussian beam idealization

17.The thickness of the plate, t, was fine-tuned so that (D (=1550 nm) was always equal to E (see EQUATION

2.1). The coupling loss minimization at X = 1550 nm is accomplished by tilting the lens -E with respect
to the etalon (so that the light at 1550 nm is normally incident on the lens) and aligning the lens axis with

the power center of the main 1550 nm transmission mode (see SECTION 4.3).
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The far-field pattern or, equivalently, the pattern in the focusing-lens focal plane is:

- I XPexp (j2tkP( 1
)P=O

VIdeal = exp jWO(k k0 )

ko = knsin0

exp-Wo(k -ko)

cexp i2tk kj
1 axpn(k,1 - lT))

2 2 2

exp jWO(k; ko)

1+a 2 -2acos 2tk 1-

The intensity expression can be divided into an envelope and a modulation:

2 3

ky (m-1)

4 5

Figure 6-2: Far-field envelope and modulation
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According to the ideal VIPA model, the highest intensity peak indeed occurs at the unde-

flected wavelength. In general, as shown in FIGURE 4-2, the highest intensity peak occurs at a

shorter wavelength. Unfortunately, power in the ideal formulation is not conserved, since the total

power in each wavelength is not the same. For example, the lobes for X = 1550.1 nm are always

thinner and shorter than the lobes for X = 1550.0 nm immediately to the left. Therefore, the inte-

gral of the power in the component lobes must be smaller. Since all wavelengths started with the

same power, this would be a violation of energy conservation, so the ideal virtual image approxi-

mation is not valid. The invalidity arises from the effect of the window. Constructing the wave-

front implied by the VIPA ideal is impossible. Fortunately, the simulation can predict the

wavelength with the least lobe loss.

6.2 Transmission spectrum clipping at E = 2.80

For wide bandwidth configurations and 6 = 2.8', the bandwidth is actually more narrow

than when 6 = 2.5'. The transmission spectrum is clipped and falls off rapidly at shorter wave-

lengths (see FIGURE 6-3). This happens because of the appearance of non-negligible 1 lobes.

E = 2.80 produces less dis-
0

- - -Lobe Loss
persion than 6 = 2.50. Therefore, Total Loss

-2 - /- -1 dB
its lobes are closer together (see

FIGURE 6-4). This causes more -4-

lobe loss at the band edge since -6-

the 1 lobe appears sooner and
-8-

grows rapidly. In narrow band-
-10

width cases, other loss mecha- -0.3 -0.2 -0.1 0 0.1 0.2 0.3
X - Undeflected X

nisms drown out this effect.
Figure 6-3: Transmission spectrum clipping at E = 2.80
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Figure 6-4: VTota for X < 1550.0 nm for E = 2.50 and 2.80

6.3 Secondary-lobe cross-talk

The profile of light at the mirror consists of multiple lobes. The VIPA compensator is

intended to operate on only the main lobes (see SECTION 4.3). However, the other lobes cannot be

ignored. They too can couple back into the optical fiber, and will cause cross-talk in the same

channel since they represent different 0

parts of the data stream from the main -20-

lobe. Since very little power will be ~40 _

concentrated in lobes of order greater -60-

1=0
than one, only the 1+1 lobes need to be -80 - - 1=+1

-100
considered. The 1+1 lobe is delayed -0.4 -0.2 0 0.2 0.4

X - Undeflected X (nm)
with respect to the 10 lobe and the L1

Figure 6-5: Secondary-lobe cross-talk
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lobe is advanced with respect to the 10 lobe. In either case, different parts of the data stream are

superposed onto the main data stream. FIGURE 6-5 shows that the 1+1 lobe power becomes compa-

rable to the l lobe power at the longer wavelength end of the channel. The 1+1 lobe has very little

power over the entire 0.8 nm channel, and can safely be ignored.

The mirror can eliminate this secondary lobe power by either deflecting it away or absorb-

ing enough of it to reduce its coupling to negligible levels.

6.4 Mismatched constant dispersion mirror

The etalon tilting angle E and the thickness t of the etalon determine the center wave-

length of the VIPA transmission spectrum. This wavelength must match the WDM channel center

wavelength which is fixed by industry standard. There are two ways to tune the compensator to

the correct center wavelength: adjusting t and adjusting . The thickness can be changed by ele-

0-

-1000-

-2000- -1 dB bandwidth

-000
-E. - -. 2 .3

CD,

(D -4000- U
CFn

-5000-

-6000-

-7000 I

-0.3 -0 .2 -0 .1 0 0.1 0 .2 0.3

X - Undeflected X

Figure 6-6: Mis-matched constant dispersion mirror
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vating or reducing the temperature of the etalon. Alternatively, E can be adjusted to ensure that

the center wavelength is in the middle of the compensator's transmission band. Varying E from

2.20 to 2.80 shifts the compensator's transmission band by approximately 2.1 nm. Without repro-

grammability, a constant dispersion mirror designed for E = 2.50 may be mismatched when it is

actually used (see FIGURE 6-6).

~ - n[2.1]

dA _ X c
d n2

d4) n 2AX = X2i

n
2

n

Although the dispersion bias shifts, the normalized standard deviation of the dispersion cn

remains very small (less than ±2%) over the range of . Also, the insertion loss stays low and the

bandwidth does not decrease much below the matched case (see TABLE 6-1). The dispersion bias

can be tuned, as discussed in SECTION 5-5, by varying 1.

Table 6-1: Mismatched constant dispersion mirrora

E Transmissivity Mirror Dispersion Bias Y (ps/nm) an Insertion Loss Bandwidth

2.20 40 %/cm K= 70 -3,837 ps/nm 66 0.0171 -2.46 dB 0.12 nm

2.30 40 %/cm K= 70 -3,589 ps/nm 37 0.0104 -2.35 dB 0.12 nm

2.40 40 %/cm K = 70 -3,364 ps/nm 16 0.0047 -2.26 dB 0.13 nm

2.50 40 %/cm K=70 -3,161 ps/nm 0.1235 3.907E-5 -2.20 dB 0.13 nm

2.60 40 %/cm K = 70 -2,976 ps/nm 12 0.0040 -2.13 dB 0.14 nm

2.70 40 %/cm K = 70 -2,804 ps/nm 21 0.0076 -2.09 dB 0.15 nm

2.80 40 %/cm K= 70 -2,647 ps/nm 28 0.0107 -2.06 dB 0.15 nm

a. e = 2.50 is the matched case.
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6.5 Thickness-mismatch in 2-level transmissivity coating

If the thickness of the transmissive coat- amplitude T(y)

ings in the multi-level cases do not differ by an

integer multiple of the propagating wavelength, I {1 1 eja

w
then thickness-mismatch loss will occur. To sim-

plify the analysis, assume only two coatings R(y)

(phase difference 6 corresponds to the thickness 1

mismatch) and assume rectangular modes (height \TMX Y

h and width w). Assume also that the mode width

Figure 6-7: Simplified 2-level transmission and
is independent of wavelength (see SECTION 6.6). reflection modes with thickness-mismatch

If a constant dispersion mirror is used, then the lateral displacement T of the reflection mode with

respect to the lens axis will be linearly dependent on wavelength, with T = mX (see FIGURE 6-7).

The coupling loss will be modified by the effect of the thickness-mismatch:

overlap = TRdy

0 T 2

overlap = h2 !Jejdy + l dy + fejddy

overlap = h2((w -21T1)e' 8 +ITI)

couplingLoss = 1 - Joverlap2 = 1-h 4 ((w -2t) 2+21t(w -21t1)cos8+ITI 2

For the 20%/cm template, K = 70, 2-level coating, the reflection mode translates ±5 mm

over the wavelength range +0.3 nm (m = -16.7 mm/nm) and the transmission mode is 1.2 cm

wide. A rectangular approximation might be w = 1.0 cm wide with h serving as a normalization

constant.
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Figure 6-8: Simplified and numerical effects of thickness-mismatch
(a) Coupling loss spectra. (b) Coupling loss spectra shifted to isolate bandwidth change.

FIGURE 6-8 shows the simplified and simulated coupling loss for different thickness-mis-

match between TMode and RMOde for the 2-level configuration presented in SECTION 5.4. Since the

more important effect is the change in bandwidth, FIGURE 6-8-b isolates the bandwidth difference

from the coupling loss by shifting the simulated spectra upwards. The simplified representation is

only useful as a gauge for the change in bandwidth as the thickness-mismatch between the two

transmissive coatings is increased (see TABLE 6-2). The overall correspondence between the simu-

lated and simplified coupling loss is poor but the simplified representation predicts the bandwidth

degradation reasonably well. The system can easily tolerate a thickness-mismatch of as much as

100 nm, since 6 = 2T/8 translates to 100 nm in free space when X = 1550 nm.

Table 6-2: Effects of 2-level coating phase mismatch

8 Simulated bandwidth change Simplified bandwidth change

0 0.262 nm NA 0.131 nm NA

c/8 0.253 nm -0.009 nm 0.121 nm -0.010 nm

n/4 0.229 nm -0.033 nm 0.102 nm -0.029 nm
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6.6 Mode width wavelength dependence

One final observation that may not have any profound implications is that the modes of

longer wavelengths are more narrow than the modes of shorter wavelengths. This phenomenon

results from the system's geometry. Rays from longer wavelengths propagate closer to the etalon's

normal, which means they are more closely spaced upon exit (see FIGURE 6-9). Therefore, their

composite beams will be more narrow. This should mean that the coupling loss for longer wave-

lengths increases more quickly than for shorter ones when a constant dispersion mirror is used.

Sharper roll-off at longer wavelengths was observed for the constant cases but not for the linear

cases (see figures in SECTION 5). The modes for the constant cases are decreasing exponentials;

this accounts for the asymmetry of the coupling loss spectrum. Since there is virtually no differ-

ence in roll-off between the longer and shorter wavelengths of the symmetric linear modes, the

effect of mode narrowing over wavelength must be negligible for these modes.

blue modes are wider

gred modes are narrower

Figure 6-9: Ray spacing dependence on wavelength
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7.0 Conclusions

Chromatic dispersion compensation using a virtually imaged phased array produces large

dispersion with low loss. The FSR determines the index-thickness product, but higher index etal-

ons are better. The tilt of the etalon, in conjunction with the mirror shape, controls the dispersion

bias. Larger dispersion bias translates to lower bandwidth, but does not affect the insertion loss.

The shape of the mirror controls the dispersion profile and arbitrary dispersion profiles including

constant dispersion can be produced. The transmissive coating determines the insertion loss as

well as the bandwidth. Constant coatings provide wide bandwidth but suffer from high insertion

loss. Linear coatings exhibit low insertion loss but have narrow bandwidth. The 2-level coating is

superior to both since it features low insertion loss and wide bandwidth. The 3-level coating

places a trough in the center of its transmission spectrum which would increase the effective

bandwidth of the VIPA compensator cascaded with other modules. Finally, the VIPA compensa-

tor is tunable over a large range with very little mechanical displacement.

Ray optics is enough to predict the dispersion bias and shape of the VIPA compensator.

However, the insertion loss and bandwidth can only be predicted by numerical simulation. The

simulations also proved useful in analyzing a number of non-idealities. Since the VIPA approxi-

mation is not valid for predicting the far-field pattern, the undeflected wavelength is not in the

center of the transmission band. Wide bandwidth configurations with low dispersion are subject to

spectral clipping at large etalon tilt angles. Cross-talk between higher order lobes and the main

lobe is non-negligible at long wavelengths. Changing the etalon tilt can compensate for manufac-

turing variations in the thickness of the etalon without substantially degrading the compensator's

performance. Finally, the VIPA compensator can tolerate moderate thickness-mismatch between

the coatings in the 2-level case.
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Appendix A: Experimental Corroboration

The VIPA compensator is currently being commercially developed. The simple constant

coating design is the only one that has ever been built. The first published experimental results for

this design appear in [1] by M. Shirasaki published in 1997. In that paper, Shirasaki shows an eye

diagram demonstrating improvement of a dispersed signal (1800 ps/nm) after passing through the

VIPA compensator. Shirasaki also measured 0.4 nm for the -1 dB bandwidth, -13 dB insertion

loss, and very low polarization dependence (only 0.1 dB). As expected, Shirasaki observed no

nonlinear effects. The high insertion loss was primarily due to misalignments.

More recently, Shirasaki (et (a)
1600

al.) published more refined results
1400-

in [2]. Included is a measurement of 1200-

1000 --

group delay that is reproduced here 800-

CL 600 -

with permission (see FIGURE A-1). 400

200-

Oddly enough, the apparent error ,
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

between the numerical and theoreti- X - 1550.0 (nm)

(b)
cal estimates of group delay is 1600

reproduced in the experiment. Per-
1200-

haps the simulation is capturing
0 800-

some real effect that is not repre- -

CD 400-
sented in the theory. The experi-

mental measurement, which 1549.7 1550.0 1550.3
Wavelength (nm)

repeated every 0.8 nm, corresponds Figure A-1: Experimental and simulated group delay
(a) Numerical (symbols) and theoretical (line).

well with the simulated results. (b) Experimental results reproduced with permission (2).
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The authors also demonstrated tunability over a 4000 ps/nm range by varying the distance

between the lens and the etalon. Finally, they measured -7 dB insertion loss, which is close to the

simulated loss (-4.5 dB) if the isolator and collimator losses (-1.5 dB) are included and the reflec-

tive mirror is assumed to be 99.9% reflective instead of perfectly reflective (-1.0 dB) for a simu-

lated total of approximately -7 dB.

The most recent and most extensive demonstration to date was performed by Garret (et

al.) from AT&T Laboratories in conjunction with Yang (et al.) at Avanex Corporation [9]. These

researchers ran the VIPA compensator against DCF in an 80 km loop complete with an erbium

doped fiber amplifier six times, for a total transmission distance of 480 km. The VIPA compensa-

tor module was compact: measuring only 1 in. by 1 in. by 4.5 in. They were able to tune it from

-1100 ps/nm to -1500 ps/nm and simultaneously operate on 16 WDM channels spaced 0.8 nm

apart. They measured an insertion loss of -9 dB for the VIPA compensator and -12 dB for the

DCF. These were the best-case channels for each approach, and the VIPA exceeded the perfor-

mance of the DCF by an average of 0.85 dB over all 16 channels.

These loss figures do not represent the full potential of the VIPA compensator. The loss

figure for DCF increases as the amount of corrective dispersion increases. For the VIPA compen-

sator, on the other hand, insertion loss stays fixed regardless of dispersion. Bandwidth is reduced,

but insertion loss is unaffected. As shown in this thesis, the VIPA can easily produce twice as

much dispersion as Garret (et al.) configured it to produce. This means the VIPA compensator

should only appear in every other loop so that overall, it introduces approximately half as much

loss as the DCF.
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Appendix B: Application to Polarization Mode Dispersion

In polarization mode dispersion (PMID), the objective is to introduce different group

delays on the order of 20 ps or so without chromatic dispersion in the two different polarization

modes. The VIPA compensator can be configured to do this by designing it so that a = f. With a

flat mirror, this corresponds to zero chromatic dispersion since h(y) = 0 and (f-a) = 0:

D = - 2 ( D h(y) - fh(y) [2.5]
cX(D31 dy J

D = - 2n{ -a)}
cXcI

A PMD compensator would have two VIPA compensators in parallel: one for each polar-

ization. To introduce the differential group delay, the distance between the focusing lens and eta-

Ion (the value of a) in one of the VIPA compensators would be changed. Doing so produces

chromatic dispersion, but the amount of chromatic dispersion is small. However, EQUATION 2.4 is

insufficient for predicting the differential group delay as a function of a since it reduces to zero

when D= :

2n
G = [(f - a)(ID - E) + fh(y)] [2.4]

c(D

G = 2n2{(f - a)(F - E)} = 0
ccl
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In order to analyze the PMD application, the term ignored when deriving EQUATION 2.4

from EQUATION 2.3 must be reconsidered:

y = 2{ 2 (f + a) + (f - a)(D - E)2+ 2 c(y)} [2.3]

G = dy 2
dw 2iorcdk

G = 2(f +a)+(f -a)(-E)2 +2c(y) _ 2X -(f-a)(I-E) +h(y) 1d

G = 2(f + a)+ (fc- a)(D -E)2
C

G - 2(f +a)
C

For f = 5 cm and a biased at 5 cm, 20 ps of differential group delay can be achieved by

varying a by only 3 mm.

Alternatively, the group delay in one of the arms could be changed by tilting the flat mir-

ror. For a flat mirror, h(y) is constant and a tilt corresponds to changing the constant value of h(y).

Using this method yields:

G= fh(y)

tan = h(y)

Assuming (D = 2.50, tilting the mirror by the angle = 0.050 would introduce 20 ps of dif-

ferential group delay to one of the polarizations.
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Appendix C: Simulation Code

These are the files that comprise the VIPA chromatic dispersion compensator simulator.

The file "chromatic .i" is the main script and runs the other sub-programs in sequence. Lines

of code preceded by "%" are commented (not run) and lines indented into the middle of the page

and preceded by "\" are continuations of the previous line.

chromatic .m
% Chromatic Dispersion Compensation Master Template Function

% by Christopher Lin

% Last modified 2/29/1999

% This is the main script that runs all of the other ones.

ttl = 'Angle, Transmissivity, Mirror, Other'

params

lambda

total

cmT

mirror

cmVmR

cdisp

cspecs

plots

paracms.m
% This file sets all of the system variables

% wavelengths (see lambda.m) and the details

% (see mirror.m).

n= 1.8;

f = 0.05
1 = 0.005
thetaAir = 2.5*pi/180

thetaGlass = asin(sin(thetaAir)/n)

m = 1858

t = 800.2072e-6

% t = m*1.55e-6/(2*n*cos(thetaGlass));

points = 1024 * 4

scale = 4

% y axis, length = 100000 microns
% The y axis is zero padded to 10cm in order

except for the
of the mirror

% refractive index of glass
% 5cm focal length
% 5mm btwn plate and lens

% plate thickness
% plate thickness formula

% num points on axes
% zero-padding parameter

to improve fft resolution
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ky = zeros([l,points]);

yT = linspace(0,100000e-6,points*scale);
deltay = y(2) - y(l)

yo = 500e-6

RL = ones([1,points]);
RR = ones([l,points]);

y = yT(1:points);

% location of window edge

% reflection coeff on left
% reflection coeff on right

% create reflective side mirror

for ir=1:points,
if(y(ir)< yo)

RL(ir)=0;

else RL(ir)=l;

end
end

% create transmissive side mirror
% three possibilities: constant, linear, and step

%%%%% uniform reflectivity on right side

% RR = sqrt(.98) * RR;
% T = sqrt(l- .98);

%%%%% linear transmissivity depends on points
%TRamp = zeros([1,points]);

%TRlow = 0;
%TRhi = 1;

%delTR = (TRhi- TRlow)/(points);
%tmp = 0;

%for it = 1:points,

% if (y(it) <= yo)
% TRamp(it) = 0;
% tmp = it;

% else
% TRamp(it) = delTR * (it - tmp);

% end

%end

%for it = 1:points,

% if (TRamp(it)>l)

% TRamp(it)=1;

% end

%end

%RR = sqrt(l - TRamp.^2);

%T = TRamp;

%%%%% step transmissivity

T = zeros([1,points]);

for it = 1:points,
if (y(it) <= (yo+0.003333))

T(it) = sqrt(0.0089);
elseif (y(it) <= (yo+0.006667))

T(it) = sqrt(0.0444);
else

T(it) = sqrt(0.1156);

end
end

RR = sqrt(l - T.^2);
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lambda.m
%Builds master wavelength related vectors.

noWvl = 13 % must be odd
res = 5 % must be odd
midLambda = (noWvl+l)/2;
exmidLambda = (noWvl*res+l)/2;

% fundamental wavelengths

minLambda = 1.5497e-6
maxLambda = 1.5503e-6
lambdaAir = zeros(l,noWvl);
lambdaAir = linspace(minLambda,maxLambda,noWvl);

% Set spacing between fundamental wavelengths and auxiliary
% wavelengths that are carried along in order to compute
% derivatives. Larger dlAir decreases numerical noise but
% increases the likelihood of 2*pi phase differences that
% are difficult to correct using software.

dlAir = 0.005e-9

exlAir = zeros(l,noWvl*res);
exlGlass = zeros(l,noWvl*res);

% generate auxilliary wavelengths according to fundamental
% wavelengths and dlAir

for(ii=l:noWvl)
exlAir((ii-1)*res+l: (ii-1)*res+res) = linspace((lambdaAir(ii)-dlAir*(res-1)/2),

\(lambdaAir(ii) +dlAir*(res-l)/2),res);
end

exlGlass = exlAir/n;

lambdaGlass = zeros(l,noWvl);
lambdaGlass = lambdaAir/n;

kair = zeros(l,noWvl);
exkair = zeros(l,noWvl*res);
kair = 2*pi./lambdaAir;
exkair = 2*pi./exlAir;

kglass = zeros(l,noWvl);
exkglass = zeros(l,noWvl*res);
kglass = kair*n;
exkglass = exkair*n;

total.m
wo = sqrt(lambdaGlass(midLambda)*t/pi) % (meters)

noRefl = 400 % number of reflections calculated
UL = zeros([1,points]); % gaussn magnitude profiles on left
UR = zeros([1,points)); % gaussn magnitude profiles on right

VL = zeros([l,points]); % fft coeffs on left
VR = zeros([1,points]); % fft coeffs on right

UR ideal = zeros([1,points]);
VRideal = zeros([1,points]);

Utotal = zeros([noWvl*res,points]);
ULtotal = zeros([noWvl*res,points]);
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Ttotal = zeros([noWvl*res,points]);

Vtotal = zeros([noWvl*res,points *scale]);

kyg = zeros([l,noWvl]);
ky = (linspace(0,2*pi,points))/ deltay;

kyT = (linspace(O, 2*pi ,(points *scale)))/ deltay;

% plateEff corresponds to etalon efficiency

windowEff
plateEff
lobeEff
lobeRatio
couplingEff
efficiency

% with zero padding

zeros(noWvl*res,1);
zeros(noWvl*res,1);
zeros(noWvl*res,1);
zeros(noWvl*res,1);
zeros(noWvl*res,1);
zeros(noWvl*res,5);

for j=1:noWvl*res
kyg(j) = exkglass(j) * sin(thetaGlass)

Uphase = exp(i* (y -yo) * kyg(j)); % linear phase due to incl

% ------------------- PHASE FACTOR FOR PROG TO RIGHT----------------------

% all phase factors must be reconstructed as shown to be compatible with
% discrete computation

pfac= exp((i*(exkglass(j)*t)).*(l-(0.5*((ky/exkglass(j)).^2))));
phase-fac = [p-fac(l:points/2) fliplr(p_fac(2:(points/2+1)))];

% ------------------ PHASE FACTOR FOR PROG TO LEFT----------------------

p-facjinit= exp((i*(exkglass(j)*(-t))).*(l -(0.5*((ky/exkglass(j)).^2))));
phasefacinit = [pfac_init(l:points/2) fliplr(pjfacjinit(2:(points/2+1)))];

% ------------ ---- -- ---------- ---------

% ideal gaussians at z=O %

UR-ideal = exp(-l *((y - yo).^2)/(wo^2)) .* Uphase

%%%% initial profiles at z= -t %

U_init = ifft(fft(UR-ideal) .* phasefac_init);

A = sqrt(1/sum(abs(Uinit).^2));
U-initleft = A*(l- RL) .* Uinit;

windowEff(j) = sum(abs(Uinitleft).^2);

%%%% adjusted profiles at z = 0 %

UR = ifft(fft(U_init_left) .* phasefac);

B = sqrt(1/sum(abs(UR).^2));
UR = B*UR;

UL = ifft((fft(RR .* UR)) .* phase-fac);

Utotal(j,:) = Utotal(j,:) + UR;
ULtotal(j,:) = ULtotal(j,:) + UL;

%%% total profile for each wavlength w/o zero padding%%

for kk= 2:noRefl,
UR = ifft(fft(RL .* UL).* phasejfac);

UL = ifft(fft(RR * UR).* phasefac);

Utotal(j, :) = Utotal(j,:) + UR;
ULtotal(j,:) = ULtotal(j,:) + UL;

end

Ttotal(j,:) = T.*Utotal(j,:);
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plateEff(j) = sum(abs(Ttotal(j,:)).^2);

% zero-pad fft to improve frequency domain resolution

Vtotal(j,:) = fft(Ttotal(j,:), points *scale);

C = sqrt(l/sum(abs(Vtotal(j,:)).^2));
Vtotal(j,:) = C*Vtotal(j,:);

end

UL = zeros(l,l);

UR = zeros(l,l);

% Power efficiencies must be squared to account
% for return path loss through the same mechanism.

windowEff = windowEff.^2;
plateEff = plateEff.^2;

cmT .m
%%%%% locate mode maxima

Mvt = zeros(noWvl*res,l);
Ivt = zeros(noWvl*res,l);

Mv = zeros(noWvl*res,l);
Iv = zeros(noWvl*res,l);

[Mvt (exmidLambda) ,Ivt (exmidLambda)] = max( (abs(Vtotal (exmidLambda,:))));

% This loop ensures that the main lobes of other wavelengths
% are positioned correctly relative to the main lobe of the
% undeflected wavelength (midLambda). Longer wavelengths must
% be to the left of midLambda and shorter wavelengths must be
% to the right.

for ii=l:noWvl*res
if (ii>exmidLambda)

[Mvt(ii),Ivt(ii)] = max((abs(Vtotal(ii,l:Ivt(ii-1)))));
elseif (ii<exmidLambda)

[Mvt(exmidLambda-ii),Ivt(exmidLambda-ii)] = max((abs(Vtotal((exmidLambda-ii),
\Ivt(exmidLambda+l-ii):(points*scale)))));

Ivt(exmidLambda-ii) = Ivt (exmidLambda-ii) + Ivt(exmidLambda+l-ii);
end

end

Vmain = zeros(noWvl*res,points*scale);
Tmain = zeros(noWvl*res,points*scale);
% Computation of phaseTmain needed only for diagnostic purposes.
% That's no longer necessary, so all related code has been
% commented out since phase computations are very slow.
%phaseTmain = zeros(noWvl*res,points*scale);

% Need to extract Vmain from Vtotal. Lobes for different wavelengths
% have different thicknesses and spacings. Shorter wavelength lobes
% are generally thinner and spaced closer together. rangeS is smaller
% than range to ensure that other lobes are not accidentally included
% in Vmain. range is large enough to ensure that long wavelength main
% lobes are extracted in their entirety.

range = points*scale/16;
rangeS = points*scale/32;
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for ii=l:noWvl*res
if(exlAir(ii)<1549.75e-9)

if( (Ivt(ii)-rangeS)<l)

Vmain(ii,1:(Ivt(ii)+rangeS)) = Vtotal(ii,l:(Ivt(ii)+rangeS));
Vmain(ii, (points*scale+Ivt(ii)-rangeS) :points*scale) =

\Vtotal(ii, (points*scale+Ivt(ii)-rangeS):points*scale);

else
Vmain(ii, (Ivt(ii)-rangeS):(Ivt(ii)+rangeS)) =

\Vtotal(ii, (Ivt(ii)-rangeS):(Ivt(ii)+rangeS));

end
else

if( (Ivt(ii)-range)<l)

Vmain(ii,1:(Ivt(ii)+range)) = Vtotal(ii,l:(Ivt(ii)+range));
Vmain(ii, (points*scale+Ivt(ii)-range) :points*scale) =

\Vtotal(ii, (points*scale+Ivt(ii)-range):points*scale);

else
Vmain(ii, (Ivt(ii)-range):(Ivt(ii)+range)) =

\Vtotal(ii, (Ivt(ii)-range):(Ivt(ii)+range));

end
end

lobeEff(ii) = sum(abs(Vmain(ii,:)).^2);

Tmain(ii,:) = ifft(Vmain(ii,:));

D = sqrt(I/sum(abs(Tmain(ii,:)).^2));

Tmain(ii,:) = D*Tmain(ii,:);

% phaseTmain(ii,:) = phase(Tmain(ii,:));
end

% determine power center of undeflected wavelength transmission mode

dummy = 0;
[ dummy, index] = max (abs (conv (Tmain (exmidLambda, :) ,Tmain (exmidLambda,:))))

center = round(index/2)

a = (center*deltay-yo)/(sin(thetaGlass)*n)+1

% compute phi from phaseTmain (troubleshooting)

%phi = zeros(noWvl*res,l);
%phiRelative = zeros(noWvl*res,l);

%rangeP=points*scale/512;
%for ii = 1:noWvl*res
% phi (ii) = asin( (phaseTmain(ii, (center-rangeP) )-phaseTmain(ii, (center+rangeP)))/

\(yT(center-rangeP)-yT(center+rangeP))/exkair(ii));

%end

% rotate Tmain to account for tilt of etalon

% (want midLamdba Tmain normally incident on lens)

% and center so that power center location is
% the first element of the Tmain vectors. This
% makes thinking about the fft more intuitive.

for ii=l:noWvl*res

% phiRelative(ii) = phi(ii) - thetaAir;

Tmain(ii,:) = Tmain(ii,:).*exp(-i*yT*sin(thetaAir)*exkair(ii));

Tmain(ii,:) = [Tmain(ii, (center+l):points*scale) Tmain(ii,1:center)];

end

Mt = zeros(noWvl*res,l);
It = zeros(noWvl*res,l);
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Mr = zeros(noWvl*res,l);
Ir = zeros(noWvl*res,l);

% to locate transmission lobe maximum

for ii=l:noWvl*res
[Mt(ii),It(ii)] = max(abs(Tmain(ii,:)));
[Mv(ii),Iv(ii)] = max(abs(Vmain(ii,:)));

end

% lobe loss happens twice and must be squared

lobeEff = lobeEff.'2;

lobeRatio = lobeEff/lobeEff(exmidLambda)

Mirror .m
% There are two different kinds of mirrors:

% parabolic and constant dispersion. If the

% mirror is changed here, cdisp.m must also

% be updated.

tY = zeros(l,points*scale);

ckyT = zeros(noWvl*res,points*scale);

hkyT = zeros(noWvl*res,points*scale);
mirr = ones(noWvl*res,points*scale);

r = 0.03

for ii=l:noWvl*res

tY = [kyT(1:points*scale/2) -fliplr(kyT(2:(points*scale/2+1)))]*f/exkair(ii);

ckyT(ii,:) = tY.^2/(2*r);

hkyT(ii,:) = tY/r;
mirr(ii,:) = exp(i*2*exkair(ii)*ckyT(ii,:));

end

%K = 70;

%for ii = 1:noWvl*res
% tY = [kyT(1:points*scale/2) -fliplr(kyT(2:(points*scale/2+1)))]*f/exkair(ii);

% ckyT(ii,:) = K/(8*f^ 4)*tY.^4 + K*thetaAir/(2*f^3)*tY.^3 + (K*thetaAir^2-(f-a))/(2*f^2)*tY.^2;

% hkyT(ii,:) = K/(2*f^4)*tY.^A3 +3*K*thetaAir/(2*f^3)*tY.^2 + (K*thetaAir^2-(f-a))/(1*f^2)*tY;

% mirr(ii,:) = exp(i*2*exkair(ii)*ckyT(ii,:));
%end

cmVmR. m
Vmain = zeros(noWvl*res,points*scale);
Rmain = zeros(noWvl*res,points*scale);

phaseBuffer = zeros(l,points*scale);

for ii=l:noWvl*res
% phase advance of Tmain from etalon to lens and back

phaseBuffer = exp(i*(l*cos(kyT/exkair(ii))+f./cos(kyT/exkair(ii)))*exkair(ii));

phaseBuffer = [phaseBuffer(l:points*scale/2) fliplr(phaseBuffer(2:points*scale/2+1))];

Vmain(ii,:) = fft(Tmain(ii,:)).*phaseBuffer.*mirr(ii,:);

% re-center all R and T modes w.r.t. middle of y-axis

Rmain(ii,:) = fft(Vmain(ii,:).*phaseBuffer);

E = sqrt(l/sum(abs(Rmain(ii,:)).^2));

Rmain(ii,:) = E*Rmain(ii,:);

Tmain(ii,:) = [Tmain(ii, (points*scale/2+1) :(points*scale)) Tmain(ii,1:(points*scale/2))];

Rmain(ii,:) = [Rmain(ii, (points*scale/2+1):(points*scale)) Rmain(ii,1:(points*scale/2))];

Vmain(ii,:) = [Vmain(ii, (points*scale/2+1) : (points*scale)) Vmain(ii,1:(points*scale/2))];
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[Mv(ii),Iv(ii)] = max((abs(Vmain(ii,:))));
end

gamma = zeros(noWvl*res,l);

% rotate Tmain and Rmain so they lie along the surface of etalon

for ii =1:noWvl*res
Tmain(ii,:) = Tmain(ii,:).*exp(i*yT*sin(thetaAir)*exkair(ii));
Rmain(ii,:) = Rmain(ii,:).*exp(-i*yT*sin(thetaAir)*exkair(ii));

% unfortunate oversight: here couplingEff corresponds to "overlap"
% overlap only calculated where non-zero data is expected

couplingEff(ii) = sum(Tmain(ii, (7*points*scale/16) : (11*points*scale/16)).*
\Rmain(ii, (7*points*scale/16):(11*points*scale/16)));

end

for ii=l:noWvl*res
[Mv(ii),Iv(ii)] = max((abs(Vmain(ii,:))));
[Mr(ii),Ir(ii)] = max((abs(Rmain(ii,:))));
[Mt(ii),It(ii)] = max((abs(Tmain(ii,:))));

end

% interpreter is picky about input data to phase function

% variable couplingEff recycled
gamma = transpose (phase (transpose (couplingEff)))
couplingEff = abs(couplingEff).^2;

totalEff = windowEff.*plateEff.*lobeEff.*couplingEff;
efficiency = [windowEff plateEff lobeEff couplingEff totalEff]

cdisp.m
% must be updated if mirror.m is changed
% computes numerical and theoretical
% group delay and dispersion

% theoretical wavelengths spaced at 0.01 over numerical range
% statistics interpreted w.r.t. this spacing
noThe = round((maxLambda-minLambda)*100000000000+1);
lambdaThe = linspace (minLambda, maxLambda, noThe);
lambdaGD = zeros(noWvl*2,1);
phiThe = zeros(noThe,l);
gdThe = zeros(noThe,l);
dispersionThe = zeros(noThe,l);
h = zeros(noThe,l);

dhdy = zeros(noThe,l);

dispersionNum = zeros(noWvl-2,1);

groupDelay = zeros(noWvl*2,1);

c = 3e8; % speed of light in meters/picoseconds

%%%%% Parabolic Mirror
for ii = 1:noThe

phiThe(ii) = acos((m*lambdaThe(ii)/n)/(2*t))*n;
Y = f*(phiThe(ii)-thetaAir);
h(ii) = Y/r;

dhdy(ii) = l/r;
gdThe(ii) = 2*n^2/(c*phiThe(ii))*((f-a)*(phiThe(ii)-thetaAir)+f*h(ii));
dispersionThe(ii) = -2*n^4/(c*lambdaThe(ii)*phiThe(ii)^3)*((f-a)*thetaAir+f^2*phiThe(ii)*

\dhdy(ii)-f*h(ii))*1000;
end
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for ii = 1:noWvl
groupDelay(2*ii-1) = -(lambdaAir(ii)^2)/(2*pi*c)*(gamma(ii*res-(res-1)/2)-

\gaima(ii*res-res+1))/(dlAir*(res-1)/2);
groupDelay(2*ii) = -(lambdaAir(ii)^2)/(2*pi*c)*(gamma(ii*res)-

\gamma(ii*res-(res-1)/2))/ (dlAir*(res-1)/2);
lambdaGD(2*ii-1) = lambdaAir(ii) - (res-1)/4*dlAir;
lambdaGD(2*ii) = lambdaAir(ii) + (res-1)/4*dlAir;

end

%%%%% Constant Dispersion Mirror
%for ii = 1:noThe
% phiThe(ii) = acos((m*lambdaThe(ii)/n)/(2*t))*n;
% Y = f*(phiThe(ii)-thetaAir);
% h(ii) = K/(2*f^4)*Y^3 + 3*K*thetaAir/(2*f^3)*y^2 + (K*thetaAir^2-(f-a))/(f^ 2)*Y;
% dhdy(ii) = 3*K/(2*f^ 4)*Y^ 2 + 3*K*thetaAir/(f^3)*Y + (K*thetaAir^2-(f-a))/(f^2);
% gdThe(ii) = 2*n^2/(c*phiThe(ii))*((f-a)*(phiThe(ii)-thetaAir)+f*h(ii));
% dispersionThe(ii) = -2*n^4/(c*lmbdaThe(ii)*phiThe(ii)^3)*((f-a)*thetaAir+f^2*

\phiThe(ii)*dhdy(ii)-f*h(ii))*1000;
%end

%for ii = 1:noWvl
% groupDelay(2*ii-1) = -(labdaAir(ii)^2)/(2*pi*c)*(gamma(ii*res-(res-1)/2)-

\gamma(ii*res-res+1))/(dlAir*(res-1)/2);
% groupDelay(2*ii) = -(lambdaAir(ii)^2)/(2*pi*c)*(gamma(ii*res)-

\ganma(ii*res-(res-1)/2))/(dlAir*(res-1)/2);
% lambdaGD(2*ii-1) = lambdaAir(ii) - (res-1)/4*dlAir;
% lambdaGD(2*ii) = lambdaAir(ii) + (res-1)/4*dlAir;
%end

tmpl = groupDelay(1)-gdThe(1);
tmp2 = groupDelay(2*noWvl)-gdThe(noThe);
tmp3 = (tmpl+tmp2)/2;
groupDelay = groupDelay - tmp3;

for ii = 1:(noWvl)
dispersionNum(ii) = (groupDelay(2*ii)-groupDelay(2*ii-1))/(dlAir*(res-1)/2)*1000;

end

%phi
%phiRelative

gdThe
groupDelay
dispersionThe
dispersionNum

cspecs .m
% Computes performance specifications

bwl = 1;
bwh = 1;

ilambda = linspace(minLambda,maxLamnbda,200);
ilambda = transpose(ilambda);

exlAir = transpose(exlAir);

ieff = interplq(exlAir,efficiency,ilambda);
ieff = 10*loglO(ieff);

% Peak efficiency

maxEff = max(ieff(:,5))
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for(ii = 1:190)

if ((ieff(ii,5)<(maxEff-1))&(ieff(ii+10,5)>(maxEff-1)))
bwl = ii;

end
end

for(ii = 1:190)

if ((ieff(200-ii+1,5)<(maxEff-1))&(ieff(200-ii-9,5)>(maxEff-1)))
bwh = 200-ii+1;

end
end

% Bandwidth in nm

bandwidth = (ilainbda(bwh)-ilambda(bwl) )*1000000000

bandCenter = round((bwh+bwl)/2);

for(ii = 1:(noThe-1))
if ((ilambda(bandCenter)>=lambdaThe(ii))&(ilambda(bandCenter)<=lambdaThe(ii+1)))

bandDisp = dispersionThe(ii);
bcThe = ii;

end
end

% Dispersion at center of band

bandDisp

% Standard deviation and normalized standard deviation of dispersion

standev = std(dispersionThe((bcThe-10):(bcThe+10)),1)
nstandev = std(dispersionThe((bcThe-10):(bcThe+10))/dispersionThe(bcThe),1)

exlAir = transpose(exlAir);

plots.m
exlAirP = (exlAir-exlAir(exmidLambda))*1000000000;
lanbdaGDP = (lambdaGD -lamnbdaAir(midLambda))*1000000000;
lambdaAirP = (lambdaAir-lambdaAir(midLambda) )*1000000000;
lambdaTheP = (lambdaThe-lambdaThe((noThe+1)/2))*1000000000;
TmainP = zeros(3,points*scale/32);
RmainP = zeros(3,points*scale/32);
yTP = zeros(1,points*scale/32);

for ii = 1:points*scale/32
TmainP(1,ii) = Tmain((1+(res+1)/2),ii*32);
TmainP(2,ii) = Tmain(exmidLambda,ii*32);
TmainP(3,ii) = Tmain((noWvl*res-(res+1)/2),ii*32);
RmainP(1,ii) = Rmain((1+(res+1)/2),ii*32);
RmainP(2,ii) = Rmain(exmidLambda,ii*32);
RmainP(3,ii) = Rmain((noWvl*res-(res+1)/2),ii*32);
yTP(ii) = yT(ii*32);

end

TmainP = transpose(TmainP)
RmainP = transpose(RmainP)
yTP = transpose(yTP)

figure('PaperPosition', [2 1 4.5 9])
subplot(3, 1,1)
plot(lambdaTheP,dispersionThe,'-',lambdaAirP,dispersionNum,'o','MarkerSize',4)
title(ttl)
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ylabel('Dispersion (ps/nm)')

axis([exlAirP(l) exlAirP(noWvl*res) -7000 0]);
legend('Theoretical','Numerical',0);

subplot(3,1,2)

plot(exlAirP,10*loglO(totalEff),'-',exlAirP, (max(10*logl0(totalEff))-l)*ones(l,noWvl*res),':')
ylabel('Total Efficiency (dB)')

axis([exlAirP(l) exlAirP(noWvl*res) -10 0]);

legend('Total','-ldB',0);

subplot(3,1,3)

plot(exlAirP,10*loglO(windowEff),'-',exlAirP,10*loglO(plateEff),'-.',exlAirP,l0*logl0(lobe-

Eff),':',exlAirP,10*logl0(couplingEff),'--')

ylabel('Efficiency Decomposition (dB)')

xlabel('Wavelength - Center Wavelength (mn)')

axis([exlAirP(1) exlAirP(noWvl*res) -10 0]);
legend('Window','Plate','Lobe','Coupling',0)

figure('PaperPosition', [2 1 4.5 9])

subplot(3,1,1)

plot(yTP,abs(TmainP(:,l)),'-',yTP,abs(RmainP(:,l)),':')

title(ttl)

ylabel('1549.7 nm Amplitude (a.u.)')

axis([0.02 0.08 0 0.06]);
legend('Tmain','Rmain',0)

subplot(3,1,2)

plot(yTP,abs(TmainP(:,2)),'-',yTP,abs(RmainP(:,2)),':')

ylabel('1550.0 nm Amplitude (a.u.)')

axis([0.02 0.08 0 0.06]);
subplot(3,1,3)
plot(yTP,abs(TmainP(:,3)),'-',yTP,abs(RmainP(:,3)),':')

xlabel('y (m)')

ylabel('1550.3 nm Amplitude (a.u.)')
axis([0.02 0.08 0 0.06]);

figure('PaperPosition', [1 1 6.5 9])

subplot(2,1,1)

plot(exlAirP,gamma,'x','MarkerSize',4)

title(ttl)

ylabel('Garma (radians)')

subplot(2,1,2)

plot(lambdaTheP,gdThe*10^12,'-',lambdaGDP,groupDelay*l0^12,'0','MarkerSize',4)
ylabel('Group Delay (ps)')

xlabel('Wavelength - Center Wavelength (rm)')

legend('Theoretical','Numerical',0)

diary off
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