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Abstract

Educational Fusion is a collaborative, Java based, software learning environment tai-
lored to teaching algorithms and running simulations and virtual labs over the web.
Students are presented with a reference algorithm which they are supposed to imple-
ment, and then given a chance to explore, code and animate their own version of the
algorithm.

This thesis details the development of a witness detection system and improvement
of the existing algorithm visualization tools. The witness detection system allows
students to test the correctness of their solutions by asking the system to search
for small proofs of incorrectness in their algorithm's output. The new visualization
system allows developers to create modules using animated data so that student
and reference algorithms automatically animate, with little work from the developer
and no work from the student. Finally, the new system also allows Fusion to support
simulations of physical systems and create connections and interface to actual physical
devices, helping students explore these phenomenon in a consistent, collaborative
environment.

Thesis Supervisor: Seth Teller
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Plug And Play Education

Hurtling towards the year 3000, our society becomes more digital every day. As life

revolves more around the "desktop" and the "dot com," education is just another

field to jump on the bandwagon of computerization. Homework assignments are

more complex and more PC dependent then ever before and the trend continues.

The computer itself is now a meta-tool, as it teaches its users how to better use

it. This thesis attempts to aid computers in this task by improving upon current

education technology. It describes the implementation of a witness detection system

which allows developers to easily build detectors that search for errors in student

submissions. This thesis also describes a visualization system which allows students

to explore computer algorithms, physically based simulations and virtual laboratories

through animated representation of data, online collaboration, and a consistent and

friendly user interface.

As useful and education enhancing a utensil as the computer is, the term "com-

puter based learning environment" has long struck fear into the hearts of guinea pig

high school and college students everywhere- or at least into the heart of this student.

What computer lab veteran does not remember the horrors of being unable to do

her homework because the brand new environment in which she is supposed to learn

refuses to exist for more than three minutes without crashing? Or worse yet, what

Brand X computer owner did not loathe doing all his homework on his hall mate's

machine because his was not fast enough, new enough or running the correct platform

8



to support some Learning Software of the Future?

The overhead associated with getting a computer learning environment up and

running has traditionally been daunting and sometimes not even worth the gain

offered by the environment. However, all is not lost in the age of digital education.

There is a savior on the horizon which, with a little luck, will change the world of

education forever and solve the problem of computer based learning. Educational

Fusion is that savior.

1.1 Educational Fusion

Educational Fusion is a self-contained software learning environment which allows

students in various physical environments to learn through collaboration, interaction

and visualization. It requires a computer equipped with a Java-compliant web browser

and a web connection. Although readily adaptable for any type of material, Fusion is

currently tailored to teach computer algorithms such as those which might be found

in a computer graphics course, or an introduction to algorithms course. In addition,

Fusion is also a universal and efficient host environment for computerized simulations

which may have previously been limited to a specific platform or a non-collaborative

implementation [Tel+98].

The Fusion applet supports three distinct user classes, all of which have different

functions, rights and experiences within the system. These classes are Student, TA

and Professor/Developer and the next sections will describe the system as viewed

from each of their perspectives.

1.1.1 Educational Fusion: Learning Tool

When running Fusion, the user is presented with a login screen on which she enters

her username and password. She is then identified as a student or teacher. For the

purpose of this section, we will assume she is a student and her name is Dianne.

Next, Dianne is presented with a default startup screen from which she can load

her desired concept graph. A concept graph is a data flow diagram, showing an

9



Figure 1-1: A sample concept graph

overview of how individual algorithms work together to complete a task. The concept

graph for a line rendering procedure is shown in Figure 1-1. On the graph, each

algorithm through which the data pass is represented by a module. A module contains

all the code and information necessary to teach the algorithm to Dianne and looks

like a green or red rectangle (as in Figure 1-1). Gray rectangles represent processes

present in the data flow which are not designed to be taught to the students. When

a module is red, it represents a reference version of the algorithm, included to show a

student how the algorithm works when functioning. With a click, Dianne can switch

a module to green, representing her current implementation of the algorithm.

Dianne can run the concept graph to watch the entire procedure in action, or she

can click on one of the modules to attempt to implement the algorithm as required.

After selecting an algorithm, she can edit the code of her implementation in the

included text editor (Figure 1-2). This editor supports parenthesis balancing, revision

control and a host of other features found in advanced development environments.

When she is satisfied with her latest attempt, or just curious about the internal

actions of the algorithm, she can switch to a special visualization panel to explore

10



package projects. graphics.users.Dianne.modules.CohenSutherland;

import projects. graphics.eodules.CohenSutherland.BaseCohenSutherland
import projects.general.Line;
import projects. graphics. datatypes.Viewport;

public class DianneCohenSutherland_0 extends BaseCohenSutherland

CH.c ENE: pirsnc tie Co rhec~io ci ni L onSutier d Iirie clipping it

in the ClipL; ccie xMetihod

/AlZOR line *oe

IPT member varst
int X
int y;
int x2;
int y2;

int nei-Tn t

/ATOR IMM Call eiixiyl, x2, y2i after you have computed tie
/UTP/Tc clip cc in , Als ciTypo cith a .ing ha intiie:

the clippi= type. Fo ,'xcie, call.

/ ct' ,c cinterna // both cnd tcints Are inc'i de the clippin .ctangli
ctoyp th EIN dpoint") / nt'h 'nocints needed ho cblipCldi

// setype f'Endpoint I" / endpoint I needed to he clipped
// xeiyE("Endpoint -1 // endpo int 2 needed to be clipped

/ .- ftType fEx terna7-1a // both edin are out ide th-e rect-.nil,
// / andno lipping is necaas:ary

public void ClipLine( Line line, Viewport viewport)

we :11 convert the arguments f-om lntegers to doubles

double x1, yl, x2, y2, rxl, ryl, rx2, ry2;
xi - line.xl;
yl = line.yl;
x2 = line.x2
y2 = line.y2;
rxl = viewport.left;
ryl = viewport. top;
rx2 = viewport.left + viewport.width,
ry2 = viewport, top + viewport. height-

// now specify the clipped line's endxints and the type of clipping

Line I

Compile Slubmit

Figure 1-2: The fully functional text editor built into Educational Fusion

the algorithm further. The visualization panel (see Figure 1-3) is a dedicated area

of the environment in which she can watch an animation of either the reference

implementation or her own, in an attempt to better understand the workings of the

algorithm. In addition, she can enable witness detection, asking the system to find

and display witnesses- small, visual proofs that her implementation of the algorithm

is incorrect and needs more work. This visualization panel is one of the focuses of

this thesis and will be discussed in detail later.

At any point throughout her learning and programming, Dianne can switch to a

chat mode (see Figure 1-4) and partake in various levels of collaboration. She can

11



Figure 1-3: The visualization panel allows a student to explore the inner workings of
an algorithm
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Figure 1-4: In chat mode, a student can collaborate with a variety of people

view a list of students working on her current problem and speak to one of them,

ask for help from any of her friends in the class working on a different problem, or

enter a help queue to receive help from a TA. Finally, when Dianne is satisfied with

her implementation of an algorithm, she can turn it in to be graded by clicking the

submit button on the side of her window.

1.1.2 Educational Fusion: Teaching Tool

The TA experience, although similar to the student's, is one of more power and

omniscience. After loading a concept graph, the TA can see which modules all of his

students are using. He can then click on a module and select a particular student's

implementation to test it out. If something is not right, he can electronically look

over the student's shoulder and examine the code the student is currently writing. If

he wishes to comment, he can send the student a message pointing her in the right

13



direction.

In addition, the TA can easily perform administrative tasks, such as checking the

help queue for help requests, updating a message of the day which users see when

logging on and grading work submitted by students.

1.1.3 Educational Fusion: Lesson Development Tool

For our purposes, a Fusion developer is anyone who wants to add a new module or

set of modules to the Fusion environment. After logging in, the developer creates the

desired new modules by selecting the create option from a popup menu. She then

specifies the input and output types of the module. For instance, if creating a module

to teach a sorting algorithm, she might create one input named toSortVector of type

java.util.Vector and one output named sortedVector of the same type. Note,

the names are completely arbitrary and can be anything she desires to give meaning

to the data pathways. The data can also be of any type she chooses, as long as she

specifies the proper package path, telling Fusion where to find info on the data type.

Fusion then creates some template files representing the new module. The devel-

oper must fill these in appropriately, and write the actual reference algorithm which

the module is designed to teach. She then fills in another template with instructions,

telling the student what to implement and how to send output data along the path-

way. Finally, she fills in one more template for the witness detector, allowing the

module to detect incorrectness in a student's implementation.

If desired, the developer can also create a visualization panel for the module, as

mentioned above. Depending on the complexity of this panel, she needs to create

Java subclasses of from one to three classes. These classes are used to create the

visualization display, the user interface and the animated data type which shows the

algorithm in action. These are explained in more detail below.

Finally, the developer can combine her modules on a concept graph and save it as

a complete unit. It is then ready for students anywhere to load and implement and

for TA's to check and grade.
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1.2 Objectives and Motivation

The initial impetus for the Educational Fusion project came from Professor Seth

Teller's vision of a new type of learning environment. As Brandon Porter, a fellow

Fusion developer, points out in his thesis [Por98], Teller calls for an innovative, socially

interactive experience in his NSF Career Development Plan:

This proposal addresses the potential for collaborative interactive tech-

niques to improve pedagogy at the undergraduate, graduate and pro-

fessional levels, and performance evaluation at the undergraduate level.

As increasing amounts of technical data and simulations come 'online'

and university courses begin to follow suit, we must fulfill the educators'

roles of selecting, organizing, and presenting this material to the student.

[Tel94]

The time was ripe for a universal, multiuser framework to help teachers take

advantage of the increase and availability of computing power- to help them move

content and lesson plans out of the archaic realm of notebook and pencil and onto

the vast network that already ran through educational institutions across the globe.

An important question remained, however, as to which features need be included

in this new project and which should be left out in favor of a less complex or more

platform independent implementation. Throughout the ongoing development, the

objectives and goals of this endeavor have evolved as progress is made and we receive

feedback from students who have used the system and professors interested in using

the system. In addition, as the environment becomes more complete, we as developers

can see farther into the future and envision innovative and exciting applications for

Educational Fusion, causing us to revise our previous development plans. However,

there have been a set of core objectives which remain central to Fusion's design and

these are presented, along with their motivations, below.
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1.2.1 Algorithm Context and Application

The student implementing an obscure algorithm should understand why the algo-

rithm is important and how it affects the data flow of a more complex process. In

traditional computer based assignments, a student may be asked to implement an

obscure algorithm, such as balancing a red black tree, and then given a suite of tests

with which to test his code. Although the student may drudgingly complete the

assignment successively, he will not intrinsically be left with a sense of what he has

accomplished. This is because the assignment lacks context.

Without context, it can be quite difficult to establish the importance of anything.

Educational Fusion's concept graph helps show the relevance of an algorithm to its

environment. By giving a graphical depiction of what input the algorithm requires,

and what it must output, the student can see what significance the algorithm can

have on a real world system. For instance, the lesson developer could design a graph

of a simple tree based database, demonstrating the usefulness of the balancing algo-

rithm. In addition, the developer could leave other key modules of the database open

to student implementation, creating an entire lesson plan around the database model.

By the time the student has completed the lesson, he will not only have learned the

algorithms involved, but have gained an understanding of their real world applica-

tions, as well as a sense of accomplishment at completing a useful application. When

a student can see and apply his work in a larger context, he is more likely to enjoy

his work, and learn more thoroughly [Cho88].

1.2.2 Algorithm Visualization for Enhanced Learning

One of the more difficult tasks in coding up an advanced algorithm is understanding

exactly how it works. Now matter how many detailed descriptions a students sits

through or reads, she may still wind up at the dead end of incomprehension when

she sits down to program her homework. We decided it would be ideal if the learning

environment itself could somehow help the student understand the the specifics of

the process which she is supposed to implement.

16



Our intuitions, as well as those of students and teachers alike, suggest that if a

student could watch an algorithm work, then learning it would be all the easier. The

process of algorithm animation inside Educational Fusion allows the student to see

how the reference algorithm should manipulate data before the student attempts to

implement the algorithm herself. This sort of animation raises learning efficiency

especially well when presented in a homework style environment in which the student

can reference the animation while solving problems [KST99]. Students also report

that they feel like they have learned more after working with animated algorithms.

These effects are particularly strong when the students are allowed to choose or specify

the data sets on which the algorithm runs [LBS94], as is allowed in Educational Fusion

[Tel+99].

To increase efficiency and reduce debugging time, we decided our environment

should take an extra step in the direction of visualization and allow a student to

examine her own algorithm in action. This way, when something is not working

correctly, she can watch a visual representation of the entire process and gain insight

on where her code may be going awry.

1.2.3 Witnesses Detection

Before submitting a homework assignment, most professors expect their students to

check their work for errors. This is a reasonable and often beneficial expectation, as

students often catch mistakes and learn from their correction. We decided Fusion

should support this behavior and even point students toward it without the urging

of a professor. For this purpose, we included the witness detection system.

When a student programs a simple algorithm, he can usually test its correctness

by running it on some sample data sets and comparing the results to those expected.

However, when the algorithm becomes somewhat complicated, such as ray tracing to

a megapixel frame buffer or simulating the diffusion of Sodium ions through nerve

cells, the output is often too massive to check carefully, causing the student to miss

subtle errors, or possibly dissuading him from checking his work at all. If the student

then turns in his work, the teacher cannot determine if the student would have been

17



able to implement the algorithm correctly had he noticed the errors. The addition

of witness detectors, procedures that check for small proofs of incorrectness, allows

a student with a suitable test suite to make sure his algorithm is running as he and

his professor expect. In the case where the student's implementation is incorrect,

the witnesses allow the student to see how the implementation fails, aiding in the

debugging process. For an example of witness detection in action, see Section 3.1,

below.

1.2.4 Collaboration

Professors often want their students to collaborate on assignments. Ideally, the co-

operating students will fill the gaps in each others' knowledge and understanding,

reducing the amount of frustration associated with any given task. Students can

also answer specific questions for each other in the absence of TAs, helping both the

learning student and the teaching student to better comprehend the material.

We decided Educational Fusion should facilitate collaboration by establishing a

virtual environment in which students can collaborate regardless of their physical

location. Students should be able to view other students' working on similar problems

and ask to work with them, allowing a new social framework to develop across the

environment. In addition, students should be able to share their concept graphs,

coding environments and visualization panels, allowing TAs and other students to

look over their shoulders and help determine what is going wrong. In certain cases, a

user should be able to highlight another user's code or twiddle virtual buttons on his

interface, pointing out items of importance which may not have been noticed. Finally,

continual conversation, first through typed text, and eventually spoken word and then

video conferencing, should be supported, making collaboration virtually transparent

over any distance.

18



1.2.5 Learn from home- in Somalia

As the Internet brings about a diaspora of knowledge throughout the ever shrink-

ing world, there is an altruistic desire to bring the information of brick and mortar

institutions into the living rooms of those not fortunate enough to be able to bring

themselves to the information. Educational Fusion should aid immensely in this task,

as its goal is to aid all teachers and students in their attempt to take advantage of

the power of the digital age- not just the rich American ones.

Educational Fusion should remain transparent over distance, and entirely platform

independent. This means that any module developed anywhere in the world should

be usable anywhere else in the world with nothing but a Java enabled browser and a

web connection. At the moment, any client can currently connect to Fusion from any

platform, but by the end of the project, Fusion should also be servable and modifiable

from any platform with no external software. At the moment, the server side is not

completely self contained, but we are moving in this direction and should reach it

soon.

By providing a framework around which professors can easily generate self check-

ing, distance collaborative, animated problem sets, all that is necessary to teach those

in even the hardest to reach places is an online text book and perhaps a streaming

lecture. Once a professor has switched her traditional course to one with Fusion based

problem sets, she can then share her knowledge and teaching ability with the entire

world.

1.2.6 Comprehensiveness and Usability

Using Educational Fusion should not be a trial on patience, using the Internet or

learning with on-line learning environments. Complexities of Educational Fusion

should be hidden from the student, allowing him to focus on nothing but learning

the lesson at hand. Also, getting the client environment up and running should be

no harder than typing a URL into a browser. This way, the student will not become

frustrated at the project before he has even begun work.
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The server side of Fusion should also be easily installable and maintainable. At

the moment, there is a short checklisted procedure (included in Appendix A) which

a member of the teaching staff must follow to install Fusion. It is our goal to keep

this procedure easy to understand and performable by a staff member of any subject

who has typical computing experience.

Finally, the use of Educational Fusion should not require knowledge of an ob-

scure and therefore useless programming language. Many times, software learning

environments require that any lessons be designed to use the language in which the

environment was written. Too often, this is a unconventional language like CLUE

or CURL which the student is forced to learn and then unable to use outside her

academic institution because of its limited appeal. We solved this problem for Ed-

ucational Fusion by programming in Java. Although, presently, all modules must

be programmed in Java, we have decided that Java is in wide enough use that it is

reasonable to expect a computer science student to be familiar with it, or with a lan-

guage very similar in structure. In addition, there is a concurrent project developing

a SCHEME interpreter for Fusion to permit developers to create modules and lessons

in that language as well [Bhu99].

1.2.7 Expandability towards nonalgorithmic oriented learn-

ing, including simulations

Within recent months, Fusion has outgrown its original limits. At conception, Fu-

sion was designed to teach algorithms and only algorithms. This was a conscious

decision based on the fact that Computer Science seemed particularly suitable to

on-line learning, and there was no shortage of computer algorithms on which to test

Fusion [Boy97]. So far, Fusion has been tested in real world situations as a teacher

of algorithmic concepts and has performed promisingly [Por98].

This begs the question,"Can Educational Fusion do more?" It is our belief that

it can. Related work in the field of on-line learning, addressed below, suggests that

teachers are using on-line or computer based learning environments to support a
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myriad of subjects, from mathematics to history to biology. Although Fusion's vi-

sualization and concept graph based learning approach may not be suitable to more

abstract topics such as history, we feel that Fusion's collaborative capabilities make

it a worthy host for any subject's material that can easily be visualized.

In an attempt to encourage use of Educational Fusion outside the realm of Com-

puter Science, we strive to facilitate expandability by new and unexpected modules.

As a demonstration and test of this functionality, we have begun implementing Fusion

versions of simulations and virtual labs from the disciplines of biology and electrical

engineering. As Fusion development continues, we hope to maintain an adaptable

infrastructure to encourage a vast array of interactive laboratory experiments such as

these. This interactive lab concept is a topic of this thesis and will be discussed in

detail below.

1.3 Background and Beyond

Thanks to the fabulous work of the previous Educational Fusion team, the foun-

dations of the system were laid and tested long before this thesis was conceived.

Collaboration, concept graphs, code submission and a variety of other features were

already operational and have been used in real classes. Visualization panels were

also operational, but clunky and more complicated than necessary. There was also

an option to compare student implementations of algorithms to reference algorithms,

hinting at the witness detection system to come.

This thesis focuses on three new aspects of the Fusion System: Witness Detection,

Improved Algorithm Visualization, and Simulation and Interactive Lab implementa-

tion.

The next chapter gives some background on related work in the field of on-line

education. This work played an important part in suggesting development paths for

Fusion, particularly in the area of algorithm visualization.

Chapter three offers an overview of the witness detection system and explains its

development.
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Chapter four is the largest chapter of this thesis, describing the overhaul of the

visualization panel and the concept of animated data structures. In addition, it

gives several examples of suggested visualization panel layouts and explains the class

hierarchy and module abstraction for panel development.

Next, Chapter five explains how this system is being used to implement interactive

labs in biological and electrical engineering. Two sample labs are presented and their

conversion to Fusion described.

Finally, Chapter six concludes with a review of the topics, some possible future

work and advice to future Fusion developers. It also generalizes and extrapolates

on the future of Fusion, as well as reminding us of the purpose of this educational

endeavor.
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Chapter 2

Related Work

Since the arrival of the Internet, it has been possible to widely distribute educational

materials over long distances. E-mail, an active form of distribution, and the World

Wide Web, a more passive form, have been used in classes at MIT for everything from

homework distribution, to TA communication, to course preregistration. In recent

years, Zephyr and AOL Instant Messenger have increased real-time connectivity,,

allowing students to send messages to each other in real time, regardless of distance.

This chapter gives a quick review of work in the field of computer aided education

and compares and contrasts it to Educational Fusion.

2.1 Web based teaching

Most of the above technologies are noninteractive, and thus not very good platforms

for complicated teaching environments. However, the web, with the addition of the

Turing complete language, Java, has been the environment of choice for many Internet

based teaching applications, including Educational Fusion. We will discuss some other

applications here.
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2.1.1 WebCT

The latest version of WebCT (2.1) may include everything a classroom could need,

except a teacher [Gol+99]. The application, written in HTML, Javascript and some

Java, fulfills the job of distributing all information related to a course. The student

can pick which sections he wants on his home page and is automatically presented

with them when logging in. The sections include syllabus, class notes, personal notes,

grades, and a variety of other static pages authored by the course administrator.

In addition, the student can employ a suite of collaboration tools, such as chat,

bulletin board and white board, which allow him to work with others. Finally, a

student can log in to take an online quiz, consisting of multiple choice, matching and

short answer questions which can be automatically graded by the system.

WebCT does a wonderful job of replicating a traditional class room on the Internet,

allowing students to learn at a distance. It even supplies some amenities to the

teacher, such as autograded quizzes and large databases of questions. However, it

does not attempt to stretch the limits of the Internet by using networked computers

to teach in some novel manner. For instance, a biomedical engineer would still require

another piece of software to run a cell diffusion experiment. There seems no way to

easily integrate third party code into the WebCT system.

Unfortunately, WebCT recently became a commercial product, no longer freely

available to the impoverished professors and students of the world. However, accord-

ing to WebCT statistics, "WebCT has more than 3.6 million student users in 97,000

courses at over 800 colleges and universities in more than 40 countries [Gol+99] ," in-

dicating that there is a definite niche for distance learning applications and suggests

a bright future for Educational Fusion.

2.2 Visualization

Understanding through visualization has long been a concept which teachers have ex-

ploited to aid their instruction. Working through a math problem on the blackboard,

performing a chemistry lab and watching a simulation of radioactive decay are all
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examples of learning through visualization. Several computer programs attempt to

encapsulate visualization and make it easy for a professor to help her students see the

inner workings of some subject. Most of these applications are limited in the scope of

what they can help visualize; some of the more prominent ones are discussed below.

2.2.1 ZEUS

ZEUS is a system for algorithmic animation written in Modula-3 [Bro9ll. It allows a

professor to write an algorithm and include calls to procedures signifying interesting

events. The programmer can then write modularized code defining a view which

describes how the interesting events should be displayed and animated.

Zeus's greatest advantage over other algorithmic animations systems such as

SAMBA [Sta96] is its layer of abstraction between algorithm and view. Once a

view is defined to handle certain interesting events, the algorithm can be switched

with another algorithm that uses the same events. For instance, a view that uses

sticks of different lengths to show sorting techniques can support the visualization

of a selection sort and a quick sort without rewriting view code. Likewise, the view

could be switched to display balls of different radii instead of sticks and the algorithm

code would not have to change.

ZEUS adds a layer of complexity, though, as it requires the algorithm coder to

make explicit, often redundant calls to the interesting event procedures. That is, to

swap two elements of an array, the programmer must call

temp = a[i]

a[i] = a[j]

a[j] = temp

and then call

EventSwap(a, i, y)
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to tell the view to visualize the swap. While this may be just an annoyance to a

professor writing code to be studied by students, it is a more significant problem if

the students wish to see their own algorithms animated. The animation calls which

they would have to insert might interfere with their understanding of the algorithm

itself, causing the system to be more of a hindrance than an aid.

2.2.2 STPB and Weblab

Software for Teaching Physiology and Biophysics (STPB) and Weblab are two sep-

arate programs used to visualize experiments in MIT classes. STBP, written for

Matlab, is used in the class 6.021, "Quantitative Physiology: Cells and Tissues"

to simulate the diffusion of neurotransmitters and ions through cell membranes, to

demonstrate the transmission of action potentials along nerve axons, and to elucidate

the electrical properties of cells [Wei+92]. Students can pick a variety of numeri-

cal starting conditions and observe events by watching an animation of the diffusion

or action potential and then interacting with a graph of the results. In the class,

students are asked to predict trends in output based on input values and test their

hypotheses with the software. According to the professor, the students gain a better

understanding of the equations behind cell operations by watching them in action.

Without a computer simulation, it would be too expensive and time consuming to

perform this task as part of the class.

Weblab, used in the class 6.720J, "Integrated Microelectronic Devices" is similar

to STPB. However, instead of being a simulation, it is a remote interface to a physical

lab device [Ala99]. Whereas STPB is used because of the expense and impracticality

involved in viewing cell diffusion, Virtual Lab is used because it's easier for fifty

students to do their work without trekking into lab and crowding around one analyzer.

An interesting note about the two programs is that their front end interface is

virtually identical. Students type in some numbers, slide some dials and get a graph

back in response. However, the back ends are completely different. In STPB, a set of

five differential equations are run to simulate diffusion. In Weblab, the student's input

is fed into an actual piece of equipment, returning physical results which are then fed
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back over the Internet to the student. Recall that Educational Fusion has front and

backs ends with tight abstraction barriers that can easily encapsulate both of these

applications, making a consistent user experience for student electrical engineers and

a consistent design experience for content developers.

2.2.3 CyberTutor

CyberTutor is another visualization tool at MIT, but includes a question and answer

model for directing student study [Pri98]. Used in 8.01, "Physics I," CyberTutor

allows a student to animate specific physical simulations by picking initial conditions

and observing the results. For more control, a professor can write questions requiring

a student to determine what initial conditions are needed to achieve a certain effect.

These questions can be answered with numbers, analytic expressions or mouse drawn

vectors and the student can immediately watch an animation displaying the effect of

his answer. The system keeps track of correct answers and sends tallied results to the

student and the professor when an exercise is complete. Its main advantage over the

previous two systems is this cyberquiz ability.

2.3 Self Checking Applications

The witness detection system in Educational Fusion draws from the idea of self-

checking applications - - programs that can check their own operation to test if they

are generating the correct output. Educational Fusion does not test its own core

system code, but it does use witness detection to check student implementation code,

added into the system by the users.

Self-checking code is discussed by Manuel Blum and Sampath Kannan [Blu+95].

In their paper, they introduce the idea of a program check, an algorithm which checks

the output of another algorithm. The program checker cannot verify the correctness of

its code, but given a program and an input and output of that program, the checker

determines whether the program ran correctly. Each class of program requires a

specific program checker, tailored to test the algorithm realized by that program.
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Blum and Kannan also discuss how program checkers can be used with carefully

chosen inputs to establish a probability that a piece of code is working correctly. They

give program checkers for sorting, matrix rank and greatest common denominator

determination algorithms.

The witness detectors in Educational Fusion are very similar to these program

checkers. However, they do not help produce sample inputs to give any probabilistic

chance that an algorithm is correct. They do, however, allow feedback of any form,

such as highlighting elements of output which helped the detector establish incorrect-

ness. Blum and Kannan's checker returns only whether the program has performed

correctly or not.
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Chapter 3

Witness Detection

Witness detection is the ability of Educational Fusion to run an algorithm on a

sample input and detect and display errors in the algorithm's output. It is not the

ability to determine the correctness of a piece of code, which, incidentally, is a Turing

incomplete problem. Therefore, it does not remove or diminish the function of a

grader who must still check submitted code to make sure it is actually correct.

Although it is not immediately apparent how witness detection improves the life

of the teacher, it is quite clear how it improves the life of the student. If a student

consistently runs his algorithms on an ample test suite, he will never turn in incorrect

code again. That is, if the student performs the proper array of glass box and black

box testing on his algorithm, Fusion will help him pick out the errors in his output,

allowing him to immediately hone in on the incorrect areas and correct them.

In this chapter, we discuss witness detection and give a short scenario of its use.

We then give a history of witness detection in Educational Fusion and describe some

advantages it now has over its earlier incarnations. Finally, we examine the technical

details of a witness detector and explain how to implement one for a custom module.

3.1 Witness Detection in Action

Suppose Dianne, from chapter one, is implementing a bubble sort. She writes the

code for her sort using the Fusion editor, then compiles it. She then switches to the
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Figure 3-1: An incorrectly sorted vector

visualization panel to test her sort on the vector (5, 4, 3, 2, 1). She enters the data,
turns on witness detection and clicks the go button. When the animation is complete,
her screen looks like that of Figure 3-1.

This screen provides her with various kinds of feedback. The most noticeable is

that the rightmost two bars are colored red instead of green like the other bars. This

red warns her that there is something wrong with the output in this area. In her

case, the last two elements of the list are out of order. For further feedback, if she

does not immediately understand what is wrong, she can check the witness text box
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Figure 3-2: A correctly sorted vector with an element missing

in the lower right corner. This text box explains, "Incorrect. Witness to failure: 5

should not come before 4."

Heeding the advice of the witness, Dianne returns to the editor to correct her code.

She checks her loop invariant and finds she had an "off by one" error causing her to

not check the last elements of the list. She then switches back to the visualization

panel and tests her code on the vector (100, 101, 89, 43, 27, 25, 50, 2, 1, 56) only to find

her implementation again incorrect, as seen in Figure 3-2.

After the animation completes, she breathes a sigh of relief because there are no

red columns and no immediate visual clues to the incorrectness of her implementation.

31



She turns to the witness box to make sure the witness detection system agrees with her

assessment of correctness but learns it does not. It gives her the message, "Incorrect.

Witness to failure: 56 appears in input more times than in output." The witness

detection system has alerted her that she is somehow losing the last element of the

input vector. This is an even more useful function of the witness detector: In the first

case, it was rather obvious to her that the sort was incorrect, just by the fact that

the last two columns were out of order. In the second case, it was not obvious that

there was an error in her code. In fact, had she been sorting a list of 1000 numbers,

she would probably not have been able to notice the problem at all without witness

detection.

Thanks to the detector, Dianne edits her code one last time, tries it out on some

random data sets and receives the message: "Correct output for this input. Your

code appears to be working correctly." This last message contains a subtle warning

that her code is not necessarily correct just because it works on one, or even several,

inputs. However, after a set of rigorous tests, it is good enough for Dianne and she

submits her code to be graded by her TA.

3.2 Witness Detection History and Evolution

The witness detection system evolved from the "difference mode" option on the orig-

inal visualization panel. In difference mode, a student could visually compare his

implementation of an algorithm to the reference implementation by entering input

and asking Fusion to run both implementations at once and return the results. Occa-

sionally, a visualization panel would compare the two outputs, highlighting discrep-

ancies for correction. For example, Figure 3-3 shows an instance of difference mode

in the visualization panel of the Bresenham line drawing module. In the module, the

student is asked to implement an algorithm which receives two endpoints as input

and outputs all pixels which are covered by the line defined by the endpoints. The

blue squares represent the reference implementation's output, the white square rep-

resents the correct pixel output by the student's implementation and the red squares
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Figure 3-3: Bresenham Visualization in Difference Mode

represent the incorrect pixels.

Unfortunately, the method for supporting difference mode in a visualization panel

was not well defined, and led to several different ways of displaying the results. This

prevented any attempt at providing a uniform interface for Fusion, and made some

the design and look of some panels a bit haphazard. When a panel did replicate other

panels' implementations in an attempt to provide unity, much of the panel's code had

to be copied as well, causing unsightly copies of identical procedures across multiple

classes and modules.
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3.3 Advantages to Witness Detection

The solution to the stylistic problems mentioned above was to abstract the "difference

mode" concept out of the visualization and into its own subsection. The witness

detector is now a distinct class which contains standard procedures to detect errors in

an algorithm's output based on its input. Each module has its own witness detector,

specialized to that module's algorithm. Any section of Fusion that uses witness

detection has special hooks into the class which allow it to call the detector procedures.

This witness detection evolution of the difference mode has several advantages over

its predecessor which are described below.

3.3.1 Clarity and Elaboration of Results

Perhaps the greatest advantage of the new system is the standard ability to use any

kind of data as a witness. Educational Fusion represents a witness as an object of

type Java. lang. Object, so it can be any class possible in the Java language. This

means witness detector results can be much more elaborate than the red dots drawn

on the grid in Figure 3-3. Usually, the returned object is a string, explicitly stating

whether the output is correct, and if not, exactly where the error lies. However, the

object can be anything from a java.awt.Point describing the center of mass of a

group of points to a heat map of a rocket engine after some algorithm is used to

simulate fuel flow. Witness objects can even be based on time, allowing the witness

detector to animate along with the algorithm on a visualization panel (see chapter

4).

In addition to the witness object returned, the new witness detector can also re-

turn a java.util. Vector containing a list of all invalid elements in the output. This

is more useful than a single object if the developer wishes to somehow highlight aber-

rant objects for correction. With this function, it is easy to reproduce the behavior

of the original difference mode of the Bresenham module discussed above. In this

case, the error vector would contain pointers to all the pixels which are incorrect.

The visualization panel could then interpret this data however desired, in this case,
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drawing the pixels in red. The single witness object, discussed in the previous para-

graph, couls then be used to pass a string indicating whether the implementation has

performed as expected.

3.3.2 Modularity and Abstraction

When converting the difference mode system to the witness detection system, there

were three options as to where to put the witness detectors. They could be part of the

visualization panel, part of the reference module or an entirely new class. The option

of the visualization panel was the one currently employed by the difference mode and

was unfavorable because it violated the purpose of the visualization panel, which was

animating algorithms, not correcting code. It was an abstraction violation to have

the visualization panel know how to check the correctness of an implementation, and

thus not a proper decision.

Adding the witness detector to the reference module seemed a good choice because

it did not violate any abstraction barrier. The reference module should know how to

check for correctness, because it actually stores a correct version of the algorithm in

the form of the reference implementation. After coding the reference implementation

into a module, the developer would just add some procedures to handle witness

detection, which could then be called by any subsystem that needed it.

The main problem with this alternative is that it does not allow for easy reuse

of witness detectors. For instance, the witness detector used for the bubble sort

described above could be used to detect witnesses for a variety of other sorts. Any

algorithm which takes a list of elements as input and returns a sorted version as

output could use the same "sorted list" detector to check for witnesses. If the witness

detector were built into the reference module itself, the developer would have to copy

and paste chunks of code for each module's detector. In addition, if he wants to

modify the sorted list witness detector, he would have to go through each module

and change the code everywhere it is used.

The solution here is to choose the final alternative for witness detector placement.

Each witness detector should be in its own class, easily loadable by any module
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that needs its functions. This is the way witnesses are currently implemented in

Educational Fusion, allowing for maximum modularity and code sharing.

3.3.3 Efficiency

The time required to perform an algorithm is not necessarily the same as the time

required to check an algorithm's output for correctness. In many instances, the

witness detection time can be much less than the time to actually run the algorithm.

However, under difference mode, the only way to check an implementation's output for

correctness was to run the reference implementation on the same input and compare,

step by step. This was often a waste of time. For instance, in the bubble sort example,

sorting requires 0(n2 ) time, but having a witness detector check to make sure the list

is sorted requires only O(n) time. This may not seem significant in relation to sorting,

but when the algorithm is performing a large ray trace or some other procedure for

which n is on the magnitude of 106, this can amount to a large amount of time saved.

Note that it may occasionally take more time to check for witnesses than to

generate a correct answer. This is most often the case when there is more than one

correct answer allowed, as described in the next section.

3.3.4 Multiple Correct Results

The old, difference-mode style of feedback supported only algorithms with one correct

output per input. This made no allowance for algorithms which mapped an input

to more than one correct output and then returned one of the correct choices. For

example, in the Bresenham line drawing algorithm, the implementation is supposed to

output each pixel through which the input line passes. However, when the line passes

directly between two pixels, it is acceptable to output either of the pixels, but not

both. If the student and reference implementations pick different pixels, the difference

mode will highlight the student's pixel in red, indicating an error where there is

none and possibly driving the student into a rage of misunderstanding. The witness

detector, however, can go through each pixel of the student's output, individually
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determining if that pixels is correct relative to the input and the other pixels in

the output. In this way, any output can be tested based on a specific definition of

correctness, rather than on similarity to the output of the reference algorithm.

3.3.5 Sanity Check

Since each witness detector is self contained, it does not rely on the reference algorithm

to check for correctness. This means that it can even be applied directly to the

reference algorithm. This is useful for the developer to test that she herself has

programmed the reference implementation correctly. It is also useful for students who

sometimes end up with buggy reference code: If they suspect the reference algorithm

is not performing correctly, they can double check it by running a witness detector on

its output. Of course, this is not foolproof because the detector itself may be buggy,

but, in the case of a competent developer, the odds of both systems failing are rather

low.

3.4 Witness Detector Implementation and Techni-

cal Details

To implement a witness detector, the developer creates a subclass of edufuse. cg.

BaseWitProof and names it Proof Modulename where modulename is the name of his

base module. The new class should reside in the same package as the module.

Next, he overrides the function public Object BaseWitProof. FindWitness

(Object input, Object output). This function receives the object which was input

into the implementation, and the object which the implementation produced. It

should test the output object for correctness and return some meaningful object

indicating whether the output is correct and if not, what is wrong. Usually this

output is a string, but is allowed to be any object for expandability. It is up to the

function calling the witness detector to interpret this object.

Finally, the developer should override the function public Vector BaseWitProof .
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FindWitnessList (Object input, Object output). This function receives the same

parameters as the previous function, but now outputs a java.util. Vector which

represents a list of elements that are incorrect, or do not belong, in the output. This

vector can contain pointers to the actual erroneous elements or, if the input itself is

also a list as in the case of a sort algorithm, the vector might just contain integers

representing the indices of incorrect elements. Note that for some algorithms, such as

those that return only one number, the concept of a list of incorrect elements makes

no sense and FindWitnessList 0 should just return an empty vector. Once again, it

is the responsibility of the calling procedure to interpret the vector returned by this

function.

The witness detector should also be used to hold any auxiliary functions which

FindWitness () and FindWitnessList 0 invoke. The BaseWitProof contains some

other functions which are useful for creating witnesses to simulations and are ex-

plained in the chapter on simulations, below. For reference, the complete code of the

witness detector for bubble sort, and thus any sort, is listed in Appendix C.

3.5 Witnesses- Are We Making Life Too Easy?

When offering students the chance to automatically check their own work, there's

always the chance that we might make their lives too easy. Is witness detection really

such a boon to teaching, or will it just dull the abilities of students to notice their

own mistakes? We believe that witness detection truly is beneficial and will not harm

the learning process.

It is true that students need scrutinize their results less with witness detection.

However, if the goal is to teach students to scrutinize results, then that should be a

separate class, or a module of a class on the scientific method. Educational Fusion is

designed for classes in which the purpose is to teach the material itself, not how to

check yourself. In addition, when students apply their knowledge of these algorithms

in the real world, there will be a host of debugging and verification tools available

which they can use, or may even be forced to use by circumstances. Witness detection
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is just an application of verification technology at the academic level and students

should be given an opportunity to adapt to it.

Without witness detection, there are some modules which would be very difficult

to check by hand. For instance, when implementing a Phong shader, it is difficult

to tell if the shader is operating correctly around the edges of the polygons it is

shading. A student could stare at individual pixels for hours trying to determine if

the shader oversteps the bounds by one pixel, or he could ask the witness detector

and receive results immediately. This way, a student can remain focused on the task

of implementing the shader itself and not become frustrated squinting at the output.

Finally, it is important to remember that the witness detector does not directly

examine the code for correctness. It still relies on the student to run his algorithm on

an adequate test suite, representing all possible classes of input. The witness detector

is also limited by the fact that it cannot tell if an implementation is obtaining results

in the correct manner. For instance, if a student is supposed to implement radix sort,

but implements bubble sort instead, the witness detector will report no errors as long

as the implementation outputs a sorted list'. Thus, a large part of the verification

process still rests on the student and witness detection does not make his life too

easy.

'This is true unless the witness detector is built to monitor execution time, binary operations,
and such. Even then, it would still be rather difficult to discriminate between bubble sort and
selection sort, or radix sort and counting sort.
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Chapter 4

Algorithm Visualization

Algorithm visualization refers to the ability of Educational Fusion to display, through

animations, the internal workings of an algorithm. Students access algorithm visu-

alization by selecting a module and clicking the visualization panel button on the

bottom of the screen.

In Educational Fusion, algorithm visualization is extraordinarily modular and

parts are freely interchangeable. A developer can switch a module's visualization

panel just by typing a new panel's name in the module configuration file. A panel

can be linked to more than one module if the algorithms are of similar types. For

instance, several sorting algorithms could all use the same visualization panel to

display their animations. Or, if the representation of data must be switched, such as

displaying a list of integers by tall bars of the appropriate length instead of balls in

bins, it can be accomplished by changing just one or two functions. The system is

designed to be flexible and expandable.

This chapter describes, in detail, the visualization abilities of Fusion. It first

presents a student's view of the system and then explains how visualization has

evolved over Fusion's development. Next, it moves on to explain the framework

with which Fusion supports the development of new panels. This section includes in-

struction on the Def aultTeacher and the VizView and finally provides an in-depth

discussion on the concept of Fusion's animated data structures.
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4.1 A Student's View of Visualization

Upon opening the visualization panel, Dianne can select from one of three modes:

reference, manual and yours. In reference mode, she can enter sample input values

and watch the reference implementation work. After observing how the algorithm

is supposed to operate, she can switch to manual mode, in which she incrementally

completes the steps of the algorithm to produce the correct output. For instance, if

she is implementing Bresenham's line drawing algorithm, she would first input the

endpoints of a line to draw and then click on the individual pixels which should be

highlighted by the procedure. Finally, once she thoroughly understands the input-

output mapping of the algorithm, she can write her own implementation and test it

out in yours mode.

At anytime, Dianne can toggle the check box which controls witness detection. If

she turns it on during reference mode, it performs the sanity check mentioned above. If

she turns it on in manual mode, each action she takes is accompanied by an indication

of its correctness. In the Bresenham module, her pixels immediately light up in blue if

they are correct or red if they are incorrect. Finally, if she employs witness detection

in yours mode, the visualization panel relates any witnesses of incorrectness that it

can find in her implementation's output. For line drawing, it gives Dianne a message

stating whether the correct pixels, and only the correct pixels, are highlighted by her

algorithm. In all three cases, the system calls the same two procedures in the witness

detector to produce the appropriate results.

4.2 History of Visualization in Educational Fusion

Algorithm animation and visualization has been an integral part of Educational Fu-

sion since conception. The original team believed that animation allowed more thor-

ough exploration of algorithms than a traditional setting and wanted to reach new

levels of visualization with the project. The most important advancement over related

work was the ability of students to visualize their own algorithms. A student could
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select an option on the visualization panel to test data on his own implementation

and watch it work in real time. Outside of the visualization panel itself, a student

could also run his implementation from the concept graph and watch as each module

in the data flow displayed its output, allowing him to track down bugs by examining

data at several checkpoints.

In the beginning, the team was eager to create a proof of concept prototype for

the visualization panel and hacked together some effective code. Later, as each new

visualization panel was created, the team tried to push the limits of the panel and

improve the interface and structure of the code. Although this resulted in many

working panels, the panels suffered from a lack of uniformity. In addition, large

sections of code had to be rewritten and modified slightly each time a new panel was

made because there was no framework around which development could be based.

4.3 Visualization Framework

Now, however, Educational Fusion hosts a rich framework, capable of supporting any

visualization panel desired. The large chest of tools makes it easy for a developer

to build a panel in just a matter of hours, and the standardization provided make it

easy for a user to understand the panel in a matter of minutes.

Each section of the visualization panel is supported by a specific hierarchy of

classes, as shown in Figure 4-1. The dependencies between these classes is illustrated

in Figure 4-2.

4.4 Default Teacher

The class edufuse. cg. DefaultTeacher is the main control board for events and

animations on the visualization panel. As the middle link between the user interface

and the back end of fusion, it serves a dual purpose. First, it is responsible for

linking to external code, such as the student and reference modules and the witness

detection system, ensuring that data can be passed back and forth between the user,
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the visualization, the implementations to be tested and the panel's witness detector.

Next, DefaultTeacher fills the secondary role of holding and organizing all of the

visualization's user interface components.

To create a custom panel for a new module, the developer must create a subclass of

Def aultTeacher named modPanel where mod is the name of the new module. Then,

the developer overrides the appropriate functions as described in the next several

sections.

4.4.1 Interaction With External Code

DefaultTeacher contains a large number of methods and fields to aid in managing

external code. The steps used to connect and send messages to external modules are

displayed in Figure 4-3 and explained below.

Loading the Modules

Before Def aultTeacher can interact with external modules, it must somehow connect

to the appropriate classes. It does this by creating and storing instances of the desired

classes with the notif yName () procedure. Public void notifyName (String name)

takes the full path name of the class which contains the user's implementation of the

algorithm to be visualized. This name reflects the version of the implementation

the user has selected, so that the appropriate revision can be loaded. For example,

notifyName() might receive the string:

projects.graphics.users.vbunny.modules.VectorSort.vbunnyVectorSort-14

This string, which is just a standard full pathname in Java, tells the function to

load the 14th version of vbunnyVectorSort inside the package containing modules

for the user vbunny. Having established this information, not if yName 0 passes the

string to setUserModuleBean() to actually instantiate the class and save it in a

member field.
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Next, notifyName() strips away user-related data in the input and uses this

information to form the path names of the appropriate reference class and witness

detector. In this case, these would be projects. graphics. modules. VectorSort.

refVectorSort and projects.graphics.modules.VectorSort.proofVectorSort.

It then instantiates these classes and stores them by calling setRefModuleBean() and

setProofModuleBeano, respectively.

Linking to the Modules

Once the modules are loaded, Fusion must build data pathways from the visualization

panel to the student and reference modules. These pathways are identical to those

used in the concept graph, as explained in Nathan Boyd's thesis on Educational

Fusion [Boy97]. In short, the class edufuse .cg.BaseModule, from which the student

and reference modules are derived, and the Def aultTeacher class both implement the

interface edufuse .cg. FusionListener. This interface allows modules and panels to

exchange data by connecting an input port of the visualization panel to the output

port of a module. For our purpose, this is accomplished through the use of the

function, public boolean BaseModule.mapListener(FusionListener listener,

int localIndex, int remoteIndex). Calling this function tells the module that

the listener would like to receive notice on its input port numbered remoteIndex

whenever the module sends data from its output port numbered localIndex. The

function returns a boolean indicating whether the mapping completed successfully or

not.

Conventionally, even-valued input ports represent data received from the reference

implementation and odd-valued input ports represent data received from the student

implementation. Also by convention, the 0th input port receives the main output of

the reference implementation and the 1st input port receives the main output of the

student implementation. Any auxiliary data should be sent on other ports, preserving

the even/odd convention. The main output of an algorithm is the output which

an observer would most expect the algorithm to output. For example, a reference

implementation of a line clipping algorithm would send the clipped line down its Oth
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output port and the type of the clipped line (external, internal, etc.) down its 1st

output port. It would then map from output port 0 to input port 0 and from output

port 1 to input port 2. Similarly, the student implementation should map from output

port 0 to input port 1 and from output port 1 to input port 3 (Figure 4-4).

Usually, the setXXXModuleBean functions handle all necessary listener mapping.

Public void Def aultTeacher. setRefModuleBean(String ClassName) first instan-

tiates the reference module and saves it in the member field, mRefModuleBean. It then

maps the 0th output port of the module to the 0th input port of the panel and the

1st output port of the module to the 2nd input port of the panel, as described above.

Public void DefaultTeacher. setUserModuleBean (String ClassName) acts as

setRefModuleBean() except that it stores the user module in mUserModuleBean and

maps from ports 0 and 1 to ports 1 and 3, respectively.

If more than two pathways are needed per module, your modPanel should override

the setXXXModuleBean functions and call mapListener() appropriately. Note that
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it may also be necessary to modify DefaultTeacher.FusionNoActionQueue () if you

wish to name these pathways, as described below.

Sending Data to a Module

It is interesting to note in Figure 4-4 that there are no data pathways drawn from the

visualization panel to the modules. This is because data is passed by calling module

functions directly rather than having the module listen to the visualization ports.

By having modules listen to the visualization panel through the listener interface,

we made it very easy to change the entire visualization panel framework without

affecting or having to adapt the module framework. However, we do not expect to

modify the module framework and thus are not very concerned about what affect this

might have on the visualization panel framework. Thus, we allow the visualization

panel to depend on a static module design and to call functions directly. The benefit

of this allowance is that the system remains less complex and visualization panels are

easier to implement and maintain.

To send data from a visualization panel to a module, use the function protected

void DefaultTeacher.SendToModule(Object data, int inputNum). This sends

data to input port number inputNum of the module. Note that there is no need to

specify the module to which to send the data. Instead, SendToModule () checks the

mode of the visualization panel (i.e. reference or yours) and sends the data to the

appropriate module.

SendToModule () should be used to send only auxiliary data to the modules. It

should not be used to send the main input parameter which causes the algorithm to ex-

ecute and return data. For instance, for a line clipping module, use SendToModule ()

to send the boundaries of the rectangle to which the line should be clipped. To send

the actual line, and therefore trigger the clipping mechanism and receive a response,

use startAlgorithm(, described below.
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Storing the Input

Before running an implementation, your visualization panel must store the input

which will fire the algorithm by calling public void DefaultTeacher. setCurrent-

Input (Object in). If the input is going to be changed by the algorithm and you

want the data in the variable in to remain unchanged, you should clone it when

passing it as a parameter.

The input is stored in this manner for two reasons. First, it is useful for the

visualization panel to always be able to access a copy of the input which fired the

algorithm. That way, if the panel checks directly for witnesses, it can access the input

by calling public Object Def aultTeacher. getCurrent Input () and feeding it into

the witness detector. Second, it is necessary to store the input so that the algorithm

itself can access it. To facilitate multi-tasking and customizable user interfaces, the

algorithm is run in a manner that does not allow passing in a direct parameter. Thus,

the input must be stored beforehand in a place accessible by other visualization panel

methods.

Running the Algorithm

Once the triggering input has been stored, the algorithm can be running by call-

ing public void Def aultTeacher. startAlgorithm (void). At first, this may seem

a curious way to run an algorithm, as it takes no parameters and returns no re-

sponse. However, the input was previously stored, as mentioned above, and the

responses come through listening input ports of the panel, as described in section

4.4.1. startAlgorithmO is designed this way so that it can be called by a user in-

terface element, such as a button or menu. That way, a developer can build a custom

interface for the visualization panel and have it trigger the algorithm in any manner

desired.

Once called, startAlgorithm creates a new thread to run the algorithm. Through

this, the user retains control of Educational Fusion even while the algorithm is run-

ning. A user can stop a long algorithm in the middle, or possibly even change the
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speed of the animation, all while the algorithm is executing. Also, incorrect stu-

dent implementations which execute infinite loops can be stopped by clicking a stop

button, rather than necessitating a restart of the Fusion environment.

The thread created by startAlgorithm() is an edufuse.modbase.Visualiza-

tionThread which receives a pointer to its parent DefaultTeacher during construc-

tion. It then executes its DefaultTeacher's runAlgorithm() method. This method

usually just invokes the algorithm by calling public void Def aultTeacher. call-

Algorithm(Object input) on the currently stored input. However, you should over-

ride this function if you wish your algorithm to be called in a specific way. For exam-

ple, if your algorithm creates a permutation of its input, like an algorithm that plays

Conway's Game of Life [Ber+82], you may want to call the algorithm repeatedly, each

time providing the previous output. To do this, put the call to callAlgorithm(get-

Current Input 0) within an infinite while loop. Then, make sure to set a new current

input each time the visualization panel receives a response from the algorithm. This

process would only end when the user clicks the interface's stop button, killing the

thread1 .

You should also use runAlgorithm() as an opportunity to obtain any input from

the user interface which has not yet been sent to the module. For instance, in a

visualization panel for a sorting algorithm, you might have a text box for entry of

the list to sort. You would not want to poll the content of this box until the user is

actually ready to run the algorithm, so you should use runAlgorithm() to check the

box and call setCurrentInput () with its contents before calling callAlgorithm(.

The method callAlgorithm() is actually just a wrapper for the SendToModule ()

method. It exists to make it clear that runAlgorithm( is actually triggering the

algorithm by sending the critical piece of data. callAlgorithm( usually sends its

input parameter straight to the appropriate module by calling SendToModule (input,

0). However, although there is a convention suggesting how a module should use its

'There are more elegant ways to have the algorithm terminate. For instance, the visualization
panel could just monitor a boolean flag which the stop button trips when the algorithm should be
stopped. However, this method is not totally impervious to bad student code and the only way to
definitely prevent runaway student algorithms is to kill the thread completely.
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output ports, there is no standard requiring input port 0 of a module to be the port

which causes the algorithm to fire. In fact, a module can use any port it wants as

the firing port [Boy99]. If your module uses a port other than 0, you must override

callAlgorithm() to send the data down the appropriate pathway.

Note that there are many functions mentioned above which result in the eventual

triggering of the algorithm. However, to preserve abstraction and ensure smooth

running of visualization panels, startAlgorithm() is the only one that should ever

be called externally. To help prevent misuse, it is the only public function while the

rest are private. Although there are ways to work around this barrier, they should

be scrupulously avoided.

Receiving the Algorithm's Output

When a visualization panel receives output from a module, it immediately calls the

method public void DefaultTeacher.fusionActionNoQueue (Object object,

int index, boolean local), where object is the data received, index is the port

on which it arrived and local is whether the data should be passed on to another

module. For visualization purposes, local is always false.

fusionActionNoQueue() then examines the port to determine the source and

name of the output it received. If the port is even, it assumes the data arrived from a

reference implementation and if the port is odd, it assumes a student implementation.

This is in accordance with the numbering convention mentioned above. To determine

the name of the received object, fusionActionNoQueue() has a small, built in lookup

table based on port number. If the port number is zero or one, it names the data

"main." If the port number is two or three, it names the data "param," because the

auxiliary port is usually used to return the parameters a module generated to create

its output (see Chapter 5 on Simulations, below). Any other response is simply named

after the port on which it arrived. That is, data arriving on port six would be named

"6." If you wish to use different names for the data, you should override this function

and edit the if-then clauses which pick the name. For instance, in the line clipping

example given above, you could easily set the name of the data to "Line Type" if it
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came in on port two or three 2

After establishing the relevant information, fusionActionNoQueue() calls pro-

tected void DefaultTeacher.AlgorithmResponse(String name, Object

object, int mode). In this call, name is the name of the data, object is the piece

of data itself and mode is either VizModeController .REF.MODE or VizModeControl-

ler.USERIMODE, to indicate reference mode or student mode, respectively. Algor-

ithmResponse is a higher level version of fusionActionNoQueue (: It receives its

data in a more manageable form and it has a more informative name. Therefore,

this is the function that should handle a response from the algorithm. Your panel

must override this method if you want it to do anything meaningful upon receiving a

response from an algorithm. If witness detection is on, this method should fetch the

input which triggered the algorithm, send it to the witness detector along with the

output and display the results in the witness area, as described below. See line 78 of

VecSortPanel. java for an in depth example [GlaOO].

Looking for Witnesses

If the user has activated witness detection, he will probably expect some kind of feed-

back from the witness detector whenever an algorithm is run. To obtain this feedback,

DefaultTeacher has a host of witness utilities. The first of these is public boolean

AlgorithmVisualization.getIsWitnessing0. This allows AlgorithmResponse ()

to determine if witness detection is on or not. If witness detection is not on, then noth-

ing need be sent to the witness detector and no feedback should be shown to the user.

Conversely, Def aultTeacher also provides public void AlgorithmVisualization.

setIsWitnessing(boolean isW) to force witness detection on if necessary.

Next, DefaultTeacher provides public Object DefaultTeacher.FindWitnes-

(Object o) and public Object DefaultTeacher.FindWitness (Object i,

2 It would be interesting if the concept graph architecture were modified to include a typing
mechanism for data passed between modules. Every time a module produced output, it would label
the output with its name. That way, fusionActionNoQueue() would not be responsible for naming
the data, tightening the abstraction barrier even more. Unfortunately, that is beyond the scope of
this thesis, but a suggested implementation is given in chapter 6.
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Object o) to obtain witness objects from the detector. The parameter o should

be the output returned from a module and the parameter i should be the input

which caused that output. The two functions are almost the same except that

FindWitness (Object o) assumes the triggering input is the one obtained by call-

ing getCurrent Input ()3

Once an object is returned by a witness detector, it is up to the visualization panel

to display it. This is usually accomplished by printing the string in a small text box

designated for witnesses. This is explained below in Section 4.4.2.

Finally, DefaultTeacher also provides routines to access the witness list, as de-

scribed in chapter 3. To do this, use the function public Vector DefaultTeacher.

FindWitnessList(Object o) or public Vector DefaultTeacher. FindWitness-

List (Object i, Object o). As for the methods mentioned earlier, the former func-

tion is implicitly passed the input with setCurrent Input () and the latter function

is explicitly passed the input in the parameter i.

4.4.2 User Interface Framework

The algorithm activation framework just described would be rather useless if it did

not allow a user to activate it with desired inputs. Therefore, the DefaultTeacher

class also contains a toolkit for establishing and maintaining a standard visualization

user interface. With it, a developer can create a panel to control the operation of the

algorithm and its animation, attach an input bank to allow the user to finely tune the

input to the algorithm, and send feedback to the user through a variety of specialized

channels.

Initializing the User Interface

To build its user interface, Def aultTeacher's constructor calls the function public

void DefaultTeacher. standardSetup(). standardSetup () is in charge of chang-

3 Currently, this assumption should always be true, but the earlier method is available in case some
future, unanticipated visualization panel needs to call the witness detector with output generated
outside the algorithm and input not stored as the current input.
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Figure 4-5: Sample layouts of input banks, simple and complex

ing the panel's layout to java.awt.BorderLayout and installing the VizView and

the VizDebug, two interface elements which will be explained later. standardSet-

up() lays the groundwork which makes a visualization panel look like a visualization

panel, supporting a standard interface which makes visualizations easy to use from

one panel to the next.

The constructor then calls public void DefaultTeacher. setup 0. Currently,

this sets up a user interface with no controls, and therefore, you should override it

in your own visualization panel. Your setup() should create a panel to be used

as an input bank and attach it to the south of the main panel. This input bank

should contain any interface components necessary to collect appropriate input for the

algorithm, as well as concise labels explaining their purposes. The components should

be laid out neatly, possibly using a layout type of GridLayout or GridBagLayout

(Figure 4-5). The input bank should also contain, at its bottom, a panel created by

calling setupControlPanel(), which is described in the next section.
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Figure 4-6: Sample control panel configurations

The Control Panel

The control panel is responsible for starting, stopping, resetting, updating and setting

the speed of the algorithm. It is generated by calling the function protected Panel

DefaultTeacher.setupControlPanel(int flags, String problemNames[]). The

value problemNames represents a list of different versions of the module and is only

relevant when dealing with simulations (See Chapter 5). For a non-simulation visu-

alization panel, it should be null. The value flags indicates the desired features of

the control panel and should be a bitwise or of the following constants, defined in

DefaultTeacher: RESETBUTTONFLAG, UPDATEPARAMSBUTTON FLAG

and SPEED_.CONTROLFLAG. Examples of various control panel configurations are

given in Figure 4-6.

The only button present in every control panel is the Go button. Pushing the

Go button results in a call of public void DefaultTeacher.GoButtonActionPer-

formed(java. awt. event. ActionEvent e) where e is the event during which the

button was pushed. This function checks if the algorithm is running, and if not, calls

startAlgorithmo to get it going. If a control panel has been setup, startAlgor-

ithmo automatically changes the label on the Go button to read, "Stop". Thus, if

the button is clicked and GoButtonActionPerformed() finds that the algorithm is
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already running, it halts the action by calling stopAlgorithmo, which changes the

button label back to "Go". Note that to ensure the accurateness of the Go button

label, the VisualizationThread calls stopAlgorithm() as soon as it returns from

calling runAlgorithmo.

The reset button is only included in the control panel if RESETBUTTONFLAG

is passed in as a parameter. When clicked, the reset button calls public void De-

faultTeacher.ResetButtonActionPerformed(java.awt.event.ActionEvent e)

where e is the event during which the button was pushed. By default, this function

calls DefaultTeacher. resetAlgorithm(), which is currently the same function as

stopAlgorithmo. You should override ResetButtonActionPerformed() and add

any commands necessary to reset the state of your visualization panel. This is most

useful in simulations (See Chapter 5).

The update button is also activated by passing in the appropriate flag: UPDATE-

PARAMSBUTTONFLAG. When clicked, this button calls public void Default-

Teacher.UpdateParamButtonActionPerformed(java. awt .event. ActionEvent e),

which then calls protected void DefaultTeacher.updateParams(). updatePa-

rams() should poll the panel's user interface elements and send the contents to the

appropriate module by means of SendToModule 0. For example, in the line clip-

ping algorithm, the user might type in the bounds of the clipping rectangle and then

send them to the module with the update parameter button. This is most useful for

updating the parameters of an algorithm while it is running.

The speed control is created by passing SPEED-CONTROLFLAG to the setup-

ControlPanel 0 function. This creates a scroll bar at the very bottom of the screen

which can be used by the student to set how fast the animation should run. The

scroll bar ranges from a minimum value of zero to a maximum of one hundred. Your

visualization can query the desired speed with the routine public int DefaultTea-

cher. getSpeed(0 or force a certain speed with public void Def aultTeacher. set-

Speed(int speed). It should be noted that the speed slider has no direct control

over the speed of your animation. Therefore, it is up to your code to make sure

the selected speed is respected, by calling getSpeed( and delaying each frame of
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animation an appropriate amount. Zero is the slowest speed and one hundred is the

fastest, which should result in no delay at all.

VizDebug

The control panel allows a user to make requests of the visualization, but it is through

the VizDebug that the Def aultTeacher communicates with the user. The VizDebug

controls both the call trace area and the witness area. The call trace area contains

a welcome message, explaining the purpose of the visualization panel and describing

the student's goal, which is usually to gain understanding of the algorithm. When an

algorithm is running, the call trace area should display important transitions as they

happen. Usually, call trace messages will describe what is happening in an animation.

For instance, in a bubble sort algorithm, the call trace would report each time two

elements are switched. When the call trace area fills up, a user can clear it by clicking

the "clear" button at its top, deleting all information except the welcome message.

The DefaultTeacher provides access to the VizDebug through several functions.

The first of these is public void DefaultTeacher. setCallInitial(String call-

String), which sets the welcome message displayed in the call trace box to the

string callString. Calls can be added to the call trace box with public void

De-fault-Tea-cher.addCall (String callString), where caliString represents

the call to add.

The witness box operates in a similar manner. If a witness detector returns a

string as a witness object, your panel should call public void DefaultTeacher. -

setWitnessText (String witnessString) with witnessString as the witness ob-

ject. This will set the text in the gray area below the call trace to the witness

string. If you wish to append something onto the text in the witness box, in-

stead of replacing it by using the above function, call public void DefaultTea-

cher. addWitnessText (String witnessString) where witnessString is the string

to append.
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4.4.3 Auxiliary Support for Manual Mode

The DefaultTeacher's last function, though not a primary one, is to assist with

bookkeeping in manual mode. Often, it is necessary to separate the actions of manual

mode into distinct steps, or groups of steps. For instance, in the manual mode

of a visualization for Bresenham's line drawing algorithm, the visualization panel

would first need to receive the endpoints of the line to be drawn. Then, it could

begin accepting user input regarding which pixels should be highlighted. However,

it is convenient to use the same interface to indicate points in both cases, so the

visualization panel must keep track of which information it is gathering. Step one is

to gather the input to the algorithm and step two is to collect pixels which the user

thinks should be highlighted.

To support this, DefaultTeacher provides functions to keep track of the step the

panel is running. The method public void AlgorithmVisualization. setManual-

Step(int step) sets the current step to step and the method public int Algor-

ithmVisualization. getManualStep () fetches it. For convention, the step which

garners input to the algorithm should be numbered zero, and all further steps should

be successive positive integers.

4.5 The VizView

The VizView is the center component of the visualization panel. Through it, the panel

sends graphical information to the user. When necessary, the VizView may also act

as a large user interface element, relaying clicks and other events to the visualization

panel. Often, a VizView is not responsible for drawing itself, but is just a conduit for

the AnimDataType to use, explained below. However, it does contain a set of painting

and buffering tools to be used when it does need to draw.
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4.5.1 Painting a VizView

By default, all painting to a VizView is double buffered. The class maintains a

j ava. awt . Image in VizView. mBuffer, constantly adjusted to match its dimensions.

When the Java toolkit calls the VizView.Paint(Graphics g) method, it responds

by copying the image to the screen. Thus, all drawing which your VizView does

should be done directly to the mBuffer.

The mBuff er is maintained at the correct size by calling public void VizView. -

ValidateBuf f er (. ValidateBuf f er () checks to make sure the buffer exists, and if

not, creates it. It then ensures it matches the size of the VizView and if not, adjusts

it. Finally, it prepares the background by calling DrawBackground(). Since Vali-

dateBuffer() is responsible for making sure the mBuffer exists and is the correct

size, your drawing routine must call it directly before drawing anything. Failure to

do so may result in a seemingly random NullPointerException being thrown up the

chain of command.

Public void VizView. DrawBackground() is responsible for preparing the buffer

to be displayed, and is called every time the buffer is erased, or before an empty buffer

is copied to screen. By default, it does nothing. However, if you require the center

panel of your visualization to display a certain graphic, even when no algorithm is

running, then you should override this method. For instance, in the Bresenham line

drawing algorithm, it is useful to display a grid on the screen, so the user knows which

pixel he is clicking when he selects endpoints. This grid is drawn by BresenhamViz-

View.DrawBackground.

It is interesting to note that DrawBackground() draws to mBuffer and therefore

calls ValidateBuffer() first, as mandated above. This seems like endless recursion,

since ValidateBuffer calls DrawBackground(. However, ValidateBuffer() only

calls DrawBackground() if it find that it must adjust the mBuffer in some way and

risk erasing the background image. Thus, a call to ValidateBuf f er () would first fix

the mBuffer, then call DrawBackground 0, which would call ValidateBuff er() to

check the mBuffer again. This time, though, the mBuffer has already been adjusted,
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so ValidateBuf f er () returns immediately and drawing continues successfully.

4.5.2 Obtaining User Input

To collect input, the VizView relies on the somewhat primitive public boolean

handleEvent (Event e). This is a standard method of gathering mouse clicks and

drags, and the e received is a java. awt . Event and interpretable in the typical

method. Unfortunately, handleEvent () has been declared obsolete from the offi-

cial Java language, and may be removed entirely soon. Therefore, if you create a

new VizView for your visualization, it is recommended that you use individual event

handlers, as are standard in JDK 1.2.

To send information back to the visualization panel, VizView stores a pointer to its

DefaultTeacher in VizView. mTeacher. That way, any input received from the user

can be sent through the teacher, to the module. This is why the two way dependency

is needed between DefaultTeacher and VizViewin the module dependency diagram

in 4-2.

Sometimes, the VizView may even substitute for the Go button in the control

panel. For example, in the line clipping algorithm, the algorithm should run auto-

matically, as soon as the user has drawn a line to be clipped. To accomplish this,

have the handler for mouse up events call mTeacher. setCurrentInput () on the

user's line and then mTeacher. startAlgorithm() to set the algorithm in motion.

If a "Go" button existed, the user may even be impressed as he watches the label

change from "Go" to "Stop" as the process begins.

4.5.3 Often No Need to Inherit

Since the brunt of the algorithm animation is done by the AnimDataType and most

user interface is handled by the DefaultTeacher, it is usually unnecessary to sub-

class the VizView. This seems slightly unintuitive, since the VizView is the big black

square in the center of the visualization that should display completely different in-

formation for each module. However, the VizView really only needs to be subclassed

61



and overridden if you want a constant background that is not black ', or if you want

to provide an intricate mouse interface, not supportable by text boxes and buttons.

Following these guidelines will ensure simplicity and minimal code size.

4.6 Animated Data

As mentioned above, the primary shortcoming of several existing algorithm animation

systems is the lack of transparency to the algorithm coder. That is, a programmer

trying to swap two variables would have to swap them in her data, and then call a

function to trigger a swap animation. This seemed sufficient for a developer creating

an algorithm with the purpose of teaching it through animation. However, for Edu-

cational Fusion, we felt this was an unacceptable burden to place on a student trying

to learn an algorithm and animate it at the same time.

Through Educational Fusion's history, we have considered three solutions to this

problem. The first, and most difficult solution to implement, is to build some kind of

state monitoring procedure. This procedure would monitor all variables marked as

animated and draw their state, in a suitable form, on a VizView. Thus, an algorithm's

progress could be monitored by graphically observing the state of all its variables at

all times. Even better, the omniscient procedure could examine changes in state and

determine what actions caused the state change. It could then create animations to

reflect those actions and display those along with the state.

The above solution is the utopia of algorithm animation and, quite clearly, rather

difficult. Although not necessarily impossible, its creation would be a task too daunt-

ing for an Educational Fusion developer and perhaps might be the result of a dedi-

cated professors life's work. However, simpler solutions exist, and Educational Fusion

employs them.

'If you want to avoid the ugly black box as soon as your visualization panel appears, try creating
your animated data type in the constructor of your panel and drawing it. This will copy it to the
VizView's offscreen buffer which will be copied to the screen as soon as the panel is displayed. This
is what allows the Random Walk Simulation (explained in Chapter 5) to give an initial display of
the particles without needing to override its VizView.
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An alternative solution is to have modules output interesting events, similar to the

way ZEUS animates [Bro9l]. For instance, instead of having to swap data and then

tell the animation system to display the swap, a sort module might simply output

"Swap elements 3 and 4". Then, a visualization panel would receive the series of

swaps and perform the operations as well as animate them. The result would be

a sorted list in the visualization panel's memory, and an animation of the sorting

process on the screen.

This is exactly how Educational Fusion worked in the past. It was an effective

solution, and allowed for easy development, but it had important disadvantages.

First, a module required a separate output port for each interesting event it could

send. Thus, an involved algorithm with an intricate animation would require many

output ports and an excessive amount of complexity. Second, a module could not

accurately reflect the data flow of its algorithm, since it was not outputting actual

data. On the concept graph, a sort module could not be accurately represented as

taking an unsorted vector as input and sending a sorted vector as output. Instead, a

vector generator would pass the sorter an input vector and the sorter would output

a series of swaps necessary to sort the vector. Then, an output "assembler" module

would need to receive both the series of swaps and the original input vector to assemble

the mishmash into a sorted vector which could then be passed to another module.

A third solution, and the one currently used by Educational Fusion, is to infuse

the data structure with animation capabilities. Using Java's superior permissioning

abilities, a developer can restrict access to data as tightly as desired. Once all data

access methods are controlled, each one can be enhanced with hooks into animation

routines which display the effect of the accessor. For example, for a simple sorting

algorithm, a vector can be created which allows no access to its data except through

getElement (int i), which returns its ith element, and swap (nt i, int j) which

swaps elements i and j. Then, these functions can be overridden to perform not only

their functions on the data, but to animate the examination or exchange of the data's

elements.
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4.6.1 Creating the Animated Data Structure

When creating the animated data structure, it was necessary to decide which type it

should subclass. An animated structure could inherit from either the class which it

most closely resembled or a special AnimDataType which contained functions useful

for animation. Unfortunately, due to Java's lack of support for multiple inheritance,

it could not inherit from both. One immediate alternative was to make AnimDataType

an interface and have an animated data structure extend a similar structure and

implement the AnimDataType. However, this would mean AnimDataType could define

no member fields, nor could it contain the bodies of its methods, making excessive

code duplication necessary.

Eventually, we settled on making each animated structure a direct subclass of the

AnimDataType class. This has two advantages over alternatives. First, it allows the

code reuse mentioned above. Second, it makes it much easier to restrict permissions to

unwanted accessor functions. For instance, if an animated vector called AnimatedVec-

tor were derived from Java. util. Vector, it would be difficult to limit access to the

public method java.Util.Vector. setElementAt O. By deriving AnimatedVector

from AnimDataType, there is by default no access to any data. In fact, to complete the

AnimatedVector, it is necessary to add an extra field to represent the data itself. By

convention, each animated data type should add a private field named mSelf which

is used to store the main data. Thus, AnimatedVector has a field named mSelf of

type java.util.Vector.

To provide access to any methods of the mSelf class, simply create a wrapper in the

animated structure. That is, AnimatedVector has a method public Object Ani-

matedVector. getElement (int i) which just returns mSelf .getElement (i). This

way, access is provided to data through only the channels which the developer intends;

nothing is left unanimated by accident.
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4.6.2 Initializing

To initialize itself, an AnimDataType needs to know where it should display its output.

This is done by calling the method public void setViews(VizView vv,VizDebug

vd) for which vv is the VizView on which the structure should draw and vd is the

VizDebug to which the structure should record its actions. Usually, these are just the

mVizView and mVizDebug of the DefaultTeacher which created the structure.

A structure also needs to know which witness detector it should use, so it can

look for witnesses while animating. Set the witness detector by calling public void

setProof (BaseWitProof proof) with the desired witness detector. Usually, this is

mProofModuleBean of the owning DefaultTeacher. Note, you should only set the

witness detector if witness detection is turned on. If not, the AnimDataType's witness

detector will remain null and it will not look for witnesses.

After receiving a witness detector, the structure also needs to save a copy of

its original input, so the witness detector can use it to judge the output. This is

accomplished with public void AnimDataType.saveOriginalInput(Object in). If the

algorithm modifies the input to produce the output, you should save a clone of the

input, so the witness detector can have an unmodified version.

Finally, if the visualization has a speed control, the AnimDataType requires its

value. This is set with public void AnimDataType. setSpeed(int speed) and ob-

tained inside the animation routines with public int AnimDataType.getSpeedo.

4.6.3 Drawing

An animated data structure should be able to draw itself at any time, accurately

reflecting its state. The call to setViews() takes care of validating the VizView's

frame buffer, and saves a copy in AnimDataType.mImage, so all drawing can safely

be done there. For reference, public int AnimDataType.getWidth() and public

int AnimDataType.getHeight() return the pixel width and height of the image,

respectively.

Before drawing, the AnimDataType should always check public void AnimData-
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Type. getIsAnimatingO to make sure it is supposed to draw. If getIsAnimating()

returns false, then the AnimDataType is just being used to pass data in a concept

graph and is not associated with a VizView or visualization panel. In this case,

mImage is null and any drawing will result in an error.

The job of drawing an AnimDataType is handle by the method public void

draw(). You should override this method in your custom type and draw the con-

tents of the data structure in some meaningful manner. For an example, see line 247

in Appendix D.

Drawing the data structure provides an excellent opportunity to display errors

or incorrectnesses within it. As for the vector sort visualization described in chap-

ter 3, out of order elements might be drawn in red while correctly placed elements

are drawn in green. To accomplish this, the animated data structure allows ac-

cess to the witness detector through the function public Vector AnimDataType

FindWitnessList (Object output). This method uses the input stored with save-

OriginalInput 0 and the output object to obtain a list of incorrect elements in the

output. The draw() method can then search this list and visually display the errors

to the user.

4.6.4 Animating

To animate the data structure, all that remains is to script short segments of ac-

tion for each overridden accessor function. For instance, a swap in a sort could

be animated by having the two elements circle around each other and then land

in the appropriate places. All drawing should be to the AnimDataType .mImage to

prevent flicker. However, when a frame is complete, you should copy it directly to

the screen. The initialization function, setViews stores a pointer to the screen's

graphics object in AnimDataType .mGraphics so you can copy the frame by calling

mGraphics . drawImage (mImage , 0,0 ,null). After each frame is copied, you should

wait an appropriate length of time, based on the speed obtained with getSpeed(). To

assist this process, use the method public void AnimDataType .delay(long time)

which delays roughly time milliseconds. When the speed control is centered, each
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animated function should take about one second to display.

To help increase the student's understanding of the animation, the data structure

should report each data access into the call trace of the VizDebug. To do this,

use public void AnimDataType.addCall(String s). If a call to an accessor is

later retracted, perhaps by a user in manual mode, use the method public void

AnimDataType. removeCall (String s) to remove just one call in the middle of the

call trace. For instance, if a student is clicking to highlight pixels in manual mode

of the Bresenham algorithm module, he can click an incorrect pixel to unhighlight

it. The panel then uses removeCall 0 to remove the call which highlighted the pixel

from the call trace area.

4.6.5 Copying

Occasionally, it may be necessary to copy an animated data structure, possibly when

saving it as original input. If the copy is to draw itself, it must somehow get access to

all the drawing information and buffers of the original. To do this, call public void

cloneAnimStuff (AnimDataType other). This will copy all relevant information,

including whether to animate or not, from the other structure to the current one.

4.6.6 Linking Your Modules with Animated Data, and What

to Do When You Cannot

For the Educational Fusion Visualization system to be complete, modules must be

designed to use animated data structures. This means that when a new module

is defined as described in other documents [Boy97], it must take animated data as

input and output. For instance, a vector sort module would simply take in and

put out an edufuse.modbase.AnimatedVector and not a java.util.Vector. Since

AnimatedVector is not derived from Vector, the two are not interchangeable. To run

the sort, a visualization panel would create an appropriate AnimatedVector, store it

as input with setCurrentInput() then run the algorithm with startAlgorithmo.

Animation is automatic each time one of the AnimatedVector's animated methods
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is called.

Finally, it is sometimes not necessary or even possible to use animated data struc-

tures as links to modules. For instance, if an algorithm creates an output from scratch,

rather than modifying its input, it is not clear how to link the modules with animated

data. The new structure which the module creates cannot be linked to the VizView

without violating many abstraction barriers. In this case, the new structure should

be created by the visualization panel and passed into the module as input, already

containing the VizView information, or the animated data type might reside solely

in the visualization panel and receive pieces of data individually from the module.

That is, the visualization panel should create an animated data type and link it to its

VizView. However, the module should operate in the old Educational Fusion manner,

just spitting out important commands, such as "swap items 3 and 4" or "color pixel

at [5,6] red". The visualization panel should then apply these to the animated data

structure and animation and data mutation would again occur as one.
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Chapter 5

Simulations and Virtual Labs

Simulation and virtual lab hosting is Educational Fusion's newest feature. With this

addition, we hope the usefulness of Educational Fusion will extend past the borders of

computer science into the realms of chemistry, biology, electrical engineering, physic

and many other sciences.

This chapter starts out by explaining what it means to host a simulation in Educa-

tional Fusion. It then gives a short example of simulation use and goes on to explain

the changes in Fusion's framework which allow for easy hosting. Finally, it discusses

the importance and ability of Fusion to host a virtual lab- a module which looks like

a simulation, but is in fact just a front end for a network connection to a real machine

performing experiments on real components and returning actual results.

5.1 What Does it Mean to Solve a Simulation

As stated above, Educational Fusion is focused on presenting a problem, teaching the

concept of the problem, and receiving a solution to be graded by a TA. To adapt

Fusion to host simulations, it had to be decided what was meant by "presenting the

problem" or "receiving a solution" to a simulation.

The first possibility revolved around the fact that a simulation is just a complex

algorithm. It accepts input and exports output the same way an algorithm would,

while it imitates the system which it simulates. So, the reference algorithm presented
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to the student could be a working version of the simulation, which the student is asked

to implement in his own code. The visualization panel would provide an interface to

the simulation and the witness detector would let the student know if his simulation

performs properly.

This seemed an excellent way to teach the student about the simulation and the

actual system involved. He would need to learn the internal equations which repre-

sented the system in order to implement them in his code. He would need to use the

simulation extensively to understand its properties and test his own implementation.

Unfortunately, this approach is too centered around programming and computer sci-

ence. Even if the professor first provided a student with the necessary equations and

formulas, it would be a tough programming assignment to ask her to implement a full

simulation of a real system. This is acceptable for a computer science student, but it

was our goal to make Educational Fusion simulations usable by students of all disci-

plines. It is unreasonable to ask a chemistry student to program a mass spectroscopy

simulator just to show she understands the concept.

The second possibility, and the one currently in use, is to ask students to use their

simulations to produce specific results. That is, instead of using their implementation

to code an entire simulation, the students must write small snippets of code which

set proper inputs to the simulation, designed to produce requested outputs. For

this option, we assume that students of all sciences will have some rudimentary Java

knowledge. Even if this is not so, modules can be designed which accept their input

in manual mode, requiring no student coding at all. After the input is delivered,

responses from the witness detectors indicate to the students when they are right and

have successfully "solved" the simulation.

Finally, a third possibility is to ignore Fusion's problem/solution model entirely.

This would amount to a homework assignments involving the simulation being run

as they were before the simulation was ported to Fusion. Results would be submitted

by hand, instead of electronically with the "submit" button. Although this does not

take advantage of some of Fusion's qualities, it still gives the simulation the benefit

of being platform independent and running in a strongly collaborative environment.
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For instance, students can still use the chat room to see which of their friends are

working on the same simulation and then ask them questions.

5.2 A Sample Simulation in Educational Fusion

Educational Fusion currently includes a random walk diffusion model, often used

in MIT's biophysics courses [Wei+92]. In the simulation, there are three adjacent

baths which contain a large number of particles. For each bath, the students can set

the size, life expectancy of a particle and the probabilities that a particle will move

left or right. They can then set the simulation in motion, using standard Fusion

controls, and attempt to establish requested particle distributions by manipulating

the parameters, either through their code or through typing numbers into text boxes

in manual mode (Figure 5-1).

Upon starting up the visualization, the student (perhaps Dianne again) is greeted

with a message explaining that she should create a particle distribution in which there

are no particles in the center bath. She thinks this could easily be accomplished by

giving all baths a strong probability to move their particles to the right edge of the

screen. Thus, all particles would end up in the far right bath and the center would

remain empty. She switches to manual mode at the top of the screen, types in the

appropriate numbers and clicks "Go." To be sure she is correct, she also enables

witness detection.

Dianne watches in dismay as her particles turn red, indicating they are incorrectly

placed. In addition, the message in the witness area tells her her distribution is

incorrect. She examines the instructions again and finds they state that the center of

mass of the particles should remain in the center bath, at least 50 units away from

all other particles. In addition, the particles should reach the desired distribution

from any starting layout. After thinking a while, Dianne comes up with a solution

and types in new parameters. Without stopping the simulation, she clicks "update

parameters" and the particles swiftly change their behavior. She watches a little

blue square, drawn by the witness detector to indicate the center of mass, drift over
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Figure 5-1: An Educational Fusion simulation of random walk diffusion
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to where it belongs. Slowly, all the particles turn yellow, indicating they are far

enough away from the center of mass, and the witness area congratulates Dianne for

completing the first part of the simulation. Having solved the problem, she writes the

parameters from the panel into a short procedure which she submits as her answer

for problem one.

Next, Dianne selects problem two from the bottom of her screen. This time, she

is asked to set the particles in the center bath oscillating, as if someone were shaking

the bath. She realizes that this will require modifying the underlying simulation, as

she cannot adjust the parameters quickly or accurately enough by hand to create

the oscillating phenomenon. She writes a quick routine, based on a sine wave, which

oscillates the parameters of the center bath. She switches to "yours" mode in the

visualization and observes her routine generating input. She watches in delight as

the text boxes which she used in manual mode now update constantly to reflect

the parameters which her procedure is generating. The witness detector turns her

particles yellow, letting her know they are oscillating correctly1 . She is then asked to

determine the connection between the period of oscillation and percentage of particles

in the center bath. She can submit this response as a comment with her snippet of

code.

5.3 Modifications to Witness Detectors

Because a simulation is so similar to an algorithm, witnesses remain somewhat un-

changed. However, a simulation can have a broader variety of problems based around

it than a typical algorithm. For the random walk module, the student can be asked to

produced a variety of different distributions. Without adapting the witness detection

system to simulations, a whole new module with a new witness detector would be

needed for each requested distribution. Therefore, we introduced the idea of differ-

'Here is an interesting example of the power of witness detectors. Instead of examining the actual
distribution to test for oscillation, which would be rather difficult, the detector examines the input

parameters. If they match the parameters which it expects, it decides the distribution must be
correct.
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ent "problems" into a single module. Once a detector knows which "problem" the

student is attempting to solve, it can look for witnesses appropriately.

To set the problem number or name, use public void BaseWitProof . setProb-

lemNumber(int n) or public void BaseWitProof.setProblemName(String s) re-

spectively. To query the number or name from within a witness detector, use public

int BaseWitProof .getProblemNumber () or public String BaseWitProof .-

getProblemName () respectively. Usually, you should not need to set the problem

number or name, as it is taken care of automatically by the visualization panel.

5.4 Modifications to Visualization Panel Frame-

work

Luckily, the visualization panel was already well adapted to collecting input and

displaying simulation results. However, some modifications are needed to deal with

the addition of multiple problems per module. For this purpose, the method, public

Panel DefaultTeacher.setupControlPanel(int flags, String problemNames[)

accepts an array of the names of all problems supported by this simulation. It then

adds a popup menu to the control panel to allow a user to select a desired problem

(Figure 5-1). When a student selects an option from the menu, the new problem

name and number are sent to the appropriate module and witness detector.

To help the student know what kind of distribution he should create, the frame-

work also provides public void Def aultTeacher. setInstructions (String name,

int number). When a problem is selected, this function is called with the problem

name in name and the problem number in number. You should override this func-

tion to use setCallInitial() to change the welcome message of the call trace to

instructions explaining the point of the problem.

Both setInstructions() and setProblemNumber() are called by the method

public void DefaultTeacher.problemItemPerformed( java. awt. event. ItemEv-

ent e). If you wish anything else to happen when a student selects a problem, you
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should override this function. You can access the selected problem number by call-

ing DefaultTeacher.mProblemChoice.getSelectedIndex() or the problem name

by calling Def aultTeacher.mProblemChoice.getSelectedItemo.

One interesting change should be noted here regarding the way in which a vi-

sualization of a simulation is expected to perform. For a typical algorithm, the

visualization panel is used to send input to the reference implementation, student

implementation or student manual mode, which then performs the algorithm. For a

simulation, it is the reference, student, or manual mode which provide the input to

the simulation algorithm. Therefore, in reference or "yours" mode, a student would

input very little from the visualization panel. He would just click "Go" and the

simulation would query the appropriate implementation for input and then the run

the simulation on that input. However, in manual mode, a full panel should be set

up, as in Figure 5-1, allowing the student to create any input, just as the reference

or student implementation might, and then send it to the algorithm by pressing the

"update parameters" button.

A student may become confused if he is running a simulation, types some new

parameters into the manual box, presses "update parameters" and sees no change.

This is probably because he is running in reference or "yours" mode and the visu-

alization panel is ignoring the manual input. To avoid this situation, the developer

of the panel may want to automatically switch to manual mode when the "update

parameters" button is pressed. This is done by calling public void AlgorithmVi-

sualization. switchToManualMode() within DefaultTeacher .updateParams 0.

5.5 Modifications to BaseModule

When adding simulation abilities, the changes to the module system itself were the

most significant. A module now needs two custom procedures, one to set the param-

eters according to the problem number and the other to run the actual simulation.

Because simulations are slightly more complicated than traditional algorithms, Edu-

cational Fusion suggests a few conventions for simulation modules. Each simulation
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should have one input, consisting of parameters suggested by the visualization panel.

In addition, it should have two outputs, one for the new set of parameters created by

the parameter generation function, and the other for any output from the simulation.

Upon receiving a block of parameters on its input channel, a simulation module

should first check if it is being run in manual mode. It does this by calling public

boolean BaseModule. isManualMode o. If the simulation is in manual mode, it

means the block of parameters received were input directly by the user and should

be observed and sent straight to the simulation function. If the simulation is not in

manual mode, then the parameter generation function should be called, to modify the

parameters based on the code written by the user. Next, the new parameters should

be passed to the simulation function, and sent back to the visualization panel through

the parameter output. Upon receiving the parameters, the visualization panel should

exhibit them, so the user can make sure the code is working correctly. Finally, the

simulation results should be sent to the visualization panel for display.

5.6 Virtual lab and Parameter Passing

As far as students can tell, a virtual lab is just an elaborate simulation, possibly with

more dials. As far as the developer is concerned, a virtual lab is easier to implement

than a simulation, because there are no complex equations or hidden system models

which need be programmed into the module.

As a demonstration of its virtual lab hosting ability, Educational Fusion includes

weblab, an electrical engineering lab based on the work of MIT Professor Jesus del

Alamo [Ala99]. The lab allows the exploration of voltage and current responses in

a variety of transistors connected to an hp4155 signal analyzer. Because weblab is

so complex, it was not easily adaptable to Fusion's problem/solution model, and was

best left as an exploratory laboratory, without the benefit of Fusion problems and

witnesses.

However, weblab was easily ported into Fusion using the new simulation conven-

tions and framework. It is broken up into two sections, with the interface built into
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the visualization panel and the connection to the weblab server supported by the

hp4155 module. Because of this separation, weblab has taken on a collaborative na-

ture which would have been difficult without the Educational Framework. Fusion's

networking architecture allows for the sharing of information and interconnection of

modules between users [Tor98]. This solves one of the most significant problems

which Professor del Alamo was having with weblab. Because the weblab interface is

so complex, students would often become confused and require technical support from

TAs before they could continue with their labs. Often, support through e-mail was

not enough, because a TA could not see a student's screen to easily examine every

parameter a he was using. Sometimes, a student would accidentally type something

into an input box without even noticing and this would cause his tests to perform

incorrectly. Since he was unaware of typing the error causing input, there was no way

he could relate it to a TA.

With Fusion, a TA can now directly receive the block of parameters which a

student is sending to the hp4155 module 2. This means a TA can see the same panel

a student sees, and diagnose exactly what is wrong. This will ease the burden of both

TAs and students in the future, demonstrating the true potential of long distance

collaboration under Educational Fusion.

2This information can actually be sent a variety of places beside a TA. For instance, a thread
could be added to the hp4155 module which logs tests and caches the results, allowing the module
to quickly return results for popular test without querying the analyzer.
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Chapter 6

Conclusion

So far, we have given an overview of Fusion's layout and discussed previous work re-

lated to on-line learning, visualization and self-checking code. We have also discussed

witness detection, algorithm visualization and simulation hosting in greater depth.

This chapter concludes the thesis by examining recent work and checking how useful

it really is. It then suggests possibilities for future work and finishes by summing up

the goals of Fusion.

6.1 Does all this stuff work?

To determine the usefulness and usability of the new standard visualization environ-

ment, and obtain suggestions for future development, we conducted a usability test on

the vector sort module. The experiment was not sufficient to prove anything, because

it consisted of one subject, but it provided an opportunity to study the visualization

panel in use by a real student. The subject, whose name was actually Dianne, was

aware of the syntax of Java, but had not programmed in seven years. She also claimed

to have never programmed a sort algorithm before, nor had she heard the term bubble

sort. After receiving a brief explanation of the three modes of the visualization panel,

she set out to implement a bubble sort.

At first, she watched the reference mode in action, several times, inputting differ-

ent lists every time. After roughly 30 minutes, she believed that she had figured out
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how the sort worked. However, she suggested that it would have been much easier

to learn the sort if, in addition to allowing her to choose her own input, the panel

recommended input which would best display the workings of the sort.

Next, she switched to the edit mode and coded a solution. She switched back to

visualization mode to test her answer and found that her answer was incorrect. She

did not need witness mode to realize this, but turned it on for future reference. Even

though her solution was incorrect, the algorithm she coded still animated, and she

was happy to see that her custom solution would animate even when not correct. She

then attempted to debug her code by watching the animation, but found that the

animation was going too fast for her to follow, even at the slowest speed setting. She

suggested that this be fixed by either lowering the slowest speed, adding a pause or

single step button to the control panel, or printing out the state of the vector after

each swap operation, so she could scroll back in the call trace area and follow the

operations when the code had completed.

Finally, Dianne managed to fix her algorithm to sort the list in descending order.

However, the witness detector told her she was wrong, because it was built to check

for ascending order. By oversight, the direction in which the list would be sorted was

not stated, and has now been added as a comment in the user template.

Dianne mentioned that she had a little trouble using the animated data structure

because all the necessary methods were not described in the comment in the user

template. The swap and elementAt 0 methods were clearly documented, but the

developer had neglected to mention the size () method which returned the length of

the vector. This confused Dianne, who, as a student, put her faith in the developer

and just assume that she didn't need to know the length of the vector to sort it, and

sought some other solution. Unfortunately, there was no other solution and she lost a

great deal of time because the animated data structure was incompletely documented.

This should serve as a warning to the Fusion module developer to always document

the user template as completely as possible, and to test the modules before delivering

them to trusting students.
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6.2 Suggested Future Work

Although this is the end of this thesis, it is surely not the end of Educational Fusion

development. For Fusion to become a world wide educational aid, it needs some

improvements and touch ups to help make it more friendly and more powerful to the

non-computer-oriented world. Some of these improvements are suggested below.

6.2.1 Data Naming System

At the moment, modules and visualization panels identify data strictly by exam-

ining the port on which the data arrived. This make for messy lookup tables and

meaningless numbers in a situation where higher level abstraction should be used.

Ideally, when data arrives, it should have a tag attached, identifying it by name, so

fusionActionNoQueue() procedure can be skipped and the data can be sent directly

to AlgorithmResponse() which could act based on the name of the received object.

To do this, there must be a field in each piece of passed data which identifies its

name. All the types of passed data could be subclass of one PassedData type which

includes this field. Unfortunately, if we changed the architecture now to accommodate

this system, none of the existing modules would work, because they currently pass a

variety of data types, none of which are derived from PassedData and none of which

contain a name field. We could go through thousands of lines of code, updating every

data type, but there is an easier way to slowly phase in data naming.

First, there is no need for a new PassedData class. Since most future modules

will be built to pass data derived from the AnimDataType, we could build the data

naming architecture directly into the AnimDataType class and insist that all future

modules pass nothing but animated data. Then, when receiving data, a visualization

panel or module would check if the data is derived from AnimDataType before calling

fusionActionNoQueue (. If not, it would make the call and the response would

proceed as usual. However, if the data is derived from AnimDataType, the module

would call AlgorithmResponse () directly, passing in the name which arrived as part

of the data.
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Eventually, when all modules pass only animated data, the fusionActionNoQueue ()

method could be deprecated and the naming system will be automatic, raising ab-

straction barriers even higher and making the system even less complex for future

developers.

6.2.2 Module Design Wizard

The process of creating a new module and visualization panel, although made easier

by the redesign of the visualization framework, is still a complex and involved one.

Currently, is is infeasible to think of creating a new visualization panel and module in

under four hours. While this is a reasonable amount of time for a teacher to develop

a lesson plan, it could be much reduced by exploiting the full power of the online

learning environment.

There is a simple checklist in Appendix B which enumerates the steps necessary

to create a new module and visualization panel for Educational Fusion. Most of these

steps are simple and well defined, many of them involving finding words and replacing

them with the name and location of the desired module. These steps could all be

automated by a module creation wizard, activated by the Create Module command,

given from the concept graph. Currently, this commands creates the appropriate files

needed for the module, but editing them and creating the visualization panels is left

up to the user.

In the future, the wizard should automatically complete all of the simple checklist

steps, such as filling in the name of the module in the correct places in Educational

Fusion files. Then, the wizard should ask relevant questions about the type of module

to be created and help setup the visualization panel and input / output port mappings

by generating some of the code in the appropriate files. The wizard could even assist

in creating a new animated data type, if necessary. It would do this by asking which

data type the new one should implement and then asking which accessor methods the

data type should make public. Finally, for the steps which must be done by hand,

the wizard would act as a guide, indicating which step must be accomplished next

and checking the user's input to ensure validity upon completion.
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As a terrific side effect of the wizard, module development would become platform

independent and possible from within the Java enabled browser. Since the wizard

would be part of Educational Fusion, it would have the ability to activate the Java

compiler, already used to compile student code. For editing, the wizard could bring

up the student editor, but filled with module or visualization panel code instead of

student code. This way, many of the working parts of Educational Fusion could be

reused, making wizard implementation a simple task, and module development easier

and more self-contained than ever.

6.2.3 Demo Input System

Expecting students to learn an algorithm solely by watching it animate is a bit un-

realistic. That is why Educational Fusion will not put teachers out of work: They

are still necessary to explain basic concepts to the student and assist them through

difficult processes. However, if Fusion becomes a world wide accessible product, or

even if it is just used by very busy professors, teachers may sometimes not be as

available as possible to fully explain concepts necessary to implement the algorithm.

In these cases, visualization is supposed to fill in the gaps.

Unfortunately, visualization is not always useful unless students understand the

algorithm enough to know what inputs they should use to watch the most useful

animations. Algorithms may have special case operations which students would never

guess if they do not input the correct special cases. For this reason, Fusion should

have an easy way to include sample inputs with each visualization panel, allowing a

student to watch preselected animations in action, as well as input their own.

To support this, the setupControlPanel() should take another list, indicating

whether the visualization panel has included demo inputs and if so, what their names

are. Then, a separate procedure, coded by the developer, would be called each time

an item is selected from the demo input list. This procedure would be responsible for

checking which item was selected and then filling in the user interface elements with

the parameters appropriate for the selected demo input.

Once the creation wizard, mentioned above, is completed, entering demo inputs
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could be the last step of the wizard's creation checklist. It would take the developer to

a preview version of the visualization panel, have her enter her demo inputs directly

into the user interface and then click a button to take a snapshot of the user interface

as a demo input. Then it would generate the code to recreate the snapshot, ask the

developer for the name of the snapshot, and add it to the demo input menu.

6.2.4 Editor Enhancement

If Educational Fusion is to be the student development environment of the new millen-

nium, the code editor needs to be more like the current editors available to professional

programmers. Although it supports auto-tabbing, text-coloring and parenthesis bal-

ancing, these features work in a way unique to Educational Fusion. Their behaviors

should be adjusted and made to work more like a student who has used other editors

would expect. In addition, the editor needs new features, like a class browser, popup

menus when methods or objects are clicked, and a debugger. This would then make

programming in Educational Fusion no less enjoyable or easy than programming in

any environment, making it the ideal choice for student programmers around the

globe.

6.3 Goals Revisited

While working on this project, I gained much respect for and insight into the world

of software learning environments. Although this was a happy side-effect of my work,

it was not its main purpose, a purpose which should be kept in mind by all future

developers. Fusion's purpose is to serve the community by providing a universal,

platform independent, reliable, easy to use, real world savvy learning environment

that can be used anywhere, by anyone with a Java-enabled web browser.

One aspect of this goal worth noting a second time is the platform independence

of Educational Fusion. This independence, which I consider one of its most important

objectives, is also one of the greatest restrictions of the project. Many commercial

institutions are eager to see Educational Fusion succeed, as it will hopefully increase
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the general efficiency of computer education throughout the world. However, they

show their eagerness by thrusting platform dependent technology upon us, attempting

to better Fusion by limiting it to only a percentage of the population, instead of

allowing it universality as originally intended. Unfortunately, by retaining its virtue

of ubiquitousness, it is missing out on technologies which could significantly improve

user experience. However, the cost of these technologies is too great and we can

only hope that the companies which offer them will develop platform independent

versions, expanding the usefulness of their products rather than limiting the usefulness

of ours, and bettering the future of education in the process. With the support of the

commercial and academic societies behind it, as well as the development skills of the

excellent team members who have worked on the project before me, Fusion cannot

help but become a universal learning tool of the new millennium.
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Appendix A

Server Installation Checklist

This is an updated version of the checklist, originally written by Aaron Boyd [Boy99]

To install the system:

1. Copy the base source tree, currrently located in the directory Fusion on the

computer Fusion.lcs.mit.edu, into a directory on your server, called Fusion.

2. Create a mapping on the web server from http: //hostname/edufuse/ to Fusion\Documents

on your server, where hostname is the name of your computer.

3. Create a mapping from http://hostname/myclient to Fusion\Root, where my-

client is an arbitrary name for your fusion client.

4. Set the default page to view in /edufuse to be System.html using your web

server administration tools.

5. Change the codebase in the applet tag in System.html so the line reads:

(applet codebase=' myclient'' code=' 'edufuse . cg.EFApplet'' width=100%

height=100% )

6. Change the RegistryPort parameter in System.html so the line reads:

(PARAM NAME=' 'RegistryPort '' VALUE='' regnum' ' )
where regnum is a five digit number you will use to identify the port on which

to connect to the registry server.
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7. Change the line in Fusion\Efregsvr.bat to read':

c:\winnt\jview.exe /cp:p c:\Fusion\Root edufuse.streams.RegistryServer

regnum c:\Fusion\Root

8. Change the line in Fusion\EventServer.bat to read:

c: \winnt\jview. exe /cp:p c:\Fusion\Root edufuse.streams. EventServer evtnum

where evtnum is a five digit number you will use to identify the port used by

the event server.

9. Change the paths and numbers in Fusion\Servlets\EF.config to be correct.

Specifically, make sure the following lines are present and updated:

EFRoot=c:\Fusion\;

{EFHome}=http: //hostname/Fusion/-

{RegistryName}=hostname;

{RegistryPort}=regnum;

{ServerName}=hostname;
{ServerPort}=regnum+1;
{EventPort}=evtnum;

Where evtnum and regnum are the same numbers as in steps 6 and 8.

10. Install the jdks (and the jsdk if before jdkl.2).

11. Make sure jvc.exe exists in the Fusion directory. If not, copy it from your jdks

installation.

12. Run the two batch files, Efregsvr.bat and EventServer.bat.

'If you did not install fusion on your c drive, then substitute the letter of your drive in every
path in which the letter c appears.
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Appendix B

Module Creation Checklist

This appendix gives a list of steps necessary to create a new module and accompany-

ing visualization panel. For further explanation of the module steps not explained in

this thesis, see Aaron Boyd's document on module creation [Boy99].

1. Create the reference, base and student modules.

(a) Start by logging into Educational Fusion and viewing the concept graph

panel. Create a new module by right clicking on the concept graph and

selecting "create module."

(b) Enter the types of inputs and outputs and the name of the module in the

new dialog and click "create."

(c) Exit Fusion and go to the new directory, Fusion\Root\projects\graph-

ics\mod-ules\yourModueName where yourModuleName is the name of

your new module.

(d) Change the third line in the file yourModuleName-info.txt to read:

INSPECTIONPANEL=projects .graphics .panels. yourPanelPackage. your-

ModuleNamePanel;

where yourPanelPackage is the name you will use for your package and

yourModuleName is the same as above. See line 4 of ref _VectorSort-in-

f o.txt for an example [GlaOO].
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(e) Duplicate the file refyourModuleName. java and name the new copy

Base yourModuleName. java. Change the class name inside to be Base your-

ModuleName. See BaseVectorSort . java for an example of a completed

base module [GlaOO].

(f) Set up the input and output ports in the constructor of BaseyourModule-

Name, as shown on line 13 of BaseVectorSort . java [GlaOO].

(g) Handle the receiving of input by overriding input o, as shown on line 63

of BaseVectorSort . java [GlaOO].

(h) Handle mouse events and drawing, by filling in handleEvent 0 and paint 0,

as shown on lines 47 and 30 of BaseVectorSort. java [GlaOO].

(i) Create a function for the reference algorithm called domyAlgorithm(stuff)

where myAlgorithm is the name of the algorithm the module teaches, and

stuff is any parameters the algorithm needs to take. Declare this method

abstract and leave the body empty. (See line 61 of BaseVectorSort . java

[GlaOO].)

(j) Open the file ref _yourModuleName. java and make ref _yourModuleName

extend Base yourModuleName instead of BaseModule.

(k) Delete all methods and functions in ref _yourModuleName. java.

(1) Override the function domyAlgorithm(stuff) which you created in Baseyour-

ModuleName and actually implement the algorithm. See ref _VectorSort-

. j ava for an example reference implementation [GlaOO].

(m) Open the file useryourModuleName.tmpl and make user-yourModule-

Name a subclass of Base yourModuleName. Make sure to import the pack-

age which contains Base yourModuleName.

(n) Again, override the function domyAlgorithm(stuff) which you created in

Base yourModuleName. Implement as much of the algorithm as you want

students to see. Give ample comments explaining the animated data

structure in use and how to complete the rest of the algorithm. See

user-VectorSort .tmpl for a sample user template [GlaOO].
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2. Create the witness detector.

(a) Create a file in the same directory called Proof yourModuleName. java.

Inside it, implement a class called Proof yourModuleName which is a sub-

class of BaseWitProof. Make sure to import the package edufuse. cg.

(b) Implement FindWitness () and FindWitnessList 0 as explained in Chap-

ter 3. See lines 15 and 73 in Proof VectorSort .java or in Appendix C for

sample methods [GlaO].

3. Create the visualization panel.

(a) Create a subclass of DefaultTeacher, put it in the package projects. -

graphics .panels . yourPanelPackage and name it yourModuleNamePanel

where yourPanelPackage and yourModuleName are the same as above.

(b) Override setupO to setup the user interface, as specified in Chapter 4 and

demonstrated on line 21 of VecSortPanel. java [GlaOO].

(c) Override AlgorithmReponse () to call your module, as specified in Chapter

4. Remap the ports in FusionActionNoQueue() and setUpXXXModule-

Bean o if necessary. For an example, see line 73 of VecSortPanel. java

[GlaOO].

(d) Override runAlgorithmO to call your module, as specified in Chapter 4

and demonstrated on line 104 of VecSortPanel. java [GlaOO]..

(e) Subclass AnimDataType or VizView, if necessary, as specified in Chapter

4. Include the new classes in the same package as yourModuleNamePanel.

(f) Override any other methods as necessary, as specified in Chapter 4.

89



Appendix C

Sample Witness Detector

package projects.graphics.modules.VectorSort;

import edufuse.cg.*;

import edufuse.modbase.*;

import java.util.*;

import java.awt.*;

import java.awt.image.*;

public class ProofVectorSort extends BaseWitProof

{ 10

public ProofVectorSort () {

//System. out.println( "Made a Proof VectorSort");

//This routine checks for a witness of incorrectness in

//a sorted list. To do this, it first makes sure the

/ list has all elements in order, and then checks

//that elements appear in the sorted list if and only

//if they were present in the list to be sorted.

//input should be the list which was to be sorted 20
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//and output should hold the list supposedly sorted by

//the algorithm. They should both be Animated Vectors.

public Object FindWitness(Object input,Object output) {
AnimatedVector vo=(AnimatedVector)output;

Enumeration e;

Integer iz=new Integer(O),j;

/ first, test to see they're in order

if (vo==null)

//Oops, the output was null 30

return new String(''Incorrect: Returns Null Vector!'');

else {

e =vo. elements ();
if (e.hasMoreElements ()

i =(Integer)e. nextElement ();

while (e.hasMoreElements () {

j =(Integer)e.nextElement (;

//Are these elements out of order?

if (i. int Value ()>j. int Value ()

return new String ('' Incorrect, witness'' + 40

to failure:\n'' +i.toString( +

should not\ncome before '

+j.toString()+'' .\n' ');

else

}

/ now, test to make sure right elements are present

AnimatedVector vi=(AnimatedVector)input;

AnimatedVector tvi= (AnimatedVector) vi.clone(); 50
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AnimatedVector tvo=(AnimatedVector)vo.clone();

if(vi==null)

return new String("Error! Null Input\nsent to proof.");

int index;

ezvo.elements();

//Loop through the elements of the output...

while (e.hasMoreElements ()) {

i =(Integer)e. nextElement ); 60

//Was this element in the input?

index =tvi.index0f (i);

if (index -1 )

7/Nope.

return new String(''Incorrect, Witness to '' +

''f ailure: \n' ' + i.toString()+

appears in output\nmore times than in input.'');

else

/Remove it from input, so we don't allow multiple

7/copies in the output just because it appears 70

7/in the input once

tvi._removeElementAt (index);

}

7/Now, we makes sure all the input is present in

7/the output, using a similar procedure to above.

7/First, loop through elements of the input

e =vi. elements ();

while (e.hasMoreElements ()) {

7/Check if the element is in the output... 80
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i =(Integer)e.nextElement ();

index =tvo.indexOf (i);

if (index ==-1 )

//Not present.

return new String(''Incorrect, Witness to '' + ''

failure: "n" + i.toString()+

' appears in input\nmore times than in output.'');

else

// Yes, present, so remove from output,

//For same reason as above. 90

tvo._removeElementAt (index);

}

return new String (''Correct output\nf or this input!'');

}

}

100

//return a vector (sorted in ascending oreder)

//with ids of each incorrect object

//in the output

//i should hold the list that was input into the sort

//and o should hold the list returned.

public Vector FindWitnessList(Object i, Object o) {
Vector badVec==new Vector(;

AnimatedVector vo= (AnimatedVector)o;

int k; 110
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//first, test to see they're in order

if(vo!=null) {

for(k=1;k<vo.sizeO;k++) {

if (((Integer) vo.elementAt (k-1)).intValue()

>((Integer)vo.elementAt (k)).intValue() {

//vo[k-1] is greater than vo[k],

//let's say they're both incorrect?

badVec.addElement (new Integer(k-1));

badVec.addElement(new Integer(k)); 120

}
}

}
7/for now, let's ignore missing

//or extra stuff in the output

return badVec;

}

}
130
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Appendix D

Sample Animated Data Type

package edufuse.modbase;

import edufuse.cg.*;

import java.util.*;

import java.awt.*;

Sample Animated Data Type for Vector of integers

for Educational Fusion

Copyright, Joshua Glazer, May 2000

MIT LCS

public class AnimatedVector extends AnimDatatype

{

Vector mSelf;

20
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Color

Color

long

int

int

int

int

//These are the constructors... the init the imagebuffer and

//You should almost always use the bottom one.

public AnimatedVector () {

mSelf =new Vector );

}

public Animated Vector (Vector some Vector) {
mSelf =some Vector;

mlmage=null;

mGraphics =null;

}

30

//the graphics to

40

//This takes the Viz View and VizDebug from the Default Teacher.

public Animated Vector(Vector someVector, VizView vv, VizDebug vd) {
mSelf =some Vector;

set Views (vv, vd);

}

/ ***************************************************** 50

Routine involving the Vector nature of the Structure,

96

kStripeColor=java.awt. Color.green;

kBadStripeColor=java. awt .Color. red;

FRAMEDELAY = 100;

BARSPACING=3;

GAP-BOTTOM=50;

GAPTOP=10;

SWAP-STEPS = 10;



altered to support auto-animation / visualization

//Swap elements i and j of the vector and display

//the animation, if appropriate

public void swap (int i, int j) {

Object temp;

Graphics g;

60

/ first, if there is a debug area, record the swap

if(mVizDebug!=null) {

mVizDebug.addCall("Swap elements

+ String.valueOf(i) + " and

± String.valueOf(j));

}

//animate if possible

if(mIsAnimating && mGraphics!=null && mImage!=null) {

draw(); 70

g=mImage.getGraphics();

g.setColor(kStripeColor);

g.drawString(" Swapping Element

+ String.valueOf(i) + " and Element "

+ String.valueOf(j),40,mHeight-10);

//This routine animates the actual swap.

drawSwap (i,j);

//Now clear the offscreen buffer for the next 80

//operation
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g.setColor(java.awt. Color.black);

g.fillRect (,mHeight-GAP-BOTTOM,mWidth, GAP -BOTTOM);

delay (FRAME -DELAY);

}

//now swap

temp=elementAt (i);
mSelf.setElementAt (elementAt (j),i); 90

mSelf.setElementAt(temp,j);

draw(;

}

public int getMaxElement() {
int maxElement=1;

int test;

Integer i;

Enumeration e; 100

//finds the element of greatest magnitude which is at least 1

e=mSelf.elements();

while(e.hasMoreElements()) {
i= (Integer)e. nextElement();

test=i.intValue();

if(test<0)

test*=-1;

if(test>maxElement) 110

maxElement=test;

98



}

return maxElement;

}

/ these are the standard vector commands we

/ want usable, and how to animate them

public Object elementAt(int i) {

return mSelf.elementAt(i);

}

public int size() {
return mSelf.size(;

}

public Enumeration elementsO {
return mSelf.elements();

}

public int indexOf(Object o) {

return mSelf.indexOf(o);

}

public void -removeElementAt(int i) {

mSelf.removeElementAt(i);

}

public String toString( {
return mSelf.toString(;

}
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public Object cloneO {

AnimatedVector temp=new AnimatedVector ((Vector) mSelf. clone());

temp.cloneAnimStuff (this);

return temp;

}

Routine involving the Animated nature of the Structure 150

public void setSpeed(int speed) {

System.out.println(" Speed is "+String.valueOf(speed));

FRAME-DELAY = 2000 - 20*speed;

}

public void drawSwap(int swapi, int swap2) {

if(mlmage==null I size)==0) return;

160

int barWidth=mWidth/size(;

int xl,x2,bottom,w,hlh2,h,hdiff,stepnum;

float heightRatio;

Graphics g;

Enumeration e;

Integer i;

float ff2;

Vector badVec;

Color clc2;

170

g=mlmage.getGraphics(;
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f=mHeight-GAPBOTTOM-GAP TOP;

f2=getMaxElement(;

heightRatio =f/f2;

if( mProof != null)

badVec=mProof.FindWitnessList(mOriginallnput,this);

else

badVec=new VectorO; 180

/System. out.println("Proof= "+mProof);

//System. out.println( "bad Vec= "+bad Vec. toString());

if(badVec.indexOf(new Integer(swapl))==-1)

c1=kStripeColor;

else

ci=kBadStripeColor;

if(badVec.indexOf(new Integer(swap2)) -1)

c2= kStripeColor; 190

else

c2=kBadStripeColor;

/System. out.println( "heightRatio is "+String. value Of(heightRatio));

/System. out.println("bar Width is "+String. value Of(bar Width));

//now, get the x positions and heights of the two to swap

x1=barWidth*swap1+BAR-SPACING;

i=(Integer)elementAt(swap1);

f= (float)i.floatValue () *heightRatio;

hl=(int)f; 200
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x2=barWidth*swap2+BAR-SPACING;

i= (Integer)elementAt (swap2);

f= (float) i.floatValue() *heightRatio;

h2=(int)f;

w=barWidth-BARSPACING*2;

bottom=mHeight--GAPBOTTOM;

210

hdiff=h2-h1;

//draw a little connector showing the swap is happening...

g.setColor (java. awt. Color.blue);

g.fillRect (xl+w/2,bottom,5, 10);

g.fillRect (x2+w/2 ,bottom,5,10);

if(x <x2)

g.fillRect (xl-+w/2,bottom+10,x2-xl1+5,5); 220

else

g.fillRect (x2+w/2,bottom+1O,xl -x2+5,5);

//swap the bars, slowly!

//it should take SWAPSTEPS steps to swap them

for (stepnum =1 ;stepnum< =SWAPSTEPS ;stepnum++) {

//erase the old blocks

g. setColor (j ava. awt. Color. black);

g.fillRect(x1,0,w,bottom);

g.fillRect(x2,O,wbottom);

230

//Draw the new ones
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g.setColor(ci);

hzhl +(stepnumhdiff)/SWAP-STEPS;

g.fillRect (x1,bottom-h,w,h);

g.setColor(c2);

h-h2-(stepnum*hdiff)/SWAP-STEPS;

g.fillRect (x2, bottom - h, w,h);

//Copy directly to the screen 240

mGraphics. drawlmage (mImage, 0,0, null);

delay (FRAMEDELAYSWAPSTEPS/3);

}
}

|/This routine draws the structure in its animatable form

public void drawO {
//for the stripe vector, we will draw a

//strip of varying length.

/ the max element of the vector will have 250

//the full height of the screen, etc.

if(mlmage==null I I size()==O) return;

int barWidth=mWidth/size(;

int xbottom,w,h;

float heightRatio;

Graphics g;

Integer i;

float ff2; 260

Vector badVec;

103



int k;

g=mlmage.get Graphics();

//erase the old

g.set Color (j ava.awt.Color.black);

g.fillRect(O, 0, mWidth, mHeight);

270

f=mHeight-GAP-BOTTOM-GAPTOP;

f2=getMaxElement();

heightRatio=f /f2;

// System. out.println ( "heightRatio is "+String. valueOf(heightRatio));

x=0;

w=barWidth-BAR_SPACING*2;

bottom=mHeight-GA PBOTTOM;

280

//last thing, get the vector of incorrect elements

if( mProof != null)

badVecz=mProof.FindWitnessList (mOriginallnput,this);

else

badVec=new Vector();

//loop through and draw bars!

for(k=O;k<size();k++) {

i=(Integer)elementAt(k); 290

f=(float)i.floatValue ()*heightRatio;
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h=(int)f;

//if the current index is in the vector of bad

//then we draw the bar in the bad stripe color

if ( bad Vec.indexOf (new Integer (k))==-1 )

g.set Color (kStripe Color);

else

g.setColor (kBadStripe Color);

300

g.fillRect (x +BA R-SPA CING, bottom-h,w,h);

x +=barWidth;

}

mGraphics. drawlmage (mlmage, 0,0, null );

}

}
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