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Abstract

This thesis derives its motivation from developing 1.55um semiconductor modelocked lasers
for use in high-speed, high-resolution optical analog-to-digital systems. Understanding how
to experimentally determine laser parameters is vital to knowing how well the modelocked
laser will perform. This thesis begins by explaining the different experimental techniques
used in determining these parameters. Extensive use of the spectrum analysis method de-
veloped by Hakki and Paoli is used. The laser parameters can then be used in a theoretical
simulation to determine the dynamics and performance of the modelocked laser. The simu-
lation can be used to determine which parameters are most important when different design
issues are imposed. This thesis first explores a split-step Fourier method developed by Der-
ickson et al. A critical analysis of the method is presented and its limitations are discussed.
A new split-step finite difference method is developed and analyzed. The method is used
to determine trends useful for design of superior performance modelocked lasers.
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Chapter 1

Introduction

Analog-to-digital converters are an integral technology that allows us to interpret real world
information into electrical data. They are the necessary interface of computers to the
physical world, allowing us to create massive databases, communicate with others across
the globe, store and analyze scientific data, and control electrical devices such as robots,
to name just a few applications. They also allow us to perform tasks that were never
before possible, such as weather forecast modeling or secure data encryption. The success
of computers relies on the ability to transmit, store, and manipulate digital data. Without
this, they would not have been able to achieve the speed, power, and reliability that we
take for granted today. The real world, however, is not digital. For example, our limbs
do not have a limited number of specified positions that they can bend. Rather, they
can swing freely through a virtually infinite number of positions that span the range of
flexed to extended. If a computer was used to model the movement of a human arm, it
would not have the ability to represent the position of the arm to infinite precision since
this would require an infinitely large storage device. It is, however, allowed to take the
infinite number of possible positions and pick (for argument’s sake) a large number of them
that would suitably represent the entire set. This process is called discretization, and is
similar to rounding a number off to an integral value. The number of discrete values that

have been selected to represent the whole analog set determines the accuracy of the digital
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18 CHAPTER 1. INTRODUCTION

representation.

The ability for digital systems to interact with the real world is of great importance.
Weather satellites need to translate weather information such as cloud locations, tempera-
ture fluctuations, etc. into digital data in order to transmit this to computers on earth for
analysis. Digital cellular phones take human speech, digitize it, encode it and transmit it
via radio waves, which are analog. These wave eventually are received, redigitized, decoded,
and played over the listener’s phone speaker. Even a computer keyboard takes finger pres-
sure and translates this into a digital representation of a letter. All of these applications
necessitate converting analog, real-world data into a digital representation. The devices that

perform this action, analog-to-digital (A/D) converters, are the subject of current research.

1.1 A/D Converters

The ability to perform high-speed and/or high-resolution A/D conversion is essential in a
wide variety of applications, such as recording/analysis of scientific data and on-the-fly audio
or image data processing. A/D converters take analog signals that are continuous in time
and magnitude, such as human speech or the temperature in a room, and discretize them
in both time and magnitude. This is performed in two stages. The continuous-time analog
signal is sampled periodically in time, taking only specific values of the waveform (Figure 1-
1(b)). Then each of those time-samples are then discretized in magnitude, "rounded” to a
specific, discrete magnitude that most closely represents the true value (Figure 1-1(c)). This
leads to defining two important figures-of-merit for describing A/D conversion: sampling
rate and sample resolution. The ability to increase the sampling rate, which is typically
measured in Hertz (Hz) or samples-per-second, allows more information to be sent in a given
time interval. The increase of the sample resolution, which is measured in bits-per-sample,
increases the sensitivity of the information that is collected.

Due to error introduced by noise and quantization, a practical maximum limit is set on
the these parameters. In general, the existing state-of-the-art A /D converters follow a trend

in which for every doubling of the sampling rate, a bit of resolution is lost [63]. Depending on
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(a) (b)

(¢) (d)

Figure 1-1: (a) Analog sine wave. (b) Sine wave discretized in time. (c) Sine wave discretized in
time and magnitude. (d} Sine wave discretized into binary channels.
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the application, a high sampling rate is accompanied by a mediocre resolution, or vice-versa.
For example, certain video applications require 14-bits at 2 Megasamples/second (MSPS)
while other audio applications require 24-bits at 96 kilosamples/second [4]. Figure 1-2 shows
a scatter-chart of currently-available A /D converters. Most of these A/D converter systems
are implemented electrically. Since the essentially analog input is typically electrical, this
choice makes sense. Electrical systems are inherently high-speed due to electron transport
speeds and lifetimes. The current state-of-the-art converters are primarily implemented

with IC transistor technology [4].

ﬂ l l SR

20 !_slope: -1 bit/octave

18 . . \\ / —
m A \ /
> 16 e yo a o am ¥ - — _—
m A A a A s
c 14 A = -—u--n \ .
=) Al A a A 4 \.\
5 12} - LA —® & 8RN ALATRA ——
3 & .
0 A T £ -
L] + module R
e » hybrid i PR eIV I ‘\,. - ]
] A a i
& s SilC _— - sk \ ]
bt
7] . IVIC A fee ™

x SuperC o N »
— state-of-the-art - 1
1E+4 1E+5 1E+6 1E+7 1E+8 1E+9 1E+10 1E+11
Sample Rate (Samples/s)

Figure 1-2: Resolution and sampling rate for currently-existing A /D converters [63]

1.2 Optical A/D Converters

Applications are being developed that require A/D conversion at high speeds and greater
sensitivity. As the need for faster, higher-resolution converters arises, new techniques of
conversion are being explored. The current goal for the next state-of-the-art converters is

to create a 10 GHz, 12-bit resolution A /D converter, which is necessary for certain data col-
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lection applications. A/D conversion has traditionally been implemented with all-electrical
components. All-electrical converters are bottlenecked in sampling rate and resolution by

electrical sample-and-hold circuitry [59].

In order to overcome the bottleneck, alternative methods of conversion are being ex-
plored. The most promising alternative is to perform optical A/D conversion. Optical A/D
conversion is not limited in sampling rate, since it employs optical pulses to bypass the need
for high-speed electrical sample-and-hold circuitry. There is also no cross-talk between the

sampling clock (which is optical) and the RF data signal (which is electric).

There are several methods that employ photonics to achieve higher speed and resolu-
tion A/D conversion [18, 56]. One of the currently researched methods uses a laser which
produces periodic optical pulses. This periodic laser pulse train serves as the sampling
clock for the sampling sub-system. The analog electrical input signal modulates the voltage
input of an electro-optic modulator (EOM), whose optical input is the laser pulse train.
As each pulse passes through the EOM, its amplitude is modified by the voltage level of
the electrical input. Thus, the optical input pulses can ”"read” the radio-frequency (RF)
electrical input. The output is an amplitude-modulated train of optical pulses that repre-
sent the discretized analog signal. These optical samples are then converted into electrical
step waveforms before they are turned into bits. However, there are still speed limitations
on the electrical components that perform amplitude-digitization. Therefore, the optical-
to-electrical sub-system implements a 1:4 time demultiplexer that splits the optical signal
into four optical signals that are % the data rate of the original (Figure 1-3). These op-
tical samples are then turned into time-discrete electrical step waveforms using an optical
detector/integrator (sample-and-hold system) [56]. These lower-frequency electrical signals
can then be digitized by a traditional electrical A/D converter, which converts these time-
discrete electrical waveforms into 12 discrete electrical bit waveforms. The bit waveforms
are then collected by a computer and then post-processed to multiplex the information into
its original order. This setup has been proposed in [59]. Figure 1-3 shows the diagram of

this system. The advantage of this system is by using the demultiplexer, the limitations
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of sampling rate of the electrical digitizers can be overcome by splitting the signal into

slower components. By using optical components, limitations of speed and resolution can

be
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CFM2 Fig.1. 208-MS5/s phase-encoded time-demultiplexed optical sampling system comprised of (i}
a fiber laser mode-locked using a resonant tunneling diode (RTD) oscillator, (ii) a dual-ocutput LiNbO,
Mach-Zehnder interferometer, (iii) a pair of 1:4 optical time-demultiplexers, (iv) an array of integrate-
and-reset circuits, (v) an array of 12-bit quantizers (AD6640) operating at 52 MS/s, and (vi) a computer
for performing control, system calibration, and phase demodulation.

Figure 1-3: Schematic of Proposed Optical A/D system [59]

A quantitative analysis on the maximum achievable resolution for a given sampling
frequency leads to a study of the noise present in a practical system and a classification
of the different noise phenomenon [63]. In the proposed optical A/D converter, the noise
introduces itself at different segments of the system. The first, quantization noise, arises
from the fact that when an analog signal is translated into a discrete magnitude, error
from the 'rounding-off’ process is created. Quantization noise is inherent even in an ideal
A/D converter. Other noise sources are non-ideal and contribute to the deviation of the
output from the ideal case. This noise can effectively make the lowest significant bits of the

converter useless, depending on the ratio of the noise to the signal, or signal-to-noise (SNR)
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ratio. The effective usable bits can be calculated, given the SNR:
Ness = (SNR(dB) — 1.76)/6.02 (1.1)

where N,y is the effective number of bits and SN R(dB) is the signal-to-noise ration [dB].
The greatest sources of error come from the noise introduced by the optical pulse train. An
ideal pulse train has evenly spaced pulses in time and each equal in magnitude. Optical
pulses can have variations in amplitude, which produce variations in the magnitude of the
sampled RF signal (Figure 1-4(b)). This is known as amplitude jitter and has a nominal
effect on the increase of the system’s noise. A more cogent source of error is the variations
of time between pulses that cause a non-periodic pulse train (Figure 1-4(c)). This source
of error is known as timing jitter and is a parameter for pulse-producing lasers that is not

well understood [14, 25, 62, 40].

(a) () (©)

Figure 1-4: (a) Ideal pulse train. (b) Pulse train with amplitude jitter. (c) Pulse train with timing
jitter.

The maximum achievable bit resolution can be calculated, given a timing jitter, 7,:

2
B;;: = lo, —_—_— ] =1 1.2
Y 82 (\/gﬂ'fsampTa) ( )

where By; is the maximum achievable bit rate due to timing jitter limitations and fsemp

is the sampling frequency of the A/D converter [Hz]. For the proposed system, with a
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sampling rate of 10 GHz and 12 bits per sample, this would imply a timing jitter of 4.5 fs.
Even for a moderate sampling rate of 1 GHz at 12 bits/sample, a timing jitter of 45 fs is
necessary. Currently, typical semiconductor pulsing lasers have timing jitters of hundreds
of femtoseconds to picoseconds [13], well above that of the necessary specification to realize
this high-speed system. Apparently, timing jitter is of utmost concern and remains as the
most important parameter of a pulsed optical source. The challenge lies in creating a laser
source that meets the specifications of the proposed system, which necessitates a drastic
decrease in timing jitter.

Several varieties of laser design exist that are capable of producing periodic pulse trains.
Examples include gain-switching, Q-switching, and modelocking [58]. Because of jitter,
repetition rate, and other concerns, only modelocked lasers have been found as suitable

sources for use in high-speed optical A/D converters (Figure 1-9).

1.3 Modelocking

In a laser, an optical resonator confines the optical field and promotes optical amplification
due to stimulated emission [11]. The resonator confinement is accomplished in one dimen-
sion by two partially reflective mirrors that keep the light within the laser cavity. A fraction
of that light is transmitted through the mirrors; this light that escapes is the observed out-
put of a laser. In a simple laser design, these mirrors create Fabry-Perot resonances of
the optical electro-magnetic field when a lasing steady-state is reached. A 1-dimensional
resonant cavity can theoretically support a countably infinite number of these Fabry-Perot
resonances (see Section 2.4.2). This produces a frequency comb where the resonance peaks,
called modes, are separated by the round-trip frequency of the Fabry-Perot cavity (Fig-
ure 1-5(a)).

Due to the laser’s active region’s gain bandwidth, only one or a few of these modes exist
in an above-threshold laser steady-state condition. Typically, the phase of these modes
are uncorrelated. This produces a laser output that is randomly distributed in time but

relatively constant due to the high frequency of the optical light. When the phases of these
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modes are locked together so that they do not drift with respect to each other (or at most
drift lineary, causing a time drift to the entire pulse), then the output of the light becomes a
pulse train. A simple explanation for this is that the inverse Fourier transform of an infinite
train of evenly-spaced frequency impulses is an infinite train of evenly-spaced impulses in
the time-domain. These time-domain spikes correspond to optical pulses. Due to the finite
gain bandwidth of the laser, only a finite number of frequency-domain peaks are available.
This corresponds to a non-ideal impulse in the time-domain, i.e. an optical pulse with a
finite, non-zero pulse width (Figure 1-5(b)). Since the Fabry-Perot resonance frequencies of
the different modes are integral multiples of the round-trip frequency of the cavity, the pulse
train exists at a mode separation at the round-trip frequency of the cavity also. Hence, the
laser is modelocked and the output is an optical pulse train at the round-trip time of the

Fabry-Perot cavity.

'A.A-A'AL‘

UL,

—E>t

(a) (b)

Figure 1-5: (a) Frequency-domain and (b) Time-domain representations of modelocked pulses

Modelocked lasers have the best chance of producing pulses that can meet the specifi-
cations to build the proposed A/D converter system. Prior results from this class of lasers
promises the closest specifications in jitter and repetition rate to the proposed system. The

repetition rate of modelocked lasers are determined by the round-trip frequency (or some
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harmonic) of the laser resonator. Modelocked lasers have exhibited repetition rates of over
100 GHz [22], well beyond the specifications of the proposed system. Since the phases of
the modes are correlated, the time variation between pulses is reduced. Actively mode-
locked lasers have exhibited timing jitter values as low as 50 — 100fs [33, 6, 15], whereas

gain-switched lasers have timing jitter values typically greater than 1 ps [17, 40].

Modelocking has been achieved in a variety of material systems and configurations.
Solid-state crystal modelocked lasers were the first demonstrated modelocked lasers. They
utilize a solid-state crystal active element and typically employ free-space optics to define a
resonant cavity. They provide high-power, short pulse width, low jitter pulses [19], however
they are not usable in practical, high-volume applications due to their cost and size. Another
currently researched method is fiber ring laser modelocking. Fiber ring lasers employ lengths
of Erbium-doped fiber to provide a cost-effective gain-medium waveguide that can be looped
into a ring configuration. Free-space optics are placed in the path of the ring geometry to
produce modelocking. Fiber ring lasers are excellent choices for a modelocking, providing
reasonably low jitter and smaller size than their solid-state crystal counterparts, but they

continue to demand a relatively large volume due to the fiber lengths and optics [26].

The method explored in this thesis is semiconductor diode laser modelocking. Tradition-
ally, semiconductor laser modelocking was performed by using semiconductor modelocking
segments coupled together through free-space optics [16]. The facet reflectivity of the seg-
ments is kept to a minimum by anti-reflection coating and the light is typically focused
through lenses. While typically smaller in real-estate than the other modelocking methods,
the use of bulk optics necessitates sizable area constraints. However, the field of integrated
circuits provides the ability to monolithicly integrate all necessary modelocking components
onto a single semiconductor wafer. Typical dimensions for a monolithic semiconductor
modelocked laser wafer are less than a square millimeter and a few hundred microns thick.
Fabrication techniques allow for massive parallel manufacturing, yielding low-cost, high-
performance modelocked laser sources. The drawbacks are lower pulse power, and slightly

higher timing jitter than their fiber ring laser counterparts.
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The two major classifications of modelocking are active and passive modelocking. They
are presented below in the context of semiconductor modelocked lasers but are general for

all modelocked devices.

1.3.1 Active Modelocking

A general active modelocking scheme is shown in Figure 1-6. It consists of two major
sections: (a) an active modulation section that is modulated by an RF signal at the round-
trip frequency of the cavity and (b) a waveguide section that provides a cavity for the pulses
to propagate through. The RF signal is typically a sinusoid but can be any sharply peaked
function of current. This current modulation produces a carrier density modulation which
in turn produces a photon gain modulation within the active section. Given an existing
pulse within this cavity, it will enter the active section at the round-trip frequency of the
cavity. If it has modelocked, then the pulse should propagate through the active section
while the photon gain within that section is at its peak. When the pulse is not present in the
cavity, the gain should be lower than the peak, until the pulse returns again to the active
section. This time-dependent gain function causes the photon field to be highest only when
the gain is highest, thus producing a pulse that propagates at the round-trip frequency of
the cavity.

Rather than a time-domain explanation, a frequency-domain explanation can be used
to explain this modelocking phenomenon. A frequency comb exists due to the Fabry-Perot
resonances of the cavity. Each frequency mode is separated by the round-trip frequency
of the cavity, but the time-domain profile is random due to the uncorrelated phases of the
Fabry-Perot modes. The RF modulation, being at the round-trip frequency of the cavity,
causes a non-linear coupling between the Fabry-Perot modes of the laser cavity, allowing
energy from each mode to couple into their neighboring modes. This energy coupling also
implies a phase coupling, since the photons carry with them their phase. Eventually, a
steady-state solution of this mode coupling is a total homogeneity of phase. The phase

locking implies the time-domain profile of the photon field (which is the inverse Fourier
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transform of the frequency mode train) is a pulse train.

1.3.2 Passive Modelocking

Passive modelocking again requires at least two major segments, as shown in Figure 1-8: (a)
a saturable absorber section and (b) a gain section. The purpose of the saturable absorber
section, given a pulse propagating through it, is to attenuate the pulse, thus shortening its
pulse width. Because of loss saturation in the saturable absorber, there will be a non-linear
attenuation of the pulse. As the pulse enters the absorber, the front end of the pulse is
attenuated as photons are absorbed by the material and excite electrons into the conduction
band. As more and more of the pulse propagates through the absorber region, more of it
is absorbed and the carrier density rises. This results in a reduction of the loss of the
section, since there are fewer excitable valence electrons. If there is sufficient energy within
the pulse, this will cause the material to approach transparency, which is the state of no
loss or gain (the absorption is saturated). Hence, the end result is the pulse’s leading edge
is attenuated while the trailing edge is not. This effectively results in "shaving off” the
front edge of the pulse and shortening the pulse width. If the gain is also saturable, the
opposite effect occurs as the pulse propagates within the gain section. The leading edge
of the pulse will be amplified while the trailing edge will not as much, thus resulting in a
widening of the pulse. In a passively-modelocked laser, the competition of the saturable
absorber’s pulse narrowing and the gain section’s pulse broadening leads to a steady-state
round-trip condition in which the pulse propagates through the laser and returns to its
original position and direction in exactly the same shape. The pulse has effectively been
narrowed, broadened, broadened again, and narrowed back to its original shape.

Active modelocking is useful when low jitter pulses are desired. This is due to the
fact that the RF modulation source serves also as a stabilizer of pulse period. The RF
source, while inherently noisy itself, stabilizes the pulse period more effectively than without
the source. Passive modelocking has no such stabilizing source and therefore has much

higher timing jitter. Passive modelocking, however, is not limited in repetition rate by the
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Figure 1-6: General active modelocking scheme: (a) active section (b) waveguide section. Energy
is coupled from each mode to its neighbors.
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Figure 1-7: Time domain explanation of active modelocking. The photon gain is highest when the
pulse inhabits the RF Gain region.
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Round-trip pulse evolution

Dotted: steady-state pulse profile, Solid: evolved pulse profile

Figure 1-8: General passive modelocking scheme: (a) saturable absorber section (b) gain section

maximum obtainable RF source frequency, which typically cannot rise above 50 GHz. Since
a source is not needed, the upper-bound on the repetition rate is not bottlenecked by this.
Rather, the repetition rate is defined solely by the length of the laser, since this determines
the round-trip frequency of the laser. Practically, there is a maximum repetition rate that

is imposed by absorber to gain ratios [39].

1.3.3 Hybrid Modelocking

It is not a large step forward to realize a system that utilizies both active and passive
modelocking phenomena. A three-section device can be fabricated to provide an actively
modulated section, a saturable absorption section, as well as a gain/waveguide section. This
technique is known as hybrid modelocking [16] and it provides the benefits as well as deficits
of both methods of modelocking. Typical figures of merit for the three laser designs are
shown in Figure 1-9.

Modelocked lasers can be used for applications other than optical A/D conversion. It
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TABLE |
COMPARISON OF MULTISEGMENT STRUCTURE PERFORMANCE
Spectral Time- Pulse Repetition
Cavity Modulation Pulsc width Width Bandwidth Energy Rate Wavelength Art'!ve
Type Technique {ps) (GHz) Product ird) (GHz) (um) Region Reference
Ext. Active 1.4 342 0.48 0.28 3 1.3 Bulk N
Two-Seg.
Ext. Passive 2.5 720 1.3 0.7 5 0.84 4 QW i22)
Two-Seg.
Ext. Hybrid 25 1000 .5 08 5 0.84 4 QW 1221
Two-Seg.
Ext. Hybrid 19 900 LM 0.18 6 0.83 Bulk (186}, (27]
Three-Seg.
Mon Active 13 330 4.3 019 55 0.84 4 QW [22)
Two-Seg.
Mon. Hybrid 6.5 540 3.5 0.18 5.5 0.84 4 QW 122)
Three-Seg.
Mon Passive 10 400 4.0 0.25 5.5 0.84 4QwW 122)
Two-Seg.
Mon Passive 5.3 550 30 0.53 1 0.84 4 QW
Two-Seg.
Mon. Hybrid 2.2 500 1.1 0.03 21 1.58 4 QW
Three-Seg.
Mon Passive 1.3 600 0.78 0.02 41 1.58 4QwW (38}
Two-Seg.
Mon. Q-Switch 15 2400 36 3 1 0.825 Buik
Two-Seg.
Mon Gain-Swilch 13 4000 52 14 1 0.822 Bulk
Two-Seg.

Figure 1-9: Semiconductor modelocked laser comparison [17]
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is used for performing pump-probe experiments for exploring carrier dynamics. A ”pump”

pulse excites the sample of interest in which a ”"probe” pulse follows after some time delay

and is detected. The detection of the probe pulse tells how the material has been affected

by the pump pulse and the time delay between pulses. It is a useful technique for measuring

carrier lifetimes.

1.4 Thesis Overview

This thesis concentrates on the development of modelocked semiconductor lasers that will

eventually be used in an A/D converter system. Modelocked lasers exhibit the lowest jitter

of optical pulse sources and can produce pulses faster than 100 GHz [9, 3]. This thesis will

study the dynamics of modelocked laser diodes (MLLD) in order to improve performance

and optimize design.

Chapter 1 provides motivation for the work in this thesis, as well as a brief overview
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of modelocking. Chapter 2 goes into the various experimental and theoretical methods of
physical laser characterization. Chapter 3 critically analyzes the split-step Fourier method
and discusses its limitations. Chapter 4 presents the split-step finite difference (SSFD)
method and uses the method to derive trends for design purposes. Chapter 5 summarizes

the works presented in this thesis.



Chapter 2

Characterization

In order to better understand the characteristics and quality of a laser design, one must
analyze the various parameters that determine the performance of the laser. For example,
knowing the DC lasing threshold is important to understanding where to bias a laser when
modelocking (See Chapters 3 and 4). These laser parameters can be derived through theory
or determined experimentally. A careful choice of which method to use for each parameter
is important. Certain parameters are easily determinable through experiment, and their
results can typically be more accurate than a theoretical value. However, others are difficult
to impossible to determine through experiment and a theoretical approach is necessary. This
chapter first discusses the design of the lasers used in this thesis. It then introduces the
various laser parameters and provides several approaches to determining them. A discussion

of sources of error and the accuracy of each approach follows most techniques.

2.1 Laser Design

The laser used in all modelocked experiments is a 1550 nm Fabry-Perot quantum well laser
designed and processed by Farhan Rana at MIT and grown by Patrick Abraham at the
University of California, Santa Barbara. The substrate is 3 — 5x107em =2 S-doped n-type

InP (uncertainty due to growth calibration). The six quantum wells are 70A thick 1.55um

33
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InGaAsP with +1% strain. The barriers are 70A thick 1.18um InGaAsP with no strain.
The ridge layer is 5x108¢m = Zn-doped p-type InP and is 1.5um thick. Ridge widths were
processed in 1.5 and 2.0um widths. Figure 2-1 shows the hybrid modelocked laser profile,

including the biasing scheme, and band structure.

The laser is current- and index-guided by etching a ridge (1.5um and 2.0pum widths)
through the p-type InP down to but not including the active region. A very thin layer of
oxide is then deposited on the entire top of the wafer. The oxide allows a layer of polyimide
to be deposited. The polyimide is spun on and cured. The entire wafer surface is then
planarized to the height of the ridge surface. Ohmic contacts are then deposited on the

ridge surface and entire wafer backside.

All subsections of the modelocked laser, including active region, passive region, and gain
region are integrated onto a single wafer. The three sections were electrically isolated by
etching two 1pm wide channels through the transverse direction of the ridge (see Figure 2-
2). The etching of these two channels was included in the same step as the etching of the
ridge itself, therefore the channels extend down to the active region. During the polyimide
spinning step, polyimide was able to fill the channel to provide a planar surface for the met-
allization. The ohmic contacts were deposited over the ridge areas, excluding the channels.

‘The inter-section resistance was measured to be greater than 1M .

An additional growth was prepared by E.P.I., a foundry in England. This laser design
was used primarily in the characterization techniques found in this chapter. The major
differences are the number and size of the quantum wells and the ridge dimensions. The
bottom n-doped region was doped at 3 — 5x107¢m 3. Five 60A quantum wells with
+0.8% strain were separated by 100A barriers with -0.5% strain. The separate confinement
heterostructure (SCH) layers were 120nm thick; both n- and p-type layers were doped
1x10em 3. Both the SCH and barriers were 1.3;sm InGaAsP. The p-type ridge was doped
5x10'7cm ™% and was 1.5um thick and several different widths were processed, including 3,

4, and 5um. Figure 2-3 shows the band structure of this alternate laser design.
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Figure 2-1: (a) Side view of laser, including biasing scheme. (b) Band structure of active region.
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Figure 2-2: Schematic of hybrid laser design: (a) without (shown for detail) and (b) with polyimide

planarization.
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Figure 2-3: E.P.I laser design

2.2 Laser Rate Equations

A basic but powerful model for continuous wave (CW) laser operation describes the time

rate of change of the carrier concentration and photon concentration [11]. These equations

are:
dN Th‘] N
Bl N 2.1
dt v . Y9 21)
dN. N,

where N is the carrier concentration [em ™3], ¢ is time [s], n; is the internal quantum effi-
ciency, [ is current [A], ¢ is the fundamental electron charge [C], V is voltage [V], 7. is the
carrier lifetime [s], v, is the photon group velocity [m/s], g is the differential gain [cm™1],
N, is the photon density [em™3], T is the photon confinement factor, Bsp is the spontaneous

emission factor, R,, is the rate of spontaneous emission [cm“3s‘1], and 7, is the photon
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lifetime [s]. The carrier lifetime, 7., and the photon lifetime, 7,, are abbreviations for:

N AN+ BN? 1 CON? (2.3)

Te

1
— = vg(a; + am) (2.4)
Tp

where for low carrier concentrations, A is the trap recombination coefficient [s7!], B is the
bimolecular recombination coefficient [em~3s~!] (accounts for spontaneous emission), C is
the Auger recombination coefficient [cm=6s~!] (see Section 2.4.6 for explanation at high
carrier concentrations), «; is the internal loss [em™!] (due to material loss), and o, is the
distributed mirror loss [em~!]. It is important to note that the recombination coefficients
in the carrier lifetime equation only take on these definitions under low carrier densities
when Boltzmann statistics hold. Under high carrier densities, the Fermi statistics of the
electron occupancy take on more complicated dependencies rather than a simple integral-
degree polynomial expansion. Section 2.4.6 explains this in further detail. The internal loss
is due to heavy-hole to light-hole intervalence band absorption. This is a function of carrier
density and photon energy, and will be described in the next section. The mirror loss, a,,,
is due to the coupling of photon energy out of the two mirror facets, but the definition

distributes this loss over the length of the cavity. It is defined as:

1

1_
"R

Q=

(2.5)

SIE

where L is the Fabry-Perot cavity length [cm] and R is the power reflectivity of the end
mirror facets. The spontaneous emission rate, R,,, comes from Equation 2.3 and for low

carrier densities takes the form:

Ry, = B - N? (2.6)
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Under high carrier densities, R, has a weaker carrier density dependence as explained in

Section 2.4.6.

Finally, an optical power output equation can be derived for current values above thresh-

old:

hv

o 1
P: - —_— —_— I— — R
m(aﬁam) L0 = ) % 5 (2.7)

where h is Planck’s constant [J-s] and v is the fundamental lasing wavelength. The subscript
7th” is used to represent the variable value at the threshold condition. Thus, Iy, represents
the current needed to reach the threshold condition. Frequently, we define:

i Om l

nd:ai+am2

(2.8)
where 74 is known as the differential quantum efficiency. Since spontaneous emission dom-
inates for sub-threshold regimes, a power/facet equation below threshold can be derived:

hv
PSP = NeTiTr 'E“I (2.9)

where 7, is the radiative efficiency and 7. is the collection efficiency. 7, is the fraction of

carrier recombination that is accounted for by spontaneous emission:

Rsp
(N/7e)

Nr = (2.10)

A brief explanation of each term in Equations 2.1 and 2.2 are as follows. In the carrier
rate equation, the first term on the right-hand side accounts for carrier injection into the
active region from a current source. The second term accounts for carrier relaxation due to
interactions in the semiconductor. The third term accounts for carrier recombination due
to stimulated emission from the lasing modes. In the photon rate equation, the first term
on the right-hand side accounts for the photon creation rate due to stimulated emission

into the lasing mode. The second term accounts for spontaneous emission coupling into
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the lasing mode. The third term accounts for photon absorption losses due to interactions

with the semiconductor. Further information on the laser rate equations can be found in

Chapter 2 of [11].

It is important to characterize these laser parameters to better understand the quality
of its design and help explain its performance. The remainder of this chapter is devoted to
the determination of the parameters which are found in the laser rate equations and their

supplemental equations.

2.3 Theoretically-Derived Parameters

2.3.1 Group Velocity (v,)

The photon group velocity represents the speed at which photon energy propagates. In
terms of laser pulses, this is the velocity of the pulse as it propagates within the semi-
conductor. This is different from phase velocity, which is the speed at which the carrier
frequency (in this case, the frequency that corresponds to a 1550nm free-space wavelength)
propagates. The group velocity is determined by knowing the group index of the material.
Since the laser is heterogeneous, the index is spatially dependent. The group index is found
by determining the photon field profile within the laser cavity and performing a weighted
average of the different indexes by the percentage photon density of each section. Since the
index is wavelength dependent (due to material dispersion effects), the group velocity, vy,

will be also:

’Ug = n_g (2.11)

where n4 is the group velocity. Since the wavelengths within the linewidth of a laser typically
span a short range, the group velocity can usually be approximated as constant. A method

to determine group index is explained in Section 2.4.4.
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2.3.2 Confinement Factor (I')

The confinement factor, I', represents the percentage of the steady-state photon energy
that lies in the active region of the semiconductor. In a Fabry-Perot laser, the photon field
propagates along the axial direction (the axis as defined in the direction of the laser ridge,
or z-axis, as conventionally defined). The active region is defined as the region in the laser
that stimulated emission occurs. This will be within the quantum wells, since they provide
electron and hole confinement. Since the active region extends the entire axial length as
well as the entire plane of the laser, the confinement of the laser field in these two directions
is 100%. The quantum wells, however, only cover a small portion of the vertical direction
and therefore the photon field extends well beyond them. The confinement factor can be
determined theoretically by knowing the structure dimensions and solving for the steady-
state photon field as confined by the cladding and quantum wells. This is accomplished
by performing a 2-dimensional solution of the photon field within the cavity. Once the
field profile is determined, the percentage of the photon field that lies within the multiple
quantum wells is added up, which becomes the confinement factor. This simulation was
written by Farhan Rana. Figure 2-4 shows this solution for the laser under study. Using
the 2-D solver, I' = 0.00918 for each of the quantum wells in the E.P.I. laser. Summing up

the total confinement factor for all five quantum wells yields a total I' = 0.0459.

2.3.3 Mirror Reflectivity (R)

The mirror reflectivity can be determined simply by knowing the group index of the photon
field within the semiconductor, as well as the index outside the cavity. A simple boundary

condition solution gives the transmission and reflection through a mirror facet.

L (2.12)
7y + no
2
2 (2.13)

ny + no
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Figure 2-4: Field and index profile in laser core, E.P.I. growth

where n; and ny are the group indices of the initial material and transmitted material.
Typically, the initial material is semiconductor and the transmitted material is air. r and
t represent the field reflectivity and transmission, respectively. R represents the power
reflectivity where R = |r|2. T is the power transmission where T' = |t|2. The variability of
this value usually comes from the quality of the mirror facets. A cleanly cleaved facet should
give a near-theoretical value. For a group index of 3.7, the power reflectivity, R = 0.33.
By measuring the length of the laser, a theoretical value for o, can be determined using

Equation 2.5.

2.4 Experimental Parameters

2.4.1 Loss (o;) and Internal Quantum Efficiency (7;) Measurements

By examining the above-threshold power equation (Equation 2.7), it is easy to find a dif-
ferential slope of power per facet to current:

dP hvl

dar Ud;i (2.14)
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Figure 2-5 shows how dP/dI is found.
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Figure 2-5: Typical Power vs. Current laser curve and representation of dP/dl, E.P.I. growth

The internal quantum efficiency, 7;, and the material loss, «;, can be found using a
commonly known technique of comparing the inverse mirror loss and differential quantum
efficiency [36]. This method assumes no dependence on length for these two parameters.
However, the mirror loss, «,,, changes as the length of the laser changes. In order to
determine 7; and «; we need two non-degenerate equations, obtainable by choosing two
different-length lasers made from the same design. This is obtainable by cleaving two dif-
ferent lengths from the same material. Since data have a margin of error, we can increase
the accuracy of this measurement by increasing the number of data points. This is accom-
plished by cleaving multiple laser bars of different lengths and measuring their 4. From
these 1y measurements their corresponding «,, can be determined. Using Equation 2.8, we
can write a linear equation between 1/n4 and 1/a,,:

1 a; 1 1

— =t = (2.15)
M hiCm T

A two-parameter linear fit can then be made on 1/n4 versus 1/a,, to obtain values for #;

and «;. Figure 2-6 shows parameter fits for the modelocked laser material.
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Figure 2-6: Linear fit of 1/ng4 versus 1/a., to determine «; and 7;, E.P.I. growth

The values obtained through this method as shown in the graph are n; = 0.74 and
o; = 11.2. A confidence estimation can be performed on this method by calculating the
magnitude of deviation on the calculated results due to deviations in the experimental data.

A quantification of the error in 7; and «; respectively is:

2 [ on; 12 [ on; 2
(Am)" = | Ao | o= + [Ang e (2.16)
| naes\ 1% [ o \1°
= |Aay, o2 + 1A [ 1+ P (2.17)
L m o L m
I a i 72 [ 8 i 2
(M) = Aam(aj ) ; And(a;"d)] (2.18)

Il

()] oo (520 e

where the Az values signify the deviation from the true value of z. By the chain rule, we

can expand the Aea,, into terms which are directly measurable:
da 2 da 2
2 _ m m
(Aan)” = [AR (—BR )} + {AL (———aL )] (2.20)

= [AR (1—1}—2)]2 + {AL (-2—2 lnR)r (2.21)
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For typical values: L = 300um, ngy = 3.2, n; = 0.74, ng = 0.6, we obtain R = 0.2744,

= 43em~! and

Ac; = 1/(28.3AR)? + (335AL)2 + (88.6An,)? (2.22)

For a value of o; = 10ecm™!, we can estimate the percentage error on «; due to a 10% error

on each of the measured quantities. If

AR=01R = a?‘i = 0.078 (2.23)
Ag;

AL=01L = —%=0.10 (2.24)
(]
A

Ang =0.1ng = ao?zo.s?, (2.25)
2

This result shows that the measurement of ny is crucial to obtaining a good value for ;. A

similar estimation for the error in 7; give us

An; = 1/(0.39AR)? + (4.64AL)2 + (1.23Ang)2 (2.26)

Performing the same error estimation:

AR =0.1R = %7’—" =0.014 (2.27)
1
An;

AL=01L = 7777 =0.019 (2.28)
A .

Ang =01ny = —E _—0.10 (2.29)

%

This shows that the calculation of n; is not very dependent on the accuracy of the length
or the reflectivity, and has a moderate dependency on 7y. There is high confidence in
the measurement of the length to within 10um. The index is calculable theoretically (see
Section 2.4.4) and is accurate within 10%. The largest error occurs with the measurement

of ng. As shown in Figure 2-5, the slope bends as the bias increases, due to laser heating
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reducing the internal quantum efficiency. Therefore, the bias at which to measure the slope
is not trivially determinable. [49] also discusses the error in this technique.

Note that «; and 7; are temperature dependent. This technique assumes that there is a
weak temperature dependence and that the temperature of the laser changes very little over
the range of biases. Note also that the parameter, «;, is wavelength dependent and that
this method is suitable to determine «; only for the lasing wavelength. A more powerful

method is describe in Section 2.4.5.

2.4.2 Derivation of Fabry-Perot Modes

A derivation of the Fabry-Perot modes will shed light upon a method to determine the
group index and loss parameters of the material. It is assumed that the photon fields exist
within the laser cavity as steady-state standing wave patterns. Given an initial electric field
that propagates along the axial direction of the Fabry-Perot cavity, one can find the total
transmission assuming partially reflective mirrors. Figure 2-7 shows a Fabry-Perot cavity
of length L and field transmission coeflicients ¢; and to.

Without loss of generality, Ey originates at the left-hand mirror and propagates towards
the right. It picks up a phase change as it propagates through the Fabry-Perot cavity; for
—jkdz

a dz change in distance, it picks up e phase, where k is the wave number within the

cavity and
k=2nng/A (2.30)

where X is the free-space wavelength. At each of the facets, the electric field is reflected
back by ri2 where |r1’2[2 =1 |151,2|2 and transmitted through the facet by t; 2. Hence,

after one reflection off the right-hand wall, the transmitted field is:
Et = Eoe—jkLtQ (231)

The reflected portion makes another round-trip through the cavity. After two reflections
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off the right-hand facet, the transmitted field is the first plus the second:
E, = Eye 7k, + Ege T lpye=iklp o7kl (2.32)

The pattern is evident. In closed form, the entire transmitted field is:

. 0 A ~jkLy
= Bpe 7L,y —joer\™ _ _FoeTta
Et = Eoe to ‘ (7’17‘26 ) = 1_ T1T26_j2kl’ (233)
7=

The power density, P [W/m?],is:

2
p =Bl (2.34)
ue

where p is the magnetic permeability constant [H/cm]. Therefore, the optical power de-

tected is an explicit function of wave number and therefore, of wavelength:

_ | Eota|” 1
1+ RiRy — 2ryrycos(2kL) pc

(2.35)

where k is defined in Equation 2.30.

Putting the proportionality constants aside, it can be seen that this function will be
periodic with respect to A. The function will be at its maximum when the cosine term is
at its smallest, or 1 and the function will be at its minimum when the cosine term equals

—1. This corresponds to:

Mazimum : 2kl = 27m (2.36)

Minimum : 2kpinL =m(2m + 1) (2.37)

where m is any integral number. Solving for the wavelengths which give maximums and
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minimums:

2Ln
Amag =——2 (2.38)
4Ln
Amin = g .
min =g (2.39)

A representation of this is shown in Figure 2-8
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Figure 2-8: Simulation of Fabry-Perot field spectrum in ny, = 1 medium.

Further insight into the Fabry-Perot modes comes when we translate the peak wave-

lengths into their corresponding frequencies:

w _ 2mc _ c2mm
T Apae mg2L

(2.40)

It can be seen that the maximum frequencies occur at integral multiples of the round-

trip frequency (2mc/ngy2L) of the cavity. The peaks and nulls represent constructive and
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destructive interference due to the feedback of the cavity boundaries.

2.4.3 Measuring the Fabry-Perot Modes

In order to experimentally observe the Fabry-Perot modes of a laser cavity, it is necessary
to obtain the power versus wavelength information of the output light. The Fabry-Perot
modes depend on the gain structure of the laser. Therefore, it is best to examine the
optical spectrum below threshold. The spontaneous emission of the laser will still have
a wavelength-varying super-structure due to wavelength-dependent gain (see Figure 2-10),
but the gain varies slowly with respect to the Fabry-Perot mode spacing. A problem may
arise as the laser length becomes very short, but typically the laser will not lase for lengths
where this is a concern. Also, if the laser length is too long, the Fabry-Perot modes will not
be resolvable within the resolution bandwidth of the measuring instrument.

The experimental setup included a Hewlett-Packard 70950B optical spectrum analyzer
(OSA), with a resolution bandwidth of 0.08 nm, which was used to capture the optical
power from one of the laser facets. The light was coupled into a multi-mode fiber through
a pair of lenses anti-reflection (AR) coated at 1550nm. The lenses’ foci were adjusted by
mounting the lenses onto 3-axis translation stages. Figure 2-9 shows a schematic of the test
setup.

This setup allowed for enough spontaneous emission to register above the noise floor of
the OSA, however, the tail ends of the spectrum, away from the gain peak, tend to become
noisy, which shows up as spurious data in measurement techniques that employ the Fabry-
Perot modes. Since this technique is valid for all current bias levels below threshold, near-
zero current levels scans can be attempted. However, the amount of light coupled into the
OSA will tend to become very noisy, especially for the lower current bias levels. At times,
scan averaging was necessary to decrease the noise level so that a suitable measurement
could be performed. In order to decrease the time necessary for a complete scan and to
improve the resolution of the scan, the entire wavelength range was typically split into

smaller wavelength portions, in which scans were performed in each. Figure 2-10 shows an
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Figure 2-9: Schematic of test setup

example of an OSA trace that shows the Fabry-Perot peaks as well as the gain structure of
the laser. Typically, this range would be split into small 10-20nm scan ranges which would

be pieced together in the end.

Error introduced by the measurement device’s resolution bandwidth (in this case 0.08
nm) can be analyzed by understanding how the error is introduced. In order to determine
the optical power at each given wavelength, the OSA integrates the optical power over a
non-zero interval of wavelength. The larger the interval, the larger the power registered,
since more light will be integrated. On a first-pass approximation, the integrating window
can be modeled as a square window centered around the wavelength in concern. Essentially,
the ideal spectrum is convolved with the window to produce the recorded spectrum. A de-
convolution with the assumed window shape will give an estimate of the ideal spectrum,
minus the error due to the OSA’s resolution bandwidth. Simulations of Fabry-Perot modes
of this laser system with and without the resolution bandwidth error were performed. The

error for loss measurements (see Section 2.4.5) was found to be less than 4% for typical val-
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Figure 2-10: Typical OSA trace for a laser below threshold, showing the Fabry-Perot resonances,
E.P.I growth, L=300um, width=5um, 10mA bias, 20.2°C
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ues. Therefore, the resolution bandwidth error from the measurement device was neglected
in all future measurements. Further analysis on the error due to resolution bandwidth can
be found in [8], which also provides a variant method that is less sensitive to noise. A
theoretical quantification of the error can be found in [32] where the method described by

Hakki and Paoli and in [8] are compared.

2.4.4 Group Index Measurements

In order to measure the group index of the laser, we can take advantage of the Fabry-Perot
mode structure to give us insight to the characteristics of the cavity. This is a standard
method of determining index of materials. By knowing the wavelengths of two adjacent
peaks of the Fabry-Perot mode structure, one can determine the group index, ny. Given

two adjacent wavelengths, A\; and Az, where \; = —277%3% and Ay = 2L—m"9-:

o) () e

which gives us:

A1 A
- 9.42
"= 9LAN (2.42)

where AX = Az — A). The wavelength that corresponds to this group index is approximately
the average of A; and A2. The group index can now be found as a function of wavelength.
Figure 2-11 shows the group index as a function of wavelength.

The group index for this laser structure around the lasing wavelength is approximately
ng = 3.6 — 3.7. This matches well with a group index of 3.7 cited in the literature for a

similar InGaAsP material system [31].

2.4.5 Loss/Gain Curve Measurements

The Fabry-Perot modes can be used to perform overall gain spectrum measurements [21].

This measurement technique was developed by B. Hakki and T. Paoli in 1973. The code is
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found in Appendix A, written in Matlab. We can modify Equation 2.33 to include gain
within the cavity due to material absorption. We can redefine k£ to include an imaginary

term that will account for gain:
1.
k=k+ 53&()\) (2.43)
where we have defined the overall gain coefficient, o, to be wavelength-dependent. Hence,

the total field transmission becomes:

Ey
By = 1 — rirge—J2kLea(NL (2.44)

—j2kLga(MLy,

where we have defined Ej = Epe for simplicity. Minimum and maximum field

transmission values can be found by varying &, as above.

El
Mazi : Eppar = 0 2.4
azimum : Epag =1— AR WS 2 (2.45)
!
Minimum : B = By (2.46)

1 + r1roe®Amin)L

We will assume that if this Fabry-Perot minimum and maximum are adjacent then the gain
parameter is slowly-varying enough to allow us to say that they will be equal for the two:
a(Amaz) = a(Amin) = a(A). Now, defining the power density that corresponds to these two

as Prar and Poin:

- | Eo] ’
o | Eo| ’
Prin = (1 PRSIV (2.48)

we can then obtain the gain formula:

a()\)=~%ln (\/RIRQ \/_V?"”“_L \/_”;mf") (2.49)
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Since the power term is a fraction, only the ratio of the peak and null powers are necessary
for this technique to work, which is where the utility of this function lies. We can allow for
coupling loss to the OSA without undermining the technique. The same data acquisition
technique used for determining the group index was used here as well. Since the wavelength
for a determined gain parameter is approximate, the gain can be measured in several ways:
using a peak and 1) its left-hand null, 2) its right-hand null, or 3) averaging the two.
Negligible difference was found in the different methods. This supports the argument that
the net gain curve varies slowly with respect to the Fabry-Perot mode spacing. Figure 2-12
shows a typical net gain curve for a short Fabry-Perot laser made from the same material as
the modelocked laser. Another note is that this method works in sub-threshold conditions.
In a laser’s lasing mode the gain cannot be calculated since the lasing peak adds too much
structure to the gain curve. However, useful data can be pulled from everywhere save the

gain peak. One can see the clamping of the gain peak at 24mA.

The net gain curve actually represents

a(A) =Tg(\) — o4 (2.50)

since the loss is attenuated with rising gain. For InGaAsP materials, «; is relatively constant
over large wavelengths [20], while g()) is not. Thus, knowing «; and I' allows us to find g()).
The theoretical method of finding I' is explained in Section 2.3.2. «; can be found through
the method described in Section 2.4.1. Another method of finding «; is through analysis
of the gain curve. Gain is positive when there is carrier population inversion and negative
when there are fewer carriers than electron-hole pairs. In the former case, there are enough
carriers for stimulated emission to win over photon absorption by electron-hole pairs. In
the latter, the opposite is true. For wavelengths larger than the bandgap wavelength, there
should theoretically be zero quantum well absorption, since the light is too low energy to be
absorbed by a valence electron. So, g(A) should go to zero at higher wavelengths (smaller
energy) and «; should be the dominant term. If one examines the net gain curve for various

bias currents, the losses should therefore converge to a single value for wavelengths well
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above 1550nm. Figure 2-12 somewhat shows this convergence if examined for wavelengths
above 1620nm. However, it can be seen that the convergence is not perfect, rather there

seems to be a large range of loss values that cover the range of biases.

By adding a theoretically derived internal loss, «;, and dividing by the confinement
factor, I', we can plot the gain spectra, as shown in Figure 2-13(b). Using a gain simu-
lation written by Farhan Rana, we can compare the experimentally extracted gain with
our theoretical expectations (Figure 2-13(a)). We can compare expected carrier densities
by converting the current bias to carrier density using the assumption that steady-state,
sub-threshold carrier injection equals carrier recombination (See Equation 2.53. This cal-
culation assumes recombination coefficients of: 4 = 1 x 108571, B = 1 x 107 9¢m3s~!
C =1x10"%2cm8s~1. Note the shift in the gain peak and the difference in carrier density
by a factor of approximately three. Note also that the experimental curves do not converge
to g = 0 for higher wavelengths as does the theoretical curves. It is likely that there are
alternate sources of loss within the cavity that should account for the discrepancy between

the experiment and theory.

Experimental loss data from Casey et al. [20] on bulk p-type InP can be used to
compare with this value for a;. Since the doping concentration is different for various
waveguide layers, an effective «; can be found by weighting the different sections’ «; by
their respective confinement factor. Each section’s ¢; can be determined by interpolating
loss spectra from the data in {20]. Both sets of data are plotted in Figure 2-14, along
with the loss curve taken at 17mA bias. The x-axis has been converted from wavelength
to energy. The graph shows that the experimental data does not match well with the
theoretically calculated loss curves. As the energy decreases (wavelength increases) the loss
takes a steeper dependence as seen in the slope of the experimental loss curve. Also, the

loss is overall much greater.

It is possible that the sensitivity of the measurement falls off significantly in the range
of wavelengths that this should happen; this leads to error in the loss determination and

convergence may not show up. It is also apparent from Figure 2-12 that the loss does not
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Figure 2-13: Gain (g) spectrum from (a) theoretical simulation (b) Hakki-Paoli experimental ex-

traction. E.P.I. growth L = 320um, W = 3um. Theory: T = 300K. Experiment: T = 293.2K
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converge due to the unusually large wavelength dependence on the loss at high wavelengths.
Using this method, a value of ¢; should lie between a; = 20 — 30cm™!. This value is also
different from the o; that was measured using the method described in Section 2.4.1, which

measured a; = 11.2cm ™! (Dotted line in Figure 2-14).
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Figure 2-14: Theoretical loss curves and experimental loss, E.P.I. growth, L = 320um, W = 3um,
T =2932K, I = 17mA

The accuracy of this method is analyzed in [45]. Their analysis shows that lasers with
typical reflection coefficients may underestimate the gain curve as it falls away from the peak
gain. The measurement technique assumes a pure axial wave. However, there are transverse
k-vector modes that are captured by the measurement device since the spontaneous emission
light is not captured at a singularity. Their methods of correction for this involve shrinking
the collection device’s aperture size (using a single-mode fiber), or using a spatial mode

filter between the laser facet and the collection device aperture.



24. EXPERIMENTAL PARAMETERS 61

2.4.6 Recombination Coeflicients

The carrier lifetime is highly dependent on the carrier concentration, as shown in Equa-
tion 2.3. Equation 2.3 describes the carrier density dependency on the carrier lifetime under
the Boltzmann approximation (low carrier densities). As the carrier density increases, the
Boltzmann approximation breaks down and must be replaced by the full Fermi-Dirac distri-
bution function. This causes each term to take on a weaker dependency on N. For example,

the spontaneous emission rate can be approximated with a more complete polynomial fit

[11]:
Rsp = ByN® — B;-N (2.51)

Each of the other terms can similarly be expanded, including lower-order terms. When
summed together, an equation of the form of Equation 2.3 can still be used, except the
coefficients no longer stand for their original definitions. In essence, each new term of A,

B, and C contain dependencies from each recombination force.

Carrier Lifetime Determination through Gain

Several techniques exist for measuring the carrier lifetime, 7., in semiconductor lasers. The
most basic method is by using pump-probe techniques to directly measure the decay rate of
the carriers [65]. A curve fit can be performed on the decaying carrier density to determine
the recombination coeflicients. Another high-speed method involves measuring the turn-
on time between electrical step input and the corresponding optical output [12]. An all-
electrical method was developed by G.E. Shtengel et al. that employs an R-L-C modeling
of the laser [57]. The parameters for this model are determined by measuring the electronic
frequency response of the laser and fitting the parameters to the real and imaginary parts
of the frequency response.

For bias current levels well below threshold, the stimulated emission term, vggNp, can

be neglected in Equation 2.1. In steady-state, the carrier population does not change and
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the current is completely accounted for by carrier recombination:

dN mI N
—_—_ = — — = 0 M
dt qV 7 (2.52)

Replacing N/, with the individual recombination terms, we get:

ml N _ 4N + BN? 4+ CN? (2.53)
v

A method for determining N for a given current bias that does not require high-speed
methods is by referencing a peak gain vs. carrier density graph. Since we can find the
peak gain for a given current bias by examining the loss curves found in the previous
section, we can find the carrier density for that current bias through a g vs. N graph
(Figure 2-15). This methods was first performed by Ongstad et al. in 1998 [48]. The
g vs. N graph was theoretically calculated by Farhan Rana at different active region

temperatures. Negligible core heating was assumed, so a temperature of 300K was used for

all recombination calculations.
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Figure 2-15: Peak gain (g) versus carrier density (V) for different quantum well temperatures,
E.P.IL growth



2.4. EXPERIMENTAL PARAMETERS 63

Once a relationship between I (or J) and N is determined, a 3rd-degree polynomial
fit can be used to determine the values of 4, B, & C in Equation 2.3. Figure 2-16 shows
data for two different lasers of the same material. Note on the first data set (F00-Bin9)
the characteristic clamping of the threshold carrier density above 2200 mA/cm?. It also
shows various attempts to fit the data to different values of recombination coefficients. The
value of A is neglected, since this is an unimportant factor for high carrier densities. The
value for the recombination coefficient, B, was assumed to lie at approximately B = 10710,
Various values of the Auger coefficient and perturbations on B resulted in relatively poor
data fitting. As shown, the experimental data seem to fit a curve below threshold that
has a positive second derivative (bows upward) and therefore do not fit well to the theory.
Even with scanning through different values of A and B, there is no reconciliation with the

second derivative curving upward.
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Figure 2-16: Current Density (J) versus carrier density (V) theory and data, E.P.I. growth. A =
1.1x10%, B = 1x10~1°, T = 293.2K



64 CHAPTER 2. CHARACTERIZATION

Carrier Lifetime Determination through Spontaneous Emission

Another method developed by C.Y.J. Chu and H. Ghafouri-Shiraz looks at the spontaneous
emission power versus bias at low sub-threshold currents [10]. This method takes advantage
of the fact that at low carrier densities the Auger recombination term is very weak and

Equation 2.53 becomes:

niL N _ AN BN (2.54)

v 7
Also, the coefficients take on their low-carrier density definitions described in Section 2.2.
Also using Equation 2.9, a parameter fit can be made to this data to obtain values for A and
B. A value for C can also be found but the accuracy of this value for small carrier densities
is not reliable. Figure 2-17 shows a fit to the L-I curve at low biases. The theoretical curve
is shown for comparison and was derived from spontaneous emission calculations, and a
curve fit produces: A = 1.1x10%8s7! and B = 9.4x107 ' em3s™1. The unknown collection
efficiency, 7, of the diode is not easily determinable. Therefore, a range of values for 7, is
taken and curve fits for the recombination parameters is performed. The expected value
of B (which should be around 107 1%cm?®s~! for InGaAsP) is well-known and does not vary
greatly from composition to composition. A value of 7, is chosen such that the fitted B
parameter matches the expected value. The values for A and C are determined from this.
Figure 2-18 shows the various recombination parameters as a function of 7.. The values
derived from assuming B = 1.0x100cm3s 1 are: A = 1.0x10%957 L, C = 2.5x10~27embs™ 1.
Quoted values for C from [11] for bulk 1.55um InGaAsP is C ~ 7 — 9 x 107%em8s~!. The
experimentally-derived value is much higher than the expected value and it is unsure as to

the source of error.

2.5 Summary

The modelocked laser is 1.55um semiconductor multi-quantum well design with a polyimide

confined ridge waveguide. The various laser parameters were determined through a combi-
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Figure 2-17: L-I curve for biases well below threshold along with fitted parameters
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Figure 2-18: A, B, and C parameters as a function of 7., as fitted to L-I curve
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nation of theory and experiment. Despite the redundancy of parameters that the techniques
can be used for, each can be used as a check for an alternative method.

On the theoretical end, a suite of laser simulations written by Farhan Rana can be used
to determine gain spectra (g(A)), mode profiles, confinement factor (I'), group index (ng),
carrier-dependent gain (g(N)), and power versus current bias (P(I)).

Experimentally, by performing DC L-I characterization of different-length bars, we can
determine values of temperature- and length-independent internal loss («;) and internal
quantum efficiency (n;). Extensive use of sub-threshold optical spectrum techniques were
used to determine group index (n,) and gain spectrum (a(A), g(\), o).

Additionally, using a combination of theory and experiment allows us to predict carrier

recombination coefficients (A4, B, C) and hence, the carrier lifetime.



Chapter 3

Theory and Split-Step Simulations

In order to design higher performance modelocked diode lasers, it is necessary to gain a
better understanding of how they function and the parameters that govern their operation.
Work is done to improve various figures of merit, such as reducing pulse width, timing jitter,
increasing pulse energy, to name a few. A thorough theoretical model must be developed
in order to allow the designer to explore the different possibilities of laser design. This
chapter introduces a theoretical formalism developed by Agrawal et al. [2] for traveling
wave rate equations. The various pulse shaping mechanisms will be explained. Using this
formalism, we introduce a modelocked laser simulation originally developed by Helkey [27]
and Derickson [16] based on a partial space integration of the rate equations and a split-
step method of pulse propagation. The testing of the simulation will be explained. Results
from the simulation will be shown and a discussion on its limitations will follow. We will
find that the split-step method is informative and intuitive but its approximations limnit its

usefulness as a modelocked laser design tool.

3.1 Laser Parameters

This section uses direct results from Chapter 2. Unless otherwise noted, the parameters

used in the results from this section are listed in Table 3.1. All illustrative figures ex-

67
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Table 3.1: Laser Parameters

Parameter Symbol Value Unit
Carrier wavelength Ag 1.55 ©wm
Effective group index Ng 3.7
Facet reflectivity Ris 0.274
Confinement factor r 0.0482
Gain coefficient 90 1864 cm™!
Transparency Niy 1.82 x 101 em~—3
Ny unused cm ™3
Differential gain, (Gain sect.) Qgain 1.02 x 1071 ¢m?
Differential gain, (Sat absorber) Osq 512 x 1071 em?
Internal quantum efficiency 1; 0.77
Internal loss «; 11.2 em~ !
Trap recombination coeflicient A 0 st
Bimolecular recombination coefficient B 1x 10710 em3s~!
Auger recombination coeflicient C 1x10728 embs!
Saturable absorber lifetime TSA unused s
Linewidth enhancement factor (Gain sect.) ag 2
Linewidth enhancement factor (Sat. Abs.) «aga 2
Gain bandwidth factor to 5 x 10~13 s
Dispersion P2 gpt% em?s~1
Active region thickness d 42 nm
Ridge width W 1.5 um
Length of active section Loet 100 pum
Length of saturable absorber Lgq 80 wm
Length of gain region Lgain 3500 pm

cept Figures 3-6, 3-7, 3-10,and 3-14 were created using the split-step method discussed in

Section 3.4.1 using one laser segment, unless otherwise noted.

3.2

Traveling Wave Rate Equations

A simple formalism for the photon and carrier density rates has been developed by Bowers

et al. [5] that follow from the equations discussed in Section 2.2. These equations simply
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take the photon density and introduce a spatial derivative to account for wave propagation.

95t (2,1) , | 0S*(z1)

g Vg = vg(Cgp — )5S T (2,t) + I'BspRap (3.1)
3.1
05 (2,1 05~ (2,1 -
(20 95 0 iry,  a)s(,0) + TRy
ON(z,t Jd N -
2D B X t(5 (5 0) + 5 (2,0) (52)

where the group velocity, vy, is given in Equation 2.11 and the peak gain, g,, and carrier

lifetime, 7, are carrier density dependent. 7, follows Equation 2.3 while the peak gain follows

gp(N)=goln( N+NS)

—_— 3.3
Ntr+Ns ( )

go, Ns and Ny, are fitting parameters for the g, vs. N dependency [11]. The peak gain
is defined more thoroughly in Section 3.3.2. Ny, the transparency carrier density, has a
physical meaning when N = N,;.. In this case the gain, g, equals zero and the gain is
transparent to the propagating wave. All variables are as described in 2.2 except now S+

and S~ represent the forward- and reverse-propagating photon densities [cm~3].

Two traveling photon density equations are needed to account for densities traveling in
the +/ — z directions. These equations account for many pulse shaping effects that will
be introduced in this chapter, but fail to take in account any effects on the phase of the
electromagnetic photon field such as self-phase modulation or dispersion. The mirror loss,
G, 18 left out of these equations, and is left as boundary conditions when a solution to

these equations is needed.

The formalism developed by Agrawal and Olsson [2] deals with propagating electric
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fields and therefore, can include phase effects:

1 OFE*(2,1) N OE*(z,1)

Vg ot Oz
Fg (873 1 (92
(1 - g)BE(2,) = TEE,0) + 5 (Topth — 982) 57 B4 (a0) (34)
ON(z,t i N r _
_(_z>_):77___,__92_]E+(z7t)+E (2,1)[2 (3.5)

ot gV 1. hvuv,

where E* are the forward- and reverse-propagating electric fields [V/em], « is the linewidth
enhancement factor (typically 2-5 in semiconductor lasers), 5 is the gain bandwidth param-
eter [s], (2 is the dispersion parameter [s?/cm], hv is the energy quantum per photon [J],
and p is the magnetic permittivity [Q2s/em]. Spontaneous emission rates are neglected in
these equations. This is a good approximation since the pulse power is much greater than
the spontaneous emission term. The real terms correspond to gain and attenuation rates of
the propagating pulse and the imaginary terms correspond to phase changes. The factor of
1/2 accounts for the fact that the photon density and hence the wave power is proportional
to the square of the electric field. We can normalize the electric field, E*, into AT so that
|A%(z,1)|? = P(z,t), where P(z,t) is the power at a given point in the pulse. Rewriting

the equations gives us [2]:

1 0A%(z,t)  0A*(z, t)

— +

Vg ot 0z
Tg,

(84 1 82
T(l - ja)Ai(Z,t) - EAi(Z,t) + §(qut% et ]ﬁg)wAi(Z, t) (36)

ON(z,t) ml N gy

+ - 2
S = 5wl A )+ ATz (3.7)
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using the fact that

r

S+(Z,t) + S~(Z,t) ~= m|A+
g

(z,t) + A™ (2, 1) (3.8)

where W is the laser width [em] and d is the quantum well thickness [cm]. The equation
is approximate because the photon density cannot account for wave interference effects as
can the right-hand side. Each term in the field rate equations shapes the pulse: either by
gain/attenuation or phase changes. The next section discusses these pulse-shaping mecha-

nisms.

3.3 Pulse-Shaping Mechanisms

The pulse-shaping mechanisms in Equation 3.6 can be explained individually by analyzing
the dependence of each rate. The first term, I‘gp%Ai(z, t), is the gain/loss saturation term;
the second, —]ang%Ai(z,t), is the self-phase modulation term; the third, —ai%Ai(z,t),
is the internal loss; the fourth, t%l‘gp%ggAi(z,t), is the gain bandwidth term; the fifth,
—Jﬁz%%Ai(z, t), is dispersion. These terms can be categorized into non-linear and linear

effects, and are described in the following sections.

3.3.1 Non-linear Effects

Since the gain term is also carrier density dependent and the change in the carrier density
is coupled to the traveling field equations, each term that includes gain is non-linear. The

most important pulse shaping mechanism is gain and loss saturation.

Gain/Loss Saturation

The gain/loss saturation term deals with gain due to stimulated emission of carriers where
gp follows Equation 3.3. In a quantum well without significant photon density, the last term

in Equation 3.7 is negligible and in steady state the first two rate terms on the right hand
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side balance each other.

I Ngs

qV— Te

(3.9)

where Ngs is the steady-state carrier density without significant photon density. In a gain
medium, the steady-state gain, gggs, is positive. When a pulse travels through this medium,
the pulse is amplified through stimulated emission, which causes the carrier density to drop
through this previously neglected last term in Equation 3.7. As the carrier density drops,
the gain also decreases, meaning less stimulated emission. As the pulse travels through the
gain region, more and more carriers recombine through stimulated emission and the gain
continues to drop. The result of this is a greater amplification in the front edge of the pulse
(when the gain is highest) and the least amount in the trailing edge. If the pulse energy
is sufficiently high, the gain will approach zero as the carrier density reaches transparency
(N = Ny ) and the trailing edge will pass through unaffected by the gain.

In a saturable absorber, the carriers are swept out of the quantum wells by reverse biasing
the diode. The carrier sweep out time can be described by a lifetime that is different from
a forward-biased laser diode. Karin et al. develop a model that describes the relationship
between the carrier lifetime and the reverse bias voltage [34, 60]. Instead of injecting
carriers to improve the stimulated emission rate, the carrier density is reduced well below
transparency level so that photons will be absorbed at a higher rate. Hence, the steady-state
gain becomes negative. As a laser pulse passes through the saturable absorber, the photons
are absorbed by the valence electrons, creating free carriers. As the pulse is absorbed,
the absorption magnitude is reduced, approaching zero. As a result, the leading edge is
attenuated more than the trailing edge.

Figure 3-1 shows examples of gain and absorption saturation. Note the broadening of
the full width at half maximum (FWHM) pulse width in (a) and the narrowing of the
FWHM pulse width in (b). Note also that the pulse center-of-mass drifts earlier in time in
(a) and lags behind in (b). Typically, in a two-section passively modelocked laser (Figure 1-

8), the gain section broadens the pulse while the absorber section narrows the pulse. The
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gain section also has the effect of "pushing” the pulse ahead of its group velocity while the
absorber section "drags” the pulse slower than its group velocity. It is not intuitive that the
gain and absorber saturation effect balance such that a modelocked pulse reaches a steady-
state in which these non-linear effects exactly cancel each other in a single round-trip. In
terms of pulse shaping, if the net round-trip effect is narrowing, there needs to be other
pulse broadening mechanisms to prevent the pulse from narrowing to a delta function. If
the net effect is pulse broadening, then the pulse will eventually vanish and the conditions
for modelocking are not met. The dominant pulse broadening effect that allows for a finite
FWHM pulse is gain bandwidth (see Section 3.3.2). In terms of pulse ”walking”, the net
effect is a speeding up or slowing down of the group velocity. This is an interesting result

of gain/loss saturation that changes the true round trip frequency of the laser.

25

—— Absorbed puise |1
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Figure 3-1: Examples of (a) gain and (b) absorption saturation effects. Lgsin = Lsa = 50um,
Igain = 4mA, Gsa = —'9539C7n_1

Figure 3-2 shows the pulse center-of-mass drifting earlier in time as it propagates through
a gain medium. Note the pulse energy growing as well as the drift effect. Note also that for
small pulse energies (darker pulse lines) the gain sees little saturation effect (the entire pulses

is amplified uniformly resulting in no FWHM broadening). For large energies (lighter pulse
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lines), only the front part of the pulse sees amplification while the trailing edge follows the
original pulse envelope. The opposite effect occurs for absorption regions; the pulse tends

to lag in time due to the front end of the pulse becoming attenuated.

Time [ps]

Figure 3-2: Example of pulse drifting due to gain saturation; pulse evolves with lighter pulse color.
Each pulse represents one round-trip propagation from the previous. ¢ = 0 follows the propagation
at the pulse’s group velocity. a = 0, Lgqain = 50um, Ijain = 3mA :

In a passively modelocked laser, the dominant pulse shaping mechanisms are gain and
absorption saturation. In order to see the conditions necessary to produce modelocking, it
is necessary to show the evolution of a pulse through a two-section passively modelocked
laser. Figure 3-3(a) shows the evolution of a pulse through the different mediums. The top
picture shows the original pulse; each subsequent picture shows the evolution of the pulse
through the different regions: the gain region, absorption region, and a mirror reflection,
respectively. In the second to fourth plots the left axis and solid line correspond to the pulse
power profile, the right axis and dotted line correspond to the shaping potential, which is
essentially the ratio of the shaped pulse power proﬁle to the input pulse power profile. Each
shaping potential is multiplied with the pulse directly above to create the respective pulses.

The second picture shows gain saturation through a gain medium. Note the increase
in pulse energy. The shaping potential starts out at early times (from —10ps) at the
unsaturated gain value (where N = Ngg). As the pulse propagates through the gain

medium, the gain is reduced and approaches zero (transparency), as shown as a decreasing
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shaping potential with increasing time. The output trailing edge follows the original trailing

edge shape.

The third picture shows absorption saturation through an absorber region. Note the
front end of the pulse is attenuated. The shaping potential begins at its unsaturated ab-
sorption value (a fraction) and then saturates towards transparency, similarly to the gain
region’s shaping potential. Note also that the peak pulse power remains the same, unlike in
the gain region. This occurs because the number of carriers it takes to reach transparency
in the absorber region is smaller than in the gain region. This corresponds to a smaller
pulse energy requirement to saturate the section (i.e. bring the gain to zero). This figure
demonstrates the lower saturation energy (Fs,;) for the absorber region. This is a crucial

effect in modelocked lasers.

The fourth picture shows mirror reflectivity. The value of the power reflectivity is 0.2744,
calculated from a group index of ny, = 3.2 to air. Note the uniform shaping potential and

the drop in pulse energy.

Figure 3-3(b) shows the pulse power profiles at each stage, on the same axis and scale,
for comparison purposes. The pulse evolves with increasingly lighter pulse line colors (from
black to light gray). The pulse energy increases significantly through the gain region but de-
creases marginally through the absorber region, demonstrating the higher saturation energy

of the gain region. The saturation energy’s importance is demonstrated in Figure 3-3(c).

Figure 3-3(c) shows the total shaping potential of the pulse through the three regions.
The three shaping potentials were multiplied together to create the overall shaping potential.
At early times, the potential is just the multiplication of the three unsaturated gains. Since
the absorber saturates faster (due to a lower FEs,;), the total potential begins to see more
gain than loss and the potential rises during the early part of the pulse. As the gain region
slowly saturates, the overall potential is reduced. This produces a bell-shaped potential.
It is necessary that the shaping potential has a gain lower than one at both tails and rises
above one in the center. This shape attenuates the tails of the pulse and allows the peak

to grow, thus narrowing the pulse and simultaneously allowing the pulse to maintain a
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constant energy. Without another force to balance this pulse-narrowing effect, the pulse
would narrow without bound. A separate pulse-broadening effect is necessary to reach a
steady-state. The dominant pulse-broadening effect is through finite gain bandwidth and
secondarily through dispersion coupled with self-phase modulation. (See Section 3.3.2). If
the gain were above one at the tails, it would not be possible to reach a steady-state pulse.
The gain would cause the tails of the pulse to grow regardless of shape, thus broadening
the pulse continuously. This corresponds to a continuous wave (CW) lasing case. Hence,
there is a regime of operation in a modelocked laser that corresponds to modelocking and

also CW operation.

Self-Phase Modulation

The self-phase modulation term differs from the gain saturation term only by a factor of —ja.
The imaginary term describes the effect that the change in gain has on the instantaneous
index of the material. As the index changes, the instantaneous frequency deviates from the

actual carrier frequency. The linewidth enhancement factor, «, is defined as

dn
— dN
dN

where £y is the wave number of the carrier frequency in free space and 7 is the effective
index. The phase velocity is inversely proportional to the index. As a pulse passes through
a gain section in the laser, the carrier density (and hence the gain) goes down as carriers are
utilized in stimulated emission. By the Equation 3.10 and 3.6, this means that the index
goes up as the gain goes down. As the index increases while the pulse passes through the
gain region, the phase velocity decreases. This causes the phase of the pulse to "lag” from
the leading edge phase, essentially causing the sinusoidal electromagnetic waves to "stretch
out”, producing a momentarily negative instantaneous frequency. As the gain saturates,
the gain and index become constant again, and the phase becomes constant. This causes

the instantaneous frequency to revert back to zero. The exact opposite effect happens in an



3.3. PULSE-SHAPING MECHANISMS

Le
°
1
¢
@
!
n
)

- N W
T

;
-10 -8 -8 -4 -2 [

4 ] 8 10
Time [ps]
(a)
T T T T
8 4
§4 i 1
&2 4
0 1 ] 1 1 1
-10 -8 -8 -4 8 8 10
(b)
E 2 T T T T
&15F b
o
.4
S —_—
&
gosf §
=S P
@ o L 1 1. ] 1 i 1 1 1
-~10 -8 -8 -4 -2 0 2 4 8 8 10
Time [ps}
(©)

Figure 3-3: (a) Pulse evolution with shaping potentials. Each evolved pulse is shown with the
shaping potential used to create it from the previous pulse (directly above). Top picture is the

7

original pulse. The following pictures show evolution due to gain saturation, absorption saturation,

and mirror reflection, respectively. (b) Pulses on an absolute scale (pulse evolves with lighter pulse

color). (c) Total shaping potential, including unity line. Ljain = Lsa = 50pm, Ijain = 6mA,gsa =

~1.244 x 10%cm~l,a =0
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absorber region, where the gain increases as the pulse passes through the laser region. This
causes the index to decrease, thus causing a "bunching up” of the electromagnetic waves
and an increase to the instantaneous frequency. Figure 3-4 shows chirping effects in both
gain and absorption regions. By itself, self-phase modulation is not responsible for any pulse
shaping since it only affects the phase of the pulse. However, coupled with other effects
such as dispersion, where different frequencies propagate at different velocities, self-phase
modulation can produce significant pulse shaping. If the linewidth enhancement factor is
large enough, the change in the phase from the leading edge to the trailing edge becomes
larger and the pulse’s spectrum spreads from its ideal transform-limited state. This spread
in the spectrum could be great enough to allow dispersive effects to greatly affect the pulse
shape. In an extreme case, multiple pulses can form as the cavity dispersion spreads the

pulse energy in time.
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Figure 3-4: Self-phase modulation effects due to linewidth enhancement factor. o = 2. Graphs
shown are Power (P), Carrier density (), index (n), instantaneous frequency (f). Lgain = Lsa =
50um, Ipgin = 4mA, gso = ~9539cm ™1
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Active Gain Modulation

Active gain modulation can essentially be accounted for by varying the injection current, I,
in time. Typically, this current is modulated sinusoidally, however sharper peaked functions
have been generated using other methods, such as step recovery diodes [46] or nonlinear
transmission lines [51]. As the injection current is modulated, it is expected that the carrier
density and hence, the gain of the active section is also modulated. If the repetition rate
of the modulation is slow, then the current can be treated as quasi-static and a linear
proportionality can be found between the current and carrier density. However, for fast
modulation (well above 1 GHz), this is not the case, since the injection modulation is

dampened by the other recombination rates within the carrier rate equation (Equation 3.7).

If the gain is modulated at the round-trip frequency of a traveling pulse within the
resonant cavity, then one can see that the pulse will tend to arrive in the active modulation
section at the peak of the time-dependent gain function. If the pulse arrives ahead of the
peak, the gain function at that point will be increasing in time, and more pulse amplification
will be given to the trailing edge, thus pulling the pulse backward in time. If the pulse arrives
in the active section behind the gain peak, the gain will be decreasing in time and preference
will be given to the growth of the pulse’s leading edge, thus pulling the pulse forward in
time. Essentially, the time-dependent gain function serves to corral the pulse into the gain
peak.

It was mentioned that a DC gain region in a modelocked laser can increase the group
velocity of the pulse by pushing it forward in time, hence it will arrive in the active section
always ahead of the gain peak. The AC modulation in an active section will attempt to
pull the early pulse backward; the pulling force getting increasingly stronger the earlier
the pulse. Eventually, a balance of the two forces is reached and the pulse will appear in
the active region slightly ahead of the gain peak but always propagates at the modulation
frequency of the radio frequency (RF) current modulation. This can be seen in Figure 3-5.
Each pulse profile represents a pulse zero-centered at the modulation period. In the passive

case, the pulse does not arrive exactly at the modulation period, rather it drifts linearly. In
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the active case, the pulse initially drifts from the center of the gain peak (always centered
at t = 0) until it settles slightly ahead of the gain peak (negative time). This phenomenon,
known as dynamic detuning [47], can serve as a supplementary pulse shaping force since

the pulse is effectively ”pushed” against the wall of the gain function.
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Figure 3-5: Examples of (a) pulse drifting due to dominant gain saturation in a 2-section passively
modelocked laser and (b) pulse drift cancelling in a 2-section active modelocked laser. Lgy = Lot =
80um, Lgain = 3500[.1.771, wnp = Q(I':Ttigm’ Igm’n = 63mA,gsa = —18640’1’7’171, IRF = SmA,
Gact = —9159¢m 1

3.3.2 Linear Effects
Gain Bandwidth

Gain is dependent on carrier density, temperature, and wavelength. Figure 3-6 shows typ-
ical gain curves for the UCSB laser at 300K and several carrier densities. The data was
generated by a theoretical gain spectrum calculator written by Farhan Rana. Since the
energy within a modelocked laser is typically small, a core temperature near room temper-

ature is suitable. The unsaturated carrier density is determined by the current bias and
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recombination times of the laser. It is expected that the fundamental lasing frequency lies
at the peak of this gain curve. The frequency pulse-train of a modelocked laser should have
an envelope that spans only a small fraction of the gain curve, near the peak. Therefore, in
order to provide a simple model to allow for gain bandwidth effects, a second-order fit to

the gain curve at the peak can be made. The equation to be fit is:

g(w) = gp(N) [1 — t%(w - wo)z] (3.11)

where g(w) is the frequency-dependent gain [em™!], g, is the peak unsaturated gain of the
laser [em™!'] defined in Equation 3.3, ¢, is the optical bandwidth parameter [s], and wy is
the gain peak’s center frequency. Figure 3-7 shows how the fit is performed. The spectrum

of a pulse envelope, /i(w) will be filtered by the gain curve as:
Agu(w) = Ain(w)e™ 3T 90T (3.12)

where A;, (w) is the Fourier transform of the input pulse envelope [W], A;ut(w) is the Fourier
transform of the output pulse envelope [W], and L is the length of the propagation through
the material [em)].

An analytic 1ps Gaussian pulse has a standard deviation width in frequency of 1/1ps =
1T Hz. It can be seen that this pulse only has a spectrum that spans a small portion of the
gain curve. As the pulse gets narrower through gain/absorption saturation, the spectrum
becomes broader. The gain bandwidth has the effect of "shedding” the side frequencies of
a pulse train and is illustrated in Figure 3-8. The gain bandwidth narrows the spectrum,
~ thus broadening the pulse, and is the primary balancing force that allows a pulse to reach

a steady state.

Dispersion

Material dispersion accounts for the relative difference in phase velocities of different fre-

quencies. A linear dependence of phase on the frequency results in a time delay but a
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Figure 3-6: Gain vs. wavelength at 300K and several carrier densities
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Figure 3-7: Determination of g, wo and t2. The fit is second-order.
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Figure 3-8: Example of pulse broadening due to finite gain bandwidth. (a) shows the input pulse
and the broadened pulse. (b) shows the input and broadened spectrum. (c) shows the magnitude
of the filter. ¢, = 1 x 107133, g, = 2 x 10*cm™?, L = 50um The gain was increased for illustrative
purposes.
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second-order frequency dependence results in relative velocity differences between frequen-
cies. The material dispersion parameter, 82, measures the strength of this dependence.
Figure 3-9 illustrates the effect of dispersion on an unchirped Gaussian pulse. A typical

approximate of the dispersion parameter is
Ba = Tgypts (3.13)
Similarly to the filtering performed by the gain bandwidth parameter:
Agut(w) = A (w)e 72 P2L (3.14)

where the imaginary number implies a phase-filtering effect.

3.4 Simulations

There are many methods that have been developed to simulate modelocking. The most
straight-forward method is to solve Equations 3.6 and 3.7 using finite difference methods
(6, 67]. These methods discretize the time and space derivatives and solve them using
differential approximations. Typically, the relationship between dt and dz is known through

the group velocity:

dz

Therefore, it is possible just to solve a finite difference problem ugng the total time derivative

dS*t 95T 08t SE(t+4 Atz + Az) — SE(t, 2)

- ot Ve, ° At

(3.16)

We obtain the space dependence through the group velocity. Jones et al. improve on the
finite difference method by approximating the finite band width of the gain function using

a non-parabolic frequency dependence that results in a first-derivative in space [31]. This
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method is discussed in Chapter 4.

3.4.1 Split-step method

The method explored in this chapter deals with a computationally efficient method that in-
volves passing a pulse through a partially-integrated space segment followed by a frequency-
domain filtering. The partial integration was developed by Helkey et al. [27, 28] for use with
the traveling photon density rate shown in Equations 3.1 and 3.2. The additional frequency-
domain filtering was initially developed by Agrawal [1]. The implementation presented here
follows Derickson and uses traveling field equations developed by Agrawal [2].

The method’s approach is to split a laser cavity into discrete sections in space. A
pulse in the time domain is passed through each discrete section, allowing the traveling
wave rate equations to shape the pulse as it propagates from one edge to the other. In
order to perform an efficient propagation of the pulse, the split-step method groups the
non-linear and linear terms into two groups, first performing a non-linear shaping followed
by a linear-term filtering. An analytic integration of the non-linear terms in the traveling
wave equations (Equation 3.6) can be performed using justifiable approximations [2]. The
remnant linear terms can be represented as a frequency-domain filter.

The major approximations to Equation 3.6 are listed below:

1. A linear carrier density dependency on the gain:
g(N) = a(N - Ny) (3.17)

where a is the differential gain [em?]. The value of ¢ can approximated as the slope
of the logarithmic g vs. N at a given N. It is necessary to realize that the differential
gain is higher for a saturable absorber region than for a gain region, therefore two
values of a are necessary to describe the two different regions. This can be seen by
comparing the slopes at a carrier density below and above Ny, in a typical g vs. N

graph (Figure 2-15). This again implies that it is easier to reach transparency for a
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saturable absorber region rather than a gain region for a given absolute gain/loss.

2. Small internal loss (o;). Internal loss is approximated as zero in the derivation of the
partial integration. This is valid if I'g >> «;, which is true when the carrier density
is much higher than transparency. For a short, monolithic modelocked laser, this is
achieved only with sufficiently high bias currents. The high bias current can replenish

the carrier density well above transparency before the circulating pulse returns.

3. The pulse is much shorter than the carrier recombination time. This allows the gain
saturation effects to occur while being able to neglect the carriers refreshing to its
steady state value while the entire pulse passes through a section of the semiconductor.
This is a valid approximation since a typical pulse width is 1 — 10ps while the carrier
lifetime is on the order of ns. This assumption becomes less reasonable when the
carrier lifetime is enhanced within a saturable absorber section. Karin et al. find

typical lifetimes within a saturable absorber to be 5 — 50ps [34].

Non-linear Effects Step

In order to obtain the analytic partially integrated solutions found in [2], we neglect disper-
sion and a frequency-dependent gain. Following the forward traveling pulse as it propagates

at the group velocity gives us:

dA 184 8A Ty

-
— = = (1 - ja)A - =2 .
dz vg Ot + Oz 2( s2) 2A (3.18)

Stating explicitly the relationship between the normalized field, A, and the power, P:

A(z,t) = /P(z, t)e??Eb (3.19)
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allowing us to break the preceding equation into a magnitude and phase part:

dP

- = Tg— )P ~TgP (3-20)
dp 1

- __al 3.
— 5oL (3.21)

Here we make the assumption that the internal loss is smaller than the gain. For a given

length, L, we propagate the pulse, thus integrating these equations from 0 to L. This leads

to:
Pout(r) = Pin(7)e"” (3.22)
Gout(T) = Pin(T) — %ah(’r) (3.23)
where
T=1-— g (3.24)

so that we can follow the pulse as it propagates at the group velocity and

L
h(r) =T /O g(z7)dz (3.25)

We have defined P,y = P(L) and F;, = P(0) to represent the end and beginning points of
the section of length L.

We now analyze Equation 3.7. Immediately before the pulse passes through the length
L section, we can make the assumption that the carrier density has refreshed itself to the
steady state value where there is a lack of photon density. Algebraically, this amounts to
setting A to zero to solve the steady state carrier density:
niI _ Nss 772']

= Ngg = —= 71 2
v p = qVT (3.26)

where N, represents the steady state carrier density, similar to Equation 3.9. This repre-
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sents the unsaturated carrier density before the pulse propagates through the section. Using

Equation 3.17, we obtain the unsaturated gain, gss:

Gss — a(Nss - Ntr) (327)

Using Equations 3.7, 3.17, and 3.27 we obtain

69 gss — g P
ke S — 3.2
or Te gEsatA ( 8)
where
hvWd
| — .
i = 2 (3.29)

The saturation energy, Fq, is a measure of the amount of pulse energy it takes to saturate
the gain. We integrate Equation 3.28 from z = [0, L] and multiply by the confinement

factor, using Equations 3.25,3.20 to arrive at

%:ngsL—h_ P (eh—l)

3.30
BT Te Esat ( )

The first term on the right-hand side represents the rate at which the integrated gain
attempts to return to its steady state, unsaturated value. The second term represents the
saturation of the integrated gain due to photons traveling through the section. Solving for

Equation 3.30 gives us

_Uip(m)
h(r) = —1In (1 — e Psat ) (3.31)
where
T
Uin(7) = P ("Ydr' (3.32)
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and 7 is solved by recognizing the unsaturated integrated gain, h(—o0):
h(—o0) =TgssL = —In(1 - ) (3.33)

SO

1

—TgssL =1-—
Go

y=1-c¢ (3.34)

where we have made the definition
Gy = b9 (3.35)

finally, we can write explicitly the closed form relationship between the input and output

power and phase of a traveling pulse through a section of length L:

Pos(7) = Fin(7) (3.36)
N T
Pout(T) = pin(T) + g—ln [1 - (1 - Gio) exp (—Ué—”i?)] (3.37)

These two equations allow us to relate the output and input pulses via the effects of gain/loss

saturation and self-phase modulation.

Linear Effects Step

In order to account for the gain bandwidth and dispersion, we combine Equations 3.12,3.14

to obtain

Aout(T) = }—_1 l:/im(w) exp (‘—Ft#wz) exp <~ﬁ23_L_w2)] (338)
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where F~1 represents the inverse Fourier transform operator.

Algorithm

The split-step algorithm first requires a splitting of the laser structure into several sections.
The initial pulse is represented in the time domain, as a function of 7, so that the time
window can follow the pulse. As the pulse travels through each section, we first shape the
pulse using Equations 3.36 and 3.37 in the time domain. Next, the pulse is shaped in the
frequency domain via Equation 3.38. Then the pulse passes to the next section and the
process repeats. Code in Matlab can be found in Appendix A. Figure 3-10 illustrates the
simulation model. If an end facet mirror is reached, the pulse bounces back and travels
through each section in reverse order. It is useful to examine the shape of the pulse after
each round-trip consisting of one forward traversal along the entire laser cavity length and
one full reverse traversal. The initial pulse guess will continue to be shaped after each
round-trip until it reaches a steady-state solution after several round-trips through the
modelocked laser. Figure 3-11 shows a snapshot of the pulse at each round-trip. The laser
used in this illustration is two-section and contains a passive section and a gain section.
Note the steady-state pulse width and energy after several round-trips. Note also the pulse
drifting towards earlier times even after a steady-state shape is reached. This is due to
the dominance of the gain saturation effect pulling the pulse forward, faster than its group
velocity. This happens because the front of the pulse is amplified while the trailing edge
isn’t, hence the pulse center-of-mass is dragged forward, as described in Section 3.3.1.

The major difference between a gain section and a saturable absorber section is that
N > Ny, for the gain region and N < N, for the absorber region. This implies that the
initial unsaturated gain, g,s, and the differential gain, o will be different for each section.
For a gain section, g;; > 0; for the saturable absorber, g;; < 0. The a in the saturable
absorber is bigger than the a in the gain section (See Figure 2-15). In addition, no frequency
filtering is performed in saturable absorber regions since the gain curve is quite flat for low

carrier densities (See Figure 3-6).
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Figure 3-10: Explanation of split-step method

Actively modelocked sections need to be handled outside the regime of the analytic
equations. Since the gain is time-dependent, there is no closed form solution to the re-
lationship between the input and output pulse power. One approximation that can be
made is to disregard the non-linear gain saturation effects and treat the gain as indepen-
dent of the photon density. We can use Equation 3.26 to find the carrier density from the
time-dependent current. Any arbitrary periodic current function can be used. Typically,
a sinusoid is used but more sharply peaked functions can be substituted. Of course, the
higher the frequency components of the current function are, the worse an approximation
this turns out to be, since Equation 3.26 approximate a quasi-static solution. In addition to
this, dispersion and gain bandwidth cannot be implemented since the gain is not constant

as the pulse passes through the actively modulated section.

The more sections the laser is broken down into, the shorter each section will be and
hence, the more accurate the solution will be. A simple convergence test is to show that

the steady state pulse width and energy converge asymptotically to a single value as the
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Figure 3-11: Pulse evolution from split-step simulation. Pulse evolves dark to light pulse lines.
Iggin = 63mA, gsa = —7776e¢m L. The saturable absorber was split into 4 sections of 20um each;
the gain section was split into 35 sections of 100um each.
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number of sections increases. This is shown in [28, 16].

3.4.2 Simulation Validity

In order to trust the results of any computer simulation, it is necessary to test its validity by
examining simple cases where the simulation results can be checked with analytical results.

This section explores the validity of the computer simulation in a collection of limiting cases.

Initial Condition-Independent Steady State

This simulation method uses an initial pulse guess, typically Gaussian, to seed the pulse
shaping mechanisms. The user can define the initial pulse height [J] and pulse width [ps].
It is necessary to show that the steady-state pulse solution is independent of the initial
guess. Figure 3-12 shows the pulse width and height evolution of several initial guesses.
In Figure 3-12(a)&(b), the initial pulse energy is varied. In Figure 3-12(c)&(d), the initial

pulse width is varied. In all cases, the steady-state pulse width and energy end up the same.

Gain Bandwidth and Dispersion

Two limiting cases are to test the effects of gain bandwidth and dispersion. This can be
accomplished by turning off all effects save the one in question and examining how a pulse
evolves through a given length of semiconductor.

Analytic expressions can be obtained that show the effects of, separately, gain bandwidth
and dispersion for an unchirped Gaussian pulse input. Assuming an unchirped Gaussian
pulse input, analytical expressions showing the effects of gain bandwidth and dispersion

filtering can be derived.

First, we assume an unchirped Gaussian pulse input:

2
Am(t) = Ae™ 27 (3.39)
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Figure 3-12: Pulse width [(a)&(c)] and pulse energy [(b)&(d)] evolution. (a)&(b) vary the initial
pulse energy. (c)&(d) vary the initial pulse width. In all cases, the steady-state pulse width is 4.1ps,
pulse energy is 1.1p.J. Laser parameters are the same as in Figure 3-11.
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which has a Fourier frequency representation of

-~ w202
Aip(w) = AV2ro2e™ 2 (3.40)
We can use the filter:
- . w2c?
Aout(w) = Ap(w)e™ 2~ (3.41)

to represent the effects of gain bandwidth on the pulse, where
G? = #3g,L (3.42)
The resulting filtered pulse in the frequency-domain is:
- w2
Agui(w) = AM\/2n(02 + G2)e~ T (7*+G?) (3.43)
where
2
/| o
M=4——— .
o2+ G? (3-44)
The filtered pulse in the time-domain is:
— t2
Apyt(t) = AMe 2%+6%) (3.45)

and is still Gaussian. This shows that the Gaussian pulse is attenuated by M and widened

from o to vVo? + G2.

A similar analysis can be performed for dispersion, where the filtering function is

_ - W2p2

Aput (W) = Ain(w)e™1% (3.46)
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where
D*= 4L (3.47)

The filtered pulse in the time-domain also remains Gaussian:

Aout(t) = ANe 20%+iD%) (3.48)
where
2
o
N=,|———— .
0%+ jD? (349)

The dispersed pulse is attenuated by |N| and widened to |2 + jD?|V/2.

Figure 3-13 shows a comparison of the split-step simulation frequency filtering (due to
finite gain bandwidth and dispersion) to the analytical expressions. An unchirped Gaussian
envelope was used as the input to both cases. In both cases the simulation exactly matches
the analytic expressions in magnitude and only a small phase discrepancy occurs in the far
tails of the Gaussian output. This is due to the very small magnitude of the pulse envelope
at the edges of the window, contributing to error since the phase is determined by a ratio
of real to imaginary portions. This has no effect on the pulse shaping, and the figures

demonstrate the validity of the simulation in regards to gain bandwidth and dispersion.

Active Modulation

The split-step method using active modulation can be checked against an analytical model.
A simple analytical model was developed by Siegman [58] and also Haus [23]. The formalism
used in this thesis is found in [61]. The analytical model used here takes in consideration
only active modulation, gain/loss, and finite gain bandwidth. It turns off any non-linear
effect as well as dispersion. It linearizes the non-linearity of the active modulation by

assuming a small-signal perturbation due to the short width of the pulse compared to the
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Figure 3-13: Comparison between analytic solution and simulation with (a) gain bandwidth only
(b) dispersion only unchirped Gaussian Pulse input, t2 = 0.1ps, 82 = 103ps®*m™1, L = 10um,
gp = 5 x 10%em ™! (illustrative purposes)

width of the modulation period.
Assuming a ring cavity as shown in Figure 3-14, a pulse with power profile vy, (t) propa-
gates through the ring, where the subscript is the m-th pass through the cavity. Assuming

a gain, g, and loss, «, for the respective sections, the next pass, m + 1, should resemble
Umt1(t) = edl=ely (1) = (1 + gL — ad)vpm(t) (3.50)

if the exponent is sufficiently small enough.
We can now analytically write the various effects of each of the various sections on the
pulse.

Expanding g to include finite gain bandwidth (as in Figure 3-7),
2 2 , d?
g(w) = go[l — t5(w — wo)“] = g(t) = g0 (1 + tQE) (3.51)

using the inverse Fourier transform of the frequency-domain representation to obtain a
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time-domain representation.

The loss section is modulated sinusoidally at a frequency, wys, which is the round-trip

frequency of a pulse traveling in the ring cavity.
a = o[l + 2M (1 — coswpt)] = ap(l + Mw?,t?) (3.52)

assuming the pulse passes through the loss section in a very short time interval around the
minimum loss point (¢ = 0). At steady-state, this is a good assumption since the pulse will

prefer to exist when the loss is least.

At steady-state, the m + 1th pass should equal the mth pass:

2
Va1 () = v (t) = {1 + goL (1 + t%%) — ogl(1 + Mw?wtz‘)] O () (3.53)

which reduces to
d?
[(goL — opl) + goLtga—t—Q - aole]thz} v(t) =0 (3.54)

The solutions to this differential equation are Hermite Gaussians, whose lowest order solu-

tion is:
U (t) = Vg exp (—t2/213) (3.55)
where
(9oL ~ apl)? = aplgoLt2ws M (3.56)
and
to goL3 (3.57)

goL — apl
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Pulse evolutions using the split-step simulation can match the analytical solutions by
turning off gain/loss saturation, self-phase modulation, and dispersion forces. Figure 3-15
shows pulse evolutions of three different initial Gaussian pulse widths. Only the middle one
remains constant, since this used the predicted pulse width as an initial guess. In addition,
the pulse shape remained perfectly Gaussian. Any arbitrary pulse energy, V, can be used,

since this turns out to be a free parameter in the analysis.
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Figure 3-15: Pulse width evolution with various initial pulse widths. Each reach the same steady
state. L =1 =50um, go = 4em™!, ap = 2em™!, M = 506.6059, wp = 27 X 1GHz, t; = 5ps

3.4.3 Limitations and Improvements

The split-step method is a computationally efficient, instructional model of the pulse dy-
namics in a modelocked laser. It can take in account most of the dominant effects that
govérn pulse shaping within a semiconductor laser. Since the pulse is represented in the
time-domain, insight can be gained by watching pulses evolve through each of the different
sections.

However, there are many approximations that are made in this model that make it
difficult to use this simulation technique as a design tool for building better modelocked

lasers.
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Active Modelocking Gain

As stated in Section 3.4.1, active modulation is treated poorly in this model. There are no
gain saturation or self-phase modulation effects, nor are there gain bandwidth or dispersion
effects. While the latter three effects are smaller effects, the lack of gain saturation can
have a large effect on the actual pulse shaping. In addition, for short cavity lasers with
high repetition rates, the carrier density does not track the injection current modulation.
Therefore, erroneous time-dependent gain shapes will show up in the simulation.

It is possible to model the active modelocked sections in a different fashion, such as
a finite difference method. However, this leads to a hybrid model simulation with added

complexity.

Carrier Density Memory

Immediately before the pulse passes through each section of the laser, the carrier density
is assumed to be at the unsaturated steady-state value, Ngs;. Therefore, the gain is at its
unsaturated value, g;5. As stated in Section 3.4.1, this implies that the carrier density
will always refresh to its steady-state value by the time the pulse returns to the section.
In short cavity lasers with moderate current biases, this is not true, since the pulse visits
each laser section at an average rate of two times the modelocked frequency. Furthermore,
this is definitely not true for laser sections near the facets, since there is very little time
between the propagation of the pulse through the section as it approaches the facet and the
propagation as it goes away from the facet. The largest error will occur in these sections.

To this end, the split-step method will always predict unusually low current densities
needed to achieve modelocking. Since gain is always refreshed, the current density need not
be as high as it should be in order to predict modelocking. Therefore, it is difficult to use
the method to predict threshold currents. This fact can be seen in [16], where design curves
are stated only in terms of gain, not currents.

By introducing a carrier density state variable, we can keep track of the carrier density

for each section division and easily calculate how much it changes due to the passage of a
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pulse through the section. Since the length of each section and the time it takes to travel
through it is linked by the group velocity, we can easily calculate the time step as the pulse
goes from section to section. The carrier density can then be crudely updated each time
step due to carrier relaxation and carrier injection via the current. This will allow us to
have greater confidence in results given by short, high-repetition modelocked laser cavities,
where the carrier density in a section is not refreshed to its steady-state value before the

pulse returns to the section.
_— R (3.58)

Using Equation 3.7, this leads to:

I N
ANm:[nL____ng_

v n mwwadd @ +A_(Z’t)12] At (3.59)

where N,, represents the carrier density at the m — th section.

Analytical Solution Approximations

As stated in Section 3.4.1, the approximations made in order to obtain the analytical
gain/loss saturation equations where that 1) o; < I'g(N) 2) a linear gain model and 3)

no carrier refreshing during the period in which the pulse passes through the section.

Multiple Pulse Formation

Since the representation of the pulse is in the pulse’s group velocity frame-of-reference, It is
impossible to keep track of multiple pulse formation due to internal finite reflectivities. For
example, if the modelocked laser had an external cavity and the facet facing the external
cavity had a finite reflectivity (a non-ideal anti-reflective (AR) coating), then reflections will
happen at this boundary. These reflections will cause multiple pulses to form, as noted in
[28, 47]. The split-step model cannot keep track of all these pulses, since the representation

is in the time domain, not in space.
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3.5 Summary

In this chapter, the theory of the pulse-shaping mechanisms important in semiconductor
modelocked lasers has been explained. The dominant effects discussed here are gain/loss
saturation, self-phase modulation, dispersion and gain bandwidth. A split-step simulation
method was presented, and tested for validity. The most important effects for determining
steady-state pulse width and energy are gain/loss saturation and finite gain bandwidth.
While the split-step model is informative and provides much intuition to the pulse shaping
mechanisms found in a modelocked laser, its utility as a design tool is limited due to the
approximations it makes.

Equations 3.1 and 3.2 are non-linear, coupled differential equations in two dimensions.
An obvious method to solve them is through a finite difference solution, as stated in the

beginning of Section 3.4. The next chapter is devoted to this simulation technique.



Chapter 4

Finite Difference Simulations

4.1 Introduction

Finite difference methods are simple, yet powerful, methods for finding solutions to complex
differential equations. Several authors [31, 5, 44, 28] have applied finite difference methods to
modelocked lasers by discretizing the laser rate equations. However, they do not implement
the second-order effects of finite gain bandwidth and dispersion found in these equations. A
new method is presented that improves on the existing algorithms found in the literature.
This split-step finite difference (SSFD) method is a powerful and accurate method for
theoretically exploring the dynamics of modelocked pulses and provides quantitative insight
to modelocked laser design. It combines finite difference gain and non-Fourier filtering
in a split-step scheme. In this chapter, the finite difference method is introduced and
applied to the laser rate equations. A few currently published methods are reviewed with
their strengths and weaknesses. For purposes of future research, a comprehensive list of
alternative methods that lead to the SSFD method are presented. The SSFD method is
then introduced and tested for validity. It is then used to provide performance trends in
various parameter spaces for laser design purposes. In addition, promising, but not fully

developed methods are also presented, including their advantages and issues.
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4.2 Summary of Simulation Methods

This section provides a summary of the published simulation methods found in the liter-
ature. First, the previously introduced methods are restated for reference. Then, several
other methods not previously mentioned are summarized.

The first method discussed in the thesis was the split-step method analyzed in Chapter 3.
Derickson derives this method from the split-step Fourier method developed by Agrawal
et al. [1] for use with fiber optic pulse propagation and the partial integration technique
developed by Helkey et al. [28]. The approximations it utilizes renders it unsuitable for
practical design work, however it provides good insight for understanding the behavior of
modelocked lasers.

Several finite difference methods already exist. Carroll et al. develop a method originally
developed for use with DFB lasers [31]. They provide the first insight in using a non-Fourier
domain filter to approximate the finite gain bandwidth, paving the way for the development
of the SSFD method.

Morton et al. publish a simple finite difference method and use it to model external
cavity, single section active modelocked lasers [5]. Since the single section is used in a gain
mode, the narrowing effect is provided by the active modulation and therefore will not suffer
from unbounded narrowing like that discussed in Section 4.4.1. It is unsuitable for any laser
with a passively-modelocked section.

For completeness, two methods of including gain bandwidth are mentioned. Schell et al.
[565] implement a method similar to Carroll’s method, but suffers from the same problems
found in Section4.6. They attempt to implement a Lorentzian-shaped gain spectrum in
a difference equation, however their filtering is similarly asymmetrical, leading to group
velocity issues.

Lowery develops the Transmission Line Laser Model (TLLM) [42, 41] and applies it
to semiconductor modelocked lasers [44]. He expands the method to contain self-phase
modulation effects [43]. Lowery uses a finite difference method for gain and transmission

line theory to create a filter that simulates gain filtering. However, his filter is placed in
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Table 4.1: Table of simulation methods. v'= suitable application. O = untested but suitable
application. = limitations deter usage. suitable otherwise.

.8
B
o |22 |8 1% | &
> | & [ 5 a )
;'3 n e} - o -Q
S LE T | E | B | firats
Method (Author) limitations
Split-step Fourier (Derickson) [16] v v v inaccuracies from ap-
proximations
Finite difference (Morton) [5] v v | o no filtering
Transmission-line laser model (Lowery) [43] A R O fiter has limited use
Finite difference, Lorentzian gain model | § 1 i t i 1 .
(Schell/Schall) (55] incorrect filter
Finite difference, non-Fourier filter (Carroll) [31] 1 t I T t 1 incorrect filter
Split-step finite difference (Lau) VIV Y Y filter has upper limit
in usage

only a single part of the laser, namely one of the facets. This simplified solution is not as

physical as the method in this thesis.

Also for completeness, a few non-finite difference methods are mentioned here. Sev-
eral analytical methods are available [55, 54, 23, 61]. These assume functionally-dependent
pulse shapes such as exp (—t%) or cosh™2(¢) and allow only the function parameters to
evolve as the pulse passes through the laser sections. A few methods do not assume an ap-
proximated pulse shape, rather perform an analysis entirely in the Fourier domain {24, 66).
These analytic methods frequently leave out secondary effects and impose other approxi-
mations in order to achieve a closed-form solution. Schell and Schéll develop an iterative
method that transforms the pulse into its eigenfunction components, then amplifying them
in the frequency domain [53]. Many approximations, such as infinite gain bandwidth and

homogeneously biased (single contact) lasers, are made in this method.



108 CHAPTER 4. FINITE DIFFERENCE SIMULATIONS
4.3 Laser Rate Equations

Bquations 3.4 and 3.5 or their normalized forms found in Equations 3.6 and 3.7 can be solved
using approximate numerical methods for solving differential equations. The advantage of
this method is that we can explicitly include all the effects listed in Section 3.3 in contrast

to the split-step Fourier methods.

The coupled rate equations, in field form, are listed here for convenience:

1 0E*(z,t) , OE*(z,t)
il + =
Vg ot 0z

Loy

(674 1 62
5 (1 - ja)E*(z,t) — —Q—Ei(z,t) +3 (Tgpts — 3B2) ﬁEi(zat) (4.1)

aN(zvt) - niI___]y__ ng

+ - 2
Y v hu/wglE (z,t) + E™ (2,1)| (4.2)

where it is important to remember the carrier density-dependence of the gain, g, and carrier

lifetime, 7.:

N + N,
N) =gl _ .
R (43)
- ! (4.4)
e A¥ BN 1+ CN? ‘

The spontaneous emission term seen in Equation 2.2 can be added, but it is important
to understand the dynamics of the spontaneous emission term when adding it to a solution
of the differential equations [30, 64]. Our initial conditions assume an existing pulse of
arbitrary shape, therefore the use of the spontaneous emission term as a pulse-creating
mechanism is unnecessary. The spontaneous emission term can also be used to simulate

timing jitter but is left as a topic for future research. A diffusion term can also be added
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to Equation 4.2, but it is a minor effect compared to the photon field term.
The two equations are coupled first-order non-linear differential equations and may
also be written as a single second-order differential equation. They are space- and time-

dependent.

4.4 Finite Difference Laser Rate Equations

4.4.1 First-Order Finite Difference Approximations

There are several flavors of finite difference methods that can be used to solve the equations.
A simple choice of solution is by applying the forward-Euler method to the time derivative
found on the left-hand side of Equation 3.1. Instead of allowing the time step to approach

zero, At = 0, we can set it to a finite value.

dS*(t) N SE(t 4+ At) — SE(2)
dt At

(4.5)

We have chosen to discretize the photon density equations, without loss of generalization,
due to their simplicity. We have lost phase effects but they can be added in separately, as
stated in Section 5.2. By noticing that the total time derivative (defined in Equation 3.16)

consists not only of a propagation in time but also propagation in space, we can see that
SE(t + At) = ST (2 + Az, t + At) (4.6)
where Az and At are related by the group velocity, vy:

Az
Kt- = ’Ug (47)

Essentially, we have chosen the total time derivative to follow the photon density at the

speed of propagation. Hence, we can see how the photon density increases and decreases
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due to its interaction with the gain medium [67].

This method can easily account for all first-order derivative terms. However, since
dispersion and gain bandwidth require second-order derivatives, they cannot be accounted
for as easily. In this first-order approximation, all second-order derivatives are ignored. The

final equation that relates the current time step to the next is:
Stz + Azt + At) = §F(2,1) + At [vg(Tgp(2,t) — ;) SF(z, t)] (4.8)

where g, is written with space- and time-dependence to remind the reader that g, depends
on the carrier density, N(z,t¢). The carrier rate equation is simpler since the partial equals

the total derivative.

mlq(;’t) - Ngf; ~ vgp(2,1)(5F(2,8) + S7(2,1)|  (4.9)

N(z,t + At) = N(z,t) + At [
4.4.2 Implementation

Implementation of these two equations has a simple and straightforward recipe.

1. Choose a sufficiently small time step (At) and the space step (Az) can be found
through the group velocity.

2. Split the laser cavity length into equally spaced segments of length Az.

3. Create state variables for N;, S;r , and S;”, where 7 is used to enumerate each cavity

segment (See Figure 4-1).

4. Choose an initial photon density of an assumed pulse within the cavity. One can sect

S~ to zero and place the seed pulse in St.

5. Choose an initial carrier density. It is convenient to choose a uniform carrier density

at transparency or at steady-state with no photons.

6. Propagate the pulse one time step, At, by calculating the state variables for the new

time step.
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7. Apply boundary conditions to couple ST and S~ together.

8. Repeat propagation until a steady-state is reached.

All the variables in Equation 4.8 can vary in time and space, thus leading to non-
linearity in the rate equation solutions. Particularly, g,(z,t) and 7.(2,t) can be found
through Equation 4.3, since the carrier density, N(z,t), at each time step is known. The
injection current can also vary in space, in multi-section current-biased lasers, for example,

and in time, leading to active modulation biased laser sections (See Figure 4-1).

RF Gain Passive
section section , section
Injected L, LiL I, L I i, Ip
current | § P
Stat Ny | Ny [ N3 [Ny | N5 [ Ng Np, | Np
ate -
] S+1 S+2 S+3 S+4 S+5 S+6 S+P»1 S+P
variables ) ) ) ) S-
S 1 S 2 S 3 S 4 S-S S-6 P-1 S-p
—»| Az |
Calculated gpl gp2 g gp3 gp4 gpS gp6 ‘s ggpP-l gpP
variables T4 Teo E Ty T Tos  Teg ETcp_l T.p

Figure 4-1: Illustration of the state variables in a three-section laser structure with P
sections. The total laser length is PAz.

The proper choice of the length of the time segment (and hence, the length segment)
is important to arriving at a stable and accurate result. It is apparent that the shorter
the length of the segment, the closer to a true derivative the results become. However, too
short a length will result in a slow simulation program. Execution time goes as O[(2:)?).

The time segment is chosen by running the simulation with different time steps and noting
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trends. Regardless of the choice of time step, if the simulation reaches a steady-state then
the solution is stable. If the simulation asymptotically converges to the same stable result as
the time step is reduced then it is a correct solution. By examining the diminishing returns
of increased accuracy versus decreased time step, one can choose a time step that produces a
sufficiently correct solution in the minimal amount of computing time. A sufficiently correct
solution can be defined as one that does not deviate from the asymptotically approached

answer by more than a certain percentage.

Boundary conditions can be found at the laser segments that correspond to the end
facets. In a laser with P sections, this would correspond to sections 1 and P. Based on the
reflectivity of the laser facet, we can couple the forward and reverse propagating photon
densities together. For example, given a reflectivity R for both mirror facets, the right-hand

mirror facet implies

S5(t+ At) = Ryigne x SH(t) (4.10)
and the left-hand mirror implies

STt + At) = Riept x ST (1) (4.11)

Internal boundary conditions can easily be added to simulate the effects of internal reflective
surfaces that may result in coupled-cavity effects. These boundaries occur at the junction
between the different functional sections in a multi-section modelocked laser (See Section 4.8

for results).

The laser output is asymmetrical and can be observed by the complementary boundary

conditions:

Sta(t+At)=(1-R) x SE(¢) (4.12)
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and the left-hand mirror implies

Sout(t + At) = (1 = R) x 57 (1) (4.13)

The finite difference programs were written in Matlab (See Appendix A).

4.4.3 Calculating Error

It is necessary to estimate the error in the finite difference calculations in order to determine
which method is more accurate than another. One form of error estimation is by Taylor
expansion. We first note that expanding S(¢) around ¢ at intervals of £At gives exact

solutions:

S(t+ At) = S(t) + iS(t)At + l‘1—25(75)&2 + ld—?’S(t)At‘q’ + (4.14)
- dt 2 dt? 6 dt3 '
S(t) = S(t) (4.15)
d 1 d° , 1 3
S(t— At) = S(t) - = S() AL+ §E5(t)At — saESHAL + .. (4.16)

From these equations we can find the error for the Euler method above:

S(t + At) — S(t) —iS(t)At + ld—QS(t)At2 + ld—BS(t)Af’ + (4.17)
Cdt 2 dt? 6 dt3 '
dS(t) _S(t+ At) - S(t) 1 d?
= A +1 g SHA— .. (4.18)

Hence, in this last grouping of terms, it is easy to see that the term in curly braces is the
error and that it is dominated by the second-order derivative term.
We can develop a more accurate approximation for the first-order derivative terms by

including past values of S(¢) (Equation 4.16):

d 1d 3
S(t+At) = S(t ~ At) = 2— S(H)AL+ 25 7 S(AL + ... (4.19)
d S(t+At)—S(t—At)+{_1_cii

pradOhy oAt 6 dt3

S(H)AL? — ... } (4.20)
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This filter is symmetrical around S(¢). The error, in this case, is dominated by the third-
order derivative term and in general will be smaller than the previous case. In general, we
can continue adding symmetrical terms around S(¢) to improve the error and increase the
order of the largest error term. However, the trade-off is the requirement of a shorter time
step, since the estimation of a derivative at a specific point should be as local as possible.
The addition of terms requires values further away from the derivative point, which will
increase the error of the derivative calculation (See text on Numerical Analysis for a more

rigorous discussion [52]).

4.5 Classic Finite Difference Simulation Results

4.5.1 First-Order Derivative Finite Difference Equations

First, let us examine the results of running a finite difference simulation using only laser
rate equations without the second-order derivatives. The advantages of this method is the
simnplicity in implementation. It is also relatively fast since no history of past state variables
(at t — At) is needed. The problems with this method are two-fold. First and most obvious
is the fact that the Euler method of solution can contain errors that may compound after
each time step. The second is that since no dispersive or gain bandwidth effects can be
employed, a passive or hybrid modelocked laser will have dominant pulse narrowing effects
with insufficient broadening terms to keep the pulse from narrowing to singularity. In fact, if
a simulation using the Euler method is run, this indeed happens. Figure 4-2 shows multiple
snapshots of the pulse profile within the laser cavity. The time difference between each
snapshot is the round trip period calculated from twice the round-trip cavity length divided
by the group velocity (t,; = 2Lot/vg) (notice the pulse drifting similar to observed in the
split-step method). The pulse propagates and begins shaping initially, but continues to
narrow to impossible pulse widths. The position (x-) axis shows the passive section on the
left-hand side (80um) and the active section on the right (100um), with the gain section

occupying the remaining middle section (3500um). The biasing is set to 500mA in the gain
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section, 10mA — DC with 200mA— RF set at the round-trip frequency for the active section.
It begins as the low power, central pulse snapshot (obscured by other pulse trails). The
initial pulse begins at 2ps, each successive pulse snapshot drifting toward the right facet of
the laser. The right-most pulse shown has a width of 0.2ps, which is impossible for a typical
semiconductor laser due to gain bandwidth restrictions. Further propagation would result
in increasingly-narrower pulses. Eventually, the pulse will occupy a single discretized point.
Hence, gain bandwidth is an important effect that cannot be left out of a semiconductor

modelocked laser model.
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Figure 4-2: Pulse evolution with insufficient broadening forces (infinite gain bandwidth). Selected
round trip snapshots are shown.

Previous first-order finite difference simulations that do not provide finite gain band-
width [5] have not suffered from the singularity asymptote effect. Since their model uses
a single-section, external cavity actively modelocked laser, there are no passive sections to
supply the dominant pulse narrowing effect that forces the pulse to singularity. Rather, the

narrowing effect is simply the weakly-confining gain shape provided by the active modula-
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tion and the spatially inhomogeneous current biasing.

4.5.2 Second-Order Derivative Finite Difference Equations

The most obvious choice for including the second-order derivative terms is by approxi-
mating the derivative as a finite difference term, as shown in Appendix B. We can use
an asymmetric, causal approximation, such as Equation B.4. Again, the positive points
about this method is that it is relatively simple in concept. However, because of the many
terms needed, this method requires more memory accessing and greater iteration time. This
method also seems to have severe stability problems. Even before the pulse propagates half
the length of the cavity, the error exponentially increases until it becomes greater than the
pulse itself. This is shown in Figure 4-3. Figure 4-3(a) shows the initial pulse. Figure 4-3(b)
shows the pulse at a later time. The inset shows a blown-up segment of the pulse. Note
that the profile is no longer smooth, rather it has become rough. This alternating roughness
increases without bound. Figure 4-3(c) shows the pulse at a point in which the error is on
the order of magnitude of the pulse power. Figure 4-3(d) shows a point in which the error
is many orders of magnitude larger than the pulse power. This represents the exponential

increase in the error.

It is unclear how to calculate the error and verify that it exponentially increases. Asym-
metric approximations of the partial derivative that include 5-15 previous terms (hence
smaller error but larger past memory) were tried with no marked improvement to the sta-
bility. Up to 100 terms were tried with similar results (however, such drastic numbers may
run into truncation errors and other problems). In finite difference simulations, especially
multi-dimensional simulations, quantitative error analysis is difficult. There are methods
of determining stability. It is also unclear if these methods can be applied to this problem
formulation. Future work should be done to estimate the error [52]. This unbounded error
relates closely to the symptoms found in 5 limitations for the filtering technique described

in Section 4.7.1.
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Figure 4-3: Pulse evolution using unstable finite gain bandwidth implementation. (a) the initial
pulse (t = 0fs). (b) the pulse at the threshold of instability (t = 58fs). (c) the pulse exhibiting
significant instability (¢ = 63fs). (d) the pulse well beyond the threshold of instability (t = 70fs).
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4.6 Difference Equation Filtering

Another method for including the gain bandwidth parameter is through using a digital dif-
ference equation filter. This technique was pioneered by Carroll et al. when they simulated
pulse propagation in colliding pulse modelocked semiconductor lasers [31]. It recognizes
that the laser pulses have a minimum achievable pulse width, hence their bandwidth re-
mains limited. In fact, the bandwidth of the photon field is limited to only a small range
of the much wider material gain bandwidth (See Figure 3-7). This same fact allowed us to
approximate the gain peak with a parabolic profile in Figure 3-7 for the split-step method.
We can further take advantage of this by creating a digital filter that matches the gain
profile only in the frequencies within the bandwidth of the photon field. The shape of the
filter can be allowed to deviate from the actual gain profile outside of the bandwidth of

interest.

Carroll et al. take the frequency response of their filter as:

_ (L—n)?
H(w) = 14+ n? — 2ncos [(w — wp)At] (4.21)

where wq is the center frequency of the gain peak (as in Section 3.3.2), At is the time step,
and 7 is the bandwidth parameter. Since we have already assumed a gain peak recentered
to zero, wp = 0. The bandwidth parameter takes values from 0 < 7 < 1 and a prudent
choice allows us to match the gain spectrum within the pertinent frequency range. Figure 4-
4 shows the parabolic gain spectrum and various values of 7 from [31], given a time step

At = 150fs.

Carroll et al. state that the difference equation implementation of this filter for a forward

propagating wave is:

Et(z+ Az,t + At) = AET (2 + Az, t) + (1 — A)E* (2,t) (4.22)
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Figure 4-4: Parabolic gain spectrum model and the frequency response of filters with varying 5
{(From [31])

where

A = nexp (JweAt) (4.23)
The term A in Equation 4.22 is typically small. If A = 0, then Equation 4.22 reduces to:
Ef(z+ Az, t + At) = Et(z,t) (4.24)

This means that there is no filtering performed and the field at 2 simply travels to z + Az
in the time interval between ¢ and ¢t + At. The filtering simply means that we are taking
the field at time ¢ and performing a weighted average of two adjacent points together: the
majority of the field at z and a small amount of the field at z + Az. This averaged result is
what travels to z + Az at t+ At. Averaging can be explained as a form of low-pass filtering,

so this accomplishes our goal of limiting the gain bandwidth. However, there are several

issues with the technique:
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1. The filter parameter, 7, is determined incorrectly. This is explained in the next section.

2. The low-pass filtering (averaging) is performed in space, not time. In Equation 4.1,
the filtering is a function of the double partial in time. Filtering in space could be
performed if the gain bandwidth term was a partial in space. Since it is not, the only
other way that a filter in space would make sense is if the partial in time and space
were proportional to each other. As seen in Equation 3.16, the partial in time and
space of the photon density are not proportional. in other words we would be able to

claim, if this were true,

Because the gain on the right-hand side of Equation 3.16 is not negligible compared
to the terms on the left, these are not equivalent. To show that this approximation

cannot even be made, we will analyze Equation 3.1. Given a Gaussian photon density

profile:
‘— 2
St (z,t) = Spexp —(—ng)— (4.26)
272
we observe that:
0 oy o (t=z/vg) o4
Bts (z,t) = _-72—5 (z,1) (4.27)
Jd 4 (= 2/vg) o4
BZS (Z,t) = —’()QTTS (Z, t) (428)
When compared with
ve(Tgp — ;) ST (2,t) (4.29)

we see that around the peak of the pulse, t — z/v, = 0, that both partials are close to
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zero. Therefore, the approximation made in Equation 4.25 is not appropriate at the

pulse peak.

3. The major problem with the filter lies in the fact that the weighted averaging is not
symmetric around the space point z. As seen in Equation 4.22, the weighting is the
majority of E*(z,t) (as it should be) and a fraction of E¥(z + Az,t). Since the
latter term is ahead in space to the former term, the averaging causes the pulse to
be shifted slightly backward in space. In a limiting case, think of a single impulse in
space and time. Without a filter, the impulse advances at the group velocity. When
the filter is applied, it begins to spread, but only to points behind it in space, since
the filter is asymmetrical. In filter theory terms, this can be explained by examining
the frequency response of the filter. The filter is complex, which results in phase shifts
in the output. These phase shifts are Fourier-transform-equivalent to shifts in time,
or equivalently a time delay. This has been shown through simulation that the pulse
is actually slowed down. Physically, this should not happen. This problem can be

solved by creating a symmetric filter. This technique is discussed in Section 4.7.1.

For completeness, Carroll has since written a text on simulating distributed feedback
lasers with gain filtering using a similar, but more refined technique [7]. However, applica-
tion to modelocked lasers is still questionable. The text is mentioned for further research

on this method.

4.7 Split-step/Finite Difference Simulation

Carroll’s method provides inspiration to a suitable method of implementing the finite gain
bandwidth term. The key to implementing a correct digital filter is to re-examine the
split-step method in Chapter 3.

The split-step method separated the linear and non-linear effects of the laser rate equa-
tions into two steps, thus allowing for: 1) the integration of the non-linear terms over the

space interval, thus allowing for the use of longer intervals and 2) the use of a Fourier-domain
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frequency filter to implement the linear terms. The purpose of this method was improved
computational time primarily due to the partially-integrated rate equations while still main-
taining the effects of the linear terms through a two-step process. The negative effects were
the approximations that one had to make in order to perform the partial integration of the

non-linear effects.

The finite difference method shows improved accuracy and a more physical implemen-
tation of the rate equations. The primary goal of this section is to develop a simulation
technique that combines the two methods, thus achieving maximum accuracy with the

ability to include linear effects such as finite gain bandwidth and dispersion.

Since finite difference methods have been proven to be an effective technique for de-
scribing the non-linear dynamics of the laser rate equations, this portion of the problem
is solved. What needs to be accomplished is a way to implement the linear effects. In
the split-step method of Chapter 3, the filtering was performed by a Fourier-domain filter.
This was possible because the pulse was stored as a function of time, not space. At each
laser segment, the entire t