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Abstract

This thesis derives its motivation from developing 1.55pm semiconductor modelocked lasers
for use in high-speed, high-resolution optical analog-to-digital systems. Understanding how
to experimentally determine laser parameters is vital to knowing how well the modelocked
laser will perform. This thesis begins by explaining the different experimental techniques
used in determining these parameters. Extensive use of the spectrum analysis method de-
veloped by Hakki and Paoli is used. The laser parameters can then be used in a theoretical
simulation to determine the dynamics and performance of the modelocked laser. The simu-
lation can be used to determine which parameters are most important when different design
issues are imposed. This thesis first explores a split-step Fourier method developed by Der-
ickson et al. A critical analysis of the method is presented and its limitations are discussed.
A new split-step finite difference method is developed and analyzed. The method is used
to determine trends useful for design of superior performance modelocked lasers.
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Chapter 1

Introduction

Analog-to-digital converters are an integral technology that allows us to interpret real world

information into electrical data. They are the necessary interface of computers to the

physical world, allowing us to create massive databases, communicate with others across

the globe, store and analyze scientific data, and control electrical devices such as robots,

to name just a few applications. They also allow us to perform tasks that were never

before possible, such as weather forecast modeling or secure data encryption. The success

of computers relies on the ability to transmit, store, and manipulate digital data. Without

this, they would not have been able to achieve the speed, power, and reliability that we

take for granted today. The real world, however, is not digital. For example, our limbs

do not have a limited number of specified positions that they can bend. Rather, they

can swing freely through a virtually infinite number of positions that span the range of

flexed to extended. If a computer was used to model the movement of a human arm, it

would not have the ability to represent the position of the arm to infinite precision since

this would require an infinitely large storage device. It is, however, allowed to take the

infinite number of possible positions and pick (for argument's sake) a large number of them

that would suitably represent the entire set. This process is called discretization, and is

similar to rounding a number off to an integral value. The number of discrete values that

have been selected to represent the whole analog set determines the accuracy of the digital
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representation.

The ability for digital systems to interact with the real world is of great importance.

Weather satellites need to translate weather information such as cloud locations, tempera-

ture fluctuations, etc. into digital data in order to transmit this to computers on earth for

analysis. Digital cellular phones take human speech, digitize it, encode it and transmit it

via radio waves, which are analog. These wave eventually are received, redigitized, decoded,

and played over the listener's phone speaker. Even a computer keyboard takes finger pres-

sure and translates this into a digital representation of a letter. All of these applications

necessitate converting analog, real-world data into a digital representation. The devices that

perform this action, analog-to-digital (A/D) converters, are the subject of current research.

1.1 A/D Converters

The ability to perform high-speed and/or high-resolution A/D conversion is essential in a

wide variety of applications, such as recording/analysis of scientific data and on-the-fly audio

or image data processing. A/D converters take analog signals that are continuous in time

and magnitude, such as human speech or the temperature in a room, and discretize them

in both time and magnitude. This is performed in two stages. The continuous-time analog

signal is sampled periodically in time, taking only specific values of the waveform (Figure 1-

1(b)). Then each of those time-samples are then discretized in magnitude, "rounded" to a

specific, discrete magnitude that most closely represents the true value (Figure 1-1(c)). This

leads to defining two important figures-of-merit for describing A/D conversion: sampling

rate and sample resolution. The ability to increase the sampling rate, which is typically

measured in Hertz (Hz) or samples-per-second, allows more information to be sent in a given

time interval. The increase of the sample resolution, which is measured in bits-per-sample,

increases the sensitivity of the information that is collected.

Due to error introduced by noise and quantization, a practical maximum limit is set on

the these parameters. In general, the existing state-of-the-art A/D converters follow a trend

in which for every doubling of the sampling rate, a bit of resolution is lost [633. Depending on
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20 CHAPTER 1. INTRODUCTION

the application, a high sampling rate is accompanied by a mediocre resolution, or vice-versa.

For example, certain video applications require 14-bits at 2 Megasamples/second (MSPS)

while other audio applications require 24-bits at 96 kilosamples/second [4]. Figure 1-2 shows

a scatter-chart of currently-available A/D converters. Most of these A/D converter systems

are implemented electrically. Since the essentially analog input is typically electrical, this

choice makes sense. Electrical systems are inherently high-speed due to electron transport

speeds and lifetimes. The current state-of-the-art converters are primarily implemented

with IC transistor technology [4].
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1.2 Optical A/D Converters

Applications are being developed that require A/D conversion at high speeds and greater

sensitivity. As the need for faster, higher-resolution converters arises, new techniques of

conversion are being explored. The current goal for the next state-of-the-art converters is

to create a 10 GHz, 12-bit resolution A/D converter, which is necessary for certain data col-
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lection applications. A/D conversion has traditionally been implemented with all-electrical

components. All-electrical converters are bottlenecked in sampling rate and resolution by

electrical sample-and-hold circuitry [59].

In order to overcome the bottleneck, alternative methods of conversion are being ex-

plored. The most promising alternative is to perform optical A/D conversion. Optical A/D

conversion is not limited in sampling rate, since it employs optical pulses to bypass the need

for high-speed electrical sample-and-hold circuitry. There is also no cross-talk between the

sampling clock (which is optical) and the RF data signal (which is electric).

There are several methods that employ photonics to achieve higher speed and resolu-

tion A/D conversion [18, 56]. One of the currently researched methods uses a laser which

produces periodic optical pulses. This periodic laser pulse train serves as the sampling

clock for the sampling sub-system. The analog electrical input signal modulates the voltage

input of an electro-optic modulator (EOM), whose optical input is the laser pulse train.

As each pulse passes through the EOM, its amplitude is modified by the voltage level of

the electrical input. Thus, the optical input pulses can "read" the radio-frequency (RF)

electrical input. The output is an amplitude-modulated train of optical pulses that repre-

sent the discretized analog signal. These optical samples are then converted into electrical

step waveforms before they are turned into bits. However, there are still speed limitations

on the electrical components that perform amplitude-digitization. Therefore, the optical-

to-electrical sub-system implements a 1:4 time demultiplexer that splits the optical signal

into four optical signals that are 1 the data rate of the original (Figure 1-3). These op-4

tical samples are then turned into time-discrete electrical step waveforms using an optical

detector/integrator (sample-and-hold system) [56]. These lower-frequency electrical signals

can then be digitized by a traditional electrical A/D converter, which converts these time-

discrete electrical waveforms into 12 discrete electrical bit waveforms. The bit waveforms

are then collected by a computer and then post-processed to multiplex the information into

its original order. This setup has been proposed in [59]. Figure 1-3 shows the diagram of

this system. The advantage of this system is by using the demultiplexer, the limitations
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of sampling rate of the electrical digitizers can be overcome by splitting the signal into

slower components. By using optical components, limitations of speed and resolution can

be
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Figure 1-3: Schematic of Proposed Optical A/D system [59]

A quantitative analysis on the maximum achievable resolution for a given sampling

frequency leads to a study of the noise present in a practical system and a classification

of the different noise phenomenon [63]. In the proposed optical A/D converter, the noise

introduces itself at different segments of the system. The first, quantization noise, arises

from the fact that when an analog signal is translated into a discrete magnitude, error

from the 'rounding-off' process is created. Quantization noise is inherent even in an ideal

A/D converter. Other noise sources are non-ideal and contribute to the deviation of the

output from the ideal case. This noise can effectively make the lowest significant bits of the

converter useless, depending on the ratio of the noise to the signal, or signal-to-noise (SNR)
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ratio. The effective usable bits can be calculated, given the SNR:

Neff = (SNR(dB) - 1.76)/6.02 (1.1)

where Neff is the effective number of bits and SNR(dB) is the signal-to-noise ration [dB].

The greatest sources of error come from the noise introduced by the optical pulse train. An

ideal pulse train has evenly spaced pulses in time and each equal in magnitude. Optical

pulses can have variations in amplitude, which produce variations in the magnitude of the

sampled RF signal (Figure 1-4(b)). This is known as amplitude jitter and has a nominal

effect on the increase of the system's noise. A more cogent source of error is the variations

of time between pulses that cause a non-periodic pulse train (Figure 1-4(c)). This source

of error is known as timing jitter and is a parameter for pulse-producing lasers that is not

well understood [14, 25, 62, 40].

E .>t t

(a) (b) (c)

Figure 1-4: (a) Ideal pulse train. (b) Pulse train with amplitude jitter. (c) Pulse train with timing
jitter.

The maximum achievable bit resolution can be calculated, given a timing jitter, ra:

Be = log 2  - 1 (1.2)Btj ~ N? =19 /7fs",mpia

where Bti is the maximum achievable bit rate due to timing jitter limitations and fsamp

is the sampling frequency of the A/D converter [Hz]. For the proposed system, with a
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sampling rate of 10 GHz and 12 bits per sample, this would imply a timing jitter of 4.5 fs.

Even for a moderate sampling rate of 1 GHz at 12 bits/sample, a timing jitter of 45 fs is

necessary. Currently, typical semiconductor pulsing lasers have timing jitters of hundreds

of femtoseconds to picoseconds [13], well above that of the necessary specification to realize

this high-speed system. Apparently, timing jitter is of utmost concern and remains as the

most important parameter of a pulsed optical source. The challenge lies in creating a laser

source that meets the specifications of the proposed system, which necessitates a drastic

decrease in timing jitter.

Several varieties of laser design exist that are capable of producing periodic pulse trains.

Examples include gain-switching, Q-switching, and modelocking [58]. Because of jitter,

repetition rate, and other concerns, only modelocked lasers have been found as suitable

sources for use in high-speed optical A/D converters (Figure 1-9).

1.3 Modelocking

In a laser, an optical resonator confines the optical field and promotes optical amplification

due to stimulated emission [11]. The resonator confinement is accomplished in one dimen-

sion by two partially reflective mirrors that keep the light within the laser cavity. A fraction

of that light is transmitted through the mirrors; this light that escapes is the observed out-

put of a laser. In a simple laser design, these mirrors create Fabry-Perot resonances of

the optical electro-magnetic field when a lasing steady-state is reached. A 1-dimensional

resonant cavity can theoretically support a countably infinite number of these Fabry-Perot

resonances (see Section 2.4.2). This produces a frequency comb where the resonance peaks,

called modes, are separated by the round-trip frequency of the Fabry-Perot cavity (Fig-

ure 1-5(a)).

Due to the laser's active region's gain bandwidth, only one or a few of these modes exist

in an above-threshold laser steady-state condition. Typically, the phase of these modes

are uncorrelated. This produces a laser output that is randomly distributed in time but

relatively constant due to the high frequency of the optical light. When the phases of these
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modes are locked together so that they do not drift with respect to each other (or at most

drift lineary, causing a time drift to the entire pulse), then the output of the light becomes a

pulse train. A simple explanation for this is that the inverse Fourier transform of an infinite

train of evenly-spaced frequency impulses is an infinite train of evenly-spaced impulses in

the time-domain. These time-domain spikes correspond to optical pulses. Due to the finite

gain bandwidth of the laser, only a finite number of frequency-domain peaks are available.

This corresponds to a non-ideal impulse in the time-domain, i.e. an optical pulse with a

finite, non-zero pulse width (Figure 1-5(b)). Since the Fabry-Perot resonance frequencies of

the different modes are integral multiples of the round-trip frequency of the cavity, the pulse

train exists at a mode separation at the round-trip frequency of the cavity also. Hence, the

laser is modelocked and the output is an optical pulse train at the round-trip time of the

Fabry-Perot cavity.

(b
(a) (b)

Figure 1-5: (a) Frequency-domain and (b) Time-domain representations of modelocked pulses

Modelocked lasers have the best chance of producing pulses that can meet the specifi-

cations to build the proposed A/D converter system. Prior results from this class of lasers

promises the closest specifications in jitter and repetition rate to the proposed system. The

repetition rate of modelocked lasers are determined by the round-trip frequency (or some
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harmonic) of the laser resonator. Modelocked lasers have exhibited repetition rates of over

100 GHz [22J, well beyond the specifications of the proposed system. Since the phases of

the modes are correlated, the time variation between pulses is reduced. Actively mode-

locked lasers have exhibited timing jitter values as low as 50 - 100fs [33, 6, 15], whereas

gain-switched lasers have timing jitter values typically greater than 1 ps [17, 40].

Modelocking has been achieved in a variety of material systems and configurations.

Solid-state crystal modelocked lasers were the first demonstrated modelocked lasers. They

utilize a solid-state crystal active element and typically employ free-space optics to define a

resonant cavity. They provide high-power, short pulse width, low jitter pulses [19], however

they are not usable in practical, high-volume applications due to their cost and size. Another

currently researched method is fiber ring laser modelocking. Fiber ring lasers employ lengths

of Erbium-doped fiber to provide a cost-effective gain-medium waveguide that can be looped

into a ring configuration. Free-space optics are placed in the path of the ring geometry to

produce modelocking. Fiber ring lasers are excellent choices for a modelocking, providing

reasonably low jitter and smaller size than their solid-state crystal counterparts, but they

continue to demand a relatively large volume due to the fiber lengths and optics [26].

The method explored in this thesis is semiconductor diode laser modelocking. Tradition-

ally, semiconductor laser modelocking was performed by using semiconductor modelocking

segments coupled together through free-space optics [16]. The facet reflectivity of the seg-

ments is kept to a minimum by anti-reflection coating and the light is typically focused

through lenses. While typically smaller in real-estate than the other modelocking methods,

the use of bulk optics necessitates sizable area constraints. However, the field of integrated

circuits provides the ability to monolithicly integrate all necessary modelocking components

onto a single semiconductor wafer. Typical dimensions for a monolithic semiconductor

modelocked laser wafer are less than a square millimeter and a few hundred microns thick.

Fabrication techniques allow for massive parallel manufacturing, yielding low-cost, high-

performance modelocked laser sources. The drawbacks are lower pulse power, and slightly

higher timing jitter than their fiber ring laser counterparts.
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The two major classifications of modelocking are active and passive modelocking. They

are presented below in the context of semiconductor modelocked lasers but are general for

all modelocked devices.

1.3.1 Active Modelocking

A general active modelocking scheme is shown in Figure 1-6. It consists of two major

sections: (a) an active modulation section that is modulated by an RF signal at the round-

trip frequency of the cavity and (b) a waveguide section that provides a cavity for the pulses

to propagate through. The RF signal is typically a sinusoid but can be any sharply peaked

function of current. This current modulation produces a carrier density modulation which

in turn produces a photon gain modulation within the active section. Given an existing

pulse within this cavity, it will enter the active section at the round-trip frequency of the

cavity. If it has modelocked, then the pulse should propagate through the active section

while the photon gain within that section is at its peak. When the pulse is not present in the

cavity, the gain should be lower than the peak, until the pulse returns again to the active

section. This time-dependent gain function causes the photon field to be highest only when

the gain is highest, thus producing a pulse that propagates at the round-trip frequency of

the cavity.

Rather than a time-domain explanation, a frequency-domain explanation can be used

to explain this modelocking phenomenon. A frequency comb exists due to the Fabry-Perot

resonances of the cavity. Each frequency mode is separated by the round-trip frequency

of the cavity, but the time-domain profile is random due to the uncorrelated phases of the

Fabry-Perot modes. The RF modulation, being at the round-trip frequency of the cavity,

causes a non-linear coupling between the Fabry-Perot modes of the laser cavity, allowing

energy from each mode to couple into their neighboring modes. This energy coupling also

implies a phase coupling, since the photons carry with them their phase. Eventually, a

steady-state solution of this mode coupling is a total homogeneity of phase. The phase

locking implies the time-domain profile of the photon field (which is the inverse Fourier
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transform of the frequency mode train) is a pulse train.

1.3.2 Passive Modelocking

Passive modelocking again requires at least two major segments, as shown in Figure 1-8: (a)

a saturable absorber section and (b) a gain section. The purpose of the saturable absorber

section, given a pulse propagating through it, is to attenuate the pulse, thus shortening its

pulse width. Because of loss saturation in the saturable absorber, there will be a non-linear

attenuation of the pulse. As the pulse enters the absorber, the front end of the pulse is

attenuated as photons are absorbed by the material and excite electrons into the conduction

band. As more and more of the pulse propagates through the absorber region, more of it

is absorbed and the carrier density rises. This results in a reduction of the loss of the

section, since there are fewer excitable valence electrons. If there is sufficient energy within

the pulse, this will cause the material to approach transparency, which is the state of no

loss or gain (the absorption is saturated). Hence, the end result is the pulse's leading edge

is attenuated while the trailing edge is not. This effectively results in "shaving off' the

front edge of the pulse and shortening the pulse width. If the gain is also saturable, the

opposite effect occurs as the pulse propagates within the gain section. The leading edge

of the pulse will be amplified while the trailing edge will not as much, thus resulting in a

widening of the pulse. In a passively-modelocked laser, the competition of the saturable

absorber's pulse narrowing and the gain section's pulse broadening leads to a steady-state

round-trip condition in which the pulse propagates through the laser and returns to its

original position and direction in exactly the same shape. The pulse has effectively been

narrowed, broadened, broadened again, and narrowed back to its original shape.

Active modelocking is useful when low jitter pulses are desired. This is due to the

fact that the RF modulation source serves also as a stabilizer of pulse period. The RF

source, while inherently noisy itself, stabilizes the pulse period more effectively than without

the source. Passive modelocking has no such stabilizing source and therefore has much

higher timing jitter. Passive modelocking, however, is not limited in repetition rate by the
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Figure 1-8: General passive modelocking scheme: (a) saturable absorber section (b) gain section

maximum obtainable RF source frequency, which typically cannot rise above 50 GHz. Since

a source is not needed, the upper-bound on the repetition rate is not bottlenecked by this.

Rather, the repetition rate is defined solely by the length of the laser, since this determines

the round-trip frequency of the laser. Practically, there is a maximum repetition rate that

is imposed by absorber to gain ratios [39].

1.3.3 Hybrid Modelocking

It is not a large step forward to realize a system that utilizies both active and passive

modelocking phenomena. A three-section device can be fabricated to provide an actively

modulated section, a saturable absorption section, as well as a gain/waveguide section. This

technique is known as hybrid modelocking [16] and it provides the benefits as well as deficits

of both methods of modelocking. Typical figures of merit for the three laser designs are

shown in Figure 1-9.

Modelocked lasers can be used for applications other than optical A/D conversion. It

k
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TABLE I
COMPAvs Ow OF M tIssOMENT SyatjCums PEtAO*MANCF

Spectral Time- Pulse Repetition
Cavity Modulation Pulse width Width Bandwidth Energy Rate Wavelength Active

Type Technique (ps) (GHZ) Product (p.) (OHz) (0m) Region Rference

Ext. Active 1.4 342 0.48 0.28 3 1I3 Bulk 171
Two-Seg.

Ext. Passive 2.5 720 1.8 0.7 5 0.84 4 QW 1221
Two-Seg.

Ext. Hybrid 2.5 1000 2.5 0.8 5 0.84 4 QW 1221
Two-Seg.

Ext. Hybrid 1.9 900 1.71 0.18 6 0.83 Bulk (16), (271
Thee-Seg.

Mon, Active 13 330 4,3 0.19 5.5 0184 4 QW (22)
Two-Seg.

Mon. Hybrid 6.5 540 3.5 0.13 5.5 0,4 4 QW 1221
ThrccSeg.

MOn. Passive 10 400 4.0 0.25 5.5 0.84 4 QW 122)
Two-Seg.

Mon. Passive 5.5 550 3.0 0.53 I1 0.84 4 QW
Two-Seg.

Mon. Hybrid 2.2 500 1.1 0.03 21 1.58 4 QW
Three-Seg.

Mon. Passive 1.3 600 0,78 0.02 41 1.58 4QW (381
Two-Seg.

Mon. aSwitch 15 2400 36 4 1 0.825 Bulk
Two-Seg.

Mon, Gain-Switch 13 4000 52 3.4 0.822 Bulk
TwoSg.

Figure 1-9: Semiconductor modelocked laser comparison [17]

is used for performing pump-probe experiments for exploring carrier dynamics. A "pump"

pulse excites the sample of interest in which a "probe" pulse follows after some time delay

and is detected. The detection of the probe pulse tells how the material has been affected

by the pump pulse and the time delay between pulses. It is a useful technique for measuring

carrier lifetimes.

1.4 Thesis Overview

This thesis concentrates on the development of modelocked semiconductor lasers that will

eventually be used in an A/D converter system. Modelocked lasers exhibit the lowest jitter

of optical pulse sources and can produce pulses faster than 100 GHz [9, 3]. This thesis will

study the dynamics of modelocked laser diodes (MLLD) in order to improve performance

and optimize design.

Chapter 1 provides motivation for the work in this thesis, as well as a brief overview
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of modelocking. Chapter 2 goes into the various experimental and theoretical methods of

physical laser characterization. Chapter 3 critically analyzes the split-step Fourier method

and discusses its limitations. Chapter 4 presents the split-step finite difference (SSFD)

method and uses the method to derive trends for design purposes. Chapter 5 summarizes

the works presented in this thesis.



Chapter 2

Characterization

In order to better understand the characteristics and quality of a laser design, one must

analyze the various parameters that determine the performance of the laser. For example,

knowing the DC lasing threshold is important to understanding where to bias a laser when

modelocking (See Chapters 3 and 4). These laser parameters can be derived through theory

or determined experimentally. A careful choice of which method to use for each parameter

is important. Certain parameters are easily determinable through experiment, and their

results can typically be more accurate than a theoretical value. However, others are difficult

to impossible to determine through experiment and a theoretical approach is necessary. This

chapter first discusses the design of the lasers used in this thesis. It then introduces the

various laser parameters and provides several approaches to determining them. A discussion

of sources of error and the accuracy of each approach follows most techniques.

2.1 Laser Design

The laser used in all modelocked experiments is a 1550 nm Fabry-Perot quantum well laser

designed and processed by Farhan Rana at MIT and grown by Patrick Abraham at the

University of California, Santa Barbara. The substrate is 3 - 5 x 10 1 7 cm- 3 S-doped n-type

InP (uncertainty due to growth calibration). The six quantum wells are 70A thick 1.55pm
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InGaAsP with +1% strain. The barriers are 70A thick 1.18pm InGaAsP with no strain.

The ridge layer is 5x10 18 C- 3 Zn-doped p-type InP and is 1.5pm thick. Ridge widths were

processed in 1.5 and 2.0pm widths. Figure 2-1 shows the hybrid modelocked laser profile,

including the biasing scheme, and band structure.

The laser is current- and index-guided by etching a ridge (1.5pm and 2.Opm widths)

through the p-type InP down to but not including the active region. A very thin layer of

oxide is then deposited on the entire top of the wafer. The oxide allows a layer of polyimide

to be deposited. The polyimide is spun on and cured. The entire wafer surface is then

planarized to the height of the ridge surface. Ohmic contacts are then deposited on the

ridge surface and entire wafer backside.

All subsections of the modelocked laser, including active region, passive region, and gain

region are integrated onto a single wafer. The three sections were electrically isolated by

etching two 1pm wide channels through the transverse direction of the ridge (see Figure 2-

2). The etching of these two channels was included in the same step as the etching of the

ridge itself, therefore the channels extend down to the active region. During the polyimide

spinning step, polyimide was able to fill the channel to provide a planar surface for the met-

allization. The ohmic contacts were deposited over the ridge areas, excluding the channels.

The inter-section resistance was measured to be greater than 1MQ.

An additional growth was prepared by E.P.I., a foundry in England. This laser design

was used primarily in the characterization techniques found in this chapter. The major

differences are the number and size of the quantum wells and the ridge dimensions. The

bottom n-doped region was doped at 3 - 5x 10 17 cm- 3 . Five 60A quantum wells with

+0.8% strain were separated by 100A barriers with -0.5% strain. The separate confinement

heterostructure (SCH) layers were 120nm thick; both n- and p-type layers were doped

1x 10 17 cm-3. Both the SCH and barriers were 1.3pLm InGaAsP. The p-type ridge was doped

5x 10 17 cm- 3 and was 1.5pm thick and several different widths were processed, including 3,

4, and 5pm. Figure 2-3 shows the band structure of this alternate laser design.
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Figure 2-2: Schematic of hybrid laser design: (a) without (shown for detail) and (b) with polyimide
planarization.
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2.2 Laser Rate Equations

A basic but powerful model for continuous wave (CW) laser operation describes the time

rate of change of the carrier concentration and photon concentration [11]. These equations

are:

dN _ iI Ndt -qV - - - vggNp (2.1)dt qV T,

dN _N~ 22p= FvggNf+ spRsp - (2.2)
dt T,

where N is the carrier concentration [cm 3], t is time [s], qj is the internal quantum effi-

ciency, I is current [A], q is the fundamental electron charge [C], V is voltage [V], mc is the

carrier lifetime [s], V. is the photon group velocity [m/s], g is the differential gain [cm- 1 ,

Np is the photon density [cm- 3 ], F is the photon confinement factor, f,3 is the spontaneous

emission factor, Rs, is the rate of spontaneous emission [cm--3s-1], and Tp is the photon
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lifetime [s]. The carrier lifetime, T, and the photon lifetime, Tp, are abbreviations for:

N -AN+BN2 + CN 3  
(2.3)

Tc

1
- = v (a + am) (2.4)

where for low carrier concentrations, A is the trap recombination coefficient [s- 1], B is the

bimolecular recombination coefficient [cm- 3 s 1 J (accounts for spontaneous emission), C is

the Auger recombination coefficient [cm~6 s- 1] (see Section 2.4.6 for explanation at high

carrier concentrations), ai is the internal loss [cm-1] (due to material loss), and am is the

distributed mirror loss [cm-1. It is important to note that the recombination coefficients

in the carrier lifetime equation only take on these definitions under low carrier densities

when Boltzmann statistics hold. Under high carrier densities, the Fermi statistics of the

electron occupancy take on more complicated dependencies rather than a simple integral-

degree polynomial expansion. Section 2.4.6 explains this in further detail. The internal loss

is due to heavy-hole to light-hole intervalence band absorption. This is a function of carrier

density and photon energy, and will be described in the next section. The mirror loss, am,

is due to the coupling of photon energy out of the two mirror facets, but the definition

distributes this loss over the length of the cavity. It is defined as:

1 1
am = - In (2.5)

L R

where L is the Fabry-Perot cavity length [cm] and R is the power reflectivity of the end

mirror facets. The spontaneous emission rate, Rap, comes from Equation 2.3 and for low

carrier densities takes the form:

Rsp = B - N2
(2.6)
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Under high carrier densities, R8 p has a weaker carrier density dependence as explained in

Section 2.4.6.

Finally, an optical power output equation can be derived for current values above thresh-

old:

P = r a( (I - hh) x - (2.7)
ai + am q 2

where h is Planck's constant [J-s] and v is the fundamental lasing wavelength. The subscript

"th" is used to represent the variable value at the threshold condition. Thus, Ith represents

the current needed to reach the threshold condition. Frequently, we define:

71d -Mm (2.8)
ai + am 2

where rid is known as the differential quantum efficiency. Since spontaneous emission dom-

inates for sub-threshold regimes, a power/facet equation below threshold can be derived:

Psp= ci70ir --- I (2.9)
q

where r, is the radiative efficiency and r is the collection efficiency. r7r is the fraction of

carrier recombination that is accounted for by spontaneous emission:

Rs
~ (2.10)

Ir (N/Ir,

A brief explanation of each term in Equations 2.1 and 2.2 are as follows. In the carrier

rate equation, the first term on the right-hand side accounts for carrier injection into the

active region from a current source. The second term accounts for carrier relaxation due to

interactions in the semiconductor. The third term accounts for carrier recombination due

to stimulated emission from the lasing modes. In the photon rate equation, the first term

on the right-hand side accounts for the photon creation rate due to stimulated emission

into the lasing mode. The second term accounts for spontaneous emission coupling into
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the lasing mode. The third term accounts for photon absorption losses due to interactions

with the semiconductor. Further information on the laser rate equations can be found in

Chapter 2 of [11].

It is important to characterize these laser parameters to better understand the quality

of its design and help explain its performance. The remainder of this chapter is devoted to

the determination of the parameters which are found in the laser rate equations and their

supplemental equations.

2.3 Theoretically-Derived Parameters

2.3.1 Group Velocity (v 9 )

The photon group velocity represents the speed at which photon energy propagates. In

terms of laser pulses, this is the velocity of the pulse as it propagates within the semi-

conductor. This is different from phase velocity, which is the speed at which the carrier

frequency (in this case, the frequency that corresponds to a 1550nm free-space wavelength)

propagates. The group velocity is determined by knowing the group index of the material.

Since the laser is heterogeneous, the index is spatially dependent. The group index is found

by determining the photon field profile within the laser cavity and performing a weighted

average of the different indexes by the percentage photon density of each section. Since the

index is wavelength dependent (due to material dispersion effects), the group velocity, vg,

will be also:

C
Vg = (2.11)

ng

where ng is the group velocity. Since the wavelengths within the linewidth of a laser typically

span a short range, the group velocity can usually be approximated as constant. A method

to determine group index is explained in Section 2.4.4.
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2.3.2 Confinement Factor (F)

The confinement factor, F, represents the percentage of the steady-state photon energy

that lies in the active region of the semiconductor. In a Fabry-Perot laser, the photon field

propagates along the axial direction (the axis as defined in the direction of the laser ridge,

or z-axis, as conventionally defined). The active region is defined as the region in the laser

that stimulated emission occurs. This will be within the quantum wells, since they provide

electron and hole confinement. Since the active region extends the entire axial length as

well as the entire plane of the laser, the confinement of the laser field in these two directions

is 100%. The quantum wells, however, only cover a small portion of the vertical direction

and therefore the photon field extends well beyond them. The confinement factor can be

determined theoretically by knowing the structure dimensions and solving for the steady-

state photon field as confined by the cladding and quantum wells. This is accomplished

by performing a 2-dimensional solution of the photon field within the cavity. Once the

field profile is determined, the percentage of the photon field that lies within the multiple

quantum wells is added up, which becomes the confinement factor. This simulation was

written by Farhan Rana. Figure 2-4 shows this solution for the laser under study. Using

the 2-D solver, F = 0.00918 for each of the quantum wells in the E.P.I. laser. Summing up

the total confinement factor for all five quantum wells yields a total F = 0.0459.

2.3.3 Mirror Reflectivity (R)

The mirror reflectivity can be determined simply by knowing the group index of the photon

field within the semiconductor, as well as the index outside the cavity. A simple boundary

condition solution gives the transmission and reflection through a mirror facet.

ni - n2
r = n(2.12)

22 (2.13)
ni + n2
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Figure 2-4: Field and index profile in laser core, E.P.I. growth

where ni and n2 are the group indices of the initial material and transmitted material.

Typically, the initial material is semiconductor and the transmitted material is air. r and

t represent the field reflectivity and transmission, respectively. R represents the power

reflectivity where R = Ir12 . T is the power transmission where T = ft|2. The variability of

this value usually comes from the quality of the mirror facets. A cleanly cleaved facet should

give a near-theoretical value. For a group index of 3.7, the power reflectivity, R = 0.33.

By measuring the length of the laser, a theoretical value for am can be determined using

Equation 2.5.

2.4 Experimental Parameters

2.4.1 Loss (aci) and Internal Quantum Efficiency (rjj) Measurements

By examining the above-threshold power equation (Equation 2.7), it is easy to find a dif-

ferential slope of power per facet to current:

dP hv 1
d = rld- (2.14)
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Figure 2-5 shows how dP/dI is found.
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Figure 2-5: Typical Power vs. Current laser curve and representation of dP/dI, E.P.I. growth

The internal quantum efficiency, 77, and the material loss, ai, can be found using a

commonly known technique of comparing the inverse mirror loss and differential quantum

efficiency [36]. This method assumes no dependence on length for these two parameters.

However, the mirror loss, am, changes as the length of the laser changes. In order to

determine 7i and ai we need two non-degenerate equations, obtainable by choosing two

different-length lasers made from the same design. This is obtainable by cleaving two dif-

ferent lengths from the same material. Since data have a margin of error, we can increase

the accuracy of this measurement by increasing the number of data points. This is accom-

plished by cleaving multiple laser bars of different lengths and measuring their 77d. From

these N1 measurements their corresponding am can be determined. Using Equation 2.8, we

can write a linear equation between 1/rid and 1/am:

1- = -1 +1 (2.15)
rid 7i am 7i

A two-parameter linear fit can then be made on 1/7d versus 1/am to obtain values for ri

and ai. Figure 2-6 shows parameter fits for the modelocked laser material.
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Figure 2-6: Linear fit of 1/77d versus 1/am to determine a2 and r, E.P.I. growth

The values obtained through this method as shown in the graph are r/m = 0.74 and

ai = 11.2. A confidence estimation can be performed on this method by calculating the

magnitude of deviation on the calculated results due to deviations in the experimental data.

A quantification of the error in 7i and ai respectively is:

[ / 9 -2 r- 2

(Ar,)2= Aam + [Ard 2 (2.16)

dai a7d
=2Aam [2 + am (2.17)

am , am 2

(Aa) 2 
= Aam aam ) + A7d 0aa ] (2.18)

aam ) I 97

= _ 17] 2 + ( ami (2.19)
S[Aa ( 1)n 2 [Aqd .2

where the Ax values signify the deviation from the true value of x. By the chain rule, we

can expand the Aam into terms which are directly measurable:

(am)2 = AR r + AL (2.20)

I = 2 + [2
= [,R (- [AL In R) (2.21)
L R L2
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For typical values: L = 300pm, ng = 3.2, qi = 0.74, Ni = 0.6, we obtain R = 0.2744,

am = 43cm'1 and

aaj = V(28.3AR) 2 + (335AL) 2 + (88.6 A r) 2 (2.22)

For a value of ai = 10cm-1, we can estimate the percentage error on ai due to a 10% error

on each of the measured quantities. If

AR =0.1R

AL =0.1L

ANa =0.17/d4

This result shows that the measurement of N is

similar estimation for the error in ri give us

Aa2
= 0.078 (2.23)

Aai= 0.10 (2.24)

Aa_= 0.53 (2.25)

crucial to obtaining a good value for ac. A

Aiq = V(0.39AR) 2 + (4.64AL) 2 + (1. 23Aid )2 (2.26)

Performing the same error estimation:

AR =0.1R A = 0.014
7i

AL =0.1L A = 0.019
=i

AN =01'qd 77i 0.10
7i

(2.27)

(2.28)

(2.29)

This shows that the calculation of 7i is not very dependent on the accuracy of the length

or the reflectivity, and has a moderate dependency on 71. There is high confidence in

the measurement of the length to within 10pm. The index is calculable theoretically (see

Section 2.4.4) and is accurate within 10%. The largest error occurs with the measurement

of 71d. As shown in Figure 2-5, the slope bends as the bias increases, due to laser heating
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reducing the internal quantum efficiency. Therefore, the bias at which to measure the slope

is not trivially determinable. [49] also discusses the error in this technique.

Note that a and 77i are temperature dependent. This technique assumes that there is a

weak temperature dependence and that the temperature of the laser changes very little over

the range of biases. Note also that the parameter, aj, is wavelength dependent and that

this method is suitable to determine ai only for the lasing wavelength. A more powerful

method is describe in Section 2.4.5.

2.4.2 Derivation of Fabry-Perot Modes

A derivation of the Fabry-Perot modes will shed light upon a method to determine the

group index and loss parameters of the material. It is assumed that the photon fields exist

within the laser cavity as steady-state standing wave patterns. Given an initial electric field

that propagates along the axial direction of the Fabry-Perot cavity, one can find the total

transmission assuming partially reflective mirrors. Figure 2-7 shows a Fabry-Perot cavity

of length L and field transmission coefficients t1 and t 2 .

Without loss of generality, E0 originates at the left-hand mirror and propagates towards

the right. It picks up a phase change as it propagates through the Fabry-Perot cavity; for

a dz change in distance, it picks up e-jkdz phase, where k is the wave number within the

cavity and

k = 2irn,/A (2.30)

where A is the free-space wavelength. At each of the facets, the electric field is reflected

back by r 1 ,2 where Irj,212 = 1 - jt1 ,2 12 and transmitted through the facet by ti, 2 . Hence,

after one reflection off the right-hand wall, the transmitted field is:

Et = Eoe-jkLt 2  (2.31)

The reflected portion makes another round-trip through the cavity. After two reflections
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Figure 2-7: Representation of Fabry-Perot modes
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off the right-hand facet, the transmitted field is the first plus the second:

Et = Eoe-jkLt 2 + Eoe-jkLr 2e jkLri -jkLt 2 (2.32)

The pattern is evident. In closed form, the entire transmitted field is:

jkL 00 1  2kL n Eo eikL t 2
Et = Eoe t2 E (rlr2 e-J)L ri 2 e- 2kL

n=0

(2.33)

The power density, P [W/m 2],is:

p| Et| 2
P =~t

pc
(2.34)

where p is the magnetic permeability constant [H/cm. Therefore, the optical power de-

tected is an explicit function of wave number and therefore, of wavelength:

IEot 212  1

1 + R 1 R 2 - 2r 1 r 2cos(2kL) puc
(2.35)

where k is defined in Equation 2.30.

Putting the proportionality constants aside, it can be seen that this function will be

periodic with respect to A. The function will be at its maximum when the cosine term is

at its smallest, or 1 and the function will be at its minimum when the cosine term equals

-1. This corresponds to:

Maximum: 2 kmaxL = 27rm (2.36)

(2.37)Minimum : 2kmin L =7r(2m + 1)

where m is any integral number. Solving for the wavelengths which give maximums and
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minimums:

Amax = 2Lr
m

Amin

(2.38)

(2.39)
4Lnr

2m+1

A representation of this is shown in Figure 2-8
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Figure 2-8: Simulation of Fabry-Perot field spectrum in n = 1 medium.

Further insight into the Fabry-Perot modes comes when we translate the peak wave-

lengths into their corresponding frequencies:

27rc
Wm ax -- --a

A max

c2-7rm

ng2 L
(2.40)

It can be seen that the maximum frequencies occur at integral multiples of the round-

trip frequency (27rc/ng2L) of the cavity. The peaks and nulls represent constructive and

-4
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destructive interference due to the feedback of the cavity boundaries.

2.4.3 Measuring the Fabry-Perot Modes

In order to experimentally observe the Fabry-Perot modes of a laser cavity, it is necessary

to obtain the power versus wavelength information of the output light. The Fabry-Perot

modes depend on the gain structure of the laser. Therefore, it is best to examine the

optical spectrum below threshold. The spontaneous emission of the laser will still have

a wavelength-varying super-structure due to wavelength-dependent gain (see Figure 2-10),

but the gain varies slowly with respect to the Fabry-Perot mode spacing. A problem may

arise as the laser length becomes very short, but typically the laser will not lase for lengths

where this is a concern. Also, if the laser length is too long, the Fabry-Perot modes will not

be resolvable within the resolution bandwidth of the measuring instrument.

The experimental setup included a Hewlett-Packard 70950B optical spectrum analyzer

(OSA), with a resolution bandwidth of 0.08 nm, which was used to capture the optical

power from one of the laser facets. The light was coupled into a multi-mode fiber through

a pair of lenses anti-reflection (AR) coated at 1550nm. The lenses' foci were adjusted by

mounting the lenses onto 3-axis translation stages. Figure 2-9 shows a schematic of the test

setup.

This setup allowed for enough spontaneous emission to register above the noise floor of

the OSA, however, the tail ends of the spectrum, away from the gain peak, tend to become

noisy, which shows up as spurious data in measurement techniques that employ the Fabry-

Perot modes. Since this technique is valid for all current bias levels below threshold, near-

zero current levels scans can be attempted. However, the amount of light coupled into the

OSA will tend to become very noisy, especially for the lower current bias levels. At times,

scan averaging was necessary to decrease the noise level so that a suitable measurement

could be performed. In order to decrease the time necessary for a complete scan and to

improve the resolution of the scan, the entire wavelength range was typically split into

smaller wavelength portions, in which scans were performed in each. Figure 2-10 shows an
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Figure 2-9: Schematic of test setup

example of an OSA trace that shows the Fabry-Perot peaks as well as the gain structure of

the laser. Typically, this range would be split into small 10-20nm scan ranges which would

be pieced together in the end.

Error introduced by the measurement device's resolution bandwidth (in this case 0.08

nm) can be analyzed by understanding how the error is introduced. In order to determine

the optical power at each given wavelength, the OSA integrates the optical power over a

non-zero interval of wavelength. The larger the interval, the larger the power registered,

since more light will be integrated. On a first-pass approximation, the integrating window

can be modeled as a square window centered around the wavelength in concern. Essentially,

the ideal spectrum is convolved with the window to produce the recorded spectrum. A de-

convolution with the assumed window shape will give an estimate of the ideal spectrum,

minus the error due to the OSA's resolution bandwidth. Simulations of Fabry-Perot modes

of this laser system with and without the resolution bandwidth error were performed. The

error for loss measurements (see Section 2.4.5) was found to be less than 4% for typical val-
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Figure 2-10: Typical OSA trace for a laser below threshold, showing the Fabry-Perot resonances,
E.P.I. growth, L=300pm, width=5pim, 10mA bias, 20.2'C
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ues. Therefore, the resolution bandwidth error from the measurement device was neglected

in all future measurements. Further analysis on the error due to resolution bandwidth can

be found in [8], which also provides a variant method that is less sensitive to noise. A

theoretical quantification of the error can be found in [32] where the method described by

Hakki and Paoli and in [8] are compared.

2.4.4 Group Index Measurements

In order to measure the group index of the laser, we can take advantage of the Fabry-Perot

mode structure to give us insight to the characteristics of the cavity. This is a standard

method of determining index of materials. By knowing the wavelengths of two adjacent

peaks of the Fabry-Perot mode structure, one can determine the group index, ng. Given

two adjacent wavelengths, A, and A2, where A, = 22n and A2 - 2":

(m+ 1)- (m) = - (27g)= 1 (2.41)

which gives us:

n =AA (2.42)g 2LAA

where AA = A2 - A1 . The wavelength that corresponds to this group index is approximately

the average of Al and A2 . The group index can now be found as a function of wavelength.

Figure 2-11 shows the group index as a function of wavelength.

The group index for this laser structure around the lasing wavelength is approximately

ng = 3.6 - 3.7. This matches well with a group index of 3.7 cited in the literature for a

similar InGaAsP material system [31].

2.4.5 Loss/Gain Curve Measurements

The Fabry-Perot modes can be used to perform overall gain spectrum measurements [21].

This measurement technique was developed by B. Hakki and T. Paoli in 1973. The code is

53



54 CHAPTER 2. CHARACTERIZATION

3.75-

3.7

CL

3.65-

3.6-
10

1500- ... 4
1510---. 1

1520 ... 18
1530 .-. 20

1540-
1550 2

1560 24

1570 . - 26

1580 28
1590 30 Bias current [mAj

Wavelength [nm]
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found in Appendix A, written in Matlab. We can modify Equation 2.33 to include gain

within the cavity due to material absorption. We can redefine k to include an imaginary

term that will account for gain:

1
k => k + -ja(A) (2.43)

2

where we have defined the overall gain coefficient, a, to be wavelength-dependent. Hence,

the total field transmission becomes:

Et = EO (2.44)
1 - rir2 e-j 2kLea(A)L

where we have defined E0 = Eoe- 2 kLo(A)Lt 2 for simplicity. Minimum and maximum field

transmission values can be found by varying k, as above.

Maximum : Emax = - EO (2.45)
rir 2 e(Amax)L

Minimum : Emin = ± )L (2.46)
1 + rir2ea(Am'n )

We will assume that if this Fabry-Perot minimum and maximum are adjacent then the gain

parameter is slowly-varying enough to allow us to say that they will be equal for the two:

a(Amax) = a(Amin) = a(A). Now, defining the power density that corresponds to these two

as Pmax and Pmin:

|E6|
Pmax = E0 2(2.47)

( - rir2 ea(A)L

Pmin = IrE01 1 L) (2.48)
1+ ri r2 eo(A)L

we can then obtain the gain formula:

Pmax + VPmin (2.49)
a(A) = -In VRmR2 a

L v/ Pmax - V'Pmin
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Since the power term is a fraction, only the ratio of the peak and null powers are necessary

for this technique to work, which is where the utility of this function lies. We can allow for

coupling loss to the OSA without undermining the technique. The same data acquisition

technique used for determining the group index was used here as well. Since the wavelength

for a determined gain parameter is approximate, the gain can be measured in several ways:

using a peak and 1) its left-hand null, 2) its right-hand null, or 3) averaging the two.

Negligible difference was found in the different methods. This supports the argument that

the net gain curve varies slowly with respect to the Fabry-Perot mode spacing. Figure 2-12

shows a typical net gain curve for a short Fabry-Perot laser made from the same material as

the modelocked laser. Another note is that this method works in sub-threshold conditions.

In a laser's lasing mode the gain cannot be calculated since the lasing peak adds too much

structure to the gain curve. However, useful data can be pulled from everywhere save the

gain peak. One can see the clamping of the gain peak at 24mA.

The net gain curve actually represents

a(A) = Fg(A) - ai (2.50)

since the loss is attenuated with rising gain. For InGaAsP materials, oa is relatively constant

over large wavelengths [20], while g(A) is not. Thus, knowing ai and F allows us to find g(A).

The theoretical method of finding F is explained in Section 2.3.2. ai can be found through

the method described in Section 2.4.1. Another method of finding a is through analysis

of the gain curve. Gain is positive when there is carrier population inversion and negative

when there are fewer carriers than electron-hole pairs. In the former case, there are enough

carriers for stimulated emission to win over photon absorption by electron-hole pairs. In

the latter, the opposite is true. For wavelengths larger than the bandgap wavelength, there

should theoretically be zero quantum well absorption, since the light is too low energy to be

absorbed by a valence electron. So, g(A) should go to zero at higher wavelengths (smaller

energy) and ao should be the dominant term. If one examines the net gain curve for various

bias currents, the losses should therefore converge to a single value for wavelengths well
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Figure 2-12: Overall material gain (Fg - a ) for different biases, E.P.I. growth L = 320pm, W =

3pm, T = 293.2K
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above 1550nm. Figure 2-12 somewhat shows this convergence if examined for wavelengths

above 1620nm. However, it can be seen that the convergence is not perfect, rather there

seems to be a large range of loss values that cover the range of biases.

By adding a theoretically derived internal loss, ai, and dividing by the confinement

factor, F, we can plot the gain spectra, as shown in Figure 2-13(b). Using a gain simu-

lation written by Farhan Rana, we can compare the experimentally extracted gain with

our theoretical expectations (Figure 2-13(a)). We can compare expected carrier densities

by converting the current bias to carrier density using the assumption that steady-state,

sub-threshold carrier injection equals carrier recombination (See Equation 2.53. This cal-

culation assumes recombination coefficients of: A = 1 x 108s-1, B = 1 x 10 0 cm 3 -1

C = 1 x 10- 28 cm 6 s- 1 . Note the shift in the gain peak and the difference in carrier density

by a factor of approximately three. Note also that the experimental curves do not converge

to g = 0 for higher wavelengths as does the theoretical curves. It is likely that there are

alternate sources of loss within the cavity that should account for the discrepancy between

the experiment and theory.

Experimental loss data from Casey et al. [20 on bulk p-type InP can be used to

compare with this value for ai. Since the doping concentration is different for various

waveguide layers, an effective ai can be found by weighting the different sections' ac by

their respective confinement factor. Each section's ai can be determined by interpolating

loss spectra from the data in [20]. Both sets of data are plotted in Figure 2-14, along

with the loss curve taken at 17mA bias. The x-axis has been converted from wavelength

to energy. The graph shows that the experimental data does not match well with the

theoretically calculated loss curves. As the energy decreases (wavelength increases) the loss

takes a steeper dependence as seen in the slope of the experimental loss curve. Also, the

loss is overall much greater.

It is possible that the sensitivity of the measurement falls off significantly in the range

of wavelengths that this should happen; this leads to error in the loss determination and

convergence may not show up. It is also apparent from Figure 2-12 that the loss does not
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Figure 2-13: Gain (g) spectrum from (a) theoretical simulation (b) Hakki-Paoli experimental ex-
traction. E.P.I. growth L = 320pm, W = 3pm. Theory: T = 300K. Experiment: T = 293.2K
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converge due to the unusually large wavelength dependence on the loss at high wavelengths.

Using this method, a value of ac should lie between ai = 20 - 30cm-1. This value is also

different from the ai that was measured using the method described in Section 2.4.1, which

measured ai = 11.2cm- (Dotted line in Figure 2-14).

E

0.7 0.75 0.8 0.85
Energy [eVi

0.9 0.95 1

Figure 2-14: Theoretical loss curves and experimental loss, E.P.I. growth, L = 320Pm, W = 3pm,
T = 293.2K, I = 17mA

The accuracy of this method is analyzed in [45]. Their analysis shows that lasers with

typical reflection coefficients may underestimate the gain curve as it falls away from the peak

gain. The measurement technique assumes a pure axial wave. However, there are transverse

k-vector modes that are captured by the measurement device since the spontaneous emission

light is not captured at a singularity. Their methods of correction for this involve shrinking

the collection device's aperture size (using a single-mode fiber), or using a spatial mode

filter between the laser facet and the collection device aperture.
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2.4.6 Recombination Coefficients

The carrier lifetime is highly dependent on the carrier concentration, as shown in Equa-

tion 2.3. Equation 2.3 describes the carrier density dependency on the carrier lifetime under

the Boltzmann approximation (low carrier densities). As the carrier density increases, the

Boltzmann approximation breaks down and must be replaced by the full Fermi-Dirac distri-

bution function. This causes each term to take on a weaker dependency on N. For example,

the spontaneous emission rate can be approximated with a more complete polynomial fit

[11]:

Rs = BO-N 2 - B 1 -N (2.51)

Each of the other terms can similarly be expanded, including lower-order terms. When

summed together, an equation of the form of Equation 2.3 can still be used, except the

coefficients no longer stand for their original definitions. In essence, each new term of A,

B, and C contain dependencies from each recombination force.

Carrier Lifetime Determination through Gain

Several techniques exist for measuring the carrier lifetime, T, in semiconductor lasers. The

most basic method is by using pump-probe techniques to directly measure the decay rate of

the carriers [65]. A curve fit can be performed on the decaying carrier density to determine

the recombination coefficients. Another high-speed method involves measuring the turn-

on time between electrical step input and the corresponding optical output [12]. An all-

electrical method was developed by G.E. Shtengel et al. that employs an R-L-C modeling

of the laser [57]. The parameters for this model are determined by measuring the electronic

frequency response of the laser and fitting the parameters to the real and imaginary parts

of the frequency response.

For bias current levels well below threshold, the stimulated emission term, vggNp, can

be neglected in Equation 2.1. In steady-state, the carrier population does not change and
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the current is completely accounted for by carrier recombination:

dN qiI N
dt - - T 0 (2.52)

Replacing N/-rc with the individual recombination terms, we get:

q - =AN+BN 2 +CN 3  (2.53)qV -r,

A method for determining N for a given current bias that does not require high-speed

methods is by referencing a peak gain vs. carrier density graph. Since we can find the

peak gain for a given current bias by examining the loss curves found in the previous

section, we can find the carrier density for that current bias through a g vs. N graph

(Figure 2-15). This methods was first performed by Ongstad et al. in 1998 [48]. The

g vs. N graph was theoretically calculated by Farhan Rana at different active region

temperatures. Negligible core heating was assumed, so a temperature of 300K was used for

all recombination calculations.

5000

300-375K, increments of 25K
E

0-

CU

-5000-
0 2 4 6 8 10

Carrier Density [x1 0 cm-3

Figure 2-15: Peak gain (g) versus carrier density (N) for different quantum well temperatures,
E.P.I. growth
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Once a relationship between I (or J) and N is determined, a 3rd-degree polynomial

fit can be used to determine the values of A, B, & C in Equation 2.3. Figure 2-16 shows

data for two different lasers of the same material. Note on the first data set (FOO-Bin9)

the characteristic clamping of the threshold carrier density above 2200 mA/cm2 . It also

shows various attempts to fit the data to different values of recombination coefficients. The

value of A is neglected, since this is an unimportant factor for high carrier densities. The

value for the recombination coefficient, B, was assumed to lie at approximately B - 10-10.

Various values of the Auger coefficient and perturbations on B resulted in relatively poor

data fitting. As shown, the experimental data seem to fit a curve below threshold that

has a positive second derivative (bows upward) and therefore do not fit well to the theory.

Even with scanning through different values of A and B, there is no reconciliation with the

second derivative curving upward.
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Figure 2-16: Current Density (J) versus carrier density (N) theory and data, E.P.I. growth. A
1.1 X108, B = 1 x 1010, T = 293.2K
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Carrier Lifetime Determination through Spontaneous Emission

Another method developed by C.Y.J. Chu and H. Ghafouri-Shiraz looks at the spontaneous

emission power versus bias at low sub-threshold currents [10]. This method takes advantage

of the fact that at low carrier densities the Auger recombination term is very weak and

Equation 2.53 becomes:

-- - N =AN + RN 2  
(2.54)

qV -r,

Also, the coefficients take on their low-carrier density definitions described in Section 2.2.

Also using Equation 2.9, a parameter fit can be made to this data to obtain values for A and

B. A value for C can also be found but the accuracy of this value for small carrier densities

is not reliable. Figure 2-17 shows a fit to the L-I curve at low biases. The theoretical curve

is shown for comparison and was derived from spontaneous emission calculations, and a

curve fit produces: A = 1.1x10 8 s- 1 and B = 9.4x10- 1 1 cm 3 S-1. The unknown collection

efficiency, qc of the diode is not easily determinable. Therefore, a range of values for rc is

taken and curve fits for the recombination parameters is performed. The expected value

of B (which should be around 10- 10 cm3 S- 1 for InGaAsP) is well-known and does not vary

greatly from composition to composition. A value of qc is chosen such that the fitted B

parameter matches the expected value. The values for A and C are determined from this.

Figure 2-18 shows the various recombination parameters as a function of 7c. The values

derived from assuming B = 1.0 x 1010 cm3 s- 1 are: A = 1.0 x 10 9 s- 1 , C = 2.5 x 10 2 7 cm 6s- 1 .

Quoted values for C from [11] for bulk 1.55ptm InGaAsP is C ~ 7 - 9 x 10- 2 9 cm 6 s-1 . The

experimentally-derived value is much higher than the expected value and it is unsure as to

the source of error.

2.5 Summary

The modelocked laser is 1.55pm semiconductor multi-quantum well design with a polyimide

confined ridge waveguide. The various laser parameters were determined through a combi-
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nation of theory and experiment. Despite the redundancy of parameters that the techniques

can be used for, each can be used as a check for an alternative method.

On the theoretical end, a suite of laser simulations written by Farhan Rana can be used

to determine gain spectra (g(A)), mode profiles, confinement factor (F), group index (ng),

carrier-dependent gain (g(N)), and power versus current bias (P(I)).

Experimentally, by performing DC L-I characterization of different-length bars, we can

determine values of temperature- and length-independent internal loss (ai) and internal

quantum efficiency (rji). Extensive use of sub-threshold optical spectrum techniques were

used to determine group index (ng) and gain spectrum (a(A), g(A), al).

Additionally, using a combination of theory and experiment allows us to predict carrier

recombination coefficients (A, B, C) and hence, the carrier lifetime.
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Chapter 3

Theory and Split-Step Simulations

In order to design higher performance modelocked diode lasers, it is necessary to gain a

better understanding of how they function and the parameters that govern their operation.

Work is done to improve various figures of merit, such as reducing pulse width, timing jitter,

increasing pulse energy, to name a few. A thorough theoretical model must be developed

in order to allow the designer to explore the different possibilities of laser design. This

chapter introduces a theoretical formalism developed by Agrawal et al. [2] for traveling

wave rate equations. The various pulse shaping mechanisms will be explained. Using this

formalism, we introduce a modelocked laser simulation originally developed by Helkey [27]

and Derickson [16] based on a partial space integration of the rate equations and a split-

step method of pulse propagation. The testing of the simulation will be explained. Results

from the simulation will be shown and a discussion on its limitations will follow. We will

find that the split-step method is informative and intuitive but its approximations limit its

usefulness as a modelocked laser design tool.

3.1 Laser Parameters

This section uses direct results from Chapter 2. Unless otherwise noted, the parameters

used in the results from this section are listed in Table 3.1. All illustrative figures ex-
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Table 3.1: Laser Parameters

Parameter
Carrier wavelength
Effective group index
Facet reflectivity
Confinement factor
Gain coefficient
Transparency

Differential gain, (Gain sect.)
Differential gain, (Sat absorber)
Internal quantum efficiency
Internal loss
Trap recombination coefficient
Bimolecular recombination coefficient
Auger recombination coefficient
Saturable absorber lifetime
Linewidth enhancement factor (Gain sect.)
Linewidth enhancement factor (Sat. Abs.)
Gain bandwidth factor
Dispersion
Active region thickness
Ridge width
Length of active section
Length of saturable absorber
Length of gain region

cept Figures 3-6, 3-7, 3-10,and 3-14 were created using the split-step method discussed in

Section 3.4.1 using one laser segment, unless otherwise noted.

3.2 Traveling Wave Rate Equations

A simple formalism for the photon and carrier density rates has been developed by Bowers

et al. [5] that follow from the equations discussed in Section 2.2. These equations simply

Symbol
Ao
ng
r
RI,2

go
Ntr
Ns
again

asa

77i
ai
A
B
C
TSA

eG

asA

t 2

02

d
W
Lact

Lsa

Lgain

Value

1.55
3.7
0.274
0.0482
1864
1.82 x 1018
unused
1.02 x 10-15
5.12 x 10-15
0.77
11.2
0
1 x 10-10
1 x 10-28

unused
2
2
5 x 10-13

gpt2
42
1.5
100
80
3500

Unit

pm

cm-1
cm-3

cm-3
cm 2

cm 2

cm- 1

s-1
cm 3 81
cmes -1

S

S

cm2 s-1

nm
pm
pm
pm
pm
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take the photon density and introduce a spatial derivative to account for wave propagation.

as+(zt) 19s+(Z+t) - vg(Fgp - aj)S+(z,t) + I73 spRspat az (3.1)
aS-(z t) &S-(z t) vg(Fgp - a)S(z,t) + F3pRSp

at Vg

aN(z,=t) _ I - vggp(S+(z, t) + S-(z, t)) (3.2)
at qV T,

where the group velocity, vg, is given in Equation 2.11 and the peak gain, gp, and carrier

lifetime, Tr are carrier density dependent. Tc follows Equation 2.3 while the peak gain follows

gp(N) = go In ($+ Ns (3.3)
(Ntr + Ns

go, Ns and Ntr are fitting parameters for the gp vs. N dependency [11]. The peak gain

is defined more thoroughly in Section 3.3.2. Ntr, the transparency carrier density, has a

physical meaning when N = Ntr. In this case the gain, g, equals zero and the gain is

transparent to the propagating wave. All variables are as described in 2.2 except now S+

and S- represent the forward- and reverse-propagating photon densities [cm-3].

Two traveling photon density equations are needed to account for densities traveling in

the +/ - z directions. These equations account for many pulse shaping effects that will

be introduced in this chapter, but fail to take in account any effects on the phase of the

electromagnetic photon field such as self-phase modulation or dispersion. The mirror loss,

am, is left out of these equations, and is left as boundary conditions when a solution to

these equations is needed.

The formalism developed by Agrawal and Olsson [2] deals with propagating electric
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fields and therefore, can include phase effects:

1 OE±(z, t) &E±(z, t)
V9 at ± Oz

FgP(1 - 3c)Ei(z, t) - E+(z, t) + 2(Fgpt -3/32) E±(z, t) (3.4)

8N(z, t) rJl N _ )g1
Vv |E+(z, t) + E-(z, t)12 (3.5)

at qV -r, hupv,

where E± are the forward- and reverse-propagating electric fields [V/cm], a is the linewidth

enhancement factor (typically 2-5 in semiconductor lasers), t 2 is the gain bandwidth param-

eter [s], 32 is the dispersion parameter [s 2 /cm], hv is the energy quantum per photon [J],

and p is the magnetic permittivity [s/cm]. Spontaneous emission rates are neglected in

these equations. This is a good approximation since the pulse power is much greater than

the spontaneous emission term. The real terms correspond to gain and attenuation rates of

the propagating pulse and the imaginary terms correspond to phase changes. The factor of

1/2 accounts for the fact that the photon density and hence the wave power is proportional

to the square of the electric field. We can normalize the electric field, E±, into A± so that

lA±(z,t)|2 = P(z,t), where P(z, t) is the power at a given point in the pulse. Rewriting

the equations gives us [2]:

1 aA±(z, t) aA*(z, t)
Vg at az

£gp(1 - 3a)A±(z, t) - A: (z, t) + 1(Fgpt2 -- 3 2 ) 2 A'(z, t) (3.6)
2 2 2 2 t

aN(z,t) _ riI N _ gp IA+(z t) +A(z,t)12  (3.7)
at qV Tc hvWd
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using the fact that

S+ (z, t) + S- (z, t) ~ JA+ (z, t) + A-~(z, t) 1 (3.8)hlvgWd

where W is the laser width [cm] and d is the quantum well thickness [cm]. The equation

is approximate because the photon density cannot account for wave interference effects as

can the right-hand side. Each term in the field rate equations shapes the pulse: either by

gain/attenuation or phase changes. The next section discusses these pulse-shaping mecha-

nisms.

3.3 Pulse-Shaping Mechanisms

The pulse-shaping mechanisms in Equation 3.6 can be explained individually by analyzing

the dependence of each rate. The first term, Jgp -A'(z, t), is the gain/loss saturation term;

the second, -jarg, A'(z,t), is the self-phase modulation term; the third, -a jA:(z,t),

is the internal loss; the fourth, tFgp 02 Al(z, t), is the gain bandwidth term; the fifth,

-382 02 Al (z, t), is dispersion. These terms can be categorized into non-linear and linear

effects, and are described in the following sections.

3.3.1 Non-linear Effects

Since the gain term is also carrier density dependent and the change in the carrier density

is coupled to the traveling field equations, each term that includes gain is non-linear. The

most important pulse shaping mechanism is gain and loss saturation.

Gain/Loss Saturation

The gain/loss saturation term deals with gain due to stimulated emission of carriers where

gp follows Equation 3.3. In a quantum well without significant photon density, the last term

in Equation 3.7 is negligible and in steady state the first two rate terms on the right hand
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side balance each other.

rjiI _ss

qVl - T s (3.9)
qV T,

where NSS is the steady-state carrier density without significant photon density. In a gain

medium, the steady-state gain, gss, is positive. When a pulse travels through this medium,

the pulse is amplified through stimulated emission, which causes the carrier density to drop

through this previously neglected last term in Equation 3.7. As the carrier density drops,

the gain also decreases, meaning less stimulated emission. As the pulse travels through the

gain region, more and more carriers recombine through stimulated emission and the gain

continues to drop. The result of this is a greater amplification in the front edge of the pulse

(when the gain is highest) and the least amount in the trailing edge. If the pulse energy

is sufficiently high, the gain will approach zero as the carrier density reaches transparency

(N ~ Ntr) and the trailing edge will pass through unaffected by the gain.

In a saturable absorber, the carriers are swept out of the quantum wells by reverse biasing

the diode. The carrier sweep out time can be described by a lifetime that is different from

a forward-biased laser diode. Karin et al. develop a model that describes the relationship

between the carrier lifetime and the reverse bias voltage [34, 60]. Instead of injecting

carriers to improve the stimulated emission rate, the carrier density is reduced well below

transparency level so that photons will be absorbed at a higher rate. Hence, the steady-state

gain becomes negative. As a laser pulse passes through the saturable absorber, the photons

are absorbed by the valence electrons, creating free carriers. As the pulse is absorbed,

the absorption magnitude is reduced, approaching zero. As a result, the leading edge is

attenuated more than the trailing edge.

Figure 3-1 shows examples of gain and absorption saturation. Note the broadening of

the full width at half maximum (FWHM) pulse width in (a) and the narrowing of the

FWHM pulse width in (b). Note also that the pulse center-of-mass drifts earlier in time in

(a) and lags behind in (b). Typically, in a two-section passively modelocked laser (Figure 1-

8), the gain section broadens the pulse while the absorber section narrows the pulse. The
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gain section also has the effect of "pushing" the pulse ahead of its group velocity while the

absorber section "drags" the pulse slower than its group velocity. It is not intuitive that the

gain and absorber saturation effect balance such that a modelocked pulse reaches a steady-

state in which these non-linear effects exactly cancel each other in a single round-trip. In

terms of pulse shaping, if the net round-trip effect is narrowing, there needs to be other

pulse broadening mechanisms to prevent the pulse from narrowing to a delta function. If

the net effect is pulse broadening, then the pulse will eventually vanish and the conditions

for modelocking are not met. The dominant pulse broadening effect that allows for a finite

FWHM pulse is gain bandwidth (see Section 3.3.2). In terms of pulse "walking", the net

effect is a speeding up or slowing down of the group velocity. This is an interesting result

of gain/loss saturation that changes the true round trip frequency of the laser.

2.5
--- a pulse [ NW pulse
-Amplified pule bw

2-

0.8

0.4

0.5 . 0.2

0' 0
-10 -5 0 5 10 -10 -5 0 5 10

Time [ps] rme [PSI

(a) (b)

Figure 3-1: Examples of (a) gain and (b) absorption saturation effects. Lgain = La = 50Am,
Igain = 4mA, gaa = -9539cm-1

Figure 3-2 shows the pulse center-of-mass drifting earlier in time as it propagates through

a gain medium. Note the pulse energy growing as well as the drift effect. Note also that for

small pulse energies (darker pulse lines) the gain sees little saturation effect (the entire pulses

is amplified uniformly resulting in no FWHM broadening). For large energies (lighter pulse
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lines), only the front part of the pulse sees amplification while the trailing edge follows the

original pulse envelope. The opposite effect occurs for absorption regions; the pulse tends

to lag in time due to the front end of the pulse becoming attenuated.

2

1.5/

0.5

01
-10 -5 0 5 10

Time [ps]

Figure 3-2: Example of pulse drifting due to gain saturation; pulse evolves with lighter pulse color.
Each pulse represents one round-trip propagation from the previous. t = 0 follows the propagation
at the pulse's group velocity. a = 0, Lgain = 50pm, Iaim = 3mA

In a passively modelocked laser, the dominant pulse shaping mechanisms are gain and

absorption saturation. In order to see the conditions necessary to produce modelocking, it

is necessary to show the evolution of a pulse through a two-section passively modelocked

laser. Figure 3-3(a) shows the evolution of a pulse through the different mediums. The top

picture shows the original pulse; each subsequent picture shows the evolution of the pulse

through the different regions: the gain region, absorption region, and a mirror reflection,

respectively. In the second to fourth plots the left axis and solid line correspond to the pulse

power profile, the right axis and dotted line correspond to the shaping potential, which is

essentially the ratio of the shaped pulse power profile to the input pulse power profile. Each

shaping potential is multiplied with the pulse directly above to create the respective pulses.

The second picture shows gain saturation through a gain medium. Note the increase

in pulse energy. The shaping potential starts out at early times (from -10ps) at the

unsaturated gain value (where N = Nss). As the pulse propagates through the gain

medium, the gain is reduced and approaches zero (transparency), as shown as a decreasing
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shaping potential with increasing time. The output trailing edge follows the original trailing

edge shape.

The third picture shows absorption saturation through an absorber region. Note the

front end of the pulse is attenuated. The shaping potential begins at its unsaturated ab-

sorption value (a fraction) and then saturates towards transparency, similarly to the gain

region's shaping potential. Note also that the peak pulse power remains the same, unlike in

the gain region. This occurs because the number of carriers it takes to reach transparency

in the absorber region is smaller than in the gain region. This corresponds to a smaller

pulse energy requirement to saturate the section (i.e. bring the gain to zero). This figure

demonstrates the lower saturation energy (Esat) for the absorber region. This is a crucial

effect in modelocked lasers.

The fourth picture shows mirror reflectivity. The value of the power reflectivity is 0.2744,

calculated from a group index of ng = 3.2 to air. Note the uniform shaping potential and

the drop in pulse energy.

Figure 3-3(b) shows the pulse power profiles at each stage, on the same axis and scale,

for comparison purposes. The pulse evolves with increasingly lighter pulse line colors (from

black to light gray). The pulse energy increases significantly through the gain region but de-

creases marginally through the absorber region, demonstrating the higher saturation energy

of the gain region. The saturation energy's importance is demonstrated in Figure 3-3(c).

Figure 3-3(c) shows the total shaping potential of the pulse through the three regions.

The three shaping potentials were multiplied together to create the overall shaping potential.

At early times, the potential is just the multiplication of the three unsaturated gains. Since

the absorber saturates faster (due to a lower Esat), the total potential begins to see more

gain than loss and the potential rises during the early part of the pulse. As the gain region

slowly saturates, the overall potential is reduced. This produces a bell-shaped potential.

It is necessary that the shaping potential has a gain lower than one at both tails and rises

above one in the center. This shape attenuates the tails of the pulse and allows the peak

to grow, thus narrowing the pulse and simultaneously allowing the pulse to maintain a
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constant energy. Without another force to balance this pulse-narrowing effect, the pulse

would narrow without bound. A separate pulse-broadening effect is necessary to reach a

steady-state. The dominant pulse-broadening effect is through finite gain bandwidth and

secondarily through dispersion coupled with self-phase modulation. (See Section 3.3.2). If

the gain were above one at the tails, it would not be possible to reach a steady-state pulse.

The gain would cause the tails of the pulse to grow regardless of shape, thus broadening

the pulse continuously. This corresponds to a continuous wave (CW) lasing case. Hence,

there is a regime of operation in a modelocked laser that corresponds to modelocking and

also CW operation.

Self-Phase Modulation

The self-phase modulation term differs from the gain saturation term only by a factor of -ja.

The imaginary term describes the effect that the change in gain has on the instantaneous

index of the material. As the index changes, the instantaneous frequency deviates from the

actual carrier frequency. The linewidth enhancement factor, a, is defined as

di!

a = 2ko _ (3.10)
dN

where ko is the wave number of the carrier frequency in free space and h is the effective

index. The phase velocity is inversely proportional to the index. As a pulse passes through

a gain section in the laser, the carrier density (and hence the gain) goes down as carriers are

utilized in stimulated emission. By the Equation 3.10 and 3.6, this means that the index

goes up as the gain goes down. As the index increases while the pulse passes through the

gain region, the phase velocity decreases. This causes the phase of the pulse to "lag" from

the leading edge phase, essentially causing the sinusoidal electromagnetic waves to "stretch

out", producing a momentarily negative instantaneous frequency. As the gain saturates,

the gain and index become constant again, and the phase becomes constant. This causes

the instantaneous frequency to revert back to zero. The exact opposite effect happens in an
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Figure 3-3: (a) Pulse evolution with shaping potentials. Each evolved pulse is shown with the
shaping potential used to create it from the previous pulse (directly above). Top picture is the
original pulse. The following pictures show evolution due to gain saturation, absorption saturation,
and mirror reflection, respectively. (b) Pulses on an absolute scale (pulse evolves with lighter pulse
color). (c) Total shaping potential, including unity line. Lgain = La = 5pm, Igain = 6mA,g.a =
-1.244 x 104 cm,a = 0
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absorber region, where the gain increases as the pulse passes through the laser region. This

causes the index to decrease, thus causing a "bunching up" of the electromagnetic waves

and an increase to the instantaneous frequency. Figure 3-4 shows chirping effects in both

gain and absorption regions. By itself, self-phase modulation is not responsible for any pulse

shaping since it only affects the phase of the pulse. However, coupled with other effects

such as dispersion, where different frequencies propagate at different velocities, self-phase

modulation can produce significant pulse shaping. If the linewidth enhancement factor is

large enough, the change in the phase from the leading edge to the trailing edge becomes

larger and the pulse's spectrum spreads from its ideal transform-limited state. This spread

in the spectrum could be great enough to allow dispersive effects to greatly affect the pulse

shape. In an extreme case, multiple pulses can form as the cavity dispersion spreads the

pulse energy in time.
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Figure 3-4: Self-phase modulation effects due to linewidth enhancement factor. a = 2. Graphs
shown are Power (P), Carrier density (N), index (n), instantaneous frequency (f). Lgain = La =

50pm, Igain = 4mA, g,, = -9539cm- 1
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Active Gain Modulation

Active gain modulation can essentially be accounted for by varying the injection current, I,

in time. Typically, this current is modulated sinusoidally, however sharper peaked functions

have been generated using other methods, such as step recovery diodes [46] or nonlinear

transmission lines [51]. As the injection current is modulated, it is expected that the carrier

density and hence, the gain of the active section is also modulated. If the repetition rate

of the modulation is slow, then the current can be treated as quasi-static and a linear

proportionality can be found between the current and carrier density. However, for fast

modulation (well above 1 GHz), this is not the case, since the injection modulation is

dampened by the other recombination rates within the carrier rate equation (Equation 3.7).

If the gain is modulated at the round-trip frequency of a traveling pulse within the

resonant cavity, then one can see that the pulse will tend to arrive in the active modulation

section at the peak of the time-dependent gain function. If the pulse arrives ahead of the

peak, the gain function at that point will be increasing in time, and more pulse amplification

will be given to the trailing edge, thus pulling the pulse backward in time. If the pulse arrives

in the active section behind the gain peak, the gain will be decreasing in time and preference

will be given to the growth of the pulse's leading edge, thus pulling the pulse forward in

time. Essentially, the time-dependent gain function serves to corral the pulse into the gain

peak.

It was mentioned that a DC gain region in a modelocked laser can increase the group

velocity of the pulse by pushing it forward in time, hence it will arrive in the active section

always ahead of the gain peak. The AC modulation in an active section will attempt to

pull the early pulse backward; the pulling force getting increasingly stronger the earlier

the pulse. Eventually, a balance of the two forces is reached and the pulse will appear in

the active region slightly ahead of the gain peak but always propagates at the modulation

frequency of the radio frequency (RF) current modulation. This can be seen in Figure 3-5.

Each pulse profile represents a pulse zero-centered at the modulation period. In the passive

case, the pulse does not arrive exactly at the modulation period, rather it drifts linearly. In
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the active case, the pulse initially drifts from the center of the gain peak (always centered

at t = 0) until it settles slightly ahead of the gain peak (negative time). This phenomenon,

known as dynamic detuning [47], can serve as a supplementary pulse shaping force since

the pulse is effectively "pushed" against the wall of the gain function.
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Figure 3-5: Examples of (a) pulse drifting due to dominant gain saturation in a 2-section passively
modelocked laser and (b) pulse drift cancelling in a 2-section active modelocked laser. Lsa Lact =
80im, Lgain = 3500pm, WM = V i I a = 63mA,gsa = -1864cm IRE 5mA,

2(Lact+L gain)' 9 an

gact = -9159cm-1

3.3.2 Linear Effects

Gain Bandwidth

Gain is dependent on carrier density, temperature, and wavelength. Figure 3-6 shows typ-

ical gain curves for the UCSB laser at 300K and several carrier densities. The data was

generated by a theoretical gain spectrum calculator written by Farhan Rana. Since the

energy within a modelocked laser is typically small, a core temperature near room temper-

ature is suitable. The unsaturated carrier density is determined by the current bias and
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recombination times of the laser. It is expected that the fundamental lasing frequency lies

at the peak of this gain curve. The frequency pulse-train of a modelocked laser should have

an envelope that spans only a small fraction of the gain curve, near the peak. Therefore, in

order to provide a simple model to allow for gain bandwidth effects, a second-order fit to

the gain curve at the peak can be made. The equation to be fit is:

g(w) = gp(N) [1 - t'(w - wo) 2] (3.11)

where g(w) is the frequency-dependent gain [cm- 1], g, is the peak unsaturated gain of the

laser [cm- 1] defined in Equation 3.3, t 2 is the optical bandwidth parameter [s], and wO is

the gain peak's center frequency. Figure 3-7 shows how the fit is performed. The spectrum

of a pulse envelope, A(w) will be filtered by the gain curve as:

A0out(w) = Ai, (w)e- 2 t2 (3.12)

where i (w) is the Fourier transform of the input pulse envelope [W], Aout (w) is the Fourier

transform of the output pulse envelope [W], and L is the length of the propagation through

the material [cm].

An analytic ips Gaussian pulse has a standard deviation width in frequency of 1/1ps

1THz. It can be seen that this pulse only has a spectrum that spans a small portion of the

gain curve. As the pulse gets narrower through gain/absorption saturation, the spectrum

becomes broader. The gain bandwidth has the effect of "shedding" the side frequencies of

a pulse train and is illustrated in Figure 3-8. The gain bandwidth narrows the spectrum,

thus broadening the pulse, and is the primary balancing force that allows a pulse to reach

a steady state.

Dispersion

Material dispersion accounts for the relative difference in phase velocities of different fre-

quencies. A linear dependence of phase on the frequency results in a time delay but a
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second-order frequency dependence results in relative velocity differences between frequen-

cies. The material dispersion parameter, 02, measures the strength of this dependence.

Figure 3-9 illustrates the effect of dispersion on an unchirped Gaussian pulse. A typical

approximate of the dispersion parameter is

32 = Fgpt2 (3.13)

Similarly to the filtering performed by the gain bandwidth parameter:

Aout(w) = Ain(w)e-' 2  (3.14)

where the imaginary number implies a phase-filtering effect.

3.4 Simulations

There are many methods that have been developed to simulate modelocking. The most

straight-forward method is to solve Equations 3.6 and 3.7 using finite difference methods

[5, 67]. These methods discretize the time and space derivatives and solve them using

differential approximations. Typically, the relationship between dt and dz is known through

the group velocity:

dz
V9 = dz (3.15)

Therefore, it is possible just to solve a finite difference problem u ng the total time derivative

dS' OS* gs± S*(t + At, z + Az) - Sk (t,Z) (3.16)
dt ot + V 09 At

We obtain the space dependence through the group velocity. Jones et al. improve on the

finite difference method by approximating the finite band width of the gain function using

a non-parabolic frequency dependence that results in a first-derivative in space [31]. This
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method is discussed in Chapter 4.

3.4.1 Split-step method

The method explored in this chapter deals with a computationally efficient method that in-

volves passing a pulse through a partially-integrated space segment followed by a frequency-

domain filtering. The partial integration was developed by Helkey et al. (27, 28] for use with

the traveling photon density rate shown in Equations 3.1 and 3.2. The additional frequency-

domain filtering was initially developed by Agrawal [1]. The implementation presented here

follows Derickson and uses traveling field equations developed by Agrawal [2].

The method's approach is to split a laser cavity into discrete sections in space. A

pulse in the time domain is passed through each discrete section, allowing the traveling

wave rate equations to shape the pulse as it propagates from one edge to the other. In

order to perform an efficient propagation of the pulse, the split-step method groups the

non-linear and linear terms into two groups, first performing a non-linear shaping followed

by a linear-term filtering. An analytic integration of the non-linear terms in the traveling

wave equations (Equation 3.6) can be performed using justifiable approximations [2]. The

remnant linear terms can be represented as a frequency-domain filter.

The major approximations to Equation 3.6 are listed below:

1. A linear carrier density dependency on the gain:

g(N) = a(N - Ntr) (3.17)

where a is the differential gain [cm 2]. The value of a can approximated as the slope

of the logarithmic g vs. N at a given N. It is necessary to realize that the differential

gain is higher for a saturable absorber region than for a gain region, therefore two

values of a are necessary to describe the two different regions. This can be seen by

comparing the slopes at a carrier density below and above Ntr in a typical g vs. N

graph (Figure 2-15). This again implies that it is easier to reach transparency for a
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saturable absorber region rather than a gain region for a given absolute gain/loss.

2. Small internal loss (ai). Internal loss is approximated as zero in the derivation of the

partial integration. This is valid if Fg >> ai, which is true when the carrier density

is much higher than transparency. For a short, monolithic modelocked laser, this is

achieved only with sufficiently high bias currents. The high bias current can replenish

the carrier density well above transparency before the circulating pulse returns.

3. The pulse is much shorter than the carrier recombination time. This allows the gain

saturation effects to occur while being able to neglect the carriers refreshing to its

steady state value while the entire pulse passes through a section of the semiconductor.

This is a valid approximation since a typical pulse width is 1 - 10ps while the carrier

lifetime is on the order of ns. This assumption becomes less reasonable when the

carrier lifetime is enhanced within a saturable absorber section. Karin et al. find

typical lifetimes within a saturable absorber to be 5 - 50ps [34].

Non-linear Effects Step

In order to obtain the analytic partially integrated solutions found in [2], we neglect disper-

sion and a frequency-dependent gain. Following the forward traveling pulse as it propagates

at the group velocity gives us:

dA 1 A aA Pg ei
- + =-(1 - ja)A - -A (3.18)

dz vg t &Z 2 2

Stating explicitly the relationship between the normalized field, A, and the power, P:

A(z, t) = 'P(z, t)e'0(z't)
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allowing us to break the preceding equation into a magnitude and phase part:

dP
d = (Pg - a F)P ~~ rgP (3.20)
dz

- -aeg (3.21)
dz 2

Here we make the assumption that the internal loss is smaller than the gain. For a given

length, L, we propagate the pulse, thus integrating these equations from 0 to L. This leads

to:

Pnt(T ) = Pi(T)eh(r) (3.22)

#0ut (T) = #in (T) - Iah(T) (3.23)2

where

T = t - - (3.24)
Vg

so that we can follow the pulse as it propagates at the group velocity and

h(T) = F g (z, r)dz (3.25)

We have defined Pout = P(L) and Pi, - P(0) to represent the end and beginning points of

the section of length L.

We now analyze Equation 3.7. Immediately before the pulse passes through the length

L section, we can make the assumption that the carrier density has refreshed itself to the

steady state value where there is a lack of photon density. Algebraically, this amounts to

setting A to zero to solve the steady state carrier density:

- - = -- > Nss = Tc (3.26)
qV T, qV

where N, represents the steady state carrier density, similar to Equation 3.9. This repre-
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sents the unsaturated carrier density before the pulse propagates through the section. Using

Equation 3.17, we obtain the unsaturated gain, gs:

gss = a(Nss - Nt) (3.27)

Using Equations 3.7, 3.17, and 3.27 we obtain

09 - ___ - 9 Ea (3.28)
09r Tc Esat A

where

Esat hvWd (3.29)
al

The saturation energy, Esat, is a measure of the amount of pulse energy it takes to saturate

the gain. We integrate Equation 3.28 from z = [0, L] and multiply by the confinement

factor, using Equations 3.25,3.20 to arrive at

Oh _ Fg8 L -h Pin ~h_-h- =P~L - -- n e h- 1 (3.30)
OT Tc Esat 1

The first term on the right-hand side represents the rate at which the integrated gain

attempts to return to its steady state, unsaturated value. The second term represents the

saturation of the integrated gain due to photons traveling through the section. Solving for

Equation 3.30 gives us

h(T) = -1n( 1 - 'e Esat (3.31)

where

Uin(T) = / Pin (T')dT' (3.32)
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and -y is solved by recognizing the unsaturated integrated gain, h(-oo):

h(-oo) = I'gL = - In (1 - y)

so

-y= 1 - = 1 -
Go

where we have made the definition

finally, we can write explicitly the closed form relationship between the input and output

power and phase of a traveling pulse through a section of length L:

P0 t (T) =

1
1 - (1 ) exp

(3.36)
Uin(T)

Esat

exp
Uin(T)

Esat J (3.37)

These two equations allow us to relate the output and input pulses via the effects of gain/loss

saturation and self-phase modulation.

Linear Effects Step

In order to account for the gain bandwidth and dispersion, we combine Equations 3.12,3.14

to obtain

Aout (r) = F- 1 [Ain (w)exp (j 2 x2 (

(3.34)

Go= e gsL (3.35)

90 CH APT ER 3.

(3.33)

#out (T) = #in (T) + aIn 1 - 1 I

e x 0 2L W 2) (3.38)
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where Y 1 represents the inverse Fourier transform operator.

Algorithm

The split-step algorithm first requires a splitting of the laser structure into several sections.

The initial pulse is represented in the time domain, as a function of T, so that the time

window can follow the pulse. As the pulse travels through each section, we first shape the

pulse using Equations 3.36 and 3.37 in the time domain. Next, the pulse is shaped in the

frequency domain via Equation 3.38. Then the pulse passes to the next section and the

process repeats. Code in Matlab can be found in Appendix A. Figure 3-10 illustrates the

simulation model. If an end facet mirror is reached, the pulse bounces back and travels

through each section in reverse order. It is useful to examine the shape of the pulse after

each round-trip consisting of one forward traversal along the entire laser cavity length and

one full reverse traversal. The initial pulse guess will continue to be shaped after each

round-trip until it reaches a steady-state solution after several round-trips through the

modelocked laser. Figure 3-11 shows a snapshot of the pulse at each round-trip. The laser

used in this illustration is two-section and contains a passive section and a gain section.

Note the steady-state pulse width and energy after several round-trips. Note also the pulse

drifting towards earlier times even after a steady-state shape is reached. This is due to

the dominance of the gain saturation effect pulling the pulse forward, faster than its group

velocity. This happens because the front of the pulse is amplified while the trailing edge

isn't, hence the pulse center-of-mass is dragged forward, as described in Section 3.3.1.

The major difference between a gain section and a saturable absorber section is that

N > Ntr for the gain region and N < Ntr for the absorber region. This implies that the

initial unsaturated gain, gs, and the differential gain, a will be different for each section.

For a gain section, gs, > 0; for the saturable absorber, gs < 0. The a in the saturable

absorber is bigger than the a in the gain section (See Figure 2-15). In addition, no frequency

filtering is performed in saturable absorber regions since the gain curve is quite flat for low

carrier densities (See Figure 3-6).
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Figure 3-10: Explanation of split-step method

Actively modelocked sections need to be handled outside the regime of the analytic

equations. Since the gain is time-dependent, there is no closed form solution to the re-

lationship between the input and output pulse power. One approximation that can be

made is to disregard the non-linear gain saturation effects and treat the gain as indepen-

dent of the photon density. We can use Equation 3.26 to find the carrier density from the

time-dependent current. Any arbitrary periodic current function can be used. Typically,

a sinusoid is used but more sharply peaked functions can be substituted. Of course, the

higher the frequency components of the current function are, the worse an approximation

this turns out to be, since Equation 3.26 approximate a quasi-static solution. In addition to

this, dispersion and gain bandwidth cannot be implemented since the gain is not constant

as the pulse passes through the actively modulated section.

The more sections the laser is broken down into, the shorter each section will be and

hence, the more accurate the solution will be. A simple convergence test is to show that

the steady state pulse width and energy converge asymptotically to a single value as the
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number of sections increases. This is shown in [28, 16].

3.4.2 Simulation Validity

In order to trust the results of any computer simulation, it is necessary to test its validity by

examining simple cases where the simulation results can be checked with analytical results.

This section explores the validity of the computer simulation in a collection of limiting cases.

Initial Condition-Independent Steady State

This simulation method uses an initial pulse guess, typically Gaussian, to seed the pulse

shaping mechanisms. The user can define the initial pulse height [J] and pulse width [ps].

It is necessary to show that the steady-state pulse solution is independent of the initial

guess. Figure 3-12 shows the pulse width and height evolution of several initial guesses.

In Figure 3-12(a)&(b), the initial pulse energy is varied. In Figure 3-12(c)&(d), the initial

pulse width is varied. In all cases, the steady-state pulse width and energy end up the same.

Gain Bandwidth and Dispersion

Two limiting cases are to test the effects of gain bandwidth and dispersion. This can be

accomplished by turning off all effects save the one in question and examining how a pulse

evolves through a given length of semiconductor.

Analytic expressions can be obtained that show the effects of, separately, gain bandwidth

and dispersion for an unchirped Gaussian pulse input. Assuming an unchirped Gaussian

pulse input, analytical expressions showing the effects of gain bandwidth and dispersion

filtering can be derived.

First, we assume an unchirped Gaussian pulse input:

t2
Aj,(t) = Ae-2,2 (3.39)
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pulse energy. (c)&(d) vary the initial pulse width. In all cases, the steady-state pulse width is 4.1ps,
pulse energy is 1.1pJ. Laser parameters are the same as in Figure 3-11.
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THEORY AND SPLIT-STEP SIMULATIONS

which has a Fourier frequency representation of

Ain () = A 27ar2e 2

We can use the filter:

Aout(w) = Ain(w)e W

to represent the effects of gain bandwidth on the pulse, where

G2  t2gL

The resulting filtered pulse in the frequency-domain is:

Aout(w) = AMV/27r(u 2 + G2)e- (.2+G 2

where

= V 2 + G2

The filtered pulse in the time-domain is:

t2
Aout (t) = A Me 2(_2+G2 )

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

and is still Gaussian. This shows that the Gaussian pulse is attenuated by M and widened

from a to Va2 + G2 .

A similar analysis can be performed for dispersion, where the filtering function is

Aot(w) = Ain(w)ejw2D
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where

D2 = 82L (3.47)

The filtered pulse in the time-domain also remains Gaussian:

t2
Aout(t) = ANe 2(2+jD2) (3.48)

where

a2
N (3.49)

V.2 + jD 2

The dispersed pulse is attenuated by INI and widened to Io.2 + jD2 11/2.

Figure 3-13 shows a comparison of the split-step simulation frequency filtering (due to

finite gain bandwidth and dispersion) to the analytical expressions. An unchirped Gaussian

envelope was used as the input to both cases. In both cases the simulation exactly matches

the analytic expressions in magnitude and only a small phase discrepancy occurs in the far

tails of the Gaussian output. This is due to the very small magnitude of the pulse envelope

at the edges of the window, contributing to error since the phase is determined by a ratio

of real to imaginary portions. This has no effect on the pulse shaping, and the figures

demonstrate the validity of the simulation in regards to gain bandwidth and dispersion.

Active Modulation

The split-step method using active modulation can be checked against an analytical model.

A simple analytical model was developed by Siegman [58] and also Haus [23]. The formalism

used in this thesis is found in [61]. The analytical model used here takes in consideration

only active modulation, gain/loss, and finite gain bandwidth. It turns off any non-linear

effect as well as dispersion. It linearizes the non-linearity of the active modulation by

assuming a small-signal perturbation due to the short width of the pulse compared to the
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Figure 3-13: Comparison between analytic solution and simulation with (a) gain bandwidth only

(b) dispersion only unchirped Gaussian Pulse input, t2 = 0.ps, #2 = 103ps 2 m 1 , L = 10pm,

9P = 5 x 10 4 cm-1 (illustrative purposes)

width of the modulation period.

Assuming a ring cavity as shown in Figure 3-14, a pulse with power profile vm(t) propa-

gates through the ring, where the subscript is the m-th pass through the cavity. Assuming

a gain, g, and loss, a, for the respective sections, the next pass, m + 1, should resemble

Vm+1(t) = e gL-elvm(t) ~ (1 + gL - al)vm(t) (3.50)

if the exponent is sufficiently small enough.

We can now analytically write the various effects of each of the various sections on the

pulse.

Expanding g to include finite gain bandwidth (as in Figure 3-7),

g(W) = 90[1 - t2(W - wo) 2 ] ->. g(t) go 1 + t2 d2

using the inverse Fourier transform of the frequency-domain representation to obtain a
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Loss
modulator

Gain
medium

I L

Vm

Figure 3-14: Diagram of ring cavity [61].
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time-domain representation.

The loss section is modulated sinusoidally at a frequency, WM, which is the round-trip

frequency of a pulse traveling in the ring cavity.

a [1 + 2M(1 - cos wMt)] ao (I + MW2 t 2 ) (3.52)

assuming the pulse passes through the loss section in a very short time interval around the

minimum loss point (t = 0). At steady-state, this is a good assumption since the pulse will

prefer to exist when the loss is least.

At steady-state, the m + ith pass should equal the mth pass:

(3.53)

which reduces to

(goL - &ol) + goLt2fd2 - a 2lMwt2] Vm(t) = 0 (3.54)

The solutions to this differential equation are Hermite Gaussians, whose lowest order solu-

tion is:

Vm(t) = Vo exp (-t 2 /2t2)0 (3.55)

where

(g0L - &0ol)2 = aolgoLt2w2M (3.56)

and

go Lt2
o OL - aol

100

(3.57)

VM+1 (t) - VM I + g0L 1 + t 2 d2 ceol (I + MW 2 t 2)dt2 ) I
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Pulse evolutions using the split-step simulation can match the analytical solutions by

turning off gain/loss saturation, self-phase modulation, and dispersion forces. Figure 3-15

shows pulse evolutions of three different initial Gaussian pulse widths. Only the middle one

remains constant, since this used the predicted pulse width as an initial guess. In addition,

the pulse shape remained perfectly Gaussian. Any arbitrary pulse energy, Vo, can be used,

since this turns out to be a free parameter in the analysis.

30

25

.120-

10 /

0 20 40 60 80 100 120 140 180 180 200
Rotzirp #

Figure 3-15: Pulse width evolution with various initial pulse widths. Each reach the same steady
state. L = 1 = 50pm, go = 4cr- 1 , ao = 2cm1, M = 506.6059, WM = 27r x 1GHz, t2 = 5ps

3.4.3 Limitations and Improvements

The split-step method is a computationally efficient, instructional model of the pulse dy-

namics in a modelocked laser. It can take in account most of the dominant effects that

govern pulse shaping within a semiconductor laser. Since the pulse is represented in the

time-domain, insight can be gained by watching pulses evolve through each of the different

sections.

However, there are many approximations that are made in this model that make it

difficult to use this simulation technique as a design tool for building better modelocked

lasers.
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Active Modelocking Gain

As stated in Section 3.4.1, active modulation is treated poorly in this model. There are no

gain saturation or self-phase modulation effects, nor are there gain bandwidth or dispersion

effects. While the latter three effects are smaller effects, the lack of gain saturation can

have a large effect on the actual pulse shaping. In addition, for short cavity lasers with

high repetition rates, the carrier density does not track the injection current modulation.

Therefore, erroneous time-dependent gain shapes will show up in the simulation.

It is possible to model the active modelocked sections in a different fashion, such as

a finite difference method. However, this leads to a hybrid model simulation with added

complexity.

Carrier Density Memory

Immediately before the pulse passes through each section of the laser, the carrier density

is assumed to be at the unsaturated steady-state value, N,3 . Therefore, the gain is at its

unsaturated value, g,. As stated in Section 3.4.1, this implies that the carrier density

will always refresh to its steady-state value by the time the pulse returns to the section.

In short cavity lasers with moderate current biases, this is not true, since the pulse visits

each laser section at an average rate of two times the modelocked frequency. Furthermore,

this is definitely not true for laser sections near the facets, since there is very little time

between the propagation of the pulse through the section as it approaches the facet and the

propagation as it goes away from the facet. The largest error will occur in these sections.

To this end, the split-step method will always predict unusually low current densities

needed to achieve modelocking. Since gain is always refreshed, the current density need not

be as high as it should be in order to predict modelocking. Therefore, it is difficult to use

the method to predict threshold currents. This fact can be seen in [16], where design curves

are stated only in terms of gain, not currents.

By introducing a carrier density state variable, we can keep track of the carrier density

for each section division and easily calculate how much it changes due to the passage of a
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pulse through the section. Since the length of each section and the time it takes to travel

through it is linked by the group velocity, we can easily calculate the time step as the pulse

goes from section to section. The carrier density can then be crudely updated each time

step due to carrier relaxation and carrier injection via the current. This will allow us to

have greater confidence in results given by short, high-repetition modelocked laser cavities,

where the carrier density in a section is not refreshed to its steady-state value before the

pulse returns to the section.

N AN 
(3.58)

Ot At

Using Equation 3.7, this leads to:

ANm = iI N 9PIA+(zt) +A-(z, t) 12 At (3.59)
qV Tc hvWd

where Nm represents the carrier density at the m - th section.

Analytical Solution Approximations

As stated in Section 3.4.1, the approximations made in order to obtain the analytical

gain/loss saturation equations where that 1) ao < 'g(N) 2) a linear gain model and 3)

no carrier refreshing during the period in which the pulse passes through the section.

Multiple Pulse Formation

Since the representation of the pulse is in the pulse's group velocity frame-of-reference, It is

impossible to keep track of multiple pulse formation due to internal finite reflectivities. For

example, if the modelocked laser had an external cavity and the facet facing the external

cavity had a finite reflectivity (a non-ideal anti-reflective (AR) coating), then reflections will

happen at this boundary. These reflections will cause multiple pulses to form, as noted in

[28, 47]. The split-step model cannot keep track of all these pulses, since the representation

is in the time domain, not in space.
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3.5 Summary

In this chapter, the theory of the pulse-shaping mechanisms important in semiconductor

modelocked lasers has been explained. The dominant effects discussed here are gain/loss

saturation, self-phase modulation, dispersion and gain bandwidth. A split-step simulation

method was presented, and tested for validity. The most important effects for determining

steady-state pulse width and energy are gain/loss saturation and finite gain bandwidth.

While the split-step model is informative and provides much intuition to the pulse shaping

mechanisms found in a modelocked laser, its utility as a design tool is limited due to the

approximations it makes.

Equations 3.1 and 3.2 are non-linear, coupled differential equations in two dimensions.

An obvious method to solve them is through a finite difference solution, as stated in the

beginning of Section 3.4. The next chapter is devoted to this simulation technique.
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Chapter 4

Finite Difference Simulations

4.1 Introduction

Finite difference methods are simple, yet powerful, methods for finding solutions to complex

differential equations. Several authors [31, 5, 44, 28] have applied finite difference methods to

modelocked lasers by discretizing the laser rate equations. However, they do not implement

the second-order effects of finite gain bandwidth and dispersion found in these equations. A

new method is presented that improves on the existing algorithms found in the literature.

This split-step finite difference (SSFD) method is a powerful and accurate method for

theoretically exploring the dynamics of modelocked pulses and provides quantitative insight

to modelocked laser design. It combines finite difference gain and non-Fourier filtering

in a split-step scheme. In this chapter, the finite difference method is introduced and

applied to the laser rate equations. A few currently published methods are reviewed with

their strengths and weaknesses. For purposes of future research, a comprehensive list of

alternative methods that lead to the SSFD method are presented. The SSFD method is

then introduced and tested for validity. It is then used to provide performance trends in

various parameter spaces for laser design purposes. In addition, promising, but not fully

developed methods are also presented, including their advantages and issues.
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4.2 Summary of Simulation Methods

This section provides a summary of the published simulation methods found in the liter-

ature. First, the previously introduced methods are restated for reference. Then, several

other methods not previously mentioned are summarized.

The first method discussed in the thesis was the split-step method analyzed in Chapter 3.

Derickson derives this method from the split-step Fourier method developed by Agrawal

et al. [1] for use with fiber optic pulse propagation and the partial integration technique

developed by Helkey et al. [28]. The approximations it utilizes renders it unsuitable for

practical design work, however it provides good insight for understanding the behavior of

modelocked lasers.

Several finite difference methods already exist. Carroll et al. develop a method originally

developed for use with DFB lasers [31]. They provide the first insight in using a non-Fourier

domain filter to approximate the finite gain bandwidth, paving the way for the development

of the SSFD method.

Morton et al. publish a simple finite difference method and use it to model external

cavity, single section active modelocked lasers [5]. Since the single section is used in a gain

mode, the narrowing effect is provided by the active modulation and therefore will not suffer

from unbounded narrowing like that discussed in Section 4.4.1. It is unsuitable for any laser

with a passively-modelocked section.

For completeness, two methods of including gain bandwidth are mentioned. Schell et al.

[55] implement a method similar to Carroll's method, but suffers from the same problems

found in Section4.6. They attempt to implement a Lorentzian-shaped gain spectrum in

a difference equation, however their filtering is similarly asymmetrical, leading to group

velocity issues.

Lowery develops the Transmission Line Laser Model (TLLM) [42, 41] and applies it

to semiconductor modelocked lasers [44]. He expands the method to contain self-phase

modulation effects [43]. Lowery uses a finite difference method for gain and transmission

line theory to create a filter that simulates gain filtering. However, his filter is placed in
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Table 4.1: Table of simulation methods. /= suitable application.
application. t= limitations deter usage. suitable otherwise.

Method (Author)

0 = untested but suitable

M,

limitations

Split-step Fourier (Derickson) [16] / inaccuracies from ap-
proximations

Finite difference (Morton) [51 E no filtering

Transmission-line laser model (Lowery) [43] V filter has limited use

Finite difference, Lorentzian gain model t t t t t t incorrect filter
(Schell/Sch6ll) [55]

Finite difference, non-Fourier filter (Carroll) [31] t t t t t t incorrect filter

Split-step finite difference (Lau) / I/ filter has upper limit

in usage

only a single part of the laser, namely one of the facets. This simplified solution is not as

physical as the method in this thesis.

Also for completeness, a few non-finite difference methods are mentioned here. Sev-

eral analytical methods are available [55, 54, 23, 61]. These assume functionally-dependent

pulse shapes such as exp (-t 2 ) or cosh-2 (t) and allow only the function parameters to

evolve as the pulse passes through the laser sections. A few methods do not assume an ap-

proximated pulse shape, rather perform an analysis entirely in the Fourier domain [24, 66].

These analytic methods frequently leave out secondary effects and impose other approxi-

mations in order to achieve a closed-form solution. Schell and Schdll develop an iterative

method that transforms the pulse into its eigenfunction components, then amplifying them

in the frequency domain [53]. Many approximations, such as infinite gain bandwidth and

homogeneously biased (single contact) lasers, are made in this method.
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4.3 Laser Rate Equations

Equations 3.4 and 3.5 or their normalized forms found in Equations 3.6 and 3.7 can be solved

using approximate numerical methods for solving differential equations. The advantage of

this method is that we can explicitly include all the effects listed in Section 3.3 in contrast

to the split-step Fourier methods.

The coupled rate equations, in field form, are listed here for convenience:

1 aE+ (z, t) &Ei(z, t)
- t =

Fg gt eaZ

'( 1 - ja)E±(z, t) - E±(z, t) + (Fgt - 3,2) a 2 E±(z, t) (4.1)

ON(z, t) _ r/I N g12
qV T IE+(z,t) +E-(z,t)2 (4.2)at qV T, hupvg

where it is important to remember the carrier density-dependence of the gain, gp and carrier

lifetime, Tc:

gp(N) = go ln N±N, (4.3)
Ntr + N /

1
Tc = (4.4)

A±+BN±+CN2

The spontaneous emission term seen in Equation 2.2 can be added, but it is important

to understand the dynamics of the spontaneous emission term when adding it to a solution

of the differential equations [30, 64]. Our initial conditions assume an existing pulse of

arbitrary shape, therefore the use of the spontaneous emission term as a pulse-creating

mechanism is unnecessary. The spontaneous emission term can also be used to simulate

timing jitter but is left as a topic for future research. A diffusion term can also be added
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to Equation 4.2, but it is a minor effect compared to the photon field term.

The two equations are coupled first-order non-linear differential equations and may

also be written as a single second-order differential equation. They are space- and time-

dependent.

4.4 Finite Difference Laser Rate Equations

4.4.1 First-Order Finite Difference Approximations

There are several flavors of finite difference methods that can be used to solve the equations.

A simple choice of solution is by applying the forward-Euler method to the time derivative

found on the left-hand side of Equation 3.1. Instead of allowing the time step to approach

zero, At ' 0, we can set it to a finite value.

dSk(t) S±(t + At) - Sk(t) (4.5)
dt At

We have chosen to discretize the photon density equations, without loss of generalization,

due to their simplicity. We have lost phase effects but they can be added in separately, as

stated in Section 5.2. By noticing that the total time derivative (defined in Equation 3.16)

consists not only of a propagation in time but also propagation in space, we can see that

S±(t + At) =* S±(z ± Az, t + At) (4.6)

where Az and At are related by the group velocity, v-:

Az(47
At = Vg (4.7)

Essentially, we have chosen the total time derivative to follow the photon density at the

speed of propagation. Hence, we can see how the photon density increases and decreases
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due to its interaction with the gain medium [67].

This method can easily account for all first-order derivative terms. However, since

dispersion and gain bandwidth require second-order derivatives, they cannot be accounted

for as easily. In this first-order approximation, all second-order derivatives are ignored. The

final equation that relates the current time step to the next is:

S:(z ± Az, t + At) - S± (z, t) + At [vg (Fgp(z, t) - ai)S±(z, t)j (4.8)

where gp is written with space- and time-dependence to remind the reader that gp depends

on the carrier density, N(z, t). The carrier rate equation is simpler since the partial equals

the total derivative.

N(z, t + At) = N(z, t) + At [ 'I(zt) N (z, - Vggp(z, t)(S+(z, t) + S --z, t)) (4.9)
. q V 're(Z' t)

4.4.2 Implementation

Implementation of these two equations has a simple and straightforward recipe.

1. Choose a sufficiently small time step (At) and the space step (Az) can be found

through the group velocity.

2. Split the laser cavity length into equally spaced segments of length Az.

3. Create state variables for Ni, Sj-, and S, where i is used to enumerate each cavity

segment (See Figure 4-1).

4. Choose an initial photon density of an assumed pulse within the cavity. One can set

S- to zero and place the seed pulse in S+.

5. Choose an initial carrier density. It is convenient to choose a uniform carrier density

at transparency or at steady-state with no photons.

6. Propagate the pulse one time step, At, by calculating the state variables for the new

time step.
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7. Apply boundary conditions to couple S+ and S- together.

8. Repeat propagation until a steady-state is reached.

All the variables in Equation 4.8 can vary in time and space, thus leading to non-

linearity in the rate equation solutions. Particularly, gp(z, t) and Tc(z, t) can be found

through Equation 4.3, since the carrier density, N(z, t), at each time step is known. The

injection current can also vary in space, in multi-section current-biased lasers, for example,

and in time, leading to active modulation biased laser sections (See Figure 4-1).

Injected
current

State
variables

RF
section

I1 '2

Gain
section

13 14 15

Z3
16

Passive
section

IP-1 'P

43

gpl 9p2 9p3

C1 ic2 Tc3

Figure 4-1: Illustration of the state variables

sections. The total laser length is PAz.

9p4  9p5  9p6
Tc 4 T 5 c6

in a three-section laser structure with P

The proper choice of the length of the time segment (and hence, the length segment)

is important to arriving at a stable and accurate result. It is apparent that the shorter

the length of the segment, the closer to a true derivative the results become. However, too

short a length will result in a slow simulation program. Execution time goes as 0[( )2]

The time segment is chosen by running the simulation with different time steps and noting

N, N2  N3  N4  N5  N6  N, 1 NP
S+ I +2 S+ 3 S+4 S+5 S+6 S+ P1 S+P
S-1 S 2 S-3 S~4 S5 S-6 Sa 1 SP
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TCP

ill



CHAPTER 4. FINITE DIFFERENCE SIMULATIONS

trends. Regardless of the choice of time step, if the simulation reaches a steady-state then

the solution is stable. If the simulation asymptotically converges to the same stable result as

the time step is reduced then it is a correct solution. By examining the diminishing returns

of increased accuracy versus decreased time step, one can choose a time step that produces a

sufficiently correct solution in the minimal amount of computing time. A sufficiently correct

solution can be defined as one that does not deviate from the asymptotically approached

answer by more than a certain percentage.

Boundary conditions can be found at the laser segments that correspond to the end

facets. In a laser with P sections, this would correspond to sections 1 and P. Based on the

reflectivity of the laser facet, we can couple the forward and reverse propagating photon

densities together. For example, given a reflectivity R for both mirror facets, the right-hand

mirror facet implies

Sj;(t + At) = Rright X S+(t) (4.10)

and the left-hand mirror implies

S+(t + At) =Riet x S-(t) (4.11)

Internal boundary conditions can easily be added to simulate the effects of internal reflective

surfaces that may result in coupled-cavity effects. These boundaries occur at the junction

between the different functional sections in a multi-section modelocked laser (See Section 4.8

for results).

The laser output is asymmetrical and can be observed by the complementary boundary

conditions:

Sou (t + At) = (1 - R) x S+ (t)
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and the left-hand mirror implies

(4.13)

The finite difference programs were written in Matlab (See Appendix A).

4.4.3 Calculating Error

It is necessary to estimate the error in the finite difference calculations in order to determine

which method is more accurate than another. One form of error estimation is by Taylor

expansion. We first note that expanding S(t) around t at intervals of ±At gives exact

solutions:

S(t + At) = S(t)

S(t) = S(t)

S(t - At) = S(t)

d 1 d2  3 d
+ -S(t)At + dt2 S(t)At 2 + I d3 S(t)At3 +...

d 1 d 2  1 d 3

- S(t)At + dS(t)At 2
- d S(t)At3 +..

(4.14)

(4.15)

(4.16)

From these equations we can find the error for the Euler method above:

S(t + At) - S(t)

dS(t)
dt

_ d S(L)At 1d S(t)At2 I dS()A3 +

=dt)A 2 dt2 2+6 dts3(*$3+...

S(t + At) - S(t) 1 d2

At 2dt2

Hence, in this last grouping of terms, it is easy to see that the term in curly braces is the

error and that it is dominated by the second-order derivative term.

We can develop a more accurate approximation for the first-order derivative terms by

including past values of S(t) (Equation 4.16):

d 1 d3

S(t + At ) - S(t - At) = 2 dS(t)At + 2 d S(t)At 3 + ...dt 6 dt3

d S(t + At) - S(t - At) 1 d3 2
t= 2t + 6 dS(t)t

(4.19)

(4.20)

(4.17)

(4.18)
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This filter is symmetrical around S(t). The error, in this case, is dominated by the third-

order derivative term and in general will be smaller than the previous case. In general, we

can continue adding symmetrical terms around S(t) to improve the error and increase the

order of the largest error term. However, the trade-off is the requirement of a shorter time

step, since the estimation of a derivative at a specific point should be as local as possible.

The addition of terms requires values further away from the derivative point, which will

increase the error of the derivative calculation (See text on Numerical Analysis for a more

rigorous discussion [52]).

4.5 Classic Finite Difference Simulation Results

4.5.1 First-Order Derivative Finite Difference Equations

First, let us examine the results of running a finite difference simulation using only laser

rate equations without the second-order derivatives. The advantages of this method is the

simplicity in implementation. It is also relatively fast since no history of past state variables

(at t - At) is needed. The problems with this method are two-fold. First and most obvious

is the fact that the Euler method of solution can contain errors that may compound after

each time step. The second is that since no dispersive or gain bandwidth effects can be

employed, a passive or hybrid modelocked laser will have dominant pulse narrowing effects

with insufficient broadening terms to keep the pulse from narrowing to singularity. In fact, if

a simulation using the Euler method is run, this indeed happens. Figure 4-2 shows multiple

snapshots of the pulse profile within the laser cavity. The time difference between each

snapshot is the round trip period calculated from twice the round-trip cavity length divided

by the group velocity (tr.t. = 2 Ltot/v) (notice the pulse drifting similar to observed in the

split-step method). The pulse propagates and begins shaping initially, but continues to

narrow to impossible pulse widths. The position (x-) axis shows the passive section on the

left-hand side (8 0pm) and the active section on the right (100pm), with the gain section

occupying the remaining middle section (3500pm). The biasing is set to 500mA in the gain
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section, 10mA - DC with 200mA - RF set at the round-trip frequency for the active section.

It begins as the low power, central pulse snapshot (obscured by other pulse trails). The

initial pulse begins at 2ps, each successive pulse snapshot drifting toward the right facet of

the laser. The right-most pulse shown has a width of 0 .2ps, which is impossible for a typical

semiconductor laser due to gain bandwidth restrictions. Further propagation would result

in increasingly-narrower pulses. Eventually, the pulse will occupy a single discretized point.

Hence, gain bandwidth is an important effect that cannot be left out of a semiconductor

modelocked laser model.
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Figure 4-2: Pulse evolution with
round trip snapshots are shown.

insufficient broadening forces (infinite gain bandwidth). Selected

Previous first-order finite difference simulations that do not provide finite gain band-

width [5] have not suffered from the singularity asymptote effect. Since their model uses

a single-section, external cavity actively modelocked laser, there are no passive sections to

supply the dominant pulse narrowing effect that forces the pulse to singularity. Rather, the

narrowing effect is simply the weakly-confining gain shape provided by the active modula-

jjjv
0I
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tion and the spatially inhomogeneous current biasing.

4.5.2 Second-Order Derivative Finite Difference Equations

The most obvious choice for including the second-order derivative terms is by approxi-

mating the derivative as a finite difference term, as shown in Appendix B. We can use

an asymmetric, causal approximation, such as Equation B.4. Again, the positive points

about this method is that it is relatively simple in concept. However, because of the many

terms needed, this method requires more memory accessing and greater iteration time. This

method also seems to have severe stability problems. Even before the pulse propagates half

the length of the cavity, the error exponentially increases until it becomes greater than the

pulse itself. This is shown in Figure 4-3. Figure 4-3(a) shows the initial pulse. Figure 4-3(b)

shows the pulse at a later time. The inset shows a blown-up segment of the pulse. Note

that the profile is no longer smooth, rather it has become rough. This alternating roughness

increases without bound. Figure 4-3(c) shows the pulse at a point in which the error is on

the order of magnitude of the pulse power. Figure 4-3(d) shows a point in which the error

is many orders of magnitude larger than the pulse power. This represents the exponential

increase in the error.

It is unclear how to calculate the error and verify that it exponentially increases. Asym-

metric approximations of the partial derivative that include 5-15 previous terms (hence

smaller error but larger past memory) were tried with no marked improvement to the sta-

bility. Up to 100 terms were tried with similar results (however, such drastic numbers may

run into truncation errors and other problems). In finite difference simulations, especially

multi-dimensional simulations, quantitative error analysis is difficult. There are methods

of determining stability. It is also unclear if these methods can be applied to this problem

formulation. Future work should be done to estimate the error [52]. This unbounded error

relates closely to the symptoms found in 'IF limitations for the filtering technique described

in Section 4.7.1.
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Figure 4-3: Pulse evolution using unstable finite gain bandwidth implementation. (a) the initial
pulse (t = Ofs). (b) the pulse at the threshold of instability (t = 58fs). (c) the pulse exhibiting
significant instability (t = 63fs). (d) the pulse well beyond the threshold of instability (t = 70fs).
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4.6 Difference Equation Filtering

Another method for including the gain bandwidth parameter is through using a digital dif-

ference equation filter. This technique was pioneered by Carroll et al. when they simulated

pulse propagation in colliding pulse modelocked semiconductor lasers [313. It recognizes

that the laser pulses have a minimum achievable pulse width, hence their bandwidth re-

mains limited. In fact, the bandwidth of the photon field is limited to only a small range

of the much wider material gain bandwidth (See Figure 3-7). This same fact allowed us to

approximate the gain peak with a parabolic profile in Figure 3-7 for the split-step method.

We can further take advantage of this by creating a digital filter that matches the gain

profile only in the frequencies within the bandwidth of the photon field. The shape of the

filter can be allowed to deviate from the actual gain profile outside of the bandwidth of

interest.

Carroll et al. take the frequency response of their filter as:

|H(W)12 = 2 1_772(4.21)1 +72 - 2?cos[(W - wo)At]

where wo is the center frequency of the gain peak (as in Section 3.3.2), At is the time step,

and q is the bandwidth parameter. Since we have already assumed a gain peak recentered

to zero, wo = 0. The bandwidth parameter takes values from 0 < q < 1 and a prudent

choice allows us to match the gain spectrum within the pertinent frequency range. Figure 4-

4 shows the parabolic gain spectrum and various values of q from [31], given a time step

At = 150f s.

Carroll et al. state that the difference equation implementation of this filter for a forward

propagating wave is:

E+(z + Az, t + At) = AE+(z + Az, t) + (1 - A)E+(z, t)
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where

A = q exp (3wo At) (4.23)

The term A in Equation 4.22 is typically small. If A = 0, then Equation 4.22 reduces to:

(4.24)

This means that there is no filtering performed and the field at z simply travels to z + Az

in the time interval between t and t + At. The filtering simply means that we are taking

the field at time t and performing a weighted average of two adjacent points together: the

majority of the field at z and a small amount of the field at z + Az. This averaged result is

what travels to z + Az at t + At. Averaging can be explained as a form of low-pass filtering,

so this accomplishes our goal of limiting the gain bandwidth. However, there are several

issues with the technique:
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1. The filter parameter, TI, is determined incorrectly. This is explained in the next section.

2. The low-pass filtering (averaging) is performed in space, not time. In Equation 4.1,

the filtering is a function of the double partial in time. Filtering in space could be

performed if the gain bandwidth term was a partial in space. Since it is not, the only

other way that a filter in space would make sense is if the partial in time and space

were proportional to each other. As seen in Equation 3.16, the partial in time and

space of the photon density are not proportional. in other words we would be able to

claim, if this were true,

0 10 +
S+(z, t) S+ (z, t) (4.25)Ot Vg9 z

Because the gain on the right-hand side of Equation 3.16 is not negligible compared

to the terms on the left, these are not equivalent. To show that this approximation

cannot even be made, we will analyze Equation 3.1. Given a Gaussian photon density

profile:

S+(z, t) = So exp [- (t g)] (4.26)

we observe that:

S+(z, t) = (t z/v9) S+(Z t) (4.27)

at ( T 2-z v

0 S+(z t) (t - Z/v)+(z, t) (4.28)
0Z V9 T

2

When compared with

Vg (I'g, - c))S+(z, t) (4.29)

we see that around the peak of the pulse, t - z/vg = 0, that both partials are close to
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zero. Therefore, the approximation made in Equation 4.25 is not appropriate at the

pulse peak.

3. The major problem with the filter lies in the fact that the weighted averaging is not

symmetric around the space point z. As seen in Equation 4.22, the weighting is the

majority of E+(z, t) (as it should be) and a fraction of E+(z + Az, t). Since the

latter term is ahead in space to the former term, the averaging causes the pulse to

be shifted slightly backward in space. In a limiting case, think of a single impulse in

space and time. Without a filter, the impulse advances at the group velocity. When

the filter is applied, it begins to spread, but only to points behind it in space, since

the filter is asymmetrical. In filter theory terms, this can be explained by examining

the frequency response of the filter. The filter is complex, which results in phase shifts

in the output. These phase shifts are Fourier-transform-equivalent to shifts in time,

or equivalently a time delay. This has been shown through simulation that the pulse

is actually slowed down. Physically, this should not happen. This problem can be

solved by creating a symmetric filter. This technique is discussed in Section 4.7.1.

For completeness, Carroll has since written a text on simulating distributed feedback

lasers with gain filtering using a similar, but more refined technique [7]. However, applica-

tion to modelocked lasers is still questionable. The text is mentioned for further research

on this method.

4.7 Split-step/Finite Difference Simulation

Carroll's method provides inspiration to a suitable method of implementing the finite gain

bandwidth term. The key to implementing a correct digital filter is to re-examine the

split-step method in Chapter 3.

The split-step method separated the linear and non-linear effects of the laser rate equa-

tions into two steps, thus allowing for: 1) the integration of the non-linear terms over the

space interval, thus allowing for the use of longer intervals and 2) the use of a Fourier-domain
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frequency filter to implement the linear terms. The purpose of this method was improved

computational time primarily due to the partially-integrated rate equations while still main-

taining the effects of the linear terms through a two-step process. The negative effects were

the approximations that one had to make in order to perform the partial integration of the

non-linear effects.

The finite difference method shows improved accuracy and a more physical implemen-

tation of the rate equations. The primary goal of this section is to develop a simulation

technique that combines the two methods, thus achieving maximum accuracy with the

ability to include linear effects such as finite gain bandwidth and dispersion.

Since finite difference methods have been proven to be an effective technique for de-

scribing the non-linear dynamics of the laser rate equations, this portion of the problem

is solved. What needs to be accomplished is a way to implement the linear effects. In

the split-step method of Chapter 3, the filtering was performed by a Fourier-domain filter.

This was possible because the pulse was stored as a function of time, not space. At each

laser segment, the entire time window containing the pulse was "sifted through" the space

increment twice: once for the non-linear effects and once for the linear effects. For the finite

difference models, the pulse is stored in space rather than time, making a Fourier-domain

filter impossible to implement.

4.7.1 Symmetric Difference Equation Filtering

The method for realizing a time-domain filter can be accomplished through a digital filter,

in the spirit of Carroll's work [31] in Section 4.6. However, rather than a space-domain

difference equation, a time-domain difference equation will be used. Following Carroll's

formalism in Equation 4.22, we can write a similar one for the time domain, using photon

densities rather than fields:

S+(z, t + At) = r/S (z, t - At) + (1 - q))S1(z, t)
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where S1 (z, t) represents the newly-filtered photon density. Additionally, the photon den-

sity has not yet translated spatially. Only after the filtering has been performed, then the

boundary conditions are implemented and the pulse is allowed to translate in space at the

group velocity.

This filter, unfortunately suffers from the same drawbacks of the one in Equation 4.22.

Since it is asymmetric around Si(z, t), it will cause the pulse to slow down in the same

manner. The way around this is to use a symmetric filter:

S"(z, t + At) = rS'(z, t - At) + (1 - 2,q)S+(z, t) + 71Si(z, t + At) (4.31)

The Fourier transform of the difference equation becomes:

F(ZW)=I + 27q [cos(2wAt) - 1] (4.32)
S*(z, w)

This filter, similar to a second partial in time, is real and does not affect the speed of the

pulse propagation.

Since we are using the filtering in the same manner as the split-step method, the im-

plementation is similar to that stated in Section 3.3.2. We are trying to implement a filter

similar to the Fourier-domain filter in Equation 3.12:

S0o (w) exp [- 2 t2AzIg (N)] (4.33)
Sin(w)

However, since our filter is not the same, we try to match the filter response over the

frequency range of interest and allow our difference equation filter to have arbitrary response

outside this range. The matching is accomplished by two parameters: At and q. q is

a free parameter, however At affects the accuracy of the finite difference portion of the

simulation, so keeping this fact in mind is important. Essentially, At cannot be made too

large. Figure 4-5 shows the fitting of the digital filter's gain bandwidth to that of the

Fourier-domain filter.
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Figure 4-6 shows the error associated with these filters. It is more important to make the

curve fit well for the central frequencies (around zero) than for the frequencies further away

from zero. The tolerance for error is determined by the eventual steady-state pulse width.

Typically, for a gain bandwidth factor of t 2 = 5 x 10-13S, the steady-state pulse width is

no less than 4ps (as seen in the rough analysis of the split-step method in Chapter 3). The

frequency range that is necessary to cover more than 99.9% of the energy of a pulse with

a 4ps width corresponds to only 1THz. If the minimum pulse width were 3ps, then about

99% of the pulse energy would lie within a 1THz bandwidth. For a lps pulse, it takes

3THz bandwidth to cover 99% of the energy, and so on. Since no pulse energy lies at these

frequencies, the approximation is valid.

The implementation of a symmetric filter requires the knowledge of the pulse profile at

the future time, t + At. Realistically, this value is not known, but an extremely good guess

can be made. In the same manner that a future pulse profile would be calculated without

the presence of the gain bandwidth factor, we can calculate the pulse at this time interval.

Once the future value is known, the present (t), past (t - At) and future(t + At) values can

be used to perform the filtering. The assumption made is that the filter only changes the

pulse profile a little, so a guess of the future value that does not include gain bandwidth

filtering can be used to calculate the effects of gain bandwidth filtering. This can be verified

since for typical laser parameters (See Table 3.1) and a very large gain gp = 4000cm 1 , the

filter response falls a mere 2% of the peak value at 1THz. For more reasonable gain values,

gp = 2000cm 1 , the filter drops less than 1% within a 1THz span, and it only improves

as the gain drops. The shorter the time step (and thus, the space step), the better these

approximations become.

It is important to note that Equation 4.33 shows the shape of the filter to be dependent

on the peak gain, g,, and hence, the carrier density, N. Therefore, each point along the

laser cavity can experience a different filtering effect; the areas with higher carrier density

will experience more filtering than areas with lower carrier density. An added benefit of this

filter technique is that a variable filter of this kind can be implemented. In the split-step
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method, this is not possible, since the filter is determined by the steady-state carrier density

without photons.

It seems that this would require a filter fitting for each position in z at a given time

I. This would then have to be repeated once the time increment was advanced, resulting

in a very slow simulation, indeed! This can be bypassed by choosing all values a priori

except for gp and 1. A separate program can be run that finds the best-fitting value of q

for each given gp. So, gp can be scanned across a large range (i.e. from 0 to 5000cm- 1 ),

and appropriate values of 7 can be found. Then, an nth-degree polynomial fit can be made

to generalize a functional fit of the values of q to g,. Hence, only the n + 1 coefficients

are necessary to determine the appropriate r1 to use for a given g,. This saves an immense

amount of computational time. Figure 4-7 shows the fitted polynomial functions, q(gp), for

various Az. Appendix A shows the Matlab code for this concept.
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Figure 4-7: ri(gp) for various Az = 1pm, 5pm, 10pm.

After running simulations using this technique, it was found that when the value of 7

becomes equal to or greater than 0.5 then an unbounded error occurs, similar to that found

for the second-order derivative approximation method in Section 4.5.2. A simple solution

can be to limit 77 to values below 0.5. While this will result in a slightly understated filter
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value, this is only necessary for regions where the carrier density reaches extremely large

values. In a steady-state monolithic modelocked laser, the carrier density within the gain

section should be close to transparency. In addition, it is possible to choose values of At

that force rq to be very small and, hence, never grow larger than 0.5.

4.7.2 Reverse-Bias Model

A strong benefit of using a finite difference simulation model over other models is the added

ability to deal with saturable absorbers in an appropriate manner. The split-step method

only allowed us to specify a power transmission coefficient and a saturation energy. The

transmission coefficient signified the fraction of power that was transmitted through the

absorber when it was saturated. The saturation energy (Esat) is a measure of how much

pulse energy is necessary to saturate the absorber. Although these quantities are possible

to experimentally quantify, they are esoteric and have little relation to standard physical

quantities, such as carrier lifetime and laser length. The finite difference model allows any

model that can be described with a differential equation to be used for the reverse-biased

laser section.

The model used in this thesis defines a saturable absorber simply as a laser section

with a shorter carrier lifetime than a regular laser section. Typical lifetimes for a stan-

dard semiconductor laser section hover around Ins, depending on the carrier density, N.

Equation 4.4 shows the carrier density dependency on the lifetime. As the carrier density

approaches zero (equivalently, as the carrier density in the active region approaches thermal

equilibrium with no bias), the lifetime becomes inversely proportional to A:

1
Tc = - (4.34)

A

Hence, A can be used to define a traditional, low-level injection carrier density-independent

lifetime value. For our simulations, we have chosen a value of Tc = 10ns (hence, A = 10 8 -1).

Since a regular laser section is biased above threshold, we will deal with high-level injection

cases, where the value of A is unimportant.
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We can use A to define the dramatically decreased carrier lifetime in a saturable ab-

sorber. Typical reverse bias carrier lifetimes range from 5 - 4 5ps, about three orders of

magnitude less than that of a regular laser [31, 34, 35]. Karin et al. give a quantitative

formula for determining the lifetime, based in experimentally-fit data.

rc = 86ps -exp (Vbias+Vbi) (4.35)
1 2.1V I

where Vbias is the magnitude of reverse bias and Vi is the built-in voltage of the device.

The equation is a fit to a single 150A GaAs quantum well with 720A undoped A10.3 Gao7 As

barriers. Karin et al. also describe in [60] a model that describes the physical effects that

contribute to reduced lifetime performance in a reverse-biased laser segment. This thesis

will use a value of Tsa 20ps for the saturable absorber carrier lifetime, unless otherwise

noted.

Active Modulation Reverse Bias

The physics of reverse bias are also needed to describe actively modulated laser sections. The

RF section is DC current biased with an RF power modulation superposed. For forward

biased regimes, the RF power is translated into current modulation, hence a sinusoidal

current is used for current values greater than zero. For reverse biased regimes, the laser

diode is modeled in reverse bias, and the current is set to zero, while the carrier lifetime is

reduced. We have chosen to use the same lifetime as that of the saturable absorber.

4.7.3 Computational Recipe

The Matlab code for the SSFD simulation can be found in Appendix A. A list of pertinent

programs follow:

1. findGBWFunc. Determines the appropriate polynomial coefficients to describe a func-

tional dependence of gp(N) versus r.

2. LaserParam. Loads all general laser parameters.
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3. f dif f Main. Loads specific modelocked laser parameters, such as laser geometry, bi-

asing, and RF frequency. Sets up initial conditions, such as seed pulse, and carrier

density within the laser. Executes fdiff Loop.

4. f dif f Loop. This is the main loop of the program. It calculates the new state variables

for each time/space increment and graphs the progression. It also collects the output

laser power coming off the right-hand laser facet.

5. plotRT. Calculates pulse width and total pulse energy for each round trip. Plots

snapshots of the pulse energy within the cavity, the power emitted from the cavity,

and the pulse width and energy. Each snapshot is separated in time by the inverse of

the frequency of the active modulation.

6. plotEP. For use with detuning experiments. Displays the pulse evolution and deter-

mines if the pulse is locked to the RF source.

The following section will describe the computational recipe to the reader in a step-by-

step manner.

1. Define all laser parameters.

2. Choose an appropriate space increment (Az).

3. Build the appropriate filtering function, based on the space increment choice.

4. Define all modelocked laser geometries and bias points, including RF modulation

depth and frequency.

5. Define all laser initial conditions for N and S+. Seed the photon density with an

arbitrarily shaped pulse of any energy.

6. Repeat the following loop that calculates all pertinent data at each time increment.

(a) Calculate the RF current bias for this particular time step.
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(b) Calculate the next pulse, without filtering.

(c) Calculate the next-next pulse, without filtering.

(d) Based on the current gain, calculate the appropriate filter and apply to the next

pulse.

(e) Calculate the next carrier density.

4.7.4 Simulation Validity

As in the split-step discussion, we undergo the same testing to verify the accuracy of the

SSFD method. Many of the following tests are similar to the ones found in Section 3.4.2.

However, because the SSFD method is more physical, the tests will have a more tangible

feel.

When the space increment shrinks, the finite difference algorithm becomes more accurate

and the filter error shrinks (See Figure 4-6). However, the r7 parameter needed to describe

the same bandwidth limiting factor (t2 ) grows. As we decrease the space increment we

should observe the accuracy of the simulation increase. Figure 4-8 compares the steady-

state pulse width and energy for different space increments. In this simulation, Lsa = 60pm,

Tsa = 20ps, A = 108s-1, Igain = 100mA, c 2OmA, IRF - 40mA.

Note that for Az = 13pm, the steady-state does not follow the asymptotic trend of

the smaller increments. It is easy to see that smaller space increments show increasingly

diminished accuracy improvements in the pulse width. The pulse energy follows a more

damped oscillation behavior that approaches a singular value, rather than a monotonic

trend. It is unsure why the energy follows this trend. Therefore, it is sensible to choose an

increment that satisfies an acceptable level of accuracy while not prohibitively increasing

the computation time to reach a steady-state. For all subsequent tests, we choose a space

increment of

Az = 5pm)
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Figure 4-8: Steady-state pulse width and energy for different space increments.

The next few tests demonstrate the steady-state's invariance to initial conditions. Fig-

ure 4-9 varies the initial pulse width, using an initial peak power of 0.1mW. Initial pulse

widths shown are 20ps, 5ps, ips, and 0.1ps. The graph does not show these values explic-

itly, since the initial pulse lies within the laser cavity (internal). The graph only shows data

extracted from the laser output (external). Figure 4-10 varies the initial pulse energy, using

an initial pulse width of lps. Initial pulse energies shown are 1.5 x 10 2 2 j, 1.5 x 10- 16J,

and 1.5 x 10-"J. Additional simulations show that the steady-state can be reached from

a singularity initial condition of arbitrary energy. For all subsequent simulations, we start

with a low, spatially-uniform photon density. This also reaches an identical steady-state as

the other arbitrary initial conditions. Figure 4-11 varies the initial pulse location, relative

to the active modulation peak. It shows how the pulse steady-state settles to the same time

distance away from the modulation peak. Figure 4-11 represents the output of the mod-

elocked laser from the right-hand side (RF modulation side). Rather than show a single,

long stream of photon power, each round-trip period is shown side-by-side. The photon

density is shown by color; darkest is densest. Time evolves by following a vertical line from

bottom to top, then shifting over to the right by one round trip and scan once more from

the bottom. The time window length of the graph represents one round-trip period. A
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round-trip period is defined, not by the round-trip time of the pulse bouncing in the cavity,

but by the inverse of the frequency of the RF modulation, since this force more accurately

determines the laser's output round-trip time.
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Figure 4-9: Steady-state (a) pulse width and (b) pulse energy for different initial pulse widths.

We can demonstrate the active section's ability to synchronize the pulse's frequency to

its own. Figure 4-12 shows the laser's output without RF modulation. For comparison,

Figure 4-11 are all examples with RF modulation.

4.8 Design Trends

The SSFD method can be used to determine design trends for better performance, more

efficient semiconductor modelocked lasers. It can also shed light on biasing trends that

optimizes performance of the lasers. This section provides a compilation of these trends.

The three-section monolithic laser introduced in Chapter 3 was not experimentally suc-

cessfully modelocked. The major cause was the presence of large internal reflections occur-

ring at the current-confining etch regions between the three sections. Dimensions of the

10e 10,
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Figure 4-10: Steady-state (a) pulse width and (b) pulse energy for different initial pulse energies.

three sections are: 230pm, 3400pm, 2 4 0 pm. Figure 4-13 shows the DC L-I characteristics

of the laser. The ordinate is the current bias on the large section while each curve represents

different biases on the small sections. The small sections were biased equally with respect

to each other.

Figure 4-14 shows evidence of significant reflections occurring at the current isolation

boundaries. The resonant peaks correspond to a round-trip cavity length of about 230pm,

which is roughly the length of each small section. This implies that a resonant cavity is

formed by internal reflections at the section boundaries.

Within the time span of the writing/research for this thesis, a suitable test device was

unavailable. Hence, we look to results presented in the literature to explore the design capa-

bilities of the SSFD simulation. We use a high-performance two-section 1.55pm monolithic

hybrid modelocked laser developed by Ogawa et al. [29). In addition to [37, 38], we can

determine the majority of the laser parameters, compiled in Table 4.2. The listed values

are nominal values and will change when noted.

0op 0
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Figure 4-11: Pulse evolution to steady-state for two different initial relative pulse locations.
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group velocity.

Laser output with IF = 0. The pulse continues to advance in time faster than the
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Figure 4-13: DC L-I curves for three-section laser.
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Table 4.2: Laser Parameters

Parameter

Intrinsic
Carrier wavelength
Effective group index
Facet power reflectivity (sat. abs. side)
Internal power reflectivity
Confinement factor
Gain coefficient
Transparency

Internal quantum efficiency
Internal optical loss
Trap recombination coefficient
Bimolecular recombination coefficient
Auger recombination coefficient
Gain bandwidth factor
Geometry
Quantum well thickness
Number of quantum wells
Ridge width
Length of saturable absorber
Length of active section
Length of phase control sect.
Length of DBR
Coupling coefficient
Effective length of DBR
Effective power reflectivity (DBR side)

Discrete space step
Biasing
Saturable absorber lifetime
Current, RF, act. sect.
Current, DC, gain sect.
Frequency detuning

Symbol Value

AO
ng
Rsa

Rint
r

Ntr
Ns
77i
ai
A
B
C
t 2

TQW
NQw
W
Lsa
Lact

LPC
LDBR

Leffj
RDBR

Az

sa

IRF

Igain
fdet

1.55
3.7
0.274
0
0.05
3420.8
1.577 x
2.254 x
1
5
1 x 108
1 X 10-
1 x 10-

5 x 10-

40
3
2
75
750
150
200
20
95
0.43
5

5
60
60
0

Unit

pm

1018

1018

cm- 1

cm-3
Cm-3

10

28

13

cm-1
s- 1

cm 3 8-

cmes-1
S

A

pm
pm
pm
pm
pm
cm- 1

pm

pm

PS
mA
mA
MHz
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Figure 4-14: Optical spectrum of three-section laser.

The device, shown in Figure 4-15, consists of an actively-modulated saturable absorber

section, a DC-biased gain section, and a passive waveguide section. The saturable absorber

is a reverse-biased laser diode with the addition of an RF source for active modulation. The

RF input power is modeled as a sinusoidal current modulation. Transmission line reflectance

and internal laser diode impedance can be used to calculate the amount of power needed

to achieve the desired RF strength. Hence, the passive waveguide section was grown at

1.3pm, making the bandgap energy larger than the photon energy. The photon field is

roughly transparent to the bandgap, however optical loss (a) due to heavy-hole/light-hold

intervalence band absorption. This section is unbiased. Due to the mismatched material

between the passive waveguide and gain section, there is a finite reflectivity associated with

fields traveling across this interface; this is ignored in the simulation (Ri2 t = 0). However,

it is shown in the following sections that modelocking can occur even with non-zero internal

reflectivity.

The saturable absorber side is terminated by air, and a straight-forward index-mismatch

power reflectivity is calculated for Rieft. The passive section consists of phase control section
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and a DBR (Distributed Bragg Reflector) grating. The phase control section is not used

in this simulation. We use the effective mirror approximation to derive an effective cavity

length (Leff) and reflectivity (RDBR) for the DBR. Using r, Ao and LDBR, we determine

this using a transmission matrix solver.

The confinement factor is approximated to 5%. Although the confinement factor is

not found in the published works of this group, it can be calculated by knowing the band

structure, found in [37], using an optical mode solving program. The gain versus carrier

density parameters, go, Ntr, and N, are fitted parameters to the theoretical gain curves in

Section 2.4.5. The internal quantum efficiency, qi, is set to 1, since a different value will

only scale the current inputs.

The saturable absorber is reversed biased, and is modeled with an increased carrier

lifetime, -ra, which causes any generated carriers to be swept away by the reversed biasing.

The value of Tsa is a monotonically increasing function of increasing reverse bias voltage,

but the relationship is non-trivial to determine but can be accomplished experimentally

(See Section 4.7.2).

The gain bandwidth factor, t 2 , is assumed to be the same as the previous lasers in this

thesis. The ridge width is not mentioned in the three papers, and a value is set to 2Pm.

This will scale currents, total field energies, and also the confinement factor.

SA 100 mA RF Spectrum
) Anatyzer

b -cz )Optical
Spectrum Analyzer

SA Gain PC DBRefeenc S reaer
- - Autocorrelator

tmod
100 MHz reference Streak Camera

Figure 4-15: Schematic of laser used for design [29].

We now present, in the following sections, results from the simulation for various pa-
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rameter spaces. For each experiment, we scan two parameters and measure the steady-state

pulse width and energy for each point in the parameter space. In general, the goal is to

minimize the pulse width and maximize the pulse energy. The three following sections are

broken down into three parameter space themes: biasing parameters, geometrical parame-

ters, and intrinsic laser parameters.

4.8.1 Biasing

Passive Modelocking

It is necessary to demonstrate simple passive modelocking, since the hybrid case should

follow similar biasing schemes. The active modulation should only serve to modulate the

time-dependent gain and should not affect the overall performance of the laser, other than

providing a confining potential to make the pulse more robust against noise. Certain kinds

of noise, such as spontaneous emission noise, will serve to produce fluctuations in the peri-

odicity of the pulses; effectively shifting the pulse backward or forward in time. The active

modulation should only provide a time-dependent gain potential that synchronizes the pulse

to the electrical modulation source frequency.

In Figure 4-16, the gain section current bias is scanned for different saturable absorber

lengths. Each curve represents a distinct saturable absorber length. Each curve is termi-

nated by a lower and upper bound for DC bias. The lower bound is set by the minimum gain

needed to exceed threshold. The upper bound denotes CW or modulated CW operation.

The pulse energy trends are intuitive: with increasing bias, the pulse energy increases. In

addition, for a given bias level, the energy falls as the saturable absorber length increases,

accounting for increased pulse absorption.

The pulse width trend is a bit more interesting. For small currents (hence, small pulse

energies), the pulse width falls with increasing bias. Around 150mA, the pulse width hits

a minimum and then increases slightly with increasing bias. This is accounted for by the

fact that for small pulse energies, the pulse is not completely saturating the absorber (this

was observed by examining the carrier density dynamics in the simulation). Hence, as the
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pulse energy increases, the absorption saturation is more strongly observed, resulting in

a narrower pulse. Again, the concept of a saturation energy, Esat is introduced. This is

the energy that is needed to saturate the absorber, and is proportional to the transverse

cross-sectional area of the absorber and the strength of reverse bias. It is not proportional

to the length of the absorber. It can be increased only by harder reverse biasing on the

absorber.

When the pulse initially enters the absorber, it experiences the greatest amount of pulse

shaping since its energy is large and is on the order of Esat. As the pulse travels further

into the absorber, its overall energy is reduced and pulse narrowing is reduced. The further

the pulse travels into the absorber, the less narrowing effect the absorber will have on it.

However, the pulse will still continue to experience pulse energy reduction. Thus, the use

of very long absorbers is not necessarily beneficial. Of course, increasing the bias raises

the initial energy of the pulse entering into the absorber, but not without increasing the

filtering due to decreased gain bandwidth. In addition, the increased gain saturation effects

begin to widen the pulse.

A transparency energy Etr can be defined for the gain section, describing the energy

necessary to bring the gain region to transparency. With increasing current bias, the carrier

density increases and, hence, Etr increases. Since the steady-state pulse energy increases

simultaneously, the pulse sees a larger gain saturate effect and the pulse becomes slightly

wider.

Heating effects are not included in this model. Therefore, a fundamental limit on the

maximum current bias and pulse energy needs to be imposed on the results of the simu-

lation. This fact should be kept in mind when interpreting the results of the simulation.

In summary, these results claim that an optimum absorber length can be determined. All

subsequent simulation results include active modulation.
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Figure 4-16: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
saturable absorber lengths (no active modulation).

RF Current Depth

The following simulation experiment involves scanning the magnitude RF current for dif-

ferent DC current biases. Figure 4-17 shows the simulation results. For each DC bias level

curve, the smallest RF current point shown defines the minimum modulation depth required

to produce synchronized, well-defined steady-state pulse trains (i.e. poor modelocking was

observed for RF depths of 30mA or less). There is no upper bound, however; 8OmA was

chosen arbitrarily as a cut-off point for the simulation.

Note that no frequency detuning was used (this will be elaborated on in the next subsec-

tion). Note also that the modulation current densities are extremely high for a reverse-biased

laser section. For example, ±50mA for a 75pm long, 2 pm wide saturable absorber gives a

current density of JRF = 33kA/cm 2 . However, with no detuning, these levels are necessary

to produce well-defined pulses that are synchronized to the RF source. Note also the saddle

point seen by looking at the pulse widths for a fixed RF current, scanning the DC currents.
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We see that Igain = 60mA gives the smallest pulse width, with current levels on either side

producing wider pulses. This was also seen in the passive modelocking case above. Note

that the widths increase with increasing RF currents. This is due to the fact that greater

RF currents produce a higher average carrier density in the absorber, which results in less

absorption saturation effects.
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Figure 4-17: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
modulation depths.

Frequency Detuning

The modulation frequency can be detuned from the nominal value defined by twice the laser

length divided by the pulse group velocity. The range of detuning frequencies that produce

synchronized, well-defined pulses is defined as the locking bandwidth. Locking bandwidth

curves for different modulation depths are shown, demonstrating the effect of modulation

depth on the locking bandwidth range. It is expected that this bandwidth would decrease

with decreasing modulation depth, since the confining potential is less.
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Figure 4-18 shows a rough, broadband picture of the widths and energies within the

locking bandwidth range. Neither the 80mA nor 40mA RF modulation depths shown were

the actual max/min values. These were chosen arbitrarily (i.e. 90mA or 30mA would also

produce curves). In addition, the locking bandwidths for 70 and 80mA extend beyond the

arbitrarily-chosen frequency range of +500MHz.

RF
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'~50 MA
- 60 mA
--- 70 mA

80 mA

5000
Fdet [MHz]

(a)

0.24
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Figure 4-18: (a) Pulse width and (b) pulse energy versus detuning frequency, for different modu-
lation depths.

Figure 4-19 shows a more detailed and extended picture of the locking range. We can

feasibly make the RF current very close to zero and still achieve a non-zero locking range.

The most notable point is to notice that the range for pulse synchronization occurs

well away from 0MHz. The locking range should lie where the modulation is as close to

the true round trip frequency of the oscillating pulse. This phenomenon occurs due to the

unbalanced pulse drifting caused by gain and loss saturation (discussed in Section 3.3.1).

The amount of pulse drifting in steady-state determines how much detuning is necessary.

In addition, the more drifting the less chance that 0MHz detuning will be able to produce

synchronized, well-defined pulses, since the pulse will experience a greater urge to break the
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Figure 4-19: (a) Pulse width and (b) pulse energy versus detuning frequency, for different modu-
lation depths. A more detailed view than Figure 4-18.

synchronizing RF potential. By detuning, smaller RF currents can be used. Practically,

in a real modelocking experiment, the true group velocity is not accurately known. An

error in group index of +0.1 results in a difference of 1GHz modulation frequency, much

greater than the shifted detuning range determined here (only about 400MHz). Hence, an

experimenter would most likely find the "detuned" range without realizing that this was

actually detuned. She would merely find the frequency that gives the optimum modelocking

performance. This point should correspond to the pulse passing through the RF section near

the peak of the modulated carrier density. Detuning the frequency from this true round trip

frequency, either greater or less than this peak value, would cause the pulse to experience

lower gain and therefore smaller pulse energies would be observed. In addition, shorter

pulse widths would also be observed, since the pulse feels a steeper confining potential.

However, in a simulation, finding this range is not as trivial a task. For each point

in a parameter space, the detuning must be scanned to find a locking range that could

span less than 50MHz, but lie 400MHz away from the nominal value of 0MHz. Since

most parameter changes will affect the amount of gain/loss saturation found in a steady-
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state round-trip, the amount of net drift per round trip will change greatly. Therefore, the

locking range should shift with each parameter change, potentially making computation

extremely time-consuming. A simple algorithm may be feasible to construct that allows

for a minimization of detuning scanning. This is left to future work. In addition, it is

interesting to note that the less DC current bias on the gain section, the less pulse drifting

occurs (pushing the pulse faster in time), and the greater the locking bandwidth will be.

For all subsequent simulation experiments, we do not attempt to find the locking range.

Rather, we set the detuning frequency to 0MHz and find a robust RF modulation depth

that gives us suitable modelocking. We have chosen IRF = 60mA. This value is too high for

experimental purposes but should allow us to observe the trends regardless. It is stressed

that an accurate solution, with a lower modulated carrier density, is straightforward to

simulate, however it is not performed in this thesis.

Reverse Bias Strength

As stated before, making the reverse-bias voltage more negative produces a decreased carrier

lifetime, Tsa. Figure 4-20 shows different carrier lifetime curves. A curve for Tsa = 2ps is

not shown, indicating no suitable, stable steady-state was reached. Igain = 40mA marks

the minimum current bias for stable pulses, however Igain = 80mA does not represent the

maximum. Most trends are intuitive. Decreasing the lifetime decreases the pulse energy

and width. However, for increasing DC bias, the pulse width increases for ra = 100ps but

decreases for -ra = 5 ps. This can be explained using the concept of Esat. For larger lifetimes,

the steady-state carrier density is larger, therefore it is easier to saturate the absorber. For

the bias values shown, the absorber has been easily saturated for the Tsa = 100ps curve.

However, this is not the case for the Tsa = 5ps curve, where the pulse energy has not yet

saturated the absorber during each round trip. In this curve, the increasing bias produces a

higher-energy pulse that begins to saturate the absorber more effectively, producing shorter

pulses.

In summary, if the saturable absorber is made too long, then the gain necessary to
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achieve a steady-state pulse must be made higher, or the net round trip gain/loss will be

too high and the pulse will never appear. Heating effects and other non-idealities prevent

the gain from being too high. If the saturable absorber is too short, however, the pulse is

not exposed to a very large pulse narrowing force. Hence, the steady-state pulse will be

very broad. Reverse biasing the absorber harder or making it longer do not have the same

effects. As stated in the above sections, increasing the length increases the pulse narrowing

effects while increasing the reverse bias increases the Esat. Both serve to increase the DC

threshold current bias. If the pulse energy is much less than Esat then not much pulse

narrowing occurs. If the pulse energy rises well above Esat then the pulse narrowing effects

cease to increase.

It is reiterated that this minima is set by Esat and the pulse energy. The former is not

a function of absorber length, Lsa, as can be seen clearly in the 30GHz case.
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Figure 4-20: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
saturable absorber strengths (measured by carrier lifetime).
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4.8.2 Geometry

Round-trip Frequency

This section explores the differences between cavities of different lengths. There are three

lengths presented, corresponding to three different round trip frequencies: 38GHz, 30GHz,

and 20GHz. Figures 4-21 to 4-23 show the results of these simulations. Each simulation

scans the DC bias for different saturable absorber lengths. In order to maintain the same

total cavity length, the gain section length is changed. In other words, as the saturable

absorber length increases, the gain section length decreases. Also, the RF current density

is maintained at 40kA/cm 2 to maintain consistency. Evident in the 30GHz case, there

is a relatively small range of DC biases that result in stable pulses. The lower limit was

set by the minimum bias required to be above threshold. As the saturable absorber length

increases, this DC bias threshold level also increases. The upper limit was set by an increase

of pulse drift which prevented the pulses from synchronizing. Again, pulse width minima

can be seen, similar in effect to the passive modelocking case. In the 20GHz case, pulse

broadening for large biases is evident when Lsa = 400pm.

4.8.3 Intrinsic

Optical Loss

Not all parameters can be so easily controlled as the biasing or laser geometry. However,

we can explore the effect of improving them to see how they affect laser performance. If

they prove to be of large impact, then these facts can be relayed to the laser designer and

grower to ensure these parameters are optimized. The optical loss parameter, 0j, is one such

parameter. Figure 4-24 shows the effects of controlling the optical loss. Each curve is lower-

bound by the threshold condition and upper-bound by increased pulse drift. In steady-state,

the net gain and loss per round trip must equal unity. The effect of reducing ce means that

the overall round trip loss is reduced, hence the gain need not be as large to maintain a net

round trip gain/loss of unity. Since the gain is lower, the gain saturation effects and gain
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Figure 4-21: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
saturable absorber lengths in a 37.8 GHz cavity.
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Figure 4-22: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
saturable absorber lengths in a 30 GHz cavity.
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Figure 4-23: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
saturable absorber lengths in a 20 GHz cavity.

bandwidth filtering are not as strong, so pulse broadening is minimized. These factors result

in lower pulse width and higher pulse energy: both wins in laser performance optimization.

Facet Reflectivity

A more controllable parameter (albeit not technically an intrinsic parameter) is the mirror

facet reflectivity. Although it can nominally controlled by changing the index of the mate-

rial, it is most easily controlled by depositing an HR coating on the end facets. Figure 4-25

scans the DC gain for different mirror reflectivities for the left-hand mirror (in Figure 4-15).

As with all the simulations, the optical power is collected from the right-hand facet. Intu-

itively, the laser output should increase as the mirror reflectivity increases. Additionally,

the internal photon energy should be higher, due to a greater confining force. The net

round trip gain/loss is reduced, therefore requiring less gain to obtain an above-threshold

pulse. As similarly seen in the reduction of optical loss, the increase of mirror reflectivity

results in reduced pulse width and increased pulse energy. This is also win/win situation,

150

4

3.5

I

4.5 r



4.8. DESIGN TRENDS

0.
2

5 r

-0- 0.0 CM
- 2.5 cm

-- 5.0 cm-
-v- 7.5 cm'

+-4- 10.0 cm 1

3-

2.9-

2.8-

2.7 -

a- 2.5-

2.4-

2.3 -

2.2
20

0.2

15

0.15

- 0.0 cm'
- 2.5 cm

-e- 5
. 7

+ 1l

0.1
60 70 80 20

0 cm-
.5 cm
0.0 cm'

30 40 50
I . [mA]

(a)

/
/

60 70 80

(b)

Figure 4-24: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
optical loss values.

and much more easily controllable than the former parameter.

Internal Reflections

The presence of non-zero internal reflections (so-called "coupled-cavity" cases) can also be

simulated. In Figure 4-26, we create reflective boundary conditions at the current-confining

boundaries. There are two: one between the absorber and gain section, one between the

gain and DBR section. Each curve represents changing their reflectivities simultaneously.

As can be seen, the transition between Rint = 0.01 and Rint = 0.1 results in a dramatic

increase in the pulse width. The pulse widths shown that lie above 10ps do not actually

represent pulses. The round trip cavity length is only 26ps long; to have a FWHM pulse

width of anything greater than 10ps would mean an overlapping of the tails of neighboring

pulses. In fact, their nulls do not fall to zero. Rather, they represent either CW light or

modulated CW light, essentially showing no modelocking. In summary, it is necessary to
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Figure 4-25: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
left-hand-side mirror reflectivities.

keep the internal reflections quite low.

4.9 Summary

The SSFD method has been developed through the inspiration provided by the published

literature. Like other methods, it harbors its own limitations. However, primarily due

to the development of faster computers, the SSFD method is, at heart, a brute-force fi-

nite difference method enhanced by a filter technique capable of describing second-order

effects that a traditional finite difference method cannot. The method is computationally

intensive, but with the progressive advancement of the computational power of inexpensive

desktop computers, this has ceased to be a large concern. The filtering has limitations

that are mathematical in origin, and a study on numerical methods would possibly allow a

relaxation of these limitations. However, for a large range of experimentally-observed gain

bandwidth parameters, this method is a robust and useful tool for describing modelocked
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Figure 4-26: (a) Pulse width and (b) pulse energy versus gain region bias current, for different
internal reflections.

laser dynamics. It is capable of exhibiting many effects due to its general description of the

laser dynamics. Its greatest strength lies in its usefulness as a design tool for optimizing

the performance of modelocked lasers. This ability has been demonstrated in the various

simulation results that lie in this chapter.
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Chapter 5

Conclusion

5.1 Summary

This thesis begins with theoretical and experimental parameter extraction for general laser

diodes. All parameters necessary for describing the lasers used in the simulation programs

can be determined and verified against results from multiple tests. The extractable param-

eters include: optical loss parameter, aj; optical gain, g(N, A); carrier injection efficiency,

rhi; confinement factor, F; mirror reflectivity R; recombination coefficients, A, B, C; and

group velocity ng(N, A).

The split-step Fourier method was presented as a first-pass exploration into numerical

methods for solving modelocked laser problems. While it fails to prove practically ap-

plicable, it does provide much insight into modelocked laser dynamics. It also provides

inspiration to the SSFD method explained in Chapter 4.

The SSFD method was developed to answer the needs of a simulation method that could

provide accurate and practical information about biasing and designing modelocked lasers.

Using this method, we can design semiconductor modelocked lasers around the parameters

of our choice. This should be of primary importance when designing superior performance

lasers for optical A/D converters.

As closing, a list of future works is enumerated below to provide the reader with further
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projects to continue the research presented in this thesis.

5.2 Future Work

5.2.1 Active Modulation

The most accurate modeling of the RF modulation could be as a sinusoidal voltage source.

In either case, the active modulation depth should be very minimal (much lower than the

design graphs presented in this thesis) and almost the same as a passively modelocked laser

that is biased similarly, just without the RF modulation. The true round trip frequency of

the modelocked laser is different than that calculated by a pure group velocity calculation,

and the modulation frequency should be tuned to this true round-trip frequency. This

frequency can be found by passively modelocking the laser without the RF source and

measuring the round trip frequency. The addition of the RF source should not change this

value too drastically. Its true usefulness is not portrayed in the simulations in this thesis;

the real effect is to make the laser more robust to noise, which is not introduced in this

simulation (this is left to future work). It is only interesting in detuning experiments. It can

show how frequency detuning affects the dynamics of the laser. It would be more accurate

to rerun the simulations in this thesis without the active modulation. This would give more

accurate simulation results than an overestimate of the RF modulation depth. Due to the

time constraints on this thesis, this work is left to future research.

5.2.2 Phase Effects

The most significant improvement to the model is the addition of phase to the photon

field. Phase can be accounted for in the same manner as the split-step method: track the

evolution of a field magnitude term and a phase term. The field finite difference equation

is simply:

E:(z ± Az, t + At) - E±(z, t) + At [Vg(Fgp(z, t) - ai)E±(z, t) (5.1)
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We can account for self-phase modulation simply through a finite difference equation that

parallels Equation 4.8:

(5.2)4±(z ± Az, t + At) = 4i(Z, t) - At [ v9 agp(Z, t) q+(z, t)

The gain bandwidth filter must be fit to a field bandwidth Fourier filter:

E0 t (W)
tin(W)

= exp I w2t2pgp (N)Az]
1- 2

(5.3)

The dispersion should be fit to a slightly different filter:

Sou (w) = exp (
1
2

Az)

where

(5.4)

(5.5)

However, since phase itself is slightly different than magnitude:

1
-j-/3 2W2 AZ

2

the actual filter should look like:

) is

A suitable difference equation filter is:

(5.6))

(5.7)- 02W2Az
2

-Y [-<1in(t - At) + 2<hin(t) - )in(t + At)] = 5out)(t)
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whose frequency response is:

S-y [cos (WAt) - 1] (5.9)
( Out M)

This function can be fit to the actual frequency response of the dispersion effect. It is left

to future work for the implementation of this technique.

5.2.3 Direct Derivative Filter

Another method for implementation of the finite gain bandwidth is the Direct Derivative

Filter (DDF) method. It recognizes that Equation B.9 contains an inherent filter in the full

gain term. We can examine the gain terms (including gain bandwidth):

V 9 Fgp(z, t) 1 + t 202] S+(z, t) (5.10)

Writing the definition for the filtered photon density, SF,

a2
SF~t 1 + t2a2-S(z, t) (5.11)

it is immediately obvious that the unity plus second-partial define a filter that can be

described in the Fourier-domain:

SF - 2 2  (5.12)
S(w)

Hence, we can again use the same technique of filter approximation to account for this

transformation as in Section 4.7.1:

F (Z, w) = 1 + 2'r [cos(2wAt) - 1] (5.13)
S(z, w)

Figure 5-1 shows what the actual filter looks like, including a fitted difference equation

filter approximation. Note that the fitting for t 2 = 5 x 10~ 13 s and t 2 = 1 x 10-13s are
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both quite accurate, relative to the SSFD method filtering. However, when used, this

method suffers from the same unbounded error that the SSFD method exhibits when the

bandwidth parameter goes above 0.5. However, this method provides a bit more room:

it becomes unbounded at values above 7 > 1. For the latter case, the fit for ij is below

one. However, for the value of t 2 that is used in this thesis, q is well above one for the

2= 5 x 10- 1 3 s case, rendering it useless for bandwidth parameter values this high. If an

acceptably lower value of t 2 can be used, this method would qualify as the more superior.
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Figure 5-1: Actual filter with fitted filter for Az = 5pm. (a) t2 = 5 x 10- 13 s (b) t 2 = 1 x 10-13S

Once the photon density is filtered and SF is obtained,

equation, combining Equations B.9 and 5.11:

S±(z ± Az, t + At) - S(z, t)

At

we can use it in a difference

= -v 9 a S(z, t) + vg-'gp(z, t)SF (Z, t) (5.14)

This method promises the most accurate filtering technique since it is not a split-step

method. However, the current filter can be a poor fit if the bandwidth factor, t 2 is too

large. The method's filtering accuracy depends greatly on the space step chosen, Az, and

*Gain Bandwndt

,1=1&.5801 (lir -t
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the gain bandwidth factor, t 2 . The larger the space step, the more narrow a filter it can fit.

5.2.4 Filtering Limit

The filter coefficient in the SSFD method cannot be set above 0.5. Otherwise, an unstable

error similar to the second-order derivative approximation in Section 4.5.2 can occur. This

upper-bound limits the size of the bandwidth parameter, t 2 . Hence, the stronger the filter

needs to be, the less accurate it will be. Possible solutions are to develop another filter,

possibly a higher order one (containing more terms).

5.2.5 Energy Conservation

The SSFD method performs a filtering after the new carrier density and photon density are

determined. Without filtering, there is a one-to-one correlation to the number of photons

gained/lost to the number of carriers lost/gained. The filtering always has a magnitude

equal to or less than one. This results in a decrease in only the photon density, hence

destroying the detailed balance that we had prior to the filter. In order to regain this

balance, the number of photons that were lost from prior to after the filter can be easily

calculated. This number of carriers can then be added back to the new carrier density. In

addition, this calculation has the added benefit of maintaining spatial dependence. Carroll

et al. mention the importance of maintaining particle balance in [50].

5.2.6 Lax Averaging

Carroll discusses a technique called Lax averaging and states that it is a more accurate

method for approximating the pulse evolution difference equation [7]. For a basic first-

order differential equation,

d S(t) = g(t)S(t) S(t + At) - S(t) (5.15)
dt At
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The traditional method of Euler approximation is to define the derivative at time t:

S(t + At) = (1 + Atg(t))S(t) (5.16)

If At is very small, another approximation method is to define the derivative at time t + At:

d S(t + At) - S(t)
-S(t) = g(t + At)S(t + At) ~ (5.17)
dt At

which leads to:

1
S(t + At) 1 S(t) (5.18)

1 - Atg(t + At)

These two can be combined:

1 + }Atg(t)
S(t + At) S(t) (5.19)

I - jAtg(t)

where g(t) is taken to be the value at t for both the numerator and denominator. Equa-

tion 5.19 is called a Lax average approximation for the differential equation. It is not difficult

to implement Lax averaging in the SSFD method. It is unsure whether the improvement is

worth the added computation time and complexity. Preliminary simulations comparing a

Lax-averaged and non-Lax-averaged pulse steady state show a marginal difference.

5.2.7 Spontaneous Emission Modeling

The SSFD method can take any arbitrary initial pulse (even a singularity of very low photon

density) and produce the same steady state, provided the biasing is the same. However,

the ultimate goal would be to model spontaneous emission and allow it to build into a

pulse. Proper statistics are necessary to model it in a correct and physical manner. Several

authors discuss this modeling [30, 64].
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Appendix A

Matlab Code

A.1 Hakki-Paoli Code

A.1.1 hakki.m

% HAKKI Finds overall laser loss/gain spectrum
a = hakki(L,R,sp,avenum)

% L: length of laser (cm)

% R: Power reflection coefficient
% sp: matrix of two column vectors

col.1: lambda[nm]: wavelength of each photon gain, a, found
col.2: Optical Power[dB]: intensity spectrum

avenum: # of 'a' points to average over
10

% output: matrix of two column vectors
col.1: wavelength of each photon gain, a, found [nm]
col.2: photon gain [cm^-1] = Gamma*g-alpha-i

function a = hakki(L,R,sp,avenum)

%############################################################

% split up sp matrix into lambda and PdBm vectors
lambda=sp(:,1);
PdBm=sp(:,2); 20
PmW=10.^(PdBm/10);

%############################################################

% calls FINDPEAK script
findpeak;

%############################################################
%6 plot the spectrum
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figure;
set(gcf,'Position',[50 50 500 400]); 30
plot(lambda,PdBm,lambda(Ipeak), ...

PdBm(Ipeak),'og' ,lambda(Inull),PdBm(Inull),'vm');
axis tight;
xlabel('Wavelength [nm]');
ylabel('Transmission I/I-o [dB]');
title('Hakki-Paoli Minima/Maxima with Wavelength vs. Transmission');

%############################################################

% convert maxima and minima values from dBm to Watts
Pmax PmW(Ipeak); % [mW 40
Pmin = PmW(Inull); % [mW]

%############################################################

% calcuate a (positive is gain, neg. is loss)
for N=1:length(Pmin)-1

r(2*N-1) = 2*Pmax(N+1)./(Pmin(N)+Pmin(N+1));
r(2*N) (Pmax(N)+Pnax(N+1))./(2*Pmin(N));
alambda([2*N-1 2*N])=[lambda(Ipeak(N)) lambda(Inull(N))];

end;
a=-(l/L)*Iog(R*(sqrt(r)+1)./(sqrt(r)-1)); 50

%############################################################

% averaging
for I=1:length(a)-avenum

atemp(I) = mean(a(I:I+avenum));
alambdatemp(I) = mean(alambda(I:I+avenum));

end;
a = [alambdatemp' atemp'];

%############################################################ 60
% plot gain vs. wavelength
figure;
set(gcf,'Position',[600 50 500 400]);
plot(alambdatemp,atemp);
xlabel('Wavelength [nun]');
ylabel('\Gamma g - \alpha-i [cm^{-1}]');
title('Photon Gain vs. Wavelength');

A.1.2 findpeak.m

%FINDPEAK Finds indices for peaks and nulls of the Fabry-Perot spectrum
% input: sp(:,[l 2])
% lambda = lambda vector (nm)
% PmW = Power vector (mW)
% WinLen = Number of Index points between maxima

% output: Inull(:) = index vector of nulls within PmW
% Ipeak(:) = index vector of peaks within PmW
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%############################################################ 10

% grab approx. wavelength difference between peaks (free spectral range?)

figure;

plot (lambda,PmW);

xlabel('Wavelength [nm]'); ylabel('Power [mW]');
zoom;

disp('Zoom until left-most Fabry-Perot nulls are visible.');

disp('Press ANY KEY to continue.');

pause;

zoom off;

disp('Select two consecutive minima nulls, left to right, for beginning.'); 20

peak-input=ginput(2);

Ilambdal=find(lambda>peak-input(1,1));
Ilambda2=find(lambda>peak-input(2,1));
WinLen=abs(Ilambda2(1)-Ilambdal(1)); % number of points between peaks: approx

%############################################################

% initializes the peak-finding window

IWindow = [WinLen:3*WinLen];
[temp Imax] = max(PmW(IWindow));
Ipeak(l) = Imax + IWindow(l) - 1; 30

ILambdaStart = Ipeak(l) - floor(WinLen/2);

ILambdaEnd ILambdaStart + WinLen;
IWindow = [ILambdaStart:ILambdaEnd];
WinLen = length(IWindow);
N=1;

%############################################################

% finds peak indices

while (Ipeak(N) + ceil(WinLen/2) + WinLen <= length(lambda))
IWindow = [ILambdaEnd: ILambdaEnd + WinLen]; 40
N=N+1;
[temp Imax] = max(PmW(IWindow));

Ipeak(N) = Imax + IWindow(l) - 1;

ILambdaEnd = Ipeak(N) + ceil(WinLen/2);
WinLen = Ipeak(N) - Ipeak(N-1);

end;

%############################################################

% finds null indices
for N = 1:length(Ipeak)-l 50

IWindow = [Ipeak(N):Ipeak(N+1)];
[temp Imin] = min(PmW(IWindow));
Inull(N) = Imin + IWindow(1) - 1;

end;
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A.2 Split-step Fourier Code

A.2.1 modelock.m

%MODELOCK Modelock Laser Simulation Script
% Simulates modelock pulse evolution using the split-step Fourier method
% developed by D.J.Derickson et al.
% specify the first pulse in variable "pulseone" as ='new'
% or ='prev' prior to running
% specify Laser Parameter File at *1

% See also LASERPARAM, SPLITSTEP, MAKERTMATRIX, FINDWIDTH, PLOTMODELOCK.

global q h c hv a 10

%############################################################

% *1 Loads laser parameters from file
LaserParam;

%############################################################

% Constants
q = 1.609e-19; % [C] Coulomb/charge
h = 6.626176e-34; % [J*s] Planck's constant
c = 3e10; % [cm/sI Speed of light 20
hv = h*c/lambda; % [J] Energy/photon

%############################################################

% Initial pulse parameters
Tw = 50e-12; % [s] width of window
tp = 8e-12; % [s] initial width of pulse
Apeak = .8e0; % [=sqrt(W)] initial peak field amplitude of pulse
noP = 2^11; % number of points in the window

%############################################################ 30
% Initial pulse construction
ptau = Tw*2/noP*[fliplr([1:noP/2]) [:noP/2-1]]; % [s]
tau = Tw*2/noP*[-noP/2+1:noP/2]; % [s]
dtau = tau(2)-tau(1); % [s] period, T
to = sqrt(tp^2/4/log(2)); % [s] time std. dev.
Ai = Apeak*exp(-ptau.^2/2/tO-2); % [W^(1/2)] the pulse

%############################################################

% decide whether first pulse is new (specified above) or last pulse from prev. run
switch pulseone 40
case 'prev', % yes, continue previous pulse propagation

% Recenters the pulse so it doesn't migrate out of the time window
[PeakVal PeakI] = max(abs(Art(end,:)).^2);
TrueMidI = noP/2;
PeakDiffI = PeakI - TrueMidI;
if PeakDiffI <= 0, %if the peak is offset to the left

tmp = [zeros(1,-PeakDiffl), Art(end,1:end+PeakDiffI)];
else, % if the peak is offset to the right
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tmp = [Art(end,1+PeakDiffl:end), zeros(1,PeakDiffI)];
end; 50
Art = zeros(noPass+1,noP);
Art(l,:) = tmp;

case 'new',
Art = zeros(noPass+1,noP);
Art(1,:) = Ai;
Penergy =[;
Pwidth =
Pwidthtenp
Pheight [I;

otherwise, 60
error('Specify variable: pulseone');

end;

%############################################################
% create roundtrip propagation matrix of different parameters
[Tmtx, Lmtx, Lsectmtx, Imtx] = makeRTmatrix(Tmat, Lmat, Nmat, Imat);

%############################################################
% The actual propagation
Ap = zeros(length(Lmtx)+l,noP,noPass); 70
Pratio = ones(length(Lmtx),noP,noPass);
PHI = zeros(size(Pratio));
for P = 1:noPass,

% assigns the previous roundtrip's last field as the initial pulse in this roundtrip
Ap(1,:,P) = Art(P,:);
for n = 1:length(Lmtx)

switch Tmtx(n)
case 'P',

a = aSA; % changing differential gain => E-sat changes
[Ap(n+l,:,P),Pratio(n,:,P),dPHI(n,:,P)] = splitstep(Ap(n,:,P), 80

tau,Tmtx(n),Lmtx(n),Imtx(n),Lsectmtx(n));
case 'G',

a = aG; % changing differential gain => E-sat changes
[Ap(n+l,:,P),Pratio(n,:,P),dPHI(n,:,P)] = splitstep(Ap(n,:,P), ...

tau,Tmtx(n),Lmtx(n),Imtx(n),Lsectmtx(n));
case 'M',

Ap(n+l,:,P) = sqrt(R)*Ap(n,:,P);
Pratio(n,:,P) = R*ones(1,noP); % it's just the mirror reflectivity
dPHI(n,:,P) = zeros(1,noP);

otherwise, 90
error('propagation');

end;
end;
Art(P+1,:) = Ap(end,:,P); % save the last one to the roundtrip field matrix

end;

%############################################################
% Determine pulsewidth vector, pulse energy, shaping function, matrices
for P = 1:noPass+1,

Pwidthtemp(P) = findwidth(Art(P,:),tau); 100
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end;
Pwidth=[Pwidth(1:end-1) Pwidthtemp]; % Pulse width [s]
Prt = abs(Art).^2; % Power matrix
Penergy = [Penergy(1:end-1) sum(Prt,2)'*dtau]; % energy per roundtrip [J]
Pratiosum = [ones(noP,1) squeeze(prod(Pratio,1))];% shaping function
dPHIsum [zeros(noP,1) squeeze(sum(dPHI,1))]; % delta-phase function
Pheight = [Pheight(:end-1) max(Prt,[],2)']; % Pulse height per roundtrip [W]

%############################################################

% Specify file that plots the results

PlotModelock;

A.2.2 LaserParam.m

%LASERPARAM Physical parameters and Laser Geometry
% Sample: UCSB modelocked lasers

% Called by MODELOCK.

global W tQW nQW Gamma Bsp lambda alpha Esatratio nG etai alphai ...
A B C gO Ntr hv d tctr R aG aSA t2 B2

%############################################################
% Physical parameters
W = 1.5e-4; % [cm] Width of laser stripe
tQW = 70e-8; % [cm] Thickness of Quantum Well
nQW = 6; % # of Q.W.

%############################################################

% Theoretical quantities
Gamma = .008037*nQW; % - Confinment factor
lambda = 1550e-7; % [cm] Lasing wavelength
alpha = 2; %- linewidth enhancement factor *
Esatratio = 5; %- ratio of Gain region's Esat to

%############################################################
% Measured quantities
nG = 3.2; %- Group index
etai = 0.77; %- Internal efficiency
A = 0; % [1/s] trap recomb. coeff.
B = le-10; % [cm -31s] S.E. coefficient (Rsp = B*
C = le-28; % [cm^6/sl Auger recomb. coeff. (typ [

S.A.'s Esat *

V-2)
7-9]e-29)

%############################################################
% Gain curve fits
go = 1864; % [cm^-1] Max Gain coefficient
Ntr = 1.82e18; % [cm^-3] Transparency carrier Density(at300K)
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% Derived parameters
d = tQW*nQW; % [cm]
tctr = 1/(A + B*Ntr + C*Ntr^2);
R = ((nG-1)/(nG+1))-2; %
aG = gO/(Ntr); % [cm^2]
aSA = aG*Esatratio; % [cm 2]

Total Q.W. length
[s] Carrier lifetime at transparency

Mirror power reflectivity
Differential gain (lin. model) Gain sect.
Differential gain (lin. model) Sat. Abs.

%############################################################
% gain bandwidth filtering parameters
t2 = 5e-13; % [s] gain bandwidth param. (taylor expand g vs. w)

%############################################################

% Modelocked laser geometry
% each vector entry signifies a different section in the laser
% Nmat and Lmat should be constructed such that each splitstep part
% is about 50e-4 long

% Types: 'P' = passive, 'G' = gain, 'A' = active, 'M' = mirror
% note: mirrors are automatically put in
Tmat = ['P' 'G' 3; % section Type
Lmat = [80e-4 3500e-4 ]; % section Length
Nmat = [4 35 3; % number of splitstep parts in each section
Imat = [0.05 63e-3 3; % section current bias
noPass = 10;

A.2.3 makeRTmatrix.m

function [Tmtx, Lmtx, Lsectmtx, Imtx] = makeRTmatrix(Tmat, Lmat, Nmat, Imat);
%MAKERTMATRIX Creates the space-varying matrix of state variables

% Called by MODELOCK.

%############################################################

% construct roundtrip laser geometry matrices
Trt = [Tmat 'M' fliplr(Tmat) 'M' ];
Lrt = [Lmat 0 fliplr(Lmat) 0 ];
Nrt = [Nmat 0 fliplr(Nmat) 0 ];
Irt = [Imat 0 fliplr(Imat) 0 1;

%0############################################################

% construct the split-step information matrices
Lsectmtx = [];Lmtx = [];Imtx = [];Tmtx =

for n = 1:length(Lrt)
switch Trt(n)

case 'P', % absorber section
Tmtx = [Tmtx repmat('P',1,Nrt(n))];
Lmtx = [Lmtx Lrt(n)/Nrt(n)*ones(1,Nrt(n))];
Lsectmtx = [Lsectmtx Lrt(n)*ones(1,Nrt(n))];
Imtx = [Imtx Irt(n)*ones(1,Nrt(n))];

case 'G', % gain section
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Tmtx [Tmtx repmat('G',1,Nrt(n))];
Lmtx = [Lmtx Lrt(n)/Nrt(n)*ones(1,Nrt(n))];

Lsectmtx = [Lsectmtx Lrt(n)*ones(1,Nrt(n))];
Imtx = [Imtx Irt(n)*ones(1,Nrt(n))];

case 'M', % mirror section
Tmtx = [Tmtx 'M'J;
Lsectmtx = [Lsectmtx 0]; 30
Lmtx [Lmtx 0];
Lmtx = [Imtx 0];

case 'S', %free space
otherwise,

'error makeRTmatrix'

end;
end;

A.2.4 splitstep.m

function [Aout,Pratio,dPHI] = splitstep(Ain,tau,T,Lj,Lsect)
%SPLITSTEP Takes pulse profile Ain(tau) and performs splitstep filtering on it.
% [Aout,Pratio,dPHI] = SPLITSTEP(Ain, tau, L, I, Lsect)

% Ain [sqrt(W)] pulse envelope
% tau [s] time vector of Ain
% T (string) type of this section (S.A.,gain, mirror, etc.)
% L [cm] length of splitstep segment
% I [A] current in segment
% Lsect [cm] length of current-isolated section (total) 10

% Aout [sqrt(W)] output pulse envelope
% Pratio ratio of output/input power (vector)
% dPHI difference of output-input phase

% Called by MODELOCK.

global q h c W tQW nQW Gamma Bsp lambda nG etai ...
A B C gO Ntr hv d a tctr alpha t2 B2

20
%############################################################

% Derived parameters
V = Lsect*W*d; % [cm^3] Volume of active region (Q. W.)
Itr = q*V*Ntr/tctr/etai; % [A] Transparency current

noP length(tau);
dtau tau(2)-tau(1); % [s]

%############################################################

% phase and intensity of input A 30
% Uin is the integrated energy of the pulse
PHIin = angle(Ain);
Pin = abs(Ain).^2;
Uin = cumtrapz(Pin)*dtau;
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9%############################################################
% finds gain from linear gain model
if T == 'P'

gp = log(I)/Lsect;
heff gp*L; 40
GO = exp(heff);

elseif T == G'
dN = Ntr*(etai*I/Itr - 1); % carrier density difference from Ntr

gp Gamma*a*dN; % linear gain model

heff = gp*L;
Go = exp(heff); % commented out and explicitly stated in modelock.m

else
error('error finding GO');

end
50

Esat = hv*W*d/a/Gamma;
Pratio = 1./(1-(1-1/G0)*exp(-Uin/Esat));
Pouti = Pin.*Pratio;
dPHI = alpha/2*log(1-(1-1/GO)*exp(-Uin/Esat));
PHIouti = PHIin + dPHI;
Aoutl sqrt(Pout1).*exp(j*PHIout1); % field from first part of splitstep

%############################################################

% Dispersion parameter

B2 = gp*t2^2; % [cm/s^2] dispersion parameter 60

%############################################################

% gain bandwidth filtering (only in gain sections)

switch T
case 'G'

if gp<O
error('Gain in gain region cannot be negative');

end
FAoutl = fft(Aoutl);
w = 2*pi*[[O:noP/2] fliplr([1:noP/2-1])]/(noP*dtau); 70
filt = exp(-w.^2*t2^2*gp*L/2).*exp(-j*B2*L*w.-2/2);
Aout = ifft(FAout1.*filt);

case 'P'
Aout = Aoutl;

otherwise
error('splitstep');

end

%############################################################

% tests to see if the window you picked was big enough 80
if or(abs(Aout(1)) >= le-10,abs(Aout(end)) >=le-4),

'Warning: Window time span may be too small.'

end

%############################################################
% add some stuff to get rid of anomalies happening due to Fourier transform on sides
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sides = abs(blackman(noP*2^(-3))');
Iside = sides(1:end/2);
rside = sides(end/2+1:end);
middle = ones(1,noP-length(sides)); 90
win = [Iside middle rside];
Aout = Aout.*win;

A.2.5 findwidth.m

function width = findwidth(A,time);
%FINDWIDTH Finds width of the pulse
% width = width of pulse FWHM power [s]
% A = field amplitude of pulse [~field amplitude]
% time = time vector that defines A(t) [s]

% Called by MODELOCK.

P = abs(A).^2;
[Ppeak ind] = max(P); 10
FWHM = find(P > Ppeak/2);
width = time(FWHM(end)) - time(FWHM(l));

A.2.6 PlotModelock.m

%PLOTMODELOCK Plots pulse profile/width/energy evolution

% Called by MODELOCK.

%############################################################
ps = le-12; % define picosecond scaling factor
PJ = 1e-12; % defines picoJoule scaling factor

figure;
10

%############################################################

% Plot pulse profiles per roundtrip
subplot(4,1,1);
plot (tau/ps,Prt);
ylabel('Pulse Profile [W]');
axis([tau(l)/ps tau(end)/ps 0 1.1*max(max(Prt))]);

%############################################################

% Plot shaping function profile per roundtrip
subplot(4,1,2); 20
plot(tau/ps, Pratiosum);
ylabel('P_{out}/P_{in}');
axis([tau(l)/ps tau(end)/ps 0.8*min(min(Pratiosum)) 1.1*max(max(Pratiosum))]);
xlabel('Time [ps]');
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%############################################################
% Plot pulse width per roundtrip
subplot(4,1,3);

plot([0:length(Pwidth)-1], Pwidth/ps);
ylabel('Pulsewidth [ps] '); 30
axis([0 length(Pwidth) -1 0 1.1*max(Pwidth)/ps]);
text(length(Pwidth)*.8,Pwidth(end)/ps+.3,[num2str(Pwidth(end)/ps),' ps']);

%############################################################

% Plot pulse energy per roundtrip
subplot(4,1,4);
plot({0:length(Penergy) -1], Penergy/pJ);

ylabel('Energy [J]');
axis([Q0 length(Penergy)-1 0 1.1*max(Penergy)/pJ]);
text(length(Penergy)*.8,Penergy(end)/pJ+.3,[num2str(Penergy(end)/pJ),' p3']); 40
xlabel('Roundtrip #');

%############################################################

% Sticks some laser geometry/bias info on bottom

set(gcf,'Position',[10 10 800 800]);
label = 'Type Len[um] #Div Bias [A]

Geom=num2str([Lmat;Nmat;Imat]');

SType=[repmat(' ',length(Tmat),3) Tmat' repmat(' ',length(Tmat),7)];

Geom = [SType Geom repmat(' ',length(Tmat),8)];

label = label(1:length(Geom(1,:))); 50
Geom [label;Geom];
Ht=uicontrol(gcf,'Style','text',

'Position',[10 10 350 60],'String',Geom,'BackgroundColor',[0.8 0.8 0.8]);

%############################################################

% Labels the graph

subplot(4,1,1);

title(['\alpha=', num2str(alpha),', E_{sat} Ratio=', num2str(Esatratio), ...

# Points=', num2str(noP)]);

60

A.3 Split-step Finite Difference Code

A.3.1 findGBWFunc.m

%FINDGBWFUNC Finds the polynomial fitting functions for gain bandwidth
% Run this before running FDIFFMAIN.

%############################################################

% Load laser parameters (just to grab t2)
LaserParam;

%############################################################

% User preferences
dzM = [1:13]*le-4; % [cm] space step 10
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fRange = 2e12; % [1/s] max range of freq. to fit
gpM linspace(1,1000,100); % Good for N=[Ntr,8e18)
f = linspace(-1,1,500)*fRange; % [Hz] freq. vector
fO 0;
w = 2*pi*f; % [s^-1] ang. freq. vector
wo 2*pi*fO;
THz = le12; % [Hz] units constant

%############################################################

% Defines function to optimize (and optim. param.s) 20
opts = optimset('lsqcurvefit');
opts = optimset(opts,'TolFun',le-15,'MaxFunEvals',1e4,'MaxIter',1e4,

'Display','of f ', 'ToX',1e-6);
gbw=inline('1+2*eta*(cos(2*w*dt)-1) ','eta','w','dt');

for D=1:length(dzM),

dz = dzM(D);

dt = dz*nG/c;

%######################################################### 30
% Optimizes over the range of g-p
clear GainM HM etaFM;
tic;

for X = 1:length(gpM),
GainM(X,:) = exp(-Gamma*gpM(X)*dz*t2^2*(w-w0).^2);
gI = find(GainM(X,:) >= 0.2);
[etaFM(X) resnorm] = lsqcurvefit(gbw,0,w(gI),GainM(X,gI),[ ],[],opts,dt);
HM(X,:) = gbw(etaFM(X),w,dt);
HM(find(HM<0)) = 0;
disp(['Optimized # ' num2str(X)]); 40

end
disp(['Elapsed optimization time: ' num2str(toc) ' secs.']);
figure;
set(gcf,'position',[50 50 400 800]);
%#########################################################

% plot the fitting functions
subplot (311);
surf(f/THz,gpM,HM);shading interp;
xlabel('Freq [THz] ');ylabel('Gain, g-p [cm^{-1}]');zlabel('Optim. Func.');
%/######################################################### 50
% Polynomial fitting function
rutM = polyfit(gpM,etaFM,5);
subplot(312);
plot (gpM,etaFM,gpM,polyval(rutM,gpM));

xlabel('Gain (g-p) ');ylabel('Gain Bandwidth Parameter (\etaF)');
%#########################################################

% Find and plot the error
errM = abs(HM-GainM);
subplot(313);
surf(f/THz,gpM,errM); shading interp; 60
xlabel('Freq [THz]');ylabel('Gain, g-p [cm^{-1}]');zlabel('Error');
%//#########################################################
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% save the polynomial coefficients to the saving cell
rutC{D} = rutM;

end

eval(['save GBWParam' num2str(t2,'%0.0g') 'rutC dzM;']);

A.3.2 fdiffMain.m

%FDIFFMAIN Simulates modelocked laser.
% This is the MAIN parameter inilization SCRIPT
% Run this script to simulate the modelocked laser.

% See also LASERPARAM, FDIFFLOOP.

more off;
%############################################################

% Initializes laser parameters (Be sure this is executed before running this script)

% If batchrun has been run already, then do not run 'LaserParam' 10
if ~exist('bat chrunScriptFlag'),

disp(' ');disp('LOADING: LASERPARAM.m');
LaserParam;

end;

%0############################################################

% Laser Params, Calculated
Area = W*Lsect; % [cm 3] Area of active region

V = W*d*Lsect; % [cm^3] Volume of active region
vG = c./nG; % [cm/sJ group velocity
dz = dt*vG; % [cm] Discretized length step 20
noP = round(Lsect./dz); % # of discretized points

Lsect = noP.*dz; % [cm] (revised) section lengths
%############################################################

% Gain BW Param loading
eval(['load GBWParam' t2str]);
rutM = rutC{find(round(dzM*1e4)==round(dz(2)*1e4))};
maxeta = 0.49;
%0############################################################

% Modulation Params, Calculated
ActI = find(Type=='A'); % active section index 30
Trt = 2*sum(Lsect./vG); % [s] roundtrip time
noPRT = round(1/((Fdtun+1/Trt)*dt)); % # pts. incl. detuning
wM = 2*pi*(l/Trt+Fdtun); % [rad/s] mod. freq.
P = 5*noPRT; % # points between graph commands

S = noPRT; % # points between 'store state' command

pdispN = 50; % # prev. pulses to display
%0############################################################

% Initialize space-varying variables

%############################################################

% Finds steady-state carrier density (Nss), given current & no photons 40
for X = 1:length(Lsect)

if Ibias(X)<0, Nss(X) = 0;
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else
Nroots(:,X) = roots([C B A(X) -etai*Ibias(X)/q/V(X)]);
if isreal(Nroots(:,X)), Nss = max(Nroots(:,X));
else,

for Y = 1:length(Nroots(:,X)),
if isreal(Nroots(Y,X)), Nss(X) = Nroots(Y,X);
end; end; end; end; end;

50
zM = [J; LsectM = []; NMO = [1;
AM = [;BM = [CM =;
sectI = [J; IM = [I; VM = [I;
alphaiM = []; vGM =
for X = 1:length(Lsect)

if isempty(zM)
sectI{X} = [1:noP(X)];
zM = linspace(dz(X)/2,Lsect(X)-dz(X)/2,noP(X));

else
sectI{X} = [1:noP(X)]+sectI{X-1}(end); 60
zM = [zM linspace(dz(X)/2,Lsect(X)-dz(X)/2,noP(X))+sum(Lsect(1:X- 1))];

end
LsectM = [LsectM Lsect(X)*ones(1,noP(X))];
NMO [NMO Nss(X)*ones(1,noP(X))];
AM = [AM A(X)*ones(1,noP(X))];
BM = [BM B(X)*ones(1,noP(X))];
CM = [CM C(X)*ones(1,noP(X))];
IM = [IM Ibias(X)*ones(1,noP(X))];
VM = [VM V(X)*ones(1,noP(X))];
alphaiM= [alphaiM alphai(X)*ones(1,noP(X))]; 70
vGM = [vGM vG(X)*ones(1,noP(X))];

end
tM = zM./vGM;
tRTM = linspace(dt,S*dt,S)-dt/2;
if isempty(find(diff(vGM)))

vGM = vGM(1);
end;

%############################################################
% Initial pulse parameters 80
[Lmax X] = max(Lsect); % choose which section for pulse origin
PeakPower = leO; % [cm^-3] peak pulse power
tMG = zM(sectI{X})/vG(X); % [s] time markers in the gain section
tp = le-12; % [s] pulse width
to = sqrt(tp^2/4/log(2)); % [s] time std. dev.
SfMO = zeros(size(zM)); % [cm^-3] Forward-traveling photon density
SrMO = zeros(size(zM)); % [cm^-3] Forward-traveling photon density
SrMO = 1; SfMO = 1; % [cm^-3] Spatially-uniform photon density

%############################################################ 90
% Initializes roundtrip saving matrices
SfRT = zeros(noRT,length(tM));
SrRT = zeros (noRT,length(tM));
NRT = zeros(noRT,length(tM));
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SoutM = zeros(noRT,S);
NActM = zeros(noRT,S);
SfActM = zeros(noRT,S);

%############################################################
% Set up initial conditions
NM = NMO;
SfM = SfMo;
SrM = SrMO;
NActM(1,1) = NM(end);
SfActM(1,1) = SfM(end);
ContN = 0; % # of round trip to continue from
Xstart = ContN*S; % starting X value

%############################################################

% Run the main loop of the program

%############################################################

fdiffLoop;

A.3.3 LaserParam.m

%LASERPARAM Loads modelocked laser parameters.
% Load: physical parameters, laser geometry, and biasing.
% Current Sample: Two-section laser by Hoshida et al.

% See also FDIFFMAIN.

%############################################################

% Constants
q = 1.609e-19; % [C] Coulomb/charge
h = 6.626176e-34; % [J*s] Planck's constant
c = 3e10; % [cm/s] Speed of light
ps = le-12; % [s] # of seconds in a picosecond (abbrev.)
pj = le-12; % [s] # of Joules in a picoJoule (abbrev.)
mA = le-3; % [A] # of Amps in a milliAmp (abbrev.)
um le-4; % [cm] # of centimeters in a micron (abbrev.)
mV = le-3; % [V] # of Volts in a milliVolt (abbrev.)
%############################################################

% Physical parameters
W = 2*um; % [cm]* Width of laser stripe
tQW = 40e-8; % [cm]* Thickness of Quantum Well
nQW = 3; % # of Q. W.
%############################################################
% Theoretical quantities
Gamma = .05; % - Confinment factor
lambda = 1550e-7; % [cm] Lasing wavelength
%############################################################

% Measured quantities
nG = 3.7;
nEff = 3.2;

Group index
Effective index
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etai = 1; - Internal efficiency 30
%############################################################

% Gain curve fits
go = 3420.8; % [cm^-1] Max Gain coefficient
Ntr = 1.577e18; % [cm^-3] Transparency carrier Density(at300K)
Ns = 2.254e17;
%############################################################

% Derived parameters
hv = h*c/lambda; % [J] Energy/photon
d = tQW*nQW; % [cm] Total Q. W. length
Rair = ((nEff-1)/(nEff+1))^2;% Mirror power reflectivity 40
%############################################################

% Gain bandwidth filtering parameter
t2 = 0.5*ps; % [s] gain bandwidth param. (taylor expand g vs. w)
t2str = num2str(t2,'%0.0g'); % gain bandwidth param. (taylor expand g vs. w)
%############################################################

% DBR specs
Ldbr = 200*um; % [cm] DBR length
kappa = 20; % [cm^-1] mode coupling coeff.
kLg = kappa*Ldbr; %
LeffDBR = round(1/2/kappa*tanh(kLg)*1e4)/le4;% [cm] DBR effective length 50
rg = tanh(kLg); % DBR effective field reflectivity
%############################################################

% Laser Geometry
Type ['A' 'G' 'P']; % - Section type

% G=Gain/Absorber, A=Active,P=Passive(no gain), S=Freespace
Lpcont = 150*um; % [cm] Phase Control section length
Lsect = [75e-4 750e-4 Lpcont+LeffDBR];% [cm] Section lengths
Ibias [0 60e-3 0]; % [A] DC Current bias
nG = [3.7 3.7 3.7]; % Group index
alphai [5 5 5]; % [cm^-1] Optical loss 60
A = [2e11 1e8 0]; % [1/s] Trap recomb. coeff. (A=2e10-2e11)
B [le-10 le-10 0]; % [cm 3/s] Bimolecular recomb. coeff.
C = [le-28 le-28 0]; % [cm^6/s] Auger recomb. coeff.
dt = (5*um)*nG(2)/c; % [s] Time increment
noRT 200; % # round trips to execute
RI Rair; % Power reflectivity, left-hand side
Rr = 0.43; % Power reflectivity, right-hand side

% (DBR calc'ed from trans. matrix program)
Rint = 0.0; % Internal power reflectivity
%############################################################ 70
% Saturable Absorber and Modulation Params
HarmNum = 1; % Harmonic # of the modulation
Fdtun = 0; % [Hz] detuned frequency
IRF 60*mA; % [A] RF current
phi =0; % [rad] RF phase shift
%############################################################

% Display/Plotting Flags (0=False, 1=True)
DISP = 1; % [Boolean] Display N(z),S(z),eta(z) graphs
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A.3.4 fdiffLoop.m

%FDIFFLOOP The main loop of the SSFD method
% This is the main loop of the program.

% Called by FDIFFMAIN.

%############################################################
% Plot the initial conditions
if DISP,
if exist('fdifffig1'), figure(fdiff-figl);
else, fdiff-figl = figure; end 10

set(gcf,'position',[920 40 350 2501);
set(gca,'position',[.13 .10 .775 .8]);
gM = gO*log((NMO+Ns)/(Ntr+Ns));
plot(zM,polyval(rutM,gM));
set(gca,'xlim',[0 sum(Lsect)]);

if exist('fdifffig2'), figure(fdiff-fig2);
else, fdiff-fig2 = figure; end

set(gcf,'position',[920 700 350 2501);
set(gca,'position',[.13 .10 .775 .8]);
plot (zM,SfMO,zM,SrMO); 20
set(gca,'xlim',[0 sum(Lsect)]);

if exist('fdiff_fig3'), figure(fdiff-fig3);
else, fdiff-fig3 = figure; end

set(gef,'position',[920 370 350 250]);
set(gca,'position',[.13 .10 .775 .8]);
plot(zM,NMO);
set(gca,'xlim',[0 sum(Lsect)]);

end
if exist ('StatusF'), figure(StatusF);
else, StatusF = figure; end 30

set(gcf,'Position',[560 650 350 20],'MenuBar','none');
axis off;
if ~exist('StatusH')

StatusH = text(0,0.5,'Initialized');
end;

fdiff-fig4 = figure;
set(gcf,'position',[560 700 350 250]);
set(gca,'position',[.13 .10 .775 .8]);
p3H = plot(tRTM/ps,zeros(size(tRTM)));
set(gca,'xlim',[0 tRTM(end)/ps); 40
hold on;
drawnow;

tic;
%############################################################
% This is the main loop
%############################################################
for X = 1+Xstart:noRT*noPRT+Xstart,

%#########################################################
% Finds Active section current bias
% IRFcurr current bias for this time step 50
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% AM the vector containing A coefficients versus space
% IM the vector containing bias current versus space
if ~isempty(ActI)

IRFcurr = IRF*cos((wM*dt*X+phi)/HarmNum);
IM(sectl{ActI}) = IRFcurr;

end;
%#########################################################

% Calculate the next time increment's pulse. loop starts with: NM, SfM, SrM
% loop ends with Sfn, SrMn. these are not filtered yet
% RM recombination rate vector 60
% gM gain vector
% n suffix = next
RM = (AM + (BM + CM.*NM).*NM).*NM;
gM = g0*(log(NM+Ns)-Iog(Ntr+Ns));
G = 1 + (Gamma*gM-aphaiM).*vGM*dt;
SfMtemp G.*SfM;
SrMtemp = G.*SrM;
SfMn = [R1*SrMtemp(1) SfMtemp(1:end-1)];
SrMn = [SrMtemp(2:end) Rr*SfMtemp(end)];
%######################################################### 70
% Calculates the next iteration for forward prediction
% nn suffix = next-next
NMn = NM + (etai*IM/q./VM - RM - vGM.*gM.*(SfM+SrM))*dt;
NMn(find(NMn<0)) = 0; % ensures that N doesn't fall below 0
gMn = g0*(log(NMn+Ns)-log(Ntr+Ns));
Gn = 1 + (Gamma*gMn-aphaiM).*vGM*dt;
SfMtemp2 = Gn.*SfMn;
SrMtemp2 = Gn.*SrMn;
SfMnn = [R1*SrMtemp2(1) SfMtemp2(1:end-1)];
SrMnn = [SrMtemp2(2:end) Rr*SfMtemp2(end)]; 80
%#########################################################

% Filters the photon densities to simulate Gain BW
etaFM = polyval(rutM,gM);
etaFM(find(etaFM<0)) = 0;
etaFM(find(etaFM>maxeta)) = maxeta;
SfM = etaFM.*(SfMnn + SfM - 2*SfMn) + SfMn;
SrM = etaFM.*(SrMnn + SrM - 2*SrMn) + SrMn;
SoutM(ceil(X/S),rem(X-1,S)+1) = (1--Rr)*SfM(end);
NM = NMn;
NActM(ceil(X/S),rem(X-1,S)+1) = NM(sectI{ActI}(1)); 90
SfActM(ceil(X/S),rem(X-1,S)+1) = SfM(sectI{ActI}(1));
%#########################################################
% Graph commands (frequency determined by 'P')
if and(X/P == floor(X/P), DISP)
%Carrier density plot

figure(fdiff-figl);
set(gca,'YLimMode ','auto');
plot(zM,etaFM);
set(gca,'xlim',[0 sum(Lsect),'ylim',[0 maxeta+0.1]);
%xlabel('Position [cm]');ylabel('Carrier Density [cm-{-3}]'); 100

%Photon density plot
figure(fdiff-fig2);
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set(gca,'YLimMode','auto');
plot(zM,SfM,zM,SrM);
T = -300; M = max([SfM SrM]);
while (10^T < M), T = T + 1; end;
set(gca,'xlim',[0 sum(Lsect)],'ylim',[0 10^T]);
%xlabel('Position [cm]');ylabel('Photon Density [cm^{-3}]');
figure(fdiff-fig3);
set(gca,'YLimMode','auto'); 110
plot(zM,NM);
set(gca,'ylim',[0 2.5e18]);
set(gca,'xlim',[O sum(Lsect)]);
drawnow;

end;

%#########################################################

% Store state commands (frequency determined by 'S')
if X/S == floor(X/S)

ET(X/S) = toc; 120

tic;
if exist('StatusH'),

set(StatusH,'String',['Roundtrip #' num2str(X/S,'4.4g') ...
' Elapsed time: ' num2str(ET(X/S),'X03.3f') ' sec.']);

end;
SfRT(X/S,:) = SfM;
SrRT(X/S,:) = SrM;
NRT(X/S,:) = NM;
figure(fdiff-fig4);
pHM(X/S) = plot(tRTM/ps,SoutM(X/S,:)); 130
if (X/S-pdispN-ContN)>0, delete(pHM(X/S-pdispN)); end;
delete(p3H);
p3H = plot(tRTM/ps,SoutM(X/S,:),' .r');
%xlabel('Time [ps]');ylabel('Photon Density [cm^{-3}]');
drawnow;

end

end;

A.3.5 plotRT.m

%PLOTRT Plots the pulse profile/width/energy evolution.

% See also FDIFFMAIN.

%############################################################

% Makes some strings to for file saving and graph titling

makeParamString;

%############################################################ 10
% Removes any non-calculated roundtrips at the end of the state matrices
noRT=floor(X/S);
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RT=1:noRT;
SfRT=SfRT(1:noRT,:);
SrRT=SrRT(1:noRT,:);
SoutM=SoutM(1:noRT,:);
NActM=NActM(1:noRT,:);
SfActM=SfActM(1:noRT,:);
NRT=NRT(1:noRT,:);

20
%############################################################
% Calculate interpolated pulse width & energy (better accuracy)
smp = 6; % new sampling rate
clear Pwidth Penergy Pstream;
for Y=1:noRT-1

[SmaxVal SmaxI] = max(SoutM(Y,:));
if and(Y > 1, Y < noRT),

SpulseM = [SoutM(Y-1,:) SoutM(Y,:) SoutM(Y+1,:)];
SpulseM = SpulseM(Smaxl+round(noPRT/2)+1:Smaxl+round(noPRT/2)+noPRT);

else 30
SpulseM = SoutM(Y,:);

end;
if isempty(find(SpulseM)),

SspM SpulseM;
tspM = tRTM;

else
tspM = interp(tRTM,smp);
SspM interp(SpulseM,smp);

end;
Pwidth(Y) = findwidth(SspM,tspM); 40
Penergy(Y) sum(SspM) *dz(1)/smp*W*d/Gamma*hv;
Pstream(noPRT*(Y-1)+1:noPRT*Y) = SoutM(Y,:)*dz(1)/smp*W*d/Gamma*hv;
Nstream(noPRT*(Y-1)+1:noPRT*Y) = NActM(Y,:);
Sfstream(noPRT*(Y-1)+1:noPRT*Y) = SfActM(Y,:);
tstream(noPRT*(Y-1)+1:noPRT*Y) = tRTM+(Y-1)*(tRTM(end)+tRTM(1));

end

%############################################################

% Plot the pulse output, width, and energy
figure; 50
set(gcf,'position',[100 535 560 420]);
surf (RT,tRTM/ps,SoutM ' *dz (1) *W*d/Gamma*hv);
shading interp; view(2); axis tight;
xlabel('Roundtrip #');
ylabel('Time [ps]');
zlabel('Power [W]');

title([titleS]);

figure;
set(gcf,'position',[700 535 560 420]); 60
plot(RT(1: end-1),Pwidth/ps);
xlabel('Roundtrip #');
ylabel('Pulsewidth [ps]');
title([titleS]);
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figure;
set(gcf,'position',[700 35 560 420);
plot (RT(1:end- 1),Penergy/pJ);
xlabel('Roundtrip #');
ylabel('Pulse Energy [pJ]'); 70
title(ftitleS});

A.3.6 plotEP.m

%PLOTEP Plots the pulse evolution and determines if synchronized

% Since dz is fixed but wM can be any value, there will be a mismatch
% between the pulse roundtrip, Trt, and the modulation frequency. This

% program graphically shows where the pulse should be, if it was synchronized

% to the RF source (i.e. no pulse drifting).

% The vertical green line is where the pulse center starts at. The vertical blue line
% shows where the pulse center should be. The pulse should already be in steady-state.

% Execute after FDIFFMAIN. 10

%############################################################
% Determines how many roundtrips in the past to plot
noRTP = 100;
%############################################################
% Removes any non-calculated roundtrips at the end of the state matrices
noRT = floor(X/S);
RT = 1:noRT;
SfRT = SfRT(1:noRT,:);
SrRT = SrRT(1:noRT,:); 20
SoutM = SoutM(1:noRT,:);
NActM = NActM(1:noRT,:);
SfActM = SfActM(1:noRT,:);
NRT = NRT(1:noRT,:);
%############################################################
% Evaluates the index for the pulse peak
for x = 1:noRT,

[tempMax peakIM(x)] = max(SoutM(x,:));

end;
%############################################################ 30
% Plot the pulse output, width, and energy
figure; hold on;
set(gcf,'position',[100 535 560 420]);
cM = linspace(0,1,noRTP);
for x = 1:noRTP,

plot(tRTM/ps,SoutM(end-noRTP+x,:),' color' ,[cM(x) 0 0]);
end;

%############################################################
% Plot the start and end pulse center locations
startT tRTM(peakIM(end-noRTP+1)); 40

endT = startT - (noPRT*dt-2*pi/wM)*(noRTP-1);
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plot (repmat(startT/ps,1,2),get(gca, 'ylim'),' color' ,[0 1 0],'LineWidth',2);
plot(repmat(endT/ps,1,2),get(gca,'ylim' color',[0 0 1],'LineWidth',2);
hold off;
if startT > endT,

set(gca,'xlim',[endT/ps-1/2 startT/ps+1/2],'ylim',[-le15 1e15]+tempMax);
else

set(gca,'xlim',[endT/ps- 1/2 startT/ps+1/2],'ylim',[-le15 1e15]+tempMax);
end;
xlabel('Time Cps] '); 50
ylabel('Pulse Profile [cm~{-3}]');
title([titleS]);



Appendix B

Second-Order Derivative

Approximations

A different combination of the three Equations 4.14-4.16 gives us an approximation for the

second-order derivative:

S(t + At) - 2S(t) + S(t - At) = 221 d2 S(t)At2 + 224 d4 S(t)At 4 + ...

d2 S(t + At) - 2S(t) + S(t - At) 1 dA
t_2 S(t) =At

2 12 d t 2

(B.1)

(B.2)

This approximation has error dominated by the fourth-order term, as shown in the above

equation. By using expansions around t that are ±2At away, we can improve the dominating

error term. Again, we can improve the error term by using more and more expansion terms.

This was simply shown for the first-order derivative term above, improving the error from

185



186 APPENDIX B. SECOND-ORDER DERIVATIVE APPROXIMATIONS

second- to third-order. For a second-order derivative approximation, it can be shown that:

dt2 S(t)

16S(t + 2At) - S(t + At) - 30S(t) - S(t - At) + 16S(t - 2At)

12At 2

(1 d6
+ {I dt6 S(t)At 4 +... } (B.3)

This shows the error dominated by the sixth-order term. The use of more and more terms

means that we are trying to approximate the derivatives with values of the function further

and further away from the actual point in question. While the error will grow smaller as

more and more terms are used, the use of many expansion terms will introduce its own set

of errors. In addition, it seems necessary to know the values of function S for times greater

than or equal to t + At. These "symmetric" approximations need equal weighted terms for

each set: t ± At, t ± 2At, etc. Practically, we need to build a causal approximation. To

solve this problem, we can use non-symmetric approximations. It can be shown that:

dt2
dt2 S(t)=

35S(t) - 104S(t - At) + 114S(t - 2At) - 56S(t - 3At) + 11S(t - 4At)

12At 2

+ I2 d5 S(t)At3 + (B.4)

The disadvantage of the non-symmetric approximation is that the error is larger than the

symmetric case.

Note that we have not noted the z values in the above equations. When more than

one variable needs to be considered, we must be careful in determining the terms of the

difference equation approximation. There is a distinct difference between the approximation

for partial derivatives and total derivatives. This shows up as a difference in the z value in

the limits of the difference equations. For example, in the simple Euler approximation, we
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note the difference between the two derivatives:

d ( S(z + Az, t + At) - S(z, t)
-At) ~(B.5)

a ( S(z, t + At) - S(z, t)
-S(t) ~t (B.6)at At

where

Az _ dz -V 
B-7

At = g (B.7)

This comes from the definition of the total derivative:

OS OS
dS = dt- + dz (B.8)at 09z

Of course, the partial terms only relate to a change in the function S with respect to only

one variable at a time, but the total difference, dS, refers to a change in both space and

time. Hence, any difference approximations of the total derivative require z -± z + Az

whenever t -+ t + At. For partials in time, z shall remain z.

The forward-propagating photon density rate equation, including gain bandwidth terms,

that we would like to convert to a difference equation is stated here:

d ,)2S+(Z, t) = Vg (Fgp(z, t) - a)S+(z, t) + vgFgp(z, t)t 2 _5+ (z, t) (B.9)

It is necessary to approximate the first-order total derivative term on the left-hand side

and the second-order partial time derivative term on the far right-hand side. Using Equa-

tions 4.18 and B.4, we can express the rate equation in a difference form:

S+(z + Az, t + At) - S+(z, t)
At ~ (rgp(z, t) - as+(z, t) +

vgFgp(z, t)t2 x

35S+(t) - 104S+(z, t - At) + 114S+(z, t - 2At) - 56S+(z, t - 3At) + 11S+(z, t - 4At) (B.10)
12At 2
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We can then solve for S+(z + Az, t + At), which corresponds to the next time step interval,

t + At.

In a similar manner, the reverse-propagating photon rate equation can be transformed

into a difference equation. The result is identical, except the total time derivative corre-

sponds to moving backward in z-space:

S+(z + Az, t + At) => S-(z - Az, t + At) (B.11)

The carrier rate equation (Equation 3.2) is simpler to approximate. The total time

derivative does not correspond to any propagation in space:

N(z, t + At) - N(z,~t) il N - Vggp(S+(z, t) + S--(z, t)) (B.12)
At qV T

which leads to Equation 4.9. The method of implementing this is similar to the first-order

implementation, except a history of previous time steps needs be kept so that the higher-

order derivatives can be calculated. Also note that we could have also used Equation 4.20 for

the first-order derivative approximation. We will explore the results of using both methods

in Section 4.5.2.
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$740.00

$4,800.00

$176.00

$110.00

$1,200.00

$44.00

$880.00

$100.00

$50.00

$252.00

$45.00

$110.00

$618.00

$110.00

$88.00

$45.00

$800.00

$250.00

$85.00

$1,000.00

$462.00

$250.00

Customer Name Check Number Payment Amount



Deposit Report Date: 2/5/01

Customer Name

1st. Advertising

Activac

Actuality Systems Inc.

Akademos.com

AllCampus Media

Allied Advertising Agency

American Passage

American Passage

American Passage

Atheros Communications, Inc.

August, Lang & Husak

Barnes & Noble College Bookst

Bernard Hodes Advertising, Inc.

Booz-Allen & Hamilton

Boston Field & Focus Performan

California Cryobank, Inc.

Cambridge School Volunteers, I

Cornerstone Research

Council Travel

Dean & Company

E Ink Corporation

Exponent

Future Pages, LLC

Gordian

Harvard Coop

Harvard University

Janet Seluga

LaVerde's Market

Marsha Kirgan, MD

Mary H. Cheung

Check Number

5899

350

1563

1420

0025088

5916

65642

63255

63173

3535

4655

762551

332780

3222023831

6692

1761

3694

1400

420749

19538

011942

665253

6510

8217

608307

388711

5996

7383

2837

1267
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Payment Amount

$250.00

$330.00

$880.00

$980.00

$80.00

$130.90

$3,588.00

$2,338.50

$5,464.44

$250.00

$440.00

$1,525.00

$673.20

$50.00

$396.00

$352.00

$56.00

$165.00

$126.00

$500.00

$800.00

$400.00

$112.20

$660.00

$792.00

$168.00

$90.00

$400.00

$105.60

$45.00

Page I of 2Monday, February 05, 2001



Customer Name

McKinsey & Company, Inc.

Media Space Bank

Media Space Bank

Mercator Partners

Merrill Lynch ITG

MIT Chi Alpha Christian Fellows

MIT Employees' Federal Credit

Morgan Stanley

Opnet Technologies, Inc

Paul T. Shane

Pennie & Edmods

PRE-PAID CUSTOMER

R NK Telecom

Sephir Hamilton

Sports Printers

Stainless Steel Studios, Inc.

Strickling/Hans

Student Travel Service

Student Travel Service

Sun Splash Tours, Inc.

Thailand Caf6

Tony & Carol Wilkerson

United Technologies Research

University of California, Los Ang

William Katz

Xicor

Young Rubicam/Army Group

Young Rubicam/Army Group

Check Number

101341

8451

8395

1944

100106909

1075

503191

00649897

23425

1945

213624

06-118326616

1744

353

132

1896

2982

64625

65455

18557

143

2685

308454

0006518221

2592

230979

4000352339

4000345540

Payment Amount

$1,200.00

$800.00

$800.00

$250.00

$1,800.00

$96.00

$740.00

$4,800.00

$176.00

$110.00

$1,200.00

$44.00

$880.00

$100.00

$50.00

$252.00

$45.00

$110.00

$618.00

$110.00

$88.00

$45.00

$800.00

$250.00

$85.00

$1,000.00

$462.00

$250.00

Number Of Checks

58
Total Deposit

$39,308.84
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