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ABSTRACT

A multimodal integration module is designed and implemented for Media Lab
Autonomous Conversational Kiosk (MACK). MACK is an embodied conversational
kiosk that has an augmented reality paper map as part of its user interface. In this study,
we examined several multimodal systems as well as important techniques in designing
multimodal architectures. We also reviewed powerful multimodal integration
frameworks such as Semantic Frame Merging, Unification, and Finite-State, and have
designed MACK's integrator based on the technique that would maximize mutual
disambiguation of speech and pen-input. The final integrator is built based on Johnston's
finite-state transducer (FST) approach. Considering the context of MACK, we felt that
the FST approach offered the most simple, cost-effective, and scaleable solution.
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Chapter 1

Introduction

Since Bolt's demonstration of "Put-that-There," the area of multimodal systems

has undergone rapid growth. Multimodal architecture has been incorporated in

applications within various contexts, including Air Force Command and Control systems

[14], personal appointment calendar [27], a military simulation system [9, 10, 12], and

company directory access system (Multimodal Messaging System). Regardless of

application context, a multimodal interface invariably facilitated more natural user

interactions, while respective multimodal integration techniques have consistently shown

improved task-performance. The collective success of these different multimodal

systems provides the incentive for us to explore the potentials of multimodal integration

in an entirely different domain. Specifically, we would like to implement an efficient

multimodal integration framework for an embodied conversational kiosk with an

augmented reality paper map; that is, the paper map extends the map from the virtual

world into the tangible world [3].

An embodied conversational kiosk (ECK) is an interactive kiosk with a graphical

representation. The particular system of interest is the Media Lab Autonomous

Conversational Kiosk (MACK). MACK is an ECK that has an augmented reality paper

map as part of its user interface. The spatial model represented in each page of the paper
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map is stored in MACK's knowledge base, such that the spatial representations of the

building are consistent between the real and virtual world. The consistency, in turn,

provides a seamless integration of the user's reality and MACK's reality as the user is

now able to indicate to both himself/herself and the kiosk on the same map [3]. From this

interface, MACK accepts spoken inputs and pen-inputs made on the map. Consequently,

the multimodal integration for MACK involves integrating speech and pen inputs.

In Chapter 2, we study previous work related to the development of multimodal

systems, from property analysis of multimodal architectures to empirical studies on

multimodal interactions, and from past systems to prevalent integration theories. Chapter

3 analyzes the issues specific to the current system. We examine the properties that

distinguish the kiosk (with shared reality) domain from other system domains and restate

the specific objectives of this multimodal integration framework. In addition, we discuss

the integration of a framework to our kiosk. Lastly, we will also present performance

evaluation on the implementation. Following the discussion on current implementation,

we propose potential future expansions of the system in Chapter 5.

keywords:

mutual disambiguation (MD), unification, typed feature structures, finite-state transducer

(FST), typed categorization.
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Chapter 2

Related Work

Before we can begin our implementation of a multimodal integration algorithm,

we need to obtain a good knowledge about the basic properties of a multimodal

architecture. In the next section, we examine empirical studies that have shown insights

on some inherent strengths and weaknesses of each approach. We follow the empirical

studies with brief discussions of previous systems and their relevance to our objective.

Finally, we discuss three current multimodal integration frameworks.

2.1 Literature review

2.1.1 "Why multimodal?"

A gross simplification may render the answer, "Because it's cool, and we have

the technology to support it." But does the pursuit of technological complexity and or the

desire to create cool gizmos explain the emergence and growing popularity of multimodal

systems?

The answer here is a sound "no." Multimodal systems are more than just a

combination of different technologies. Instead, the integration of multiple modalities can
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have synergistic effects on the overall perceived information [17, 18]. Empirical studies

have shown that the flexibility of input modalities permits the following:

1. the accessibility for diverse users and usage contexts;

2. increased stability and robustness as measured by performance; and

3. enhanced expressiveness and efficiency [19].

It is easy to see that the option of multiple input modalities can accommodate

various users' strengths and preference, and thus can increase the "naturalness" and the

comfort level during a user's interaction with the system. Meanwhile, it is also

worthwhile to note the unique capacity of individual modalities. That is, different

modalities can "differ in the type of information they transmit, their functionality during

communication, the way they are integrated with other modes, and in their basic

suitability to be incorporated into interface styles"[18]. For example, graphical inputs are

better for tasks involving spatial orientation, while spoken inputs are likely more

receptive to represent hierarchical information. Similarly, various input modalities may

be more suitable for use in different environments [19]. It is important to note that

multimodal systems are valuable indeed not only because it accepts inputs of multiple

modalities but also because it relies on them. Many people mistakenly assume that

systems that include speech as an input modality rely on speech to be the primary input,

but empirical studies have shown that different input modalities are used for different

purposes [18]. Conversely, information transmitted through different input modalities is

not redundant [18]. Meanwhile, the different capacities together again echo the theme

that complementary modalities could better span the communication spectrum of a
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natural interaction. To the end of enabling more natural interactions, we see that

multimodal systems are preferred.

While the flexibility offered by multimodal systems may be self-evident, the

correlation between multiplicity of input modalities and performance evaluation is subtle.

Empirical studies have shown that multimodal systems provide an inherent advantage in

error handling [17]. At the mechanical level, the possibility of input-mode alternation at

least prevents the "overuse and physical damage to any individual modality during

extended periods of use"[19]. Moreover, according to Oviatt, users do not always

interact multimodally for all tasks [18], but instead would select the input mode that they

deem to be less "error prone" in delivery [19]. For example, as users feel that speech is

the most reliable way to deliver general action commands, they would naturally prefer

interaction unimodally (through speech only) such action commands as "specify

constraint," "overlays," "locate," "print,". Conversely, as users perceive that speech

alone is not sufficient to deliver spatial information, they naturally lean towards

multimodal interaction for tasks involving a spatial location description [16]. Such

intuition in users facilitates error avoidance naturally. Furthermore, other studies have

shown that multi-modal systems help induce spontaneous error-recovery. For instance,

users are inclined to switch input modes after encountering system errors [19]. In other

words, if the user feels that his/her speech command is not understood by a multimodal

system, he/she would attempt to issue the command through a different method. By

facilitating alternative input modes, multimodal systems allow the user the option to

alternate input modalities, and thus facilitate error-recovery naturally. Last but not least,

studies have also shown that users are subjectively less frustrated with errors when
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interacting multimodally, as opposed to unimodally, even though error-occurrence may

be same for both types of interactions [19]. The reduction in frustration level may be

directly attributed to the fact that multimodal systems, by allowing their users to interact

differently, permit the users more room for error-recovery. With the objective of

reducing user frustration, we also conclude that multimodal systems are preferred.

On the subject of error handling, multimodal systems have been shown to

successfully support significant levels of mutual disambiguation [17]. Mutual

disambiguation describes the recovery of unimodal recognition errors within multimodal

architecture [17]; in other words, accepting the inputs from all the separate modalities

(assume the performance of each input device to be independent) in an optimization

algorithm to determine the most-probable interpretation of the user input. In an empirical

study using Quickset, a multimodal system that adopted a unification-based integration

algorithm, the speech recognition error rate is decreased by 41% when the raw signals are

recognized and interpreted in parallel with one or more other modalities [17, 18, 19]!

This data provides both irrefutable evidence on the synergistic powers inherent in and the

strategic importance in the design of multimodal systems. At a time when no sensory

input tools, such as speech-, gesture-, or pen- recognition devices are 100% error-proof,

mutual disambiguation is a design-bonus too great to be ignored. Relating this error-

reduction tool to prior arguments, the potential of mutual disambiguation becomes yet

another reason for multimodal systems over unimodal systems.

Finally, the increased efficiency with multimodal systems is also remarkable.

According to Oviatt [19] multimodal interaction using speech and pen in the Quickset

system was shown to be nine times faster than using a graphical interface for the same
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task. Moreover, a different study also using voice/pen study has demonstrated a 10%

faster task completion time [15].

2.1.2 "In particular, why is a second modality good for a conversational

system?"

In addition to the increased performance of a generic multimodal architecture, it

is worthwhile to discuss the particular advantages that a multimodal architecture would

provide to a system that uses speech. A notable convenience would be the ability to

resolve deictic terms in speech using inputs from other modalities [1, 14]. Deictic terms

are demonstrative pronouns used to specify extra-linguistic referents, such as "this,"

"that," "here," and "there." As the referents of these deictics often rely "entirely on the

circumstances, " [24] researchers and engineers have depended on the explicit pointing

gestures that often accompany these terms to identify the referent. However, deictic

resolution is neither the more frequent nor the most significant achievement to

multimodal systems. Linguistic analysis on empirical data from a simulated dynamic

map system shows that more than 59% of multimodal utterances did not contain a spoken

deictic term [16]. The same study has also shown that multimodal pen/voice language

less prone to disfluencies and contains less content errors [15]. That is, during a

multimodal interaction that includes speech and another input modality, user-data have

shown a significant decrease in the rate of speech disfluencies, phenomena such as

content self-corrections, false starts, verbatim repetitions, filled pauses, and self-corrected

spellings and abbreviations in the users' utterances [15]. In theory, disfluency is a
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sensitive measure of cognitive load during human-computer interfaces. Therefore, the

reduction of disfluency through the design of a multimodal architecture presents exciting

potentials of multimodal systems to improve the human-computer interface. On the other

hand, the linguistic simplification facilitated by multimodal systems would also support

faster task-completion times as well as less computational processing of the language

itself [15].

2.1.3 Observations in Multimodal Systems

In addition to improved performance, empirical studies have unraveled insights

important to the design and implementation of a multimodal kiosk. One important

observation is the synchronization of input modes. Contrary to what intuition may

suggest, not all input signals during a multimodal interaction are simultaneous [16, 18].

An empirical research of pen/voice human-computer interaction has confirmed that

temporal precedence of written input is a consistent theme [16]. Specifically, the study

has shown that the onset of a pen input preceded deictic terms 100% of the time when the

signals are sequential, and 60% when simultaneous; a sequential integration pattern is

one characterized by having a distinct time lag between the inputs of different modes, and

a simultaneous pattern is where the inputs overlap temporally [16]. Moreover, the

linguistic analysis has shown that spoken deictic terms lag written inputs by 1.4 seconds

on average [16].
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The thematic precedence of written inputs is significant to the design of an

integration algorithm because it is intimately related to the temporal linearity of input

modes. We will return to this point later in the design discussion.

2.2 "How have they done it in the past?"

Although speech and pointing are not necessarily the dominant pattern of

multimodal integration [18], speech-and-pointing systems have marked important

milestones in the development of multimodal architectures. We present a few systems

below to demonstrate the different objectives and domains in which multimodal systems

have been implemented.

Put-That-There [1]

Bolt's "Put-That-There" was the first to combine voice and pen for the purpose of

providing a "concerted, natural user modality" (p. 262). Put-That-There used one of the

first "connected-speech" speech recognition engines1 , the DP-100 Connected Speech

Recognition System, for its speech input, and a spatial orientation- and position-sensing

technology, the Remote Object Position Attitude Measurement System, for gesture input

observation. Together, the system allowed users to make commands about simple

geometric shapes on a large display surface using both voice and corresponding pointing

gestures. Some suitable commands that combine voice and pointing include

0 "create {name of a basic shape} there"

Earlier speech recognition tools used "discrete utterance" speech recogntion required the speak to the
system in a "clipped" or "word-by-word" style (p. 264). The use of a connected-speech recognition engine
allowed further facilitation of natural environment for the user.
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" "move {name of a basic shape, or "that" in conjunction with pointing 1"

" "copy {name of a basic shape, or "that" in conjunction with pointing }"

" "make {name of a basic shape or "that" in conjunction with pointing }

{ transformation, either using specific modifiers, such as "smaller," or by

referencing another item, using "like that," while indicating some other

item through pointing }"

" "delete {name of a basic shape, or "that" in conjunction with pointing}"

However, the semantic processing would be based on the spoken command, and

pointing gestures would be incorporated only to resolve deictic terms. In other words,

only after a verbal command has been accepted and parsed, is a gesture input then

considered for reference.

While the system presented a successful case of deictic referencing, its complete

dependence on speech-input has severe consequences. For one, this design would not

benefit from any mutual disambiguation from the two modalities. In fact, the "Put-That-

There" architecture permitted little of the previously mentioned flexibility that may

improve the system robustness and performance. Moreover, the constraint on using the

non-speech input mode only in the context of the speech-input also does not fulfill the

contextual coverage that these two complementary modalities would potentially be able

to.

CUBRICON (CUBRC Intelligent CONversationalist) [14]

CUBRICON is an intelligent multi-media interface system that was developed as

part of the Intelligent Multi-Media Interfaces (IMMI) project, where the focus was to
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"simplify operator communication with sophisticated computer systems" (p13). The

domain here is the Air Force Command and Control (C2) system. The goal is to model

and facilitate dialogues that are natural in human-to-human interactions through the

integration of speech and pointing gesture inputs (through a mouse on a graphical

display).

Like "Put-That-There," CUBRICON is a task-based system where the user is

allowed to command over entities either by referring to their proper names or by

pointing. Some acceptable multimodal commands include:

* "what is {proper name of an object, or "this" in conjunction with

pointing }"

* "display {proper name of an object, or "this" in conjunction with

pointing }"

* "where is {proper name of an object}"

The multimodal architecture in CUBRICON also used non-speech input modes to

"accommodate" the speech input as necessary. The inclusion of pointing gestures was

only for referent identification, while semantic interpretation remained contained within

speech-input. Unlike Bolt's system, however, CUBRICON maintained particular interest

supporting the naturalness of use-interaction. The CUBRICON system included

discourse models as well as user models such that dialogue continuity and relevance is

preserved. For example, CUBRICON maintains an "entity rating system" that keeps

track of the relevance of the entity to that user. That is, a numerical rating of an entity is

increased when the user mentions it; once the rating exceeds a critical threshold,
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CUBRICON would automatically label the entity as being critical to the user and/or the

task. In turn, this information would allow CUBRICON to maintain a current-state

information about the user.

Gandalf [20, 21]

Gandalf is a multimodal system created to "carry out embodied, topic-oriented

dialogue" (p. 18) system through recognizing user's speech, gaze, and gestures. The

system is noted for its ability to perceive and generate in response, multimodal behaviors

such as deictic gestures (such as pointing or iconic gestures), attentional and deictic

functions (through tracing gaze movements), prosody (through speech recognition and

generation of back channel feedback or meaningful utterances), and turn-taking signals

(through a combination of gaze and intonation). The integration of multiple input

modalities, in keeping with the objective to better facilitate real-time decision making

ability of a system, observed these following issues in design:

1. Multi-layered Input Analysis: since actions in different modes may

overlap or have different temporal constraints, such reactive and

reflective2 responses must both be observed.

2. Temporal Constraints between behaviors. The structure of dialogue

implies that certain behaviors are "expected to happen within a given time

span," and that the violation of such timing constraint would alter the

meaning of the action (p16).

2 Reactive responses refer to behaviors that require recognize-act cycles shorter than 1 second, where
reflective responses are those that require cycles longer than Isecond (27).
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3. Interpretation of inputs and dialogue state is fallible.

4. redundancies and deficiencies are both plausible in the sensory data.

Even though the use of pointing for deictic resolution is still incorporated in

Gandalf, multimodal integration here is used to serve a different goal. Where Put-That-

There and CUBRICON concentrated mainly on improving resolution of dialogue content

by integration multiple communications channels, Gandalf is focused on enhancing

overall dialogue management. Gandalf uses the combination of speech recognition,

speech-intonation analysis, and gaze input to manage turn-taking in the dialogue.

2.3 Multimodal Integration Models

As empirical studies suggest that speech-input is often not the primary or

exclusive carrier of content [18], it is evident that deictic pronoun referencing is no

longer a sufficient multimodal integration framework. Since the completion of "Put-

that-There" and "CUBRICON," more sophisticated multimodal integration frameworks

have been developed which are less speech-oriented. Where "Put-that-There" and

"CUBRICON" used non-speech inputs only for the purpose of enhancing or completing a

speech-input interpretation, later frameworks strived to achieve balance between and

mutual disambiguation of various input modalities. Some of the most effective

techniques are semantic frame merging, unification-based, and finite-state transducer-
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based. Each framework is presented below, followed by the description of a prototype

system which embodied the integration framework.

2.3.1 Semantic Frame Merging [27]

Multimodal integration through semantic frame merging was the first

framework to incorporate a "uniform handling of high-level information" from various

input modes (p3546). In this approach, the semantic interpretation of each input signal is

represented as "a frame consisting of slots," where the slots encapsulate specific entity-

types that could be indicated by more than one input mode. Combination of these

partially filled frames, called "merging," then comprises the integration across the modes.

Where merging partially filled frames during each input event would render a multimodal

interpretation, merging with previous interpretation-frames would help retain contextual

information about the interaction in its entirety. We present the specific mechanisms of

the framework in the discussion of Jeanie below.

This methodology was a break-through in multimodal integration. Being the

pioneer at uniform representation of semantic information, that is, generating the same

high-level semantic representation of an input regardless of the input modality, it was the

first framework to embrace modularity and scalability in a multimodal architecture. The

capacity to "translate" various input signals to a common interpretation implies an ease of

replacement as well as an ease in increasing the number of input modes. As we shall see

in the following section, both the concept of common semantic representation and that of

preserving a context history would become essential themes of multimodal integration.

18



System: Jeanie: A Multimodal Calendar [27]

Jeanie is a multimodal interface that accepted speech-, pen-based gesture-, and

handwriting-inputs. Jeanie allowed users to perform appointment-scheduling functions

through a mixture of its input modes. Jeanie uses the Phoenix semantic parser to parse

the natural language inputs into fragments. By matching speech input to a previously

determine set of grammar and vocabulary (based on a set of 128 utterances collected

from user studies), skipping over unknown words and unmatched fragments, the parser

outputs concepts for the speech frame and identifies the slot that need to be filled.

Consider the scenario where the user says "I am not meeting with San' in conjunction

with the act of crossing out "Sam" on the graphical display. The parser would identify a

speech frame "delete meeting," a slot for a person-name from speech input, and a slot for

a person_coordinate from the pen input (the items on display are recorded by the spatial

location). Merging the frame and the slots, consequently, would generate the command,

"delete meeting [with] Sam."

The preliminary performance evaluation of Jeanie showed the multimodal

interpreter resolves input correctly up to 80% of the time. However, the data showed an

18% decrease in resolution accuracy when recognition errors occur either in speech or

pen-input recognition. The result indicated that recognition errors from speech and pen-

input had similar effects on the interpreter's resolution accuracy, and thereby suggested

presence of cross-modal redundancy in the system. Whether or not such redundancy

reflects Jeanie's system architecture or the effectiveness of the frame merging technique

remains unclear.

19



2.2.2 Unification-based Multimodal Integration [9, 10, 12]

Unification is probably the most thorough approach taken towards integration

of multiple modalities. The approach fully exploits the mutual disambiguation potential

in a multimodal architecture in its two-step process: semantic pre-processing of

individual input modes, followed by the unification of typed feature structures across the

modes. A typed feature structure is similar to that of a "slot" in semantic frame merging

ideology. It is the common representation of the "semantic contribution" of an input

[p625, 5]. For example, the gesture, point at location A, has the same typed feature

structure as the utterance, "location A." Similar to the effect of "slots" in semantic

frame merging, the use of typed feature structure promoted better multimodal

interpretation as it allowed a full command to be in either mode. However, typed feature

structure is a more generic and inclusive superset of "slots." Where "slots" are limited to

particular type entities that can be indicated by all input modes present in the system,

typed feature structures are simply any entities indicated in any input mode. The input

signals from each mode would be processed for semantic interpretation, and a list of n-

best guesses would be generated about that input signal based on pre-existing statistical

model of the input device. That is, each semantic interpretation of the input is assigned a

correctness probability estimate.

During a unification operation, typed feature structures with the highest

correctness estimates are checked for consistency; compatible typed feature structures are

combined while incompatible ones are filtered out. The set of semantic interpretations,
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as a result of unification, then, would each bear a correctness estimate that is the product

of correctness probabilities assigned to the fused typed feature structures [9]. Unification

is processed using a multidimensional chart parser [10] and can occur at two levels:

within each input mode and across all input modes. For example, after a natural language

parser has parsed a particular speech stream and labeled various components of the

speech stream as different typed feature structures, unification may take place for speech-

only input. If the typed feature structures identified within the speech input were

consistent, and collectively comprise an acceptable command, then the unification

operation within the speech mode would succeed, and a complete semantic interpretation

of the speech input would be generated. Conversely, if the unimodal input lacked certain

typed features, then unification within that input mode would result in a partial semantic

interpretation. In this case, the multimodal unification would allow a new interpretation

to be concluded from comparing typed feature structures from multiple modes. On the

other hand, if a complete interpretation can be generated from a uninodal unification, a

sequential multimodal unification operation is still available to confirm (or potentially

increase) the correctness of interpretation. The final semantic interpretation in this

approach, is the one with highest correctness estimate after unification.

In theory, unification approach is the most modular and flexible approach in

multimodal integration. As it provides independent interpretation for each input mode

these initial unimodal interpretations permit flexibility in generating a final interpretation.

While unification recursively searches for an optimized interpretation, the n-best list is

always preserved for further iterations of the unification operation. In other words, if

structure A were unified with B during an iteration, the structure AB would be assigned
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the joint probability of A and B, but structures A and B and their respective probability

estimates remain intact for future unification with some unused structure C. Even if A

and B cannot be unified, these structures remain uncorrupted and eligible for a next

unification attempt. Therefore, no feasible interpretation would ever be over looked.

Moreover, the preservation of unimodal interpretations would permit a "plug-and-play"

[p. 363, 12] trend in replacing or adding input modalities into the architecture.

The flip side of the expressiveness, however, is the high cost of maintenance.

In practice, the unification approach can harbor dangerous exponential growth amidst the

feasible possibilities within each mode and among combinations of all modes.

Furthermore, in order to assign proper probabilities, and to verify status of

interdependence across the modalities, a mammoth amount of empirical research with

real users must be conducted for statistical analysis. In particular, meticulous attention

must be paid the interdependence of the input modes. Speech and gesture, for example,

are highly correlated. Hence, the probability estimate of a multimodal interpretation is

not always fairly represented by a joint probability; instead, a careful normalization

process may be needed to adjust for the interdependence of input modes. We will revisit

this point in greater details in the analysis of QuickSet.

Moreover, since the critical value in this methodology is the combined

correctness probability estimate, the interpretation with maximum correctness estimate is

not necessarily be one that contains all the maximally correct typed feature structures. In

fact, it may not even contain any of the maximally correct typed feature structures. The

statistical basis for correctness here only suggests that the final accepted interpretation is

the most-likely interpretation, on average, and based on normative distribution. More
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importantly, the deduction used in finding a best solution is heavily reliant on the

accuracy of the statistical model used.

User

Mode A Mode B

Mode A Mode B Unificatic
Interpretor Interpretor

Multimodal Unificatic
Integrator

Figure 1. Unification-based Multimodal Integration Architecture

System: QuickSet: Multimodal Interaction for Simulation Set-up and Control [9, 10,

12]

Unification-based multimodal integration was first implemented in QuickSet, a

pen/voice system developed for the training of US Marine Corps platoon leaders. The

user interface to QuickSet includes a microphone (which can operate on a click-to-speak

or open mode) and a map display of the terrain where the military simulation is to be run.

During an interaction, the user can issue spoken commands while gesturing and drawing

on the map simultaneously.
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Using the unification-based approach, inputs from each mode are tagged with

time stamps and are first unified unimodally. A list of n-best possible results is generated

from the operation. If the list consisted of all executable commands, then the input is

marked complete and does not need to be integrated multimodally. Otherwise, the input

is tagged as partial and their time stamps are examined. The integrator would unify

speech and gesture inputs if the respective active time windows overlap; the active time

window rule observes that pen input typically precedes speech by 3 to 4 seconds [16]. In

other words, if speech- and gesture-inputs are temporally compatible, then multimodal

unification operation would proceed.

The statistical models used to compute the correctness probability value for

multimodal unification results have changed since the original implementation of

QuickSet. The original system relied on a mode-independence assumption [9]. Since

speech and pen-gesture have been found to be highly correlated, QuickSet has

experimented with various statistical models to approximate the relationship between

speech and gesture. While no empirical results are available to evaluate the original

QuickSet (with the mode-independence assumption), empirical results using different

approximations have shown up to 95.26% correct using the Members-Teams-Committee 3

(MTC) approximation model [19, 23].

In the most general terms, QuickSet has delivered the flexibility and

expressiveness that the unification approach had promised on paper. However, it has also

demonstrated the inevitable complexity with respect to combinatorial growth and

temporal restriction. Moreover, an empirical study experimenting different statistical

3 MTC is a new recognition technique used by complex pattern recognition systems. The details of the
MTC architecture is unnecessary for the current discussion, but may be reviewed in "Multimodal
Integration ---A Statistical View," (28).
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models with QuickSet has revealed a significant correlation between unification accuracy

and the underlying statistical model [28]. Statistical models are derived from analysis of

assumptions and data mining of empirical usage-data. This dependent relationship

between accuracy and statistical model, presents yet another potential source of

complexity.

On a completely different topic, QuickSet is a task-based system [9], meaning

that it assumes the user is sufficiently knowledgeable of the information maintained by

the system, and that the system performs particular tasks at the user's request. The central

objective of a task-based system, then, is to increase resolution accuracy from the inputs

such that a command could be carried out, QuickSet has little incentive about conflict

detection. In other words, QuickSet assumes that the user is informed and thus always

tries to "make sense" of the user's input instead of detecting conflicts/errors with the

user input. Conflict detection in user inputs is a concept that we shall revisit shortly.

2.2.3 Finite-state Multimodal Parsing and Understanding [11]

The computational complexities of the unification-based approach precipitated

the development of a "simpler" framework. This alternative approach attempts to use a

weighted finite- state machine to parse, understand, and integrate multimodal inputs. A

finite-state representation has distinct advantages over previous approaches, mainly, that

it is significantly more efficient, permits "tight-coupling" of multimodal understanding

with speech recognition, and provides a more generic framework for multimodal

disambiguation.
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The principle idea behind a fmite-state device is the ability to transition between

states based on a current state and a current input. Based on the conditions of the current

state, the input would dictate the next state to transition to. A fmite-state transducer

(FST) is one instantiation of such, with the distinction that an output is generated at every

transition between states. That is, an FST is similar to a 2-tape finite state automata, with

one designated for input and the other output. Before the rise of multimodal systems,

finite-state models have always been deemed a valued mechanism for language

processing as it offered, through calculus, elegant solution to integrate constraints from

different levels of language processing. The success of fmite-state devices in language

processing, in turn, motivated the inclusion of fimite-state models in a multimodal system.

The finite-state approach for multimodal integration may be discussed in two

parts. We will first discuss the parsing mechanism followed by a discussion of the

representation of fmite-state automata through a finite-state transducer.

Parsing in a multimodal system with n modes requires a finite-state device with

n+1 tapes; one tape for each input mode, and one tape to output the combined meaning.

A multimodal context-free grammar, a grammar that does not rely on previously

discussed material, can be modeled by such an FSA such that each grammatical entity

contains n+ 1 components. For example, in a system that accepts speech and pen inputs, a

finite-state device with three tapes is required: one for speech, one for pen-gesture, and a

third for the composite meaning. A compatible multimodal grammar for the above

system could be one that comprises a speech component, a pen-gesture component, and a

composite semantic meaning component for each grammatical entity identified.
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Consider the example command, "call <pen-gesture indicating a person> this person."

The grammar would generate the output at the terminals

Terminal + W: G: M

V - call: s: call

DET - this: g: ,

S - person: G,: person

Epsilon is a placeholder for when the component is not found in a particular

stream and symbols in W are words from speech stream. On the other hand, the G1's

represent the specific reference indicated by the pen-gesture, where the subscripts

describe the type of entity referenced. That is, a particular interface may support three

types of gesture references, Gp, G1, and G, signifying a pen-gesture reference (from

display) to a person, location, and organization, respectively. Similar to the typed-feature

structures found in unification, type-categorization in finite-state models adds constraints

to the overall semantic interpretation. However, type-categorization presents a more

generic framework. In terms of mutual disambiguation, type-categorization provides a

better resolution when the speech "is underspecified with respect to semantic type" (p. 3).

In other words, if the user said, " tell me about this one" in conjunction with a gesture

input of type person, the type-categorization would resolve the ambiguous "this one" to

"person." Moreover, type-categorization also supports the development of a type-

hierarchy reflecting the ontology in the system's domain. For instance, the interface

previously mentioned supports a generic gesture type G with subtypes Gp, G, and Go; and

if convenient, further specification of G, can be made for male and female by introducing

Gpm and Gpf.
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While an n+l tape finite-state automaton is theoretically possible, prevalent

finite-state language processing tools only support finite-state transducers. The

difference between them, as previously discussed before, is that a finite-state transducer

(FST) would always generate an output on a separate tape during each transition. In

reality, implementing a multimodal architecture using FST remains basically the same.

An n+ 1 tape FSA can be converted into a FST by simple mapping functions between the

set of input modes and the final output. In the speech and pen-gesture example, the

abstraction function would be -r: (G x W) -> M, where the transition outputted by both

input modes are combined into an input component (G x W) and the output component is

M. In other words, the FST model in this system would take in words and pen gestures

on the input tape, and the combined meaning on the output tape.

With respect to temporal constraints, the finite-state integration approach

presents another simplification by focusing only on enforcing temporal ordering of

modalities. Recall that, in a multimodal interaction with written and speech-inputs, the

written input always precedes the speech. To process multiple integrations during one

interaction, unification-based multimodal integration would require time-stamp

verification every time a unification operation is performed. Such strict enforcement of

temporal linearity can become expensive and potentially problematic, as an empirical

study with users must be conducted in each application domain before a precise temporal

relationship may be determined. Moreover, as timing between modes is relative to the

respective modes, the restriction of the specific temporal constraints may have negative

effects on the scalability of a multimodal architecture. The relaxation from explicit
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temporal constraints to temporal ordering is therefore yet another characteristic

simplification of this method.

User

Mode A Mode B

Multimodal

Parser/Understander

Figure 2 Finite-state transducer based Multimodal Integration Architecture

System: Multimodal Messaging Application

Johnston and Bangalore first implemented the FST-based approach in an

application that allowed the user to interact with a company directory through speech and

pen. In this system, the user interface consists of an automated speech recognizer and a

dynamic screen display that recognizes pen-gesture inputs. Depending on the user's

selection, the screen for the system can display different directories, that of companies, of

departments, and of people. For example, the user can command, "email this person and

that organization" and indicate the corresponding person and organization on screen.

Since the pen-recognition display is dynamic and specific, that the user is either

looking at a directory of people, department, or organization, there is little ambiguity in
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pen-recognition. To best use this property towards disambiguating input streams, this

system uses the gesture recognition to dynamically modify a language model. In order to

do so, Johnston first uses an FST, FST_1, to map the gesture stream to all the possible

word sequences that can co-occur with the observed gestures; abstraction function R, R:

G->M. FST_1 is then used to modify the language model. Then, by composing FST_1

with the speech stream using the modified language model, a new transducer, FST_2,

containing information from both speech stream and gesture stream is outputted. The last

step, then, is to feed the output from FST_2 into a final transducer, RESULT, to capture

the abstraction function . We now demonstrate with an example: consider this input

with a speech string, "D him and B her," in conjunction with 2 pointing gestures, first one

indicating man and the later one a woman. Assume, for simplicity, that the system

accepts 2 command, to "D" and to "P." Furthermore, assume that the system can "D" a

man but not a woman, but can "P" both a man and a woman. FST_1 then would map to

the set {D [and] P}. This mapping, in turn, is used to modify the language model such

that a legal command can be resolved; instead of "B," the language model would be

adjusted to be more receptive of "P." FST_2, in this case, might become {D [and] P}.

Finally, combining FST_2 into RESULT would yield {D G., [and] P Goma 1

translating into a semantic interpretation of, "D [the man indicated by G.m] and P [the

woman indicated by Gwoma]."

The preliminary speech recognition experiments have yielded encouraging

results. On a corpus of 1000 utterances, sentence-level error was reduced by 23%.
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Chapter 3

Current System: MACK

We now examine multimodal integration technique in the context of kiosk with a

paper map. We first offer an overview of the kiosk application, MACK, followed by a

detailed problem statement.

3.1 BACKGROUND INFORMATION ON DOMAIN: MACK

Media lab Autonomous Conversational Agent (MACK) is an embodied

conversational kiosk for the MIT Media Lab. In the backend, MACK has a database

containing relevant information on the consortia, groups, rooms, and demos in the lab.

Due to the inherent differences between the entities, information contained in the

database is not completely symmetrical. For example, while groups and demos require a

physical area, consortia do not. The fact that an open-house schedule is only applicable

to demos and no other entities also exemplifies the inherent asymmetry in information.

In the front end, MACK interfaces the user with a graphical output of an embodied agent

(a life-sized blue robot), a microphone, and a set of paper map and pen. The graphical

display is to convey the gestures that are synchronized with the speech outputted to

MACK. The microphone is to receive user's verbal utterances, while the map and pen to
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sense pen-gestures. This design is aimed to create an interactive and natural interface

using natural language abilities and shared physical artifacts [2, 3].

3.2 PROBLEM STATEMENT: how is this problem interesting or

different?

To design a multimodal integration architecture best for the domain of an

embodied kiosk with the shared "map."

The main idea here is to create an effective multimodal input integration

algorithm for kiosk involving speech and a paper map. As seen from above, there have

been several systems that have used both speech and pen-gesture recognition as input

modalities. However, the kiosk application is unique in many aspects. Fundamentally,

the interaction between a kiosk and a user is different than any command-based systems.

By assumption, the user of a kiosk system should have special interest in the information

that the kiosk has to provide. In fact, it may be further stated that the user of a kiosk

system does not know the correct response to anticipate, and is not always correct. We

differentiate between a command-based system and a kiosk system by the expectation on

and the expertise of the user. A user of the command-based system is sufficiently

knowledgeable of the information built in the application, while that of the kiosk more

than likely does not. For instance, a Jeanie user would tell his/her talking calendar to

cancel a meeting and does not need the confirmation from his/her talking calendar to

determine what meeting to go to next. Similarly, a QuickSet trainee may rely on the

system to simulate the consequence of his/her last action, but would not completely

32



depend on QuickSet's output to determine where to place the next platoon; instead, the

user is likely to have sufficient information on the simulation strategies such that the

output from QuickSet would merely be advisory.

This assumption, of user's insufficient knowledge, bears significant

consequences. First, that the kiosk has an enormous responsibility to provide accurate

information to the users' queries. While the importance of performance accuracy is

traditionally strived for, it is of particular emphasis here because the user may not

distinguish between correct and incorrect responses. That is, if the user were to query for

directions to group A and received the directions group B, then the user would be misled

without knowing. In contrast, in setting up a scenario for simulation, a QuickSet user

does not need information from the system to proceed to the next action; the user will

likely have a simulation strategy in mind that is independent of what the map will

display, where the map merely serves as a graphical tool that allows for distributed

information sharing [9]. Moreover, the accuracy of the system is also intimately related to

the users' frustration level. That is, unless the system accurately understands the user,

any information that it provides would only confuse the user more. Therefore, the kiosk

system should always prioritize in understand the user's queries.

3.2.1 How is this different than all the previous multimodal systems?

In practice, this affects the integration of different input devices into the system.

In Johnston's multimodal messaging system, the pen-gestures are involved in a feedback

loop during an optimization to find the best fitting finite-state transducer, and a most
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probable solution is always applied [11]. This approach may not be appropriate in the

kiosk system, since the "best" is not necessarily content-correct [15]. As an example,

consider the scenario where the user may point to group A on the map and requests for

information on an unknown group X. Ideally, the kiosk should be able to detect the

confusion, if not query the user for clarification between group A and group X. Using

Johnston's deterministic optimization algorithm, integrating the two modalities may

result in a best guess that the user is requesting about group A. If the user were inquiring

about group A, then this best guess is indeed correct, and the output to the user would

benefit the user. However, in the case that the user had inquired about group X, then the

output from Johnston's integration algorithm would only add to the users' confusion. As

previously mentioned, avoiding confusion should be made one of the top priorities in the

system.

The second distinction in designing the integration algorithm for a kiosk is the

basic informational structure that a kiosk embodies, in combination with the shared space

that the system intends to preserve. In this system, the shared reality between the user

and the kiosk is the paper map. The user is able to indicate particular coordinates to the

kiosk, as well as making notes for himself/herself. This creates a great differentiation

from previous tasks, as the paper map inherits ambiguities commonly seen in human-to-

human interactions. In particular, the map used in MACK contains asymmetrical

information, that is, certain spatial locations have associated room numbers while others

have associated room names, or that certain rooms are occupied by groups while others

are not. The non-uniform information represented by this paper map constitutes a

remarkable distinction from other shared-reality maps; the map in QuickSet is a dynamic
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one as the system permits the user to change perspectives and views using commands

such as "zoom in," "scroll here," "pan," and "show me the hospital [on the map]" [17].

Moreover, the map used in QuickSet embodies a standardized one-level hierarchy for the

spatial locations displayed---each location either has one or zero unique property

associated with it [10].

At a mere glance, this does not seem much. But consider the properties that are

associated with the above listed attributes; for example, consider the various projects

associated with each group that would be demonstrated in the respective rooms, then

consider the matter of available show-times associated with each demonstration. The use

of a physical map undoubtedly enhances the naturalness of the interaction, as it provides

the user a more familiar channel of communication. Moreover, it is likely a more concise

representation to the user, with neither redundancy of information nor cluttering of

useless information. For example, a room has a name label only when it has a valid name

distinct from the room number, and rooms only have group labels if there are groups

occupying them. In practice, this avoids the embarrassment of having to label conference

rooms and restrooms in the building with "no groups are here." Moreover, the kiosk is

designed such that the hierarchy between groups and projects is assumed, just as the

relationship of an artist and his work can be assumed. Consequently, like that if a map of

an art museum would need only to label an exhibition room with the name of the artists

whose work is being shown, the map used here shows only the names of the groups and

not the individual projects. The embedded knowledge here is remarkable for it

exemplifies the need of an algorithm by which to obtain information at appropriate levels

of granularity. Unlike systems that incorporate a dynamic map to allow users to
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manually scroll and zoom, thus permitting the user to "self-structure the map display"

such that the entities indicated would be directly "tailored to the user and task," [15] this

kiosk here must embody its own disambiguation algorithm to tailor to the user and the

task.

3.3 Design Overview

Having identified the unique context of an embodied conversational kiosk, we

now identify issues considered during the design of the multimodal integration algorithm

for a kiosk system.

User

SpeechBuilder WACOM
(ASR) (Pen)

TcpServer

Understanding Module

Figure 3 MACK Multimodal Architecture
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3.3.1 Design Issues:

As discussed before, the top priority of the integrator is accuracy. In the general

context of multimodal architectures, this implies choosing a framework that has the best

error handling, and preferably, one that would maximize mutual disambiguation (MD)

between the input modes. Moreover, since we have distinguished the kiosk domain as a

unique class among multimodal systems, this multimodal integrator should be designed

to minimize any loss of generality. That is, we should find an approach that is fit for

MACK as well as for an entire class of kiosk systems. From previous studies, we have

seen that speech-driven systems such as Put-That-There and CUBRICON use little MD

during its integration, since resolution of deictic terms would account for less than half of

the anticipated multimodal interactions. In keeping with preserving generality, the

improvement to typed feature structures from "slots" suggests that the unification-based

approach is preferred to the frame merging technique.

Both unification-based and the finite-state transducer (FST) approaches have

shown great strengths in terms of MD. However, as previously mentioned, the

expressiveness of unification-approach comes at a high price. In general, the

combinatorial complexity of the unification-approach makes the integration technique

unscaleable, which is inconsistent with our objective to be as generic as possible. One

source of this complexity in the unification-based framework, is the need to enforce

specific temporal constraints. There is no doubt that enforcing specific temporal

constraints would provide greater multimodal resolution than if only temporal ordering

was preserved. However, it is not entirely clear if the added marginal benefit would
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justify the increase complexity. For example, consider the scenario where the user makes

the query, "what is this and that" while using the pen to indicate group A and group B.

Enforcing strict temporal constraints would compare the time stamps of pen-indication

and deictic terms, and conclude that "this" corresponds to group A and "that"

corresponds to group B. Preserving only temporal ordering would render the same

resolution without having a priori knowledge of temporal correlation between the input

modes.

In application, the relaxation from strict temporal assumptions is a great

simplification. Consider the implications of having to disambiguate multiple input

streams using time stamps. With respect to an automated speech recognition (ASR) tool,

the approach would require that the device provide time stamps at the phoneme level.

Unfortunately, this requirement presents a severe limitation on implementation, as most

available ASR's currently do not support phoneme-by-phoneme time stamping.

Although there are heuristics for approximating these time stamps, most of those

heuristics are often based on the assumption that individual words are equal length;

phoneme time stamps are computed by dividing total utterance length by the total number

of words in the utterance. Since the lag time between gesture and spoken deictic is only

1.4 seconds, the gross approximation using averages may easily introduce large error

margins [16].

Another important aspect to inspect is the inherent ambiguity in the interface of

this kiosk system. Records of interactions between the semi-autonomous MACK

(operated by Wizard-of-Oz) have shown repetition of utterances among queries. Users

seem to infer different classes of queries, such as a general description or directions to an
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entity, and use similar (if not the same) sentence structure to generate queries within the

same class regardless of the entity in question. For example, users are observed to reuse

the sentence structure, "tell me about X" while replacing X freely from the names of

consortia, groups, and demos. This thematic repetition suggests an advantage of

representation by type-categorization over typed feature structures. Recall that type-

categorization can constrain the overall semantic interpretation, where typed-feature

structures would simply be unified or filtered. If an unification approach is taken, the use

of typed-feature structures in this context would not be able to offer MD. A new

probability tree would be searched in exploration of the most probable type for X. In

contrast, the FST-model would exploit the type-categorization to constrain the number of

possible semantic interpretations.

Another way of saying that type-categorization constrains semantic interpretation

is that it effectively detects conflicts. As we have emphasized before, we prefer

confirmation with user to generating response based on a guess. The type-categorization,

therefore, allows elegant detection of conflicts. Although the decision to actually

generate a confirmation to the user is beyond the scope of multimodal integration, at the

kiosk-system level (which considers multimodal input, multimodal integration, and

multimodal output), conflict-detection can be used to as a signal for the system to

respond with a query for user clarification. Moreover, using FST, the transitional outputs

generated prior to the conflict detection would be able to offer sufficient context to

generate, as an output, a specific query for the user. Consider the following query: the

user says, "tell me about GroupA" while pointing to GroupB, an integration framework

that embodies conflict-detection would detect the inconsistency and have specific
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knowledge that the conflict is between "GroupA" and "GroupB" in generating the

system's understanding. This information, in turn, may be used generate the following

confirmation, "would you like to know about GroupA or GroupB?" Without the

transitional outputs, the system would not have sufficient information to request user's

confirmation. Taking one step further, without a conflict detection mechanism, the

system would not be able to determine when a confirmation is needed.

3.3.2 Applying Multimodal Finite-State Transducers

There are different methods of integrating finite-state transducers (FST) with

speech and pen recognition. As Johnson puts it, the "best approach to take depends on

the properties of the particular interface to be supported" [p3, 11]. Certainly, we know

that the final abstraction function would be one that maps speech and pen input to a

semantic interpretation output, -c*: (P x S) - M. The task now is to design the

intermediate steps such that MD is maximized without lost of generality.

As mentioned before, one distinguishing feature of the conversational kiosk with

shared space, is the asymmetry presented by both the interface and in the physical

building's information structure. Such lack of uniformity, in information, is useful

towards conflict detection in type-categorized analysis. Recall that, in Johnston's

messaging application [11], transitional transducers were created before a final transducer

mapping of the function t: (G x W) - M could be generated. Recall also, that it was

through these transducers that the space of semantic interpretation is narrowed. For

example, the transducer representing G4W would constrain the speech inputs to those

that are compatible with the gesture stream For our kiosk system, we can take a similar
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approach: using a less ambiguous input stream to constrain the more ambiguous. Given

that only groups and demos occupy a physical space and that consortia do not, a pen-

detection on the map would refute the validity of questions about any consortium.

Consequently, if an ambiguous object type, such as "this" or "it," is recognized in speech,

the G + W transducer would omit consortium as a valid object type. Conversely, if an

object is recognized from the pen-input (a pen-input can indicate a room or a group)

while a particular room name is recognized in the speech input, then the W-G

transducer would constrain the object type to be room.

We propose using a transducer to capture the relationship between pen-input and

speech. Knowing, for example, that a pen-input is constrained by what is physically

indicated on the map, we can conclude that a pen input can be only of certain types,

namely groups and rooms. The ambiguity in the physical map would prevent us from

drawing further conclusions about the specific type. But even so, this is sufficient

constraint for a transducer that captures the relationship between a pen-input and speech

input. That is, when a pen input is received, we should verify that the object in the

speech query is of type Room or Group. Otherwise, a conflict should detected.

Conversely, as the pen-input is not specific, we would also need to verify that the object

type in the speech query is exclusively either Room or Group, or a conflict should be

detected. This allows for speech to disambiguate pen-input. Furthermore, as there is a

one-to-one mapping between pen-input and speech-input on particular object names, the

transducer should also verify the precision of the object instances. Given such, we are

now ready to define a transducer PenSpeech that captures the relationship R: P+ S.
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Moreover, having known that different entities in the building are associated with

different properties, we can create a second transducer, TypeSpeech which represents

the mapping (P x St) -+ S. In TypeSpeech, we use the type of the object to constrain the

type of queries acceptable. For example, having known that only groups and demos

occupy a physical space, the detection of an object of type Consortium would signal

conflict.

Let us take one-step back and examine how all the transducers would work

together during integration. The first step is for the individual input devices to process

the incoming streams, then construct three finite state machines Pen, Speech, and

SpeechType to represent the range of pen-inputs, the sequence of spoken inputs, and the

set of spoken input that corresponds to particular types, respectively. We first compose

Pen and SpeechType with TypeSpeech to generate the transducer TypeLang

representing the relationship between the set of input sequences and all the possible word

sequences that can co-occur. We then compose Pen and Pen_Speech separately to

generate a transducer PenLang that captures the constraint between the particular

sequence of pen-gestures in Pen and the word sequence. Finally, we consolidate Speech

with each Type.Lang and PenLang to check for discrepancies and conflicts. If no

conflicts are found, then we compose Pen and Speech with -c*: (P x S) -+ M. This would

yield our final transducer that outputs the resolved meaning.

As we previously discussed, there is a variety of different conflicts that can be

detected. Each type of conflict is represented by a different value, which would decide

the type of confirmation that the system would output to the user. In addition, during the

course of composing these transducers, the transitional output values would provide the
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specific context of the conflict. From the above discussion, we may conclude with

following different types of conflicts:

1. speech inconsistency: detected in TypeSpeech when the object type is not

compatible with query. I.e. "where is ConsortiaA"

2. speech insufficiency: detected in TypeSpeech when no object instance is

specified. I.e. "what is this" with no pen indication of a group or room.

3. speech-pen inconsistency: detected in PenSpeech, TypeSpeech,

TypeLang, or PenLang when either the object type or the specific

object-name is inconsistent between the pen- and speech-input. I.e. "what

is GroupA" with pen indication of GroupB.

4. pen insufficiency: detected in PenLang, when the pen-input is not

disambiguated by speech. I.e. pen indication with no speech input.

When a conflict is detected, a confirmation is generated based on the transitional output

from composing the transducers. Let us clarify using examples. Consider the following

inputs to MACK:

1. user says "where is ConsortiumA" in conjunction with pen indication of

GroupA.

2. user says "what is GroupA" in conjunction with pen indication of

GroupA.

In case 1, Pen = { GroupA }, Speech = {where, is, Consortium_A}, SpeechType =

{Consortium}. Composing Pen with TypeSpeech would be trivial, yielding feasible set

of {where is group, what is group }. Composing SpeechType with TypeSpeech, on the

other hand, would flag conflict of type 1, since no consortium occupies a physical space.
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Therefore, no acceptable transducer TypeLang can be generated. Similarly, when we

compose Pen and Pen_Speech, we would also encounter a conflict of type 3, as GroupA

is not the same as ConsortiumA. Consequently, no acceptable transducer PenLang can

be generated. Since conflict is detected, we cannot consolidated Speech with either

Type Lang or PenLang. On the other hand, the transitional outputs from composing the

transducers provide the contexts, "where is," "Consortium_A," and "GroupA." Using

this information, the system can then generate the following confirmation4 , "There are no

spaces dedicated to consortia. Would you like information on ConsortiumA?"

In case 2, Pen ={GroupAl, Speech = {what, is, GroupA}, SpeechType =

{Group}. Composing Pen with TypeSpeech would be trivial, yielding feasible set of

{where is group, what is group}. Composing SpeechType with TypeSpeech, would also

yield the same feasible set. Therefore, TypeLang is generated to accept {where is group,

what is group }. Similarly, when we compose Pen and PenSpeech, we would obtain

{GroupA} as the transducer PenLang. Finally, we can consolidated Speech with

TypeLang or PenLang to generate the final meaning, {what is GroupA}.

4 The decision on the type of confirmation to be made is arbitrary. The example demonstrates a
confirmation based on answering to conflict type 1. A possible confirmation in response to conflict type 3
may be, "Would you like information on ConsortiumA or GroupA?"
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3.4 Implementation

In between the sensory input devices and the output generation tools, MACK is

implemented completely using Java JDKl.2.2.

SpeechBuilder version 1.0 is the automated speech recognition (ASR) device of

choice for this implementation. It was selected for its ease of use and better-than-average

performance compared to commercial universal-user ASR. SpeechBuilder is a

development tool produced by the Spoken Language Systems Group at the MIT

Laboratory for Computer Science. SpeechBuilder has an embedded application program

that allows the user to specify semantic interpretations based from the language

understanding component. But for our purposes, only the basic speech recognition

functionality will be used. Since we will define a multimodal grammar, we only

anticipate a processed language stream, such as a string of words as uttered by an user, as

the output of SpeechBuilder.

To receive pen-gesture inputs, a Wacom Graphire pen and tablet set is used. The

Graphire set contains a pressure-sensitive pen used to track actions on the tablet. By

embedding the tablet in a position directly underneath the designated map location, the

tool indirectly allows the system to track user's pen movements across the maps. The

pen-gesture recognition is implemented using Java Application Windows Toolkit (AWT)

package to recognize and hash single-point coordinate values on the table to applicable

object values. As soon as a pen-indication is sensed, an object value is stored in a vector.

This vector of such values thus comprises the pen-gesture input of our system.
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A limited context-free multimodal grammar is defined here. For our purposes,

three demonstrative sentence structures are defined in the grammar. Namely, the

accepted speech structures are as follows: (1) "where is X (and Y);" (2) "what is X (and

Y);" and (3)"when can I see X (and Y)." We feel that these three questions compose a

representative set of multimodal integration using the transducers mentioned above. That

is, these three structures would demonstrate the effectiveness of the FST-approach to

detect conflicts. For example, we should see that the query, "where is Consortium A"

signal conflict, as predicted in TypeSpeech. Similarly, the query "what is <pen input>

DemoA" should also signal conflict, as dictated from PenSpeech. See Table 1 and 2

for the list of conflicts predicted by the transducers.

The multimodal grammar works as follows:

When a pen-gesture is recognized by the Wacom tablet, the recognized object is

sent to the UM and stored in a vector P. When an utterance is recognized by

SpeechBuilder, the text of the speech is sent to UM, where the text is tokenized into

words and stored in vector S.

After a complete utterance has been received and tokenized in the UM, the

parsing process is initialized. The multimodal grammar takes as argument, S and P.

Multimodal parsing is done by iterating through S and P for inputs, where each iteration

terminates when the inputs in S have been enumerated. Each state in a transducer is

uniquely represented by an instance of a state object. Each new parse begins in the state

"init" and uses an input from each S and P to transition to the next state. During each

transition, values from P and S are checked against values in the dictionary and the
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inconsistency matrix. This process of checking values is functionally equivalent to

running TypeLang and PenLang. The value generated from verification in the

dictionary the inconsistency matrix is then written to a temporary vector, CurrentQuery.

The parse concludes when it has exhausted the inputs in Speech. At this point S and P are

reset to empty vectors.

At the end of the multimodal parse, CurrentQuery would have valid fields to

generate a semantic interpretation. CurrentQuery would have at least 5 fields,

conflictjype, speech objectjype, pen objectjype, speechobjectname, and

pen.objectname; conflict-type has denotes the type of conflict detected in multimodal

parse, that is, 0 if no conflict is detected, and a unique value for each of the above

mentioned conflict types. The later two arguments, *_object name , comprise the

arguments that would become either the object of a specific query (when no conflict is

detected), or as the context of a conflict. For example, if, at the end of multimodal parse,

CurrentQuery has 3, GroupA, GroupB, for conflicttype, speechobjectname,

pen.object-name, respectively, then a confirmation requesting the clairification between

GroupA and GroupB may be generated.

The semantic interpretation is written to MultimodalFST, and CurrentQuery is

reset to empty. Building up with the number of queries the user submits, MultimodalFST

effectively maintains a thorough context history of the interaction.

It is necessary to reset P to an empty vector at the end of every parse because we

are not supporting timing constraints. The boundary-setting heuristic used here is

intuitive: include all pen-input between the end of the previous utterance and the end of

the current utterance. This heuristic is consistent with preserving temporal ordering
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without temporal constraints. The correctness of this algorithm can be proven

inductively.

3.4.1 Code Modules and Methods

Dictionary

This is where the vocabulary of the grammar is defined. In addition, this is also

the class that assigns the type category for objects in the system. There are 5

categories of objects here, namely, consortium, deictic term, group, demo, and

room. Each of the categories contains a subset of names from the comprehensive

database of the original MACK.

TeiServer

This is where the input from ASR is received and where a finite-state machine for

the speech input is constructed.

Understanding Module (UM)

Abstraction Functions:

1. Representation of fmite-state machines:

Pen and Speech are represented by vectors P and S, respectively.

2. Representation of finite-state transducers (FST):

PenType and PenSpeech are combined and summarized into an inconsistency

matrix that constrains the relationship between input object types and semantic
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interpretation. A matrix is an appropriate selection because the relationships represented

by these two FST's are not dynamic. We know, a priori, the constraints between the

inputs due to the asymmetrical information structure in the system.

TypeLang and PenLang are not explicitly represented here. The role of these

two FST's is to verify consistency between the input streams. Conversely, we argue that

the output of running these two FST's can be extracted by searching for output values

from the inconsistency matrix. We argue here that a concrete representation of these

FST's is not necessary.

't* is represented by a finite state machine. The finite state machine is moderated

by a multimodal grammar. The inputs to -* are represented by the vectors Pen and

Speech and the output by another vector, MultimodalFST.

At the first glance, it may seem like poor engineering to implement inconsistent

representation. However, we argue that a consistent representation is not cost-effective.

For instance, if a unique finite state machine were used for each FST, the system would

mandate multiple iterations of the same input set. However, this repetition preserves

representational consistency at an unnecessary cost of performance efficiency.

Methods

multiParse

arguments: two vectors representing the input streams from speech and pen

modifies: appends the final semantic interpretation from this parse to the vector

that contains the final semantic interpretation.

returns: a vector containing values that map to a semantic interpretation
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multiResolve

arguments: a vector containing values that map to a semantic interpretation

modifies: nothing

returns: a proper response to the pertinent interpretation. That is, if no conflicts

are observed, the information queried by the user is returned. Otherwise, a

specific query for clarification is generated for the user.

writeToTape

arguments: none

modifies: nothing

returns: a vector containing values that map to a semantic interpretation pertaining

to the most recent query

Class

States:

{ init, when, whencan, whencan_I, when_can I, whencan I_see, whencan I_seepen,

whencan_I_see_X, whencan_ IseepenX, what, whatis whatspen what_is_X,

what is penX, where, whereis, whereispen, whereis_X, whereispenX,

queryUser}
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Chapter 4

Performance Evaluation

Although the current multimodal implementation has not undergone user testing,

MACK has been tested with a sample of ten of speech and pen interactions. See Table 3

for details on the output

Table 3. Test data

Interaction Semantic Interpretation Response Remark

1. "where is Consortium A" No location associated with "Consortia do not have a TP

type consortium physical location"

Conflict

2. "where is <pen@A> Map cannot indicate type Query user if Group_ A TP

Demo_A" demo or Demo_A were of

Conflict interest

3. "what is <pen@B> this and <pen@B> = GroupB Description of GroupB TN

GroupA" "this" = GroupB and GroupA

Query: information on

group B and A

4. "where is GroupA and <pen@B> = GroupB Query user to specify FP

<pen@B > this" "Group_ A" = GroupB which group

'this" = empty

Conflict
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5. "what is <pen@A> <pen@A> = GroupA Description of GroupA FN

<pen@B> this" "this" = Group.A

Query: information on

Group A

6. "when can I see Demo_A Query: information on Description of Demo_A TN

and DemoB" DemoA and DemoB and Demo_B

7. "when can I see <pen@A> <pen@A> = RoomA Open house times for TN

this and DemoB" "this" = RoomA RoomA and Demo_B

Query: open house

information on Room_A

and Demo_B

8. "when can I see GroupA" No open house information "Open House times are TP

associated with type group associated with specific

Conflict demos, or particular

rooms"

9. "when can I see <pen@A> <pen@A> = Room_A Open house times for TN

this" "this"= <RoomA> Room_A

Query: open house

information on Room_A

Legend:

TP: True positive: conflict identified when user input is ambiguous
FP: False positive conflict identified when user input is unambiguous
FN: False negative: conflict not identified even though user input is ambiguous
TN: True negative: conflict identified and user input is clear.

While the results from this set of sample outputs would not represent accuracy in

practice (we will need user testing on the system to determine that), the set of false

positives and false negatives are indicative of the implementation limitation. In particular,
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interaction 5 exemplifies the class of problems in matching multiple objects. This error

may be attributable to lack of timing constraints to moderate the integration of multiple

speech and pen-input objects.

Nevertheless, we argue that the FST-framework is an effective one. The

implementation demonstrated that type-categorization is indeed advantageous for

interactive systems with unrestricted semantic types in input modalities by effectively

incorporating mutual disambiguation. Recall that while the paper map facilitated more

naturalness in the interaction, it lacked standardization in the representation of

information. As more and more systems strive to facilitate naturalness and/or to establish

shared-space, individual input modalities are likely to absorb more ambiguity.

Consequently, categorizing semantic meanings would only become more difficult.

Using type-categorization, the FST-framework offers a promising potential for future

multimodal systems.
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Chapter 5

Future Work

Preliminary test data suggests that an appropriate extension of the integration

algorithm is the inclusion of multi-object resolution techniques. The current parser

preserves temporal ordering for inputs from each modality. The system has no further

information regarding the overall temporal linearity of both input modes. In the case of

interaction 5, the parser erroneously matches the first acceptable type-object from the pen

input to that from the speech input, therefore, "GroupA" from speech is matched to

"GroupB" from the map input. More specifically, note that temporal ordering is

insufficient for instances where the number of expected objects may be different between

the different input modes; in interaction 5, "where is GroupA and <pen@B> this,"

speech input provided 2 objects ("GroupA" and "this") while pen input provided only 1

(B). This inconsistency in number of objects across the modalities, in turn, can be

attributed to the acceptance of heterogeneous reference types in speech-input; namely,

proper names and deictic. When a proper name is used in speech, the user may be

ambivalent to accompany the query with a pen-referent, where as he/she is more likely to

provide one when a deictic term is used. A direct solution would be to incorporate time

stamps, and compare active time windows of objects before integration.

An alternative approach to the multiple object problem, may be to implement a

rule-based system that assigns integration tags to objects based on type. For example, the
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conflict in interaction 5 may be avoided if we had chosen to integrate the pen-input with

the deictic term instead of the other object. Hence, we may specify a rule to prioritize

integration for objects of type deictic. In other words, if the number of typed objects

from speech is different from that from the pen, always integrate the deictic object with a

pen-input object before integrating other terms.

Another possible extension to MACK, would be to increase the practical

application of the system. The current system is implemented with limited vocabulary

and grammar for demonstrative purposes only. The limited grammar can be replaced by

incorporating a pre-defined, extensive grammar.
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Chapter 6

Conclusions

A multimodal integration module is designed and implemented for Media Lab

Autonomous Conversational Kiosk (MACK). We have examined several powerful

multimodal integration frameworks, and have designed MACK's integrator based on the

technique which would maximize mutual disambiguation of speech and pen-input. The

final integrator is built based on Johnston's finite-state transducer (FST) approach.

Considering the context of MACK, we felt that the FST approach offered the most

simple, cost-effective, and scaleable solution.
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