
Algorithms for the Shortest Path Problem with Time Windows
and Shortest Path Reoptimization in Time-Dependent

Networks

by

Andrew M. Glenn

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

Author

June 1, 2001 MA0CTEiOF TECHNOLOGY

Copyright 2001 Andrew M. Glenn. All rights reserved. JUL 1 1 2001

LIRA IEpS
The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so. BARKER

Department of Electrical Engineering and Computer Science
June 1, 2001

Certified by

Accepted by

Ismail Chabini
Assistant Professor

Department of Civil and Environmental Engineering
Massachusetts Institute of Technology

-Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

2

Algorithms for the Shortest Path Problem with Time Windows
and Shortest Path Reoptimization in Time-Dependent

Networks

by

Andrew M. Glenn

Submitted to the
Department of Electrical Engineering and Computer Science

June 1, 2001

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

We consider the shortest path problem in networks with time windows and linear waiting
costs (SPWC), and the minimum travel time reoptimization problem for earlier and later
departure times. These problems are at the heart of many network flow problems, such
as the dynamic traffic assignment problem, the freight transportation problem with
scheduling constraints, and network routing problems with service costs at the nodes.
We study these problems in the context of time-dependent networks, as such networks
are useful modeling tools in many transportation applications.

In the SPWC, we wish to find minimum cost paths from the source node and all other
nodes in the network while respecting the time window constraints associated with each
node. We develop efficient solution algorithms to the SPWC in the cases of static and
dynamic network travel times. We implement these algorithms, and we provide
computational results as a function of various network parameters.

In the minimum travel time path reoptimization problem, we wish to utilize previously
computed shortest path trees in order to solve the shortest path problem for different
departure times from the source. We develop algorithms for the reoptimization problem
for earlier and later departure times in both FIFO and non-FIFO networks. We
implement these algorithms and demonstrate an average savings factor of 3 based on
using reoptimization techniques instead of re-running shortest path algorithms for each
new departure time.

Thesis Supervisor: Ismail Chabini
Title: Assistant Professor, Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology

3

Acknowledgements

I would like to thank many people for their encouragement, and advice throughout the

process of researching and writing this thesis. I wish to thank my thesis advisor,

Professor Ismail Chabini, for his patience, insight, and support over the past year.

Without his help, this entire thesis would not have been possible. His genuine concern

for me, as well as for my research, was reassuring and invaluable.

I am also greatly indebted to Professor Stefano Pallottino from The Universith di Pisa, for

all of the time he spent discussing his proposed algorithms with me. Indeed, several of

the key concepts within originated from Professor Pallottino.

I am grateful to my friends in the MIT Algorithms and Computation for Transportation

Systems (ACTS) research group for their insight and advice throughout this past year.

I wish to thank my parents for always reassuring me that this thesis would eventually be

completed, and for gently nudging me to always do work that I would be proud of. I

would like to thank Stanley Hu for knowing every possible thing there ever is to know

about computers. Finally, I wish to thank my brother Jonathan, and all of my friends for

keeping me sane throughout this entire process. Most especially, thank you Eli, Elsie,

and Wes for making MIT fun for the past four years.

4

Table of Contents

CHAPTER 1 INTRODUCTION.. 8

CHAPTER 2 NOTATION FOR TRADITIONAL AND TIME-EXPANDED NETWORKS.........11

2.1 GENERAL NETWORK NOTATION 11

2.2 THE TIME-SPACE NETWORK... 12

CHAPTER 3 MINIMUM-COST PATHS IN NETWORKS WITH TIME WINDOWS AND

LINEAR W AITING COSTS.. 14

PROBLEM BACKGROUND AND INTRODUCTION... 15

M ATHEMATICAL FORMULATION.. 16

Time W indows ... 16

Path and Schedule Feasibility ... 17

Label Optimality .. 18

PROPERTIES OF LABELS IN STATIC NETWORKS... 19

THE SPW C-STATIC ALGORITHM .. 26

The SPW C-Static Algorithm for Our Network M odel .. 27

The SPWC-Static Algorithm for Networks with Zero-Cost Waiting at the Source............ 30

IMPLEMENTATION DETAILS FOR THE SPWC-STATIC ALGORITHM.. 31

Data Structures.. 31

Dominance Strategies .. 32

RUNNING TIME ANALYSIS OF THE SPWC-STATIC ALGORITHM... 35

LABELS IN DYNAMIC NETWORKS AND THE SPWC-DYNAMIC ALGORITHM............................ 36

COMPUTATIONAL RESULTS ... 40

Objectives..------. 40

Experiments... 41

5

3.1

3.2

3.2.1

3.2.2

3.2.3

3.3

3.4

3.4.1

3.4.2

3.5

3.5.1

3.5.2

3.6

3.7

3.8

3.8.1

3.8.2

3 .8 .3 R esu lts... 4 2

CHAPTER 4 MINIMUM-TIME PATH REOPTIMIZATION ALGORITHMS 48

4.1 PROBLEM BACKGROUND AND INTRODUCTION... 49

4.2 PROPERTIES OF FIFO N ETW ORKS .. 51

4.3 DESCRIPTION OF THE REOPTIMIZATION ALGORITHM IN FIFO NETWORKS FOR EARLIER

D EPA RTU RE T IM ES ... 56

4.3.1 The Special Case of Static Travel Times ... 57

4.3.2 Reusing Optimal Paths to Prune the Search Tree... 58

4.3.3 Reusing Optimal Paths to Obtain Better Upper Bounds... 59

4.3.4 Pseudocode for the Generic RA-FIFO for SP(k-c) .. 61

4.4 IMPLEMENTATION OF THE REOPTIMIZATION ALGORITHM IN FIFO NETWORKS FOR EARLIER

D EPA RT U RE T IM ES ... 6 1

4.4.1 Time-Buckets Implementation Details and Running Time Analysis................................. 62

4.4.1.1 Tim e-Buckets Implem entation Details ... 63

4.4.1.2 Tim e-Buckets Running Time Analysis.. 66

4.4.2 Heap Implementation Details and Running Time Analysis ... 68

4.4.2.1 H eap Im plem entation D etails... 68

4.4.2.2 H eap Running Tim e A nalysis.. 69

4.5 THE REOPTIMIZATION ALGORITHM IN NON-FIFO NETWORKS FOR EARLIER DEPARTURE TIMES

70

4.5.1 Description of the RA-Non-FIFO for Earlier Departure Times 71

4.5.2 Implementation of the RA -Non-FIFO for Earlier Departure Times 73

4.6 REOPTIMIZATION FOR LATER DEPARTURE TIMES .. 74

4.6.1 The Reoptimization Algorithm in FIFO Networks for SP(k+c)....................................... 75

4.6.2 The Reoptimization Algorithm in non-FIFO Networks for SP(k+c)................................ 76

4.7 COM PUTATIONAL RESULTS .. 77

6

4.7.1 Objectives.. 78

4.7.2 Experim ents... 78

4.7.3 Results... 79

CH A PTER 5 CO N CLUSION ... 94

5.1 SUMMARY OF CONTRIBUTIONS .. 94

5.1.1 The Shortest Path Problem With Time Windows and Linear Waiting Costs........... 94

5.1.2 The Shortest Paths Reoptim ization Problem ... 95

5.2 FUTURE RESEARCH D IRECTIONS.. 96

5.2.1 Tim e W indows ... 96

5.2.2 Reoptimization Algorithms ... 97

7

Chapter 1

Introduction

The problem of finding shortest paths in a network has been extensively studied. The

most well known version of the problem is, given a network with static arc travel times,

compute the shortest paths from a given source node to all other nodes in the network.

However, in practical situations, many variations of the standard problem arise. These

problem variants have real-world use in Intelligent Transportation Systems (ITS) and

other situations that arise in the field of transportation networks analysis and operation.

The goal of this thesis is to investigate two discrete-time shortest path problem variants

that are motivated by their use as sub-problems of larger transportation network flow

problems. The two problems we investigate are the shortest path problem with time

windows and linear waiting costs, and the problem of determining shortest paths in a

time-dependent network for a set of departure times, when the shortest paths are already

known for a given departure time.

For the shortest path problem with time windows and linear waiting costs, we prove

several properties of optimal solutions. We utilize these properties to develop efficient

8

algorithms for this problem in the case of static as well as dynamic arc travel times. For

the shortest path problem for varying departure times, we investigate this problem under

a reoptimization framework. We assume a solution for a given departure time is known,

and we wish to use this solution to efficiently compute the shortest paths for earlier or

later departure times. We develop algorithms for the reoptimization of earlier and later

departure times in both FIFO and non-FIFO networks.

For each algorithm presented in this thesis, we provide theoretical worst-case running

time bounds. Additionally, we implement the algorithms in the C++ programming

language to investigate how the running times of our algorithms would be affected by

various network parameters in practical applications.

The material in this thesis is organized as follows:

Chapter 2 introduces network notation that we will be using throughout the thesis.

Chapter 2 also includes a description of the time-space network. The understanding of

the time-space network is useful in understanding how to solve shortest path problems in

time-dependent networks.

In Chapter 3, we describe the shortest path problem with time windows and linear

waiting costs. We state the problem mathematically and present optimality conditions.

We then prove several properties about labels in the time-space network. These

9

properties lead to the development of efficient, increasing order of time, solution

algorithms for both static and dynamic networks. We provide implementation details and

pseudocode, as well as the theoretical worst-case running times of the algorithms

described. Additionally, we present computational results based on computer

implementations of these algorithms.

In Chapter 4, we investigate the shortest path reoptimization problem for earlier and later

departure times from the source. We examine properties of FIFO networks in order to

obtain lower and upper bounds on the shortest paths for new departure times. Using

these bounds, we develop an increasing order of time solution algorithm. We develop

variations of this algorithm for the reoptimization of earlier and later departure times in

both FIFO and non-FIFO networks. For each of these algorithms, we provide

implementation details and pseudocode, as well as a worst-case running time analysis.

Finally, we provide computational results based on the computer implementations of this

class of algorithms.

In Chapter 5, we summarize the main contributions of this thesis, and we suggest

directions for future research.

Additionally, Appendix A provides techniques for solving the additional reoptimization

variants described in Section 4.1. Appendix B provides a quick-reference glossary of the

terminology used in Chapters 3 and 4 of this thesis, as well as in related literature.

10

Chapter 2

Notation for Traditional and Time-Expanded Networks

In this chapter we describe the formulation of discrete-time networks, both static and

dynamic. We also present the time-space expansion network as a way of visualizing

dynamic networks. Portions of this chapter are based on the description presented in

Chabini and Dean [2].

2.1 General Network Notation

Let G = (N, A) be a directed network with n nodes and m arcs. The network G is said to

be dynamic if the value of network data, such as arc travel times or arc travel costs,

depend upon the time at which travel along those arcs takes place.

Let A(i) represent the set of nodes that come after node i in the network. That is, A(i) is

the set [j: (i, j) e A]. Similarly, let B(j) represent the set of nodes that come before node j

in the network, such that B(j) is the set fi: (i, j) e A]. We refer to A(i) as the forward star

of node i, and B(j) as the backward star of node j.

11

Let d(t) be the travel time along arc (i, j) for a departure time of t from node i. Let cj

denote the constant cost of traveling along arc (i, j). In this thesis, we require that all

values of d0(t) be positive and integral, while c4 is unrestricted in sign and value.

2.2 The Time-Space Network

The time-space network is a useful tool for visualizing and solving discrete, time-

dependent shortest path problems. The time-space network is constructed by expanding

the network G in the time dimension in such a way that there exists a separate copy of

each node in G, one for each time t over the range we wish to investigate. We depict a

sample time-expansion of a network with n nodes below:

t=5 * * * * * * *

t=4 * * * * * *

St=3 * * * * * * *

t=2 * * * *

t= 0 0 0 0

0 1 2 ... i ... n

Nodes

Figure 2.1 A sample time-space network. The arcs leaving node 2 at time
t = 0 are drawn in. The arc from node 2 at time 0 to node 2 at time 1
represents waiting at node 2 for one unit of time.

12

We refer to points in the time-space network as node-time pairs, denoted in the form

(i, t). Formally, we define the time-space network G* = (N*, A*) as follows. The set of

nodes N* = [(i, t) : i e N, t e [0, 1, 2, ...}}. The set of arcs A* is the set of arcs from

every node-time pair (i, t) to every other node time pair (j, min [T, t + dijf(t)]), such that j

E A(i) and arriving at node-time pair (j, t + dj(t)) is permissible. (For example, in the

case of time windows, we will not permit arcs to node-time pair (j, t + d(t)) in the time-

space network if t + d1 /t) is greater than the window upper bound for node j.) Finally, if

waiting at nodes is permitted, we can create arcs of the form ((i, t) , (i, t + 1)) in the time-

space network, as illustrated in Figure 2.1 by the arc ((2,0), (2,1)).

13

Chapter 3

Minimum-Cost Paths In Networks With Time Windows and

Linear Waiting Costs

This chapter contains the problem statement of the one-to-all minimum-cost problem in

networks with time windows and linear waiting costs (referred heretofore as the SPWC

problem). We present optimality conditions and a solution algorithm to solve this

problem efficiently in the case of static arc travel times and in the case of dynamic arc

travel times. We provide theoretical time bounds and experimental running time analysis

based on several C++ implementations of the algorithm.

In Section 3.1 we provide an introduction to the problem, and we review previous work

on the subject of shortest path problems with time windows. In Section 3.2 we provide a

mathematical formulation and optimality conditions for the SPWC. We investigate the

case of static travel times in Sections 3.3 through 3.6. In Section 3.7, we investigate the

more real-world network model of time-dependent arc travel times. In Section 3.8, we

provide computational results based on C++ implementations of the algorithms described

in this chapter.

14

3.1 Problem Background and Introduction

Time windows have become a popular tool for modeling scheduling and routing

problems in networks. They have been used to solve preferred delivery-time problems

and the time constrained vehicle routing problem [7], as well as the Urban Bus

Scheduling Problem (UBSP) and various freight transportation scheduling problems [5].

The shortest path problem with time windows (SPPTW) was formulated in Desrosiers,

Pelletier, and Soumis [8]. Desrochers and Soumis [9] solve the SPPTW for the one-to-all

problem with an increasing order of time permanent labeling algorithm. Desrochers [6]

solves the SPPTW with additional resource constraints by a similar approach. Additional

work in the field has been conducted in Ioachim et al. [16], where a dynamic

programming solution algorithm for the SPPTW with linear node costs was developed.

The most recent work on time windows has been the formulation of the SPWC by

Desaulniers and Villeneuve, described in [5]. They examine the single origin to single

destination shortest path problem with soft time windows and linear waiting costs at the

nodes. The problem is formulated in terms of those in [7] and [17] through a linear

programming analysis of the problem.

In this chapter, we reexamine the SPWC problem proposed in [5] to show how it can

very simply be seen as an extension to the SPPTW, and thus solved by a similar approach

as in [7]. We examine the one-to-all minimum cost problem for both static as well as

15

dynamic arc travel times. (Only the single source single destination problem for static

networks was studied in [5].)

3.2 Mathematical Formulation

In this section, we mathematically formulate the one-to-all minimum-cost problem in a

network with time windows and linear waiting costs at the nodes. Each arc in the

network has an associated positive constant travel time, denoted as dij(t), where this value

is a constant for a given arc (i, j) in the case of static arc travel times. Additionally, each

arc in the network has an associated travel cost, denoted as cij, which is unrestricted in

sign and value.

3.2.1 Time Windows

In the networks discussed in this chapter, each node i in the network has an associated

time window, denoted by [ii, ui], such that 1i and ui respectively represent the lower and

upper bounds of the time window corresponding to node i. We refer to a time window as

"hard" when arrival and departure at a node is permitted only within the time window of

that node. In this chapter, we will focus however on a second type of time window,

known as a soft time window. A time window is said to be "soft" if departure from a

node is permitted only within the time window, but arrival at a node is permitted either

within the range of the time window, or at any time before the lower bound of the time

16

window. In the case of soft time windows, if a commodity arrives at a node i before time

1j, it must wait at node i until time 1i before departure is permitted.

Since all nodes in the network have soft time windows, we permit waiting at any node in

the network before and within its time window. We impose a cost of w per unit of

waiting at any node, where w is a positive constant that is a characteristic of the network

(i.e. it is not node-dependent). This waiting penalty is imposed regardless of whether the

waiting occurs before or within the time window of a node. (The special case of zero-

cost waiting at the origin node is addressed in sub-section 3.4.2.)

3.2.2 Path and Schedule Feasibility

A set of nodes { io, il, ..., id-1, id: ik E N] comprise a path from node io to id if and only if:

(ik, ik+1) E A Vk, 05k <d-1 (3.1)

Let a schedule S for a particular path P be a set of departure times [to, ti, ..., td-., td} such

that tk is a departure time corresponding to node ik e P. A schedule S along a path P is

feasible if and only if there exists departure times Ti such that:

Ti + dij(TI) T, V(i, j) E P (3.2)

1i : Ti :ui, Vi E P (3.3)

A path P is feasible if and only if there exists some feasible schedule corresponding to it.

17

3.2.3 Label Optimality

The one-to-all SPWC problem is the problem of finding a set of minimum-cost feasible

paths from a given source node s to all other nodes in the network. In a standard

minimum-cost problem, a set of feasible paths is optimal if and only if they obey the

well-known Bellman optimality conditions. If we denote the cost of the minimum-cost

path from s to j as Cj, then Bellman's conditions say that the minimum-cost path to node j

is optimal if and only if:

C1 = min (Ci + c)
ViE B(j)

In the case of time windows, linear waiting costs, and dynamic arc travel times, we must

alter these optimality conditions slightly. Let a label for node i be defined as a node-time

pair in the time-space network within the time window associated with node i. A label

for node i has an associated cost, representing the cost of a feasible path that departs node

i at the time associated with that label. For a given node i, let Li be the label (Ti', Cl)

and let L be the label (T2 , C7). (To make the notation less cumbersome, we drop the

node subscripts from the notation when it is clear to which node we are referring.

Additionally, we drop the numerical superscripts if only one label is being discussed for a

particular node.) Bellman's optimality conditions can be restated for a label (T, Cj) as

follows. Label (T, C) is optimal if and only if it satisfies Equations 3.2 and 3.3, and:

18

C = min (Ci + ci; + w(max(O, T - Ti - dij(Ti)))
VieB(j)

The minimum arrival cost at node i is then equal to:

min [Ci': (Tk, Cjk) is an optimal label corresponding to node i}
k

3.3 Properties of Labels in Static Networks

To solve the SPWC problem in static networks, we propose an algorithm that implicitly

searches through the nodes of the time-space network in a chronological order. We refer

to this algorithm as the SPWC-Static Algorithm. In searching through the nodes of the

time-space network, it creates labels that represent the current minimum-cost path to a

particular node at a specific time. In order to make our SPWC-Static Algorithm efficient,

we would like to find conditions on a label that allow us to determine if that label should

be kept, because it may be part of a minimum-cost path, or if the label may be discarded,

because discarding it will not increase the cost of the minimum-cost path to any node in

the network.

The method we use to eliminate labels is to identify those labels that are dominated. We

say that a label is dominated if removing that label from the network does not increase

the cost of the minimum-cost path from the source node to any other node in the network.

In the remainder of this section, we formalize the condition of dominance and develop

19

several lemmas that will allow us to exploit this characteristic. The reader may skip over

the following proofs, and refer back to them later, as desired. We begin by formalizing

the notion of dominance in the following lemma.

Lemma 3.1: For a given node i, if L, and L2 are distinct labels such that T' T2 and C'

2

+ w(T2-I) C2, then L' dominates L2.

Proof: There are two cases. If L2 is not on a minimum-cost path to any node, then

removing L2 will not increase the cost of any minimum-cost path, and L2 is dominated.

Otherwise, L2 must be a part of some minimum-cost path P2. Let S2 be the schedule

associated with path P2 that achieves this minimum cost. Then, we can construct a path

P' with a corresponding schedule S1 that has an equal or smaller cost by using the label

L instead of the label L2. To construct P1 and S', we take the given path (and associated

schedule) from the source to L', such that we arrive at node i at the time T' with the cost

C'. Assume that node j immediately follows node i along the path P2. Then, we let the

next node along P1 be the node j, with an associated departure time from node i of time

T. For all nodes after node j, let path P1 and schedule S' be identical to path P2 and

schedule S2

The cost to reach any node d after node i along path P2 using schedule S2 is then equal to

the cost to reach node i along P2 using S2, plus the cost of the arc (i, j), plus the cost to

travel from node j to node d along P2 using S2. If we let C' be the cost of traveling from

20

node j to node d along P2 using S2, then cost to reach node d along P2 using S2, denoted

by Cd(P2, S2), is:

Cd(p2, S2) = C 2 + Cij + C, (3.4)

Similarly, the cost to reach node d along P1 using S1 is equal to the cost to reach node i

along P' using S1, plus the cost to travel from node i to node j, plus the cost to wait at

node j until schedule S2 departs from node j, plus the cost to travel from node j to node d

along P2 using S2. Then, the cost to reach node d along PI using SI, denoted as

Cd(P', S), is:

Cd(P', S') = C' + Cii + W(1 2-T') + C, (3.5)

Given that CI + w(T 2-T) C2, it follows from Equations 3.4 and 3.5 that Cd(P', S')

Cd(p2, S2). Thus we have found a path PI that arrives at node d at the same time as path

P2, and at an equal or smaller cost. Since this holds regardless of the destination node d,

we may always use L instead of L2, and thus label L2, and any path that utilizes L2, may

be discarded without increasing the cost of any minimum-cost path. Label L2 is therefore

dominated. m

The algorithm we describe in Section 3.4 works in increasing order of time to identify the

next label to be examined. Although the concept will be fully addressed in Section 3.4,

we say that a label L is "examined" when it is selected from the set of all non-permanent

21

labels, and a decision is made as to if L should be discarded, or added to set of permanent

labels. As suggested in Pallottino and Scutella [20] for the Chrono-SPT algorithm for

solving the SPPTW, when a label corresponding to a node i is examined during the

course of the Chrono-SPT algorithm, it is sufficient to check only if this label is

dominated by the last label that was examined and designated as permanent for node i.

(If no such last-label exists, then the label being examined is trivially non-dominated.) In

Lemma 3.2, we prove that the claim in [20] holds for the more general case of the SPWC

(thereby also proving it holds for the SPPTW).

Lemma 3.2: Let L', L2, and L be different labels for node i, such that T' T2 T. If L3

is not dominated by L2 and L2 is not dominated by L', then L3 is not dominated by LI.

Proof: Since L2 is not dominated by L' and L3 is not dominated by L2, we have the

following equations:

C' + w(T 2-T) > C2 (3.5)

C2 + w(T-1 2) > C3 (3.6)

Summing Equations 3.5 and 3.6, and rearranging terms, we have:

C' + wT2 - wT' > C - wT' + w 2

which simplifies to

C' + w(T-T) > C.

22

Thus, L' does not dominate L . 0

The following lemma is an interesting, if perhaps obvious, result of the dominance

criteria, since it states that throwing out dominated labels in increasing order of time does

not result in any loss of information about dominated labels that may exist later in time.

Lemma 3.3: Let L', L2, and L3 be different labels for node i. If L' dominates L2, and L2

dominates L , then L' dominates L3.

Proof: Since L' dominates L2 and L2 dominates L3, we have the following conditions:

CI + w(71_-T') C2 (3.7)

C2 + W(71-7) & C3 (3.8)

Adding Equations 3.7 and 3.8 and simplifying, we have:

C' + w(7 -T) C3.

Thus, L' dominates L. m

Lemma 3.4: Let P be a finite, minimum cost path from the source s to a destination node

d. If a schedule S along this path contains non-zero waiting within the time window of

any intermediate node i along path P (i s and i d), then there exists another schedule

23

of equal cost along some path from s to d such in which waiting takes place within the

time window of a node only at node d.

Proof: We provide two proofs of Lemma 3.4. The first is a simple logical deduction

from Lemma 3.1 that proves that discarding any "waiting labels" does not increase the

minimum cost for any node in the network. We also present a second proof, which

actually constructs a new schedule of equivalent cost that traverses the same path P along

a new schedule such that no waiting within the time windows of intermediate nodes takes

place.

Let a waiting label Li for node i be a label (Ti, Ci) such that predecessor of that label is a

label Li' for node i written as (Tj - 1, Ci'). Observe that the cost C of label Li is equal to

Ci' + w. By Lemma 3.1, the label Li is a dominated label, and thus removing all paths

that go through it cannot increase the cost of the minimum cost path to any node in the

network.

To gain further insight as to how waiting within the time window of any intermediate

node of path P can always be avoided, we provide a second proof of Lemma 3.4 by

constructing a new schedule along the path P that achieves the goal of no unnecessary

waiting at intermediate nodes. (We refer to waiting within the time window of a node as

"unnecessary waiting.") Assume that there exists a feasible path P from the source node

s to a destination node d, and a schedule S of departure times from each node in P such

24

that non-zero waiting takes place at a node j e P within the time window of node j.

Furthermore, assume that w is strictly greater than zero, because otherwise all feasible

schedules along a given path will have an equivalent cost. Let the time Td correspond to

the departure time from node d that is achieved using this schedule S. We can construct a

schedule S' of equivalent cost by considering a schedule which does not wait at node j,

and instead "pushes" this waiting to the next node along the path, say node k, while

maintaining a cost of S' equivalent or smaller to that of S. Assume that we depart along S

from node j at a time T and with a cost of C. Then, along S', we depart from j at some

time T such that T < T. Let Ak and Ak' denote the arrival times at node k along

schedules S and S', respectively. Then, we have the following equations for node j:

Tj < Tj (given)

C1'= Cj - w(Tj-T') (C is larger than Cj' in proportion to the unnecessary

waiting at node j along schedule S)

And the following equations for node k:

Ak = T +djk (arrival time at k using S)

Ak' = T' + djk (arrival time at k using S')

Tk = Ak + t (t represents the waiting time at node k along S)

Ck = C + Cjk + wt (cost of departing node k along S)

Putting the above together to solve for Ck', we have that Ck' is equal to the cost of

departing node j along schedule S', plus the cost of traversing arc (j, k), plus the cost of

25

waiting at node k until the lower bound of the time window for node k, which is no

greater that time Tk.

Thus,

Ck' C' + cjk+ w(Tk- Ak)

= C - w(Tj-Tj') + cjk + w(Tk- Ak)

= Cj + Cjk + wt.

=Ck

Therefore, the cost of taking schedule S' (zero waiting within the time window of node j)

is no greater than taking schedule S (non-zero waiting within the time window of node j).

Since this procedure can be repeated iteratively for a path consisting of any finite number

of nodes, we conclude that given a path P consisting of a finite number of nodes, and a

schedule S that has non-zero waiting at some of the nodes along P, we can always

construct a schedule S' of equivalent or smaller cost in which there does not exist any

waiting within the time window of the nodes in P, except for at the final destination node

d. .

3.4 The SPWC-Static Algorithm

In this section, we describe the SPWC-Static Algorithm. We first present a detailed

description of the SPWC-Static Algorithm based on the version of the problem presented

26

in this thesis. We then show how to modify this algorithm to solve the SPWC problem

presented in [5].

3.4.1 The SPWC-Static Algorithm for Our Network Model

The SPWC-Static Algorithm makes use of the lemmas in Section 3.3 to efficiently handle

labels by not wasting computational time exploring dominated labels. The SPWC-Static

Algorithm maintains an array of buckets into which candidate labels may be placed. The

algorithm proceeds in increasing order of time, examining candidate labels in

chronological order. When a candidate label Li = (Ti, C) is examined, it is removed from

its time-bucket B, (where Ti = t), and if it is non-dominated, it is marked as permanent.

The algorithm continues by visiting the node-time pairs in the time-space network that

are reachable from the (now permanent) label Li by a single feasible arc (i, j). We say

that an arc (ij) is feasible if there exists a time T such that Equations 3.2 and 3.3 are

satisfied. Note that, by Lemma 3.4, waiting at node i after time 1i is never useful, and

thus, when exploring from the label Li = (Ti, Ci), we do not consider the label (Ti+1, Cj)

as part of the neighbor-set. For each node-time pair that is visited, the cost of arriving at

that node-time pair is computed, and a candidate label is inserted in to the corresponding

time-bucket.

This procedure continues for each time-bucket, until no non-empty time-buckets remain

(that is, until no candidate labels remain). At this point, the algorithm terminates, and a

27

final search through each node's set of permanent labels is performed to determine the

minimum-cost label (and thus the minimum-cost path) to that node.

To determine if a label is non-dominated, the algorithm maintains a value last-label(i) for

each node i in the network, where last-label(i) holds the most recent, permanently labeled

(and thus, non-dominated), label for node i. By Lemma 3.2, it is sufficient to check only

if the label for node i that is currently being examined is dominated by the previous non-

dominated label for node i, because if the current label is not dominated by last-label(i),

then it is not dominated by any permanent label for node i. Additionally, by Lemma 3.3,

discarding dominated labels in increasing order of time does not result in a loss of

detection of dominated labels for any labels that may exist for a later time.

The following is pseudocode for the SPWC-Static Algorithm. It was adapted from the

pseudocode for the Generalized Permanent Labelling Algorithm (GPLA) in Desrochers

and Soumis [7]:

28

Step 1: Initialize
//P is the set of permanent labels for node i

11B, is a time-bucket corresponding to nodes with

//minimum arrival time t

T = max{ U1 : i e N }

Pi = 0, Vi C N

C1 = o, Vi C N, V(Ti, C1) T1 e [11, u1J
BO = { Lsource = (0,0) }

B= 0 Vt, 1 t T

t =0

Step 2: Find the next label to be examined

if Bt != 0 then
select a label (Ti, C1) G Bt

else if Bt, = 0 for all t' > t, then stop

else let t = min{ t' > t : Bt, != 0)

Step 3: Examine Label (Ti, C1) (note t = T1)

if (last-label(i) != 0) then
let (T',C') = last-label(i)
if C1 - C' + w(T - T') then go to step 2

else
Bt= Bt \ { (Ti, C1) }

Pi = P1 U { (Ti, C1) }

for all j C A(i) do

i f T1 + dij uj then
Tj = max(1j, T1 + di)

Cj = C1 + cij + W(Tj - T1 - dij)

if B Tcontains a label L' = (Tj, Ci')

Cs'= min{ Cj', Cj }

else B T= B T U f (Ti, Cj) }

Step 4: Compute Minimum Costs
For each node i, find the minimum cost label in Pi

Figure 3.1 The SPWC-Static Algorithm solves the one-to-all minimum
cost problem in a static network with soft time windows and linear waiting
costs at the nodes.

29

3.4.2 The SPWC-Static Algorithm for Networks with Zero-Cost Waiting at the

Source

The SPWC problem as proposed in [5] allows for waiting at the source node without the

imposition of any waiting penalty. To model this situation under the implementation

presented in section 3.4.1, we may simply modify Step 1 of the pseudocode given in

Figure 3.1 to initialize all feasible labels for the source node to have a cost of zero. This

initialization procedure permits a departure from the source at any time within the time

window of the source node without the imposition of any waiting penalty. The modified

Step 1, which allows for zero-cost waiting at the source node, is provided in Figure 3.2

below:

Step 1: Initialize
//P is the set of permanent labels for node i
//Bt is a time-bucket corresponding to nodes with
//minimum arrival time t

T = max{ U1 : i e N }

Pi = 0 Vi e N

C1 = c, Vi E N, V(T 1 , C1) T1 E [1j, ui}

Bt ={ Lsource = (0, 0) 1 Vt, 1 source 5 t Usource

Bt 0 Vt, Usource < t T
t =0

Figure 3.2 The modified version of Step 1 from Figure 3.1 can be used to
solve the SPWC-Static problem where zero-cost waiting is permitted at
the source node.

30

3.5 Implementation Details for the SPWC-Static Algorithm

In the following subsections we discuss the implementation details for the SPWC-Static

Algorithm. We suggest various useful data structures, and we describe several

dominance strategies that could be employed by minor changes to the pseudocode in

Figure 3.1.

3.5.1 Data Structures

The implementation of the SPWC-Static Algorithm is straightforward from the

pseudocode of Figure 3.1. To efficiently maintain the time-buckets B', one may use a

queue or a variety of other extensible data structures for each bucket. Each set Pi can be

stored in any structure that permits 0(1) insertion time. The cost of the last-label(i) may

simply be stored in an array of size n, indexed by node.

The costs of all labels discovered by the algorithm can be stored efficiently by taking

advantage of the fact that all labels (Ti, Cj) which will be explored over the course of the

algorithm have times Ti within the time window of the node i. Thus, for each node, we

can maintain an array of costs of size ui - 1i + 1. We can maintain a similar array to

efficiently store predecessor information.

Under this storage system, for each node i, we may also wish to maintain a cost cost-

best(i) and a predecessor pred-best(i), which hold the cost and predecessor label of the

31

path of cheapest cost that arrives at node i at a time t, where t need not be within the

bounds of the time window for node i. We may maintain this additional information in

order to relax the constraint imposed by Equation 3.2 for the final node on any path. This

extra information can be easily maintained using arrays of size n.

3.5.2 Dominance Strategies

Although we have presented the algorithm as one that checks the dominance of labels

upon examination of those labels, this is not the only strategy for checking dominance

that one could employ. Strategies may range from the most relaxed (never checking any

dominance of labels) to the most rigorous (rechecking the dominance of every single

label after every single insertion or examination of a candidate label). We investigate a

few of these possibilities here. (Strategies 1, 2, 4, and 5 have all been implemented, and

their running times on various types of networks are illustrated in Section 3.8.)

Strategy 1: Never Check. In a worst-case example, all labels created will be non-

dominated. In a scenario of this type, a strategy that does not waste time checking the

dominance of any labels will actually do better than one that attempts to find dominated

labels. However, in the general case, no savings will be gained by exploiting the

dominance of labels, and many unnecessary labels will be explored.

32

Strategy 2: Check Upon Insertion. When a candidate label L = (Tk, C,) is inserted

into the data structure, one could check it against last-label(i). This strategy takes

advantage of the last-label concept, although it may still permit dominated labels to be

explored. For example, i may not be dominated by last-label(i) at the time of insertion,

but this last-label value might change before L is selected and its forward star is explored.

Thus, since the status of the last-label(i) is not set, L may be designated as non-

dominated, even though its status might change later (undetected by the algorithm). This

strategy should fare very well in practice, as most of the dominated labels will be

detected, and few unnecessary labels will be created and added to the set of candidate

labels.

Strategy 3: Check All Upon Insertion. To ensure that only non-dominated labels are

explored, one could use a modified version of Strategy 2. In this third strategy, we first

check if the new label 4 = (Tk, Cjk) is dominated by the last-label(i), before 4 is added

to the list of candidate labels. Additionally, if L4 is non-dominated, then all labels for

node i for times greater than Tj are checked to determine if they are dominated by Li .

Although this strategy would ensure that only non-dominated labels are extended (i.e.

have their forward stars explored), it would have a poor running time, as labels may be

rechecked several times without any reduction in the number of labels. The running time

of this strategy would also suffer greatly from networks with large time windows and a

33

large range of arc travel times, since these factors could increase the number of labels that

would be rechecked for dominance several times.

Strategy 4: Check Upon Examination. This is the strategy outlined in the pseudocode

and algorithm description of Section 3.4. This strategy should fare very well in practice,

as only non-dominated labels have their forward stars explored. The only disadvantage

to this approach is that many unnecessary labels may be created, since dominance of a

label is checked only upon a label's examination, and not upon its insertion.

Strategy 5: Check Upon Insertion and Examination. This is the hybrid strategy of 2

and 4, whereby labels are checked upon insertion and upon examination. Although

theoretically better than strategies 2 and 4, since few dominated labels will ever be

inserted, and no dominated labels will ever have their forward stars explored, this

strategy should perform slightly worse than Strategies 2 and 4 in practice, since all non-

dominated labels will have their dominance checked twice without any gain for the

algorithm.

Strategy 6: Check Always. This is an extreme approach, whereby any time a new label

is inserted or examined, all labels are rechecked to see if more dominated ones can be

found. Other variations on this are such that this operation could be performed after k

labels have been treated, for a user-defined value of k. This strategy will not fare well in

34

practice, since it will suffer greatly from the problem of rechecking the dominance of the

same label many times.

3.6 Running Time Analysis of the SPWC-Static Algorithm

We describe the running time of the SPWC-Static Algorithm of Figure 3.1 in terms of n,

m, and the following variables:

D = (ui - -i + 1) = the maximum number of possible labels
ie N

d = max(u -i, +1)= the size of the largest time window
iE N

In Pallottino and Scutella [18], it is indicated that their Chrono-SPT algorithm solves the

related SPPTW in O(mintnD, md}). Desrochers and Soumis [7] make an identical claim

for their Generalized Permanent Labeling Algorithm. However, both of these algorithms

use a buckets structure, and visit each time-bucket in chronological order. As such, there

is an additional factor of O(T*) in the running time of these algorithms, where T* =

(max{u}-min{i,}), implying that the algorithms run in O(T* + mintnD, md)). The
VieN VieN

factor of T* could become significant if, for example, the time windows for each node are

disjoint and far apart from each other in time, or simply if the number of labels created is

relatively few but T* is very large. For instance, such a situation could arise in a very

sparse network that has very large time windows.

35

To ensure that T* does not dramatically increase the practical running time of our SPWC-

Static Algorithm, one could implement a version of the algorithm which employs a heap

to maintain the minimum non-empty time bucket. This would lead to a running time of

O((min[nD, md} log (n)).

Since we have no a priori knowledge as to how many labels will be present in the time-

buckets structure, we will use a time-buckets implementation of the SPWC-Static

Algorithm. Thus, our algorithm will have a running time of O(T* + min[nD, md}),

assuming a reasonable dominance strategy is selected from subsection 3.5.2

3.7 Labels in Dynamic Networks and the SPWC-Dynamic Algorithm

In the case of the shortest path problem with time windows and linear waiting costs in a

network with dynamic arc travel times, the dominance lemmas of Section 3.3 no longer

apply, even if arc travel times obey the FIFO condition and arc travel costs are static.

(The FIFO condition is defined in Section 4.2.) For example, consider the simple

network depicted in Figure 3.3 below.

36

r"u"|t=6

t=5

t=4

t=3

t=2

t=1

t=0

1

0

$8

LU
$W

$W

* 4

* 0$

$5

$W

$7

2

Nodes

Figure 3.3 The time-space network corresponding to a topological
network with 4 nodes. For each arc in the time-space expansion, the cost
associated with traversing that arc is printed next to it. The lower and
upper bounds of the time windows are depicted by the brackets associated
with each node.

The arc (1,2) in Figure 3.3 has a dynamic travel time: dn2(t=1) = 1, and dn2(t=2) = 2. In

this network, the minimum cost path that arrives at node 3 has value 20 + w for any non-

negative value of w, and it is achieved by taking a schedule that involves waiting within

the time window of node 1. According to the dominance lemmas of Section 3.3, such a

path could be discarded, since the label for node 1 at time t = 2 would be considered

dominated by the label for node 1 at time t = 1. From this example, we see that the

criteria of dominance defined by Lemma 3.2 cannot be employed for the case of dynamic

37

0

0

S

P

travel times, since we cannot discard labels that originate from "waiting arcs" if the arc

travel times are dynamic. Since waiting labels must be explored, every node in the time-

space network that is reachable along some feasible path from the source will have an

associated label that must be examined by our algorithm, and the forward star of this

label must be explored.

The SPWC-Dynamic Algorithm is thus similar to the SPWC-Static Algorithm, with the

exception that waiting nodes must be considered, and that no dominance of labels needs

to be checked.

38

The pseudocode for the SPWC-Dynamic Algorithm is given below:

Step 1: Initialize

//P is the set of permanent labels for node i
//Bt is a time-bucket corresponding to nodes with
//minimum arrival time t

T maxf ui : i E N }
Pi = 0 Vi E N

C1 = o, Vi E N, V(Ti, C1) T1 E [1j, u1]

B 0 = { Lsource (0,0)}
Br 0 Vt, 1 t T
t =0

Step 2: Find the next label to be treated

i f Bt != 0 then

select a label (Ti, C1) e Bt

else if B, = 0 for all t' > t, then stop

else let t = min{ t' > t : Bt.!= 0 }

Step 3: Treat Label (Ti, C1) (note Tj = t)
Bt = Bt \ f (Ti, C1) }

Pi = Pi U f (T, C1) I

if (T1 + 1) u1
Btj = B+ 1 U { (T1 + 1, C1 + w) I

for all j e A(i) do
i f T1 + dij uj then

Tj = max(1j, T1 + dij)
Cj = C1 + cij + W(Tj - T1 - dij)

if B Tcontains a label L' = (Tj, Cj')

Cs' = minf Cj', Cj)

else BT= B7, U ((Ti, Cj)

Step 4: Compute Minimum Costs
For each node i, find the minimum cost label in Pi

Figure 3.4 The SPWC-Dynamic Algorithm solves the one-to-all
minimum cost problem in a dynamic network with soft time windows and
linear waiting costs at the nodes.

39

The SPWC-Dynamic Algorithm maintains a number of labels that is no more than the

number maintained in the worst case of the SPWC-Static Algorithm (the case in which no

domination of labels occurs). As such, the data structures presented in Section 3.5 that

are used to implement the SPWC-Static Algorithm are sufficient to implement the

SPWC-Dynamic Algorithm as well.

The running time of the SPWC-Dynamic Algorithm is O(T* + min[nD, md]). Although

this running time bound is the same as the running time bound for the SPWC-Static

Algorithm, in practice we expect the dynamic algorithm to perform significantly worse

that the static algorithm. This is because, in the dynamic case, all waiting arcs are

explored, and no labels are discarded by a domination criteria.

3.8 Computational Results

Implementations of the algorithms in this chapter were written in the C++ programming

language based on the pseudocode and implementation details presented in Sections 3.4 -

3.7. The tests were performed on a Dell Pentium III 933 megahertz computer with 256

megabytes of RAM.

3.8.1 Objectives

The objectives of the computational study were the following:

40

1. Analyze the strategies presented in sub-section 3.5.2 to determine which ones lead to

efficient running times.

2. Analyze the variation of the running time of the static and dynamic algorithms as a

function of following parameters: (a) size of networks with constant density; (b)

number of arcs; (c) number of nodes; (d) size of the time windows.

3.8.2 Experiments

The network G = (NA) was pseudo-randomly generated, as were the link travel times.

To compute the time windows, a breadth-first search of the network was conducted, and a

distance label di was assigned to each node i, corresponding to the travel time along some

feasible path from the source to node i. For a time window width of h, node i was

assigned the time window [ceiling(d-h), floor(di-h)]. If ceiling(dr-h) < 0, then the time

window for node i was adjusted to be [0, h]. In this way, the time windows were created

such that every node would be reachable within its time window along some feasible path

from the source.

All running times are in seconds, and they represent the average running time over 10

trials of each algorithm. For each of the 10 trials, a source node was randomly selected

from the set of all nodes in the network. Unless otherwise specified, time windows were

of width 10, arc travel times ranged from 1 to 3, arc costs ranged from -5 to 5, and the

waiting cost w was 2.

41

In the graphs below, arc travel time ranges are denoted as [minimum arc travel time,

maximum arc travel time], arc travel cost ranges are denoted as [minimum arc travel cost,

maximum arc travel cost], waiting costs are denoted by w, and time window widths are

denoted by tww.

3.8.3 Results

Figure 3.5 shows the variations of the running times of the SPWC-Static Algorithm

implemented with Strategies 1, 2, 4 and 5 as a function of network size for networks with

n nodes and 3n arcs. It also shows the running times of the SPWC-Dynamic Algorithm

as a function of these network parameters. (Such sparse networks are common in

network models of traffic flows on road networks.) As suggested by the theory, Strategy

1 (never checking) and the SPWC-dynamic algorithm exhibit linear behavior since the

running times of these algorithms depends solely on the number of arcs explored. The

other strategies also increase in running time proportionately to the size of the networks.

The rate at which they grow is difficult to predict from the theory, since it depends on the

number of non-dominated labels that are added and explored. Numerical results of

Figure 3.5 indicate that the fastest implementation for sparse networks is Strategy 4,

followed by 5, 2, and then 1.

Figure 3.6 shows the variations of the running times of the SPWC-Dynamic Algorithm

and the SPWC-Static Algorithm implemented with Strategies 1 and 4 (the best and worst

strategies from Figure 3.5) as a function of the number of nodes in a network. The

42

number of arcs was held constant at 3000. For the static implementations, running times

slightly decrease with the number of nodes for relatively sparse networks. For dynamic

networks, the running times appear to fluctuate arbitrarily as a function of the number of

nodes in the network. However, when the network is very sparse, the running times are

dominated by the number of time-buckets that must be checked for labels. Thus, for

2950 nodes, the running times for all three algorithms increases dramatically. These

running times were not shown so that the overall trends could be illustrated.

Figure 3.7 shows the variations of the running times as a function of the number of arcs.

The number of nodes is held constant at 1000. As we would expect, increasing the

number of arcs increases the total number of labels created under both algorithms in a

linear fashion, thereby increasing the running times linearly. For all values of the number

of arcs, Strategy 4 runs faster that Strategy 1, implying that checking the dominance of

labels saves enough time to make the dominance checking worthwhile.

Figures 3.8 and 3.9 show the variations of the running times as a function of the size of

the time windows. The number of nodes is fixed at 1000 and the number of arcs is fixed

at 3000. In the case of Strategy 1, and in the case of the SPWC-Dynamic Algorithm, the

running time is linear since the number of reachable nodes in the time-space network

(and thus the number of feasible labels) grows linearly with the size of the time windows

for both of these implementations (over networks of constant n and m). However for

large values of the time window width, Strategy 4 exhibits a nearly constant running time

43

that is much smaller than Strategy l's running time or the running time of the dynamic

algorithm. In this case, the domination of labels plays a particularly important role.

Since the time windows are large, the algorithms that examine every reachable node-time

pair in the windows suffer. However, Strategy 1 explores only from non-dominated

labels within the time windows, and thus it cuts off many potential paths. For window

widths greater than 100, the additional number of node-time pairs in the time-space

network appears to be inconsequential, because most of these node-time pairs will never

be reached, since they are only reachable along paths that contain a dominated label.

44

0.4 -

0.35 -

S0.3 -0-3

0.25 -

0.2-

0.15-

S 0.1-

0.05 -

0 - ~

1000 2000 3000 4000 5000

Size of Network (Number of Nodes)

Figure 3.5 Running times of the SPWC-Dynamic Algorithm and several
implementations of the SPWC-Static Algorithm as a function of network size. The
number of arcs is constant at 3n. dije[1,3],cje[-5,5],tww=]O,w=2.

0.06 -

0.05 -

0.04 -

0.02 -

0.01 -

-+- Strategy 1
-A-- Strategy 4
-*- Dynamic

0.03 - -*- Strategy 4

0
3000

Number of Nodes

I I I I I
0 500 1000 1500 2000 2500

Figure 3.6 Running times of the SPWC-Dynamic Algorithm and of two
implementations of the SPWC-Static Algorithm as a function of the number of
nodes in the network. The number of arcs is 3000. d1 1E[1,3],c1jE[-
5,5],tww=JO,w=2.

45

0

-+- Strategy 1
--- Strategy 2
-A- Strategy 4
-u-Strategy 5

- Dynamic

E

C
C

6000

0

E

0)

0.3 -

0.25 -

0.2 -

0.15 -

0.1 -

0.05 -

-+- Strategy 1

-- A Strategy 4
-a- Dynamic

0.15 - -i- Strategy 4

0
0

Number of Arcs

Figure 3.7 Running times of the SPWC-Dynamic Algorithm and two
implementations of the SPWC-Static Algorithm as a function of the number of arcs
in the network. The number of nodes is 1000. d1 1e[1,3],cie[-5,5],tww=10,w=2.

0.03-

0.025-

0.02-

1- 0.015- -s- Strategy 4

0.01

0.005

0 50 100 150 200 250 300

Time Window Width

Figure 3.8 Running times of one implementation of the SPWC static algorithm as a
function of the width of the time windows of the nodes in the network. The number
of nodes is 1000 and the number of arcs is 3000. d1 e[1,3],c1 1e[-5,5],w=2.

46

5000 10000 15000

' - - -

2.5 -

E 1.5-

1 -

0.5-

-+-- Strategy 1
-*- Dynamic

0 1- I I I I I I

0 50 100 150 200 250 300

Time Window Width

Figure 3.9 Running times of the SPWC-Dynamic Algorithm and one
implementation of the SPWC-Static Algorithm as a function of the width of the
time windows of the nodes in the network. The number of nodes is 1000 and the
number of arcs is 3000. d11e[1,3],c1 e[-5,5],w=2.

47

Chapter 4

Minimum-Time Path Reoptimization Algorithms

In this chapter we discuss the problem of reoptimization for the one-to-all shortest path

problem in dynamic networks. We examine the problem in the context of both FIFO and

non-FIFO networks. We develop a generic solution algorithm, and we describe several

implementations of this generic algorithm. Each implementation uses shortest path

information obtained during previous iterations of the algorithm whenever such

information is available.

We begin by studying the reoptimization problem in a FIFO network for earlier departure

times in Sections 4.2-4.5. We then investigate the reoptimization problem in a non-FIFO

network in Section 4.6. In Section 4.7, we study the symmetric reoptimization problem,

where we are given a shortest path solution from a source node s for a given departure

time k, and we would like to reoptimize this solution for a departure time k' from the

source, such that k' > k. In Section 4.8, we provide computational results for the

algorithms developed in this chapter..

48

4.1 Problem Background and Introduction

The topic of reoptimization of network algorithms has been studied extensively recently.

To date, there have been two primary areas of research in shortest path reoptimization. In

the first case, the origin node changes from iteration to iteration. In the second case, the

origin node remains the same, but the cost (or travel time) along exactly one arc in the

network changes between iterations.

The first efficient reoptimization strategy for a change of origin node reoptimization

problem was developed in Gallo [16]. Gallo's algorithm utilizes the fact that the subtree

rooted at the new source node is still optimal, and it then uses reduced costs relative to

the previous shortest path tree in order to compute a new shortest path tree. Later

improvements were made to this procedure by Gallo and Pallottino [15] and Florian et al

[12]. Fundamentally different approaches, including auction algorithms and hanging tree

algorithms, have been recently proposed as new avenues of research for the change of

origin in the shortest path reoptimization problem [19].

The second type of reoptimization problem (a change of arc cost or arc travel time) was

first considered in Murchland [17] and Dionne [11]. Their algorithms proved to be too

memory-intensive, however, and a new approach that uses Dijkstra's algorithm [10] to

allow for a more memory-efficient solution was proposed in Fujishige [13]. Gallo [16]

proposed an efficient reoptimization algorithm that was based on the fact that the new arc

cost is always either higher or lower than the old one [20].

49

In this chapter, we will consider a new, third type of reoptimization problem, in which the

origin node remains the same from iteration to iteration, but the departure from the origin

is permitted at a time earlier or later in the (k+])" iteration of the problem than in the kth.

Furthermore, whereas all previous reoptimization algorithms have been developed for

static networks, this type of reoptimization problem is designed for networks with

dynamic arc travel time data. If arc travel times are dynamic, this could have the effect

of changing every travel time in the network, as opposed to changing just a single travel

time as in previously studied reoptimization problems. If we view this problem in the

time-space network, we note that the new solution may contain several subtrees that were

a part of the previous solution, and we wish to utilize these subtrees to avoid recomputing

shortest paths to the nodes in these subtrees.

Throughout this chapter, we assume that we begin with a solution to the one-to-all

shortest paths problem for a given source node s and a given departure time k from the

source. We refer to this shortest path tree solution as SP(k), where SP(k) is the

topological shortest path tree for a given departure time k from the source. SP(k)

contains the paths in the network of minimum arrival time to every node, as well as the

corresponding arrival times of these paths at each node.

The goal of this chapter is then to develop reoptimization techniques to solve any of the

following variants of the shortest path problem in FIFO networks: (1) compute the

50

minimum arrival time paths at all nodes for a particular departure time k' from the source

such that k' < k; (2) compute the minimum arrival time paths at all nodes for all departure

times from time k-1 down to 0; (3) compute the minimum arrival time paths at all nodes

over every departure time in a given interval (or set of intervals) of departure times [k",

k'] such that k" < k' < k; (4) compute the minimum arrival time paths regardless of

departure time for some/all values of k', such that k' < k; and (5) compute the shortest

travel time paths regardless of departure time for some/all values of k', such that k' < k.

Although we will speak of the reoptimization problem in the general sense (problem type

1), any of the above variants are solvable by slight adjustments to the generic algorithm

we will present to solve the general reoptimization problem of type 1. (In Appendix A,

we state how to solve each of the variants described above.)

4.2 Properties of FIFO Networks

Oftentimes, arc travel time functions will behave such that commodities must exit an arc

in the order in which they entered. We refer to this condition as the FIFO (first in first

out) condition. The FIFO condition, also known as the non-overtaking condition in

traffic theory [1], may be written mathematically in a variety of ways. One definition is

that the FIFO condition is valid if and only if:

t + d(t) t' + di t') V [t, t': t i t']

51

Whenever the FIFO condition (also referred to as the FIFO property) holds for every arc

in a network, we say that the network is FIFO.

The following lemmas and proofs are helpful to develop insight into the reoptimization

problem for a FIFO network. They are also useful in the development of the efficient

reoptimization algorithms described in this chapter. If desired, the reader may skip this

section without loss of continuity, and refer back to it as needed.

Lemmas 4.1 through 4.3 are borrowed from Chabini and Yadappanavar [3].

Lemma 4.1: If f(t) and g(t) are two non-decreasing functions, then h(t) = f(g(t)) is also

non-decreasing.

Proof: Since both f(t) and g(t) are non-decreasing functions, for t t', g(t) g(t') and for y

<y', f(y) f(y'). Let y = g(t) and y' = g(t'). Then, from the above, t t' implies that y <

y', and thus h(t) = ftg(t)) = f(y) f(y') = f(g(t')) = h(t'). Therefore, h(t) = f(g(t)) is a non-

decreasing function. m

Lemma 4.2: The composition of a finite number of non-decreasing functions is a non-

decreasing function.

Proof: By induction, using Lemma 4.1. .

52

Lemma 4.3: For any path through a FIFO network, the arrival time at the end of the

path as a function of the departure time at the start of the path is non-decreasing.

Proof: The arrival time function of a path is the composition of the arrival time functions

of the arcs along that path. Every arc arrival time function in a FIFO network is non-

decreasing by Equation 2.1. Thus, from Lemma 4.2, we have that the arrival time

function along any path in a FIFO network is a non-decreasing function of departure

time. .

Lemma 4.4: For any node j in a FIFO network, the minimum arrival time at node j can

be found along a path that arrives at every intermediate node i in that path at its

minimum arrival time value ai.

Proof: Arrival time functions are non-decreasing functions of departure times for any

path in a FIFO network by Lemma 4.3. Therefore, if the minimum arrival time path P to

node j arrives at an intermediate node i at a time t > aj, then the path consisting of the

optimal path to node i, concatenated with the arcs belonging to path P from i to j, will

arrive at node j a time no greater than a;. m

Lemma 4.5: If f(t) and g(t) are two non-decreasing functions over a given discrete

interval [a, b], then h(t) = minff(t), g(t)} is a non-decreasing discrete function over the

same interval.

53

Proof: If f(a) = g(a), then let a = a' be the first time instant a' e (a, b] such that f(a) <

g(a). If no such a' exists, thenf(t) is equivalent to g(t) on [a,b] and the lemma is proven.

Otherwise, we assume without loss of generality that f(a) g(a). We define a breakpoint

t'E [a,b] such that for t e [a,t'-1], f(t) < g(t), but for t = t',f(t) > g(t). If no such t' exists,

then h(t) = f(t) and the lemma is proven. Otherwise, h(t) = f(t) for t E [a, t'-1], and h(t) =

g(t) for t = t'. The function h(t) is thus non-decreasing over [a, t] since h(t) = f(t) for t E

[a,t'-1], and h(t') = g(t') > f(t'). Repeating this procedure for every breakpoint t' e [a,b]

yields the desired result. m

Lemma 4.6: A discrete function equal to the minimum of a finite number of non-

decreasing discrete functions is itself a non-decreasing discrete function.

Proof: By induction, using Lemma 4.5. m

Lemma 4.7: Let SP(k) represent the shortest path tree in a network corresponding to

departure time of k at the source. In a FIFO network, the minimum arrival times SP(k)

are upper bounds on SP(k-c) for every all integral values of c in the interval [1, k].

Proof: We provide two distinct, yet related proofs of this result, as each proof offers a

different insight into the problem. For our first proof, let us denote the arrival time at a

node i along a path p which departs the source at time k as ai(p, k). Additionally, let

54

P(s,i,k) denote the set of all paths from the source node s to node i for a departure time of

k from the source. Let p* be a path to node i such that p* e SP(k). By Lemma 4.3, ai(p*,

k) 2 ai(p*, k-c). Since p* is feasible for departure time k-c from the source, but not

necessarily optimal, we have: ai(p*, k-c) min {a (p,k - c)}. Thus, ai(p*, k)
pEGP(s, i, k-C)

2 min {a (p, k - c) and for any node i, the minimum arrival time at node i when
pe P(s,i,k-c)

departing the source at time k is greater than or equal to the minimum arrival time at node

i when departing the source at time k-c.

For our second proof, we may note that the function ai(t), representing the minimum

arrival time at a given node i, is a non-decreasing function of the departure time t, by

Lemmas 4.3 and 4.6. Therefore, a1(k) ai(k-c) V i, and SP(k) is an upper bound on SP(k-

c). .

Lemma 4.8: In a FIFO network, the minimum arrival times SP(k) are lower bounds on

SP(k+c) for all integral values of c > 0. Furthermore, the arrival times obtained by

using the paths in SP(k), but departing at time k+c from the source, are upper bounds on

SP(k+c).

Proof: No proof of this lemma is required. This lemma is a restatement of Lemma 4.7,

illustrating the symmetry of the reoptimization problem. It is presented in this form to

maintain the convention that the shortest path solution is always know for the departure

55

time k from the source, and it is this shortest path tree, SP(k), that we wish to reoptimize

for a different (in this case, a later) departure time. m

Lemma 4.9: Let path p in a FIFO network correspond to a departure from the source at

time k and an arrival at a node i at time ti, such that (i, ti) E SP(k). Let p* be a path

which departs from the source at time k-c, such that k-c < k, and arrives at node i at time

ti as well. Then the minimum arrival time at any node j, such that (i, ti) as an ancestor of

j in SP(k), will not decrease as a result of using path p* instead of path p to arrive at

node j.

Proof: Consider a particular node j. We assume that node i is on some minimum arrival

time path from (s, k) to j. Then, the arrival time at node j along this minimum arrival

time path is equal to the arrival time at j when departing node i at time ti, by Lemma 4.4.

Since path p* departs node i at time ti, the minimum arrival time to node j as given by

SP(k) will not be decreased by taking the path p*. m

4.3 Description of the Reoptimization Algorithm in FIFO Networks for

Earlier Departure Times

We maintain the convention of Section 4.1, whereby a solution to a minimum arrival time

problem is known for the departure time k from the source, and we wish to reoptimize

this problem for a different departure time from the source. In this section, we develop

56

the Reoptimization Algorithm in FIFO networks (RA-FIFO) for earlier departure times.

Employing the SP(k) notation to denote an earlier departure time from the source, we

refer to this algorithm as RA-FIFO for SP(k-c).

We begin by stating in detail the algorithm for reoptimizing for time k-c, assuming SP(k)

is known. We then suggest a theoretical improvement to the algorithm, and finally we

provide the pseudocode for the generic one-to-all RA-FIFO for SP(k-c). In later sections,

we analyze the RA-Non-FIFO for SP(k-c), and the RA-FIFO and RA-Non-FIFO for later

departure times.

4.3.1 The Special Case of Static Travel Times

If arc travel times are static, then SP(k-c) will have the exact same topological structure

as SP(k) , with the minimum arrival time at every node reduced by exactly c units of

time. (If arc travel times are independent of time, then the solution for departure time k is

an optimal solution for all departure times.)

In the case of dynamic travel times, however, the shortest paths for departure times k-c

may differ substantially from the shortest paths for departure time k. Fortunately, Lemma

4.7 provides bounds on SP(k-c) in terms of SP(k), such that SP(k) may help to efficiently

determine if an optimal solution has been reached for a departure time k-c. The details of

exactly how these bounds are used is explained in sub-section 4.3.2. In subsection 4.3.3

we discuss a theoretical improvement to achieve even tighter upper bounds.

57

4.3.2 Reusing Optimal Paths to Prune the Search Tree

We assume that we have the solution SP(k). Note that SP(k) holds the predecessor tree

corresponding to the shortest paths from s to all other nodes along paths that depart s at

time k, as well as the arrival times at the destination nodes of these minimum time paths.

We assume that the lengths of these paths are stored in the form of node-time distance

labels, such that (i, t) corresponds to the arrival time label of a minimum arrival time path

that arrives at node i at time t.

To reoptimize for SP(k-c), we begin by setting the minimum arrival time at each node

equal to the minimum arrival time at that node as given by SP(k). We maintain a list of

candidate labels, which initially includes solely the node-time pair (s, k-c). The list of

candidate labels holds all labels that need to be examined by the algorithm. Next, we find

the candidate label of minimum arrival time; in this case the source label is the only such

label. We remove the minimum arrival time candidate label from our list of candidate

labels, and we update the minimum arrival times of the neighbors in its forward star.

For any node in the forward star that gets updated to a smaller minimum arrival time

label, we insert the corresponding node-time pair into the list of candidate labels. Any

node in the forward star that is reached at a time that is later than its minimum arrival

time label need not be added to the list of candidate labels, by Lemma 4.7. Any node in

58

the forward star that is reached exactly at the arrival time corresponding to SP(k) need not

be added to the set of candidate labels by Lemma 4.9.

The main loop of the algorithm thus consists of retrieving the candidate label which has

the current minimum arrival time among all candidate labels, exploring its forward star

according to the above procedure, and repeating this process until there are no more

candidate labels.

4.3.3 Reusing Optimal Paths to Obtain Better Upper Bounds

In theory, the procedure described above can be further enhanced by noting more

restrictive conditions under which a label should be added to the list of candidate labels.

Since a shortest path tree is already computed for departure time k, when reoptimizing

SP(k) for departure time k-c, we can compute even tighter upper bounds (that is, upper

bounds with smaller values) on the minimum arrival time at each node for the departure

time of k-c from the source. The new tighter bounds consist of the arrival time at each

node i that is achieved by departing from the source node s at time k-c along the set of

arcs specified in SP(k) to reach node i. These labels are upper bounds on the minimum

arrival time at each node i since they are obtained by traversing a feasible path from the

source to node i. By the proof of Lemma 4.7, they are no larger than the minimum

arrival times specified by SP(k). Although the minimum arrival time labels for SP(k)

serve as good upper bounds for SP(k-c) if c is small, it may be beneficial to compute the

new, tighter upper bounds if c is large. In general, if the shortest path tree SP(k) does not

59

differ by much from SP(k-c), these new bounds may be optimal for many nodes, thus

reducing the number of times each node has its minimum arrival time updated. In the

special case where c is large, SP(k) may be a poor upper bound on SP(k-c), and thus

finding a tighter upper bound may be advantageous.

Additionally, if the range of possible arc travel time values is large, then using the tighter

upper bounds may be advantageous, as many minimum arrival time updates for nodes

will be avoided. However, over all sample networks tested, the time spent to update the

upper bounds to these potentially tighter values was greater than the savings gained by

using the tighter upper bounds. These results are provided in Section 4.8.

To reduce the time spent on updating the nodes to their tighter bounds, one could

implement a procedure where only the nodes that were examined in the previous iteration

have their upper bounds updated to the tighter values. This procedure can be

implemented with very little additional computation time. However, it does not update

enough of the labels to their smaller values during any single iteration, and the running

times achieved are nearly identical to not simply using the relaxed upper bounds

described in subsection 4.3.2. For this reason, the running times for this implementation

are omitted.

60

4.3.4 Pseudocode for the Generic RA-FIFO for SP(k-c)

The following pseudocode summarizes the Generic RA-FIFO for SP(k-c):

Step 1: Initialize
//The method ShortestPaths(n,m,k) sets pred(i) and

//rmintime(i) V i

SP(k) = ShortestPaths (n,m,k)
SP(k-c) = SP(k)

Step 2: Reoptimize for time k-c < k
SP(k-c) = SP(k-c) \ { source I
Candidates = { (source, k-c) }

Step 3: Main Loop

while Candidates != 0 do
(i, t) arg mintime(Candidates)

SP(k-c) = (SP(k-c) \ {i, mintime(i)}) U [(i, t))
For all successor j of node i do

aj = t + dij(t)
if aj < mintime(j)

mintime(j) = ai

Candidates = Candidates U { (j, aj) }

Figure 4.1 The generic RA-FIFO for solving the one-to-all shortest path
problem in FIFO networks for a departure time from the source at time k-c
< k. The method argjmintime returns the node-time pair corresponding to
the candidate label of minimum arrival time.

4.4 Implementation of The Reoptimization Algorithm in FIFO

Networks for Earlier Departure Times

In the FIFO case, it is sufficient to store the node-time pair (i, t) (along with the

predecessor of node i on the path which arrived to node i at time t) for just the minimum

arrival time corresponding to node i. To see that we need to store only the path

information for the shortest path to node i and not as well other paths which go through

node i at times t* > t, we must demonstrate that we are not discarding any information

61

which may be useful in computing the shortest paths to other nodes j in the current

reoptimization phase, say SP(k'), and we must ensure that we are not discarding any

information that will be useful in computing shortest paths in later reoptimizations,

SP(k") for some k" < k' < k.

For the current reoptimization phase SP(k'), we need only to store the minimum arrival

time labels for each node since Lemma 4.4 implies that all shortest paths need only be

composed of such labels. Furthermore, by Lemma 4.7, maintaining only the minimum

time labels when reoptimizing for SP(k) is all that will be necessary for the

reoptimization of SP(k-c), since these labels are upper bounds for SP(k-c).

Thus, it is sufficient to maintain only the minimum arrival time label for each node in the

network. In algorithms which parallel Dial's and Dijkstra's algorithm for the standard

shortest path problem, we can now describe two separate implementations of the generic

algorithm, based on how we locate the next minimum time label that needs to be updated.

The first implementation is based on a time-bucket data structure, and the second utilizes

a binary heap.

4.4.1 Time-Buckets Implementation Details and Running Time Analysis

To facilitate a chronological scan of the labels, we may store the labels in "time-buckets."

We maintain a time-bucket for each time from (k* = k + the maximum shortest path from

62

s to all other nodes when departing s at time k) down to 0. We describe the details of the

time-buckets and heap implementations in the following subsections.

4.4.1.1 Time-Buckets Implementation Details

The goal of our time-buckets implementation is to provide an implementation that is

efficient both in terms of memory usage and computation time required. To achieve this,

we will maintain labels in time-buckets such that all operations on these labels can take

place in 0(1) time.

Since we do not know the value of the maximum arrival time along all minimum travel

time paths before these paths are computed, we may upper bound the value of k* to

ensure that enough time-buckets are created during the initialization phase of the

algorithm. Note that we cannot use a circular queue to store the labels, since such a data

structure would overwrite information from previous shortest path solutions, which our

algorithm utilizes to reoptimize those solutions for earlier departure times.

Time-bucket t holds a doubly-linked list of labels, where a label is a node-time pair (i, t)

corresponding to a path that arrives at node i at time t. The label also holds the

predecessor of node i on this path, and a flag such that candidate labels are marked

"dirty." That is, a label (i, t) is dirty if we need to update the neighbors in the forward

star of (i, t). If a label is not in the set of candidate labels, then it is denoted as "clean."

(Note that if candidate labels are maintained in a separate data structure, then the

63

clean/dirty flag becomes unnecessary. It is described here in order to illustrate a

memory-efficient implementation of the algorithm.)

To keep track of the time-buckets, we maintain one bucket-pointer for each time t. Each

bucket-pointer points either to the head node of a doubly-linked list of labels

corresponding to a particular minimum arrival time, or it points to null (if there are no

labels for that time). In this way, we need only to maintain an array of bucket-pointers,

plus, for each node i, 2 additional pointers for the doubly-linked list, for a total memory

size on of O(n+k*). We must also maintain the predecessor and a clean/dirty boolean

variable for each node i. Both of these pieces of information can be stored in arrays of

size n indexed by node.

We now show that we can use these data structures to perform label updates in 0(1) time.

Examining label (i, t) consists of removing it from its current time bucket, inserting it into

a new time-bucket, changing its flag to dirty, and possibly updating its predecessor

information. (It is possible that node i will be updated to a smaller minimum arrival time

value, but maintain the same predecessor node in the new shortest path tree, if the

minimum arrival time at that predecessor has changed.)

To remove the label (i, t), we look up the node after node i in its linked list, and the node

before node i in the linked list to which it belongs. We then set the pointers accordingly

to remove node i from the linked list. Each of these operations require 0(1) time.

64

To insert node i into a new bucket-list, we look up the bucket-pointer for the time t. We

insert node i in front of the head node in this time-bucket, and we update the bucket-

pointer to make node i the new first label for the time-bucket t. Setting predecessor and

clean/dirty information require a single array access each. Thus, inserting a label requires

0(1) time. Inserting dirty labels at the front of the list results in a valuable time savings,

since once a clean label is found in the current time bucket, the examination of the

remainder of labels in that time-bucket can be halted.

65

The following is pseudocode for the RA-FIFO for SP(k-c) using time-buckets:

Step 1: Initialize
//The method ShortestPaths(n,m,k)places node i in

//time-bucket B(mintime(i)) V i

For t = 0 to k*
B(t) = 0

SP(k) = Run ShortestPaths(n,m,k)

For i = 0 to n-1

flag(i) = clean
dirtycount = 0

Step 2: Reoptimize for time k-c < k
mintime(source) = k-c
setflag(source) = dirty
t = k-c

Step 3: Main Loop
while (dirtycount > 0) do

For all i e B(t) such that flag(i) is dirty

for all j e A(i) do
aj = t + dij (t)
if (aj < mintime(j))

mintime(j) = aj
setflag(j) = dirty

setflag(i) = clean
t = Time of next non-empty time-bucket

Figure 4.2 The RA-FIFO for SP(k-c) of Figure 4.1 implemented using
time-buckets. The method setflag sets the clean/dirty flag of a node, and
updates the variable dirtycount as necessary.

4.4.1.2 Time-Buckets Running Time Analysis

Providing accurate average running time bounds is difficult because of the randomness

associated with the FIFO travel times. However, we can easily bound the worst-case

running time of the RA-FIFO for SP(k-c).

66

Since reoptimizing assumes that we begin with one solution, we exclude the time for Step

1 in the pseudocode of Figure 4.2 when discussing the running time of the algorithm. To

analyze the running time, we assume we are given the solution for SP(k), and we wish to

reoptimize for one reoptimization phase (reoptimizing for one new departure time k-c

from the source). For one reoptimization phase, in the worst case, every minimum time

label will be smaller than its previous value, and no information from the previous

computation will be useful at all. In this case, the algorithm degenerates to a dynamic

variant of Dial's algorithm, implemented using a basic buckets data structure (i.e.

implemented without using a circular queue data structure). For a network with n nodes,

m arcs, and a maximum simple path length of Tk-c for a departure time of k-c from the

source, the running time is O(m + Tk.). Observe that Tk-c can be no greater than n-1

times the maximum arc travel time in the network. To reoptimize over all k' < k, the

running time is O(km + kT).

However, we will show in the computational results subsection that the average running

time will be much better than the worst-case running time. The factor of 0(m) in the

running time should be much smaller on the average case because the results of the

previous computations should allow the reoptimization to be completed with the

inspection of fewer than m arcs and with potentially even fewer decreases of labels into

different time-buckets, especially if reoptimizations are performed for k-1, then k-2, etc.

67

4.4.2 Heap Implementation Details and Running Time Analysis

A second method to facilitate locating candidate labels is the use of a binary heap. In the

worst case, the running time obtained by using a heap can be greater than the worst-case

running time for the time-buckets implementation. However, for most practical problem

instances, using a heap can result in significant speedups.

4.4.2.1 Heap Implementation Details

At most n labels are stored in the heap at any one time, corresponding to the current

minimum arrival time labels for each node in the network. Insertion and the updating of

minimum arrival time labels can be performed in O(log(n)) time with a heap data

structure. Identification of the minimum element in the heap takes 0(1) time, and

removal of this element takes O(log(n)). Predecessor labels can be maintained using a

simple array, as in the time-buckets implementation, and thus updating a predecessor

label can be performed in 0(1) time. To make heap operations run as efficiently as

possible, labels are inserted into the heap only when necessary, so that heap operations

whose runtime depend on the number of elements in the heap will operate efficiently.

The pseudocode presented in Figure 4.3 demonstrates this idea.

68

The following is pseudocode for the RA-FIFO for SP(k-c) using a binary heap:

Step 1: Initialize
//The method ShortestPaths(n,m,k) sets mintime(i) V i
Run ShortestPaths(n,m,k)

Step 2: Reoptimize for time k-c < k
mintime(source) = k-c
Insert(source, k-c)

Step 3: Main Loop
while heap is not empty do

(i, t) = minimum-time label in heap
for all j E A(i) do

aj = t + dij(t)
if (ai < mintime(j))

if (j is not in the heap
Insert(j, a)

else
DecreaseKey(j, aj)

Figure 4.3 The RA-FIFO for SP(k-c) of Figure 4.1 implemented using a
binary heap.

4.4.2.2 Heap Running Time Analysis

Similarly to the time-buckets implementation, providing accurate average running time

bounds is difficult because of the randomness associated with the FIFO travel times.

However, we may easily bound the worst-case running time. We assume that are given a

shortest path solution, and thus we exclude the time for Step 1 in the pseudocode above

when discussing the running time of the binary heap implementation.

For one reoptimization phase, in the worst case, every minimum time label will be

smaller than its previous value, and no information from the previous computation will be

useful. In this case, the algorithm degenerates to a dynamic extension of Dijkstra's

69

shortest path algorithm implemented with a binary heap. For a network with n nodes and

m arcs, the running time is 0(m + mlog(n)).

However, the average running time of the heap implementation will be better than the

worst-case bound, since both the first, 0(m), and second factor, 0(mlog(n)), will be

smaller than their worst-case bounds for practical problem instances. We expect the first

factor to be much smaller in the average case because of the reuse of the results from

previous computations, which will result in fewer than m label examinations. We expect

the second factor to be smaller than its worst-case bound since the number of updates to

the heap should be fewer than m. Note that m is the maximum number of updates that

can be performed on the heap, and even in a standard shortest path algorithm, fewer than

m updates will actually be performed. In our reoptimization algorithm, the upper bounds

provided by the previous computation will limit the number of heap updates to even

fewer. Additionally, the number of elements in the heap at any given time should be

fewer than n for practical network instances, implying that any single heap operation can

be performed in faster than log(n) time.

4.5 The Reoptimization Algorithm in non-FIFO Networks for Earlier

Departure Times

For the non-FIFO reoptimization problem for earlier departure times, we assume we are

given the minimum arrival time paths from the source node to every other node in the

70

network for a given departure time k from the source. For a given departure time k-c < k,

we would like to solve the minimum arrival time problem regardless of departure time

from the source. That is, we would like to find the minimum arrival time at all nodes in

the network if we permit departure from the source at either time k or time k-c. Note that

in the case of FIFO networks, this problem is trivial, as it is always given by SP(k-c).

However, for non-FIFO networks, there is no guarantee that departing from the source

node at earlier time will lead to earlier arrival times at any of the nodes.

This problem may be extended to finding the minimum arrival time regardless of

departure time over three or more departure times k', k", k"', etc., such that k.' < k"< k'<

k. Similarly, it may be solved for an interval of departure times [k", k'] such that k" < k'

< k by solving the problem for each departure time in the desired range. For clarity, we

will discuss this problem in the most basic context of finding the minimum arrival times

regardless of departure time, for the given departure time k and a single, earlier departure

time, k-c. Furthermore, we will refer to the algorithm used to reoptimizing a solution for

time k for earlier departure times in non-FIFO networks regardless of departure time as

the RA-Non-FIFO for SP(k-c).

4.5.1 Description of the RA-Non-FIFO for Earlier Departure Times

To efficiently reoptimize an all-to-one minimum arrival time solution regardless of

departure time in non-FIFO networks, we will use one of the basic principles of the RA-

FIFO for SP(k-c). Although Lemmas 4.4 and 4.7 no longer apply in the case of non-

71

FIFO networks, we can still use the same basic reoptimization procedure as outlined by

the Generic RA-FIFO for SP(k-c). The change that we will make is that many labels

must now be saved for a given node, because minimum arrival time paths in non-FIFO

networks are not necessarily composed of the minimum arrival time labels for each node

on that path. Additionally, since SP(k) no longer represents upper bounds on SP(k-c),

any label created during the shortest path algorithm for departure time k might be useful

for SP(k-c), not just the minimum arrival time labels.

The following is pseudocode for the Generic RA-Non-FIFO for SP(k-c) regardless of

departure time:

Step 1: Initialize
SP(k) = ShortestPaths(n,m,k)

Step 2: Reoptimize for time k-c < k

Candidates = { (source,k-c) I

Step 3: Main Loop
(i, t) = arg mintime(Candidates)

while (i, t) != 0 and

(i, t) < argmax{mintime(v) Vv E N}
do

for all j E A(i) do
aj = t + dij(t)
if label (j, aj) does not exist

Candidates = Candidates U { (j, aj) }

Step 4: Compute Minimums
For each node i, compute the minimum arrival-time

label.

Figure 4.4 The Generic RA-Non-FIFO for SP(k-c) for solving the one-to-
all shortest path problem in non-FIFO networks regardless of the departure
time from the source. The method argmintime returns the node-time pair
corresponding to the candidate label of minimum arrival time.

72

4.5.2 Implementation of the RA-Non-FIFO for Earlier Departure Times

Just as the RA-FIFO implementation for earlier departure times has two different

implementations based on time-buckets or a heap data structure, so does the non-FIFO

version. With the exception of the details outlined below, these implementations

translate directly from the pseudocode in Figure 4.4 and either Figure 4.2 (time-buckets)

or Figure 4.3 (heap). Thus, we omit the pseudocode for these specific implementations.

In the non-FIFO solution algorithm, there may be many labels in different time-buckets

that correspond to the same node. Thus, if we denote the travel time of the longest

minimum arrival time path in the network corresponding to a departure time of k from the

source node as Tk, then it may be necessary to store up to (k + Tk) time-buckets, each of

which may hold up to n labels. In the worst case, all n nodes are dirty in each time-

bucket, and need to have their forward stars explored. This implies that m arcs will be

checked in one phase of the reoptimization algorithm (reoptimizing for one other

departure time, k-c, from the source), thus implying a running time of O(mT). (To solve

the reoptimization problem for all times from k-1 down to zero, the total running time

would be O(m(k+T)), since at most every arc in the time-space network will be

explored.)

73

For the heap-based implementation, the heap will contain all dirty labels. In the worst

case, for a departure time k-c from the source, the heap may contain O(nT-,) labels. This

implies a running time of O(mTk-c log(nT-,)) for the reoptimization problem for one

earlier departure time, time k-c, from the source. (To reoptimize for all departure times

from k-1 down to zero using the heap-based implementation would incur a running time

of O(m(k+T log (nT)) for the entire algorithm, where T = max Tk.)
tE [0,k]

The results presented in Section 4.8 for the RA-Non-FIFO for SP(k-c) were obtained

using a simplified buckets data structure, for ease of implementation. This

implementation stores each time-bucket as an array of size n (we refer to these arrays as

time-arrays). Implementation of the algorithm using this data structure leads to a worst-

case running time that is equal to the worst-case running time of the more efficient time-

buckets implementation described above, but it causes poorer average case performance,

since, for each time-array, the entire array will have to be scanned for dirty labels.

4.6 Reoptimization for Later Departure Times

Finally, we address the symmetric problem of reoptimizing for a later departure time in

both FIFO and non-FIFO networks. We will first investigate the FIFO case, and then we

will turn to the non-FIFO case.

74

4.6.1 The Reoptimization Algorithm in FIFO Networks for SP(k+c)

In the FIFO case, Lemma 4.8 provides us with upper bounds on SP(k+c), based on using

the paths of SP(k), but departing at time k+c instead. However, computing these new

paths can be time-consuming if the shortest path tree SP(k) is maintained by solely

storing the predecessor of node i for all nodes i, and not storing the set of children of i,

for all nodes i.

The role of reducing the number of nodes that are searched is played by the lower bounds

(the values of SP(k)) when we are reoptimizing for SP(k+c). Unfortunately, these lower

bounds cannot effectively reduce the number of such labels that will be searched in the

SP(k+c) reoptimization for the following reason. Although the arrival times of SP(k) do

provide lower bounds for the arrival times of SP(k+c), these lower bounds may not be

feasible arrival time values for any given node on a path that departs the source at time

k+c. Therefore, we cannot begin our reoptimization algorithm for SP(k+c) by assuming

that these lower bounds are optimal and working from there, as we did in the

reoptimization algorithms for SP(k-c). This implies that if a path is found from departure

time k+c from the source to a node i at the time SP(k), we must still explore the forward

star of node i. Since the nodes in forward star of i are not initialized with optimal labels

(since these labels may be infeasible), the nodes in the forward star of i must be updated.

Furthermore, it would be incorrect to simply update all of the nodes in the forward star of

node i with their optimal lower bounds and stop searching from all of these nodes (as we

75

do in the SP(k-c) case). Even once their labels are updated to their minimum values, we

still need to explore from all of the nodes in the subtree of node i. This is because the

nodes in the solution to SP(k+c) may not have been in the subtree of node i for SP(k).

Finally, one may wish to use the paths given by SP(k), but depart along these paths at

time k+c to obtain feasible upper bounds on the minimum arrival times at all nodes for a

departure time of k+c from the source. However, this method is an analog to the

approach of finding tighter upper bounds described in subsection 4.3.3, and, the extra

computation time spent to update every node with these feasible upper bounds is not

worthwhile. As the computational results in section 4.8 show, the running time of the

RA-FIFO for SP(k+c) suffers greatly from the additional work that must be performed,

and as such, it is faster to re-run a shortest paths algorithm for time k+c from scratch than

to "reoptimize" the SP(k) solution.

4.6.2 The Reoptimization Algorithm in non-FIFO Networks for SP(k+c)

The RA-Non-FIFO for SP(k+c) is nearly identical to the symmetric non-FIFO algorithm

for SP(k-c). Since the SP(k-c) algorithm for non-FIFO networks did not make use of any

of the lemmas of Section 4.2, it is unaffected by the problems of efficient FIFO

reoptimization detailed in the previous subsection. It is straightforward to reoptimize the

SP(k) solution for the minimum arrival times at all nodes regardless of departure time

from the source for a later departure time k+c, for the following reason.

76

In the pseudocode of Figure 4.4 for the Reoptimize-Non-FIFO SP(k-c) problem, we see

that the reoptimization phase terminates once the time of the smallest candidate label is as

big as the maximum value of all of the minimum arrival time labels, because at that point

no more updates could possibly be made (since d1 is positive for all arcs in the network).

In solving for SP(k+c), this condition is still valid, but we have an additional stopping

criteria if we are reoptimizing for a set of departure times [k+1, k+c]. Let t e [k+1, k+c]

be the departure time from the source in the current phase of the reoptimization algorithm

over the set of departure times [k+1, k+c]. Then, the additional constraint is that as soon

as the maximum value of all minimum arrival time labels is smaller than t, no more

reoptimizations need be performed, since the minimum arrival time labels will not

decrease for any nodes in the network. Although this termination constraint implies that

the RA-Non-FIFO for later departure times will have a very efficient running time in

practice, this algorithm was not implemented at the time of the writing of this thesis, and

thus no numerical results are provided.

4.7 Computational Results

All codes tested in this section were written in the C++ programming language, based on

the pseudocode and implementation details in Sections 4.3 - 4.7. The tests were

performed on a Dell Pentium III 933 megahertz computer with 256 megabytes of RAM.

77

4.7.1 Objectives

The objectives of the computational study were the following:

1. Compare the variation of the running times of the time-buckets and heap

implementations of the RA-FIFO for SP(k-c) as a function of the following

parameters: (a) the size of networks with constant density; (b) the number of arcs; (c)

the number of nodes; (d) the number of reoptimizations performed

2. Analyze the running times of the non-FIFO reoptimization algorithm for SP(k-c) as a

function of parameters (a) - (d) above.

3. Compare the running times achieved by using the reoptimization algorithm instead of

repeating a standard shortest path algorithm for each of the following

implementations: RA-FIFO for SP(k-c) using time-buckets, RA-FIFO for SP(k-c)

using a heap with relaxed upper bounds, RA-FIFO for SP(k-c) with a heap using

tighter upper bounds, RA-Non-FIFO for SP(k-c) using time-buckets, and RA-FIFO

for SP(k+c) using time-buckets.

4. Compare the running time of the RA-FIFO for SP(k+c) with the corresponding

standard shortest path algorithms that starts from scratch at each iteration.

4.7.2 Experiments

The network G = (NA) was pseudo-randomly generated. The arc travel times were

pseudo-randomly generated as integers in the range from 1 to 3 (denoted as dijc [1,3] in

78

Figures 4.5 - 4.21). Dynamic travel times were generated such that arc travel time data

was dynamic for all departure times from all nodes in the network. Unless otherwise

specified, a solution for SP(k=100) was assumed to be known, and this solution was

reoptimized for all k from 99 down to 0. (Thereby solving the reoptimization problems

for c = 1.) Savings ratios were computed by running the standard shortest path version of

the algorithm over the same 100 departure times from the source. All running times are

in seconds, and they represent the average running time over 5 trials of each algorithm,

for the 100 iterations (or, "reoptimization phases"). For each of the 5 trials of the

algorithm, a node was chosen randomly to be the source node.

4.7.3 Results

Figure 4.5 shows the variation in running time of the RA-FIFO for SP(k-c) as a function

of network size. Running times are provided for the time-buckets implementation, the

heap implementation using relaxed upper bounds, and the heap implementation using

tighter upper bounds. Running times scale approximately linearly for all three

implementations, and in virtually all cases, the fastest implementation is the heap with

relaxed upper bounds. The linear scale is consistent with the running time of the

algorithm, which has a linear bound (as a function of m) for the time-buckets case and a

bound of O(mlog(n)) for the heap implementation, assuming all nodes are in the heap at

all times. Since the heap is not always in this state for duration of the algorithm over the

networks in this figure, it makes sense that the O(log(n)) factor due to the heap should be

negligible.

79

Figure 4.6 shows the savings ratio obtained by dividing the time of running a standard

shortest paths algorithm for each departure time by the time of 100 reoptimizations. Over

networks of increasing size, the ratios fluctuate but appear to tend to approximately 3 for

the time-buckets implementation and the heap with relaxed bounds. The heap with

tighter bounds attains a savings ratio just slightly above 1, since it suffers from the

computation time to compute the tighter bounds. (We note that, although the heap

implementation with tighter bounds does not achieve a good savings ratio, its run time

performance is still better than the bucket implementation.)

Figures 4.7 and 4.8 respectively show the running times and savings ratios of the three

SP(k-c) implementations for FIFO networks as a function of the number of nodes in the

network over a constant number of arcs. The graphs have two factors at work - the

number of nodes in the graph, which will cause linear increases in the running time, and

the "height" of the network. (By height of the network, we mean the maximum number

of arcs along any shortest path in the network.) As the network becomes less dense, the

height of the network increases, but the running times of the heap algorithm with relaxed

time bounds remains essentially constant, and the running time of the time-buckets

implementation steadily decreases. These trends can be explained by the following

analysis. Anytime a node maintains its minimum arrival time from the previous

reoptimization phase, the entire subtree rooted at that node will not need to be explored.

In sparse networks of large height, the number of nodes in a subtree may be a significant

80

portion of the total number of nodes, since there will be only one path to many of the

nodes in the network. This is reflected in the graph of savings ratios, whereby the heap

with relaxed bounds and the time-buckets implementations both obtain very large savings

over the traditional corresponding shortest path problems which start each iteration from

scratch. The heap implementation with tighter upper bounds suffers from the extra work

required to update the nodes to their lower costs. As expected, in networks with larger

numbers of nodes, more computational time is required to compute the tighter lower

bounds, since these bounds must be computed for every node in the network.

Figures 4.9 and 4.10 respectively show the running times and savings ratios of the three

SP(k-c) implementations for FIFO networks as a function of the number of arcs in the

network over a constant number of nodes. For a large number of arcs (corresponding to a

very dense graph with a small height) the savings ratios are all just slightly above 1,

because the subtrees discussed in the analysis of Figures 4.7 and 4.8 contain very few

nodes. The running times of all three implementations exhibit linear behavior as a

function of the number of arcs in the network, as the running time analysis of the

implementations suggest for increasing values of m.

Figures 4.11 and 4.12 respectively show the running times and savings ratios of the three

SP(k-c) implementations for FIFO networks as a function of the number of

reoptimizations performed for a network of constant size. The savings ratios are

essentially unaffected by this parameter, and the running times increase linearly for all

81

three implementations. These results confirm that the running time of the

implementations is independent of the time at which the reoptimizations take place, as the

theory indicates.

Figures 4.13 and 4.14 respectively show the running times and savings ratio of the bucket

implementation of the non-FIFO algorithms for SP(k-c) with increasing size of the

network (constant density). The running time of the non-FIFO algorithm tends

approximately to O(n*log(height of network)) due to the initialization phase of the

algorithm, which depends on the length of the longest path in the network (because the

number of labels that must be initialized is directly proportional to this length). The non-

FIFO algorithm achieves approximately a 7-fold savings over a standard shortest path

algorithm.

Figure 4.15 and 4.16 respectively show the running times and savings ratio of the bucket

implementation of non-FIFO algorithms for SP(k-c) while increasing the number of

nodes, over a constant number of arcs (10,000). As the height of the network increases,

the running time of the algorithm increases as well, due to two factors. Firstly, the

number of nodes which must be examined increases, and secondly, the number of time-

buckets which must be explored by the algorithm increases with increasing network

height. We observe that the savings ratio also increases as a function of the number of

nodes, due to the computationally intensive initialization procedure of the standard non-

FIFO shortest path algorithm.

82

Figure 4.17 and 4.18 respectively show the running times and savings ratio of the bucket

implementation of non-FIFO algorithms for SP(k-c) as a function of the number of arcs in

the network, while holding the number of nodes constant at 100. The analysis of these

trends is similar that of Figures 4.15 and 4.16. For a very dense network, the

reoptimization algorithm needs to do very little computational work to find the labels of

minimum arrival time, since the network has a very low height. Furthermore, the savings

ratio achieved by the non-FIFO reoptimization algorithm is very close to 1 for dense

networks, since the standard non-FIFO shortest path algorithm is efficient for such

networks.

Figure 4.19 and 4.20 respectively show the running times and savings ratios of the bucket

implementation of non-FIFO algorithms for SP(k-c) as a function of number of

reoptimization phases that are performed. Figure 4.19 shows a linear trends, as the

number of reoptimizations performed does not appear to affect the running time of the

algorithm per reoptimization phase. The savings ratio increases dramatically with the

number of phases due to the computationally intensive initialization procedure of the

standard shortest path algorithm for non-FIFO networks.

Figure 4.21 shows the running times of a heap-based implementation of SP(k+c) in a

FIFO network, and the running times of computing a standard shortest path over the same

number of reoptimization phases. As discussed in Subsection 4.6.1, the standard shortest

83

path algorithm which starts from scratch for each new departure time runs faster than the

reoptimization approach due to the high overhead and small savings of the reoptimization

algorithm for later departure times.

84

1.6 -

1.4-

1.2 -

1-

0.8-

2 0.6 -

E 0.4-

0.2 -

A-

0) --- Time-Buckets

I- 0.8 - -u-Heap-Relaxed
C -i-- Heap-Tighter

I I I I I
~.1

0 1000 2000 3000 4000 5000 6000

Scale of Network (number of nodes)

Figure 4.5 Running times of the time-buckets implementation, and the heap
implementation with both relaxed and with tight upper bounds as a function of
network size. The number of arcs is three times the number of nodes. die[1,3].

Figure 4.6 Savings ratios for the time-buckets implementation, and the heap
implementation with both relaxed and with tight upper bounds as a function of
network size. The number of arcs is three times the number of nodes. d1 1e[1,3].

85

6

5-

.o 4-

C
cA 3-

i 2-

Cu -*- Time-Buckets

3 -i-- Heap-Tighter

-+-- Time-Buckets

-- Heap-Relaxed

-- Heap-Tighter

0 1000 2000 3000 4000 5000 6000

Scale of Network (number of nodes)

-- Time-Buckets

-- Heap-Relaxed

-+-Heap-Tighter

1.8-

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

+ Time-Buckets

--w- Heap-Relaxed

-*- Heap-Tighter

0
0 2000

Number of Nodes

Figure 4.7 Running times of the time-buckets implementation, and the heap
implementation with both relaxed and with tight upper bounds as a function of the
number of nodes in the network. The number of arcs is 10000. dije[1,3].

4000 6000 8000 10000

16-

14-

12 -

10 ~

8-

6 -d

-+- Time-Buckets

-s- Heap-Relaxed

-+-Heap-Tighter _

8 -in- Heap-Relaxed

4

2

0

0 2000

Number of Nodes

Figure 4.8 Savings ratio of the time-buckets implementation, and the heap
implementation with both relaxed and with tight upper bounds as a function of the
number of nodes in the network. The number of arcs is 10000. dije[1,3].

86

10000

E
i~

C

0

C

U)

6000 80004000

1.6

1.4-

1.2 -

1-

F- 0.8 -

. 0.6 -

C 0.4-

0.2 -

0-

-+- Time-Buckets

-m-- Heap-Relaxed

-*-- Heap-Tighter

..... 0.8-. Heap- elaxe

60000 2000 4000

Number of Arcs

Figure 4.9 Running times of the time-buckets buckets implementation, and the heap
implementation with both relaxed and with tight upper bounds as a function of the
number of arcs in the network. The number of nodes is 100. d1je[1,3].

4-

3.5 -

3-

2.5 -

2 -

1.5 -

1 -

0.5 -

0-

-*- Time-Buckets

-z- Heap-Relaxed

-&- Heap-Tighter

2- -in- Heap-Relaxed

20000 4000

Number of Arcs

6000 8000

Figure 4.10 Savings ratio of the time-buckets buckets implementation, and the heap
implementation with both relaxed and with tight upper bounds as a function of the
number of arcs in the network. The number of nodes is 100. d11e[1,3].

87

8000

0

=3

C,,

E
0

E
C)

2.5 -

2-

1.5 -

1 -

0.5-

1.5- -*-- Time-Buckets

1- -a-- Heap-Tighter

-- Time-Buckets

-w- Heap-Rel axed

-* Heap-Tighter _

0 iI I I I

0 200 400 600 800 1000 1200

Number of Reoptimization Phases

Figure 4.11 Running times of the time-buckets buckets implementation, and the
heap implementation with both relaxed and with tight upper bounds as a function of
the number of reoptimization phases performed. The number of nodes is 1000 and
the number of arcs is 3000. d1je[1,3].

4-

3.5-

3-
0
c2.5 --- Time-Buckets

2 -m- Heap-Relaxed

-a- Heap-Tighter
S1.5 -

1

0.5-

0
0 200 400 600 800 1000 1200

Number of Reoptimization Phases

Figure 4.12 Savings ratio of the time-buckets buckets implementation, and the heap
implementation with both relaxed and with tight upper bounds as a function of the
number of reoptimization phases performed. The number of nodes is 1000 and the

number of arcs is 3000. die[1,3].

88

3-

U
G)

U)
E

C

2.5 -

2-

1.5-

0.5 -

0-

1.5 - -U- Non-FIFO

3000 4000 5000 6000

Scale of Network (by number of nodes)

Figure 4.13 Running times of the time-buckets implementation of the non-FIFO
reoptimization algorithm as a function of network size. The number of arcs is three
times the number of nodes. d11e[1,3].

8 -

7-

6 -
0

4-- Non-FIFO

> 3-

2-

1 -

0 I I I I I

0 1000 2000 3000 4000 5000 6000

Scale of Network (number of nodes)

Figure 4.14 Savings ratio of the time-buckets implementation of the non-FIFO
reoptimization algorithm, as a function of network size. The number of arcs is three
times the number of nodes. dej[1,3].

89

+ -m Non-FIFOI

0 1000 2000

-+- Non-FIFO

I I I

0 2000 4000 6000 8000 10000

Number of Nodes

Figure 4.15 Running times of the time-buckets implementation of the non-FIFO
reoptimization algorithm as a function of the number of nodes in the network. The
number of arcs is 10000. d1 1e[1,3].

35 -

30 -

25 -

20 -

15 -

10 -

-+- Non-FIFO

5-

0
4000 6000 8000 10000

Number of Nodes

Figure 4.16 Savings ratio of the time-buckets implementations of the non-FIFO
reoptimization algorithm as a function of the number of nodes in the network. The
number of arcs is 10000. die[1,3].

90

0 2000

E

C

7)

2.5 -

2 -

1.5 -

1.-

0.5 -

0

0

'P

cc

C

(n

0.25 -

0.2 -

0.15 -

0.1 -

0.05 -

-+- Non-FIFO

0
8000600020000

Number of Arcs

Figure 4.17 Running times of the time-buckets implementation of the non-FIFO
reoptimization algorithm as a function of the number of arcs in the network. The
number of nodes is 100. djE[1,3].

9-

8-

7-

6-

5-
-+-- Non-FIFO

4

3

2

1

0
8000600040000

Number of Arcs

Figure 4.18 Savings ratio of the time-buckets implementations of the non-FIFO
reoptimization algorithm as a function of the number of nodes in the network. The
number of arcs is 10000. dije[1,3].

91

2000

4000

a>

.E

0)

C

Cn,

'

4-

3.5 -

3-

2.5 -

2 -

1-

0.5-

0-

2- -4-- Non-FIFO

0 200 400 600 800 1000 1200

Number of Reoptimization Phases

Figure 4.19 Running times of the time-buckets implementation of the non-FIFO
reoptimization algorithm as a function of the number of reoptimization phases
performed. The number of nodes is 1000 and the number of arcs is 3000. d1je[1, 3].

60 -

50 -

40 -

30 -

20 -

10 -

30 - -4- Non-FIFO

U II I I I I

0 200 400 600 800 1000 1200

Number of Reoptimization Phases

Figure 4.20 Savings ratio for the time-buckets implementation of the non-FIFO
reoptimization algorithm as a function of the number of reoptimization phases
performed. The number of nodes is 1000 and the number of arcs is 3000. dje[1,3].

92

E

0

Co
0)C

U)

'

--+- Non-FIFOI

-+- Non-FIFOI

C.F

C

2.5 -

2-

1.5 -

1.-

0.5 -

--- SP(k+c)

-U- SSP(k+c)

0
1000 2000 3000 4000 5000 6000

Size of Network (number of nodes)

Figure 4.21 Running times of a heap-based implementation of the Reoptimization
Algorithm for SP(k+c) and running times of a standard shortest path algorithm over
the same interval. The number of nodes is 100 and the number of arcs is 300.
dijE[1,3].

93

0-
0

Chapter 5

Conclusion

In this chapter, we summarize the results of Chapters 4 and 5, and we state what we have

contributed to the field of network optimization, specifically in the context of

transportation systems. We also identify future research areas that arise from the

developments in this thesis.

5.1 Summary of Contributions

We have examined in detail the shortest path problem in networks with time windows

and linear waiting costs, and the shortest path reoptimization problem in time-dependent

networks. In the following subsections, we summarize the research conducted and the

contributions made for each of these problem-types.

5.1.1 The Shortest Path Problem With Time Windows and Linear Waiting Costs

We studied the SPWC from a point of view of the labels in the time-space network in

order to understand the dominance of labels in both the static and dynamic case. We

developed a generic algorithm to solve this problem for both network types, with at least

94

six possible implementation strategies for the case of static networks. We analyzed these

strategies theoretically, and we implemented the most promising ones in C++, along with

an implementation of the algorithm for dynamic networks. We obtained running time

results for these implementations based on randomly generated networks of substantial

size.

5.1.2 The Shortest Paths Reoptimization Problem

We formulated a new reoptimization problem that does not seem to have been discussed

in the literature. We examined the reoptimization problem in FIFO and non-FIFO

networks, for earlier and later departure times from the source. We discussed two

implementations of the basic reoptimization algorithm, one using heaps and another using

time-buckets. We implemented several versions of the algorithm to handle different

reoptimization problems, and we showed how these algorithms may be extended to

address other problem variants. On large, randomly generated networks, we achieved a

savings ratio of roughly 3 on average by using the reoptimization techniques discussed in

this thesis to find shortest paths over multiple starting times, as opposed to computing the

shortest paths by a repetitive application of the standard algorithm for each starting time.

95

5.2 Future Research Directions

There is much research to be done in both the field of time windows and the field of

reoptimization. In the following two sub-sections, we suggest some of these possible

directions.

5.2.1 Time Window Algorithms

The algorithms in this thesis the network data is discrete and integral. However, there

has been recent work in the field of continuous-time network algorithms. In light of this,

one might consider a continuous-time implementation of the SPWC Algorithm. We

believe that such an implementation would be similar to its discrete-time counterpart

presented in Chapter 3. There may, however, be implementation subtleties unbeknownst

to us, and there may exist diverse strategies for checking dominance in the continuous-

time context.

Under the current SPWC Algorithm, in the case of dynamic arc travel times, every

reachable node in the time-space network is examined. This suggests two directions of

future research. The first direction is to note that since every label reachable along some

path from the source will be explored, there seems to be no reason to limit network data

as we have done in this thesis. For example, the waiting cost w could be a function of

each node and time, w(i, t). Similarly, arc costs need not be time-independent. Although

theory suggests that such changes would not alter the running time of these algorithms in

96

the worst case, experimental analysis based on practical implementations would have to

be constructed to test these extensions.

The second direction of research related to the SPWC Algorithm with dynamic arc travel

times is to investigate the conditions and assumptions under which one can improve the

running time of this algorithm. That is, do there exist some conditions on the arc costs,

waiting costs, arc travel times, and time windows under which it would be possible to

significantly reduce the running time of the SPWC Algorithm for dynamic networks so

that it achieves the same average-case running time as the algorithm for the static case?

Discovering such conditions, if they exist, could potentially enable faster

implementations of the algorithm for dynamic networks, which serve as better models for

practical network flow applications than their static counterparts.

5.2.2 Reoptimization Algorithms

Reoptimization for different departure times is a new field of study, and as such, there are

many areas of research that warrant further study. We shall suggest a few of these areas

in this subsection.

Firstly, as the reoptimization problem for different departure times is relatively new, the

algorithms developed in this thesis may not have optimal running times. It is likely that

as this field matures, other types of algorithms for the reoptimization of a shortest path

tree for various departure times will be developed. Particularly in the case of SP(k+c),

97

there is a need to find better algorithms, as the one developed in Chapter 4 of this thesis

was shown to have a worse running time in practice than re-running a standard shortest

path algorithm for each desired departure time. It might be possible to apply the

techniques used in algorithm IOT-C in [3] to the reoptimization problem in order to

develop more efficient solution algorithms.

Secondly, we may wish to extend the idea of reoptimization for varying departure times

past the one-to-all shortest path problem as follows. We can continue the study of the

reoptimization of shortest paths by investigating the all-to-one minimum arrival time

problem for varying departure times. We can study the reoptimization of minimum cost

paths by investigating the one-to-all and all-to-one minimum cost path problem for

varying departure times. Finally we can study the reoptimization of other network flow

problems, for example, by investigating the maximum-flow problem for different

departure times.

Finally, just as in the case of the SPWC Algorithm, there exists the opportunity to extend

these algorithms to the continuous-time domain. Algorithms IOT-C and DOT-C in [4]

are very closely related to the reoptimization problem for different departure times, and

they could potentially be modified to solve reoptimization problems in networks with

continuous-time data.

98

Appendix A

In this section, we show how to implement the reoptimization variants for FIFO networks
listed in Section 4.1.

Variant 1: Compute SP(k') for one value of k'. This is the "standard" variant. The
pseudocode is provided in Figure 4.1, where we set k-c = k'.

Variant 2: Compute the minimum arrival time paths for all departure times from k-
1 down to 0. Run Variant 1 one time to find SP(k-1). Then run steps 2-3 of Variant 1 for
all times from k-2 down to 0.

Variant 3: Compute the minimum arrival time paths for a given interval of
departure times. For each (non-overlapping) interval [k', k"], such that k" < k' < k, run
Variant 1 one time to find SP(k'). Then run steps 2-3 of Variant 1 for all times from k'-1
down to k".

Variant 4: Compute the minimum arrival time paths regardless of departure time
for some/all k' < k. By Lemma 4.6, the minimum arrival time function is non-decreasing
as a function of departure time from the source. Therefore, the minimum arrival time for
a range of departure times can be found simply by computing Variant 1 for the smallest
value of k' in the desired range of departure times.

Variant 5: Compute the shortest travel time paths regardless of departure time for
some/all k' < k. Run step 1 of the pseudocode below once, to initialize the data for
departure time k. For each desired departure time k' < k, run steps 2 - 4 of the
pseudocode below.

99

Step 1: Initialize

//ShortestPaths(n,m,k) sets pred(i) and mintime(i) V i

//The method arg mintime returns the node-time pair

//corresponding to the candidate label of minimum

//arrival time.

SP(k) = ShortestPaths(nm,k)
SP(k-c) = SP(k)

Mintraveltime(i) = mintime(i) - k V i

Step 2: Reoptimize for time k-c < k

SP(k-c) = SP(k-c) \ { source }

Candidates = { (source, k-c) I

Step 3: Main Loop

while Candidates != 0 do

(i, t) arg-mintime(Candidates)

SP(k-c) = (SP(k-c) \ fi, mintime(i)}) U {(i, t)}
for all successor j of node i do

aj = t + dij(t)
if aj < mintime(j)

mintime(j) = ag

Candidates = Candidates U { (j, a) }

Step 4: Compute Minimum Travel Times

for all nodes i do

if mintime(i) - (k-c) < mintraveltime(i)

mintraveltime(i) = mintime(i) - (k-c)

100

Appendix B

Some technical terms that are used throughout the literature have slightly different
definitions, depending on the context in which they are used. Thus, we include a glossary
of terms that are used in this thesis and in related literature, such that there is no
confusion due to multiple definitions.

For the Time Windows Algorithms of Chapter 3:

Active - Labels that should be explored by the algorithm are known as active labels.

Candidate Label - An active label.

Clean - A label that is not active is said to be clean.

Dirty - A label that is active is said to be dirty.

Examine - A label in the time-space network is said to be examined by SPWC algorithm
when that label is arrived at during a chronological scan of all of the labels. At this point,
it is determined if the label should be explored, and if it should be placed in the set of
permanent labels or discarded.

Explore - When a label Li = (Ti, C) is explored, the node-time pairs in the forward star of
node i at time Tj are updated.

Label - a node-time pair for a node i in the time-space network with a cost Ci
corresponding to the cost of some feasible path that arrives at node i time Ti. A label for
node i is denoted as (Ti, Ci).

Treat - A label is treated when it is examined.

Update - A label is updated when a path of lower cost is found to it. The cost associated
with the label is changed to the new, lower cost, and predecessor information is changed
as well.

For the Reoptimization Algorithms of Chapter 4 (only definitions that differ in the
case of the reoptimization algorithms are presented here):

Label - a node-time pair for a node i in the time-space network corresponding to some
feasible path that arrives at node i at time t. A label for node i is denoted as (i, t).

101

Examine - Synonymous with the definition of explore given above.

Treat - Synonymous with the definition of explore given above.

102

References

[1] I. Chabini (1998). Discrete dynamic shortest path problems in transportation
applications: complexity and algorithms with optimal run time. Transportation Research
Record, 1645, pp. 170-175.

[2] I. Chabini and B. Dean (1998). Shortest path problems in discrete-time dynamic
networks: complexity, algorithms and implementations. Internal Report.

[3] I. Chabini and V. Yadappanavar (2000). Advances in discrete-time dynamic data
representation with communication and computation transportation applications. Internal
Report.

[4] B. Dean (1999). Continuous-time dynamic shortest path algorithms. Master of
Engineering Thesis, Massachusetts Institute of Technology (Supervisor: Professor Ismail
Chabini).

[5] G. Desaulniers and D. Villeneuve (2000). The shortest path problem with time
windows and linear waiting costs. Transportation Science, pp. 312-319.

[6] M. Desrochers (1986). "La fabrication d'horaires de travail pour les conducteurs
d'autobus par une methode de generation de colonnes." Doctoral Dissertation, Universit6
de Montreal, Montreal.

[7] M. Desrochers and F. Soumis (1988). A generalized permanent labelling algorithm
for the shortest path problem with time windows. INFOR 26 (3), pp. 191-212.

[8] J. Desrosiers, P. Pelletier, and F. Soumis (1983). "Plus court chemin avec contraintes
d'horaires." R.A.I.R.O 17 (4), pp. 357-377.

[9] R. Dial (1969). Algorithm 360: shortest path forest with topological ordering.
Communications of the ACM 12, pp. 632-633.

[10] E. W. Dijkstra (1959). A note on two problems in connexion with graphs. Numerishe
Matematik 1, pp. 269-271.

[11] R. Dionne (1978). "Etude et Extension d'un Algorithme de Murchland." INFOR 16,
pp. 132-146.

[12] M. Florian, S. Nguyen, and S. Pallottino (1981). A dual simplex algorithm for
finding all shortest paths. Networks 11, pp. 367-378.

103

[13] S. Fujishige (1981). A note on the problem of updating shortest paths. Networks 11,
pp. 317-319.

[14] G. Gallo (1980). Reoptimization procedures in shortest path problems. Rivista di

Matematica per le Scienze Economiche e Sociali 3, pp. 3-13.

[15] G. Gallo and S. Pallottino (1982). A new algorithm to find the shortest paths
between all pairs of nodes. Discrete Applied Mathematics 4, pp. 23-35.

[16] I. Ioachim, S. G6linas, J. Desrosiers, and F. Soumis. A dynamic programming
algorithm for the shortest path problem with time windows and linear node costs.
Networks 31, pp. 193-204.

[17] J. D. Murchland (1970). A fixed matrix method for all shortest distances in a
directed graph and for the inverse problem. Doctoral Dissertation, University of
Karlsruhe, Germany.

[18] S. Nguyen, S. Pallottino, and M. G. Scutella (1999). A new dual algorithm for
shortest path reoptimization. Technical Report: TR-99-14, Universith di Pisa.

[19] S. Pallottino and M. Scutella (1997). Shortest path algorithms in transportation
models: classical and innovative aspects. Technical Report: TR-97-06, Universita' di Pisa.

104

