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Abstract

Threshold cryptosystems and signatures schemes provide ways to distribute trust
throughout a group and increase the availability of cryptographic systems. A standard
approach in designing these protocols is to base them upon existing single-party
systems having the desired properties.

Two recent signature schemes [13, 18] have been developed which are provably se-
cure using only some standard number-theoretic hardness assumptions. Both schemes
rely upon inversion of a prime number modulo a secret value. We provide a multi-
party modular inversion protocol that is secure against an adaptive adversary, thereby
enabling threshold signature schemes with stronger security properties than any pre-
vious result.

As a tool, we also develop an adaptively-secure, erasure-free threshold version of
the Paillier cryptosystem. Because of its homomorphic properties, this cryptosystem
is of independent interest and is useful in the context of secure elections, lotteries,
and general multiparty computation.
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Title: Viterbi Professor of Computer Science and Engineering

Thesis Supervisor: Anna Lysyanskaya
Title: Co-supervisor

3



Acknowledgments

I would first like to give my endless thanks to Anna Lysyanskaya, whose expert

guidance and advice made this thesis possible. From the valuable critiques of my

initial drafts, to the countless hours of brainstorming, her contributions to this work

cannot be understated. The shape and form of this thesis are in large part due to

her; however, any errors which remain are solely my responsibility.

I would also like to recognize Professor Ronald Rivest for generously offering his

valuable time to serve in an advisory role. My interest in cryptography is in large

part due to my many positive experiences with him as an instructor and leader in the

field.

Finally I would like to thank my parents, Frances and Michael, for their uncon-

ditional love, support, and guidance - and my sister Stephanie, whom I treasure far

more than she knows.

4



Contents

1 Introduction 7

2 Secure Multiparty Computation (MPC) 11

2.1 Prelim inary Definitions .......................... 12

2.2 The Real-Life M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The Ideal Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 A Definition of Security . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Modular Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 E-Protocols 19

3.1 Two-Party E-Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Trapdoor Commitments . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 M ultiparty E-Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Homomorphic Threshold Encryption 25

4.1 Threshold Cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Homomorphic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Adaptively-Secure Inversion Modulo a Shared Secret 31

5.1 The Adaptive Adversary Model . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Adaptively-secure multiparty E-protocols . . . . . . . . . . . . 34

5.2 A Preliminary Subprotocol . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Two Preliminary Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 The Inversion Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5



5.5 A Proof of Security . . . . . . . . . . . .

5.5.1 The hybrid simulator . . . . . . .

6 An Adaptively-Secure Threshold Paillier

6.1 Prelim inaries . . . . . . . . . . . . . . .

6.1.1 Shamir threshold secret sharing

6.1.2 Proving equality of discrete logs

6.2 The Paillier Cryptosystem . . . . . . . .

6.3 An Adaptively-Secure Threshold Version

6.3.1 Description of the protocols . . .

6.3.2 Simulating decryption . . . . . .

6.3.3 Simulating key generation . . . .

6.4 A Reduction from the Original Cryptosystem

6

Cryptosystem

39

40

45

. . . . . . . . . . . . . 4 5

. . . . . . . . . . . . . 46

. . . . . . . . . . . . . 46

. . . . . . . . . . . . . 47

. . . . . . . . . . . . . 48

. . . . . . . . . . . . . 48

. . . . . . . . . . . . . 49

. . . . . . . . . . . . . 5 1

. . . . . . . . . . . . . 54



Chapter 1

Introduction

In any real-world scenario requiring security, an essential question is whom to trust. If

millions of dollars or human lives are at risk, it is unacceptable to place all of your trust

in just one person: what if he becomes corrupt, or is blackmailed, or loses the ability

to perform his job? Likewise, in an environment involving electronic transactions, it

is unwise to place critical information on just one server: what if it is broken into, or

crashes? We would like to be able to distribute trust among a group of entities, so

that any majority of them can perform an operation, but any malicious minority of

them cannot do harm. How can this requirement be stated formally, and are there

technical ways to distribute trust in a secure way? These questions are addressed by

secret-sharing schemes, threshold cryptosystems, and threshold signature protocols.

Secret-sharing protocols were discovered independently in 1979 by Shamir [28]

and Blakley [2]. They enable a group of n parties to collectively share a secret value

so that any group of more than t parties can combine their individual shares to

discover the secret, but any group of t or fewer conspiring parties cannot obtain any

information about the secret. A natural use of secret-sharing protocols is to protect

cryptographic keys: if a secret key is distributed across several systems, then an

adversary must compromise more than a certain threshold t of them before learning

anything about the key.

When decrypting or signing a value, the parties must perform some computation

using the shared secret. Instead of explicitly re-assembling the private key (which
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would create a single point of failure), the parties communicate according to a pro-

tocol which lets each party compute the result, without letting the participants learn

anything about each others' shares. Threshold protocols must also handle the real-

world possibility that some of the parties may have been compromised, and are con-

trolled by an adversary. This adversary may attempt to learn something about the

secret key, or try to cause the protocol to fail or produce incorrect results. The goal,

then, is to design robust protocols, which succeed in the presence of malicious par-

ticipants, while retaining the secrecy of the keys. Desmedt and Frankel [14] were the

first to demonstrate a threshold decryption protocol having these properties, based

on the ElGamal cryptosystem.

This idea is also applied in several threshold signatures schemes for classical public-

key signature systems such as RSA [27] and DSS [24]. Unfortunately, the formal

security of these systems relies upon a heuristic tool known as the random oracle

model, which is not equivalent to real security in certain schemes [8]. Newer signature

systems [13, 18] do away with the random oracle model, and rely only upon some

reasonable number-theoretic assumptions. Designing efficient threshold versions of

these systems is therefore important for very high-security applications and from a

theoretical point of view.

A recent protocol due to Catalano et al. [9] describes how to efficiently invert a

given prime, modulo a shared secret. The most common use for this protocol is when

the shared secret is the Euler totient function q of a public RSA modulus N. Com-

puting inverses modulo O(N) is a crucial step in the new signature protocols described

above [13, 18]. Therefore, an efficient threshold protocol for inversion over a shared

secret is necessary for threshold versions of those schemes. However, the protocol

in Catalano et al. requires large share sizes and is difficult to describe, analyze, and

implement. In addition, the protocol is only secure in the static adversary model,

which makes somewhat unrealistic assumptions about the power of the adversary.

These problems can be overcome by using techniques from the literature on secure

multiparty computation.

Secure multiparty computation (MPC) was introduced by Yao in 1982 [30]. It
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allows a group of parties, each of whom has a private input, to compute a function

on the inputs such that every party learns the value of the function, but nothing else

(besides what can be inferred from the value of the function). Ideally, each input

would be sent over a secret channel to a trusted third party, who would compute the

result and send it to all the participants. The goal of MPC is to aims to eliminate the

need for a trusted third party, while retaining the security of the ideal scenario, even

when some of the participants may be malicious. Threshold signatures are a natural

application of MPC: shares of the private key qualify as inputs, some of the parties

may be malicious, and each honest party should end up with a valid signature at the

end of the protocol.

Cramer et al. [12] have constructed an efficient MPC protocol based upon any

threshold encryption scheme having certain homomorphic properties (one such en-

cryption scheme is Paillier's cryptosystem [25]). The work is especially valuable for

its unique and simple secure multiplication protocol. The communication require-

ments for each participant are reasonable in the broadcast model, making this MPC

protocol feasible for general-purpose secure computation. Finally, the protocol is

optimally-resilient against the adversary, i.e. security is maintained even if the adver-

sary corrupts up to half of the participants.

A deficiency in all of these threshold signature and MPC protocols is their as-

sumption of the static adversarial model. In this model, the adversary controls a

fixed set of participants, which are chosen before the protocol begins. The more real-

istic adaptive adversarial model assumes that the adversary can choose new parties to

corrupt at any time, based on its view over the history of the protocol. The adversary

still remains limited, however, by the threshold number of parties it may corrupt.

Constructing protocols that are provably secure against an adaptive adversary

is a difficult task, because the adversary's corruption strategy is unknown and may

depend upon public values as well as the internal states of the other corrupted parties.

Frankel et al. [17] and Canetti et al. [7] have developed techniques for designing

adaptively-secure threshold cryptosystems, which were improved upon by Jarecki

and Lysyanskaya [22].
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This thesis will first define the important notions and tools needed to develop se-

cure protocols. It will then describe a simple and adaptively-secure modular inversion

protocol built upon a homomorphic threshold cryptosystem.

Then, using techniques from the threshold Paillier cryptosystem presented in

Fouque et al. [16], we will develop a threshold variant that is secure against an adap-

tive adversary. With this primitive and a few modifications to existing tools, we

will have an efficient, adaptively-secure threshold modular inversion protocol, which

enables adaptively-secure threshold versions of the Cramer-Shoup [13] and Gennaro-

Halevi-Rabin [18] signature schemes. Threshold signature schemes having security

properties of this strength are a novel result.
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Chapter 2

Secure Multiparty Computation

(MPC)

In this chapter we summarize the intuition behind secure multiparty computation in

an adversarial setting, and present a slightly modified subset of the formal model due

to Canetti [6]. Other similar definitions have been given by Goldwasser and Levin

[19], Micali and Rogaway [23], and Beaver [1].

The goal of secure multiparty computation is to emulate an ideal process that

works as follows: all parties send their inputs to an incorruptible trusted party over a

secure channel. The trusted party computes the output(s) of the function and sends

them back to the appropriate parties, again over a secure channel. The adversary, who

controls a set of parties, has very limited power: it can only learn the public inputs

and outputs of all the parties, and (at its option) modify the inputs and outputs of

the corrupted parties.

Intuitively, a real-life protocol securely evaluates a function if executing the proto-

col amounts to emulating the ideal process for that function. This emulation occurs

if, for any adversary in the real-life model, there exists an adversary in the ideal world

that induces a similar output. What is meant by the phrase "similar output" will be

formalized in this chapter.

This basic idea is a natural generalization of the simulation approach used to define

secure encryption [20] and zero-knowledge proof systems [21], but the formulation is
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more detailed. It intuitively guarantees two things: first, that anything an adversary

could learn in real-life could also be learned by some adversary in the ideal model;

and second, that the honest parties have the same outputs in real-life as in the ideal

model. Because the adversary's view is so restricted in the ideal model, the first

condition ensures secrecy in the real-life model. Additionally, because the adversary

has limited influence over the honest parties' outputs in the ideal model, the second

condition ensures the correctness of the real-life protocol.

2.1 Preliminary Definitions

We now proceed to some of the definitions that will enable us to formalize the intuition

described above. By 1k we mean the unary representation of a nonnegative integer k.

Definition 2.1 (Distribution Ensemble) A distribution ensemble

X = {X(lk, a)}kEN,aED

is an infinite sequence of probability distributions, where a distribution X(lka) is

associated with each value of k E N and a E D for some domain D. (Typically,

D = {O, 1}*.)

In this thesis, the distribution ensembles correspond to outputs of computations

in which the parameter k is taken to be the security parameter, and a corresponds

to a tuple of inputs. All complexity characteristics will be measured in terms of the

security parameter.

Definition 2.2 (Computational Indistinguishability [20], [6]) Given 6: N -

[0,1], we say that two distribution ensembles X and Y have computational distance

at most 6 if for every algorithm D that is probabilistic polynomial-time in its first

input, for all sufficiently large k, all a, and all auxiliary information w E {0, 1}*, we

have

Pr[D(1k, a, w, x) = 1] - Pr[D(1k, a,w,y) = 1]1 < 6(k),
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where x, y are chosen from distribution X(lk, a) and Y(Ik, a) respectively, and the

probabilities are taken over the choices of x, y, and the random choices of D.

If ensembles X and Y have computational distance at most k-c for all c > 0 then

we say that X and Y are computationally indistinguishable and write X c Y.

For simplicity of exposition, we may say that two random variables are compu-

tationally indistinguishable when their corresponding ensembles (which will be clear

from the context) are computationally indistinguishable.

Note that the distinguisher D is given access to an arbitrary auxiliary string w,

which is fixed before the random choices of x and y are made. In our case, this

w corresponds to the knowledge gathered by the adversary during previous proto-

col executions (this is an important technical condition needed to prove that secure

protocols can be composed).

We now define multiparty functions, which are a formalization of the functions to

be evaluated by the parties. This definition differs slightly from Canetti's, in that his

employs I inputs and outputs, while we have one secret and one public input/output

for each party for a total of 21 inputs and outputs.

Definition 2.3 (Multiparty Function) An 1-party function is a probabilistic func-

tion f : 1* x ({0, 1}*)21 x {0, 1}* -+ ({0, 1}*)21, where the length of the first input is

the security parameter and the last input is the supply of random bits. The function

must be computable in time polynomial in the security parameter.

Intuitively, we interpret 1-party functions as follows: each party P has access to

a public input xP and a secret input xs, and computes a public output y' and a

secret output y'. The input vector 5 is the 21-tuple (xi, xP,. ... , X, xi'), which is the

second input to the function f. The output vector y = f(ik, 5, r) is a 21-tuple defined

similarly.

We now turn to the task of defining security for a multiparty function. First, we

describe the real-life model of computation. Then, we formalize the ideal process,

and finally, we formally define the meaning of emulation of an ideal process in the

real-life model.
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2.2 The Real-Life Model

An I-party protocol 7r is a collection of 1 interactive probabilistic algorithms (imple-

mented as Turing machines), where by P we denote the ith algorithm. Each party

starts with a public input x' E {E, 1}*, a secret input 4i E {O, 1}*, a random input

ri E {0,1}*, and the security parameter k. The parties communicate only over a

broadcast channel (there are no channels, private or otherwise, between individual

parties)1.

A real-life static adversary A is another interactive, probabilistic polynomial-

time Turing machine controlling the behavior of the corrupted parties. Its inputs

are the identities of the corrupted parties and their respective inputs, an auxiliary

input, a random input ro, and the security parameter k. (The auxiliary input, again,

represents knowledge gained by the adversary during previous interactions with the

other parties.) We say that an adversary is t-limited if it controls at most t parties2.

Computation proceeds in rounds, where each round proceeds as follows: first,

the uncorrupted parties generate their messages for the round, according to their

respective algorithms. These messages become known to the adversary, who then

generates messages on behalf of the corrupted parties. Finally, all the messages for the

round are simultaneously placed on the broadcast channel for all parties to see. This

captures the essence of a synchronous broadcast network with rushing, i.e. one which

allows the adversary to learn the uncorrupted parties' messages before generating its

own.

When all the rounds have completed (as determined by the protocol), all parties

locally generate their outputs. The uncorrupted parties broadcast their public out-

puts, while the corrupted parties output a special symbol 1 to indicate that they are

corrupted (this condition merely simplifies the definition of security, and may be as-

1Other reasonable communication models, such as secure channels and point-to-point, are often
assumed, but we will not consider them in this thesis.

2We say that the adversary is static because the corrupt parties are fixed before the protocol
begins. This is in contrast to an adaptive adversary, who has the power to corrupt parties of its
choosing during the computation, based on its view up to that point. Adaptive adversaries will be
discussed in a cryptographic setting in a later chapter.

14



sumed without loss of generality). In addition, the adversary outputs some arbitrary

function of its view of the computation. The view consists of the adversary's auxil-

iary and random inputs, followed by the corrupted parties' input values and random

inputs, all public inputs and outputs, and all the messages sent during the protocol.

Let ADVR.,A(1k, 5, z, f') denote the output of the real-life adversary with auxiliary

input z when interacting with parties running protocol -r on inputs 5 and random

inputs r= (ro, ... ,r), with security parameter k. While Y and r' are parameters

to ADVR, we stress that they are not explicitly given to A; instead, A receives

implicit information about them based on the behavior of the uncorrupted parties.

Let EXEC,,A(1k, 5, z, f')j denote the outputs of party P from this execution. Let

EXEC-,,(1k, 5, z, i) = ADVRA(1k, 5, z, j),

EXECrA(1k, 5, z, )1,...

EXEC,,A(1* ik I )

Let EXECW,(lk, 5, z) denote the distribution of EXEC,,(1k, 5, z, i) where r' is uni-

formly chosen, and let EXEC,A be the ensemble {EXECA(1k, 5, z)kEN,(i,z)E{o,1}*-

2.3 The Ideal Process

The ideal process is given by an i-party function to be evaluated (recall Definition 2.3).

The adversary S is an interactive probabilistic polynomial-time Turing machine de-

scribing the behavior of the corrupted parties. The adversary's inputs are the identi-

ties of the corrupted parties, a random input r, an auxiliary input z, and the security

parameter k. In contrast to the real-life model, there is also an incorruptible trusted

party T who knows k.

The ideal process on an input vector S proceeds as follows: first, the adversary

sees the inputs of all the corrupted parties, and may change them arbitrarily; say that

the vector of all parties' (possibly modified) inputs is i. Next, each party P gives its

(possibly modified) input values to the trusted party T. Then, T chooses random rf,
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and hands each Pi the pair (y', yi) = (f(1k,,rf) 2 i-, f(1, 7 , rf) 2i) (note that the

parties do not learn rf, except for the information provided by the resulting values of

yi, yr'). Finally, each uncorrupted party P outputs (ys, yp), and each corrupted party

outputs the special symbol I. In addition, the adversary outputs some function of

its view of the computation. This view consists of the adversary's random input, the

corrupted parties' inputs, all the public inputs and outputs, and the resulting secret

outputs y for corrupted parties Pi.

Let ADVRf,s(lk, 7, z, ), where r? = (rf, r), denote the output of ideal-adversary

S on security parameter k, random input r, and auxiliary input z, when interacting

in an ideal process on (original) input Y, in which the trusted party has random input

rf. Let IDEALf,s(lk, 7, z, ); denote the outputs of party P in the ideal process.

Then let the vector

IDEALf,s(lk, 7, z, ) ADVRf,s(lk7 z ,

IDEALf,s(l, 7 z, )i, ...

IDEALf,s(k, 7 Z,

denote the outputs of the parties on input 7, adversary S, and random inputs F. Let

IDEALf,s(lk, Y, z) denote the distribution of IDEALf,s(lk, 7, z, F) when Fis uniformly

distributed, and let IDEALf,s denote the ensemble {IDEALf,s(l, 7, z)}kEN,(9,z)C{o,1}*-

2.4 A Definition of Security

With definitions of the two models in hand, we can now proceed to a definition of

secure computation. The definition should capture the notion that a real-life protocol

7r emulates the ideal process for calculating a function f. This means that, for any

(t-limited) real-life adversary A, there should exist an ideal-process adversary S such

that the output of the protocol with adversary A is indistinguishable from the output

of the ideal process with adversary S. Said another way, a real-life adversary cannot

learn anything more about the computation than an ideal-world adversary could learn,
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nor can it affect the outputs of the uncorrupted players any more than an ideal-world

adversary could. A precise definition follows.

Definition 2.4 (Security of a Multiparty Protocol [6]) Let 7r be a protocol for

I parties, and let f be an I-party function. We say that wr t-securely evaluates f if,

for any t-limited real-life adversary A, there exists an ideal-process adversary S such

that

IDEALf,s r EXECr,A.

2.5 Modular Composition

A natural way of solving problems is to break them into smaller tasks, and then

combine the results into an overall solution. We would like to be able to do a similar

thing with protocols: design small sub-protocols which are themselves secure, and

combine them into a larger protocol which we would also like to be secure. Under

a proper (and reasonable) formalization, one can prove that such a composition is

indeed secure. The formalization will be geared toward nonconcurrent composition,

where at most one sub-protocol is executed in any communication round. Security

under concurrent composition is non-trivial to prove, and seems to require more

assumptions about the adversary [15].

We first describe the model for executing a protocol with the assistance of a

trusted third party for evaluating I-party functions fi,..., fin. This model is called

the (fi, . . . , fmn) -hybrid model, and is obtained as follows. We start with the real-life

model of Section 2.2, augmented with a trusted party T for calculating fi, ... , fn.

During certain rounds specified by the protocol, one of the functions fi,..., fm is

evaluated by T using the ideal-world process for that function (see Section 2.3). A

fresh random string is used in each ideal function call.

Let EXECf'A-fm (1k, X, z) denote the random variable describing the output of the

computation in the (fi, ... , fm)-hybrid model with protocol 7r, adversary A, security

parameter k, inputs X, and auxiliary input z. As above, let EXECf'fm denote the

distribution ensemble {EXEC"'-,frn ( 1 k Y, z) }kEN,(X,z)E{O,1}* -

17



Modifying -F to use a real-life protocol p. for an I-party function fi, instead of an

ideal-world evaluation of the function, is done in a natural way. At the beginning of

the round, each party saves its internal state. The call to the trusted party is replaced

by an invocation of the protocol p. Once that protocol is complete, each party restores

its state and resumes the protocol 7r, where the party's local outputs are used in place

of the value that would have been received from the trusted party. We stress that no

uncorrupted party resumes execution of 7r until all of the uncorrupted parties have

completed p (this is necessary to avoid violating the nonconcurrency condition).

Let rP',Pm denote protocol 7r, originally designed for the (fi, . . . , fm)-hybrid

model, where each ideal evaluation call to fi is replaced by a call to sub-protocol

p.

We now rigorously define security for protocols which evaluate functions in the

hybrid model, then state a theorem due to Canetti which captures the intuition that

if secure protocols are sequentially composed, then the resulting protocol will remain

secure.

Definition 2.5 (Security in the Hybrid Model [6]) Let fi,..., fi, g be i-party

functions and let 7r be a protocol for I parties in the (f1,..., fn) -hybrid model. We

say that 7r t-securely evaluates g in the (fi, . . , fm)-hybrid model if, for any t-limited

adversary A in the (f1,... , fn) -hybrid model, there exists an ideal-process adversary

S such that

IDEALg,s e EXEC1 'f.

Theorem 2.1 (Modular Composition of Secure Protocols [6]) Let t < 1, and

let f1,..., fi, g be 1-party functions. Let 7r be an l-party protocol that t-securely eval-

uates g in the (f1,..., fn) -hybrid model where no more than one ideal evaluation call

is made at each round, and let p1,..., pm be I-party protocols such that pi t-securely

evaluates fi. Then the protocol 7rPiP,P- t-securely evaluates g.
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Chapter 3

E-Protocols

In this chapter we define a special kind of zero-knowledge proof called a E-protocol

[12]. First we define E-protocols in a two-party setting, then we demonstrate how to

implement them in a multiparty setting using trapdoor commitments.

3.1 Two-Party E-Protocols

Assume there is a binary relation R consisting of pairs (x, w), where x is interpreted

as a public instance of some problem, and w as a solution (or witness) to the instance.

We then have a 3-round proof of knowledge for R that proceeds as follows: both the

prover and verifier receive the public value x, and the prover alone receives w, such

that (x, w) E R. Conversations are of the form (a, r, z): the prover sends its first

message a, the verifier chooses a challenge r at random, the prover responds with z,

and the verifier either accepts or rejects. There is a security parameter k, such that

JxJ= k and the lengths of a, r, and z are linear in k.'

Let the prover P and verifier V be probabilistic polynomial-time interactive Turing

machines. Let PV(x, w) denote the distribution of conversations between P and V

on (x, w) (including whether the verifier accepts or not), and let PV(x, w)[r] denote

the distribution of conversations between P and V on (x, w) in which r occurs as the

'In general, the lengths of a, r, and z may be polynomial in k, but the linear bound simplifies
the analysis when extending E-protocols to a multiparty setting.
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challenge.

A a prover-verifier pair (P, V) is a E-protocol if the following holds:

" The protocol is complete: if (x, w) E R, then PV(x, w) is an accepting conver-

sation with probability 1.

* The protocol is special honest-verifier zero-knowledge: there exists a probabilis-

tic polynomial-time simulator S which, on input x and r, generates a conversa-

tion of the form (a, r, z), such that S(x, r) = PV(x, w)[r]. That is, the output

of S on r is identically-distributed with the conversations between P and V,

given that r occurs as the challenge.

* With high probability, the prover knows w. More precisely, there exists a

polynomial-time knowledge extractor which, on inputs x and any pair of ac-

cepting conversations (a, r, z) and (a, r', z') where r $ r', always outputs w

such that (x, w) c R.2

3.2 Trapdoor Commitments

A trapdoor commitment scheme is much like a regular commitment scheme: a party

P commits to a value by running some probabilistic algorithm on the value. The

commitment gives no information about the committed value. At some later stage,

P opens the commitment by revealing the committed value and the random coins

used by the commitment algorithm. P must not be able to find a different value (and

corresponding random string) that would yield the same commitment.

Trapdoor commitment schemes have one additional property: there exists a trap-

door value which allows P to construct commitments that he can open arbitrarily,

such that this cheating is not detectable. Here we define these notions formally:

2This is not the most general definition of a proof knowledge. For instance, we could allow the
knowledge extractor to be probabilistic, and give it access to a polynomial number of accepting
conversations. However, all of the E-protocols we will encounter in this thesis meet the stricter
definition, which simplifies many of the proofs of security.
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Definition 3.1 (Trapdoor Commitment Scheme) A pair of algorithms (G, C)

is called a trapdoor commitment scheme if the following properties hold:

1. (Key generation) G is a probabilistic polynomial-time algorithm on a security

parameter k, outputting a public key pk and a trapdoor t. We write (pk, t) +-

G(1k).

2. (Hiding) For (pk, t) <- G(lk), all s, s', and for uniformly-chosen r, r', the dis-

tributions (over r and r', respectively) C(s, r, pk) and C(s', r', pk) are computa-

tionally indistinguishable.

3. (Binding) For any probabilistic circuit family {Ak} - P/poly, any constant

c > 0, and for all sufficiently large k,

Pr[ (pk, t) +- G(1"); (s, r, s', r') +-- Ak(pk):

(s 0 s') A C(s, r, pk) = C(s', r', pk)] < 1/k

4. (Trapdoor property) There is a probabilistic polynomial-time algorithm whose

output c, given (pk, t) +- G(lk), is indistinguishable from C(s, r, pk) over uni-

form r (by the hiding property, s is irrelevant to the distribution). Furthermore,

there is another efficient algorithm which, on input pk, t, c and any s, outputs

r such that c = C(s, r, pk ).

3.3 Multiparty E-Protocols

The goal of a multiparty E-protocol is for many parties to make claims of knowledge

such that all parties will be convinced. If all players are honest-but-curious, a naive

way of achieving this goal is to make each prover participate in a separate (two-party)

E-protocol with each of the other players. However, this approach incurs significant

communication overhead, and it is not private against an active adversary, since E-

protocols are only honest-verifier zero-knowledge.

21



Cramer et al. [12] describe how to generate a single challenge that is acceptable

to all honest provers. In one case (when I < 16k), it is simply sufficient to let each

party generate a [2k/l]-bit random string, and concatenate all the strings to create

an m-bit challenge, where 2k < m < 16k. Since half of the parties must be honest,

at least k of the challenge bits were chosen randomly, which (for the purposes of

proving soundness) is exactly equivalent to performing the E-protocol with a random

challenge of length k. If 1 > 16k, a preprocessing phase returns as public output a

random subset of 4k parties. Except with exponentially small probability in k, this

subset will contain at least k honest parties, so each party in the subset chooses a

single bit a random, and the bits are concatenated to form the challenge.

The complete description of a multiparty E-protocol is as follows: in a preprocess-

ing phase, a public key ki for a trapdoor commitment scheme is generated for each

P, and is distributed to all the parties by a key-distribution protocol which hides

the trapdoor values. In a single proof phase, some subset P' of parties contains the

parties who are to prove knowledge.

1. Each Pi E P' computes aj, the first message of the two-party E-protocol. It

then broadcasts a commitment ci = C(a , ri, ki), where ri is chosen randomly

by Pi.

2. A challenge r is generated by several parties, as described above. This single

challenge will be used by all the provers.

3. Each P E P' computes the answer zi to the challenge r, and broadcasts aj, ri, zi.

4. Every party can check every proof by verifying that ci = C(ai, ri, ki) and that

(al, r, zi) is an accepting conversation in the two-party E-protocol.

The first message from Pi is trapdoor-committed in order to prove the security of

the protocol: the simulator imitates the setup phase by invoking G for every party

and keeping the commitment trapdoors for the honest parties. The simulator then

generates cheating commitments for the honest parties (since it does not have the

necessary witnesses), and opens them appropriately after seeing the common challenge
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r and invoking the two-party E-protocol simulator. By the properties of trapdoor

commitments and the two-party simulator, the adversary gets an appropriate view.

A formal proof of security for this protocol is given in Cramer et al. [12], but

repeating it in detail would take us too far afield. However, the proof hinges upon a

general simulator and knowledge-extractor subroutine, E, which will be useful in our

own proofs of security. E(A, Xp,, tH, kp) generates output (A', F", Wp nC), with the

following specifications:

" A is the start-state of the adversary, Xp, {xj}iEp, are the instances to which

the parties P' must prove knowledge of witnesses, tH= {tiliEH are the com-

mitment trapdoors of the honest parties H, and k = {k= } p are the public

commitment keys for all the parties.

" A' is the state of the adversary after running the multiparty E-protocol, and

P" C P' is the set of parties completing their proofs correctly.

" SE runs in expected polynomial time, and the (A', P") part of its output is

identically distributed to the output of a real execution of the E-protocol, given

start state A of the adversary.

* Except with negligible probability, wptnc is a set of valid witnesses to the

instances xi belonging to the corrupted parties who completed their proofs

correctly.

Briefly, the algorithm of EE uses the trapdoors of the honest parties to create

commitments that can be opened arbitrarily, and shows them to the adversary on

behalf of the honest parties. These commitments are used to create accepting E-

protocol conversations for the honest parties. Additionally, for every corrupt party

that completes a correct proof, E rewinds the adversary and chooses a new challenge

(by using fresh random bits on behalf of the honest parties). Each corrupt party

then generates a new proof, and by using the knowledge extractor of the two-part

E-protocol, this allows E to compute the desired witnesses.
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Chapter 4

Homomorphic Threshold

Encryption

Cramer et al. [12] show how to perform secure multiparty computation of any circuit

using homomorphic threshold encryption as a primitive. Here we give rigorous defini-

tions for a semantically secure, homomorphic threshold cryptosystem secure against

a static t-limited adversary.

4.1 Threshold Cryptosystems

Here we define threshold encryption schemes and their security properties.

Definition 4.1 (Threshold Cryptosystem) A statically-secure threshold crypto-

system for parties P = {P 1,... , P} with threshold t < 1 and security parameter k is

a 5-tuple (K, KG, M, E, DECRYPT) having the following properties:

1. (Key space) The key space K = {Kk,j}k,IEN is a family of finite sets of the form

(pk, sk 1,..., ski). We call pk the public key and ski the private key share of

party P. For C C P we denote the family {ski}ec by skc.

2. (Key generation) The exists a t-secure key generation 1-party protocol KG

which, on input 1 k, computes, in probabilistic polynomial time, common out-
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put pk and secret output ski for party P, where (pk, sk 1,... , ski) E Kk. We

write (pk, sk 1,... , ski) <- KG(1k) to represent this process.

3. (Message sampling) There exists some probabilistic polynomial-time algorithm

which, on input pk, outputs a uniformly random element from a message space

Mpk. We write m +- Mpk to describe this process.

4. (Encryption) There exists a probabilistic polynomial-time algorithm E which,

on input pk and m E Mpk, outputs an encryption -m = Epk(m)[r] of m. Here r

is a uniformly random string used as the random input, and Epk(m)[r] denotes

the encryption algorithm run on inputs pk and m, with random tape containing

r.

5. (Decryption) There exists a t-secure protocol DECRYPT which, on common pub-

lic input (M,pk) and secret input ski for each uncorrupted party P, where ski

is the secret key share of the public key pk (as generated by KG) and M is a

(polynomial-size in k) set of encrypted messages M C Mpk, returns M as a

common public output.1

6. (Threshold semantic security) For all probabilistic circuit families {Sk} (called

the message sampler) and {Dk} (called the distinguisher), all constants c > 0,

all sufficiently large k, and all C C P such that |C| < t,

Pr[ (pk, sk, ... , ski) +- KG(1k);

(mo, mi, s) *- Sk(pk, skc);

i +" { 0, 1}; e +-E(pk, mi);

b +- Dk(s, e)

b =i] < 1/2 + 1/kc

1 The input must contain a set of ciphertexts because we require that the decryption algorithm be
secure under parallel composition; however, the MPC model does not necessarily preserve security
in this setting.
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4.2 Homomorphic Properties

We also need the cryptosystem to have the following homomorphic properties:

1. (Message ring) For all public keys pk, the message space Mpk is a ring in which

we can compute efficiently using the public key only. We denote the ring

(Mpk, -p, pk, Opk, 1ik). We require that the identity elements Opk and 1 pk be

efficiently computable from the public key.

2. (+p-homomorphic) There exists a polynomial-time algorithm which, given pub-

lic key pk and encryptions Tifi G Epk(mi) and MTh2 E Epk(m2), outputs a

uniquely-determined encryption 4f E Ep (ml +pk M 2 ). We write Ti = 7Ti ED i 2 .

Likewise, there exists a polynomial-time algorithm for performing subtraction:

i= 7T 1 B2 2

3. (Multiplication of a ciphertext by a ring element) There exists a probabilistic

polynomial-time algorithm which, on input pk, mi E Mpk and Tff2 E Epk(M 2 ),

outputs a random encryption 7H +- Epk(mI pk iM2). We assume that we can

multiply a ring element from both the left and right. We write mTh +- mi E

rn2 E Epk(ml pk iM2) and Yh +- 71T, E M 2 E Epk(inl -pk M 2 ). Let (Mi E Ti 2 )[r]

denote the unique encryption produced by using r as the random coins in the

multiplication-by-ring-element algorithm.

4. (Addition of a ciphertext and a ring element) There exists a probabilistic

polynomial-time algorithm which, on input pk, mi Mpk and mTh2  EPk(in2 ),

outputs a uniquely-determined encryption Tff E Epk(mi +pk M2 ). We write

n = M1 fr2-

5. (Blindable) There exists a probabilistic polynomial-time algorithm B which,

on input pk and T E Epk(m), outputs an encryption T' E Epk(iM) such that

7' = Epk(m)[r], where r is chosen uniformly at random.

6. (Check of ciphertextness) By Cpk we denote the set of possible encryptions of

any message, under the public key pk. Given y E {0, 1}* and pk, it is easy to
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check whether y E Cpk.

7. (Proof of plaintext knowledge) Let L1 ={(pk, y) : pk is a public key A y E CpI}.

There exists a E-protocol for proving the relation RPOPK over LI x ({O,1}*)2

given by RPOPK = {((pk, y), (x, r)) : x E Mpk A y = Epk(x)[r[}. Let 8 POPK be

the simulator for this E-protocol, which is just a special case of EF described in

Chapter 3.

8. (Proof of correct multiplication) Let L 2 = {(pk, x, y, z) : pk is a public key A

x, y, z E Cpk}. There exists a E-protocol for proving the relation RPOcM over

L 2 x ({0, 1}*)3 given by RPOCM ((pk, x, y, Z), (d, ri, r2)) : y = Epk(d)[rl] A

z = (d 1 x)[r2]}.

We call any such scheme meeting these additional requirements a homomorphic

threshold cryptosystem.

From these properties, it is clear how to perform addition of two ciphertexts: use

the +pk algorithm, following by an optional blinding step. The remaining operation to

be supported is secure multiplication of ciphertexts. That is, given d and b, determine

a ciphertext c such that c = a pk b, without leaking any information about a, b, or

c. Cramer et al. [12] give the MULT protocol for secure multiplication, which we

reproduce here:

1. Each party P chooses a random di E Mpk, and broadcasts an encryption di. All

parties prove (via a multiparty E-protocol) knowledge of their respective values

di.

2. Let d = d1, k +pk dn. All parties now compute EBdi EBd... ED Ed, an encryption

of a +pk d. The ciphertext is threshold decrypted, so all players know a +pk d.

3. Party P sets al = (a +pk d) -pk dl; all other parties P set ai = -di. Note that

every player can compute an encryption of each ai, and that a = a1 +pk - - -+an.

4. Each P broadcasts an encryption ai -pk b, and proves in zero-knowledge that

the multiplication is correct.
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5. Let C be the set of players for which the previous step succeeded, and let

F be the complement of C. The parties first decrypt the ciphertext Ei Fai,

giving them the value aF ZieF aj. All parties then compute an encryption

aF 'pk b. From this, and {aib I i c C}, all parties compute an encryption

(EjEcaj -pk b) E aF 'pk b, which is an encryption of a -pk b.

Intuitively, this protocol is secure if the encryption is secure, because other than

the outputs, only random values and values already known to the adversary are ever

decrypted. Cramer et al. give a formal proof of security [12].
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Chapter 5

Adaptively-Secure Inversion

Modulo a Shared Secret

Here we describe a protocol for computing a prime's inverse with respect to a shared

secret modulus. This task is the fundamental step in the Cramer-Shoup [13] and

Gennaro-Halevi-Rabin [18] signature schemes. These schemes are provably secure

based only upon some reasonable number-theoretic assumptions, without a random

oracle. Therefore, it is valuable to construct threshold versions of these schemes.

Catalano et al. [9] present two versions of a modular inversion protocol which

are secure against a static adversary. The first protocol is private but not robust,

while the second adds robustness at the cost of more complexity. Here we give an

adaptively-secure protocol, based on their simpler version.

We assume the existence of a homomorphic threshold cryptosystem as described

in Chapter 4. We denote an encryption of a message x as Y when the public key is

clear from the context. We also assume a trapdoor commitment scheme as described

in Chapter 3.

In all of our protocols, any deviation that is detectable by all honest parties causes

the misbehaving party to be excluded from all protocols for the life of the system.

Upon detecting a dishonest party, the others restart only the current protocol from the

beginning. Intuitively, this general strategy is necessary to prevent an adversary from

gaining some level of control over the protocol by failing to open its commitments
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after witnessing the honest parties' behavior. This rule will apply in each round of

every protocol, even when not stated explicitly.

A note about the round-efficiency of this rule: the number of rounds of a single

protocol execution is bounded only by a constant multiple of the threshold t (since

one corrupt party may force a restart every time). However, the adversary can force

a total of only O(t) extra rounds to be executed over all invocations, which is a

negligible amortized cost over the life of the system. (This assumes that all protocols

are constant-round when no malicious parties are present, which will be the case.)

5.1 The Adaptive Adversary Model

We now introduce a stronger adversarial model that is in many ways more realistic

than the static adversary model. We refrain from giving a precise formulation of

the model in terms of multiparty computation because the definitions are actually

stricter than necessary for our threshold cryptographic protocols. However, the reader

may see Canetti [6] for details. Frankel et al. [17] provide definitions of the model and

methodologies for proving adaptive security in many cryptographic settings (including

ours). We summarize their results here.

Recall that a t-limited static adversary must choose at most t parties to corrupt

before any protocols are executed. The adversary sees all messages sent to the corrupt

parties and may control them arbitrarily, but it may not corrupt any other parties

after the setup phase. In many settings, this is an unreasonable restriction. For

example, in real life, a malicious entity may choose which servers to break into after

seeing the broadcast messages of some protocol. An adversary in the static model is

prohibited from doing such a thing.

In contrast, a t-limited adaptive adversary may choose to corrupt any party at any

point over the lifetime of the system, as long as it does not corrupt more than t parties

in total. The choices may be based on everything the adversary has seen up to that

point (all broadcast messages and the internal states of all other corrupted parties).

When an adaptive adversary corrupts a party, it is given the entire computation
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history of that party and takes control of its actions for the life of the system. Note

that this prohibits the honest parties from making erasures of their internal states at

any time. In certain contexts, erasures are a reasonable (and sometimes necessary)

primitive. However, our protocols will not require them.

It is easy to see that an adaptive adversary is at least as strong as a static one:

an adaptive adversary may mimic a static adversary by simply corrupting the same

choice of parties before the system is initialized. Conversely, there are protocols that

are secure in the static model, but are provably insecure in the adaptive model.

As expected, security of a protocol is defined in the adaptive model using the

simulation paradigm. For any adaptive adversary A, there must exist a simulator S

which interacts with A to provide a view which is computationally indistinguishable

from the adversary's view of the real protocol. The main difficulty in designing

secure protocols in the adaptive model is in being able to "fake" the messages of the

honest parties such that there are consistent internal states that can be supplied to

the adversary when it chooses to corrupt new parties. In fact, we will design the

protocols such that the simulator can supply consistent states on behalf of all honest

parties except one, which we call the "single inconsistent party," and denote Ps. We

stress than the inconsistent party is chosen at random by the global simulator, and

remains the same throughout all simulator subroutines.

We will design simulators that supply a suitable view to the adversary provided PS

is not corrupted, or said another way, the adversary's view will be indistinguishable

from a real invocation up to the point at which PS is corrupted (if ever). This condition

is sufficient for proving security: if the adversary asks to corrupt Ps, then we abort all

running simulations (since our simulators may call upon each other as subroutines),

reset the adversary to its initial state, randomly choose a new Ps, and restart the

global simulator. Because the adversary can corrupt at most half of the parties, and

its view is indistinguishable from an interaction with honest parties, the probability

of the adversary corrupting Ps in a single run is at most negligibly better than 1/2.

Therefore the expected number of runs is constant, and the global simulator runs in

expected polynomial time.
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5.1.1 Adaptively-secure multiparty E-protocols

In Chapter 3 we introduced the notion of E-protocols, which are essentially honest-

verifier zero-knowledge proofs of knowledge, with the added convenient restriction

that any two accepting conversations are sufficient to compute the witness. Cramer

et al. [12] describe how to efficiently perform multiparty E-protocols by generating a

shared challenge string to be answered by each prover, but the analysis is only valid

in the static adversary model. Specifically, when 1 > 16k, the scheme relies upon a

trusted oracle to choose a random 4k-party subset after the adversary has chosen its

corrupted parties. These 4k parties each contribute one bit to each random challenge,

so that with high probability at least k of the bits are chosen honestly. In the adaptive

adversary model, however, this is insufficient because the adversary may just choose

to corrupt the 4k chosen parties, thereby destroying the integrity of the challenges.

To resolve this issue, we simply let each party contribute a random [2k/il-bit

string, and concatenate them. This produces an m-bit challenge, where 2k < m <

16k, so at least k of the challenge bits are chosen honestly, as desired. When 1 < 16k,

only O(k) bits are broadcast. When 1 > 16k, the cost is 0(l) broadcast bits, which

is still reasonable.

With this modification, the generic multiparty E-protocol scheme remains secure

in the adaptive adversary model, and the generic simulator/witness extractor E can

be used as-is. It is also important to note that the MULT protocol from Cramer et

al. [12] can be implemented securely in the adaptive adversary model, with minor

changes.

5.2 A Preliminary Subprotocol

First we assume existence of a secure protocol MAD (meaning "multiply, add, de-

crypt") which has the following specification:

* public inputs w, T, Y, z to all parties

" public output F = wx + yz for all parties.
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Given a suitable homomorphic threshold cryptosystem, MAD can be implemented

using the secure MULT and DECRYPT protocols as follows:

1. Each party publishes a trapdoor-commitment to a random string ri for use in

the multiplication-by-ring-element algorithm.

2. The parties open their commitments, and compute r as the exclusive-or of all

properly-decommitted strings.

3. Each party runs the multiplication-by-ring-element algorithm on inputs w and

x with random string r, yielding a common random ciphertext wT7x.

4. The parties enter the MULT protocol on y, , yielding common random cipher-

text yz.

5. Each party uses the deterministic addition-of-ciphertexts algorithm to compute

a common input wx + yz to the DECRYPT protocol, yielding common output

F = wx + yx, as desired.

The simulator SMad for this protocol is straightforward. Its input is w, T, V, f as

well as the public output F = wx + yz. It also receives the identity of the inconsistent

party Ps and its trapdoor value ts. The simulator operates as follows:

1. On behalf of honest parties, commit to random strings. For Ps, use the trapdoor

ts to create a cheating commitment. Receive commitments from the corrupted

parties.

2. Decommit honestly on behalf of the honest parties, and decommit to an arbi-

trary value on behalf of Ps. Receive decommitments from the corrupted parties.

3. Rewind the adversary to before the commitments are opened. Choose a ran-

dom string r and let rs = r e rc e rH, where rc is the exclusive-or of the

corrupted parties' (now revealed) ris, and rH is the exclusive-or of the honest

parties' (excluding Ps) ris. Decommit honestly on behalf of the honest parties,
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and decommit as rs on behalf of Ps by using the trapdoor ts. Receive decom-

mitments from the corrupted parties; the values must be the same as the earlier

decommitments except with non-negligible probability by the binding property.

4. All parties take the exclusive-or of all decommitted values, yielding the truly-

random value r. Using r as the random input to the multiplication-by-ring-

element algorithm, they all compute a common random ciphertext wxT.

5. Compute a random ciphertext Fz by encrypting wx + yz (which is given as

input), subtracting the value wxY from the previous step, and blinding. Run

SMjt on inputs , -f to simulate the multiplication protocol.

6. Run SDecrypt on wx EO 2 (from the last two steps) and F = wx + yz to simulate

the decryption protocol.

It is clear that SMad gives the adversary a suitable view of the protocol, if Ps is

never corrupted. The simulator always acts honestly on behalf of all other honest

parties, so there is always a consistent internal state that can be shown to the ad-

versary upon corruption. In the simulation, the value of r is truly random, while in

the real protocol, r is indistinguishable from random due to the hiding property. By

the trapdoor property, the commitment from Ps is indistinguishable from an honest

commitment. Finally, the security of the MULT and DECRYPT protocols ensures that

their respective simulators generate suitable views.

5.3 Two Preliminary Proofs

In the inversion protocol, each party provides a ciphertext and must prove that it is

an encryption of zero. For the Paillier cryptosystem, this is merely a proof of nth

residuosity modulo n 2 . Such a proof and is virtually identical to a zero-knowledge

proof of quadratic residuosity mod n as given by, for example, Goldwasser et al. [21].

In addition, each party must publish a ciphertext and prove that the corresponding

plaintext lies within a specified range. Boudot [3] describes such a proof for committed
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values, and a proof of equality between a committed value and a ciphertext in the

Paillier cryptosystem can be constructed using standard techniques (see, for example,

Camenisch and Lysyanskaya [4]).

5.4 The Inversion Protocol

The INVERT protocol has the following specification:

* common public input (pk, e, N, #, {ki}). Here e is a prime to be inverted modulo

the secret #, N is an upper bound on the value of q, and {ki} is the set of all

public trapdoor commitment keys.

" secret input ski, the ith secret key share, to party P.

" common public output P', the set of parties completing the protocol correctly,

and di for each Pi E P' where di is described below.

" secret output di from party Pi G P'. The {di} constitute an additive sharing of

the inverse, i.e. rEp, di = e- 1 mod q.

The protocol proceeds as follows:

1. Each P publishes a random encryption Oi of zero, and proves that it is valid

(see Section 5.3). All parties internally compute #B = (EB0i) ED q where the

summation is taken over all parties who gave valid proofs.

2. Each P chooses random Ai from the range [0 ... N 2 ], and random ri from the

range [0 ... N 3], and encrypts them to get Ai and Ti, respectively.

3. Each P (in an order that may be chosen by the adversary) commits to his

ciphertexts A2 and Ti.

4. Each P (again, in an adversary-chosen order) decommits by broadcasting Ai

and Ti, and the random strings used to generate the commitments. If a party

decommits improperly or fails to decommit, it is excluded from this and all
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future invocations of the protocol. The protocol is then restarted from the

beginning.

5. Each party proves that its Aj and ri values are within the proper intervals,

respectively: each party first publishes commitments to both values, then proves

that the committed values are the same as their respective plaintexts, and finally

proves that the committed values are within range. See Section 5.3 for details.

6. Each party proves knowledge of its plaintexts using a multiparty E-protocol. Let

P' be the set of parties for which both proofs were correct, the let A = E>Ej, A,

R = EiEP, ri, and F = Re + A#. Again, any party which gives an incorrect

proof, or fails to give a proof, is excluded from this and all future invocations,

and the protocol is restarted.

7. The parties run the MAD protocol on e, R, A, and OB, where R = Ep ,, A=

EBiEp' A by addition of ciphertexts. This protocol securely computes the value

F = Re + A# as the common output.

8. Each party determines whether (e, F) = 1. Because e is prime, (e, F) $ 1 only

if e divides A, which happens with probability about 1/e because at least one

Ai is chosen at random. If (e, F) : 1, the parties repeat the protocol from the

first step. Otherwise, all parties compute a, b such that

aF + be=1 <-> aRe + aA + be = 1

<-> (aR + b) - e-1 mod b.

Pi's share is di = ari for i > 1, and d, = ari + b for i = 1. Note that any

party can use the homomorphic properties of the cryptosystem to compute an

encryption di for any i E P', because the values of a and b are known to all

parties, as well as encryptions Tj for all i E P'.
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5.5 A Proof of Security

Theorem 5.1 (Security of inversion protocol) Fort < 1/2, INVERT is an adap-

tively t-secure multiparty protocol for computing e 1 mod $.

Proof: We prove security of the INVERT protocol using the MAD simulator SMad.

We will also assume a secure key-generation protocol for the homomorphic cryp-

tosystem. We describe the construction of such a protocol for a threshold Paillier

cryptosystem in Chapter 6. Lastly, we will assume a secure key-generation protocol

for the trapdoor commitment scheme.

Let kp be the public commitment keys for all the parties. Let Ps be the in-

consistent party and ts be its trapdoor value determined by the simulator for the

key-generation protocol. Given A, we will construct a simulator subroutine Sinvert

which, on input (A, pk, e, N, , kp, Ps, ts), outputs (A', dH), where A' is the state of

the adversary after the protocol, and dH are the additive shares belonging to the hon-

est parties (these two items completely determine the output vector for the protocol).

Sinvert operates as follows:

1. For each honest P except Ps, honestly publish and prove validity of a random

encryption of zero. For Ps, publish a blinding of N El q and use EF and the

trapdoor value ts to give a false proof of validity. At this stage, #B = N, and

all of the parties hold an encryption of N instead of an encryption of 0.

2. Through the decommitment phase, behave honestly. That is, choose random

Ai and ri for each honest party, commit to their ciphertexts, and decommit

honestly.

3. During the round in which the parties prove plaintext knowledge, call the sub-

routine EPOPK on the corrupted parties' ciphertexts Ai and ri. (Note that EPOPK

does not need any trapdoor values, because the simulator actually knows the

relevant plaintexts for the honest parties.) As described in Chapter 3, with high

probability 9POPK returns the set of corrupted parties which completed their
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proofs of plaintext knowledge successfully, and the plaintexts Ai, ri for those

same corrupted parties.

4. Set R' = Ecp, rZ and A'= E , A2, where P' is the set of all parties remaining.

Run SMad on e, Eij p'7, Wi p'A, #B = N , and F' = R'e + A'N.

5. Proceed exactly according to the protocol, repeating if (e, F') # 1.

It is clear that the simulator runs in expected polynomial time. It remains to

be shown that the output of the simulator is computationally indistinguishable from

the output of a real run of the protocol. Let us assume for now that this is not the

case, and that there is an adversary A which can distinguish between a real-life exe-

cution of INVERT and an interaction with Sinvert with non-negligible advantage. We

will provide a reduction that uses A to break the semantic security of the cryptosys-

tem, thus establishing a contradiction. The reduction will employ a hybrid simulator

interacting with A.

5.5.1 The hybrid simulator

Consider the simulator Sybrid which receives the public key pk of the homomorphic

cryptosystem, the public commitment keys kp, the identity of the inconsistent party

Ps, and its commitment trapdoor value ts. In addition, it is supplied with N, e, #, 0,

a ciphertext b where b is either 0 or 1, and an auxiliary input representing the state

of the adversary A. These inputs are supplied as the auxiliary output of the message-

sampling algorithm in a semantic security experiment, where the goal is to determine

with non-negligible advantage whether b = 0 or b = 1. We now describe the interac-

tion of this hybrid simulator with the adversary. (As always, any deviation from the

protocol by a corrupt party causes its exclusion, and a restart.)

1. For each Pi = Ps, publish a random encryption of zero and proves its validity.

For Ps, publish (N - q) E b and give a false proof of validity using Er and the

trapdoor ts. Let #B be as in the INVERT protocol.
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2. For all honest Pi #L Ps, honestly choose Ai and ri and commits to their cipher-

texts. For Ps, choose As and rs from the proper ranges, but use the commitment

trapdoor ts to create cheating commitments. Receive all commitments from the

corrupt parties.

3. For all honest Pi # Ps, decommit the ciphertexts honestly. For Ps, open the

cheating commitments as As and T-S.

4. Honestly prove plaintext knowledge for all honest parties, and use &POPK to

extract the corrupt parties' correctly-proven Ai and ri values. Let AC and RC

be the respective sums of these variables for the corrupt parties, and let AH and

RH be the respective sums of the honest parties' Ais and ris.

5. Rewind the adversary to the point immediately preceding the round in which

the parties publish their ciphertexts. Solve for A' and R' such that F

(Ac + AH)<$ + (Rc + RH)e = (Ac + A)N + (Rc + R')e. We shall prove that

such A' and R' are easy to compute, and are similarly distributed with AH

and RH (respectively).

6. For all honest parties Pi 0 Ps, again honestly decommit to their ciphertexts

Aj, 4i. For Ps, open the cheating commitments as blinded ciphertexts A' and

rs, where A = A EE (A's - Av) E b, and r = T- E (R's - RH) E b. In the

same round, the corrupt parties must decommit to the same values as they did

before rewinding (doing otherwise would constitute a break of the commitment

scheme, and the reduction is straightforward). Therefore Ac and Rc remain

unchanged.

7. Honestly prove plaintext knowledge on behalf of all honest parties Pi 7 Ps, and

use EPOPK and the commitment trapdoor ts to provide fake proofs of plaintext

knowledge for A's and r'. Also receive proofs of plaintext knowledge from the

corrupt parties.

8. Run SMad on e, the homomorphic sums of the ciphertexts, the secret input

ciphertext, and the value F. Finish the protocol honestly.
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We now prove the correctness of the reduction. Certainly if the adversary corrupts

any party besides Ps, the hybrid can supply a valid internal state because it is acting

honestly on behalf of that party. We now show that if b = 0, the output of SHybrid

is indistinguishable from a real run of the INVERT protocol. Similarly, if b = 1, the

output is indistinguishable from the output of SInvert. Therefore an adversary that

can detect a simulation of INVERT can be used to break the semantic security of the

underlying cryptosystem.

First, assume that b = 0. Then it is easy to verify that the hybrid acts honestly

on behalf of all the uncorrupted parties, and in the first round Ps indeed publishes

a random encryption of zero, so q5 = 0. The only deviation from the real protocol

occurs in the creation of cheating commitments for PS and in the proofs of plaintext

knowledge, but these commitments are computationally indistinguishable from honest

commitments by assumption. Because A' = As and r' = rs, the behavior of Ps is

indistinguishable from an honest party's in the real protocol.

Now assume that b = 1. Then PS publishes a random encryption of N - # as

in the simulation, and qB= N. Note that all Aj, ri belonging to honest parties are

chosen uniformly except for A' and r'. But as we will show, the distributions of those

variables are statistically indistinguishable from the respective uniform distributions.

So in fact the behavior of Ps in the hybrid is indistinguishable from its behavior under

SInvert.

It only remains to be proven that As, rs are similarly-distributed with A's, r' (re-

spectively), which we do here. We assume for simplicity that N - # = O(vN), as is

the case when # = O(N) and N is the product of two large primes of approximately

equal size. First we state the following lemma:

Lemma 5.1 ([9]) Let x, y be two integers such that (x, y) = 1 and A, B two integers

such that A < B, x, y < A, and B > Ax. Then every integer z in the closed interval

[xy - x - y +1, Ax + By - xy +x + y - 1] can be written as ax +by where a G [0, A]

and b G [0, B]. Furthermore, there exists a polynomial-time algorithm that on input

x, y, and z, outputs such a and b.
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Let us denote A as Ac + AH, A' as AC + A, R as RC + RH, and R' as RC + R'H.

We apply this lemma twice, first with x = #, y = e, and again with x = N, y = e

to conclude that any integer F in the interval [6, Al can be written both as AO + Re,

and as A'N + R'e, where A, A' c [0, nN 2l and R, R' C [0, nN3 ]. Here 6 = Ne - e + 1,

and A = n(N2qS+N 3 e) - qe+q+e- 1.

Now, given any fixed AC, RC (the sums of the adversaries' chosen values in the pro-

tocol) and any AH (respectively, RH) distributed as the sum of at least n/2 honestly-

chosen uniform values from [0, N 2] (respectively, [0, N 3]), it is easy to see by Chernoff

bounds that the probability that F falls outside the range [6, A] is negligible since

both bounds fall far away from the mean of F.

Now suppose F E [6, A] and Ac, Rc are fixed as in the protocol. Given a pair

AH, RH such that F = (Ac + AH)q + (RC + RH)e, we present an efficient mapping

that produces A'H, R' such that F = (AC + A'H)N + (Rc + R'H)e. That is,

AO - A'N = (R' - R)e

Since (N, e) = 1, for any given A there exists a unique and efficiently-computable

A' E [A, A + e - 1] such that AO - A'N is a multiple of e. This determines the value

'- AH+ As A' (one of the values published by the first honest party in the hybrid

simulator), and from that we can solve for R' - R + rs = r' (the other published

value).

We need only show that As, A' and rs, r' are close enough in a statistical sense,

i.e. that their differences are small relative to the sizes of the intervals from which

they are drawn. Indeed,
|A' - Al e 1

N 2  N 2 - N

and

r r - A'NO - (A - A') A'(# - N) < 0 nN 2VTV <nN2 V
e e e e
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Thus
ir1 - r'I n

N 3  N vfN

which again is negligible. This completes the proof.
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Chapter 6

An Adaptively-Secure Threshold

Paillier Cryptosystem

Paillier [25] introduced a probabilistic cryptosystem which is provably secure under a

novel number-theoretic hardness assumption related to composite-degree residuosity

classes modulo n 2 , where n is an RSA modulus. Its most valuable feature is additive

homomorphism, that is, the product of two ciphertexts is an encryption of the sum of

the plaintexts. Besides the application to MPC and threshold cryptography studied in

this thesis, the homomorphism property is also useful for secure elections and lottery

schemes.

In this chapter, we describe an adaptively-secure threshold variant of the Paillier

cryptosystem, which is provably secure under a novel number-theoretic hardness as-

sumption. We will again be working in the adaptive adversary model, described in

Section 5.1.

6.1 Preliminaries

We introduce the following notation: for any n E N, A(n) denotes Carmichael's

lambda function, defined as the largest order of the elements of Z*. It is known that if

the prime factorization of an odd integer n is j_ qfi, then A(n) = lcmi=1... (qf1- -

1)).
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6.1.1 Shamir threshold secret sharing

Shamir [28] proposed a protocol to share a secret element s in a field F among 1

parties in such a way that any t + 1 parties can efficiently recover s, but any group of

up to t of them cannot gain any information about s. This scheme can also be made

to work over the integers, with similar restrictions on what a group of t parties can

learn about the secret.

The protocol is based on the Lagrange polynomial interpolation formula that

allows computation of P(X), for any X, if P is a polynomial of degree t and if t + 1

values P(xi) are known for distinct elements xi, ... , xt+,:

t+1 t+1 X

P(X) =Z 7 1 - P (xi)
i=1 j=1,jAi -

In order to share a secret s, choose a random polynomial P of degree t such that

P(O) = s and each party receives a unique point (xi, P(xi)) with xi = 0. The above

formula shows how, given t + 1 points, to discover P(0) = s.

When working over the integers, it is useful to define a variant of the Lagrange

interpolation coefficients. If there are 1 parties in all, let A = f!, and define

=A.Hj'Gs\{j}(Z - Y')
Ps. ~ 7) AE Z.

Therefore for any set S of t + 1 distinct points at which the value of P is known, we

have

AP(i) = Z pP( ).
jES

6.1.2 Proving equality of discrete logs

Our cryptosystem will require a zero-knowledge protocol to prove equality of discrete

logs in a cyclic group of unknown order (in this case, the cyclic group of squares mod

n2 ). Specifically, if g is a generator and h is an element of the group, and we are

given elements G and H, we want a protocol to prove that the discrete log of G base
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g equals the discrete log of H base h. Furthermore, we want this protocol to be a

proof of knowledge; that is, the verifier should be convinced that the prover knows

the common discrete log.

Chaum and Pedersen [10] were first to provide a non-interactive zero-knowledge

proof of discrete log equality that is secure in the random oracle model. Camenisch

and Michels [5] gave a knowledge extractor for this protocol which requires only two

accepting conversations. It is straightforward to convert the non-interactive version

into a E-protocol which is secure without the random oracle model assumption: sim-

ply replace the hash step with a random challenge sent by the verifier.

6.2 The Paillier Cryptosystem

The Paillier cryptosystem [25] is based on composite-degree residuosity classes, and

has the desired homomorphic properties. It is based upon the Carmichael lambda

function in Z*2 and two useful facts regarding it: for all w E Z*2 ,

WA()= 1 mod n, and wnA(n) - 1 mod n2

Here we recall the cryptosystem.

Key generation. Let n = pq where p, q are primes. Let g = (1 + n)ab mod n2 for

random a, b c Z*. The public key is (n, g) and the secret key is A(r).

Encryption. To encrypt a message M E Z, randomly choose x E Z* and compute

the ciphertext c = gM n mod n2

Decryption. To decrypt c, compute M L(On) mod n
2

) mod n where the domain ofL(gA(n) mod n 2
)

L is the set Sn = {u < n2 : u = I mod } and L(u) = .

The security of the scheme is based upon the composite residuosity class problem,

which is exactly the problem of decrypting a ciphertext. Semantic security can be

proven based on the hardness of detecting nth residues mod n2.

Fouque et al. [16] present a threshold version of the Paillier cryptosystem, using

techniques developed by Shoup [29] for threshold RSA signatures. The version pre-
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sented in Fouque et al. is provably secure only in the static adversary model, assuming

the semantic security of the non-threshold version.

6.3 An Adaptively-Secure Threshold Version

Here we present the novel result of a threshold Paillier cryptosystem which is secure

in the adaptive-adversary model, based upon the security of Paillier's cryptosystem

and the existence of trapdoor commitment schemes. This cryptosystem is inspired

by the statically-secure threshold version presented in Fouque et al.

6.3.1 Description of the protocols

Recall A = 1!, where l is the number of parties.

Key generation. We first describe key generation in terms of an i-party function

(recall Definition 2.3) on input k, the security parameter. This function is evaluated

by a trusted party, who distributes the proper values to the parties.

Choose an integer n, the product of two strong primes p, q of length k such that

p = 2p' + 1 and q = 2q' + 1, and gcd(n, 0(n)) = 1. Set A = 2p'q' = A(n). Choose

random (a, b) - Z* x Z*, and let g = (1+n)b" mod n2 . The secret key is the value /A

for a random f <- Z*, which is shared additively as follows: for all parties P but one,

choose random si <- ZnA, and choose the last si such that >j. si = 3A mod nA.

The public key is the triple (g, n, 0), where 0 = a#A mod n. To compute public

verification keys, choose a random public square v from Z*,, and let vi = vi mod n2

In addition, compute polynomial backups for each si as follows: let aj,O = Asi, and

choose random aij +- [-A 2r 3/2,... , A2 n3/2], then define a polynomial over the

integers fi(X) = E_= ai,jXj (so that fi(O) = Asi). To each party P, give the values

fi(j) for all i. Finally, compute public commitments for these backup shares using

any perfectly-hiding commitment scheme, such as Pedersen's [26]. Let the public

value wij be a commitment to fi(j) under public key kj and random string ri, and

give rij to party P.

A result of Cramer et al. [11] states that for any i-party function, there is an
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adaptively-secure protocol which evaluates it. Therefore there is a simulator which,

given all the outputs of the function (excluding any values belonging only to Ps),

interacts with the adversary and gives it a suitable view of the key generation proto-

col. In Section 6.3.3 we describe how to compute suitably-distributed inputs to this

simulator.

It is worth noting that the key generation protocol provided by Cramer et al. may

be very inefficient, but it is only executed once to initialize the threshold cryptosystem.

Encryption. To encrypt a message M E Z,, pick random x <- Z* and compute the

ciphertext c = gM n mod n2

Computing decryption shares. Player P computes his decryption share ci =

c'i mod n2 , and proves via a E-protocol that c (in base c2) and vi (in base v) have

the same discrete log si in Z*2 .

Combining shares. If any party P refuses to publish his ci, or gives an invalid

proof, then the other parties reconstruct his secret share si as follows. All parties P

publish their backup shares fi(j) and random string ri,, and all parties verify that

wij is a valid commitment. Because there are at least t + 1 honest parties, each party

may pick some t + 1 honestly-published values fi(j), and by interpolation, discover

si = fi(O)/A and compute ci = cSi mod n2 .

Now each party has a correct value ci cSi mod n 2 , for all i. The message can be

computed by each party as follows:

L (F ,p ci) _ L (c~ieP Si mod nA) _ L(c3A) _ L(g3AM) _ a/AM
______ ________ ___ M mod n

0 0 0 0 0

since the value 0 = a#A mod n is part of the public key.

6.3.2 Simulating decryption

Suppose we are given an adversary A which participates in our threshold cryptosys-

tem. Then we will construct a machine S which will interact with A during the

decryption protocol, and act on behalf of the honest parties. We want the simulator

to provide a view to the adversary that is computationally indistinguishable from a
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real run. We now describe the operation of the simulator, within the adaptive adver-

sary model, and later prove that it provides an appropriate view to the adversary.

The input to S is a tuple (sp, Vp, {aj,5, {wj,} g, n, 0, v, c, M, Ps, kp, ts, A), de-

fined as follows:

" sp are simulated secret key shares for all the parties,

* Vp are simulated verification keys for all the parties,

* {a, } are simulated coefficients defining the polynomials fi as in the protocol,

* {wij} are simulated trapdoor commitments for all the parties,

* {ri,3 } are random strings used to generate the corresponding commitments,

* (g, n, 0) is a simulated public key for the threshold cryptosystem,

v is a simulated generator of the cyclic subgroup of squares modn2,

* c is the ciphertext to be decrypted,

" M is the decryption of c,

" Ps is the identity of the single inconsistent party,

" k* are the trapdoor commitment public keys for all parties,

" ts is the commitment trapdoor for Ps,

" A is the state of the adversary before the protocol execution.

(In the next section, we describe how these simulated values can be generated

from only a public key from the single-server Paillier cryptosystem.)

The simulator acts honestly on behalf of all uncorrupted parties P (excluding

Ps) by publishing ci = csi mod n2 and proving correctness of the decryption shares.

On behalf of Ps, the simulator publishes cs = (1 + MOn) Hf s c-l mod n2 and

provides a false proof of correctness using ts. If any corrupted party fails to provide

a correct decryption share, the simulator honestly interpolates that party's secret
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share as in the decryption protocol, and proceeds normally. The simulator then

honestly computes the plaintext by multiplying the published shares, yielding (1 +

MOn) mod n 2 , applying L, and dividing by 0 to get common output M.

The view of the adversary under the simulation is statistically indistinguishable

from a real run of the protocol, provided that all public inputs are suitably simulated.

If the adversary corrupts any party P1 (other than Ps), that party's behavior over

every invocation of the protocol is consistent with the secret s3 revealed to the adver-

sary. In addition, the adversary is entitled to see fi(j) and rij, for all i. When j # S,

the values are consistent with anything else the adversary has seen. For i = S, we

prove below that with high probability, any set of at most t values fs(j) is distributed

similarly regardless of the value being shared, and therefore the simulated values fi(j)

are statistically indistinguishable from those in a real run.

The simulator only deviates from the real protocol in the behavior of the single

inconsistent party Ps. If the adversary corrupts Ps at any point, then the simulator

rewinds the simulation to the very beginning (before the key generation phase). Up

to the point that Ps is corrupted, the adversary's view is indistinguishable from a

real run. Because PS is a randomly-chosen party, and the number of parties that the

adversary may corrupt is at most t < 1/2, the probability that the adversary chooses

to corrupt Ps at any point during the simulation is less than 1/2. Therefore the

expected number of runs of the simulation is less than two, and the simulator runs

in expected polynomial time.

6.3.3 Simulating key generation

We now show that the outputs of the key generation function can be simulated (up

to statistical closeness), given a public key (g', n) and the identity of the single in-

consistent party Ps. (It is sufficient to simulate every value produced by the key

generation function, except the secret share ss belonging to Ps. This is because the

entire simulation is aborted if the adversary ever attempts to corrupt Ps, so we need

not simulate its private data.) When these values are given to the simulator for the

key-generation protocol, it generates a suitable view for the adversary.
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Choose random (x, y, 6) <- Z* x Z* and let g (g')xy" mod n 2 . Choose random

S*- Z*, and let v = g2a. Then for each player, choose random si +- [0, . . ., [n/2J -1],

and create verification shares vi = 0 mod n2 for all parties but Ps. For Ps, set

vs (1 + 2aOn)v- Eis Si mod n2

Finally, create commitments wij honestly (from polynomials with free terms Asi and

random coefficients) for all i and j, and random rij.

First, note that the statistical difference between the uniform distributions onZ,\

and [0, . . ., [n/2J -1] is Q(n 1 /2 ), so any set of at most I-1 secret keys si is statistically

indistinguishable between a real and simulated run. Both g and 6 are uniformly chosen

from their respective domains, and are identically-distributed with their respective

values in the real protocol. In addition, v is a random element of Qn2, the cyclic group

of squares mod n2. Because 10- 9 I = rqp'q' and e(nn'q') =(p-)q-)(-)q'-1)

v is a generator of Qn2 with high probability, and is identically-distributed with its

value in the real protocol.

Note that any set of at most 1 - 1 simulated verification keys vi is statistically

close to a real set. However, in the real protocol with a fixed v, the values of I - 1

verification shares induce a distribution upon the last (because the values of I - 1

secret shares si induce a distribution upon the last). That is, it is necessary and

sufficient that F J, vi = v3A mod n2 for some uniformly-chosen # from Z*. In the

simulation, we choose ]JEP vi =VP = (1 + 2aOn) mod n2 without knowing A but

just by randomly choosing 6, which induces a uniform distribution upon 3 as desired.

Finally, we note that the simulated set {w,} is identically-distributed to its coun-

terpart in the real protocol, by the perfect-hiding of the commitment scheme.

It remains to be shown that the simulated values fi(j) for all i and for the ad-

versary's chosen j are indistinguishable from those in a real run. It is clear that the

fA(J) are identically distributed for i =A S, because the simulator behaves honestly. It

is also obvious that the points of different polynomials are independent. We therefore

show that with high probability, the values fs(j) seen by the adversary are consistent
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with a polynomial having free term Ass and coefficients from the proper range, for

any value of s.

Let fs(X) be the polynomial used in the simulation, that is, fs(X) = Ass +

_t as,jXj where the asj are randomly chosen. Say that the adversary has corrupted

a set of parties C, with JCJ < t. We wish to find a polynomial js(X) such that

fs(O) = Ass for an arbitrary ss, and fs(i) = fs(i) for i E C. Consider a polynomial

h(X) such that h(O) = A(ss - ss), and h(i) 0 for i E C. Then we have f(X)

f (X) + h(X). By interpolation,

h(X) -ZEh(i). I-I z = 4.s -s)flz
ieC jAi,jE{O}UC jEC

and by expanding the product, the coefficient of X' in h(X) is:

S HEB(-j)
s) BCCIBIs

which is bounded in absolute value by

Ass - 8S) < Ass - SS)t) < A( s - ss)t! < AQps - ss)t! < A 2 n2 /2
BCC,IBI=i

since s, ss E {0, . .. n 2 /2}.

Now the coefficients of f(X) are outside of the desired range only if any of the

coefficients of f(X) are outside of [-A 2 (n - n2 )/2, ... , A2(n'- n 2 )/2]. By the union

bound, this happens with probability at most t/n, which is negligible. In addition,

there is a bijection between the coefficients of f and the coefficients of f when ss, ss,

and C are fixed. Therefore the distribution of the coefficients of f is statistically close

to uniform, as desired.
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6.4 A Reduction from the Original Cryptosystem

With these simulations in hand, the reduction from one-server semantic security to

threshold semantic security is straightforward. Assume there is an adversary that

can break the security of the threshold cryptosystem. Given a public key (g', n) for

the single-server Paillier cryptosystem, we first simulate the key generation protocol

and any decryptions as described above. (Recall that the public key of the threshold

cryptosystem is (g = (g')xyf mod n2 , n, 0) for some uniformly-chosen x, y, 0.) The ad-

versary then outputs two messages m, mi, which we send to an oracle, who responds

with a random encryption c of mb for some random bit b. We compute X = cx mod n2

(where x is the value chosen by the key generation simulator) and give it to the ad-

versary. By assumption, the adversary can distinguish with non-negligible advantage

whether X is an encryption of mo or min under (g, n, 0). This is equivalent to whether

c is an encryption of mo or mi under (g', n), hence we have broken the semantic

security of the original cryptosystem. This completes the reduction.
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