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Chapter 1

Introduction

One area of increasing concern in both industry and consumer circles during the late 1990's

and early 2000's has been that of power consumption. As made clear by incidents such as

the Winter 2001 power crisis in California, the present demand for power often meets or

exceeds the ability of the present power generation infrastructure. Though this fact has

innumerable effects, one consequence of particular interest is the restriction that the utility

must now place on maximum power consumption. Facilities, such as assembly plants and

office buildings, are presently being billed on both a steady-state and a peak power basis. If

an assembly plant experiences a spike in its power consumption that exceeds its peak power

rating, it is penalized by the utility through a system of extra charges. These monetary

penalties can be significant; one representative penalty charge is $10 per kilowatt hour.

It naturally follows that a great deal of consideration is currently being given, on the

part of both the loads and the utility, to methods by which it might be possible to forecast

and avoid these troublesome power spikes. Technology presently exists( [8]) which can,

by examining only the current and voltage where a facility connects to the electric utility,

disaggregate the individual loads turning on and off within that facility. This capability

of identifying the present state of individual loads, coupled with the ability to predict the

effects that other loads will have if connected to the electrical system, would allow both the

user and the utility to understand and control the level of power at any given time.

Power spikes are also studied on a smaller scale in the design of most electronic systems.

These spikes occur in many systems, such as motors and heating systems, due to the large

currents required for the system in a steady-state condition to respond to a step command.
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Large transient currents can cause problems when they flow through impedances which are

small enough to neglect in steady-state operation, but large enough to produce significant

voltage transients. These voltage transients are often not predicted, and are occasionally

big enough to damage components which were chosen with tolerances corresponding to

the system's desired steady-state behavior. By predicting this behavior in systems where

the voltage transients are poorly understood at this time, a more accurate picture of the

system's behavior can be obtained.

The goal of this thesis is the prediction of voltage distortion with the knowledge of

the time characteristics of the current transient. The predictions will be obtained in two

systems: the electric utility and an automobile. By understanding and predicting transient

behavior in these systems, improvements might be made that have wide-ranging impact

due to the role of these systems in modern society. The ability to predict the transient

interactions between electrical loads will also enable users to avoid power spikes in these

systems. In addition, these two entities together represent a larger class of systems than

each individually, as voltage distortion prediction techniques will be developed in both AC

and DC contexts.

1.1 Background

When examined from an overarching perspective, the process of predicting voltage distortion

can be summarized as a problem for which its is necessary to create a model.

Before embarking on the task of predicting voltage distortion in both the electric utility

and automobile, it is necessary to make a few general comments with regards to the process

of system identification. The task of using prefabricated models (simulation) is often em-

phasized over that of constructing new models (system identification), since the engineer's

task usually consists of constructing a new system from predefined building blocks. During

simulation, a model operates upon a specified input to arrive at an estimate for the quantity

of interest without the implication that its parameters will be modified at any future time.

It is usually assumed that the model is a self-contained entity that requires an input and/or

an initial state, as well as time, in order to produce the desired output.

In comparison, the process of system identification finds a model which serves as an

accurate mapping between input and output. This process can be viewed as a type of
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inverse problem to that of simulation, as the normal process of using an input and a model to

generate an output has to be inverted so that the input and the output are used to generate

a model. In the case at hand, the process of system identification involves identifying an

impedance: a mapping that will produce a voltage estimate from a given current excitation.

The impedances being identified are those of the electric utility and the automobile's chassis.

System identification is inherently more complicated than simulation, as the fundamen-

tal goal of system identification is the creation of a mapping between input and output.

Simulation is nominally a one-step process, for it only requires that the model operate on

a given input to produce an output. System identification, on the other hand, is a two-

step process. The first step, referred to as characterization, consists of the selection of

an input/output mapping (model) and determination of the set of parameters (parameter

estimation) that governs a relation between the actual input and output data.

Obtaining an identified model is not necessarily the final step, as the accuracy of the

mapping must be verified before the model can be finalized. This process of verification

is referred to as cross-validation, and consists of comparing the result of a simulation to

the experimentally generated output. If the residual produced by the cross-validation does

not conform to the desired specification, the process of system identification returns to the

modelling or parameter estimation steps. One common pitfall in the process of system

identification is that the system is characterized, only to find out that even the best set of

parameters for the selected model does not accurately represent the system under consider-

ation. Only after the system is characterized using one set of data and then cross-validated

with another (in order to avoid pathologically good fits to an otherwise poor model), can

the model be used for the purposes of simulation.

X F (x, t; p) yN F(xt;)-

Fm maps the mea- Figure 1-2: The system F serves as an

Fiure i t xtthe e oapproximation to P, and maps the mea-
sured input x to the measured output y. srdiptxt rdce upt~

sured input x to a predicted output y.

Rather than leave the entire explanation process to the vagaries of textual descrip-

tion, it is helpful to explain the relationship of simulation and system identification in a

mathematically-oriented context. Suppose that some system P exists, as in Figure 1-1, and
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that it is necessary to construct a model for this system. While it is possible to examine

the input x and the output y, only approximations of the relation F between the two can

be constructed. The goal of system identification is therefore the production of a system F

that can use the input x to generate a prediction y in such a way that the difference (y -

is minimized. This approximate system is represented in Figure 1-2.

The close ties between system identification and simulation should be acknowledged,

and can be seen through the process by which F is identified. The system F must first be

characterized with one set of data (x,, y,), so that F and A may be obtained. This model is

then cross-validated with another set of data (x,, yv) to ensure that the model F is correct

and that the set of parameters A produce an estimate which is closest to y, according to

some criterion. Once this has been accomplished, the system F(x, t; A) is said to represent

F(x, t; p) accurately, and may be used for the purposes of simulation and prediction.

Though the general structure of system identification has been discussed, there are a

few subtle points which require emphasis. One of the important details which should not

be overlooked is that the structure of the model being parametrized is strongly dependent

upon the manner with which the modelled system is excited during identification. This idea

is presented most coherently by an example; consider the problem of identifying the system

shown in Figure 1-3.

63Q 1mH

vS(t) _47 vo(t)

Figure 1-3: A passive network used to illustrate the connection between the creation and
the use of a model.

By measuring the response of the above system on differing time scales, its behaviors

can be made to look very dissimilar. Figures 1-4 and 1-5 make this fact clear.

If the system is identified on a timescale of 150ps, the effect of each of the elements

can be observed (Figure 1-4). If the system were examined by using a different timescale,

however, this would not be as apparent; consider measuring the system on a timescale

of 150ms. By switching timescales (Figure 1-5), the model would probably not include a
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Figure 1-4: Response of v 0 (t) (dotted Figure 1-5: Response of v,(t) (dotted

line) to a 1OV input step (solid line) over line) to a 1OV input step (solid line) over

a time scale of 150ps. a time scale of 150ms.

term corresponding to the inductance. More importantly, it would be impossible to find

a value for this parameter which corresponded to any physically meaningful component

if an inductance term were included in the model. The model's dependence on the type

of excitation therefore requires that the inputs used for the purposes of identification and

cross-validation be similar to the inputs to be used with the resulting model.

Along the lines of the last example, it is also essential that the experimental setup

during the data collection for the system identification process be similar to the setup under

normal operating conditions, as used for prediction. The goal of the parameter estimation

step is finding parameters of the model which force the output of the model to resemble

the observed output as closely as possible. In choosing the parameters of the model under

this constraint, the system identification process will often capture information from the

experimental setup as well as from the system.

This can be seen via a simple extension of the previous example. Consider the connection

of an oscilloscope to the previous system, as displayed in Figure 1-6. The model for the

system will be very similar to that shown in Figure 1-4 if the characterization data are

taken with R, = 1MQ over a time scale of 150pLs. If the resulting model (with a correctly

identified set of parameters) is then tested with the R, of the oscilloscope changed to 50Q,

the model output and the oscilloscope output will differ by almost a factor of 2. This

demonstrates the necessity of matching the experimental setup during system identification

14
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vS(t) Vm(t)

Figure 1-6: A passive network which illustrates the influence of measurement on the pa-
rameters of a model.

as closely as possible to the setup for prediction.

A considerable amount of work has already been done on modelling the electric utility [9].

The problem pursued in [9] shares many similarities to the challenge posed in this thesis,

but there are a few differences. In particular, the approach taken in [9] is that an isolation

transformer is connected to the standard utility connection so that the output impedance of

this transformer is modelled rather than the direct utility. This was performed so that the

parameters of the transformer might be characterized separately from the experiment, as

a sort of intermediate check before directly modelling the utility's impedance. This thesis

does not pursue this intermediate verification step, but instead characterizes the utility

directly.

Furthermore, the method for exciting transients on the utility in [9] is different from the

method pursued in this thesis. Lepard chose to excite transients by connecting capacitors

across local wall outlets, and then measuring the parameters of the utility from the resulting

damped oscillations in voltage and current. A number of capacitors were used to characterize

the utility over a range of frequencies. In comparison, the technique exploited in this thesis

drew a particular command current from the wall, and then used the resulting current and

voltage waveforms to estimate the parameters of the utility. A continuation of the work

performed in [9] is given in [13].

In comparison to the work previously done on the electric utility, little work on directly

modelling the automobile chassis has been done. A great deal of work has been done

on issues closely related to the prediction of voltage distortion in the automobile, however.

Extensive research has been performed of the behavior of electric fields in conducting sheets,

specifically in reference to the eddy current losses in cylindrical shields [6] and in transformer

cores [1]. Furthermore, the prediction of voltage distortion in aircraft has been widely
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studied in order to prevent accidental faults [5].

1.2 Outline

This thesis proceeds by following the system identification process for the electric utility

and the automobile chassis in parallel. Chapter 2 is dedicated to the step of modelling.

The electric utility is modelled first via physically-based reasoning, and this model is then

refined by using experimental data. The automobile chassis is then modelled by building

upon some of the intuition obtained from the utility; experimental findings are used to

refine this model as well.

A selection of continuous-time and discrete-time parameter estimation methods are dis-

cussed in Chapter 3. The continuous-time A method and discrete-time ARMAX method

are explained in general, and they are then applied to the model of the electric utility which

was developed in Chapter 2. Following this discussion, the idea of nonlinear least-squares

minimization is summarized as it applies to the parameter identification of the automobile

chassis, and the continuous-time A method is discussed briefly in the context of the au-

tomobile chassis before a specific discrete-time identification technique is introduced and

presented in detail.

Chapter 4 is concerned with the experimental verification of the techniques discussed

in Chapters 2 and 3. The data collection hardware and preprocessing required for the

utility are presented first, followed by the results of applying the aforementioned system

identification techniques to the electric utility. A similar tack is taken with the automobile;

a discussion of the hardware and experimental setup for the automobile chassis is presented,

and the results of applying the system identification techniques are analyzed. Chapter 5

contains the conclusions reached in the course of this research, as well as suggestions for

further work.
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Chapter 2

Model Selection

One logical way to approach the problem of predicting voltage distortion is by developing

a functional relationship between the quantity to be predicted and the information upon

which the prediction is based. As discussed in Chapter 1, the input/output relationship can

be expressed as a mapping expressed by some function F(x, t; fl). The goal of this chapter

is the determination of the models F of both the electric utility and the automobile chassis

which can mathematically relate the current to the voltage distortion.

This modelling process is largely the same in the cases of both the electric utility and

the automobile chassis. Initially, intuition and reasoning based upon the physical layout

of the system are used to obtain an approximate model. The preliminary model is then

refined via theory and preliminary validation tests, which will qualitatively test the degree

to which the model characterizes the system accurately. As the model for the chassis builds

upon some aspects of the utility, the model for the electric utility is presented first.

2.1 The Electric Utility

Consider the standard manner in which individual loads are connected to the electric utility

and draw currents, such as ii(t) or in(t), as illustrated by Figure 2-1. In this context, the

electric utility is referred to as the voltage source seen by the consumer inside a building; this

voltage source could be referred to as the wall voltage equally well. Since this voltage source

has a nonzero impedance, the currents drawn by the individual loads will produce a voltage

drop across the impedance of the utility, and this voltage drop will in turn affect the other

loads. The goal of this thesis is therefore the prediction of this effect; that is to say, we seek
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Figure 2-1: A distribution-level model of the connection of user-level loads to the electric
utility.

to predict the effect of the current il on the line voltage seen by other loads (e.g. Vn). This is

commonly known as the prediction of point-of-load voltage distortion. This figure suggests

that the impedance seen by the individual loads is due to the components comprising the

connection to the power distribution network, such as the transformer and the set of cabling

and protection devices. The transformer serves to modify the transmission voltage down to

the voltage at which it is used, such at the standard 110 Vrms in most residential homes;

the other impedances allow the power to be used where it is needed.

One simple model which accurately describes the behavior of the system is shown in

Figure 2-2.

Line

Ln L1

in(t) ii (t)

Rn R1

Neutral

Figure 2-2: A schematic diagram describing the impedance of the electric utility seen from
a point-of-load perspective.
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The Li describe the frequency-dependent behavior of the transformers and frequency

dependent elements upstream from the load voltage, while the Ri describe such effects as

the resistance of the distribution wire, the impedance of the protection devices, and the

resistance of the transformer windings. It is important to note that each node will see a

slightly different impedance looking into the source, due to the variation in the amount of

cabling between the transformer and each particular outlet.

One crucial simplifying assumption was made in order to render the goal of voltage

prediction tractable; it is assumed that the wall voltage is invariant to current perturbations

on the time scale of the transients drawn by the individual loads. This property of the

voltage source is referred to as being stiff. In other words, it is obvious that the wall

voltage will be affected by such factors as power-factor-correction capacitors across upstream

transformers, upstream voltage distortion, and the aggregate current drawn by loads at any

given point in time. The time scale over which all of these factors have an effect, however,

is much larger than the time scale of the transient perturbations which cause local voltage

distortion. Furthermore, the service one step upstream (e.g. beyond the closest transformer)

is usually capable of providing ten times the current that any individual load will draw.

These two facts in combination justify the approximation that the voltage source is stiff.

Additionally, we are assuming that no other current perturbations, or transients, are taking

place while the one of interest is occurring. This has been found to be generally true; a

similar assumption is used in [2], [12], and [13].

Consider the kth connection to the system described in Figure 2-2. By recording the

waveforms vs(t), vk(t), and ik(t), it is possible to estimate the parameters Rk and Lk of the

point-of-load model of the utility. While the process of capturing 'V (t) and tk (t) is relatively

straightforward, it is generally much more difficult to measure v, (t). Under the assumption

that v. (t) is stiff and that most loads are in the steady state,

vS(t) ~ v,(t - nT) (2.1)

where nT is a small multiple of the line voltage's fundamental period. This is again prin-

cipally taking advantage of the assumption that v,(t) generally does not change from cycle

to cycle, in comparison to the time scale on which the current transients are occurring.

With this information, it is possible to construct an approximation b, (t) to v, (t) by
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measuring Vk (t - nT) while ik (t - nT) = 0, and using it as an approximation for v,(t) when

ik(t) - 0. In other words,

f)(t) k= (t - nT), with ik(t - nT) = 0. (2.2)

This observation could be used experimentally by measuring Vk (t) for a few periods of T

before and after the test current ik (t) is applied. Note that this approximation would not

be possible if the voltage source were susceptible to disturbances on the order of the current

transients. This would effectively rule out this method of estimating v,(t) during a current

transient.

The effect of unmeasured steady-state load currents must be considered in seeking to

include as many experimental constraints in the model as possible, as the requirement of

turning all non-characterizing loads off in order to characterize the impedance of the utility

is clearly an unrealistic requirement. Under the previously stated assumption that there

is a linear operator H which relates the current in the utility i(t) to the voltage v(t), it

is possible to show that an unmeasured steady-state current can be accommodated. This

scenario is illustrated by Figure 2-3.

iL (t)

Rk Lk
+ Vkt --

q itest M)

Figure 2-3: A schematic description of the experimental condition in which an unmeasured
steady-state current is present as well as the test current excited for identification purposes.

In the absence Of iL(t), the equation

Hi(t) = v(t)

= v (t) - Vk(t) (2.3)

is used to estimate the parameters of the system. If an unmeasured load current is in-
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troduced at node k, Kirchoff's current law now prescribes a different relation between the

currents, i.e.

ik(t) = iL(t) + itest(t) (2.4)

This has two related consequences. The first is that Equation 2.2 must be modified to

account for the effect of this steady-state current, becoming

' (t) = Vk (t - nT), with iZk(t - nT) = iL(t - nT). (2.5)

The other consideration is that the voltage drop across the modelled impedance is pro-

portional to the current running through it; the portion of this drop which is due to iM(t)

must be proportional to the difference between the total current passing through it when

ztest(t) is active, and the steady-state current iL(t). In other words,

Hitest(t) = ib(t) - Vk(t) (2.6)

= (vs(t - nT) - HiL(t - nT))

- (v, (t) - H (iL (t) + itest (t))) (2.7)

This shows that an unmeasured load current iL(t) = iL(t - nT) cancels itself on both

sides of the equation and therefore has no effect on the problem. There are some loads which

might be strongly perturbed during the characterization, such as capacitors. In order to

avoid collecting faulty data, these loads should be disconnected during the characterization.

2.1.1 Frequency Dependence of Rk

The model illustrated in Figure 2-2 is accurate in the sinusoidal steady state for one given

frequency. This is of limited use, however, as the voltage transients which serve as the

model input contain frequency information between the fundamental of the electric utility

(60Hz) and the sixteenth harmonic. As this model was tested in an experimental setting, it

was found that the resistances Rk were observed to increase nonlinearly as the frequency of

excitation f was varied. The preliminary model therefore had to be modified. This obser-

vation could result from the manifestation of a few different phenomena; some explanations

include the skin effect on the wires or the eddy currents induced in adjacent conductors.

The change in resistance due to the skin effect in a cylindrical conductor is given in [4];
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for x < 1 ("low" frequencies) the expression for the resistance is

R x
=R 1 + (2.8)

RO 192

where x oc v/f. The constant of proportionality (given explicitly in [4]) is related to the

physical properties and geometry of the conductor, while RO is the DC resistance.

1tddy

iout Hinduced

iin

Figure 2-4: Illustration of the electromagnetic fields present in a transformer.

Understanding the effect of eddy currents induced in conductive materials located in

close proximity to the current wires is also useful. The geometric relationship of these eddy

currents to the excited currents are shown in Figure 2-4. The current flowing through the

windings of the transformer is denoted by iin and i0 st; Maxwell's equations dictate that this

current will induce a magnetic field (Hinduced) in the core and eddy currents (ieddy) that

flow within the core. The changes in the effective resistance of the winding itself are again

given in [4]; for 6 < 1

R RO + 2rf Lo- (2.9)
6

In this equation, 0 oc /f and Ro is equal to the DC resistance of the winding. The

constant of proportionality is geometry and material dependent as in Equation 2.8 and can

be analytically derived for certain geometries.

Assuming that the constants relating x and 0 to V17 satisfy the necessary conditions,

Equations 2.8 and 2.9 suggest that both the skin effect and induced eddy currents can be

modelled by adding the following frequency dependent term to the resistive component of

the utility model:

R(f) = Ro + 6f 2 (2.10)
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By collecting data at a number of different frequencies, a least-squares solution for 2.10 can

be found. At last, then, a model for the electric utility can be stated; this 3-parameter

model looks like

V (s) = Ro + Ls + 6s 2  (2.11)
IM

This model certainly signifies progress toward the eventual goal of predicting voltage dis-

tortion, but it is by no means the end of the problem. The next step towards the goal is

that of finding RO, L, and 6 in a repeatable and reliable manner. This subject is broached

in Chapter 3.

2.2 The Automobile Chassis

In comparing the two systems to be modelled, it might appear that the process of modelling

an automobile chassis would be much easier than that of the electric utility. This is true

in some senses; many of the difficulties encountered in modelling the electric utility, such

as the inability to directly measure the voltage across the modelled impedance as well as

accounting for unmeasured steady-state currents, are not encountered in the experimental

conditions under which the chassis is modelled.

The model of the chassis and the process by which the parameters are obtained from

the data are therefore very straightforward. Measurements of the current flowing into the

chassis and the voltage across the chassis are obtained, and the parameters P of the model

v(t) = z(p)i(t) (2.12)

are selected so as to closely model the input/output relations manifested by the experiments.

Given that the input and output variables are explicitly available, the only remaining ques-

tion is that of choosing an appropriate model. This question is addressed in the following

section.

2.2.1 Dominant Pole Model

Figure 2-5 illustrates the experimental setup from which data will be collected, and serves to

tie the abstract goal of predicting voltage distortion to a concrete physical realization. The

model being generated will predict the voltage waveform between any two of the four nodes
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based upon the current injected into nodes 1, 2, or 3. It is significant that the current is not

injected into node 4, as the current as always is returned from that node. This constraint

was imposed upon the model because the bonding strip which connects the chassis to the

battery serves as an important component of the impedance being measured. Though

I

4

Passenger

Driver

3

Figure 2-5: The experimental layout of the automobile chassis as modelled in this thesis.

the chassis contains numerous welds and connections between steel of different structures

and thicknesses, one suggestive approximation is that it roughly possesses the physical

and electrical properties of one highly deformed steel sheet. This simple fact suggests one

powerful technique for accomplishing the goal; with an appropriate model of the steel, the

behavior of this system could therefore be governed by a set of transfer functions, with the

current injected at one port, and the voltage measured across another port. This model is

somewhat lacking in its generality, due to the fact that the number of models required to

predict the response at an arbitrary output port from an arbitrary input port is equal to

the product of the possible number of input ports and the possible number of output ports.

While this is a definite drawback, this method remains appealing because it would require

only one model and twelve specific sets of parameters.

This fact can be clearly illustrated by considering the following experiment: a measured

current is injected into node 1, and the four voltages along each adjacent side are also

25

(

(



measured. Given a general transfer function model which maps the current flowing through

a steel sheet to a voltage measured across any two points on that sheet, it is possible to

find four different sets of parameters of the general transfer function, which correspond to

the four specific transfer functions relating the injected current to the measured voltages.

The task of modelling the car can therefore be divided into two separate tasks: con-

structing and validating a model for a sheet of steel, and then verifying the fact that the

car chassis can indeed be modelled as such. The first element in this process is not very

straightforward, however, as the analytical process for deriving the general transfer function

which serves to model the impedance of a steel sheet is much more complicated than the

analogous process for a transformer. By simply comparing the interactions of electromag-

netic fields in Figures 2-4 and 2-6, it is apparent that the driving current, magnetic field, and

induced eddy currents are much more coupled in the steel sheet than the same variables in

the transformer model. Due to this added complexity, the model of the steel sheet is based

ieddy

Hinduced test

Figure 2-6: A diagram of the electromagnetic fields present in a sheet of steel.

more upon physical intuition than direct modelling. Simply put, the proposed electrical

model for a steel sheet is a resistor and an inductor in series, so that the transfer function

of the steel sheet looks like

Vsteel(s) = R0 + Ls (2.13)
Isteel(s)

The physical intuition for this model is based upon two observations, the first of which is

simply the fact that the steel sheet, as a nonideal chunk of metal, must have some nonzero

DC resistance. The second observation is that the time-varying current in the steel must,

by Maxwell's equations, create a time-varying magnetic field, and that the interaction of
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that magnetic field with the current will produce an inductive effect. This model for the

steel of the automobile chassis will be referred to as the dominant pole model, for it models

the complex behavior reflected in Figure 2-6 by making the assumption that the pole due

to the inductance is located at a low frequency with respect to the collection of poles that

arise from second order effects in the steel sheet. This pole is therefore said to dominate

the frequency response.

This approximation is supported by experimental data as well as physical intuition; as

such a check, the circuit shown schematically in Figure 2-7 was constructed, where a uniform

section of steel sheet in the trunk of the car was used as the test jig. This particular piece

of steel was selected because the magnetic permeability of steel is highly dependent on

the production process, and it was desired that the test resemble the final experimental

setup as closely as possible. It stands to reason through examination of this plot that the
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Figure 2-7: Experimental setup used to ve
ify the accuracy of the R + Ls model of
sheet of steel.
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0

-l 0 1 2
Time (sec)

3 4 5
X 10-'

r- Figure 2-8: Plot of the measured and pre-
a dicted currents flowing through the steel

sheet. The solid line represents the measured
current, while the dotted line represents the
prediction.

behavior of the steel sheet would govern the response of the system to a step in voltage. As

is evident from significant ringing displayed in the plot of the resulting current in Figure 2-

8, the system is indeed affected by the presence of both inductive and resistive elements.

The parameters which verify the model for the steel sheet were obtained by using methods

discussed in detail in Chapter 3.
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2.2.2 A Refined Model of the Car

While one model of a steel sheet has been proposed and validated, the claim that an

automobile chassis can be successfully modelled as a steel sheet has yet to be experimentally

demonstrated. In order to verify the proposition, an experimental setup was constructed in

a similar manner to that described in Figure 2-7, with terminals a and b being hooked up to

the chassis via to nodes 2 and 4, respectively. Indeed, when the model from Equation 2.13

was used to characterize the electrical behavior of the chassis (again using the parameter

estimation methods of Chapter 3), it was found to perform poorly. This fact is immediately

apparent when comparing the two plots in Figure 2-9.

0 1 2
Time (sec)

Figure 2-9: Plot illustrating the inability of the R + Ls model
behavior of the entire chassis. The measured current is denoted
prediction is denoted by the dashed line.

to describe the electrical
by a solid line, while the

Upon further reflection, the disparity between the behavior of a single steel panel and

the entire automobile chassis is not extremely surprising. Many possible explanations for

this difference exist. One reasonable justification is based upon the observation that the

chassis is much more complex than a single sheet of steel, as it is composed of many different

pieces of steel joined by a set of spot welds. Furthermore, the electrical behavior of two

welded sheets of steel is not equivalent to the behavior of one large uniform steel plate;

possible differences include the nonuniformity of current density in the welded sheets as

well as nonlinear effects introduced from the variable current density. Research has not
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been performed to pinpoint the exact cause for the failure of the original model, but the

need to refine the model to account for the shortcomings of the present model is apparent.

One tactic which was successfully employed in refining the model takes a popular ap-

proach to model refinement: as it is likely that the problems with the model stem from

a poor approximation of the behavior of the electromagnetic field present, more degrees

of freedom were added to the model in order to capture this behavior. These degrees of

freedom were added by changing the model of a chassis from a single sheet of steel to grid of

an interconnected network of steel plates, each of which is modelled by the experimentally

validated model of a steel sheet. This model is best described pictorially in Figure 2-10.

zl

z4 z2

L z5

z3 3

Figure 2-10: A refined electrical model of the automobile chassis, representing its nature as

an interconnection of steel panels.

With the decision to add extra terms to the model comes a much more subtle question:

how many extra terms should be added? In other words, the question now posed regards

the number of steel plates which comprise the model of the chassis. A great deal of work has

been done in the study of optimal methods to add terms to models, a topic which is known

generally as model order determination. Though it is possible to use many techniques to

choose an optimal number of terms, this thesis took a more pragmatic approach and simply

used as many steel plates as were necessary to fully connect together all of the observed

nodes (resulting again in Figure 2-10). This was done for two reasons, the first being that a
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visual inspection of the chassis does not suggest any particular branches of the model which

should obviously be removed. All of the branches were also kept simply because problems in

obtaining parameter estimates were not encountered with this model, and it was therefore

not modified any further.

Though this new model is able to capture the behavior of the automobile chassis more

accurately, the modifications also introduce a set of issues which must be accommodated.

Most significant among these issues is the fact that the current flowing through each branch

of the model can no longer be directly measured. One of the reasons that the original

model was attractive was the possibility of measuring the current through and voltage

across the impedance at all times, so that a relation only needed to be constructed to relate

the two variables. By changing models, this fact has ceased to be true; an examination of

the experimental setup as it pertains to the new model Figure 2-11 will illustrate the new

challenge posed by the change. The process of collecting data requires that a current itesti,

.- 1----------- V21 ------------ P- +
itestl test2

+ z +

z6 z5

V14 z4 z2 V23

- z3

. etu+------------ V34 -------------- + itest3

Figure 2-11: A diagram of the voltage and current measurements made as reflected in the

refined model of the chassis.

itest2, or itest3 be injected at the corresponding node while the voltages V1 4 , V12, V23 , and

V34 are measured. It is apparent that the branch currents can not be directly measured,

thus precluding the direct determination of all six branch impedances. One important fact

to note from this diagram is that, while the branch currents are not uniquely specified by
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one experiment, their sum at each node is constrained by Kirchoff's current law. This idea

will factor prominently in the method for obtaining the parameters, which is discussed in

the next chapter.
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Chapter 3

Parameter Estimation

After the examination and analysis which took place in Chapter 2, a set of continuous-time

models for the electric utility and the automobile chassis were obtained. Though these

models have their own merits, they will not be useful until a set of parameters mapping

particular inputs to particular outputs is obtained. In terms of the structure established

in Chapter 1, the goal of this chapter is therefore to find the particular values po for the

chosen model F(p) that most accurately reproduce the behavior of the physical system

under examination.

A number of different methods of parameter identification were tested and compared.

There was a marked difference between the methods used on the electric utility and those

used on the automobile, however. In order to illustrate this difference, consider the param-

eter estimation of the system described in Equation 3.1.

dx" dx" 1  dx
y(t) = AO d / di dt +jn 1 - +pnx(t) (3.1)

= posn + ,is~1 + +Pn-is+ pn (3.2)

Under the assumption (which will be demonstrated shortly) that there exist methods for

using only x(t) and y(t) to find values of po through Pn that accurately represent the system,

it is clear that the problem of estimating the parameters of the electric utility can be solved.

Unfortunately, this fact does not imply that the estimation of the automobile chassis is also

possible with the same methods. While the individual branches in the model conform to

the above input/output relationship, the input variable in the above formulation cannot be

directly measured. In order to characterize the automobile chassis, a series of modifications
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must therefore be made to the approach taken in estimating the parameters of the electric

utility. These changes will be described in detail.

3.1 The Electric Utility

Two different methods were evaluated in the process of performing the parameter identi-

fication of the electric utility. The first method, referred to as the A method, estimates

the parameters of the continuous time transfer function (i.e. computes the R and L of the

electric utility.) This is useful because it can be checked against physical intuition regarding

the expected values of resistance and inductance.

The second method, referred to as the ARMAX method, estimates the parameters of

an equivalent discrete-time model. The parameters of this transfer function can be related

to the continuous-time parameters via a mapping in the complex plane, such as the bilinear

transformation [10]. Though these discrete-time model parameters do not give the same

degree of insight as an equivalent set of continuous-time parameters, the sampled data

environment where both identification and the prediction of voltage distortion are performed

is more conducive to the use of discrete-time models.

3.1.1 The A Method

Consider the relationship between i(t) and v(t) governed by the following general continuous-

time transfer function

i(t) (Ro + Lp + 6p2) = 's(t) - v(t) (3.3)

where the time-differentiation operator p = -. The process of directly finding the pa-

rameters RO, L, and J of this system would be possible if the quantities i(t), pi(t), p 2 i(t),

and (i,(t) - v(t)) were available for measurement. Unfortunately, only the quantities i(t)

and 6,(t) - v(t) are accessible, so that a method for obtaining pi(t) and p2 i(t) from i(t)

is necessary. The most intuitive way for obtaining the parameters, that of approximating

the derivatives with differences, is extremely sensitive to noise and is not a viable solution.

As an alternative to measuring or approximating p, introduce the A operator as given in

Equation 3.4.
1

A = , r > 0 (3.4)
1+ pr
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In order to bypass the problems associated with the derivative, an operator substitution

can be made. After some simple manipulation,

P = A (3.5)

It is important to note that A is not a scalar, but rather an operator; this is to say that Ax

is the result of applying the low-pass operator A to x. One of this A operator's attractive

properties can be seen from Equation 3.4; as it is a low-pass operator, it tends to filter out

high-frequency noise which can introduce bias into the parameter estimates.

In order to use the A operator to estimate the parameters of the continuous-time transfer

function, the relation in Equation 3.5 must be exploited so as to eliminate p from the equa-

tion. Performing this substitution and multiplying through by Ar, Equation 3.3 becomes

(b (1 - 2A + A2) + TL (1 - A) + T2A2Ro) i(t) = T2 A2 (ps(t) - v(t)) (3.6)

This equation is much more computationally attractive, as the only challenge now is to

apply the A operator to i(t) and v(t) so as to generate Ai(t), A2 i(t), and A2 v(t). Equation 3.6

can be rewritten so as to produce a linear least-squares tableau

Al

[A2 ( ps - v)](t) [Ai](t) [A2 i](t) #2 (3.7)

A3j

where

r2

A2 = TL

TL -2Ro

The estimates of the continuous-time parameters R 0 , L, and 6 can thus be extracted from A

by simple algebra [15]. The quantities i, v, and v, are column vectors of N samples each, so

that the tableau ( [A 2 (ib - v)](t) [Ai](t) [A 2 i](t) ) contains three columns and N rows.

This matrix is low-pass, since the A operator has acted on all of its columns. Additionally,
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the estimates A will be unbiased as long as N is large. A detailed treatment of the noise

model for the A method can be found in [7].

The parameter r is selected by the user so as to preserve the desired information and

minimize measurement noise. For the timescales involved in estimating the parameters of

the electric utility, r = 0.002s were used, but a relatively wide range of T is acceptable in

practice. Practical experience has shown that the operator, although designed to work in a

continuous-time sense, can be applied to finely sampled quantities with little error.

It also is important to note for implementation's sake that the tableau could have instead

been formulated as it is in Equation 3.8.

[i - 2Ai + A2i](t) T[1 - Ai](t) 2 2i](t) L = 2 A2(ps - v)](t) (3.8)

\RO

This formulation was not used because the condition number of the resulting tableau would

have been much larger than the condition number of the tableau in Equation 3.7. Since the

accuracy of the linear least-squares solution is proportional to the square of the condition

number, the estimate generated by the tableau of Equation 3.8 would not have been nearly

as accurate as that which was generated by Equation 3.7.

An Example

As a simplified example of how the A operator substitution method works, consider the

circuit in Figure 3-1. The goal of this example is the identification of R 2 and L, where

R2 = 0.02Q and L = 12pH. If the MOSFET is used as a switch, a snapshot of both i(t)

and v(t) shortly before and after the MOSFET is turned on are illustrated in Figures 3-2

and 3-3. These simulations were generated with Matlab; the code is available in Appendix

C. Note that some random noise was added to each signal in order to simulate the effects

of measurement noise.

Many of the problems inherent in the experimental setup of the electric utility have

obviously been left out of this example for the sake of simplicity. To continue the example,

the model for the system to be modelled is as follows in Equation 3.9.

(R + Lp)i(t) = v(t) (3.9)
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Figure 3-1: Example circuit used to illustrate the mechanics of the A method.
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Figure 3-2: Plot of i(t) resulting from a Figure 3-3: Plot of v(t) resulting from a

step in vs(t). step in v, (t).

By performing the substitutions suggested by Equation 3.5, the following linear least-squares

tableau results.

[AV](t) [Ail(t = T i(t) (3.10)
_ L

A r of 5 x 10- 5s is chosen by taking the time scale into account, and the filtered voltages are

generated using the isim command in MATLAB. These voltages are plotted in Figure 3-4.

Notice that one of the beneficial features of the A method is evident in this plot; the

noise which was present in the original voltage and current waveforms has been filtered out.

As these waveforms are used as the regressors in the least-squares tableau, the parameters
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Figure 3-4: Plot of the low-pass filtered Figure 3-5: Plot illustrating the effective-

current and voltages. Ai is dotted, while ness of the A method. i(t) is solid, while
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that they produce will not show the effects of the noise.

Though it has many desirable properties, the A method is not entirely without faults.

If the waveforms contain a good deal of bias which is corrupting the desired data, such

as measurement noise, the parameter estimates will reflect the least-squares fit to this

corrupted information. Additionally, if the waveform has a very low amount of frequency

content, the parameters will be very sensitive to the value of r which is chosen. Finally,

the filtering property of the A method is beneficial if the group of frequencies containing

noise are segregated from the frequencies of the measurement signal, but if frequencies of

the measurement and the noise are close to one another, then the filtering effect of the A

method will eliminate some of the information which would be used to obtain parameter

estimates.

In this example, however, neither of these issues is pertinent, as is possible to see from

the parameters obtained from the least-squares solution of the tableau. The estimated

values of the parameters are L = 12.067pH and R = 0.0202P. These parameters are very

close to the actual parameters; a plot of the predicted current and the actual current in

Figure 3-5 shows high quality of fit.
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3.1.2 The ARMAX Method

As previously mentioned, one of the principal problems with the A method is that it is not

able to model some types of colored noise, such as DC offsets. In comparison, ARMAX

models (autoregressive moving average with exogenous input) include a noise model that

can fit colored noise as well as the response of the modelled system.

Recall the continuous-time model in Equation 3.3. By using a mapping from continuous-

time to discrete-time, such as the bilinear transformation, a discrete-time approximation to

the above model can be obtained. This approximate model can be written

P (z- ) (5s [k] - v[k]) = P (z %)i[k], (3.11)

where P(z- 1 ) denotes an nth-order polynomial in z-1 with coefficients ak, e.g.

P, (z- 1 ) = ao + aiz- + a2Z (3.12)

The fundamental improvement which the ARMAX model makes over the basic discrete

time model is that a colored noise term is added to the transfer function which is being

estimated. This allows the model to accommodate colored noise which would otherwise bias

the parameters. Equation 3.13 shows the discrete-time model for the electric utility with

the colored noise term, which was fit using the ARMAX routine available in the MATLAB

System Identification toolbox.

P -)(6s[k] - v[k]) = PW (z )i[k] + P (z-)ek] (3.13)

3.2 The Automobile Chassis

As was the case with the electric utility, the parameter estimation of the automobile chassis

was investigated in both a continuous-time and a discrete-time sense. The continuous-time

A method was again used to obtain the parameters; unfortunately, it did not work very well.

Some of the fundamental problems present in using the A method to identify the parameters

of the model of the chassis as contained in Figure 2-10 will be discussed in the following

sections.

Additionally, this section will also present a discrete-time model which was also tested.
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This discrete-time model was derived from the continuous-time model in a slightly different

way than the discrete-time model of the electric utility. Furthermore, the limitations placed

on the parameter estimation of the model required that a specialized method be imple-

mented, rather than a cookbook approach taken by a routine like ARMAX. This method

will also be explained.

As will become clear shortly, it is generally more difficult to estimate the parameters of

a 12-element model than a 2-element model. In a general sense, the engineer attempting

to obtain parameter estimates might not recognize this fact, as the existence of codes such

as are contained in the System Identification toolbox of MATLAB do most of the work

without providing much of a hint as to their workings. In this case, the specificity of both

the continous-time and discrete-time models prohibit the use of such programs. As linear

least-squares techniques cannot be used to minimize (y - ) for either model of the chassis,

an abbreviated explanation of a method for performing nonlinear minimization is given in

the following section.

3.2.1 Nonlinear Minimization

As stated in the introduction of this chapter, the goal of parameter estimation is to find

some set of values A which will make the predicted output f(x, A) = as close as possible

to the actual output y. Though there are many different ways of measuring the degree of

"closeness," one common standard is making the sum of the squared differences between

the two functions as small as possible. Cast in the context of parameter identification, this

means that the goal is finding some optimal value of A which will minimize the function

g(A), where g is defined by

g(I) = y - f (X; P) (3.14)

This step is performed most easily when the system is linear, so that f (x, A) can be expressed

as a matrix multiplication AA. One of the reasons that the A is so attractive, in fact, is

that it can be formulated as a linear least squares problem. In this case, the minimum sum

of the squared differences between AA = y and y can be calculated analytically, as given in

Equation 3.15.

A= (A A AT b (3.15)
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Unfortunately, the situation often arises where the loss function g(y) consists of a set of

nonlinear equations. The loss functions which arise in the identification of the model pa-

rameters of the automobile chassis fall into this category. It is therefore necessary to resort

to numerical methods, whereby an initial guess for the parameters pt is proposed and then

refined via an iterative algorithm.

If one were to ponder the problem of finding the minimum of some n-dimensional surface

with any number of curves and valleys, a number of geometric strategies would probably

leap to mind. One strategy might be to start at some initial point, look for the direction

in which the surface moved most rapidly downward, and then pick the next point so as to

move in that direction. Another strategy might be to pretend that the whole surface was

governed by the behavior around that initial point, linearize around that point, and then

pick the next point so as to place it at the minimum of that linearized surface. These two

strategies constitute the essence of two popular minimization methods: steepest descent and

Gauss-Newton. Though treatments of both of these algorithms are fascinating, extensive

analyses have already been written and are beyond the scope of this thesis; for the purposes

of sufficient background, each method is summarized below.

The steepest descent method of minimization is a fairly simplistic one, as it looks in

the direction of the steepest downward slope to pick the next point. In other words, the

minimization proceeds along the negative gradient at each iteration so that the step J.

required to compute Ak+1 = Ak + 6 g is given by

699 09= O-, (3.16)
69 - (P1 I p2 onp

where a is chosen so that the minimization proceeds along the negative gradient. A thorough

exposition of the steepest gradient method is given in [14].

By way of comparison, the Gauss-Newton minimization algorithm is fundamentally

as straightforward as the steepest descent method. The mathematical notation is more

difficult to follow, unfortunately. The method constructs the first order Taylor expansion of

the nonlinear function around the starting point Ak so that the linearized set of equations

adopt a familiar form, as seen below.

J61 = b (3.17)

where 61 is the step that takes Ak to jk+1, J is the jacobian evaluated at Ak, and b is a
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combination of y, Q, and f (x; p) evaluated at Ak. The form of the solution to this linearized

set of equations is therefore given by Equation 3.15, which produces the value of 61 needed

to reach the new linearized minimum from k'. A formal treatment of the Gauss-Newton

approach to minimization is given in [3].

Unfortunately, many of the minimization problems encountered in experimental circum-

stances bring out the shortcomings of these methods. Two such problems that arise while

using the Gauss-Newton method occur with loss functions that possess local minima as

well as a global minimum. The first problem arises because the direction in which the

minimization proceeds at each step assumes that the linearization is valid over the entire

parameter space. This is obviously false, as evident by the presence of many local minima.

Furthermore, the Gauss-Newton method is prone to getting stuck in local minima, rather

than finding the global minimum. Both of these problems can be manifest when considering

good and bad initial guesses; with a bad initial guess, Gauss-Newton can easily get stuck

in a local minimum. With an initial guess reasonably close to the global minimum, on the

other hand, Gauss-Newton might assume that the linearization holds over a larger region

than it actually does. This can result in a step which overshoots the global minimum,

thereby putting the method once again at risk of converging on a local minimum.

Though the method of steepest descent is not as prone to getting caught in local minima,

it has its own particular problem: it tends to converge very slowly. If the loss function is

a narrow valley, the steepest descent solution will bounce back and forth across the valley,

zeroing in on the global minimum at a very gradual rate. This convergence happens so grad-

ually, in fact, that the amount of time required to find the minimum is often prohibitively

large.

The Levenberg-Marquardt algorithm was devised with the hope of creating an algo-

rithm which uses some of the traits of both the Gauss-Newton method and the steepest

descent method. The Levenberg-Marquardt algorithm generally behaves much like the

Gauss-Newton method, but it enforces a step size limit because it acknowledges the fact

that the linearization of Gauss-Newton is not valid over the entire parameter space. By en-

forcing the limit in step size, the Levenberg-Marquardt method can approach the direction

in which steepest descent would converge. Levenberg-Marquardt is still somewhat suscep-

tible to the perils of local minima, but it is less so than Gauss-Newton. The ability of this

algorithm to quickly and reliably find the value of A at which a loss function was minimized
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was used extensively in estimating the model parameters of the automobile chassis, as will

be demonstrated in the following sections.

3.2.2 The A Method Revisited

As illustrated by the example of the electric utility, the A method works by directly estimat-

ing the numerator and denominator coefficients of a transfer function. One quality of the

transfer function model of the utility that made this method so successful, however, was the

fact that each coefficient was only related to one system parameter. Stated differently, the

effectiveness of the A method was partially due to the fact that the highest power of s was

only related to the inductance L, while the coefficient of the constant term was only related

to the DC resistance Ro. The significance of this fact becomes evident when attempting to

use the A method to find the parameters of the automobile chassis. Recalling the experi-

mental setup for collecting parameter estimation data (as shown in Figure 3-6) it is clear

1 ------------ V21 ------------- + .
itestl test2

+~ z1+

z6 z5

V14 z4 z2 V23

- z3

------------ V34 ------------- 0- + itest3

Figure 3-6: A diagram of the voltage and current measurements made as reflected in the
refined model of the chassis.

that the transfer functions relating the voltage across any branch to the total current flow-

ing into the network will be very complicated. These transfer functions were calculated by

entering the loop and node equations into MAPLE, and solving for the analogous transfer

functions from current into nodes 1, 2, and 3 to the four voltages V14, v2 1 , v 23 , V34. These
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transfer functions are tabulated in Appendix B; suffice it to say that even a short glance at

them will reveal their extremely nonlinear qualities.

L 1  L 2

zist MVO M

R 1  R 2

Figure 3-7: Example circuit illustrating a transfer function which is nonlinear in the
continuous-time parameters.

An example illustrating a transfer function which has nonlinearities in its component

parameters is given by the circuit in Figure 3-7. Consider the following transfer function

from ii(t) to v0 (t):
vO _ L 1 L2

2 + (L1R 2 + L 2R 1 )s + R1 R 2  (3.18)
Zi (L1 + L 2 )s + (R1 + R 2 )

Additionally, the A linear least-squares tableau resulting from this transfer function is given

by Equation 3.19.

[A 2 vO](t) [AvO](t) [A 2 i,](t) [Ai,](t) =2 1 i (3.19)
3

where

T2 (R1 + R 2 ) - T(L 1 + L 2 ) (3.20)
L1L2

T (Li + L2 )
Ip2 = L1 2 (3.21)

L1L2

Sr(L 1 R 2 + L2 R1 ) - L1 L2 - r 2 R 1R 2  (3.22)
L 1 L 2

2L 1 L2 - T(L 1 R 2 + L2 R1 ) (323)
L1 L 2

The nonlinear relationships between the component values (i.e. Rk and Lk) show that
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the values of R 1 , R 2 , L 1 , and L 2 are not immediately obtainable from the results of the A

method in the same manner as the continuous-time parameters of the electric utility were

obtained (Equation 3.7). It is also important to mention the fact that the above example is

fairly simple; the parameters of the transfer functions of the automobile chassis as produced

by the A method are much more complicated.

As illustrated by the previous example, the use of the A method in directly estimating

the resistances and inductance of the chassis model is experimentally untenable. The set

of intermediate parameters obtained via the A method is related to the desired component

values, however; by using a nonlinear minimization routine, a set of component values can

be found which are related to the intermediate values.

With this knowledge, a strategy may be devised for obtaining the parameters of the

automobile chasssis for the continuous-time model via the A method. The first step is the

solution for the intermediate parameters of all of the transfer functions via the A method.

This step proceeds along exactly the same lines as the solution for the parameters of the

electric utility and produces twelve sets of parameters, each of which describes a transfer

function from one of the test currents to one of the measured branch voltages. These sets

of parameters are then entered into a nonlinear equation solver, such as one using nonlinear

least-squres techniques, to derive the parameters of the continuous-time model.

3.2.3 Discrete-Time Identification

As has been mentioned earlier in this chapter, the additional complexity built into the

model of the automobile chassis is the cause of a number of differences between the process

of parameter estimation for the electric utility and the automobile chassis. It has been shown

that the continuous-time parameter identification of the utility differs from the chassis in

many respects; this difference is also manifest in the model of the discrete-time models

of the two systems. The first aspect in which these two models are different involves the

manner in which the discrete-time model is constructed from the continuous-time model.

Recall that the model of the automobile chassis is constructed in such a way as to

resemble the interconnection of six steel plates between four nodes, where each of the steel

plates is modelled as the series connection of an inductor and a resistor. Rather than use

sophisticated methods to convert the continuous-time model into a discrete-time model, a

simple first-order difference method was used to motivate the discrete-time model of the
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steel plate. According to this method, also known as the Euler method [11], the following

expression serves as an approximation to the derivative of a function f(x):

f'I(X) 2x[k] - x[k - 1] (3.24)
h

where h is the step size, or the distance between consecutive samples. Given the ability to

approximate derivatives, it is clear that a simple discrete-time model can be formulated, as

demonstrated below.

di
V (t) =Ri (t) + L - (3.25)

dt

v(t) v[k] (3.26)

V [k] =Ri [k] +L ik- k-1](3.27)
h

v[k] = ai[k] + bi[k - 1] (3.28)

The discrete-time model therefore looks much like the continuous-time model, the only

difference being that each branch possesses the terminal relationship expressed in Equa-

tion 3.28 rather than that of Equation 3.25. It is significant that this discrete-time model

has nothing to do with numerical integration, a task for which the Euler method is nor-

mally used. The Euler method is merely mentioned as a motivation for approximating the

continuous-time model with a discrete-time formulation.

Now that a discrete-time model of the automobile chassis has been identified, it is

necessary to explain the method by which the parameters of the model are obtained. This

method can be divided into two distinct layers. Recalling that the end goal of this thesis

was the prediction of voltage distortion at a set of points on the car, it is therefore logical

to construct the top layer of the parameter estimation so that its objective consists of

minimizing a loss function g(p) = v[k] - '6[k] over all datapoints k. By adjusting A so as

to minimize the differences between the actual voltages and predicted voltages over a wide

range of test current inputs, the set of fL will be able to predict the voltage distortion at the

prescribed set of points as well as possible.

The second layer of the parameter identification is somewhat more subtle, as it involves

generating a set of 6 from a given set of p so that g(p) can be evaluated and minimized.

This could obviously be accomplished if the currents through each branch were known;
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as the discrete-time model under study is only an approximation of a continuous system,

however, the measurement of these "currents" could never actually take place.

Given that the measurement these individuals currents is not an option, consider instead

the relationship of the measurable current (itest) to the currents in the individual branches.

Though the branches of impedances in the car are an approximation, the voltage across and

current through each of the branches still need to obey Kirchoff's laws. This fact permits

the construction of a number of constraints on the terminal variables. With the currents

and voltages being constrained by KCL and KVL, as well as the test current, the individual

branch currents can be solved for in a least-squared sense. The branch voltages can be

determined from these branch currents, and the nonlinear least-squares routine can thereby

calculate successive values of g(p) as the minimization converges upon the optimal value of

Though the above description effectively outlines the manner in which the parameters

of the discrete-time model are estimated, the process is understood much more easily via

an example, as given below.

An Example

Referring to Figure 3-6, consider the experiment in which the test current is injected into

node 2. By simply summing up the currents flowing into nodes 1, 2, and 3 and writing

three independent voltage loops, the following constraints can be written:

0 = i4[k] + i6[k] - ii[k] (3.29)

htest2[k] = ii[k] + i 2 [k] + i5 [k] (3.30)

0 = i3[k] + i6[k] -i 2[k] (3.31)

0 = vi[k] + v4 [k] -v 5 [k] (3.32)

0 = V3[k] - V4 [k] + v6 [k] (3.33)

0 = v2 [k] - v1 [k] - v6 [k] (3.34)

In order to use these constraints in solving for the currents in a linear least-squares fashion,

Equations 3.29 through 3.34 must be written in matrix notation. The KCL equations are
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most easily reformulated, as is done below:

/ .Z2

-1 0 0 1 0 1 0

1 1 0 0 1 0 3  hest (3.35)

0-11 05 [k]

\ 6 ]

Ai[k] = b[k] (3.36)

where the subscript [k] denotes that the relation holds for the kth sample and the abbrevia-

tions made in Equation 3.36 are for the purposes of later notational simplicity. One notable

fact is that more constraints are necessary for the successful solution of the problem, as

there are effectively still three free variables.

In order to include additional constraints, the KVL constraints must be translated into

relations between the currents. By taking advantage of the model for the individual branches

(Equation 3.28), the following constraints can also be written as:

Pai[k] + Pbi[k - 1] = 0v (3.37)

where

al 0 0 a4  -a 5  0

Pa = 0 0 a3 -a4 0 a6  (3.38)

-a, a 2  0 0 0 -a 6

bi 0 0 b 4  -b 5  0

Pb = 0 0 b3 -b 4  0 b6  (3.39)

-bi b2  0 0 0 -b 6

and the Ov is of the required dimension.

By subtracting the (k - 1)th currents from both sides of the equation, the KVL and KCL

47



constraints can be combined to form one linear set of equations, as given in Equation 3.40.

(A i[k] (b - ( OM i[k - 1] (3.40)
Pa J O J Pb

where the OM matrix is again of the required dimension.

This is recognizable as a linear system of equations Ax = b, which may be iteratively

solved in a least-squared sense for i[k] for every k from k = 1 to k = N, where there are N

datapoints. The initial currents i[k = 0] must be supplied by the user, but this condition

is easily accommodated by making sure that no current is flowing through the car at the

beginning of the characterization experiment.

Now that the individual currents flowing through the six branches have been computed,

the predicted voltages must be computed so that the residual g(p) = v - ib(p) can be gener-

ated and minimized. This is accomplished by applying Equation 3.28 in a straightforward

manner; the following iterative equation is used as k varies from 1 to N to generate v.

V( ai 0 0 0 (i b 0 0 0 1

V2 0 a2 0 0 i2 0 b2 0 0 2(3.41)

V3 0 0 a3 0 i3 0 0 b3 0 i3

V4 [k] 0 0 0 a4 1i4 k 0 0 b4 4  [k- ]

As stated earlier, these voltages v are then used to construct the residual g(p) which is

minimized via nonlinear least squares; the output of the iterative minimization is the value

of p which most closely describes the behavior of the real system.

Two points bear further comment with regard to the above method of discrete-time

identification. The first of these comments has been implied during this discussion, but its

importance requires that it be made explicit. Any one experiment will produce a model

which captures the parameters well as they relate the current flowing in one node to the

voltage distortion at all points on the car. This model will not be able to predict the voltage

distortion due to a current injected at another of the nodes, however. In order to produce

the best overall estimates of the parameters, a set of experiments must be run, in each of

which a current is injected into one of the possible nodes and the set of voltage waveforms

recorded. By minimizing all of the residuals from a group of experiments at one time, the
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estimate of parameters will reflect the best general estimate of the voltage distortion which

can be produced.

The second comment regards the sample rate of the model. It is crucial that the charac-

terization data and the data for simulation be sampled at the same rate; the importance of

this fact can be seen by looking at the poor prediction shown in Figure 3-8. The discrete-
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Figure 3-8: Poor voltage prediction waveforms. The solid line is the concatenation of the
two measured voltages v 34 and V14 , while the dotted line is the discrete-time prediction of
these same two voltages.

time identification process identified a model with a set of data which had a sampling period

of T = 1Is. This model was used in attempt to predict the voltages of a current wave-

form identical to the one used for identification except for the sampling period, which was

changed to T = 2ps. This demonstrates the need to acknowledge the sampling rate of the

model characterization data when using the model to run simulations. In practice, models

which were obtained using characterization data over a wide range of sampling rates were

found to be successful, as long as the cross-validation data was sampled at the correct rate.

An example is given below for the purposes of illustrating the dependence of the model

on the sampling rate of the characterization data, as well as a means for accommodating

differences between the sampling rates of the characterization data and simulation input

data.

Suppose that there exists some voltage and current characterization data with a sampling

period T, which obey the relations v[k] = v(kT,) and i[k] = i(kT), and that there is a
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discrete-time model (Equation 3.42) which relates the two variables.

v[k] = ai[kl + bi[k - 1] (3.42)

If some new characterization data is taken at a new sampling rate T = 10T, and

there is a different model which relate the new sampled voltage ii[k] = v(kti) and current

i[k] = i(kTi), then it is possible to express the parameters of the new model in terms of the

data taken at the original sampling rate T.

[k] = iit[k] + %[k - 1] (3.43)

,6[k] = v(kts) (3.44)

v(kT,) = i(ks) + i((k - 1)Ts) (3.45)

v(1OkTs) = .i2(1OkTs) + bi(10(k - 1)Ts) (3.46)

v[10k] = 6i[10k] + i[10(k - 1)] (3.47)

This shows that the model (6, ) can be used at a different sample rate than T., but

that the difference in sample rates must be accounted for.

The rate at which the samples are taken is also an essential element in the implementa-

tion of the parameter estimation process. A more intuitive way in which to understand the

dependence is that the waveforms will change less between samples as the sampling rate

increases, thereby making the columns of the matrix containing the data nearly identical

and causing difficulties in the process of parameter estimation. The differences between the

columns in the data matrix will also be affected by the the finite precision of the computer.
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Chapter 4

Experimental Validation

Up to this point in the thesis, models and parameter estimation methods have been de-

veloped on a mostly theoretical basis. The primary goal of this chapter therefore consists

of presenting the experimental techniques required to perform system identification and

cross-validation for the electric utility and the automobile. Furthermore, the experimental

results obtained by applying these techniques will be given.

In order to obtain the data required to successfully identify the model parameters, it

was necessary to prepare a characterization experiment. In the cases of both the electric

utility and the automobile chassis, this setup involved both the construction of specialized

hardware to excite the system as well as the specification of a method for measuring the

resulting current and voltage waveforms. A set of hardware built explicitly for the purpose

of system identification was needed so that the the effects of all modelled parameters were

manifest in the data. This can be seen easily by considering the case of the electric utility.

Given that the model of the utility consists of H(s) = Ro + Ls + 6s2, estimating the

parameters L and 6 would be impossible unless the characterization waveforms exhibited

some time-varying behavior.

Although transient-excitation hardware is essential, the overall success of the experiment

is equally dependent upon a detailed and well-conceived data-collection framework. The

importance which should be placed on the data-collection setup can be justified in two

ways. First, unfortunate choices in measurement can often introduce errors which are

otherwise avoidable. For example, an inadvisable method for measuring a resistance on

the order of - 0.01Q would involve making two measurements. The first would measure
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the v/i relationship 1K resistor alone, while the second would measure the v/i relationship

of a 1K resistor in series with the unknown resistance. The unknown resistance could

then be theoretically determined from the difference between the two measurements; this

method would not be recommended because the two measurements would make it much

more susceptible to noise. A better method would involve making a direct measurement of

the resistance (assuming this is possible).

The second reason for emphasizing a carefully designed measurement process is the

fact that the identification will choose parameters for the model in such a way that the

model will fit all available data, including noise, as best as possible. If the noise in the

experiment changes dramatically between characterization and simulation in such a way

that the measured system changes, the resulting simulation will not correctly represent

the behavior of the measured system. Consider the measurement process as illustrated by

Figure 4-1.

noise

X F(x; IL) + G(y;y) - +9

Figure 4-1: General representation of the measurement process, x represents the input, y
represents the output of the physical process, and Q represents the output of the measure-
ment system.

The above diagram illustrates one realistic view of the measurement process, with F

representing the system to be identified and G representing the effect that the measurement

system has on the actual output. Assume that the system produces a set of outputs 9o to

the set of characterization inputs xo, and that the parameter identification routine chooses

some set of parameters A which corresponds to the satisfaction of criteria relating go and xo

to the model P. Note that the behavior of both F and G is captured in the parameters A of

the model. If this model is then used to predict the output y1 to some input xi, the quality

of prediction will be similar to the quality of model fit. On the other hand, any change in

the measurement system will effectively change G, rendering inaccurate all predictions that

F(a) could make of Q1.

Lastly, it is important to review the larger picture of system identification and cross-
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validation in the context of this chapter. Both systems are broken down into two sections: a

data collection and preprocessing section, and a results section. The data collection portion

of each analysis discusses the details of the experimental setup required to generate data

from which it is possible to estimate the parameters of the models obtained in Chapter 2. In

comparison, the results section is concerned with the degree to which the models actually

represent the physical system. The characterization data itself is not presented in the

results section, for it is only useful to the extent that it can allow the parameter estimation

methods to identify the parameters of the models. The quality of the characterization data

is therefore evident only in the ability of the model to predict the actual behavior of the

system being studied; it is these data that are presented.

4.1 The Electric Utility

One of the challenges in collecting data for the construction of a model of the utility is that

the model must govern the system over a wide range of frequencies. A test setup designed

for the purpose of drawing currents is presented, and some of the experimental concerns

encountered during construction and measurement of the utility voltage are explained. Fi-

nally, a set of results obtained by using the test setup and the techniques discussed in this

thesis are given.

4.1.1 Data Collection and Preprocessing

As mentioned in the introduction of this chapter, the ability to obtain parameter estimates

from data is strongly dependent upon the effects of the model being manifest. The currents

drawn from the wall must therefore cause the wall voltage to distort and sag somewhat. One

method for performing this task, as described in [9] and [2], involves connecting a capacitor

between line and neutral in the electric utility. The damped oscillations in current and

voltage that result from this connection are easily measured and highly repeatable, and

thus are useful in obtaining parameter estimates. This thesis takes a somewhat more direct

approach to the introduction of voltage distortion; a programmable current source was

constructed so that currents could be drawn which created voltage distortion possessing

desirable characteristics. These characteristics include the ease of measurability as well as

well-defined time and frequency support. A simplified schematic for this current source is
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displayed in Figure 4-2.

12.1Q

Line

Voltage +

Command LM301 IRFP 450

Road

Neutral 0

Figure 4-2: Simplified schematic diagram for the current source used to excite transients
on the electric utility.

The manner in which this current source works is fairly straightforward. As the op-

amp driving the MOSFET is hooked up in a unity-gain follower configuration, the output

will attempt to drive the source so that the voltage at its inverting input is identical to

the voltage at its non-inverting input. This effectively constrains the voltage at the source

of the MOSFET to be identical to the voltage command waveform at the non-inverting

input of the op-amp. As the maximum voltage at the source of the MOSFET is equal to

the maximum value attained by the voltage command waveform, Rioad is calculated via

Ohm's law so as to yield a peak current Ipeak which produces the desired amount of voltage

distortion. In other words,

Road = Vpeak,command (4.1)
ipeak,desired

Given that the preliminary design of the current source has been specified, it is necessary

to formulate a set of current waveforms which will create the desired amount of voltage

distortion. Additionally, the utility must be characterized over a wide range of frequencies

in order to produce a valid model. To meet both of these criteria, a set of windowed sinusoids
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was produced which spanned the frequency range under study. One representative of this

set of waveforms is displayed in Figure 4-3. This waveform was synthesized by applying a

4-

3 --

2-

1-

0 --

-008 -004 -0.002 0 0.002 0.004 00 0.008 0.01

Figure 4-3: Current waveform used to excite voltage distortion on the electric utility.

Hanning window [10] to each of a set of 10 sinusoids ranging in frequency from 65Hz to

900Hz. The series of samples generated by this process is given by

it[k] = AwH[k](1 + sin(kTswt))a (4.2)

where wH is the Hanning window, T, is the sampling period, wt is the frequency of the

particular test sinusoid, and A is the amplitude of the test signal. The parameters of this

waveform wt and wH were chosen by the frequency of the waveform, T, was picked so that

it was greater than the number of points being sampled by the data acquisition system,

and A was chosen so that the peak current drawn from the wall is large enough to cause a

measurable amount of voltage distortion.

A few practical issues arose in implementing the current source described above, due to

the fact that the a MOSFET was used to command the current waveform. Two well-known

properties of MOSFETs are that current can only pass through them in one direction,

and that they are designed with certain power dissipation limits. Both of these conditions

presented design challenges; since the electric utility generates an AC voltage, the line

voltage spends part of its cycle both above and below the neutral voltage. As current

cannot flow through a MOSFET in both directions, the device had to be protected from

these negative currents. Furthermore, the amplitude of the current required to produce a
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noticeable voltage distortion on the utility was often near 15A, so the mosfet had to be

chosen and protected so that it could withstand a peak power on the order of 1000VA.

These issues were resolved through a variety of steps. To avoid bidirectional current flow,

a diode was placed between the line and the drain of the MOSFET. This diode prevented

current from flowing whenever the line voltage dropped below the voltage at the source of

the MOSFET. The power dissipation issue, on the other hand, was resolved via two steps.

First, a 12.1Q resistor was placed in series with the diode; whenever current was flowing

through the test circuit, this resistor would dissipate a portion of the power. Furthermore,

the current source was only operated for a few seconds at a time, allowing the time-average

power to remain low even though the peak power was relatively high.

One additional problem surfaced with regards to the voltage command for the current

source. In examining Figure 4-2, it is notable that the entire circuit, including the op-amp, is

referenced to the neutral potential of the utility. Since this potential is not equal to ground,

referencing the voltage at the non-inverting terminal of the op-amp with respect to ground

will cause a much different voltage command waveform than is intended. In some circum-

stances, it might be possible to configure the voltage command device so that it too was

referenced to neutral. In this case, however, the complexity of the drive waveform required

that a Tektronix AWG 2005 arbitrary generator be used to generate the required signals.

Since this instrument could not be referenced to neutral, an Analog Devices AD215 isolation

amplifier was used to isolate the ground-referenced waveform produced by the AWG 2005

from the drive at the neutral-referenced input to the current source. The AD215 isolation

amplifier was chosen because its high (- 100kHz) bandwidth enabled it to reproduce the

frequency content of the drive signals accurately.

Upon testing the experimental version of the previously described current source, one

additional difficulty in measuring the voltage waveform was encountered. Previous expe-

rience in using the Tektronix TDS450 oscilloscope to record data had not indicated that

there was any significant problem with quantization, but close examination of the data

produced by recording a i168V sine wave showed that the waveform was quantized into

approximately 3V steps. Since the amount of voltage distortion due to a 15A current is

approximately the same size as the quantization level, it was impossible to estimate the

parameters of the distortion because of the low signal-to-quantization noise ratio.

The methods ultimately employed to measure the voltage distortion took advantage of
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the fact that the distortion was present on top of the 60Hz power line voltage. The first

technique used a differential amplifier to measure the difference between the line and neutral

potentials. This had two beneficial effects: it brought the waveform from the distribution

voltage to ±3V, and it referenced the measured signal to ground rather than to neutral.

This step eliminated the quantization issue; unfortunately, the relative size of the 60Hz

component made the the voltage distortion still difficult to measure.

20K

Line _ 0.852pF
N To data acquisition

Neutral
1M LT1001 50

2C0K

Differential Amplifier High Pass Filter

Figure 4-4: Schematic diagram of the circuit used to measure the voltage between line and
neutral of the electric utility.

The method for eliminating the 60Hz component was also straightforward, as a simple

high-pass filter was implemented to reduce the magnitude of the undesired 60Hz signal

while leaving the voltage distortion with a higher frequency content. The final voltage

measurement system is shown in Figure 4-4.

It is important to note that it was necessary to add some preprocessing of the current

measurement data due to the fact that the output of the high-pass filter was used for the

voltage measurement. This can be illustrated by an example; consider identifying some

arbitrary system U(x; p) from the parameters x(t) and y(t), as shown in Equation 4.6.

x(t)U(X; p) = y(t) (4.3)

If there exists some other system V(x; -y) which commutes with U, that is to say

VU = UV (4.4)
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then the identification of the system U(x; p) is possible with the preprocessed input/output

variables yp(t) = y(t)V(y; y) and xp(t) = x(t)V(x; -y) as long as y is known.

X(t)V(X;-Y)U(x, P) = y(t)V(y;) (4.5)

XP W)U (XP; P) = yp M) (4.6)

To relate this example to the experiment under discussion, note that the system to be

identified, U, is equivalent to the model of the electric utility, while the parallel of the

preprocessing system, V, is the high-pass filter.

This observation implies that it is necessary to filter the current data with a high-pass

filter with the same parameters in order to produce voltage and current data which can be

used to identify the model of the electric utility. This filtering was done in software with

the Matlab routine 1sim.

Armed with the data-acquisition procedures described, it is possible to generate the

quantities 6,(t), v(t), and i(t). As these are the only quantities required to estimate the

parameters of the model for the utility (Equation 2.3), it is possible to apply the parameter

identification techniques of Chapter 3 to this model. This is presented in the following

section.

4.1.2 Results

There were two systems on which the data was cross-validated: a vacuum cleaner and a

laser printer. Both of these devices were chosen because of the large currents that they

draw at startup.

The first parameter identification method tested was the A method. Unfortunately, it

was found to work extremely poorly for the electric utility. Some of the shortcomings of

the A method were discussed in Chapter 3; the exact reason for failure is uncertain. None

of the results obtained by applying this method are therefore presented.

In contrast, the ARMAX method was found to work very well. This can be seen in

both of the systems on which the method was cross-validated. The first system presented

in this thesis is that of the laser printer. By examining the axes on the plot of the current

(Figure 4-5), one might notice that the laser printer draws a fairly significant amount of

current on startup. This is due to the heating element in the printer; it periodically needs
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Figure 4-5: Laser printer current transient used to create voltage

The amplitude is in amps, and the time scale is in seconds.
distortion on the utility.

to heat up the fusing wire which forces the toner to adhere to the paper.
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Figure 4-6: Plot of both the measured

and the predicted voltage distortion on

the electric utility due to a laser printer,
as measured directly between line and

neutral. The amplitude is measured in

volts, while the time scale is measured in

seconds.

0.006 0.01 0.012 0.014 0.016

Figure 4-7: Plot of both the measured
and the predicted waveforms representing
one cycle of the low-pass filtered s(t) -
v(t) for the laser printer. The axes are

labeled similarly.

The two plots in Figures 4-6 and 4-7 illustrate the excellent degree with which the

parameters of the model identified by the ARMAX method predicts the voltage distortion

due to the large current transient. Figure 4-6 is a plot of the total voltage waveform on the

wall, as measured by a high-voltage differential oscilloscope probe; Figure 4-7 is a plot of the

predicted and actual voltage that is actually identified. As previously outlined, the high-
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pass filtered voltage is collected, and then one distorted voltage cycle (VA(t)) is subtracted

from one undistorted cycle (b (t)). The plot of this wavefrom can then be compared to the

model output given the current input during the same distorted cycle (iA(t)). It is apparent

from comparing these two plots that the discrete-time model is able to predict the voltage

waveform to a high degree of accuracy.

The ability of the model to predict the behavior of the vacuum cleaner is equally im-

pressive. The initial current drawn by the motor is close to 100A, and therefore produces

a great deal of voltage distortion. The current can be seen in Figure 4-6. The actual and

predicted voltage distortion are plotted directly in Figure 4-7.

100
ine 1 -

0

-50

-100

-150
0 0.02 004 006 008 01 0.12 0.14 016 018 02 0.22

Figure 4-8: Vacuum cleaner current transient used to create voltage distortion on the utility.
The amplitude is in amps, and the time scale is in seconds.

The two plots in Figures 4-9 and 4-10 illustrate the same behavior as was described

for the laser printer. Note the ability of the model to capture a significant amount of the

small-signal voltage distortion (Figure 4-10).

It is clear from these two examples of cross-validation that the ARMAX method worked

very well in predicting the voltage distortion introduced by current transients, and that the

proposed model of the electric utility accurately describes it.

4.2 The Automobile Chassis

The structure of this section is very similar to that of the electric utility; the test setup used

to obtain the characterization data is explained, and the relevant issues that surfaced in the

analysis of this data are studied. Lastly, the results of applying the system identification
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Figure 4-9: Plot of both the measured
and the predicted voltage distortion on Figure 4-10: Plot of both the measured
the electric utility due to a vacuum and the predicted waveforms representing

cleaner, as measured directly between one cycle of the low-pass filtered b, (t) -

line and neutral. The amplitude is mea- v(t) for the laser printer. The axes are

sured in volts, while the time scale is mea- labeled similarly.

sured in seconds.

techniques to the model are presented.

4.2.1 Data Collection and Preprocessing

The system for exciting and collecting transients on the automobile chassis was much less

complicated than that of the electric utility. In particular, the DC nature of the automobile's

electrical system made the process of characterizing the automobile somewhat easier, as the

parameters of the model did not have to be fit over a wide range of frequencies. Additionally,

many of the difficulties with the electric utility were circumvented by virtue of the fact that

the bus voltage in the electrical system is 12V.

In order to measure the effects of voltage distortion on the chassis, it was necessary to

inject currents into the car with an amplitude of 15-20A. These currents were injected by

a current source similar in design to that which was used on the electric utility. A slightly

simplified schematic for this current source is shown in Figure 4-11. This design was chosen

because the resistor and capacitor inside the current source would ring with the inductance

and resistance of the chassis, thereby manifesting the effects of both elements of the chassis

model.

One particular aspect of the component selection for this design deserves mention. Me-

chanical switches and mosfets in a similar configuration to that which is seen in the schematic
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Figure 4-11: Schematic diagram of the test current source used in the experimental setup
of the chassis in order to excite current transients.

were initially tested, but these were rejected because of their susceptibility to a phenomenon

known as "switch bounce", or the tendency of mechanical switches to repeatedly connect

and disconnect ("bounce") for a short period of time after they are closed. This behavior

produced extremely noisy and unrepeatable transients. A solid state relay was therefore

used because of its immunity to switch bounce; once current starts flowing in the relay,

the voltage across the terminals must be set to zero before the relay will turn off. This is

accomplished via the commutating switch present in the schematic.

The voltage was then measured between the points on each side of the car (as seen in

Figure 2-5). A schematic illustration of this measurement setup is given in Figure 4-12. The

current was measured with a Tektronix A6303 current probe and the branch voltages were

measured with Tektronix ADA400A differential preamplifiers. One helpful trait of both the

current and the voltage measurement devices was the ability to null offsets; as some of the

voltage measurements were only a few millivolts, it was important to minimize the offsets

introduced by the instruments themselves.

One important property of the chassis was uncovered during the process of recording

data. This observation relates to the idea that the test setups during characterization and

cross-validation must be similar. In most circumstances, some degree of variation in the

system is acceptable between the two processes. As data were acquired for the characteri-

zation and cross-validation of the chassis, however, it was discovered that these particular

63



rzl

Z+

z6 z5

++

V14 z4 z2 V23

. - ...-- ---.-. . V34 ~-----~ - -- ~ - -O

Figure 4-12: An illustration of the experimental setup used to excite transients on the
chassis, as well as the voltages and currents measured during the characterization tests.

voltage measurements were extremely sensitive to the magnetic field generated by the steel

located in close proximity to the probes. By moving the voltage probes during characteriza-

tion, or between characterization and cross-validation, the system being modelled effectively

changed. This time-varying behavior was not included in the model, thus resulting in models

which represented the system very poorly.

Furthermore, the contact resistance of the interface between the probes and the chassis

was found to vary widely as the voltage probes were moved. This fact also caused the

creation of poor models because the contact resistance was equal to a significant fraction of

the chassis resistance.

In order to avoid these pitfalls, a number of steps were taken. The first, and most

important, step was to secure and immobilize the voltage probes as far away from the steel

as possible, so that the fields would affect them as little as possible (though more than

desired) and would not change between experiments. In addition, other ways in which the

steel would affect the voltage measurement were avoided through careful cable layout. A

diagram of a poor layout of the voltage probes for the differential preamplifier is shown in
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Figure 4-13. The magnetic fields due to the presence of the steel in this loop were found to

affect the voltage measurement, so care was taken to avoid this layout. Finally, the wires

Chassis

Steel

V+ V_

Figure 4-13: Poor voltage probe placement. Notice how the V+ probe travels over the steel

while the V_ probe travels under it, trapping the piece of steel in the loop.

carrying the current from the battery to nodes 1, 2, and 3 were tie-wrapped to the car, so

as to prevent the magnetic fields due to the chassis from interfering with the measurement

in a variable way.

Very little preprocessing of the data was required for the chassis. Despite the best efforts

to the contrary, there were still small DC offsets in some of current and voltage data; these

were subtracted off by recording the waveforms at times around the moment the switch was

closed. The data were also resampled so that the sampling period was sized appropriately

for the process of discrete-time identification, as discussed at the end of §3.2.3.

4.2.2 Results

Upon testing the A method of system identification, it was found that it did not work

very well for the chassis. There are many possible reasons for the failure of the method;

one reasonable explanation is that the nonlinear minimization was trying to minimize a

residual comprised of only 24 (8 parameters x 3 experiments) different values. Since the

method was trying to find the optimal values of twelve different parameters which were

nonlinearly related to the 24 parameters obtained via the A method, it is quite possible that

the 24 experimental parameters did not provide enough constraints to successfully find the

model parameters. Furthermore, the loss function may have been very poorly formed, with

many local minima, so that any expectation of finding a reasonable answer was ill-founded.
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Suffice it to say that the A method did not work well, and that no experimental predictions

were obtained with it.

In comparison, the discrete-time identification method worked much better. This can

be seen by looking at the following cross-validation plots. This first set of plots was made to

demonstrate the ability to which the discrete-time identification method can fit the transient

excited by the current source. The current transient which served as the input to the model

is given in Figure 4-14, and the predicted and measured voltages are given in Figures 4-15

and 4-16.
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Figure 4-14: Current transient injected into node 2 with an excitation from the current
source. The time scale is in seconds, and the amplitude is in amps.

These predictions were not performed on the characterization data; rather, they were

performed on a separate experiment by using the test current source over the same time

scale as the characterization data. The fit of the prediction to the measured data looks

remarkably good in the cases of V34 and V14, but a comparison of Figure 4-16 to Figure 4-15

might suggest that only some of the voltage waveforms fit well. This is somewhat true, but

by noticing that the distortion in Figure 4-15 is between 10mV and 35mV, it is reasonable

to expect that simple measurement noise and instrumentation bias is responsible for the

degree to which the prediction does not match the measurement. These effects are most

likely not as noticeable on V34 and V14 because the voltage waveforms for prediction are so

much larger.

A cross-validation experiment was then carried out with a headlight. The current tran-
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Figure 4-15: Concatenated plots of v 21 - ' W 100:1 - 250 300 400 45

and v23 with an excitation from the cur-
rent source. The solid line is the actual Figure 4-16: Concatenated plots of V34

data, while the dotted line is the predic- and v 14 . The legend is similar.
tion. The sampling period is T = 2ps
and the amplitude is measured in volts.

sient which served as the input to this test is given in Figure 4-17 and the plots of the

corresponding voltage distortion are shown in Figures 4-18 and 4-19. It is possible to see

that these results are similar; the predictions of V34 and V14 are very accurate, while the

predictions of v2 1 and V23 are not quite as accurate. One explanation for the large size of

V34 and v1 4 to v21 and v23 is that the measurement of the first two voltages includes the

impedance of the bonding strip which ties the chassis to the negative post of the battery,

while the second measurement does not. The idea that the bonding strip has a higher

impedance than the sheet metal of the automobile chassis is plausible, but this idea has yet

to be verified.

The final cross-validation experiment which was performed also used the headlight, but

it took place over a longer time scale. Once again, the current transient is shown in Figure 4-

20 and the voltage distortion is shown in Figures 4-21 and 4-22. These plots resemble the

plots of voltage distortion seen before in their accuracy and behavior, but one point is

notable about these plots. The discrete-time identification for the model of the longer time

scale had a sampling period of 4ps, but the sampling period for the data in the plots is

different - it is 8ps. This fact is somewhat surprising in light of the dependence of the model

on the sampling rate of the characterization data, as presented in Figure 3-8. One possible

explanation for this phenomenon also exists, however. By realizing that the resistance of
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the car will dominate as the time scale over which the distortion is examined grows, thus

decreasing the dependence of the model on the terms due to inductance, the model will tend

to behave more like vb[k] = abib[k]. Though this is a plausible argument and is obviously

supported by the given data, this fact also has yet to be verified.

Nevertheless, it is clear that the discrete-time identification method is able to capture

the parameters of the model well. Moreover, the viability of the proposed model of the

automobile chassis has been demonstrated.
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Figure 4-17: Current transient injected into node 2 with an
The time scale is in seconds, and the amplitude is in amps.
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Figure 4-18: Concatenated plots of V2 1
and V23 with an excitation from the head-
light. The solid line is the actual data,
while the dotted line is the prediction.
The sampling period is T = 2ps and the
amplitude is measured in volts.
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Figure 4-19: Concatenated plots of V34
and V14 . The legend is similar.
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Figure 4-20: Current transient injected into node 2

over a slightly longer time scale. The time scale is in
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Figure 4-21: Concatenated Plots Of V21
and V23 with an excitation from the head-
light over a longer timescale. The solid
line is the actual data, while the dotted
line is the prediction. The sampling pe-

riod is T = 8ps and the amplitude is mea-
sured in volts.
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seconds,

excitation from the headlight
and the amplitude is in amps.
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Figure 4-22: Concatenated plots of V34
and v 14 . The legend is similar.
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Chapter 5

Conclusions

This thesis proposed and verified methods for predicting voltage distortion in two systems

in common use today: the electric utility and the automobile. These systems were chosen

for analysis because the experimental techniques required to perform the prediction in each

system are are somewhat different, as the utility is an AC system and the automobile

operates in a DC environment. The possibilities of extending the work done in this thesis

to other systems are rich. Furthermore, the nature of predicting voltage distortion as an

problem of estimating unknown impedances was discussed.

Physical models were developed for both the electric utility and the automobile chassis.

The model for the utility was developed based upon knowledge of the general makeup of

the components in a building's electrical system, and this model was further refined with

using information acquired from experimental results. A similar model was constructed

for the chassis, and this model was also refined by the use of information gathered from

experimental data.

A number of different techniques for performing parameter identification were then de-

veloped. A continuous-time (A) method and a discrete-time (ARMAX) method were out-

lined for use on the electric utility, and the advantages and shortcomings of each method

were explored. Similarly, the use of the A method was proposed for the problem of iden-

tifying the parameters of the automobile chassis, and a different discrete-time method of

identification was also considered.

Finally, the implementation of the models and parameter identification methods were

explored for both systems. It was found that the A method did not work well, despite its
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attractiveness as a continuous-time parameter identification technique. In comparison, the

discrete-time identification techniques discussed worked well and suggest further exploration

in both systems.

5.1 Further Work

The possibilities are rich for further work in both systems. The method for estimating the

impedance of the utility was explored fully at one outlet; further investigation would suggest

estimating the impedance at a number of outlets and predicting the voltage distortion at

one outlet given a current transient present at another. Furthermore, research should be

performed with the goal integrating the estimation work done in this thesis with present

research in non-intrusive load monitoring. This would enable the prediction of voltage dis-

tortion due to individual load transients at any point in a building through the examination

of only the aggregate power flowing into the building.

The possibilities are equally suggestive for further work in predicting voltage distortion

on the automobile chassis. A certain amount of work is immediately necessary, for this

thesis has only provided a framework for investigation as well as a general proof-of-concept;

the refinement of the tools developed is the obvious first step to be undertaken. Another

interesting topic might be the investigation of the impedance of a number of cars at various

ages; this might result in some interesting findings about the behavior of the automobile

electrical system throughout the lifespan of the automobile. Furthermore, the possibility

of locating faults and performing diagnostic behavior based upon the voltage transients

observed in the automobile has great potential.
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Figure A-1: Current source for the electric utility.
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Schematics

A.1 The Electric Utility

A.1.1 Current Source



A.1.2 Voltage Measurement Circuit
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Figure A-2: Voltage measurement circuit for the electric utility.

A.2 The Automobile Chassis

A.2.1 Current Source

Solid State
Relay

Switch B + 9VDC
+I

Vbattery _

1.6F 60tsF

T
Chassis

Figure A-3: Characterization current source.
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A.2.2 Cross-Validation Source

Solid State
Relay

Switch B + 9VDC

+I
Vbattery - - -

Headlight

Chassis

Figure A-4: Characterization current source.
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Appendix B

MAPLE Output

This appendix tabulates the set of node equations which describe each experiment. These

node equations were written down directly from the schematic diagram given in Figure 2-11.

Note that all multiplications as referred to in the results are actually polynomial multipli-

cations; z5 z1 denotes the polynomial multiplication of (L5 s + R 5 ) and (Lis + R 1 ), or

L 1 L5 s 2 + (L1 R 5 + L5R 1 )s + R1 R5 .

Injecting current into node 1; the node equations are:

eqn: v21 0 v14v - v34 + it = 0 (B.1)
zi z4 z6

v23 v23+v34 _ v21 =0 (B.2)
eqn2 .= - __ (B.2)____ _

z2 z5 z1

v23 v14 - v34 v34 = (B-3)eqns := += (B)
z2 z6 z3

eqn4 := v14 + v21 - v23 - v34 = 0 (B.4)

And the resulting transfer functions are:

= -it z2 it z4 (z3 z1 - z5 z6) (B.5)
v~s -it(B.I
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4= it z ( z1 z6 + z3 z5 z1 + z3 z2 z5 + z5 z6 z3 + z3 z2 z1 + z1 z6 z5 + z5 z2 z6 + z6 z2 z1)

(B.6)

z4 it z3 (z5 z1 + z2 z5 + z5 z6 + z2 z1)
v3 4 = it 0/-1

V21 = -it
it z4 z1 (z6 z3 + z2 z3 + z5 z6 + z2 z6)

(B.7)

(B.8)

%I = z3 z6 z4 + z3 z1 z6 + z2 z3 z4 + z1 z4 z3 + z4 z6 z5 + z4 z2 z6 + z3 z5 z1

S+ z5 z6 z3 + z3 z2 z1 + z1 z6 z5 + z5 z2 z6 + z6 z2 z1 + z1 z4 z5 + z4 z2 z5

+ z1 z4 z2 + z3 z2 z5 (B.9)

Injecting a current into node 2; the node equations are:

v21 v14 v14 - v34 -

z1 z4 z6

v23 v23 + v34
eqiz:= it z5

v23
eqnr := +

z2
v14 - v34

z6

v21
z1

= 0

v34 0
z3

(B.10)

(B.11)

(B.12)

(B.13)eqng := v14 + v21 - v23 - v34 = 0

And the resulting transfer functions are:

z2 z5 (z4 z6 + z3 z1 + z1 z6 + z1 z4)
V23 = i (B.14)

(B.15)( z4 z2 + z4 z6 + z1 z4 + z1 z6) z3 z5
Vs4 = it OX
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V21 = it

V14 = it

z5 zI (z2 z3 + z2 z6 + z4 z2 + z6 z3)

z5 z4 (z2 z3 + z6 z3 + z3 zl + z2 z6)

%1 = z3 z6 z4 + z3 z1 z6 + z2 z3 z4 + z1 z4 z3 + z4 z6 z5 + z4 z2 z6 + z3 z5 z1

S+ z5 z6 z3 + z3 z2 z1 + z1 z6 z5 + z5 z2 z6 + z6 z2 zl + z1 z4 z5 + z4 z2 z5

+ z1 z4 z2 + zS z2 z5 (B.18)

Finally, injecting a current into node 3, the node equations are:

v21 v14 v14 - v34 = 0
z1 z4 z6

v23 v23 + v34 v21
eqi o:- - _ __ - =0

z2 z5 z1

v14 - v34 v34 v23
z6_: ++ =0eqii:=t+ z6 z3 z2

eqn 12 := v14 + v21 - v23 - v34 = 0

And the resulting transfer functions are:

z3 z2 it (zi z4 + z5 z6 +
V2s = -zt

z4 z6 + zi z6)
(B.23)

(zi z4 z5 + z4 z2 z5 + z1 z4 z2 + z5 z2 z6 + z4 z6 z5 + z4 z2 z6 + z1 z6 z5 + z6 z2 z1 ) z3

(B.24)

(B.25)
z3 z1 (z4 z2 - z5 z6)

V2l = -it
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(B.16)

(B.17)

(B.19)

(B.20)

(B.21)

(B.22)

V34 = it



z4 zS (z5 zl + z2 z5 + z5 z6 + z2 zl) (B.26)
V1 = t (B2

z3 z6 z4 + z3 zi z6 + z2 z3 z4 + zi z4 z3 + z4 z6 z5 + z4 z2 z6 + z3 z5 zi

+ z5 z6 z3 + z3 z2 zi + zi z6 z5 + z5 z2 z6 + z6 z2 zi + zi z4 z5 + z4 z2 z5

+ zi z4 z2 + zS z2 z5 (B.27)
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Appendix C

OCTAVE Code

C.1 The A method example

%# dc lambda method

%# pick the initial values of the parameters

R1 = 2.1;

R2 = 2e-2;

L = 12e-6;

C = 10e-6;

X# set up the transfer function for the total impedance

numi = [R1*C*L (L+R1*R2*C) (R1+R2)];
deni = [R1*C 1];

%# make the time vector

tt = 0:1:4999;
tt = le-7*tt;

%# make the voltage input

vt = [zeros(1, 500) 12*ones(1,4500)];

%# generate the input current

it = lsim(denl, numi, vt, tt);

X# make the transfer function from current to v-out

num2 = [R1*C*L (L+R1*R2*C) R2];

den2 = [R1*C*L (L+R1*R2*C) (R1+R2)];

%# generate v-out
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vi = lsim(num2, den2, vt, tt);

%# add noise to the iin and v-out, use them as

%# characterization data

itu = it + 0.1*randn(size(vi));
viu = vi + 0.1*randn(size(vi));

%# the lambda method

tau 5e-5;
lv = lsim(1, [tau 1], viu,
li = sim(1, [tau 1], itu,

tt);
tt);

mu = [li lv] itu;

p = [tau/mu(2) (1-mu(1))/mu(2)];

%# generate the beautiful example plot

plot(tt, itu, tt, lsim(1, p, viu, tt));

C.2 The Electric Utility

C.2.1 The A method

% leastsq.m - the script that performs the lambda method estimation

function [final] = leastsq(iin,vin,tin)

tau = 0.002; % building parameters for the

lambdanum = [1]; % least squares fit
lambdaden = [tau 1];

lambdali = lsim(lambdanum,lambdaden,iin,tin);
lambda2i = lsim(lambdanum,lambdaden,lambdali,tin);

lambda0i = iin;

lambdalvs = lsim(lambdanum,lambdaden,vin,tin);

lambda2vs = lsim(lambdanum,lambdaden,lambdalvs,tin);

tableaul = [lambda2i lambdali lambda0i];

halfway tableaul lambda2vs;

tableau2 = [tau^2 -tau 1;0 tau -2;0 0 1];

% performing the least squares fit

final = tableau2 halfway; % the long sought after answer

residuall = lambda2vs - tableaul*halfway;
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figure(3);
subplot(211);

plot(residuall);

residual2 = final - tableau2*final;

subplot(212);

plot(residual2);

C.2.2 The ARMAX method

% karakteriz.m - the script which characterizes the electric utility via

% the ARMAX method.

% the number of points in a cycle.
N = 12500;

X the scale factor going from the auxiliary current probe to the scope.
% 10mV/div -> 2A/div

sci = 200;

cd dats

R = 50;

C = 0.852e-6;
numfilt = [R*C 0];
denfilt = [R*C 1];

for %k = 1:20

load -force bart(Xk)sv.dat

load -force bart(%k)i.dat

va(Xk) = interp(bart(Xk)sv(:,2), 3);

ia(%k) = scl*interp(bart(%k)i(:,2), 3);

t(/k) = bart(%k)i(:, 1);

t(%k)up = (((1:length(interp(t(%k),3)))*(t(Xk)(2)-t(%k)(1))) / 3);
t(%k)out = t(Xk)up(1:N);

cd ..

(v(Xk)a, ca(Xk)] = cyclesub(va(k),ia(Xk),12500);
[i(Xk)f, t(%k)f] = lsim(numfilt,denfilt,c(%k)a,to(Xk)ut);

endfor

vf = [via' v2a' v3a' v4a' v5a' v6a' v7a' v8a' v9a' vi0a' v11a' vl2a'
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v13a' vl4a' vl5a' vl6a' vl7a' vl8a' vl9a' v20a'];

cf = [ilf' i2f' i3f' i4f' i5f' i6f' i7f' i8f' i9f' i1Of' ilif' il2f'

i13f' i14f' i15f' il6f' i17f' il8f' i19f' i20f'];

[nnum, nden] = shazam(vf',cf');

save -ascii karhl.asc nnum nden

X shazam.m - the script which performs the ARMAX estimation

function [nnum,nden] = shazam(vsigin,csigin)

% Now do that funky state space parameter estimation stuff.

Z [vsigin csigin];

TH = armax(Z,[2 2 3 0],30);
[nnum,nden] = th2tf(TH);

% analyze the data from the laser printer, and produce prediction plots.

clear;

hold off;

load -force karhl.asc

plotvar = 1;

X the scale factor for the silly current sensor is sc.

sc = 1000;

cd dats

load laseri.dat

load lasersv.dat

load lasertvd.dat

load lasertvuoff.dat

load lasertvuon.dat

id = sc*laseri(:,2);

svd = lasersv(:,2);

tvdd = lasertvd(:,2);

tvudoff = lasertvuoff(:,2);

tvudon = lasertvuon(:,2);

timed = laseri(:,1);

cd ..

S = 86756;

N = 12500;

sc2 = 120*sqrt(2)/max(tvudon);

idup = interp(id,3);
iup = idup;
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svdup = interp(svd,3);
svup = svdup;

tvddup = interp(tvdd,3);
tvdup = tvddup;

timeup = interp(timed,3);

timep = (1:length(timeup))*((timed(2)-timed(1)) / 3);
timeout = timep(1:N);

iupout = iup(S+1:S+N)-iup(S-4*N+1:S-3*N);

svupout = svup(S+1:S+N)-svup(S-4*N+1:S-3*N);

tvdout = tvdup(S+1:S+N)-tvdup(S-4*N+1:S-3*N);

% make the filter

Rf = 50;

Cf = 0.852e-6;
numf = [Rf*Cf 0];
denf = [Rf*Cf 1];

% plot the unfiltered unsubtracted current

if plotvar == 1
gset terminal postscript
gset output "laser-i.ps"

title('Laser unsubtracted unfiltered current');
plot(timep,iup);

else

figure(1)

title('Laser unsubtracted unfiltered current');
plot(timep,iup);

end

% plot the unfiltered subtracted current

if plotvar == 1

gset terminal postscript

gset output "laser-is.ps"

title('Laser subtracted unfiltered current');
plot(timeout,iupout);

else

figure(2)

title('Laser subtracted unfiltered current');
plot(timeout,iupout);

end

X plot the filtered subtracted current

[iupfilt,x] = lsim(numf,denf,iupout,timeout);

if plotvar == 1
gset terminal postscript

gset output "laser-isf.ps"

title('Laser filtered subtracted current');
plot(timeout,iupfilt);

else

figure(3)

title('Laser filtered subtracted current');
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plot(timeout,iupfilt);

end

% plot the unfiltered unsubtracted total voltage

if plotvar == 1
gset terminal postscript

gset output "laser-tv.ps"

title('Laser unfiltered unsubtracted

plot(timep,sc2*tvdup);

else

figure(4)

title('Laser unfiltered unsubtracted

plot(timep,sc2*tvdup);

end

total voltage');

total voltage');

% plot the filtered unsubtracted total voltage

[tvdfilt,x] = lsim(numf,denf,tvdup,timep);

Xif plotvar == 1
% gset terminal postscript

7. gset output "laser-tvf.ps"

% title('Laser filtered unsubtracted total voltage');

% plot(timep,tvdfilt);

%else

X figure(5)

X title('Laser filtered unsubtracted total voltage');

X plot(timep,tvdfilt);

Xend

% plot the experimentally filtered subtracted voltage

if plotvar == 1

gset terminal postscript
gset output "laser.svf.ps"
title('Laser experimentally filtered subtracted voltage');

plot(timeout,svupout);

else

figure(6)
title('Laser experimentally filtered subtracted voltage');

plot(timeout,svupout);

end

s-estimate = dlsim(nnum,nden,iupfilt);

if plotvar == 1

gset terminal postscript
gset output "laser-svpred.ps"

title('Laser predicted/real voltage distortion');

plot(timeout,svupout,timeout,s.estimate);

else

figure(7)
title('Laser predicted/real voltage distortion');

plot(timeout,svupout,timeout,sestimate);

end

% now try to predict the total voltage distortion.
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t-estimate = dlsim(nnum,nden,id);

tvpred = tvudon+testimate;

if plotvar == 1
gset terminal postscript

gset output "laser-tvpred.ps"

title('Laser real/predicted total voltage distortion')

plot(timed,sc2*tvdd,timed,sc2*tvpred);

else

figure(1)

title('Laser real/predicted total voltage distortion')

plot(timed,sc2*tvdd,timed,sc2*tvpred);

end

% analyze the data from the vacuum, and produce prediction plots.

clear;

hold off;

load -force karhl.asc

plotvar = 1;

% the scale factor for the silly current sensor is sc.

sc = 5000;

cd dats

load vaci.dat

load vacsv.dat

load vactvd.dat

load vactvu.dat

id sc*vaci(:,2);

svd = vacsv(:,2);
tvdd = vactvd(:,2);

tvud = vactvu(:,2);

timed = vaci(:,1);

cd ..

S = 85945;

N = 12500;

sc2 = 120*sqrt(2)/max(tvud);

idup = interp(id,3);

iup = idup;

svdup = interp(svd,3);
svup = svdup;

tvddup = interp(tvdd,3);
tvdup = tvddup;

timeup = interp(timed,3);
timep = (1:length(timeup))*((timed(2)-timed(1)) / 3);
timeout = timep(1:N);
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iupout = iup(S+1:S+N)-iup(S-4*N+1:S-3*N);
svupout = svup(S+1:S+N)-svup(S-4*N+1:S-3*N);
tvdout = tvdup(S+1:S+N)-tvdup(S-4*N+1:S-3*N);

% make the filter

Rf = 50;
Cf = 0.852e-6;
numf = [Rf*Cf 0];

denf = [Rf*Cf 1];

% plot the unfiltered unsubtracted current

if plotvar == 1

gset terminal postscript
gset output "vac-i.ps"
title('Vacuum unsubtracted unfiltered current');
plot(timep,iup);

else
figure(1)
title('Vacuum unsubtracted unfiltered current');
plot(timep,iup);

end

X plot the unfiltered subtracted current

if plotvar == 1
gset terminal postscript

gset output "vac-is.ps"
title('Vacuum subtracted unfiltered current');
plot(timeout,iupout);

else
figure(2)
title('Vacuum subtracted unfiltered current');
plot(timeout,iupout);

end

% plot the filtered subtracted current

[iupfilt,x] = lsim(numf,denf,iupout,timeout);

if plotvar == 1
gset terminal postscript
gset output "vac-isf.ps"

title('Vacuum filtered subtracted current');

plot(timeout,iupfilt);
else

figure(3)
title('Vacuum filtered subtracted current');
plot(timeout,iupfilt);

end

% plot the unfiltered unsubtracted total voltage

if plotvar == 1

gset terminal postscript
gset output "vac.tv.ps"
title('Vacuum unfiltered unsubtracted total voltage');
plot(timep,sc2*tvdup);
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else
figure (4)
title('Vacuum unfiltered unsubtracted total voltage');

plot(timepsc2*tvdup);

end

X plot the filtered unsubtracted total voltage

X[tvdfilt,x] = lsim(numf,denf,tvdup,timep);

%if plotvar == 1
X gset terminal postscript
% gset output "vac-tvf.ps"

% title('Vacuum filtered unsubtracted total voltage');

% plot(timep,tvdfilt);

Xelse

% figure(5)

% title('Vacuum filtered unsubtracted total voltage');

% plot(timep,tvdfilt);

%end

X plot the experimentally filtered subtracted voltage

if plotvar == 1

gset terminal postscript

gset output "vac.svf.ps"
title('Vacuum experimentally filtered subtracted voltage');

plot(timeout,svupout);

else

figure(6)

title('Vacuum experimentally filtered subtracted voltage');

plot(timeout,svupout);

end

s-estimate = dlsim(nnum,nden,iupfilt);

if plotvar == 1
gset terminal postscript

gset output "vac-svpred.ps"

title('Vacuum predicted/real voltage distortion');

plot(timeout,svupout,timeout,s-estimate);

else

figure(7)

title('Vacuum predicted/real voltage distortion');

plot(timeout,svupout,timeout,s-estimate);

end

% now try to predict the total voltage distortion.

t-estimate = dlsim(nnum,nden,idup);
tvpred = interp(tvud,3)+t-estimate;

if plotvar == 1
gset terminal postscript

gset output "vac-tvpred.ps"

title('Vacuum real/predicted total voltage distortion')

plot(timep,sc2*tvdup,timepsc2*tvpred);

else

figure(8)
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title('Vacuum real/predicted total voltage distortion')

plot(timep,sc2*tvdup,timep,sc2*tvpred);

end

C.3 The Automobile Chassis

C.3.1 The A method

%# 6 branch estimation via the lambda method

clear

%# load data

dataload

%# define functions

function out = tconv(xl, x2, x3)

out = conv(xl, conv(x2, x3));

endfunction

function out = fconv(xl, x2, x3, x4)

out = conv(xl, conv(x2, conv(x3, x4)));

endfunction

function out = lambdae(data, time, tau)

num = 1; den = [tau 1];

[ld, garbage] = lsim(num, den, data, time);
[lld, garbage] = lsim(num, den, ld, time);

[llld, garbage] = lsim(num, den, lld, time);
[lllld, garbage] = lsim(num, den, llld, time);

out = [lllld llld lld ld data];

endfunction

%# lossfnl for polynomial f(s) of the form

%# f(s) = s-4 + mu1*s^3 + ... + mu4
m# -------------------------

%# mu5*s^3 + ... + mu8
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function out = lossfnl(mu, nv, dv, tau)

out = [( (4 - mu(4)) / tau ) - nv(2)/nv(1);
( (6 - mu(3) - 3*mu(4)) / tau^2 ) - nv(3)/nv(i);

( (4 - mu(2) - 2*mu(3) - 3*mu(4)) / tau^3 ) - nv(4)/nv(i);
( (1 - mu(1) - mu(2) - mu(3) - mu(4)) / tau^4 ) - nv(5)/nv(1);

( mu(8) / tau ) - dv(1)/nv(i);

( (mu(7) + 3*mu(8)) / tau^2 ) - dv(2)/nv(i);

( (mu(6) + 2*mu(7) + 3*mu(8)) / tau^3 ) - dv(3)/nv(i);
( (mu(5) + mu(6) + mu(7) + mu(8)) / tau^4 ) - dv(4)/nv(1)];

endfunction

function out = lossfnla(mu, tau)

out = [( (4 - mu(4)) / tau );

( (6 - mu(3) - 3*mu(4)) / tau^2 );
( (4 - mu(2) - 2*mu(3) - 3*mu(4)) / tau^3 );
( (1 - mu(1) - mu(2) - mu(3) - mu(4)) / tau4 );
( mu(8) / tan );
( (mu(7) + 3*mu(8)) / tau2 );
( (mu(6) + 2*mu(7) + 3*mu(8)) / tau3 );
( (mu(5) + mu(6) + mu(7) + mu(8)) / tau^4 )];

endfunction

X# lossfn2 for polynomial f(s) of the form

X# f(s) = mul*s^3 + ... + mu4

%# -------------------

%# s^3 + ... + mu7

function out = lossfn2(mu, nv, dv, tau)

out = [ mu(4) - nv(1)/dv(1);

(mu(3) + 3*mu(4))/tau - nv(2)/dv(1);

(mu(2) + 2*mu(3) + 3*mu(4))/tau^2 - nv(3)/dv(i);
(mu(1) + mu(2) + mu(3) + mu(4))/tau^3 - nv(4)/dv(1);
(3 - mu(7))/tau - dv(2)/dv(1);

(6 - 2*mu(7) - mu(6))/tau^2 - dv(3)/dv(i);

(4 - mu(7) - mu(6) - mu(5))/tau^3 - dv(4)/dv(1)];

endfunction

function out = lossfn2a(mu, tau)

out = [ mu(4);

(mu(3) + 3*mu(4))/tau;

(mu(2) + 2*mu(3) + 3*mu(4))/tau~2;

(mu(1) + mu(2) + mu(3) + mu(4))/tau^3;
(3 - mu(7))/tau;
(6 - 2*mu(7) - mu(6))/tau^2;
(4 - mu(7) - mu(6) - mu(5))/tau-3];

endfunction

function mu lambdaize(it, vt, tt, tau);

91



num = 1; den = (tau 11;

[lv, garbage] = lsim(num, den, vt, tt);

[li, garbage] = lsim(num, den, it, tt);

mup = LIi lv] it;

mu = [tau/mup(2) (1-mup(1))/mup(2)];

endfunction

%# DC METHOD : RESISTANCE

# experiment 1

function out = getrsfroml(x, ii, tv)

v341 = tv(:,1); v231 = tv(:,2);
v121 = tv(:,3); v141 = tv(:,4);

ri = x(1); r2 = x(2);
r3 = x(3); r4 = x(4);
r5 = x(5); r6 = x(6);

range = 4001:5000;
v34 = v341(range);

v23 = v231(range);
v12 = v121(range);
v14 = v141(range);
ila = il(range);

n34 = -(r5*r2*r3 + r5*rl*r3 + r2*rl*r3 + r6*r3*rS r5*r2*r6)*r4;
dl - (-r3*r4*r6 + r4*r2*r6 - r3*rl*r6 + rl*r6*r2 - r4*r2*r3 - r3*rl*r4 + rl*r4*r2 - rS*r2*r3 - rS*rl*r3 -

v34il = n34/dl;

n23 = rl*r4*r3*r2;
v23i1 n23/d1;

n14 = r4*(-r3*rl*r6 + rl*r6*r2 - r5*r2*r3 - r5*r1*r3 - r2*r1*r3 - r6*r3*r5 + r5*r2*r6);
vl4il = n14/dl;

n12 = r4*rl*(-r6*r3+r2*r6-r2*r3);
vl2il = n12/dl;

out (v34 - v34il*ila;

v23 - v23i1*ila;
v14 - vl4il*ila;
v12 - vl2i1l*i1a];

endfunction

X# experiment 2

function out = getrsfrom2(x, i2, tv)

v342 = tv(:,1); v232 - tv(:,2);
v212 = tv(:.3); v142 = tv(:,4);
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ri = x(1); r2 = x(2);
r3 = x(3); r4 = x(4);
r5 = x(5); r6 = x(6);

range = 4001:5000;

v34 = v342(range);
v23 = v232(range);
v21 = v212(r&;ge);
v14 = v142(range);

i2a = i2(range);

n23 = r2*r5*(r4*r6 + r3*rl + rl*r6 + rl*r4);

d2 = (r3*r4*r6 + r3*rl*r6 + r3*rl*r4 + r2*rl*r3 + rS*rl*r3 + r4*r2*r3 + r4*rS*r6 + r4*r2*r6 + r5*r2*r3 + r

v23i2 = n23/d2;

n34 = (r4*r2 + r4*r6 + rl*r4 + rl*r6)*r3*r5;

v34i2 = n34/d2;

n14 = r5*r4*(r2*r3 + r6*r3 + r3*rl + r2*r6);

v14i2 = n14/d2;

n21 = r5*rl*(r2*r3 + r2*r6 + r4*r2 + r6*r3);
v21i2 = n21/d2;

out = [v23 - v23i2*i2a;
v34 - v34i2*i2a;
v14 - v14i2*i2a;
v21 - v21i2*i2a];

endfunction

%# experiment 3

function out = getrsfrom3(x, i3, tv)

v343 = tv(:,1); v323 = tv(:,2);
v213 = tv(:,3); v143 = tv(:,4);

ri = x(1); r2 = x(2);
r3 = x(3); r4 = x(4);
r5 = x(5); r6 = x(6);

range = 4001:5000;
v34 = v343(range);
v32 = v323(range);

v21 = v213(range);
v14 = v143(range);

i3a = i3(range);

n32 = r3*r2*(r4*r6 + r5*r6 + rl*r6 + rl*r4);

d3 = (r3*r4*r6 + r3*rl*r6 + r3*rl*r4 + r2*rl*r3 + rS*rl*r3 + r4*r2*r3 + r4*rS*r6 + r4*r2*r6 + r5*r2*r3 + r
v32i3 = n32/d3;

n34 = (rl*r4*r2 + r4*r2*r5 + rl*r4*rS + r4*r2*r6 + rl*rS*r6 r4*rS*r6 + rS*r2*r6 +rl*r6*r2)*r3;

v34i3 = n34/d3;

n14 - r3*r4*(r2*rl + rl*rS + r2*r5 + r5*r6);

v14i3 = n14/d3;
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n21 = r3*rl*(r5*r6 - r4*r2);

v21i3 = n21/d3;

out = [v32 - v32i3*i3a;

v34 - v34i3*i3a;

v14 - v14i3*i3a;

v21 - v21i3*i3a];

endfunction

function out = getrs(z, tv, ti)

tvl = tv(:,1:4);

tv2 = tv(:,5:8);
tv3 = tv(:,9:12);

i1 = ti(:,1);
i2 = ti(:,2);
i3 = ti(:,3);

x = le-3*z;

out = [getrsfroml(x, ii, tvl);

getrsfrom2(x, i2, tv2);

getrsfrom3(x, i3, tv3)];

endfunction

tvl = [v341 v231 v121 v141];

tv2 = [v342 v232 v212 v142];

tv3 = [v343 v323 v213 v143];

tv = [tvl tv2 tv3];

ti = [ii i2 i3];

gaussnewton-options("epsfcn", le-4);

gaussnewton-options("ftol", le-4);

[rs, fvec, info, nfev] = lmrecipes('getrs', ones(6,1), tv, ti);

rs = le-3*rs
save -ascii rp rs

%# LAMBDA METHOD : INDUCTANCE

%# VOLTAGE -> CURRENT

%# experiment 1

tau = 5e-6;

lii = lambdae(il, ti, tau);

lv341 = lambdae(v341, ti, tau);

lv231 = lambdae(v231, ti, tau);

lv121 = lambdae(v121, ti, tau);

lv141 = lambdae(v141, ti, tau);

A341 = [lil(:,1:4) lv341(:,1:4)];
b = lil(:,5);
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mu341 = A341 b;

A231 = [lil(:,1:4) lv231(:,1:4)J;
mu231 = A231 b;

A121 = [111(:,1:4) lvl2l(:,1:4)3;
mul2l = A121 b;

A141 = [1i1(:,1:4) lvl4l(:,1:4)];
mul4l = A141 b;

function out = getlsfromlb(x, rs, mus, tau)

mu341 = mus(:,1); mu231 = mus(:,2);
mul2l = mus(:,3); mul4l = mus(:,4);

11 = x(1); 12 = x(2);
13 = x(3); 14 = x(4);
15 = x(S); 16 = x(6);

ri = rs(1); r2 = rs(2);
r3 = rs(3); r4 = rs(4);
r5 = rs(5); r6 = rs(6);

z1 = [11 r1; z2 = [12 r21;
z3 = [13 r3]; z4 = [14 r4];
z5 = [15 r5J; z6 = (16 r61;

n34 = -conv(z4, (tconv(zS, z2, z3) + tconv(z5, zi, z3) + tconv(z2. zi, z3) + tconv(z6, z3, z5) - tconv(z5,

dl = (-tconv(z3, z4, z6) + tconv(z4, z2, z6) - tconv(z3, zi, z6) + tconv(zl, z6, z2) - tconv(z4, z2, z3) -

n23 = fconv(zl, z2, z3, z4);

n14 = conv(z4, (-tconv(z3, zi, z6) + tconv(zl, z6, z2) - tconv(z5. z2, z3) - tconv(z5, zi, z3) - tconv(z2,

n12 = tconv(z4, zi, (-conv(z6. z3) + conv(z2, z6) - conv(z2, z3)));

out = [lossfnl(mu341, n34, dl, tau);
lossfnl(mul2l, n12, dl, tau);

X# lossfnl(mu231, n23, dl, tau);

lossfnl(mui4l, n14, dl, tau)];

endfunction

%# experiment 2

1i2 = lambdae(i2, t2, tau);
1v342 = lambdae(v342, t2, tau);
1v232 = lambdae(v232, t2, tan);
1v212 - lambdae(v212, t2, tau);

1v142 = lambdae(v142, t2, tau);

A342 = [li2(:,1:4) lv342(:,1:4)];
b -1i2(:,5);

mu342 = A342 b;

A232 = [1i2(:,1:4) lv232(:,1:4)];
mu232 = A232 b;
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A212 = [li2(:,1:4) lv212(:,1:4)];
mu212 = A212 b;

A142 = [li2(:,1:4) lv142(:,1:4)];
mul42 = A142 b;

function out = getlsfrom2b(x, rs, mus, tau)

mu342 = mus(:,1); mu232 = mus(:,2);

mu212 = mus(:,3); mu142 = mus(:,4);

11 = x(i); 12 = x(2);
13 = x(3); 14 = x(4);
15 = x(5); 16 = x(6);

ri = rs(i); r2 = rs(2);

r3 = rs(3); r4 = rs(4);
r5 = rs(5); r6 = rs(6);

zi = [11 r1]; z2 = [12 r2];

z3 = [13 r31; z4 = [14 r4];
z5 = [15 r51; z6 = [16 r6];

n23 = tconv(z2, z5, (conv(z4, z6) + conv(z3, zi) + conv(zl, z6) + conv(zl, z4) ) );

d2 = tconv(z3, z4, z6) + tconv(zl, z3, z6) + tconv(zl, z3, z4) + tconv(zl, z2, z3) + tconv(z5, zi, z3) +

n34 = tconv(z3, z5, (conv(z4, z2) + conv(z4, z6) + conv(zl, z4) + conv(zI, z6) ) );

n14 = tconv(z4, z5, (conv(z2, z3) + conv(z3, z6) + conv(zl, z3) + conv(z2, z6) ) );

n21 = tconv(zl, z5, (conv(z2, z3) + conv(z2, z6) + conv(z2, z4) + conv(z3, z6) ) );

out = [lossfnl(mu342, n34, d2, tan);

lossfni(mul42, n14, d2, tau);

lossfnl(mu232, n23, d2, tau);

lossfnl(mu212, n21, d2, tau)];

endfunction

X# experiment 3

1i3 = lambdae(i3, t3, tau);

1v343 = lambdae(v343, t3, tau);

1v323 = lambdae(v323, t3, tau);
1v213 = lambdae(v213, t3, tau);
1v143 = lambdae(v143, t3, tau);

A343 = [1i3(:,1:4) lv343(:,1:4)];
b = 1i3(:,5);

mu343 = A343 b;

A323 = [1i3(:,1:4) lv323(:,1:4)];
mu323 = A323 b;

A213 = [li3(:,1:4) lv213(:,1:4)1;
mu213 = A213 b;
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A143 = [li3(:,1:4) lv143(:,1:4)];
mu143 = A143 b;

function out = getlsfrom3b(x, rs, mus, tau)

mu343 = mus(:,1); mu323 = mus(:,2);

mu213 = mus(:,3); mu143 = mus(:,4);

11 = x(1); 12 = x(2);
13 = x(3); 14 = x(4);
15 = x(5); 16 = x(6);

ri = rs(1); r2 = rs(2);
r3 = rs(3); r4 = rs(4);
r5 = rs(5); r6 = rs(6);

zi = [11 r1]; z2 = [12 r2];
z3 = [13 r3]; z4 = [14 r41;

zS = [15 r5]; z6 = [16 r6];

n32 = tconv(z3, z2, (conv(z4, z6) + conv(z5, z6) + conv(zl, z6) + conv(zl, z4) ) );

d3 = tconv(z3, z4, z6) + tconv(z3, zi, z6) + tconv(z3, zi, z4) + tconv(z2, zi, z3) + tconv(z5, zi, z3) + t

n34 = conv(z3, ( tconv(zl, z4, z2) + tconv(z4, z2, z5) + tconv(zl, z4, z5) + tconv(z4, z2, z6) + tconv(zi,

n14 = tconv(z3, z4, (conv(z2, zi) + conv(zl, z5) + conv(z2, z5) + conv(z5, z6) ) );

n21 = tconv(z3, zi, (conv(z5, z6) - conv(z4, z2) ) );

out = [lossfnl(mu323, n32, d3, tau);

lossfnl(mu143, n14, d3, tau);

lossfnl(mu343, n34, d3, tau);

lossfnl(mu213, n21, d3, tau)];

endfunction

function out = getlsb(z, rs, mus, tau)

mul = mus(:,1:4);
mu2 = mus(:,5:8);
mu3 = mus(:,9:12);

x = le-6*z;

out = [getlsfromlb(x, rs, mul, tau);
getlsfrom2b(x, rs, mu2, tau);
getlsfrom3b(x, rs, mu3, tau)];

endfunction

mul = [mu341 mu231 mul2l mul4l];
mu2 = [mu342 mu232 mu212 mu142];
mu3 = [mu343 mu323 mu213 mu143];
mus = [mui mu2 mu3J;

gaussnewton.options("epsfcn", le-4);

gaussnewton-options("ftol", le-4);
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[lp4
, fvec, info, nfev] = lmrecipes('getlsb', ones(6,1), rs, mus, tau);

lp4 = ie-6*1p4;
save -ascii 6bp4 lp4 rs

%# LAMBDA METHOD : RESISTANCE AND INDUCTANCE

%# VOLTAGE -> CURRENT

%# experiment 1

taul = 5e-6;

smu341 = lambdaize(ii, v341, ti, taul);

smui2i = lambdaize(il, v121, ti, taul);

smui4i = lambdaize(ii, v141, ti, taul);

plot(tl, ii, ti, lsim(i, smu341, v341, ti))

plot(ti, il, ti, lsim(1, smui4i, vl4i, ti))

plot(tl, ii, ti, lsim(i, smui2l, v121, ti))

plot(ctl, cii, ctl, lsim(1, smu341, cv341, ctl))

plot(ctl, cii, cti, lsim(i, smui4i, cvi4i, cti))

plot(cti, cii, cti, lsim(i, smui2i, cvi2i, cti))

%# experiment 2

tau2 = 5e-6;

smui42 = lambdaize(i2, v142, t2, tau2);

smu212 = lambdaize(i2, v212, t2, tau2);

smu232 = lambdaize(i2, v232, t2, tau2);

smu342 = lambdaize(i2, v342, t2, tau2);

smua = lambdaize(i2, v142+v212, t2, tau2);

smub = lambdaize(i2, v232+v342, t2, tau2);

plot(t2, i2, t2, lsim(i, smui42, v142, t2))

plot(t2, i2, t2, lsim(i, smu212, v212, t2))

plot(t2, i2, t2, lsim(i, smu232, v232, t2))

plot(t2, i2, t2, lsim(i, smu342, v342, t2))

plot(t2, i2, t2, lsim(i, smua, v142+v212, t2))

plot(t2, i2, t2, lsim(i, smub, v232+v342, t2))

plot(ct2, ci2, ct2, lsim(i, smui42, cv142, ct2))

plot(ct2, ci2, ct2, lsim(i, smu212, cv212, ct2))

plot(ct2, ci2, ct2, lsim(i, smu232, cv232, ct2))
plot(ct2, ci2, ct2, lsim(i, smu342, cv342, ct2))

%# experiment 3

tau3 = 5e-6;

smui43 = lambdaize(i3, v143, t3, tau3);

smu213 = lambdaize(i3, v213, t3, tau3);

smu323 = lambdaize(i3, v323, t3, tau3);

smu343 = lambdaize(i3, v343, t3, tau3);

plot(t3, i3, t3, lsim(i, smui43, v143, t3));

plot(t3, i3, t3, lsim(i, smui43, v143, t3));
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plot(t3, i3, t3, lsim(1, smul43, v143, t3));
plot(t3, i3, t3, lsim(1, smul43, v143, t3));

plot(ct3, ci3, ct3, lsim(1, smul43, cv143, ct3));

plot(ct3, ci3, ct3, lsim(1, smul43, cv143, ct3));

plot(ct3, ci3, ct3, lsim(1, smul43, cv143, ct3));

plot(ct3, ci3, ct3, lsim(1, smul43, cv143, ct3));

X# INTERMEDIATE VERIFICATION : LAMBDA

X# VOLTAGE -> CURRENT

%# experiment 1

taul = 5e-6;

lii =

lv341
lv231
lv121
lv141

lambdae(il, I

= lambdae(v34

= lambdae(v23

= lambdae(v12

= lambdae(v14

A341 = [lil(:,1:4)
b = li1(:,5);
mu341 = A341 b;

A231 = [lil(:,1:4)

mu231 = A231 b;

A121 = [lil(:,1:4)

mul2l = A121 b;

A141 = [lil(:,1:4)

mul4l = A141 b;

clii =

clv341
clv231
clvl2l

clvl4l

cA341 =
cA231 =
cA121 =
cA141 =

coef341

coef231

coef 121
coef 141

;1, taul);
11, ti, taul);

1, ti, taul);
1, tl, taul);

11, tl, taul);

lv341(:,1:4)];

lv231(:,1:4)];

lvl21(:,1:4)];

lvl41(:,1:4)];

lambdae(cil, ctl,

= lambdae(cv341,

= lambdae(cv231,
= lambdae(cv121,
= lambdae(cvl4l,

taul);

ctl, taul);
ctl, taul);

ctl, taul);
ctl, taul);

[clil(:,1:4) clv341(:,1:4)];

[clil(:,1:4) clv231(:,1:4)];

[clil(:,1:4) clv121(:,1:4)];
[clil(:,1:4) clvl41(:,1:4)];

lossfnia(mu341,

lossfnia(mu231,

lossfnla(mul2l,

lossfnla(mul4l,

taul)

taul)

taul)

taul)

coefsl = [coef341 coef231 coefl2l coef141];

plot(ctl,
plot(ctl,
plot(ctl,
plot(ctl,

cA341*mu341);

cA231*mu231);

cA121*mul2l);

cA141*mul4l);

%# experiment 2
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tau2 = 5e-6;

lambdae(i2, t2, tau2);

= lambdae(v342, t2, tau2);
= lambdae(v232, t2, tau2);
= lambdae(v212, t2, tau2);

= lambdae(v142, t2, tau2);

A342 = [li2(:,1:4)

b = li2(:,5);

mu342 = A342 b;

A232 = [li2(:,1:4)

mu232 = A232 b;

A212 = [li2(:,1:4)

mu212 = A212 b;

A142 = [li2(:,1:4)

mu142 = A142 b;

cli2 =
clv342
clv232
clv212
clv142

cA342 =

cA232 =

cA212 =

cA142 =

coef342

coef232

coef212
coef142'

lv342(:,1:4)];

lv232(:,1:4)];

lv212(:,1:4)];

lv142(:,1:4)];

lambdae(ci2, ct2, tau2);

= lambdae(cv342, ct2, tau2);
= lambdae(cv232, ct2, tau2);

= lambdae(cv212, ct2, tau2);
= lambdae(cv142, ct2, tau2);

[cli2(:,1:4) clv342(:,1:4)];
[cli2(:,1:4) clv232(:,1:4)];
[cli2(:,1:4) clv212(:,1:4)];

[cli2(:,1:4) clvl42(:,1:4)];

lossfnla(mu342,

lossfnla(mu232,

lossfnla(mu212,

lossfnla(mu142,

tau2)
tau2)
tau2)
tau2)

coefs2 = [coef342 coef232 coef212 coef142];

plot (ct2,
plot (ct2,
plot(ct2,
plot (ct2,

cA342*mu342, ct2, cli2(:,5));

cA232*mu232, ct2, cli2(:,5));

cA212*mu212, ct2, cli2(:,5));

cA142*mu142, ct2, cli2(:,5));

X# experiment 3

tau3 = 5e-6;

li3 = lambdae(i3, t3,

lv343 = lambdae(v343,

lv323 = lambdae(v323,
lv213 = lambdae(v213,

lv143 = lambdae(v143,

tau3);

t3, tau3);
t3, tau3);
t3, tau3);
t3, tau3);

A343 = [li3(:,1:4) lv343(:,1:4)];

b = li3(:,5);
mu343 = A343 b;
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A323 = [li3(:,1:4)

mu323 = A323 b;

A213 = [li3(:,1:4)

mu213 = A213 b;

A143 = [li3(:,1:4)

mu143 = A143 b;

cli3 =
clv343
clv323
clv213
clv143

cA343 =
cA323 =
cA213 =
cA143 =

coef343

coef323

coef213

coef143

lv323(:,1:4)];

lv213(:,1:4)];

lv143(:,1:4)];

lambdae(ci3, ct3, tau3);

= lambdae(cv343, ct3, tau3)
= lambdae(cv323, ct3, tau3)
= lambdae(cv213, ct3, tau3)
= lambdae(cv143, ct3, tau3)

[cli3(:,1:4) clv343(

[cli3(:,1:4) clv323(

[cli3(:,1:4) clv213(

[cli3(:,1:4) clv143(

,1:4)]
,1:4)]

,1:4)]
,1: 4)];

= lossfnla(mu343, tau3)
= lossfnla(mu323, tau3)

= lossfnla(mu213, tau3)

= lossfnla(mu143, tau3)

coefs3 = [coef343 coef323 coef213 coef143];
cfs = [coefsl coefs2 coefs3];
save -ascii coeffs cfs

plot(ct3, cA343*mu343,

plot(ct3, cA323*mu323,

plot(ct3, cA213*mu213,
plot(ct3, cA143*mu143,

ct3,
ct3,
ct3,
ct3,

cli3(:,5));

cli3(:,5));

cli3(:,5));

cli3(:,5));

%# TOTAL VERIFICATION : LSIM
%# VOLTAGE -> CURRENT

load -force parameters/6bp2

lp = 1e-6*lp; rs = rs;

X# experiment 1

function testexptli(lp, rs, ci, cv, ct, num)

cv341 = cv(:,1); cv231 = cv(:,2);

cv121 = cv(:,3); cv141 = cv(:,4);

lp(I);

lp(3);

lp (5) ;

rs(1);

rs(3);

rs(5);

12

14

16

r2

r4

r6

[11 r1]; z2
[13 r3]; z4
[15 r5]; z6

lp(2);

lp(4);

lp (6) ;

rs(2);

rs(4);

rs(6);

= [12 r2];
= [14 r4];
= [16 r6];

11

13

15

ri

r3

r5

zi

z3

z5
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n34 = -conv(z4, (tconv(z5, z2, z3) + tconv(z5, zi, z3) + tconv(z2, zi, z3) + tconv(z6, z3, z5) - tconv(z5,

dl = (-tconv(z3, z4, z6) + tconv(z4, z2, z6) - tconv(z3, zi, 6) + tconv(zi, z6, z2) - tconv(z4, z2, z3) -

n23 = fconv(zi, z2, z3, z4);

n14 = conv(z4, (-tconv(z3, zi, z6) + tconv(zi, z6, z2) - tconv(z5, z2, z3) - tconv(z5, zi, z3) - tconv(z2,

n12 = tconv(z4, zi, (-conv(z6, z3) + conv(z2, z6) - conv(z2, z3)));

if num == 1
plot(ct, ci, ct, lsim(di, n34, cv341, ct));

elseif num == 2
plot(ct, ci, ct, lsim(di, n12, cvi2i, ct));

elseif num == 3
plot(ct, ci, ct, lsim(di, n23, cv231, ct));

elseif num == 4
plot(ct, ci, ct, lsim(di, n14, cvi4i, ct));

endif

endfunction

cv= [cv341 cv231 cvi2l cvl4i];
testexptli(lp, rs, cil, cvi, cti, 1)
testexptii(lp, rs, cii, cvi, cti, 2)
testexptli(lp, rs, cil, cvi, cti, 3)
testexptii(lp, rs, cil, cvi, cti, 4)

%# experiment 2

function testexpt2i(lp, rs, ci, cv, ct, num)

cv342 = cv(:,i); cv232 = cv(:,2);

cv212 = cv(:,3); cv142 = cv(:,4);

11 = lp(i); 12 = lp(2);

13 = lp(3 ); 14 = lp(4);
15 = ip(5); 16 = lp(6);

ri = rs(1); r2 = rs(2);
r3 = rs(3); r4 = rs(4);
r5 = rs(5); r6 = rs(6);

zi = [11 r1; z2 = (12 r2];
z3 = (13 r3]; z4 = (14 r4l;

z5 = [15 r5]; z6 = (16 r61;

n23 = tconv(z2, zS, ( conv(z4, z6) + conv(z3, zi) + conv(zi, z6) + conv(zi, z4) ) );

d2 = tconv(z3, z4, z6) + tconv(zi, z3, z6) + tconv(zi, z3, z4) + tconv(zi, z2, z3) + tconv(z5, zi, z3) +

n34 = tconv(z3, z5, (conv(z4, z2) + conv(z4, z6) + conv(zi, z4) + conv(zi, z6) ) );

n14 = tconv(z4, z5, (conv(z2, z3) + conv(z3, z6) + conv(zi, z3) + conv(z2, z6) ) );

n2i = tconv(zi, z5, (conv(z2, z3) + conv(z2, z6) + conv(z2, z4) + conv(z3, z6) ) );

if num == 1
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plot(ct, ci, ct, lsim(d2, n34, cv342, ct));
elseif num == 2
plot(ct, ci, ct, lsim(d2, n14, cv142, ct));

elseif num == 3

plot(ct, ci, ct, 1sim(d2, n23, cv232, ct));
elseif num == 4

plot(ct, ci, ct, lsim(d2, n21, cv212, ct));
endif

endfunction

cv2 = [cv342 cv232 cv212 cv142];
testexpt2i(lp, rs, ci2, cv2, ct2, 1)

testexpt2i(lp, rs, ci2, cv2, ct2, 2)

testexpt2i(lp, rs, ci2, cv2, ct2, 3)
testexpt2i(lp, rs, ci2, cv2, ct2, 4)

%# experiment 3

function testexpt3i(lp, rs, ci, cV, ct, num)

cv343 = cv(:,1); cv323 = cv(:,2);
cv213 = cv(:,3); cv143 = cv(:,4);

11 = lp(l); 12 = lp(2);

13 = lp(3); 14 = lp(4);
15 = lp(5); 16 = lp(6);

ri = rs(1); r2 = rs(2);

r3 = rs(3); r4 = rs(4);

r5 = rs(5); r6 = rs(6);

zI = (11 r1]; z2 = [12 r2];

z3 = [13 r3]; z4 = [14 r41;

zS = [15 r5]; z6 = (16 r6];

n32 = tconv(z3, z2, (conv(z4, z6) + conv(z5, z6) + conv(zi, z6) + conv(zl, z4) ) );

d3 = tconv(z3, z4, z6) + tconv(z3. z1, z6) + tconv(z3, zi, z4) + tconv(z2, zI, z3) + tconv(zS, zi, z3) + I

n34 = conv(z3, ( tconv(zl, z4, z2) + tconv(z4, z2, z5) + tconv(zl, z4, z5) + tconv(z4, z2, z6) + tconv(zl,

n14 = tconv(z3, z4, (conv(z2, zi) + conv(zl, z5) + conv(z2, z5) + conv(zS, z6) ) );

n21 = tconv(z3, z1, (conv(zS, z6) - conv(z4, z2) ) );

if num == 1
plot(ct, ci, ct, lsim(d3, n32, cv323, ct));

elseif num == 2

plot(ct, ci, ct, lsim(d3, n14, cv143, ct));

elseif num == 3

plot(ct, ci, ct, lsim(d3, n34, cv343, ct));

elseif num == 4
plot(ct, ci, ct, lsim(d3, n21, cv213, ct));

endif

endfunction

cv3 = [cv343 cv323 cv213 cv143;
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testexpt3i(lp, rs, ci3, cv3, ct3, 1)

testexpt3i(lp, rs, ci3, cv3, ct3, 2)

testexpt3i(lp, rs, ci3, cv3, ct3, 3)

testexpt3i(lp, rs, ci3, cv3, ct3, 4)

C.3.2 The discrete-time identification method

%# get parameter values for the full discrete-time model
X# and cross-validate them

this code is written assuming that the voltage

probes are configured such that all of the voltages

measured are positive when current is injected into

node 2 (the rear left corner of the car when viewed
facing the car from the front)

clear

X# load data

'# standard v341, v231, v121, v141 sort of stuff

%# define functions

function B = resampleme(A, P, Q)

B = zeros( (P/Q).*rows(A), columns(A));

for k = 1:columns(A)
B(:,k) = resample(A(:,k), P, Q);

endfor

endfunction

function B = modify(A, P, Q)

X# subtract the offset in the first 500 samples
%# and resample at some rate

range = 1:500;

B = zeros( (P/Q).*rows(A), columns(A));

for k = 1:columns(A)
x = A(:,k);

y = x - mean(x(range));
B(:,k) = resample(y, P, Q);

endfor

endfunction

dataloadac
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%# a
X# b
%# C
%# d
%# e

vtla

vt lb
vt C

vtld

vtle

vt2a
vt2b
vt2c

vt2d
vt2e

vt3a

vt3b
vt3c

vt3d
vt3e

50us/div
100us/div
500us/div

50us/div
50us/div

[v211(: ,1)
[v211(: ,2)

[v211(: ,3)

[v211(: ,4)

[v211(: ,5)

[v212(: ,1)

[v212(: ,2)

[v212(: ,3)

[v212(: ,4)
[v212(: ,5)

[v213(: ,1)

[v213(: ,2)

[v213(: ,3)
[v213(: 4)

[v213(: ,5)

v341(: ,1)

v341(:,2)
v341(:,3)
v341(:,4)
v341(:,5)

v342(: ,1)
v342(: ,2)

v342(:,3)
v342(:,4)
v342(: ,5)

v343(: ,1)
v343(:,2)
v343(:,3)
v343(:,4)
v343(: ,5)

v141(:,1)];
v141(:,2)];

v141(:,3)];

v141(:,4)];
v141(:,5)];

v142(:,1)];

v142(:,2)];

v142(:,3)];
v142(:,4)];
v142(:,5)];

v143(:,l)];

v143(:,2)];
v143(:,3)];
v143(:,4)];
v143(:,5)];

vtI = [vtla vtlb vtlc vtl

vt2 = [vt2a vt2b vt2c vt2

vt3 = [vt3a vt3b vt3c vt3

vt = [vtl vt2 vt3];

it = [ila i2a i3a];

%# characterization data

vtl

iti
nt 1

[vtla vt2a vt3a];

[i1a(:,) i2a(:,)
[1 2 3];

vt2 = [vtlb vt2b vt3b];

it2 = [ila(:,2) i2a(:,2)

nt2 = [1 2 3];

vt3 = [vtlc vt2c vt3c];
it3 = [ila(:,3) i2a(:,3)

nt3 = [1 2 3];

%# cross-validation data

vxl

ix'

nxI

[vtld vt2d vt3d];

[ila(:,4) i2a(:,4)

[1 2 3];

d vtle];

d vt2e];
d vt3e];

i3a(: ,1)]

i3a(: ,2)];

i3a(: ,3)];

i3a(: 4)];

vx2 = [cvsl cvs2 cvs3];

ix2 = [cial(:,l) cia2(:,l) cia3(:,l)];
nx2 = [1 2 3];

vx3 = [cvii cvl2 cvl3];

105

v231(: ,1)
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v231(: ,4)

v231(: 5)

v232(: ,1)
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v232(: ,3)

v232(:,4)
v232(: ,5)

v233(: ,1)
v233(: ,2)

v233(: ,3)

v233(:,4)
v233(: ,5)



ix3 = [cial(:,2) cia2(:,2) cia3(:,2)];
nx3 = [1 2 3];

%# define functions

function err = absub(mu, v, itest, node)

a = mu(1:6);

A = [-1 0 0 1 0 1;

1 1 0 0 1 0;

o -1 1 0 0 -1;
a(1) 0 0 a(4) -a(5) 0;
0 0 a(3) -a(4) 0 a(6);
-a(1) a(2) 0 0 0 -a(6)];

b = mu(7:12);

B = -[b(1) 0 0 b(4) -b(5) 0;
0 0 b(3) -b(4) 0 b(6);
-b(1) b(2) 0 0 0 -b(6)];

itv = zeros(6,1);
ivec = zeros(6,1);

err = zeros(size(v));

for k = 1:length(itest)

X# compute lagged portion of inductor-resistor voltage
vvec = ivec(1:4)'*diag(b(1:4));

%# make RHS for finding the i(k)'s

itv(node) = itest(k);
rhs itv + [zeros(3,1); B*ivec];

ivec = A rhs;

%# assemble rest of voltage vector

vvec = vvec + ivec(1:4)'*diag(a(1:4));

%# make the error

err(k,:) = v(k,:) - vvec;

endfor

err = err(:);

endfunction

function err = getabs(mu, v, itest, node)

m = length(node);
n = rows(v);

err = zeros(4*n,m);

cc = 1:4:m*4;
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for k = 1:m

err(:,k) = absub(mu, v(:,cc(k):(cc(k)+3)), itest(:,k), node(k));
endfor

err = err(:);

endfunction

%# a function to resample the input so that the least squares

/# algorithm converges much faster

a similar kludge function to do verification by using

X# absub()

function vpred = abtest(mu, itest, node)

a = mu(1:6);

A = [-1 0 0 1 0 1;

1 1 0 0 1 0;

0 -1 1 0 0 -1;
a(1) 0 0 a(4) -a(5) 0;
o o a(3) -a(4) 0 a(6);
-a(1) a(2) 0 0 0 -a(6)];

b = mu(7:12);

B = -[b(1) 0 0 b(4) -b(5) 0;

o o b(3) -b(4) 0 b(6);
-b(1) b(2) 0 0 0 -b(6)];

itv = zeros(6,1);

ivec = zeros(6,1);

err = zeros(length(itest), 4);

for k = 1:length(itest)

%# compute lagged portion of inductor-resistor voltage
vvec = ivec(1:4)'*diag(b(1:4));

%# make RHS for finding the i(k)'s

itv(node) = itest(k);

rhs = itv + [zeros(3,1); B*ivec];

ivec = A rhs;

%# assemble rest of voltage vector

vvec = vvec + ivec(1:4)'*diag(a(1:4));

%# make the error

err(k,:) = vvec;

endfor

vpred = err(:);
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endfunction

%# do the estimation dance - all parameters apply with a decimation

%# factor of 1/20.

gaussnewton-options("maxiter", 1000);

[thetati, fvec, info, iter] = lmrecipes('getabs', te-3*ones(12,1), vtl, itt, ntl);

norm(fvec), thetat1'

save parameters/thetati thetati

[thetat2, fvec, info, iter] = lmrecipes('getabs', le-3*ones(12,1), vt2, it2, nt2);
norm(fvec), thetat2'

save parameters/thetat2 thetat2

[thetat3, fvec, info, iter] = lmrecipes('getabs', le-3*ones(12,1), vt3, it3, nt3);
norm(fvec), thetat3'

save parameters/thetat3 thetat3

%# now use those lovely parameters

load -force parameters/thetati

load -force parameters/thetat2

load -force parameters/thetat3

pwt = abtest(thetatl, ixl(:,2), 2);

twi = vt2d(:)

plot(1:length(twl), twi, 1:length(pwi), pwt)

pw2 = abtest(thetatt, ix2(:,2), 2);

tw2 = cvs2(:);

plot(1:length(tw2), tw2, 1:length(pw2), pw2);

pw3 = abtest(thetat2, ix3(:,2), 2);
tw3 = cvl2(:);

plot(1:length(tw3), tw3, 1:length(pw3), pw3);

pw4 = abtest(thetat3, ix3(:,2), 2);

tw4 = cvl2(:);

plot(1:length(tw4), tw4, t:length(pw4), pw4);

save -mat-binary ch4f2.mat pwt tw1

save -mat-binary ch4f3.mat pw2 tw2

save -mat-binary ch4f4.mat pw3 tw3

save -mat-binary ch4f12.mat ix t2

save -mat-binary ch4f13.mat ix2 cts2

save -mat-binary ch4f14.mat ix3 cts3

%# now get a set of parameters for a different lag; show that they don't
%# work.

clear tek*

load diskt/ascs/tekOO03.asc

load diski/ascs/tekOO002.asc

load diskI/ascs/tekOO00t.asc

load diskl/ascs/tekOO0O.asc
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load diskl/ascs/tek00023.asc

load diskl/ascs/tek00022.asc

load diskl/ascs/tek00021.asc

load diskl/ascs/tekOO02O.asc

load diskl/ascs/tek00043.asc

load diskl/ascs/tek00042.asc

load diskl/ascs/tek00041.asc

load diskl/ascs/tek00040.asc

wva = [tek00003(:,2) tekOO0O2(:,2) tekOO001(:,2)];

wia = sc*tekOOOOO(:,2);

wvb = [tek00023(:,2) tek00022(:,2) tek00021(:,2)];

wib = sc*tekOO020(:,2);

wvc = [tek00043(:,2) tek00042(:,2) tekOO041(:,2)];

wic = sc*tek00040(:,2);

clear tek*

load disk2/ascs/tek00001.asc

load disk2/ascs/tekOOOl1.asc

load disk2/ascs/tekOO02l.asc

wva = [wva tekOO001(:,2)];

wvb = [wvb tekOO011(:,2)];

wvc = [wvc tekOO021(:,2)];

wv = modify([wva wvb wvc], 1, 10);

wi = modify([wia wib wic], 1, 10);

wn = [1 2 3];

%# analyse

gaussnewton.options("maxiter", 1000);

[thetabi, fvec, info, iter] = lmrecipes('getabs', le-3*ones(12,1), Wv, wi, wn);
norm(fvec), thetabi'

save parameters/thetabi thetabi

%# use these icky parameters

load -force parameters/thetabi

pbl = abtest(thetabl, ixl(:,2), 2);

tbI = vt2d(:);
plot(1:length(tbl), tbl, 1:length(pbl), pbl);

pb2 = abtest(thetabl, ix2(:,2), 2);

tb2 = cvs2(:);
plot(1:length(tb2), tb2, 1:length(pb2), pb2);
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