
Web Clickstream Data Analysis Using a

Dimensional Data Warehouse

by

Richard D. Li

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 2000

© Richard D. Li, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this

in whole or in part. OF TECHNOLOGY

JUL 11 Z001

LIBRARIES

A uthor ,.....
Department of Electrical Engineering and Computer Science

December 15, 2000

C ertified by f.,/N..
Harold Abelson

Class of 1922 Professor
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Students

BARKER

Web Clickstream Data Analysis Using a Dimensional Data

Warehouse

by

Richard D. Li

Submitted to the Department of Electrical Engineering and Computer Science
on December 15, 2000, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

In this thesis, I designed, implemented, and tested an open, platform-independent
system for analyzing the clickstream data of a web site. This system included a web
server clickstream logging system, a dimensional data warehouse for storing click-
stream data, software for populating the data warehouse, and a user interface for
analyzing the clickstream data. Privacy, performance and scalability, transparency,
platform independence, and extensibility were established as the design goals of the
system. Early implementations of the clickstream system were deployed on three web
sites, one of which received over four million HTTP requests a day. Data from these
initial deployments contributed to the development of the system and was used to
assess the extent to which the final clickstream design fulfilled the original design cri-
teria. Final results from these deployments showed that the clickstream system was
able to fulfill the design goals, providing accurate data that was unavailable through
conventional web server log analysis.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor

2

Acknowledgments

Many people have given me support, encouragement, and advice throughout the

process of researching and writing this thesis. They include Nobuko Asakai, Wendy

Chien, Randy Graebner, Samuel J. Klein, Vicki Kwok, Rajeev Surati, and my parents.

A very special thanks also goes to Jon Salz, whose help was invaluable throughout

the design and implementation of the clickstream system.

3

Contents

1 Introduction

1.1 The Clickstream System .

1.2 A Clickstream User Scenario .

2 The Clickstream Architecture

2.1 The Life Cycle of a Click

2.2 The Clickstream Client

2.2.1 The ArsDigita Community System

2.3 The Clickstream Server

2.3.1 Downloading and Loading Data . .

2.3.2 Populating the Warehouse

2.3.3 Reports

2.4 The Clickstream Data Model

3 Background

3.1 Data Warehousing

3.2 Gathering User Data

3.3 Related Work

3.3.1 Accrue

3.3.2 Oracle

3.3.3 Other software providers

3.4 Definitions

3.4.1 Session

4

8

8

10

13

14

14

16

17

17

17

18

19

22

22

23

24

24

25

26

27

28

. .

. .

3 .4 .2 H it . 28

3.4.3 Performance and Scalability 28

4 The Clickstream Design 29

4.1 P rivacy . 29

4.1.1 Preserving Privacy . 30

4.1.2 Aggregation . 30

4.2 Performance and Scalability . 30

4.2.1 Granularity . 32

4.2.2 Minimizing Data Collection 35

4.2.3 Client-side Performance . 35

4.3 Transparency . 36

4.3.1 Design . 36

4.4 Platform Independence . 36

4.4.1 Design . 37

4.5 Extensibility . 37

4.5.1 Dimensional Data Warehouse 37

4.5.2 Reports . 38

5 Implementation 39

5.1 Server-Side Performance . 39

5.1.1 Materialized Views and Query Rewrite 39

5.1.2 Direct Path Inserts . 40

5.1.3 Disabling Constraints . 41

5.1.4 H ints . 41

5.1.5 Dynamic PL/SQL . 42

5.1.6 Reducing the Data Warehouse Size 42

5.2 Client-Side Logging . 44

5.3 Reports 46

5.3.1 The Dynamic Site Map . 46

5.3.2 The Entry Pages Report . 46

5

5.4 Additional Features . 47

5.4.1 Multiple Tablespaces . 47

5.4.2 A C S 4.0 . 49

6 Testing and Results 50

6.1 P rivacy . 50

6.1.1 Methodology . 50

6.1.2 ArfDigita . 51

6.1.3 R esults . 52

6.2 Performance and Scalability . 53

6.2.1 R esults . 53

6.3 Transparency . 54

6.4 Platform Independence . 54

6.5 Extensibility . 56

6.6 Accuracy. 56

7 Conclusion 59

7.1 Future Work . 59

7.1.1 Performance and Scalability 60

7.1.2 Multiple Data Source Integration 60

7.1.3 Portability . 60

7.1.4 Evolutionary Improvements 61

7.2 Lessons Learned.. 62

A Clickstream Data Model 63

6

List of Figures

1-1 A Navigation Report: The Dynamic Site Map 11

2-1 The Clickstream Architecture . 13

2-2 Five Dimensions of the Clickstream Data Model 20

5-1 A Navigation Report: The Entry Pages Report 48

6-1 Total Daily Sessions, NetTracker vs. Clickstream 57

6-2 Total Daily Pageviews, NetTracker vs. Clickstream 58

7

Chapter 1

Introduction

The growing sophistication of web services has created a need for a better under-

standing of how visitors use a web service. Such information can be used to improve

the user experience, provide targeted marketing, personalize content, determine the

return on investment of a marketing campaign, and more. However, this type of

analysis technology is uncommon and undeveloped. The most common tools for ana-

lyzing a user experience are web server log analyzers, but these tools can only analyze

a subset of the data available to a web site.

1.1 The Clickstream System

A clickstream analysis system was developed to address this problem of analyzing

and aggregating user behavior patterns on a web site. Clickstreams are the streams

of clicks generated as a user browses a web site. A clickstream not only includes

the links clicked by a user, but also the interval between clicks. This data can be

correlated with the user's identity, referrals, sessions, geographic location, purchase

history, and other dimensions in a database. Thus clickstreams are the raw data that

can show how specific user groups navigate and use a web site. With this information,

a web site can personalize its navigation and content for a particular user or category

of users with similar clickstream profiles. In addition, the information provided by

clickstream logging can be immensely valuable in determining how a site is being

8

used, determining which user groups see what content, assessing the effectiveness of

advertising campaigns, targeting advertising, and analyzing purchase patterns among

different groups of people.

The system developed here was designed to be a simple, scalable, platform-

independent, open clickstream analysis system that collected clickstream data with-

out infringing on user privacy. The system consists of three distinct components: a

client-side logging system, a server-side data warehouse and population facility, and

a user interface for server-side reports. The client is the actual web site that is per-

forming clickstream logging, while the server is a dedicated data warehouse system.

Clickstreams are logged on each of the web server(s) of the client site and periodically

transferred via HTTP to the server, where the data is loaded into a dimensional data

warehouse for analysis. This approach is non-invasive and works transparently with

all common web server architectures. A server-side reports interface provides a user

interface to the data warehouse and allows analysts to query the data warehouse for

information. The simplicity and open nature of this approach ensures its compatibil-

ity with most web site architectures. Moreover, this architecture allows for maximum

integration with relational data such as user location or shopping cart contents col-

lected by the web site itself, since the clickstream logging system is integrated with

the web server. Less integrated systems are unable to access this relational data,

since their capabilities are limited to analyzing externally observable data such as

page load times, URLs requested, and the like.

A dimensional data warehouse was designed to store all clickstream data on the

server [1]. A dimensional data warehouse (see Section 3.1) is a standard model for

data warehouses that relates specific data dimensions to a set of basic facts. The

clickstream data warehouse uses a single page request as the granularity of the basic

fact, and relates these facts to data dimensions such as a users dimension, a browser

dimension, and a sessions dimension. This granularity was chosen over a session-level

granularity due to the greater amount of information that is retained in such a system.

In addition to the data warehouse, software was developed to parse the clickstream

logs and populate each of the dimensions of the data warehouse.

9

A server-side reports interface provides a flexible facility for creating additional

reports which can be automatically generated and archived in HTML. In addition,

the reports interface features a number of dynamic reports that display different data

based on user input e.g., the dynamic site map reveals additional data when the user

clicks on a particular link.

The rest of this paper begins with a background on data warehousing, an overview

of the general techniques of gathering user data, an examination of common ap-

proaches to analyzing user data, and several definitions of common terms that are

used throughout this paper in Chapter 3. Chapter 4 then introduces the design goals

of the clickstream system and discusses the design decisions that were made to ful-

fill these goals. The specific implementation of the clickstream system is covered

Chapter 5. This chapter discusses the implementation challenges and the solutions

developed to meet those challenges. These challenges included optimizing server-side

performance, the evolution of the client-side logging software, and the server-side

reports interface. Chapter 6 discusses the testing methodology and results of the

deployment of the clickstream system on three separate web sites, including a com-

mercial high-volume web site serving over four million HTTP requests a day. The

clickstream system is evaluated on the basis of each of the design goals outlined in

Chapter 4, and the extent to which the system fulfills each of these goals is assessed

in this chapter. Finally, Chapter 7 examines the final clickstream system, summarizes

the capabilities of the system, and discusses what these results mean.

1.2 A Clickstream User Scenario

Suppose the Internet e-commerce startup foo.com wants to know how users view

the web site to make the web site easier to use. The foo.com webmaster installs the

clickstream logging system on the foo.com web site and accumulates clickstream data.

Each day, the clickstream logs are downloaded by the clickstream data warehouse

server and loaded into the data warehouse.

After a week, the webmaster generates a dynamic site map similar to the site map

10

depicted in Figure 1-1. The webmaster looks at the site map and gets a picture of how

users navigate the web site. He notices that one of the key pages of the foo.com site,

the "Hot Deals" page, is typically accessed by users clicking through a roundabout

chain of six links instead of clicking directly on the link from the top-level index page.

Moreover, he notices that the number of users who click through each link of the

chain decreases as a user gets deeper into the chain. He realizes that the link to the

"Hot Deals" page is not sufficiently prominent, and changes the placement of the

"Hot Deals" link on the top-level foo.com page.

Shenuap
- I

S*4

togrf X M1 fx*fo
It~b

I'

.1.

Figure 1-1: A Navigation Report: The Dynamic Site Map

A week later, he reviews the clickstream logs. He notes that the chain of clicks to

the "Hot Deals" page is now one link long, and that most people who visit the site

click through from the top-level foo.com page to the "Hot Deals" page. Checking the

"Most Commonly Requested Pages" clickstream report, he is satisfied to see that the

"Hot Deals" page is now the second-most requested page after the top-level foo.com

11

page.

The webmaster, as he becomes more familiar with the clickstream system, builds

a set of reports that answer many of the questions that foo.com wants to know about

the visitors to the web site. He adds these reports using the reports infrastructure

available in the clickstream system, creating a set of reports that are automatically

generated every night:

* What are the most popular pages on foo.com? What are the most popular

pages for females between the ages of 25 and 35?

" How do people arrive at foo.com? Where do they go when they leave? How

long do they stay?

" What percentage of sessions resulted in a sales transaction?

" Do an unusually large percentage of people leave the site with a loaded shopping

cart on the same page?

The clickstream system developed in this project is a framework that web site

maintainers can use and extend to analyze the clickstream data gathered by a web

site.

12

Chapter 2

The Clickstream Architecture

The clickstream architecture relies upon a dedicated data warehouse server to perform

computationally intensive processing and a lightweight client-side program to log

clickstreams to a file. In the clickstream system, a user agent sends an HTTP request

to a web server. The web server responds to the HTTP request and appends a record

of the request to the clickstream log. The clickstream logs are periodically transferred

over HTTP to the dedicated server, where they are loaded into the clickstream data

warehouse. This process is illustrated in Figure 2-1.

10

User agent

1. User sends HTTP request

3. Clickstream logs transferred over HTTP
Web Server

L ad balancer Cli stream Data

4. Clickstream logs laed
into data warehouse.

2. Web server responds to
HTTP request and adds
entry to clickstream log.

Figure 2-1: The Clickstream Architecture

13

2.1 The Life Cycle of a Click

The life cycle of a single page request in the clickstream system can be described in

five discrete steps.

1. A user requests a particular page on a web site, either by clicking on a link or

typing a URL into her browser. The server responds to the HTTP request for

the page and adds a line to a log file containing detailed information about the

request.

2. Every 24 hours, the data warehouse server downloads the compressed click-

stream log for the previous 24 hour period via HTTP. The data warehouse

server decompresses the log file and loads the clickstream data into the event

log table in the database.

3. Entries in the event log table are parsed directly in Oracle by the data warehouse

population software. This process populates the dimensions and, for each row

in the event log table, inserts a row into the data warehousing fact table.

4. Standard reports are generated from the information in the data warehouse.

5. Clickstream software users can view the reports or execute additional queries

against the data warehouse for more data.

2.2 The Clickstream Client

The clickstream client software is functionally identical to the logging functionality

of any standard web server. The only difference between a typical web server logger

and the clickstream logger is that the clickstream logger logs a superset of the data

logged by a typical web server logger. Each line in the log file has the following fields:

e The time at which the page was requested, in seconds elapsed since January 1,

1970

14

" The time at which the download of the page was completed, in seconds elapsed

since January 1, 1970

" The date of the request

" The URL requested

" The IP address of the request

" The user ID of the visitor, if known

" The query string in the request URL

" The content type of the page delivered

" The content length of the page, in bytes

" The session ID

" The browser ID

" The user agent string

" The accept language string

" The referring URL

" The HTTP method

" The HTTP status

" Whether or not the connection occurred over SSL

The line below is a typical line from a clickstream web log. The page was requested

at 971064031. The second number is the time at which the server finished serving the

page. The page was served on October 9, 2000, and the URL served was /, or the

index page. The log also contains the user ID (7751), the browser (Microsoft Internet

Explorer 5.5), and the referral URL (the etour.com web site).

15

971064031 971064032 20001009 / 24.112.25.125

-4 text/html; charset=iso-8859-1 7751 171794 171793

c Mozilla/4.0 (compatible; MSIE 5.5; Windows 98) en-us

c http://www.etour.com/member/start.asp?intD=Pets GET 200

c+f

Page requests are logged into files. Each file has a descriptive name such as

servername -cs. log.2000-04-25.14:00 (this example is for the period of time be-

tween 2:00 and 3:00 p.m. on 25 April 2000). Every hour, a new clickstream log file is

created. Every 24 hours, the hourly clickstream logs are concatenated into one large

log file and compressed for download and the hourly logs are deleted. Hourly logs are

kept so that up-to-the-hour reports can be generated if necessary.

2.2.1 The ArsDigita Community System

The clickstream reference implementation is integrated with the ArsDigita Commu-

nity System (ACS), an open-source platform for web development [2]. The ACS

provides much of the basic functionality and data models that are essential to any

web service; these functions include user login and registration, the concept of users,

session tracking, and user groups. In addition, the ACS provides its own cookie

management mechanisms to track user logins and sessions. This data is used by the

clickstream client system; the user ID and session ID data in the log files are obtained

directly from this integration with the ACS.

The standard web server for the ACS is AOLserver, an open-source web server

used and maintained by AOL. The AOLserver ns-register-filter API [3] is used

to intercept requests to HTML pages so that information about each HTTP page

request can be logged to a clickstream log file in the file system.

16

2.3 The Clickstream Server

The clickstream server is a dedicated data warehouse server. The server has several

responsibilities. First, the server is responsible for periodically downloading the click-

stream log data from the clickstream clients and loading the data into the database.

Second, the server is responsible for populating the data warehouse. Finally, the

server runs the software that allows users to analyze the data inside the clickstream

warehouse.

A dedicated data warehouse machine is used because populating the data ware-

house is computationally intensive and would substantially affect production database

performance if they were performed on the production database. Moreover, database

configurations are different for online transaction processing (OLTP) and data ware-

house applications.

2.3.1 Downloading and Loading Data

HTTP is used to transfer the compressed clickstream log files from the production web

server(s) to a dedicated data warehouse machine. The data warehouse server auto-

matically downloads the clickstream log files from each of the production web servers.

Once each log has been transferred, the log is decompressed, and a SQL*LOADER

control file is dynamically generated with the log data. SQL*LOADER is a high-

performance engine for loading external data into Oracle, and is capable of loading

tens of thousands of rows per second into Oracle when in direct path mode, which

bypasses the Oracle kernel and loads data directly into the database files [4]. In the

clickstream system, SQL*LOADER is invoked in direct path mode to rapidly load

the data into the event log table called cs-event-log.

2.3.2 Populating the Warehouse

Once data has been logged into the cs-event-log table, a set of stored procedures

written in PL/SQL is run to populate the data warehouse. PL/SQL is a set of proce-

dural language extensions to SQL available in Oracle databases. Since PL/SQL runs

17

natively inside the database, PL/SQL is very efficient at processing large amounts of

data. A considerable amount of computation occurs while populating the data ware-

house, so PL/SQL was used to maximize performance. The main data population

routine performs several operations:

1. The routine calls PL/SQL procedures that populate the pages, referrers, and

user agents dimensions of the warehouse. These procedures obtain a list of

all entries in the appropriate dimension, and compare this list of entries to

the incoming data set. If there is any data in the cs-event-log table that

is not in the dimension, the procedures insert the additional data. For in-

stance, there is one row in the referrer dimension for each unique referrer. The

cs-create-pages-and-referrers procedure scans the cs-event-log table and

inserts any new referrers into the cs-dim-referrers table.

2. The fact table is updated with any new facts. This step must occur after all the

dimensions have been populated to ensure that the the foreign key references

are correct.

3. The dynamic sitemap tree is created in the cs-sitemap table.

2.3.3 Reports

A set of standard reports are generated out of the data warehouse. These reports

include the most requested pages report, the average session duration report, and the

dynamic site map. Since each report requires queries against large amounts of data,

each report is automatically generated, with the HTML saved directly into the file

system. Thus, subsequent requests for the reports do not require repeated execution

of the expensive queries.

The clickstream system provides a common set of reports as a starting point for

users of the software. These reports fall into four basic categories:

* Navigation reports that show how the site is being navigated. The dynamic

site map shown in Figure 1-1 is a navigation report.

18

" Visitor reports that show how many registered and unregistered visitors ar-

rive during a particular time frame. This information is deduced from login

information; users who have logged in to the system have a valid user ID logged

to the clickstream log.

" Session reports that show the average session duration, the most common

pages that visitors first see in a session, the most common content for a par-

ticular visitor demographic, and the most common ways users leave the web

site.

" Site analysis reports that show the most requested pages, the most requested

pages that don't exist, the most common ways people arrive at the web site

(referrals), and the most common browsers used by site visitors.

The clickstream system also provides a reports infrastructure so that adding a

new automatically generated report is simple. Adding a new report requires the user

to add a new row into a single database table so that the clickstream system is aware

of the report, write the actual query to perform the report, and format the results of

the query in HTML using a few clickstream helper functions.

2.4 The Clickstream Data Model

The clickstream data model is a standard star schema dimensional data warehouse

(see Section 4.5.1 for a discussion about the motivation for using this design). A large

number of dimensions are joined to a single central fact table by artificially generated

foreign keys. As illustrated in Figure 2-2, the set of dimensions referencing a single

fact table creates a star-like pattern.

The clickstream data model defines a number of dimensions, joined to a central

fact table called cs-f act-table. Each dimension contains data that answers different

types of questions:

* Page dimension What was the name of the page requested? What type of

page was requested? What was the URL? What was the content type?

19

Figure 2-2: Five Dimensions of the Clickstream Data Model

" Referrer dimension What kind of referrer was it (e.g., search engine)? What

was the referring URL? What search text, if any, was used? If it was from inside

the site, what is the referring page ID?

" Date dimension Which day of the week was the request? Day in the month?

Day in the year? Which week in the year?

* User agent dimension Which browser is the user using? Which version?

Which operating system?

* Session dimension When did a particular session start? When did it end?

Which visitor? How many clicks were part of the session? What was the total

value of the sales in the session?

* User dimension What user segment does the given visitor belong to e.g., is the

visitor in the "have seen privacy policy" segment? Note that the depiction of the

20

t 8:a IN I4 49

1 ~o 94tlnr 2499 Op I& V WAtf=& IS4o

user dimension in the data model illustration labels user ID's with individual

identities; this does not actually occur in the actual clickstream data model.

The core clickstream data model is provided in Appendix A.

21

Chapter 3

Background

3.1 Data Warehousing

A data warehouse is a relational database whose goal is the analysis of large amounts

of data. This goal is distinct from the other common use of databases - transaction

processing - whose goal is to maintain records of transactions. A data warehouse

contains data derived from transaction data, but may also include data from other

sources. A data warehouse is used to analyze data for patterns and to answer questions

that may not be asked until after the data is actually available. In other words, a

data warehouse must be a flexible structure for storing vast quantities of data so it

can answer any question that may be posed to it - questions that are not anticipated

at design time [5].

A star schema is the simplest, most basic design for a data warehouse. The

heart of the star schema is the fact table, which has one row for each fact in the

system. Choosing the level of detail in the information that goes into a particular

row is known as determining the granularity of the data warehouse. Each column of

the fact table is a foreign key that references a particular dimension; data about a

particular dimension is stored in dimension tables that are joined with the fact table

as needed. For instance, a data warehouse for a consumer products retailer company

might have a granularity of one product sale per row. The dimensions of the data

warehouse may include which product was sold, where it was sold, the price at which

22

it was sold, and the date when it was sold. When a query is asked that requires data

from multiple dimensions, these dimensions are joined by the database to form what

appears to be one large table with the necessary data.

The process of building a data warehouse can be broken down into three phases:

gathering data, data transformation and data warehouse population, and querying

the database [6]. In the example above, the data gathering process would collect

data about every sale transaction, store location, and any other data required by

the data warehouse. The data gathering process usually will require that data be

gathered from multiple sources e.g., sales information is collected from each retailer,

geographic information comes from a company database, and so forth. The data

transformation phase takes all the data gathered in the previous step and loads the

data into the warehouse. This process reconciles any inconsistencies in the data

(for example, data from one source might use code BLU to indicate an item with the

color blue, while another source may use the code BLUE to mark the same attribute),

computes any necessary values from the raw data, and populates the data warehouse

with the processed data. The third phase is targeted at the end user, and involves

providing user interfaces that allow users to query and analyze the data in warehouse.

Each of these phases is actually an ongoing process; new data is continually gathered,

transformed, and analyzed.

3.2 Gathering User Data

Several common approaches exist today that can be used to gather clickstream data.

The most common of these is web server logging. Modern web servers generate

copious amounts of log data. A typical web server will log each HTTP request into

an ASCII log file stored in the file system. The information usually contained in

each log file entry includes IP address, time, the actual HTTP request, and the

browser type and version; each entry is typically formatted according to the Common

Log Format (CLF) specification. However, most log formats, including CLF, do not

support logging individual visitor identity to the log files. In addition, correlating

23

log file entries with database information is complex and difficult. Thus analyzing

standard web server logs is not an ideal means of gathering detailed clickstream data.

Most web sites also rely on the use of "cookies" to uniquely identify client browsers.

The use of cookies allows a web site to associate arbitrary state with a single browser.

Examples of state typically associated with cookies include user authentication infor-

mation and the contents of the user shopping cart. Cookies are a useful mechanism to

uniquely identify browsers (and generally users as well, although more than one user

may be using the same browser). Clickstream systems can take advantage of cookie

information to associate a particular set of page requests or actions to a particular

browser and/or user identity.

User data can also be gathered directly by the web server. Many web servers

support a filter mechanism whereby the same program is run after each HTTP request

is fulfilled. This approach, in conjunction with some method of user tracking such

as cookies, allows the greatest level of detail for collecting clickstream data, since

different sources of information - user logins, user identity, sessions, demographics,

and more - are simultaneously available and can be integrated into a single data

warehouse for data mining and analysis [7].

3.3 Related Work

The field of analyzing clickstream data is still in its infancy. Many companies are

planning products to address this market, but there is no commonly accepted solution

or approach to addressing the issues involved. The market leader in this area is

Accrue software, but other major software companies such as Microsoft and Oracle

have recognized the importance of the clickstream market and have announced or

shipped initial versions of clickstream analysis products.

3.3.1 Accrue

Accrue software is the leading commercial provider in the field of data warehousing

clickstream data. The full Accrue Insight system uses a complex multi-tiered archi-

24

tecture that relies on a combination of dedicated servers that analyze the incoming

network stream (packet sniffing), dedicated data warehouse servers, log analyzers, and

custom applications that use pre-defined APIs to communicate with the remainder

of the architecture. Accrue also provides a user interface to a standard set of queries

against the data warehouse similar to the reports interface mentioned in Section 2.3.3

[8].

The clickstream system presented here will be fully integrated with the web server

and database. This architecture has three advantages over the Accrue architecture:

simplicity, portability, and integration. By residing inside a dedicated data warehouse

server, no additions to any existing web site infrastructure are required in order to

run the proposed clickstream system. In addition, the data model was designed

to be portable across multiple databases and operating systems, which offers a more

platform-independent abstraction layer. Finally, as discussed in Section 2.2, complete

integration with the web server and database allows full access to all the HTTP

information collected by the web server and the transaction information stored in

the database. The packet sniffing component of the Accrue system cannot handle

encrypted connections which are commonplace on ecommerce sites; by logging data

directly at the web server level, the system here avoids this problem.

In addition, the clickstream system will be completely open. By using a standard,

published data model, the system will be more flexible in adapting to the unique

needs of a particular web site. The open source approach to development also means

that sites using the system proposed here are not constrained by any user interface

provided, as they are with the Accrue system.

3.3.2 Oracle

In October 2000, Oracle announced the release of its Clickstream Intelligence 1.0

software. The marketing literature [9] for this software package indicates that Click-

stream Intelligence consists of a prepackaged data warehouse for clickstream analysis,

graphical user interfaces for configuring the system, and a portal-based reports sys-

tem.

25

In actuality, the software consists of a pre-built data warehouse repository built on

Oracle's proprietary Oracle Warehouse Builder framework as well as a set of tools to

build a clickstream data warehouse. Some of the tools and features that are provided

by the Clickstream Intelligence package include Web server log parsing tools, reporting

tools, and tight integration with Oracle 8i.

The Clickstream Intelligence system seems to be a capable clickstream system,

but three factors distinguish the clickstream system presented in this paper from the

Oracle Clickstream Intelligence system. First, the Clickstream Intelligence system

relies upon Web server logs, parsing query and cookie string data for information.

However, as discussed in Section 3.2, the CLF specification format does not include

cookie data; any extension of the format to include all-important cookie data would

require additional customization by the Clickstream Intelligence end user. Moreover,

the customization would need to include mapping the meaning of the cookie infor-

mation into a form that can be analyzed by the data warehouse e.g., a cookie that

represents a user identity would need to be labeled as such by the data warehouse

software. Second, the Clickstream Intelligence system by design is not database-

independent, and is wholly tied to the Oracle RDBMS platform. Finally, the closed

nature of the tools makes extending the platform difficult in certain respects.

3.3.3 Other software providers

Microsoft has announced a partnership with Syncsort, Inc. [10] that uses parsing and

filtering techniques in conjunction with compression to reduce large amounts of log

data to a smaller set of data which can then be stored for analysis inside Microsoft's

SQL Server RDBMS. Microsoft's approach to handling clickstream data is to collect

all the clickstream data and perform some preprocessing prior to populating the data

warehouse, discarding less useful information. This data is then summarized and

stored in a RDBMS. The process of discarded and aggregating this data reduces the

200GB of raw data that is accumulated daily into 1GB of data. These daily aggregates

are stored for four months, which is then further aggregated into OLAP cubes that

can be accessed by analysts [11].

26

Another company, Macromedia (formerly Andromedia), has a popular product

called Aria that performs clickstream analysis. Aria performs some sophisticated

web log analysis, such as a breakdown of external referrers, total hits, top visitor

domains, and so forth. In addition, they perform some primitive clickstream analysis

that provide reports of the most popular content, the number of repeat visitors,

and an analysis of the entrance pages for visitors. The set of default reports in the

clickstream system provides this functionality, and the clickstream data model allows

significantly deeper analysis.

A different approach is used by DataSage, now a subsidiary of Vignette.

DataSage's netCustomer product builds customer profiles based on clickstream data,

and then stores the customer profile in a RDBMS. The actual clickstream data is not

retained [11].

Other products on the market allow web sites to dynamically tailor content to

users based on user profiles and rules. One such example of this technology is the

Art Technology Group's Dynamo server suite. The Dynamo personalization server

allows a web site to program business rules in an English-like syntax that dictate what

content is shown to which types of user (e.g., "show Wealthy Individuals special one

million dollar minimum investment options"). However, this technology still requires

considerable effort to build user profiles and construct these rules. A true clickstream

analysis product would allow user profiles to be built dynamically based on their

clickstream behavior.

3.4 Definitions

There are no commonly accepted definitions of important traffic-related terms in use

today. Instead, web server log analyzers each use its own definition of session, hit,

and other words. The words that are used throughout this paper are defined here to

eliminate any ambiguity.

27

3.4.1 Session

A session is defined as a series of page requests from the same unique browser ID, each

of which must occur before a timeout occurs. The default value for this timeout is

five minutes. To prevent the system from giving inaccurate numbers for browsers that

do not accept cookies, all single page request sessions are ignored in session counts.

Otherwise, a single browser that rejected cookies could be represented in dozens of

sessions, each with a duration of a single page request.

3.4.2 Hit

The word "hit" is not used in this paper, since the word has two common meanings.

The first common meaning is a single page request e.g., a site serving two million

hits/day is serving two million pages a day. The second common meaning of the

word "hit" is a single HTTP request. This second definition is significantly different

from the first, since a graphics-laden site could easily serve over twenty hits on a

single page request.

3.4.3 Performance and Scalability

Performance and scalability are two related but distinct characteristics. In this paper,

performance applies to the ability of a single instance of the software to handle a

particular load. Generally, a high-performance system can process a given set of

data more efficiently when compared to a low-performance system. Efficiency can be

measured by a variety of metrics such as time or additional overhead imposed.

A scalable system is a system that can handle large amounts of data, even as the

size of the data set grows. A clickstream system may accumulate billions of data

points, and a scalable system would be able to handle a large data set given the

appropriate hardware resources. Scalability often refers to the ability of the software

to handle these increased amounts of data by adding more instances of the software.

28

Chapter 4

The Clickstream Design

Five key considerations drove the design of the clickstream data warehouse architec-

ture. These considerations were privacy, performance and scalability, transparency,

platform independence, and extensibility.

4.1 Privacy

In the age of the Internet, privacy is an important question that raises many con-

stitutional issues. These issues become even more important with the collection of

clickstream data. Although the precedents set forth by previous Fourth Amendment

rulings do not answer the question of whether or not people have a right to privacy of

his or her clickstream data, many feel that the intent of the Fourth Amendment is to

restrict the limits of governmental access to clickstream data. Some of the possible

risks of clickstream data include abuse by law enforcement agents who randomly scan

clickstream data for evidence of illegal activity or abuse by Internet Service Providers

who build sophisticated marketing profiles matched to user identities [12].

Protecting user privacy and preserving user trust is an important goal for the

design in the clickstream system. Although risks such as the ISP marketing risk do

not apply to the clickstream system described here because this system focuses on

the data for a single web site, care must be taken to prevent abuse of the clickstream

system. Since the clickstream of a user on a particular web site can provide a large

29

amount of personal information, the information must be securely protected so that

it is not abused.

4.1.1 Preserving Privacy

The clickstream system completely decouples user identities from the clickstream data

warehouse. In the clickstream system, the data warehouse user ID is obtained from

the ACS (see Section 2.2.1). Each visitor is referenced by this unique user ID, but

the actual data that correlates the user ID with the user's identity is kept in the

production database separate from the data warehouse server. Thus, any analyst

who queries the clickstream data warehouse is unaware of the actual user identity of

a given user in the clickstream warehouse.

4.1.2 Aggregation

The most common application of clickstream data is the aggregation of clickstream

data to discern user behavior patterns. Thus, the entire reports interface is designed

to provide a framework for efficient aggregation and grouping of clickstream data. To

protect privacy, support for aggregation of clickstream data across multiple domains

is not be provided, since the intent of this clickstream system is to provide targeted

marketing and user experience information on a single web site. Finally, the granu-

larity of the clickstream system can be increased to the session level; the loss of detail

would correspond directly to an increase in privacy.

4.2 Performance and Scalability

On a heavily trafficked site, tens or hundreds of millions of clicks can occur every

day. This enormous amount of data can quickly overwhelm even the most modern

databases and storage systems available today if the design of system does not provide

a robust and scalable mechanism for handling billions of rows of clickstream data. For

instance, the Microsoft collection of web properties including hotmail.com, msn.com,

30

and microsoft.com, generate over 200GB of log files daily, representing two billion

page requests by 25 million unique individuals [11]. In addition, populating the data

warehouse is very computationally intensive; any population scheme must be scalable

and efficient.

Performance in the clickstream system can be broken down into three categories:

the client side clickstream logging code, the server side population code, and the server

side queries. The performance goal of the client side clickstream logging code is to

have negligible performance impact on the client site. This goal is important because

a clickstream system with high overhead would force web sites to incur additional

hardware and hardware maintenance costs proportional to the amount of overhead.

Minimizing this cost is important in the adoption of the clickstream system.

The server side population code has to be able to analyze a single day of log data

in less than a day. This requirement insures that the clickstream analyzer is not

the bottleneck in delivering up-to-date clickstream data. The goal of the server side

population code was to be able to process the log data of a site with ten million page

visits on a Sun E450 (chosen because it was the most readily available hardware) in

less than a day.

Data warehousing requires a considerable amount of systems engineering. A num-

ber of techniques have been developed to handle growing data warehouses. Hardware

improvements in recent years include larger and faster disk arrays, faster CPUs, and

64-bit processors that allow more RAM to be addressed. In addition, software tech-

niques such as aggregation, materialized views that pre-aggregate expensive aggre-

gation operations, and preprocessing of data all help alleviate the issue of rapidly

growing data warehouses [13].

A number of design decisions were made to improve the performance and scalabil-

ity of the system. These included choosing an appropriate granularity for the system,

determining the most appropriate types of data to log, and using the file system for

client-side clickstream logging.

31

4.2.1 Granularity

One of the key decisions required in the design of the clickstream data warehouse

is the granularity of the fact table. Two levels of granularity can be considered in

the design of the clickstream data warehouse: session level and page-request level.

The issues involved in the decision represent the classic tradeoff between limiting the

amount of data in the warehouse (and thus improving scalability) and retaining as

much data as possible so that all subsequent analyses are possible. In both levels of

granularity, the input is the same: page-request level clickstream information. Thus,

the fundamental difference between a page-request level of granularity and a session-

level of granularity is the point at which analysis takes place. In a page request level

system, all analysis is performed after the data is loaded into the data warehouse.

In a session level system, some level of analysis is performed prior to loading data in

the warehouse. Analysts can use either granularity to answer the same questions; the

only difference is that the session level system forces analysts to determine the types

of questions to be asked in the data warehouse design phase.

Page-request granularity

Data recorded at the granularity of one page request is a superset of the data recorded

at the session-level granularity. Therefore, analysis of data recorded at the page level

also allows the user to answer questions about specific user behavior that may not

have been anticipated in the original design of the data warehouse in addition to the

questions that can be answered by analyzing session-level clickstream data. The cost

of such an implementation is the increased amount of data that must be stored, which

is directly related to the average number of pages a visitor views on a web site.

Session level granularity

Session level granularity records one row in the fact table for each unique user session.

This approach enables analysts to categorize customers by their clickstream profile,

which allows for activities such as targeted marketing and personalized content. In

32

addition, the data can be analyzed for information such as the most common visitor

patterns, the duration of user visits, and the peak hours for user visits for a given time

zone. Storing data in a system with session-level granularity means that some level

of precomputation must take place before the data is stored. This precomputation

improves the scalability of the system since each row represents more data. The

tradeoff is that future analyses need to be anticipated at load time; if a clickstream

user wishes to execute a query that was not anticipated in the original implementation

of the data warehouse, the analysis can not be performed.

Compatibility between Granularities

The choice of granularity dictates the actual implementation of the data model and

population code. While the fundamental design remains the same for both levels of

granularity, a number of issues need to be addressed before code can be shared. Four

components of the clickstream architecture must be customized:

" the data model: certain dimensions become "degenerate" under the page-level

dimension. For instance, the session dimension has no real meaning at the

page-level dimension.

" the client-side code: the actual client-side logging code can be the same for

both systems. However, additional logic to compute various parameters for a

particular session is required for the session-level system. The extra load from

this computation is negligible, but is specific to the session-level system.

" the server code: since the data model is different for the two granularities, the

code that analyzes the logged data to populate the clickstream data warehouse.

" the queries: the questions that can be answered by a clickstream data warehouse

with session-level granularity is a subset of the questions that can be answered

by a data warehouse with a page-request level of granularity. Queries that

answer even the same question will differ in both warehouses since each row of

information represents a fundamentally different unit in each warehouse. For

33

instance, a simple query that counts the total number of sessions in the sessions

data warehouse would simply count all the rows in the sessions table. However,

the same query in a data warehouse with page-request level granularity would

require a GROUP BY clause based on the session identifier because a session

would be represented by multiple rows in the database, since a session usually

would consist of multiple page requests.

Conclusion

The page-request granularity was chosen as the basis for the clickstream data ware-

house. The tradeoff between the two levels of granularity is the classic tradeoff be-

tween greater and smaller granularity: depth of analysis versus scalability. The data

accumulated by both methods is the same; the only difference is the level of data that

is retained. In the session-level approach, preliminary analysis is performed on the

data as it is gathered, and, once the analysis is complete, the data deemed irrelevant

is thrown away. The amount of data that must be stored is reduced by the average

number of pages that entails a session. Kimball [1] estimates that a typical user visit

requests five pages in a particular session. Thus, the session-level approach reduces

the amount of data that must be stored by approximately a factor of five for the web

sites involved. The downside of this approach is greatly reduced flexibility when the

session-level analyses performed to create the session-level data is deemed insufficient

to fulfill some need that was not anticipated at design time.

The decision to base the initial implementation of the clickstream data warehouse

on the page-level request granularity was based on three reasons. First, a session-level

granularity system could leverage a significant portion of the amount of the server

code written for the page request granularity system, since code that performed page-

request type analysis and data warehouse population would be necessary. Second, the

design of the system is simplified since determining the types of questions that the

system should ask is unnecessary, since no information is thrown away. Finally, this

decision is consistent with the general philosophy of data warehouses of retaining all

data, since anticipating the usefulness of a particular dimension of data is difficult to

34

anticipate.

One of the difficulties that must be addressed by the session logging approach is

that the intelligence to determine the definition of a session must be implemented

on the client side. This requirement has two important implications. First, the

definition of a session must be defined during implementation and cannot change

once data has been collected, since changing the definition of a session will invalidate

historically gathered data. In addition, the client-side code must contain complex

logic to determine the start and end of a session, as well as record session-specific

data that can be logged into the log file.

The obvious solution is to push the analysis of the data to the server side, and to

use the same client-side logging code that a page-request granularity system would

make. This solution pushes the complexity onto the server, where raw computational

speed is less of a concern. However, the original two limitations remain, since the data

used to make the session level decisions is thrown away once it has been processed.

4.2.2 Minimizing Data Collection

A web site that serves four million HTTP requests a day would accumulate approx-

imately 4000000 * 1K = 400GB of space a day if each row in the database requires

1024 bytes of space in the database. The commodity database technology available

today is incapable of handling a system that grows by 400GB daily, so the clickstream

system uses a filter mechanism that only logs HTML and dynamic pages that are re-

quested. On a four million HTTP requests/day site, data revealed that the site had

served approximately 100,000 page loads. This figure gives us a storage requirement

of 100000 * 1K = 100MB of space required a day for storage, an amount of data that

is manageable using today's technology.

4.2.3 Client-side Performance

The client-side logging code logs data directly into the file system for maximum

performance. This approach makes the client-side code virtually as scalable as the

35

native web server logging mechanism, since the client-side code can be implemented

by simply augmenting the server log mechanism in most cases.

The requirement that the server code run on a separate, dedicated server min-

imizes the amount of computation that is required on the production web servers.

Thus the total overhead imposed on client sites by the clickstream system is abso-

lutely minimal - client sites only need to run an augmented logging system in order

to support clickstreaming.

4.3 Transparency

Developer and visitor transparency are important criteria for the clickstream system.

The clickstream system should not be intrusive or visible to either the developer or

web site visitor. Web developers should not be required to make significant changes

to existing coding practices or techniques. Significant changes to the status quo would

raise additional training costs, slow development, and introduce additional areas for

error. In addition, visitors should not be able to discern any difference between a site

with clickstream logging and a site without clickstream logging.

4.3.1 Design

The goal of visitor and developer transparency was accomplished through the use of

an efficient HTTP filter that analyzes each HTTP request and logs the request if the

HTTP request is for an actual page. Visitors should see no noticeable performance

penalty when clickstream logging is turned on, and developers can continue working

as they did prior to the installation of clickstream logging.

4.4 Platform Independence

All components of the system should be platform independent in design. Both the

client-side clickstream system, the data warehouse, and the server-side reports inter-

face should be platform independent. Different web sites use different technologies;

36

the clickstream system should not preclude the use of any particular web technology.

Moreover, integrating the clickstream system into an existing web site should not

require rearchitecting substantial parts of the original web site.

4.4.1 Design

The fundamental data model of the clickstream system is platform-independent in the

sense that it can be installed on any modern RDBMS. No part of the entire system

design relies on a specific feature of a given component of the reference implemen-

tation, although the reference implementation does take advantage of optimizations

that are made available by the choice of architecture.

4.5 Extensibility

The system should be extensible so that it can be customized to answer unanticipated

questions. There are two aspects to extensibility. The first aspect involves integrating

additional sources of information that were not included in the original design. The

second aspect of extensibility is the ability to create new reports and queries that

analyze the existing data in new ways.

4.5.1 Dimensional Data Warehouse

The dimensional data warehouse is a standard design that is the most common data

model for a data warehouse. The ubiquity of the design insures that the data model

is familiar to people with a background in data warehousing. In addition, adding

new dimensions to the dimensional data warehouse model is straightforward. The

current implementation of the data warehouse provides a set of common dimensions,

as discussed in Section 2.4. Adding additional dimensions requires three steps:

1. Designing the dimension table and adding the table to the data model.

2. Adding a column referencing the dimension table to the main fact table.

37

3. Writing a PL/SQL procedure to populate the new dimension and adding a call

to the new dimension in the main PL/SQL procedure cs-populate-dw.

4.5.2 Reports

A generic user interface and infrastructure is provided to automatically generate re-

ports. Adding a new report into the system is straightforward with the clickstream

reports infrastructure, as discussed in Section 2.3.3. In addition, the open nature of

the system makes writing new user interfaces accessible to any programmer.

38

Chapter 5

Implementation

Many issues were raised during the implementation of the clickstream design. These

issues included performance, usability, and reporting. The implementation of all parts

of the system was continually refined as test data was accumulated.

5.1 Server-Side Performance

The server-side performance of the clickstream system was measured throughout the

course of its development. Numerous techniques were adopted to eliminate bottle-

necks in performance.

5.1.1 Materialized Views and Query Rewrite

A common technique used in data warehouses is the use of materialized views and

query rewrite. Materialized views are views that precompute aggregates and joins,

storing the results in tables. As new rows are inserted into the underlying tables,

the materialized view can be incrementally refreshed (Oracle calls this feature "fast

refresh"). Since aggregates and joins on large data sets are expensive operations, a

materialized view can improve performance by several orders of magnitude. Query

rewrite is a technique which dynamically rewrites queries to take advantage of existing

materialized views. Query rewrite is particularly useful for clickstream users who are

39

exploring a data warehouse, since these users are typically analysts who are not skilled

at optimizing SQL queries. A database administrator can analyze the most common

types of queries and create materialized views to improve their performance; query

rewrite would automatically rewrite subsequent queries to take advantage of the newly

created materialized views.

Early implementations of the clickstream system used materialized views and

query rewrite to pre-aggregate large tables. Unfortunately, restrictions imposed by

Oracle on the use of materialized views precluded using materialized views for every

aggregate and join needed for queries. For instance, a materialized view of a single

table aggregate cannot have a where clause. In addition, the implementation of

fast refresh in Oracle 8.1.6 did not work consistently on mid-range data sets, and

periodically recreating materialized views from scratch was necessary.

Ultimately, the clickstream system used a code generator to dynamically create

commands to store the results of aggregates and joins in regular tables instead of

using materialized views. This approach proved to be much more reliable. Since a

code generator is used for this functionality, updating the clickstream software to use

materialized views will be a straightforward change to the implementation, and can

take place without affecting any other components of the clickstream system.

5.1.2 Direct Path Inserts

Fast refresh for materialized views requires direct path inserts (in Oracle, this feature

is achieved through the use of the /*+ APPEND */ hint). A direct path insert is

more efficient than a regular insert because the database does not scan the table for

free space and instead appends the data directly to the end of the table. However,

direct path inserts requires that inserts and updates are explicitly committed before

selects on the data are performed. Periodic commits means that transactional safety

must be explicitly maintained by the software, since aborting in the middle of the data

population process will not result in a full rollback of the population transaction. Thus

the data warehouse may be partially populated. To solve this problem, the cs-jobs

table has an integer column called progress; the value of progress is updated prior

40

to each commit. Transactions that have already been committed to the database are

not repeated, even when the populate PL/SQL is called on the same set of data.

Ultimately, this feature was removed due to its complexity after the base system

transitioned to a "one day in database" model as discussed in Section 5.1.6. In

addition, debugging the system with the periodic commit model was more tedious,

since an error in the system would leave the data warehouse in an inconsistent state,

necessitating rebuilding the entire warehouse from scratch.

5.1.3 Disabling Constraints

Referential integrity in a regular database is maintained through the use of foreign

key constraints. Constraints insure the integrity of the data in the database, but also

impose a performance burden on the database, since each insert into a table requires

that the database verify referential integrity on the inserted data. In the clickstream

architecture, the data warehouse population software has exclusive responsibility for

populating the warehouse. Thus, all constraints were disabled to improve the speed

of loading data into the database. The constraints are still listed in the data model so

that Oracle can use the constraint information in optimizing query execution plans.

5.1.4 Hints

Hints such as the /*+ STAR */ hint were used to optimize queries. The /*+ STAR

*/ hint instructs Oracle that the query is being executed against a star schema data

model. However, these optimizations did not significantly improve the performance of

the system. The Unix top utility showed IO wait percentages as high as 99%, which

suggested that the performance of these queries were IO bound. Carefully optimizing

queries by analyzing execution plans and optimizing database configurations to reduce

IO contention are areas for substantial improvement, as no sophisticated database or

tuning was performed during the development of the clickstream system.

41

5.1.5 Dynamic PL/SQL

The data population routines written for the data warehouse were discovered to be

very slow. These routines were written in PL/SQL, a proprietary procedural language

extension to SQL implemented by Oracle. PL/SQL was chosen as the language for

implementing the data population routines since the code runs inside the database,

giving PL/SQL code direct access to the database kernel. Thus the performance of

PL/SQL is substantially greater than the performance of languages that have to go

through an extra layer to access the database.

However, the original implementation was still very slow, and populated the data

warehouse on the order of 10-20 rows per second. Profiling the PL/SQL population

code revealed that the code spent the majority of its time executing redundant SQL

queries. For instance, one particular routine would loop through each row in the raw

clickstream data and execute a SQL query for each row to determine whether or not

the given referrer already existed in the database. Since the SQL query was being

executed against a table that did not change while the population code was being

executed, the population code was updated to use dynamic PL/SQL. The dynamic

PL/SQL code queries the referrer keys table at initialization and dynamically builds

and executes another PL/SQL procedure that contains each key in the referrer keys

table in a large IF/ELSE IF/ELSE block. Thus, the data population code no longer

has to perform the SQL query for each row; it merely has to execute some compiled

IF/ELSE statements to determine whether or not the referrer key actually exists in

the database. Testing of this new code revealed an order of magnitude improvement in

performance to 200-300 rows/second, since the context-switching overhead of moving

between SQL and PL/SQL is eliminated.

5.1.6 Reducing the Data Warehouse Size

Queries against the data warehouse grew increasingly slower as more rows were loaded

into the warehouse. This slowdown can be attributed to the lack of hardware and

the difficulty in properly configuring Oracle. In order to compensate for the lack of

42

hardware, a more lightweight version of the clickstream software was developed. This

version retains only a single day of clickstream data. When the population code is run,

all the data in the data warehouse is deleted on a daily basis, and clickstream data

for the most recent 24-hour period is loaded. This data are then analyzed; the results

of each analysis is stored in an HTML file for the given day. The price paid for the

scalability, reliability, and performance that this approach offers is that aggregation

across multiple days becomes more complex, and new reports cannot be performed

on previously collected data. In order to perform aggregation of data across multiple

days to be performed, certain types of daily aggregates are stored in aggregation

tables. The cs-istorical-by-day table is an example of a daily aggregate table:

create table cs-historicalbyday (

dateid integer

constraint cshbddateidfk

references csdimdates disable,

-- count(*) from csfacttable

n-page-views integer not null,

-- count(user-id) from csfacttable

n-user-page-views integer not null,

-- count(session-id) from csfacttable

n-session-page-views integer not null,

-- count(*) from csdimsessions

n_sessions integer not null,

-- count(user.id) from csdimsessions

n_usersessions integer not null,

-- count(distinct userjid) from csdimsessions

n-unique-users integer not null,

-- avg(session-end - session-start)

-- from csdimsessions where clicks > 1

avg.session-length number,

-- avg(clicks) from csdimsessions where clicks > 1

43

avg-session-clicks number,

aggregate-_group varchar(3000),

constraint cs_dateagg.grp-un unique(dateid, aggregate-_group)

This table stores daily aggregates of a number of different variables. Each row of

the table corresponds to a single day, and records information such as the number of

page views, the number of sessions, and the number of unique users that arrived at

the web site on the given day.

5.2 Client-Side Logging

The client-side code evolved based on feedback from early adopters of the client-side

code and early results from these deployments. The primary requirement for the

client-side code was scalability and efficiency; the client-side code was written to be

as lightweight as possible to insure that the clickstream logging code would be as

scalable as the client web site itself.

The initial implementation of the clickstream logging code used array DML inserts.

An array DML insert simultaneously inserts an entire array of values into a table

instead of a single value. Thus, multiple rows can be inserted in one database request.

The AOLserver to Oracle database driver was extended to support array DML inserts,

and client-side code was written to use array DML inserts. In the clickstream client

implementation, page request information was cached in memory and periodically

flushed to the database via a single array DML operation. Array DML operations

are generally not used in OLTP environments since a server restart would mean the

loss of the data cached in memory. However, in a heavily loaded server, the loss of a

few hundred data points of clickstream data was deemed a worthwhile tradeoff, since

the lost data would be insignificant in the context of the total data gathered.

Testing of the array DML approach raised two issues. First, the array DML

approach was not as scalable as hoped. An array DML insert was an order of magni-

tude more efficient than standard DML operations, allowing tens of inserts per second.

44

However, this approach quickly overwhelmed the database for high volume sites, since

a database connection for clickstreaming still constrained other transactions on the

web site, as each HTTP request incurred an additional amount of overhead that

needed to be processed by the database driver. A second, equally important consid-

eration was the realization that a database table was not the ideal medium to transfer

data to a dedicated data warehouse machine, since the data is stored in a proprietary

binary format.

These two reasons led to an iteration of the design that directly logged clickstream

information into the file system. Each hour, all clickstream data is logged to a new

clickstream log file. This approach overcomes the disadvantages of the array DML ap-

proach. First, no database handles are used, so the performance overhead is minimal.

Second, by logging to the file system, the ASCII log files are easily transferred using

HTTP or FTP. Once transferred to the data warehouse system, the log files can be

parsed with a data bulk loader; most relational databases provide a utility for loading

in large quantities of text data into the database. Using Oracle's SQL*LOADER soft-

ware, the clickstream system was able to load tens of thousands of rows per second

into the system, an improvement of three orders of magnitude over array DML.

A few weeks of testing on heavily loaded sites showed that the new approach was

much more scalable than the previous approach. However, the rapid growth in size of

the log files presented an additional problem, since the clickstream log files required

a considerable amount of disk space. Thus, the client side code was improved to

consolidate all the hourly logs into one daily log that was then compressed prior to

download. This approach maintained the benefit of hourly log files (up-to-the-hour

clickstream information could be provided by the hourly log files) while older log files

could be archived in a compressed format, minimizing the disk space and bandwidth

required to store and download the logs. Since the log files contain a large amount of

redundant information in text format, files could be compressed to as little as 5% of

their original size.

45

5.3 Reports

5.3.1 The Dynamic Site Map

The dynamic site map illustrates the most popular paths visitors follow when navi-

gating the site. For each page in the site, the site map determines the most common

referrer for each page. If this "best referrer" is external, the page shows up as a root-

level node in the sitemap (since people typically get to the page from some external

source); if the best referrer is internal, the page shows up beneath that referrer in the

sitemap tree.

The cs-create-sitemap procedure builds this tree breadth-first: first it inserts

into the sitemap all pages which belong in the top level (i.e., have an external "best

referrer"). Then it inserts into the second level of the sitemap any pages that have a

top-level node as a best referrer; then it inserts any pages which have a second-level

node as best referrer, and so forth. The algorithm loops until it can no longer insert

any more nodes.

When this process is complete, there may still be some pages which have not been

inserted into the tree: consider the case where two pages have each other as best

referrers. When a cycle such as this occurs, the node X in the cycle which is most

commonly requested is chosen, and the potential parents of all other nodes in the

cycle are deleted. The loop then continues as previously described. At this point, X

is guaranteed to be inserted somewhere in the site map since none of the nodes in

the cycle can possibly be X's best referrer anymore. This process is repeated until

all cycles are resolved. The end result is a dynamically built sitemap illustrating the

paths visitors most frequently take navigating the site (see Figure 1-1).

5.3.2 The Entry Pages Report

The Entry Pages report that details how visitors typically enter a web site is a good

example of a typical clickstream report. Retrieving this data requires a single query

against the data warehouse:

46

select p.page-id, p.page-url name, count(*) value

from csfacttable f, cs-dim-pages p, csdimsessions s

where f.page-id = p.page-id

and f.sessionid = s.sessionid

and f.cswithinsession = 1

and p.exclude-p = ''

and s-clicks > 1

group by p.page-id, p.pageurl

order by 3 desc

This query performs a join between the main fact table and two dimension tables,

the cs-dim-pages table and the cs-dim-sessions table. The first two lines of the

where clause are simply the join. The remaining clauses are explained below:

" The f .cs-within-session = 1 clause ensures that the page-id retrieved is the

first page clicked in a given session.

" The p. exclude-p = 'f' clause excludes requests that should not be counted

(e.g., requests for images).

" s .clicks > 1 ensures that only sessions that have registered more than one

page request are analyzed. One-hit sessions are thrown away because the system

is unable to distinguish between first time visitors who hit the web site once

and visitors who have non-cookied browsers. If one-hit sessions were included,

the data would be skewed by non-cookied visitors who are browsing the site,

since every page request from these visitors would look like an entry page.

5.4 Additional Features

5.4.1 Multiple Tablespaces

In order to increase the usability of the clickstream system, the clickstream server soft-

ware was extended to take advantage of multiple tablespaces. The multiple tablespace

47

Entry Page& 12M-46-0)

rpfrpumrd edIDI'f I
.......... 11.....Ad T-A3

Figure 5-1: A Navigation Report: The Entry Pages Report

support that was implemented allowed a single clickstream instance to connect to the

database as multiple users, with each user having its own tablespace. This approach

allowed the clickstream data model to be loaded multiple times into separate ta-

blespaces, with each tablespace representing the clickstream data of a separate web

site. The motivation for this feature was to amortize the cost of providing a dedicated

clickstream server across multiple web sites; multiple web sites could share the same

clickstream system resources.

Three major issues arose after the implementation. First, the code was complex

and difficult to maintain, since each page of the system had to be converted to de-

termine the appropriate database pool to use and obtain handles. Second, testing

48

showed that there was no clear benefit by users of the multiple sites support, since

users generally required a user interface that was customized to a particular site.

These unique requirements included permissioning schemes that would prevent unau-

thorized users from seeing the data of other web sites and custom reporting queries.

After this implementation, the scope of these additional features required to make the

multiple sites feature usable became apparent, and the multiple clickstream applica-

tion instance approach became clearly superior. Finally, the third issue that arose

was that separating site data on the tablespace level was not the ideal mechanism;

instead, the idea of using multiple schemas to manage multiple sites arose. This ap-

proach was deemed to be superior to the multiple tablespace implementation since

tablespace management could be considerably simplified as the number of tablespaces

could be reduced to a few common tablespaces that were shared by all instances of

the clickstream application.

5.4.2 ACS 4.0

During the development cycle of the clickstream software, version 4.0 of the ArsDigita

Community System (ACS) was released. Since the original software was built on top

of the ACS, the clickstream software was upgraded to take advantage of 4.0 features.

There are two benefits to a 4.0-compliant clickstream system. First, the clickstream

system is available in one self-contained package. This self-contained package includes

the clickstream data models, the population code, the client-side logging system, the

server-side reports system, and all of the configuration parameters inside an XML

file. A second benefit to the ACS 4.0 system is subsite support. Under the ACS 4.0

architecture, multiple instances of a package can be instantiated. This feature greatly

simplifies the goal of supporting multiple clickstream sites on the same clickstream

server.

49

Chapter 6

Testing and Results

In order to determine how well the completed system fulfilled the original design goals,

a set of measures and criteria was established for each design goal. These criteria were

used in evaluating the final clickstream system.

6.1 Privacy

6.1.1 Methodology

The clickstream logging system was used to measure visitor trust by comparing the

aggregate behavior of visitors who read the privacy policy (and are presumably aware

of clickstream logging) versus the behavior of visitors who did not read the policy.

Since a web site visitor can only become aware of clickstream logging by reading the

privacy statement, analyzing the clickstream logs allows visitors to be segmented into

two user groups, visitors who read the privacy policy and visitors who did not. Dis-

covering that visitors who read the privacy statement have shorter session durations

would lead to the conclusion that the clickstream system may be strong negative

influence on user trust.

50

6.1.2 ArfDigita

The complete clickstream system was installed on the ArfDigita web site

(http://www.arfdigita.org). ArfDigita is a non-profit site designed to match ani-

mals in animal shelters with people who want to have pets. The ArfDigita site was

deemed to be ideally suited to the role of initial clickstream deployment because its

low level of traffic would enable expedient analysis of the data. The following privacy

policy was published on ArfDigita:

We realize that much of the information you enter into the site is of

a personal nature and that privacy is a big concern. We have created

this privacy policy to assure you that ArfDigita will make its best

effort to ensure that your information is kept safe and confidential.

ArfDigita will not distribute or sell any personal information to

outside parties. Statistical and demographic information may be

reported, but we will not report any personally identifiable

information.

ArfDigita collects data about the clickstream behavior of its

users. Collecting clickstream data entails recording which links are

clicked by which user, as well as the interval between clicks; this

enables us to measure data such as which pages on the web site take

the longest to load, what are the most popular pages on the web site,

and so forth. The aggregate clickstream data is used to determine how

the site is being used in order for us to better tailor the site to

serve you, and is not used for any other purpose. Data on the

clickstream behavior of a single user is never used and is permanently

deleted once the data has been aggregated, a process that occurs every

24 hours. This clickstream data will not be distributed to any outside

parties.

51

All shelters using this system have agreed to a Shelters' Privacy

Policy whereby any information you enter is used only for their

records and will not be distributed to any outside parties. Shelters

are required to agree to the Shelters' Privacy Policy before they are

allowed to access any data. However, we cannot guarantee the

cooperation of the shelters with this policy. If you think that a

shelter has acted in violation of this policy, please email

webmaster@arfdigita.org.

If you have any questions about our privacy policy, please contact

webmaster@arfdigita.org.

6.1.3 Results

Analysis of the ArfDigita data was inconclusive. Nearly 700,000 clickstream events

collected over the course of three months were analyzed, representing the clickstream

behavior of over 600 visitors. Less than twenty of those visitors had read the privacy

policy. There was no discernible difference between the two sets of visitors in the

average session duration.

Analyzing the ArfDigita clickstream data did reveal two factors that should be

taken into account in future clickstream privacy analyses. First, the privacy policy

should be prominent. The privacy policy was two clicks away from the top-level index

page. Future tests that analyze the effect of clickstream logging on visitor behavior

should have a more prominent privacy policy that is linked off the top-level index

page to increase the probability that a visitor will click to the privacy policy. Second,

the fraction of visitors who actually read privacy policies is very low. Thus, future

analyses should use much larger data sets over longer period of times to produce more

concrete results.

52

6.2 Performance and Scalability

The performance and scalability of the clickstream system were assessed separately.

These measures are based on the definitions discussed in Section 4.2. The performance

analysis determined the impact of the clickstream logging filter on web server perfor-

mance. In addition, the performance analysis measured the number of rows/second

that the server-side population code can process. The scalability analysis analyzed

the upper limits of the scalability of a web server architecture with clickstream logging

enabled and the maximum amount of data that the clickstream system can process

in a given timeframe.

6.2.1 Results

The performance of the clickstream logging code was measured on a web site with

multiple web servers. The clickstream filter was applied to one web server in the web

server pool; the load on the web server was compared to that of the other web servers.

The web server showed no discernible increase in load when compared to the other

web servers.

The performance of the clickstream server population code was measured in

rows/second on a Sun E450 server. Benchmarks on the population code revealed

a speed ranging from 200 to 300 rows per second, or about one million rows per hour.

The standard architecture for a high-volume web site uses multiple front-end web

servers that communicate to a smaller set of back-end database servers. Since the

clickstream client-code runs only on the web server, the clickstream code is as scalable

as the web server architecture itself. As traffic increases, new web servers are added;

the negligible performance impact of the clickstream client-side logging code is evenly

distributed across the additional web servers. Thus, the clickstream client-side logging

code is highly scalable.

The current server-side clickstream architecture is not as scalable as the client-side

logging system, and relies more upon its high-performance implementation optimiza-

tions than fundamental scalability work. Scaling the database across multiple servers

53

is difficult, and the technology to distribute the database is immature. The com-

plexity of products such as Oracle Parallel Server, which allows a database to be

distributed across multiple machines, led to the decision not to explore approaches

to scale the clickstream system to multiple database servers.

6.3 Transparency

Developers deploying new applications or features onto a web site with clickstream

logging do not need to perform any additional development work. In this sense, the

system has completely achieved its goal of transparency for developers.

There are two ways that the clickstream system may be visible to visitors. First,

the clickstream system may impact performance on a web site. A second way that vis-

itors may notice the clickstream system is by reading the privacy policy and deciding

that the system is too invasive.

The performance data discussed above indicates that the clickstream logging sys-

tem does not adversely affect web site performance. In addition, a cursory exami-

nation of the download times for various pages of a system with clickstream logging

reveals that the download times for the same pages with and without logging are

comparable.

The issue of privacy and its effect on user behavior is more of an unknown. As

discussed above, the data on how visitors view a web site that performs clickstream

logging is inconclusive. More testing and analysis is needed to determine how well a

clickstream system can satisfy user expectations of trust.

6.4 Platform Independence

A development snapshot of the server-side data warehouse and population facility was

successfully ported to PostgreSQL, an open-source RDBMS. This effort took a single

developer one month of part-time work to port. Most of the time was spent on convert-

ing Oracle-specific features to PostgreSQL functions, since the PostgreSQL database

54

offers a subset of the functionality provided by Oracle. The developer was unfamiliar

with PL/SQL, and was only partially familiar with PL/PgSQL and PL/TCL (the tar-

get languages for the porting). There were no issues moving the data model between

databases; all of the porting effort was spent in reconciling procedural language syntax

differences. Virtually all modern relational databases provide facilities for stored pro-

cedures using a language similar to PL/SQL, so any porting effort between databases

of the clickstream server software would require a similar process.

The porting effort was simplified by the fact that the web server was kept the

same for the port to Postgres. Thus the server-side user and reports interface required

minimal porting, an effort that only involved updating the SQL syntax of some of the

user interface queries. The server-side user interface is a web-based user interface that

does not use any advanced or esoteric features of Oracle or AOLserver, so porting

the user interface to another web server, application server, or database platform

should be a straightforward exercise for a programmer versed in the target platform

technology.

The final component of the clickstream system is the client-side logging code.

The code written in this project is web-server dependent. In particular, the client-

side code is written in Tcl since AOLserver contains an embedded Tcl interpreter;

the code also takes advantage of specific AOLserver API calls that are available to

the programmer. Despite this web server dependence, the client-side logging code is

very portable since it is very lightweight, consisting of less than four hundred lines of

Tcl code. In addition, the API calls used are very standard across web servers. An

analysis of the Netscape iPlanet web server API reveals that all of the AOLserver

calls used in the clickstream client code have equivalents in the iPlanet server. One

further point to note about the portability of the clickstream client code is that all

web servers have logging capabilities, and the clickstream logging code is merely an

extension of the existing logging functionality of any web server.

55

6.5 Extensibility

The clickstream system was deployed on three web sites, including a commercial high-

volume web server environment. In the production environment, the basic reporting

user interfaces and data population infrastructure was initially used. After a period

of several months, the commercial web site decided to reduce the scope of the process

for faster turnaround and used the clickstream logging and loading facilities only. A

single developer was able to write simple code to replace the standard population

code to fit their needs. Thus, two conclusions can be drawn from this case study.

First, the componentized nature of the system allowed it to be easily adapted to fit

the specialized needs of the client. Second, the version of data population code and

hardware that the client site used was inadequate to handle the load of the web site.

6.6 Accuracy

The accuracy of the clickstream system is an implicit goal of the system. Knowledge

that the clickstream system provides accurate data is a prerequisite for deployment

of the clickstream system. In order to verify the accuracy of the clickstream system,

clickstream data for a commercial high-traffic web site was compared to the data for a

commercial log analyzer, NetTracker. NetTracker is a commonly used, well-regarded

commercial log analyzer that parses standard web server logs [14].

Figure 6-1 shows the number of sessions as recorded by NetTracker and the click-

stream system over a week. The top line shows the number of sessions as counted

by the clickstream system; the bottom line shows the number of sessions according

to NetTracker of the same time period. The data shows that there is 100% correla-

tion between the NetTracker and clickstream data, and the numbers differ only by

magnitude. The NetTracker data consistently shows a smaller number of sessions

than the clickstream data. This phenomenon can be attributed to the fact that the

clickstream system is more accurate and uses cookies for tracking. The NetTracker

system is based on intelligent analysis of IP addresses e.g., all page requests from a

56

single IP address in a given time frame is considered "one session." However, this

approach cannot account for traffic from proxy servers, where many web site visitors

may appear to be coming from a single server. This case is particularly common for

America Online (AOL) users, since AOL users form a large proportion of Internet

users. The other reason for the discrepancy in numbers may be differences in the def-

inition of a session. As discussed in Section 3.4, the clickstream system has a timeout

interval of five minutes; the NetTracker documentation does not discuss what value

it uses for timeouts, nor does it discuss its definition of a session.

65000

60000

55000

50000

45000

40000

35000

30000

25000

20000

15000
2 3 4 5 6

Figure 6-1: Total Daily Sessions, NetTracker vs. Clickstream

A similar correlation exists with the total daily pageviews reported by NetTracker

and the clickstream system, as shown in Figure 6-2. The clickstream system reports a

higher number of pages because the NetTracker report has been configured to exclude

certain sections of the web site from the total pageview count; no page views are being

excluded from the clickstream count.

The simplicity of the clickstream architecture allows a high degree of confidence

in the accuracy of the overall system. A page request is translated into a line in

57

'/web/thsiss-essions.dat' using 1:2
'/wb/thesis/s1sgions dat' using 1:3 --

1

300000

250000

- - - - - - - - - - - - - - - ----------

200000

150000

100000---

50000
1 2 3 4 5 6

Figure 6-2: Total Daily Pageviews, NetTracker vs. Clickstream

the clickstream log; each line is loaded into the database. The modular nature of

the clickstream architecture allows very concrete unit tests to be performed. For

example, verifying that a given page request creates a line in the clickstream log is

a simple matter. The correlation data presented above provides additional evidence

that the clickstream system is accurate. This data, in conjunction with the unit

tests performed, allows clickstream users to have a high degree of confidence in the

correctness of the fundamental clickstream system.

58

'/web/thesis/pageviews.dat' using 1:2
'/web/thesis/pageviews.dat' using 1:3 ------

Chapter 7

Conclusion

Building a data warehouse for a clickstream system requires a substantial investment

in hardware, configuration, maintenance, and analysis. The clickstream system pre-

sented in this paper, while capable of revealing previously unknown data about how

a web site is being used, is only a starting point for additional clickstream analysis

and development.

The basic goal established in the original design of the clickstream system was to

build a simple architecture that could be used as the basis for a clickstream system.

The architecture and software presented here fulfills that goal. In addition, the sys-

tem has been tested under a high-load environment to measure scalability. Data from

the system has been analyzed to determine visitor behavioral patterns. The click-

stream design is platform independent; as discussed above, an independent developer

was able to port the data warehouse server software, the most complex component

of the clickstream system, to an alternative database platform with minimal diffi-

culty. Finally, components of the clickstream system have been customized by other

developers in fulfilling specific needs.

7.1 Future Work

The lessons learned during development of the clickstream design and implementation

make many of the limitations of the system apparent.

59

7.1.1 Performance and Scalability

Although a considerable amount of effort was made to optimize the performance and

scalability of the server-side data population code, a considerable amount of profiling

and optimization is still necessary before the system can scale linearly to handle arbi-

trary amounts of data. Areas that could be investigated include the use of distributing

the database across multiple servers, additional performance optimizations, and the

possibility of performing additional preprocessing in a high-performance compiled

language prior to inserting the data into the database.

7.1.2 Multiple Data Source Integration

Integrating the clickstream data warehouse with other data warehouses can multiply

the analytic power of the clickstream data warehouse. For instance, integrating a

clickstream data warehouse for an ecommerce site with a data warehouse containing

all sales data for the entire company can allow the company to analyze its clickstream

data in even more novel ways. For instance, a clickstream data warehouse can answer

questions such as "how much money did the average visitor who fits a particular

user group spend on my web site?" However, an integrated system consisting of

both a clickstream data warehouse and a sales data warehouse can further answer

questions such as "what is the average profit margin for sales to a particular user

group who buys things on my web site?" The ability of this clickstream approach to

support the integration of website and other relational data with the clickstream data

warehouse is an important difference between this system and commercial clickstream

and web-log analyzers that exclusively rely on externally-visible characteristics (e.g.,

URL requested or page load time).

7.1.3 Portability

The advent of Java servlet technology presents an opportunity to increase the platform

independence of the clickstream system. For instance, the client-side clickstream

logging code could be written as a Java servlet that performs logging. Thus, the

60

clickstream client servlet would then be immediately portable across any web server

that implements the Servlet specification.

The server side code could also benefit from a Java implementation, since a Java

servlet implementation would also be portable across web servers. Programming

the server-side code in Java would allow for a portable, web-based user interface to

the data warehouse to be available to the user. However, a Java implementation of

the server-side code would be limited to the user interface because the server side

population code should be written in a procedural language that runs inside the

database for maximum performance.

7.1.4 Evolutionary Improvements

In addition to the architectural improvements enumerated above, many evolution-

ary improvements could be undertaken to further improve the functionality of the

clickstream system.

" Refining and developing a comprehensive set of queries that answer most of the

questions that users want.

" Improving the reports user interface and infrastructure.

" Fully supporting the ACS 4.0 subsite architecture.

" Extending the data population code to include all dimensions in the data model

and determining what additional dimensions should be added to the core sys-

tem.

" Defining a standard way to extend the data model, and developing a mechanism

to transfer the additional data necessary to populate these extra fields from the

production web server database to the data warehouse.

61

7.2 Lessons Learned

Data warehousing clickstream data presents a unique challenge. A staggering amount

of data is accumulated in a very short period of time. Each data point represents a

very small event, so large numbers of events must be analyzed and mined to discern

patterns.

Three major lessons can be learned from the development of the clickstream sys-

tem. First, implementing a system to analyze clickstream data is hard. Despite the

overt simplicity of the design and concept of clickstream analysis, the actual imple-

mentation of scalable, usable clickstream analysis software has been difficult. Second,

server-side scalability and performance is a very challenging problem. Building a scal-

able server-side clickstream architecture requires deep understanding of a particular

RDBMS platform, a large amount of hardware, and extensive load testing. Finally,

clickstream data can be easily analyzed to produce logfile analyzer-type reports, but

deeper, more insightful patterns are much more difficult to discern. The amount of

development work required to design and test the dynamic site map algorithm was

equivalent to the amount of effort required to implement all of the logfile analyzer-

type reports. Developing the necessary algorithms and techniques for analyzing deep

patterns in clickstream data may become the most challenging task for future users

of clickstream analysis systems.

The clickstream system is a usable framework for future clickstream development.

Developers, analysts, and others who wish to use clickstream analysis systems can

build and extend this framework to meet their needs. This architecture has been

refined through real-world deployments and user feedback; people should leverage the

experience gained in developing this system by building and extending this framework

instead of starting from scratch. This clickstream system is a beginning, and not an

end.

62

Appendix A

Clickstream Data Model

This appendix contains the core SQL data models used in the clickstream system.

-- clickstream data model: HTTP-level granularity (although a more

-- normal and scalable configuration is a page-request level

-- granularity)

-- richardl@mit.edu

-- $Id: click-dw.tex,v 1.4 2000/12/17 21:28:50 richardl Exp $

set scan off

-- page dimension

create sequence cs-pageid-sequence;

-- a mapping table between short names of a page function and some

-- pretty names. for instance, we might say that a page has a function

-- of "admin", which translates into a "site-wide administration page"

63

create table cs-pageifunctions (

page-function varchar(20)

constraint cs-pf-page-function-pk primary key,

pretty-name varchar(100),

exclude char(1) default 'f'

constraint cs-pf-exclude-p-nn not null disable

constraint cs-pf-exclude-p-ck

check(excludep in ('t','f')) disable

-- mappings from a particular URL pattern to a page function.

create table cs-page-function-keys (

try-order integer

constraint cs-pk-try-order-pk primary key,

-- must contain associated '%'s, if any

key-string varchar(500)

constraint cs-pk-key-string-nn not null disable,

page-function constraint cs-pk-page-functionfk

references cs-pagejfunctions disable

constraint cs-pk-page-functionnn not null disable

-- we store clickthroughs here as well, with the /ct prefix

-- and a page-function of type ct

create table cs-dim-pages (

page-id integer

constraint cs-dppage-idpk primary key,

page-title varchar(3000),

-- url (excludes query parameters!)

page-url varchar (3000)

64

constraint cs-dp-page-urlnn not null disable,

urlstub varchar(3000),

instance-var varchar(3000),

-- kind of page, e.g., product information, contact form,

-- about company, etc.

page-function constraint cs-dp-page-functionfk

references cs-page-functions disable,

-- expected content type for this page

content-type varchar(100),

-- exclude this page?

exclude-p char(1) default 'f'

constraint cs-dp-excludep-nn not null disable

constraint cs-dp-exclude-p-ck

check(excludep in ('t','f')) disable,

-- what file serves this up? (null if none)

localfile varchar(3000)

create unique index cs-dim-pages-by-url on cs-dim-pages(page-url);

create index cs-dim-pages-by-url-stub on cs-dim-pages(url-stub);

-- referrer dimension

create table cslocalhostnames (

hostname varchar(100) primary key

create sequence csreferreridsequence;

create table csreferrertypes (

65

referrer-type varchar(20)

constraint cs-rt-referrer-type-pk primary key,

pretty-name varchar(100)

create table csreferrer-keys (

try-order integer primary key,

kind varchar(20)

constraint cs-rkkindck

check(kind in ('host','domain','url')) disable

constraint cs-rk-kind-nn not null disable,

-- must contain associated '%'s, if any

key-string varchar(500)

constraint cs-rk-key-string-nn not null disable,

referrer-type constraint csrkreferrer-type-fk

references cs-referrer-types disable

constraint cs-rkreferrer-typenn not null disable

-- referring-page-id is null for external referrers

create table csdimreferrers (

referrerid integer

constraint csdrreferrer-id-pk primary key,

-- e.g., search engine, intra-site, remote-site

referrer-type constraint csdrreferrer.type-fk

references cs-referrer-types disable,

referring-url varchar(3000)

constraint csdrreferring-url-nn not null disable,

-- local path (if not external)

66

referringjlocal-path varchar(3000),

referring-site varchar(500),

referring-domain varchar(500),

-- if the person came from a search engine

searchtext varchar(3000),

-- if the person came from within the site

referring-page-id constraint csdrreferring.page-idfk

references cs-dim-pages disable,

-- same as referrer-id, *only* if the referral

-- is external. this is so we can group by referring-pagejid,

-- externalreferrerjid for sitemap purposes

externalreferrerid integer

);

create index cs-dim-referrers-by-page-id on

csdim referrers(referringpage-id, externalreferrer-id);

create unique index cs-dimreferrers-by-url on

csdimreferrers(referring-url);

-- calendar date dimension

create table cs-dimdates (

-- dateid of the form 20001231

dateid integer

constraint

sql-date

day-ofweek

day.number-ofmonth

day-number-inyear

(for 2000-12-31)

csdddateid.pk primary key,

date

constraint csdd-sqldate-un unique disable

constraint cs_dd-sql.date-nn not null disable,

integer not null, -- between 1 and 7

integer not null, -- between 1 and 31

integer not null, -- between 1 and 366

67

weeknumber-in-year integer not null, -- between 1 and 53

month integer not null, -- between 1 and 12

quarter integer not null, -- between 1 and 4

year integer not null, -- use 4 digit years

holiday-p char(1) default 'f'

constraint csdd-holiday-p-ck

check (holidayp in ('t', 'f')) disable,

-- as opposed to weekend

weekday-p char(1) default 'f'

constraint csdd-weekday-p-ck

check (weekday-p in ('t', 'f')) disable

-- the user agent dimension

create sequence cs-user-agent-idsequence;

create table csdimuser-agents (

user-agent-id integer

constraint csdua-user-agent-id-pk primary key,

-- The string returned by the browser

useragent-string varchar(3000) not null,

-- Mozilla, Opera, IE

browser-type varchar(3000),

browserversion varchar(3000),

-- The major part of the browser version. For MSIE

-- and Mozilla, this is just the first three characters.

browser-version-major varchar(3000),

-- MacOS, Win32, Unix

operating-system varchar(50),

-- MacOS 8, Windows 95, Windows 98, Windows NT, Linux, Solaris, etc.

68

operating-system-variant varchar(50)

create unique index cs-dim-user-agents-by-string on

csdim-user-agents(user-agent-string);

create table cs-operating-system-keys (

try-order integer

constraint cs_dostry-order-pk primary key,

key-string varchar(100)

constraint cs-doskey-string-nn not null disable,

operating-system varchar(100)

constraint cs-dos-operation-system-nn not null

disable,

operating-systemvariant varchar(100)

create sequence csevent_id-seq cache 1000;

-- the event log

create table csevent-log (

eventid integer

constraint cselevent-id-pk primary key,

eventtime integer

constraint cseteventtimenn not null disable,

end-time integer

constraint csetendtimenn not null disable,

dateid integer

constraint csetdateidnn not null disable,

url varchar(4000)

69

instanceid

userip

userid

query

bytes

content-type

sessionid

browserid

user agent-string

accept-language

referring-url

method

status

secure-p

constraint cs_eturlnn not null disable,

varchar (4000),

varchar(50)

constraint cs-et-user-ip-nn not null disable,

integer,

varchar (4000),

integer,

varchar(200),

integer,

integer,

varchar(4000),

varchar(10),

varchar (4000),

varchar(10)

constraint csetmethodnn not null disable,

integer

constraint csetstatusnn not null disable,

char(1)

constraint csetsecure-p-nn not null disable

constraint cs-etsecure_p-ck

check(secure-p in ('t','f'))

) nologging storage (

initial 50m

next 50m

pctincrease 0);

-- user information

-- note that this table is not normalized because we want to prevent

-- snowflaking, and there can be more than one user-state per user.

70

create table cs-dimusers (

userid integer,

birthdate date,

sex char(1)

constraint cs-dusexck

check (sex in ('m','f')) disable,

postalcode varchar(80),

hacountrycode char(2),

affiliation varchar(40),

race varchar(100),

incomelevellower integer,

incomelevel-upper integer,

-- these last two have to do with how the person

-- became a member of the community

how-acquired varchar(40),

-- will be non-NULL if they were referred by another user

referred-by integer,

-- e.g., "seen privacy policy"

userstate varchar(3000),

constraint cs-du-user-id-state-un

unique(user-id, userstate)

);

create sequence cssession.id-sequence increment by 1000;

create table csdimsessions (

sessionid integer

constraint csdssessionid-pk primary key,

sessionstart integer,

sessionend integer,

71

dateid

referrerid

user-id

user-agent-id

browserid

clicks

last-fact

-- e.g., repeat

usertype

integer,

constraint csdsreferreridfk

references csdimreferrers disable,

integer,

constraint csds-user-agent-idfk

references csdim-user-agents disable,

integer,

integer not null,

integer,

visitor, search engine visitor, complainer...?

varchar(20)

-- old sessions lasting for a day or two that we keep around

-- to prevent double counts on day boundaries (e.g., someone logged

-- in from 11:30pm to lam should be counted once, not twice).

create table csoldsessions (

dateid

session-id

integer,

integer

);

-- the cs fact table, processed from the cseventlog table.

create sequence csidsequence;

create table cs_facttable (

csid integer primary key,

-- load start/end, dwell time if able to determine

loadstart integer,

72

);

loadtime

dwelltime

page-id

-- which instance of

instanceid

instance-provided-p

referrerid

dateid

sessionid

user-agent-id

user-ip

browserid

userid

-- HTTP method (GET,

method

-- HTTP status code

status

integer,

integer,

integer constraint cs-ft-page-id-fk

references cs-dim-pages not null disable,

the page is it?

varchar(3000),

char(1) default 'f' not null

check(instance-provided-p in ('t', 'f')) disable,

integer constraint csftreferreridfk

references csdimreferrers disable,

integer

constraint csftdateid-nn not null disable

constraint csftdateidfk

references csdimdates disable,

integer

constraint cs-ft-session-id-fk

references csdimsessions disable,

integer

constraint csftuser-agent-id-fk

references csdimuser-agents disable,

varchar(50)

constraint csftuser-ip-nn not null disable,

integer,

integer,

POST, HEAD)

varchar(10)

constraint csft-methodnn not null disable,

integer

constraint csftstatusnn not null disable,

73

bytes integer,

content-type varchar(200),

-- might want to turn accept-language into a dimension?

accept-language varchar(10),

secure-p char(1)

constraint cs-ftsecure-p-nn not null disable,

constraint csftsecure-p-ck

check(securep in ('t','f')) disable,

-- how many css into the session are we? 1, 2, 3...

cswithinsession integer

) nologging storage (

initial 50m

next 50m

pctincrease 0);

create index csfacttable-by-sessionid on csfact-table(sessionjid);

-- a bitmap star join, so we create bitmap indices on

-- columns with low cardinality

create bitmap index cft-page-idjidx on cs_facttable(page-id);

create bitmap index cft-dateididx on cs_facttable(date-id);

create bitmap index cftuser-agent-ididx on csfacttable(user-agent-id);

create bitmap index cftmethodididx on csfacttable(method);

-- this table aggregates by page/instance/referrer pair

create table cs-f act table-aggregate (

cs-aggregate-id integer primary key,

-- we just sum the number of records that have the

-- same page/referrer pair when we do the aggregation

weight integer,

74

-- avg load-start - load-time difference

loadduration integer,

-- avg dwell time

dwelltime integer,

page-id integer not null,

-- which instance of the page is it?

instanceid varchar(3000),

referrerid references csdim-referrers,

-- avg bytes

bytes integer,

content-type varchar(200),

-- might want to turn accept-language into a dimension?

accept-language varchar(10),

secure-p char(1) not null check(secure-p in ('t','f')),

-- how many css into the session are we? 1, 2, 3...

-- this will be an average too

cswithinsession integer

-- for handling errors

create sequence cs_errorid-sequence;

create sequence cs-jobjid-sequence;

-- for logging when click-dw-populate runs

create global temporary table cs-active-job (

job-id integer

) on commit preserve rows;

create table cs-jobs (

job-id integer

75

constraint cs-jobs-job-id-pk primary key,

create table

errorid

eventid

job-id

errornum

errormes

location

timestamp

date

constraint cs-jobs-start-stamp-nn not null,

date,

integer

cserrors (

integer

constraint cs-errors-error-id-pk primary key,

integer,

integer

constraint cserrors-job-idfk references cs-jobs

constraint cserrors-job-idnn not null,

ber number,

sage varchar(3000),

number,

date

create table cssitemap (

page-id constraint cs-sitemap-pageid-fk

references cs-dim-pages disable

constraint cs-sitemap-page.id-pk primary key,

parent-page-id constraint cs-sitemap-parent-page-idfk

references cs-dim-pages disable,

loop-topp char(1) default 'f' not null

check(looptop-p in ('t','f')),

hits integer,

treelevel integer,

76

startstamp

endstamp

eventcount

);

);

varchar (400)

);

create index cs-sitemap-by-level on cssitemap(tree-level);

create sequence cs-processing-log-id-sequence;

create table cs-processing-log (

log-id integer primary key,

jobid constraint cs-pl-job-id-nn not null

constraint cs-pl-jobid-fk

references cs-jobs on delete cascade,

log-msg varchar(4000),

stamp date

create table cs-event-log-loads (

chunkstarttime integer

constraint csevent-log-load-date-pk primary key,

processed-p char(1) default 'f'

constraint csevent-log-processed-p-nn not null

constraint csevent-log-processed-p-ck

check(processed-p in ('t','f'))

create table csbestreferrers (

page-id integer,

parentpageid integer,

hits integer

77

tree-order

-- helper table

create table cshistorical-visits-temp (

dateid integer,

n_sessions-day integer,

member.p integer,

n_users integer

-- maps userstates to URL stubs

create sequence csurluserstates-seq;

create table csurluserstates (

url-user-stateid integer primary key,

url varchar(3000) not null,

userstate varchar(3000) not null,

-- is this a URL stub?

stub-p char(1) constraint csurlusstubck

check(stub-p in ('t','f')) disable

);

-- clickstream historical data model

-- since we are throwing away data, we want to be able to aggregate

-- data in different ways. the approach we take here with the

-- aggregate-group column is conceptually similar to kimball's "level"

-- approach. each aggregate-group represents a particular aggregate

-- group e.g., people who have read the privacy policy v people who

-- have not read the privacy policy.

create table cshistorical-by-day (

78

dateid integer

constraint cshbddateidfk

references csdimdates disable,

-- count(*) from csfact-table

n-page-views integer not null,

-- count(user-id) from csfacttable

n-user-page-views integer not null,

-- count(sessionjid) from csfacttable

n-session-page-views integer not null,

-- count(*) from csdimsessions

n_sessions integer not null,

-- count(userid) from csdimsessions

n_user-sessions integer not null,

-- count(distinct user-id) from csdimsessions

n-uniqueusers integer not null,

-- avg(session-end - sessionstart) from csdimsessions where clicks > 1

avg-session-length number,

-- avg(clicks) from csdimsessions where clicks > 1

avg-session-clicks number,

aggregate-group varchar(3000),

constraint csdate-agg-grp-un unique(dateid, aggregate-group)

create table cs-historical-by-hour (

dateid constraint cshbhdateid references csdimdates disable,

hour integer

constraint cshbhhourck check (hour >= 0 and hour < 24),

n-page-views integer not null,

constraint cshistorical-by-hour-pk primary key(dateid, hour)

79

create table cs-historicalvisits (

dateid integer

constraint cshvdate-idfk

references csdimdates disable

constraint cshvdateidnn not null,

browserid integer,

userid integer,

n_sessions.day integer,

unique(date-id, browserjid, userjid)

-- These are views are to be used in /admin/cs/vists-report-cumulative.tcl

-- Counts the number of members and non-members per number of sessions

-- in a day e.g., 500 members who had 50 sessions on this particular

-- day. count(browser-id) counts the number of browsers that have

-- visited the web site in this time period; we consider this number

-- to be the number of visitors to the web site. We do not do a count

-- distinct because we want to consider the case where there are

-- multiple users using the same browser. However, we are missing the

-- Nada case, where the same user may use different browsers to log on

-- to the system.

create or replace view cshistorical-visits.grouped

as

select date.id, n-sessions-day, decode(user-id,null,0,1) memberp,

count(browserid) nusers

from cshistoricalvisits

group by dateid, nsessionsday, decode(useridnull,0,1);

80

create or replace view cs_n_sessions-day-user

as

select b.dateid, b.nsessionsday, nvl(a.nusers, 0) as members,

b.nusers as nonmembers

from cshistorical-visits-grouped a, cs-historicalvisits-grouped b

where b.nsessions-day = a.n-sessions-day(+)

and b.dateid = a.date-id(+)

and 1 = a.member-p(+)

and b.member-p = 0

UNION

select a.date-id, a.nsessionsday, a.nusers as members,

nvl(b.nusers, 0) as nonmembers

from cshistorical-visits-grouped a, cshistorical-visits-grouped b

where a.nsessions-day = b.n-sessions-day(+)

and a.dateid = b.date-id(+)

and a.member-p = 1

and 0 = b.member-p(+);

create table cs-historical-page-views (

dateid constraint csjhpv-dateid

references csdim-dates disable,

page-id constraint cs-hpvbdpage-idfk

references cs-dim.pages disable

constraint cs-hpvbd-pagejid_nn not null disable,

n-page-views integer not null,

constraint cshistorical-page-views-pk primary key(dateid, page-id)

81

-- a list of available reports

create table cs-daily-reports (

reportname varchar(30) not null primary key,

reporttitle varchar(200) not null,

description varchar(4000),

sortkey integer

82

Bibliography

[1] Ralph Kimball and R. Merz. The Data Webhouse Toolkit: Building the Web-

Enabled Data Warehouse. John Wiley & Sons, 2000.

[2] ArsDigita, Inc., http://www.arsdigita.com/doc/. ArsDigita Community System

Documentation.

[3] AOL, Inc., http://www.aolserver.com. A OLserver 3.x Documentation.

[4] Oracle, Inc., http://oradoc.photo.net.

brary.

Oracle8i Release 2 Documentation Li-

[5] Ralph Kimball. The Data Warehouse Toolkit: Practical Techniques for Building

Dimensional Data Warehouses. John Wiley & Sons, 1996.

[6] Ralph Kimball et al. The Data Warehouse Lifecycle Toolkit. John Wiley & Sons,

1998.

[7] S. Rupley. Web profiling. PC Magazine, 23 November 1999.

[8] Accrue Software, Inc., http://www.accrue.com/pdf/webminingwhitepaper_0300.pdf.

Web Mining Whitepaper, 2000.

[9] Oracle, Inc., http://technet.oracle.com/products/clickstream/pdf/click-ds.pdf.

Oracle Clickstream Intelligence 1.0, October 2000.

[10] M. Hammond. Microsoft joins 'webhousing' crowd. PC Week, 15 October 1999.

[11] Richard Winter. More than you hoped for. Scalable Systems, 3(6), 10 April 2000.

83

[12] Gavin Skok. Establishing a legitimate expectation of privacy in clickstream

data. Michigan Telecommunications Technology Law Review, 61, 22 May 2000.

http://www.mttlr.org/volsix/skok.html.

[13] R. Armstrong. Data warehousing: dealing with the growing pains. In Proceedings

of the 13th International Conference on Data Engineering, pages 199-205, 1997.

[14] Sane, Inc., http://www.sane.com.

84

