
Implementation of a Compiler for a Stack Machine in Java

by

Anthony Y. Hui

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology

February 6, 2001

© 2001 Massachusetts Institute of Technology
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author
Department of Elefncal Engineering and Computer Science

February 6, 2001

Certified by
Mitchel Resnick

LEGO Papert Associate Professor of Learning Research
Tbgsis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Thesis

BARKER
MA SSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 11 R 001

LIBRARIE

7

Implementation of a Compiler for a Stack Machine in Java

by

Anthony Y. Hui

Submitted on February 6, 2001 to the Department of Electrical Engineering and
Computer Science In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering and Master of
Engineering in Electrical Engineering and Computer Science

ABSTRACT

Interactive C is a programming environment that allows a user to program special
controller boards used in robotics. Through a command line interface, the user can load
and unload source files written in IC or binary ICB files via a serial interface between the
host machine and the controller board. The user may also interactively enter code that is
dynamically compiled and executed. The core of Interactive C is a special compiler that
reads source files and generates stack machine code that will be executed on the virtual
machine found on the controller board. The compiler is broken down into four primary
modules: scanner, parser, flattener, code generator. Each module is responsible for
taking the high-level C instructions and bringing them closer to the stack machine code.

Thesis Supervisor: Mitchel Resnick

Title: LEGO Papert Associate Professor of Learning Research

2

Acknowledgments

Special thanks to Dr. Fred Martin for giving me the opportunity to work on this project

and providing much help and guidance in putting this program together.

Special thanks to the MIT Media Lab for funding this project.

3

Chapter 1

Introduction

1.1 Description of Interactive C

Interactive C is a special programming environment that enables a user to interface

with special robotics controller boards such as the MIT 6.270 rev 2.2.1 Robot Controller

Board and the Handy Board. Interactive C is executed on a host machine that connects to

the controller board via a serial connection. A command line interface allows the user to

compile and load code to the controller board to be executed at a later time.

User source code is written in a special variant of C known as IC that supports a

subset of the C constructs and supports additional special functions. The user source

code is found in .c files that can be loaded to or unloaded from the controller board where

the code is executed.

In addition to IC source code, Interactive C also supports ICB and LIS files. ICB

files are special binary files that are created from assembly files. These files may contain

global variables and functions that may be accessed by other C files. All ICB global

variables are integers and all ICB functions have a single integer argument and return an

integer. LIS files contain a list of C and ICB filenames. Each filename is found on its

4

own line. LIS files allow a user to give multiple filenames to Interactive C to be loaded

at once.

In addition to compiling and loading code, Interactive C also allows a user to reload

or unload files. Interactive C also contains a feature known as interactive mode. This

feature allows the user to dynamically compile, download and execute code. At the same

time, any functions and global variables from previously loaded files can be accessed.

This feature is very useful for debugging problems in the robots that these controller

boards are found in.

The compiled code that is generated by Interactive C is not native assembly code.

Instead it is pseudocode that is executed on a virtual stack machine found on the

controller board. The stack machine interprets the pseudocode generated by Interactive C

in order to execute the program.

1.2 Motivation for Re-implementing Interactive C in Java

This thesis project focused on re-implementing Interactive C in Java. While the

current implementation of Interactive C is functioning, it was written in C and has not

been updated for several years.

Re-implementing Interactive C in Java opens the door for future improvements in the

hardware that Interactive C can support. The two most popular platforms for running

Interactive C, the MIT 6.270 rev 2.2.1 Robot Controller Board and the Handy Board, are

based on the Motorola 68HC1 1 platform with a processor clock speed of only 2 MHz.

5

Re-implementing the program also allows for improvements to what Interactive C

can do. For example, the current version of Interactive C doesn't give detailed error

messages and often lacks error recovery while compiling.

Having Interactive C written in Java will also allow Interactive C to be able to run on

any platform that supports Java. This allows the program to be able to run almost

anywhere and eliminates compatibility issues.

6

Chapter 2

Design Overview

2.1 Design Requirements

The design of the new version of Interactive C was largely based on what is

supported by the existing implementation of Interactive C. This includes:

" Compilation of C, ICB, & LIS files

" Support for interactive mode

* Support for interfacing with the controller board through a serial connection

The selection of what constructs to support in the language definition was also based

largely on what was supported by the existing implementation. To maximize backward

compatibility, the language definition includes as much of what is currently supported'.

2.2 General Description of Design

The new implementation of Interactive C was designed around a set of modules. A

modular design allowed for easier development and allows future changes to have a

See Appendix A for full language definition.

7

lesser impact on the rest of the program. The program was divided into three primary

modules:

" Main Module: The main module is the central core of the program. It contains the

user interface and a file management system that keeps track of what files have

been loaded. The main program is responsible for calling the compiler and board

modules at the appropriate times.

" Compiler Module. The compiler module contains all the functionality that

compiles C, ICB, and LIS files into pseudocode. Since compilation is a

complicated task, the compiler module was divided into several sub-modules:

* Scanner: tokenizes the input file
* Parser: parses the tokens and generates a parse tree
" Flattener: flattens the parse tree
" Code generator: generates the final pseudocode

" Board Module. The board module contains all the functionality for interfacing

with the controller board via the serial port.

In subsequent chapters, a detailed description of how each module is designed will be

given. Chapter 3 will cover the main module, chapter 4 will cover the compiler module,

and chapter 5 will cover the board module.

8

Chapter 3

Main Module

The main module is the central part of the program. Its primary purpose is to control

interaction with the user and keep track of important information from files that are

already loaded. The main module (and Interactive C) can be executed by running "java

ic" from the directory where the ic.class file is found.

3.1 User Interface

The user interface is the key component of the main module. It consists of a text-

based command line interface. Users type in commands through that interface to access

and run all available functionality of Interactive C. There are a finite number of special

commands that perform special tasks. These commands are:

" load <filename>: loads the specified file, compiles this file and any other previously

loaded files and downloads the new code to the controller board. The loading of a

file can be thought of as the "checking in" of the contents of that file. The global

variables and functions found in that file are now available and can be referenced by

other files.

" unload <filename>: unloads the specified file, recompiles the remaining loaded files

and downloads the new code to the controller board. The unloading of a file can be

9

thought of as the "checking out" of the contents of that file. The global variables and

functions of that file are no longer available. Thus, if some other file references one

of those variables or functions, an error is returned.

" debug: toggles debug mode. If debug mode is activated, debug printouts are made.

* list files: lists all files that are loaded. If a LIS file was loaded, the contents of the LIS

file will be displayed rather than the name of the LIS file.

* list functions: lists all functions from files that are loaded.

* list globals: lists all global variables from files that are loaded.

" list defines: lists are #define variables from files that are loaded.

* exit/quit: exits from Interactive C.

" help: displays a description of all commands available to Interactive C.

Anything else that is inputted is considered to be interactive code to be executed on

the controller board. In addition, when starting up the program, the user may elect to run

Interactive C in simulation mode. Simulation mode operates without making any calls to

the board module. Code is only compiled and not loaded. This is useful when running

Interactive C without the controller board. Adding "-sim" to the command used to start

Interactive C will activate simulation mode.

10

3.2 Information Stored in the Main Module

Between commands specified by the user, certain information needs to be kept. In

particular, files that are loaded will require that particular pieces of information about the

contents of that file be retained so that they can be used when compiling other files. For

example, other files may access the global variables of another file and are required to

have knowledge of those variables.

The storing of information was implemented to improve the performance of the

program. An ad hoc method of handling multiple loaded files would simply involve fully

recompiling all the loaded files every time a file is loaded. While this would work, it

would be very inefficient since we would be constantly reanalyzing files that have been

analyzed before.

Instead, several pieces of information about each file are retained. This information

consists of:

" A Program Signature: A program signature for a file consists of information that is

useful to other files. This includes:

0 A table listing information about the functions of that file
0 A table listing all the global variables
0 A listing of all the #define variables
0 Information about ICB binary code if the program signature belongs to an ICB

file

" A Byte Array Representation of the File. This is kept so that the file does not need to

be read in again in the event we need to reanalyze the file. In fact, when a file is

loaded, changes made to the actual file are not visible to Interactive C until the file is

loaded again.

11

In addition, when code is entered interactively, it needs to directly access compiled

code. Thus, the following information about that last compiled code is also kept:

* The addresses where each global variable is found

* The addresses corresponding to labels to locate where functions can be found

This stored information is passed to the compiler module when it is needed and

updated information is passed back from the compiler module after successful compiles.

3.3 Loading Files

When a user elects to load a file, the main module first tries to determine what type of

file is being loaded. This is determined by the extension of the filename (.c, .icb, .lis). If

the filename does not end in one of the recognized extensions, an error is returned.

For C files, the main module first reads in the file and saves it as a byte array. This

byte array, along with the program signatures and byte array representations of all

previously loaded files, is passed to the compiler module. If the compilation process did

not return any errors, then the compiler module will return the compiled pseudocode that

will be passed to the board module for loading to the controller board. Furthermore, the

program signatures and byte array representations of the file that was just loaded are

saved and the file is recorded as being loaded. In addition, the addresses where global

variables are found and the addresses corresponding to functions are also saved and will

be used by interactively entered code.

For ICB files, the main module only creates a pointer to the file and passes that along

with the program signatures and byte array representations of all previously loaded files.

12

A byte array representation is not created for ICB files since the actual ICB file does not

need to be analyzed again once it is has been analyzed once. Only C source files need to

be analyzed again for the purposes of tokenizing the contents of the file. All the relevant

information for an ICB file is already found in the program signature of that file. Once

again, if the compilation succeeds, the compiled pseudocode will be returned back to the

main program to be downloaded to the controller board. However, since there is no byte

array representation of the file, only the program signature of the file, the global

variables addresses and function addresses are saved.

For LIS files, the main module first parses the file and determines the names of the

files that are to be loaded. If there are any errors in those filenames (i.e.: bad extension,

file not found), compilation of the entire LIS file is halted. For any C files that are listed,

a byte array representation of that file is created. For any ICB files that are listed, a

pointer to that file is created. The collection of byte arrays and pointers to ICB files is

passed to the compiler along with the program signatures and byte array representations

of all previously loaded files. As before, if compilation succeeds, the compiled

pseudocode will be returned and passed to the board module and all relevant information

is updated.

3.4 Interactive Mode

When code is entered interactively, it is handed off to the compiler along with

relevant information from previously loaded files. In addition, the compiler module also

receives information regarding the addresses of loaded global variables and functions.

13

This information is needed to allow the compiler to be aware of the location of global

variables and functions in the event they are referenced by the interactively entered code.

If compilation succeeds, the compiled pseudocode is passed back to be sent to the

board module for downloading. In addition, the code that is entered will occasionally

return information. For example, if the user inputted "1+1; ", then the stack machine

should execute this and return 2. However, in order to be able to return this information,

the main module needs to know what type of data is being returned (integer, long, float,

etc.). This information is passed back from the compiler module where it is used by the

main module to print out the returned value.

14

Chapter 4

Compiler Module

The compiler module is the most crucial part of Interactive C. It is responsible for

compiling C, LIS and ICB files. This module has four separate public methods that can

be called for compiling the three different types of files and handling interactively

entered code.

The compiler module is broken down into four primary sub-modules: scanner, parser,

flattener, and code generator. The flattener and code generator are used in all

compilations. However, the scanner and parser modules are only used for compiling C

files, C files found within LIS files, and interactively entered code. All ICB files and

ICB files found within LIS files do not use the scanner or the parser. Instead, a special

module designed specifically for handling ICB files is utilized to parse the file.

The following sections will describe the scanner, parser, special ICB parser, flattener,

and the code generator in detail.

15

4.1 Scanner

The first module of the compiler is the scanner. The scanner's purpose is to perform

lexical analysis on the input. This is done by taking the source code and recognizing

reserved words, special symbols, numbers, and variable names. At the same time, white

space and comments are filtered out.

This task is accomplished by constructing a deterministic finite automaton (DFA). A

DFA consists of a set of states and sets of transitions between those states. Starting at a

particular state, the DFA determines which transition to take based on the next character

that is being read from the input file. Upon reaching particular states, that DFA will

indicate that a particular token has been found.

Normally, the task of producing a scanner for a language is very tedious. However,

tools are available that simplify this task by automatically generating a lexical analyzing

DFA based on a special input. For the new implementation of Interactive C, a special

tool called JLex was utilized.

JLex requires that the user enter a listing of all possible tokens for the language that

will be recognized. In the case of the Interactive C, this included all reserved words,

various special symbols, variable names, and numbers. JLex also requires that the

formatting for valid comments be specified to allow it to recognize and ignore them.

Once executed, JLex will read in an input file and generate a list of tokens. However,

there are situations where lexical analysis may encounter errors with the input file. The

following errors are caught and reported:

16

" Numeric overflow: if a numeric value is detected by JLex, it will be checked to

see if it is within bounds for integers, longs, and floats. If it isn't, an error will be

returned.

* Variable names that start with numbers: if a variable name starts with a number, it

is reported as an error back to the user.

Any other error that is encountered by JLex, such as unrecognized characters, will

yield an error message indicating the line number and file name of the error. If any errors

are caught during this stage of compilation, all subsequent stages are not executed since

the code supplied by the user had erroneous inputs.

4.2 Parser

The parser takes the tokens that were generated by the scanner and performs syntactic

and semantic analysis. Syntactic analysis involves checking that the source code follows

the language specifications. Semantic analysis checks to make sure that syntactically

correct source code is being used correctly according to the semantic rules of the

language. For example, while "x=a+b; " is syntactically correct, it may not be

semantically correct since "a" and "b" may be of incompatible types (i.e.: an integer and

a float). When the parse stage is complete, it should generate a parse tree that serves as

hierarchical intermediate representation of the user's source code. This representation is

passed on to subsequent stages of the compiler.

17

4.2.1 CUP

Like the scanner, creating a parser from scratch is a very tedious task. However, tools

are available that automatically generate parsers based on special inputs. In this case, a

special tool called CUP was used.

CUP is an LALR(1) parser generator. An LALR(1) parser analyzes the list of tokens

from left-to-right based on a context-free language (CFL) definition. The CFL is

supplied by the user of CUP and consists of terminals and non-terminals. The terminals

of the CFL consist of all possible types of tokens that could be created from the scanner.

Non-terminals are specified in the parser. The terminals and non-terminals are arranged

in rules where a single non-terminal is set to equal any number of terminals or non-

terminals.

The CFL representation of the language is used by the LALR(l) parser to reduce the

language down to a specified non-terminal known as the start symbol of the language.

During this process, the parser looks one token ahead when reading in each token. The

look-ahead helps the parser decide what to do with each token it is analyzing. Each token

may be pushed onto a temporary stack or each token along with a certain number of

tokens and non-terminals found on the top of the temporary stack may be removed and

replaced by a single non-terminal based on a rule in the CFL. This process will

eventually reduce all the tokens into the single non-terminal that serves as the start

symbol of the entire language.

In certain instances, the CFL supplied by the user may be ambiguous. For example,

when encountering the statement "x=1+2 *3 ; ", the parser may not know whether to

18

parse 2*3 or 1+2 first. By specifying precedences in the CFL, the parser is aware of what

to parse first in the event of an ambiguity. Most ambiguities occur within mathematical

operations. The precedence settings of the parser follow the precedences defined by the

language2.

In certain instances, the parser encountered problems related to optional parts of a

syntactic definition. For example, an if statement may contain an optional else clause.

Normally, CUP would try to match as large of a string as possible. However, in the case

of the if statement, CUP failed to do that. As a result, a precedence hierarchy needed to

be created that gave if statements a lower priority than an if-else statement. This fix

solved that problem.

4.2.2 Breakdown of Parser

For simple languages, a single parse stage is often sufficient for analyzing a language.

A single parse would involve reading in the tokens from the scanner only once.

However, for this compiler, the parse stage was divided into two stages.

The first parse stage is responsible for the following:

" Collecting global variables: A table of all global variables is built. The table

is a hashtable where the name of the variable references a data structure which

holds information about the type of the variable (i.e.: integer, float, etc.)

* Collecting #define variables: A list of #define variables is also collected. A

#define variable is a variable that is associated with a literal value. The

variable is treated as a global variable whose value cannot be changed.

2 See Appendix A for precedence definitions.

19

Information about this variable is entered into the table of global variables and

the name of this variable is entered into a list of #define variables.

Collecting function signatures. A function signature is defined to be

information that is crucial for calling that function. This includes the

following:

- The return type of the function (i.e.: void, int)
- The name of the function
- The types of the arguments (i.e.: an int argument)

This information is collected in a hashtable where the name of the function
references thefunction signature.

The second parse stage takes the information provided by the first parse stage and

does a complete a thorough syntactic analysis. This includes building the final data

structure that represents the result of the parse.

The parser was broken down in two to ease its implementation. One situation where

this helped was in dealing with functions. Unlike a variable, a function can be used

before it is declared in the file. Thus, when a function is called, the parser may not have

any information about that function since it has not been parsed. By having the two-stage

parse, the first parse stage can be used to go through the entire file and record all the

functions that are available so that the second parse stage can use that information to

parse all function calls.

Breaking down the parser into two stages is also useful for parsing multiple files.

Multiple files may need to be parsed simultaneously when compiling a LIS file. Since

files within the LIS file may reference the global variables and functions found in another

file within the LIS file, it is necessary for the parser to extract all the functions and global

variables of all the files before proceeding. The first parse stage performs this task.

20

4.2.3 Data Structures

Both parse stages generate information that is used by the compiler. To store this

information, specially customized data structures were created. For the first parse stage,

a program signature is created for each file. The program signature is exactly the same

as the one described in the main module.

For the second parse stage, a complete hierarchical data structure representing all files

in the program needs to be built. This structure is known as a parse tree and is the final

result of the parse stage. To describe the data structure that is created, the following will

explain the major components of the parse tree from the bottom to the top of the

hierarchy and discuss how the final parse tree is built.

4.2.3.1 Variables

The variable data structure is used to represent any variable in the program. It

includes the following information:

" The variable's type (i.e. int, float, etc.).

" The kind of variable. This refers to whether it is a global variable, a local variable, an

argument, or a #define variable.

" The name of the variable.

" The scope of the variable which refers to the name of the function that the variable

belongs to if it is not a global variable or a #define variable.

" The initial value of the variable if it is initialized.

" The array size of the variable (this is set to 0 if it is not an array).

" The array index in use if this variable is being used to reference a specific location

found in an array.

" A flag indicating whether this variable originated from an ICB file.

21

4.2.3.2 Expressions

The expression data structure is used to describe a collection of terminals and non-

terminals in the parser. The common trait of all expressions is that they all must have a

data type associated with it (i.e.: integer, float, etc.). The following lists the different

kinds of expressions that are available:

" Literal Expression: represents any constant. This includes:

0 Integer constants that are decimal, hexadecimal, or binary
* Long constants that are decimal, hexadecimal, or binary
* Float constants
" Char constants
" String constants

" Location Expression: represents any expression that consists of a variable.

" Function Call Expression: represents a call to a function. The expression consists

of afunction call object that contains the following information:

* Return type of the function
" Name of the function
" A list of expressions that are being passed to the function as its arguments
* A flag indicating whether the function originated from an ICB file

* Binarv Operation Expression: represents any binary operation. Binary operations

have an operation and two operands. These two operands consist of any

expression including another binary operation expression.

* Pre Unarp Operation Expression: represents a unary operation that is performed

on an expression. There is a single operation and a single operand that may be

any expression. The operation is restricted to those that appear before the

operand. Examples of such operations include sin, cos, tan, and exp.

22

* Cast Expression. represents a casting of an expression. Casting refers to the

conversion of an expression from one data type to another. The data type of a

cast expression is the data type that the expression is being converted to.

4.2.3.3 Statements

The statement data structure represents a clause in the user's C source code that is

terminated by a semicolon. Statements are built primarily from expressions but also

contain variables and various operations. The following are the different kinds of

statements:

" Assignment Statement: represents any situation where a variable is assigned to

any expression. For example, "x=1+1;" is an assignment statement.

" Function Call Statement. represents a function call. This differs from afunction

call expression in that this is a stand-alone function call that is not used within

another statement or expression. Afunction call statement consists of afunction

call object representing the call to that function.

* If-Else Statement: represents an if-else statement. It consists of an expression that

represents the condition of the if statement and two blocks of statements. One

block of statements represents the statements that are executed if the conditional

expression was true. The other block of statements refers to those that are

executed if the conditional expression was false.

" While Statement: represents a while loop. It consists of a single conditional

expression and a block of statements that represents the code that will be executed

during each iteration of the loop.

23

" PrintfStatement: represents the printf command. It consists of the string that will

be printed out and a list of arguments that may be included in the string being

printed out.

" Break Statement: represents the break command to break out of a loop.

" Return Statement: represents the return command. It contains the expression that

is returned if that is specified in the code.

" For Statement: represents a for loop. It contains a list of statements representing

the optional initial statements executed before entering the loop, the single

expression that determines whether to continue with the loop, an optional list of

statements representing what is executed after each iteration of the loop, and a list

of statements consisting of the code that is executed during each iteration of the

loop.

* Post Unarv Operation Statement: represents a single unary operation that is used

after a variable. An example of this is "++." These operations can only be

applied to variables.

" Arithmetic Assignment Operation Statement: represents an operation on a variable

and a single expression. An example of this is the "+=" operation. This type of

statement contains the variable that is being operated on, the operation that is

being performed, and the expression that is the operand for the operation.

4.2.3.4 Functions

Afunction is a data type that contains all the information related to a function. This

includes all the information found in afunction signature and the following:

0 An arguments hashtable where the name of the argument references a variable

object that represents that argument.

24

" A list of variable objects representing the local variables of that function

" A hashtable of local variable names referencing variable objects representing

local variables of this function

" A list of statements that represents the statements found within the function.

4.2.3.5 Program

The top level of the parse tree is known as a program. A program contains all the

information found in a program signature. In addition, it contains a list of functions.

Normally, a program object is used to represent the contents of a single file. However, it

can be adapted to represent the contents of multiple files including ICB files. This is

since the program object consists of lists and hashtables whose size is unlimited. Several

files can be represented within a single program data structure by simply merging the

contents together.

4.2.3.6 Building the Parse Tree

The parse tree is built by first merging the program signatures of all previously

loaded files into a single program signature object. This is done right before the

compiler enters the parse stage. After the first parse stage, the program signatures of all

the files that are being loaded are merged into the combined program signature

representing all the files. This is then passed to the second parse stage which uses that

information to build a single program object that represents all the files that have been

previously loaded and all the files that are being loaded.

The program object is the final output of the parse stage and is an intermediate

representation of the program. An intermediate representation serves as a lower-level

25

representation of the program that is closer to the final compiled code. Intermediate

representations are useful steps in compilation. The ultimate goal in compiling is to

translate high-level code into low-level code. An intermediate representation serves as an

intermediate step in this process and allows for easier debugging between modules.

4.2.4 Semantic Checks

Embedded within both stages of the parser are checks for semantic correctness.

These checks verify that the syntax of the language is being used correctly. If any error is

found, an error message is returned to the user. The message consists of the name of the

file where the problem occurred, the line number of the error, and a detailed message

describing the error.

Whenever possible, it is optimal to continue parsing the file after an error is found. A

file may potentially have numerous errors. Halting the parser on each error will force the

user to recompile repeatedly before all semantic errors are caught. This process of

allowing compilation to continue after errors is known as error recovery. For all

semantic checks, features for error recovery are included to insure that parsing continues.

One significant error recovery feature was the creation of the "error" data type. If an

error occurs that affects an expression, the data type that the user intended to use is

uncertain. Thus, instead of using one of the normal data types, the "error" data type is

given to that expression. Any semantic check for correct data types will not be utilized if

any of the expressions being analyzed has the "error" data type.

26

Both parse stages have semantic checks embedded within them. If there are any

errors in the first parse stage, the second parse stage and all subsequent stages of the

compiler will not run. Similarly, if any errors are found in the second parse stage, then

all stages after the second parse stage will not be executed. This was done since there is

no reason to proceed to subsequent stages of compiling if the code supplied by the user

was not semantically correct and not used correctly in accordance with the rules of the

language.

4.2.4.1 Details of Semantic Checks

In the first parse stage, the following semantic checks are performed:

" Duplicate variable. if a duplicate global variable declaration is found, an error

is returned and the new variable declaration is ignored. Duplicate global

variables also take #define variables into account.

" Duplicate function names: if a duplicate function name is found, an error is

returned and the duplicate function is ignored.

" Array declaration without size specified: if an array declaration does not

include the size of the array, an error is returned and a size of 1 is given as the

size of the array. This check does not check to see that the array size given is

an actual number since that information is not available in the first parse stage

to improve the performance of the first parse stage. The initial size of the

array is necessary in order to determine how much space to allocate.

During the second parse stage, the following semantic errors are caught:

* Array index must be of integer or char type: otherwise, a value of 2 is given to

the array index.

27

* Array size in an array declaration must be an integer or a char literal:

otherwise, an error will be returned and a value of 2 is given as the size of the

array.

" Initial values for a variable declaration must be a literal expression: all initial

values for all variable declarations must be literal values. This includes global

variables, local variables, and all array lists. Otherwise, an error will be

returned and an empty literal expression is put in its place.

" Initial values for an array must be less than or equal to indicated array size.

otherwise, an error is returned. However, the initial value is still recognized

and kept. This semantic check also applies to character arrays (strings).

* Initial values for variables must be of compatible type: the initial value of a

variable must be compatible with the declared data type of the variable. The

only special case is for char's and integers. A char may be used in the place

of an integer and an integer may be used in the place of a char.

" Duplicate variable names within the same scope: since Interactive C is not an

object oriented language, there are only three scopes for variables: local,

argument, and global. Variables sharing the same name cannot be in the same

scope or an error will be returned and the duplicate variable is ignored.

However, if variables with duplicate names are found that are in different

scopes, the variable with the higher scope is taken (global being the highest,

then argument, then local). An exception to this is #define variables. No

variables with the same name as a #define variable can be defined anywhere

else.

28

" Variables and-functions must be declared: all variables must be declared

before being used. Functions must be declared, but not necessarily before the

place where they are used.

* Can only cast to and from a float: this check is necessary because of the

limitations of the final pseudocode. If this error is caught, the cast expression

is still created, but the error is reported to the user.

" exp, exp]O, sin, cos, tan, atan, log, log]0, sqrt operations must be performed

on floats: this check is necessary because of the limitations of the final

pseudocode. If this error is caught, the expression is still created but given the

error type.

" mod, bitnot, lognot, logor, logand, bitxor, bitor, bitand, >>, << operations

must be performed on integers: if this error is caught, the expression is still

created but given the error type.

+ +, -, *, /, = =, !=, <, >, <=, >= operations must be performed on compatible

tvpes: the operands of these operations must be of compatible type. The only

special case is for char's and integers. A char may be used in the place of an

integer and an integer may be used in the place of a char. If this error is

caught, the expression representing the operation is still created, but is set to

be of the special error type.

S/ operation cannot be used on long's.: this is due to a limitation of the final

pseudocode where division for long's was not implemented. If this error is

caught, the expression representing the operation is still created, but is set to

be of the special error type.

* Using a variable that has not been declared: normally, the parser would

access the data structure representing this variable. However, if the variable

29

has not been declared, a dummy variable given the special error type will be

put in its place.

* #define variables cannot be modified: the value of #define variables cannot be

modified. If this error is caught, the statement is still kept, but the user will be

alerted.

" Return expression must be of compatible type: the type of the expression that

is returned must match the type that is specified for that function. As before,

char's may be used in the place of integers and integers may be used in the

place of char's. If this error is encountered, the statement is kept, but the user

will be alerted of the error.

" Number of arguments in a printf statement must correspond to what is

indicated: in a printf statement, arguments may be specified in the string. The

number of arguments that are supplied must equal the number of arguments

specified by the string supplied to the printf statement. If this error is

encountered, the statement is kept, but the user will be alerted of the error.

e Types of arguments in printf statement must correspond to what is indicated:

in a printf statement, arguments may be specified in the string. The argument

specifications are by data type. The data type of each argument must

correspond to what is indicated in the string. As before, char's may be used in

the place of integers and integers may be used in the place of char's. If this

error is encountered, the statement is kept, but the user will be alerted of the

error.

e #define variables cannot be associated with non-char arrays: if this error is

caught, a dummy variable with an error type is put in its place.

30

While all of the semantic checks described above take place within the parser, one of

the semantic checks takes place outside of the parser. This check verifies that a function

that is declared to return something actually has a return statement under all possible

paths of execution. Thus, if the last statement of the function is an if-else statement, then

both the if-block and the else-block needs a return statement.

While this check can be done within the parser, it is much easier to run this check

right after the parser is complete when a complete parse tree can be analyzed. If this

error is caught, then an error message is returned indicating the name of the function

where the error occurred.

4.3 ICB Parser

The ICB parser is a special module that is used only when compiling ICB files. The

module reads in the file and looks for specific components of the file that are necessary

for the compiler.3

4.3.1 Data Blocks

The module first tries to look for the data blocks. This is done by reading in each row

and determining if that row starts with the "SI" flag denoting a line of data. If a line of

data is detected, the module breaks down that line into its appropriate components.

3 See Appendix B for proper formatting of ICB files.

31

For the first data block, the address where the code is built is noted and the binary

code is saved. For the second data block, the binary code in there is read and compared

with the binary code from the first block. If differences between the two blocks are

found, the location of the differences is recorded as an address location that needs to

adjusted when the final code is loaded.

4.3.2 Variables and Functions

Once the data blocks have been parsed, this module then looks for global variables

and functions in the file. Variables and functions can simply be found by looking for

lines that start with the "variable_" string and the "subroutine_" string respectively. Once

they are found, their names are recorded into a special hashtable that stores the address

where the variable or function can be found.

The address is adjusted to be the address that is used if the variable were at the

address where the first data block was built. The address that is supplied in the ICB file

is with respect to the address used to build the second data block.

4.3.3 Error Checks

While reading in the data blocks, certain errors in the ICB files are checked. If these

errors are caught, the ICB parser will return an error message indicating the file where the

error occurred, the line number where the error occurred, and a description of the error.

The errors that are caught are:

32

" Improper numeric format: Numbers in an ICB file are in hexadecimal. For

portions of the code that require a numeric value (byte count, checksum, start

address, etc.), a non-hexadecimal character will trigger an error.

" Length of data: If the actual amount of data in a line does not match what was

indicated, an error is returned.

" Checksum error. If the checksum procedure fails to yield the correct result, an

error is returned.

* Data blocks must be consecutive: The two data blocks must occur consecutively

in accordance with the proper formatting for ICB files.

0 Duplicate variable/function names: If any previously loaded file or the current

file has variables or functions that share the same name, then an error will be

returned.

4.3.4 Integrating with the Rest of the Compiler

When an ICB file is being compiled by itself, the ICB parser is the first part of the

compiler that will handle the file. The results of the ICB parser are stored in a program

signature object that includes all relevant information from all previously loaded files.

Within the program signature object are fields that specifically store the binary code, the

locations where addresses are located and need to be adjusted, a list of ICB global

variables, and a list of ICB functions.

33

Once this is complete, the compiler will proceed to the stage two parse to parse all

previously loaded C files and rebuild the parse tree. This step does not affect the ICB

code but is necessary for previously loaded C files.

If the ICB file is found within a LIS file, the compiler will perform a similar task of

having the ICB parser parse the file. However, it will also allow all other C files to go

through the scanner and the stage one parse before going into the stage two parse. This is

necessary since the ICB parse module extracts all the global variables and functions like

the stage one parse. Other files may reference these variables and functions and will need

to know that they exist before we can proceed with the stage two parse.

When multiple ICB files have been loaded, information relevant to each file cannot

simply be merged together in the program object. For example, the lists of address

locations needs to be separated for each file so that the compiler is aware of the specific

file the address location is referring to. Thus, instead of simply storing the information as

one big combined list, ICB information is stored as a list of lists. For example, the 4 th

item in each list refers to information relevant to the 4th ICB file that was loaded.

4.4 Flattener

Following the parser is the flattening stage. As is evident by looking at the structure

of the parse tree, the result of the parser is a very hierarchical structure. This contrasts

the linear and sequential structure of the final pseudocode that is generated by the

compiler. While generating the pseudocode directly from the parse tree is possible, the

intermediate task of flattening the parse tree was significant enough to justify the creation

34

of this module to perform this task and create a separate intermediate representation of

the file.

4.4.1 Data Structures Used in Flattener

Like the parser, the flattener generates an intermediate representation of the code that

requires a data structure to hold it. The data structure is known as aflat program. The

flat program object consists of the following:

" A list of global variable names

* A hashtable where each function name references a list of variable objects that

represents the arguments of that function

* A hashtable where each function name references a list of variable objects that

represents the local variables of that function

* A list of listings of ICB binary code

" A list of listings of address locations in the ICB binary code that need to be

adjusted in accordance with the place where the binary code is loaded to

" A list of listings of global variables found within each ICB file

" A list of listings of functions found within each ICB file

" A list of instruction objects

The list of instruction objects is the primary means of representing the program in the

flat program object. In the program object, the representation of the program was

hierarchical. However, for theflat program, the program is represented as a single list of

instructions.

Statements within the parse tree are flattened into one or more instructions. Often, a

single statement results in multiple instructions since statements are often complex and

35

cannot be performed by a single instruction. For example, "x=1+2+3 ; " cannot be

performed in a single operation since, as evident when looking at the available

pseudocode commands, adding can only be done on two operands at a time.

Thus, when breaking down these statements, the flattener will need to keep track of

numerous intermediate steps. To do this, every intermediate step is represented by a

system variable. A system variable uses the data structure of a variable. The only

difference is that the variable is assigned the special "system" data type to indicate that

this variable was created by the flatten stage and is not a variable designated by the user's

source code.

Going back to the "x=1+2+3;" example, this statement would be broken down into:

temp=1+2;
x=temp+3;

"Temp" is a system variable used to represent the intermediate steps of this complex

operation. In the flattener, all system variables are give the name "$sysVar#" where "#"

is a number. A counter keeps track of the number to assign to prevent duplicate system

variables from being assigned. The "$" is the first character of the name of the system

variable since a variable in the user's source code cannot start with a "$." Thus, this

prevents a system variable from sharing the same name as a regular variable defined by

the user.

In addition to the situation just described, system variables are also employed

throughout the flattening process in other circumstances. In general, a system variable is

used to represent the writing to a temporary memory location in the final pseudocode. In

particular, the pseudocode that gets generated is for a stack machine where all operations

36

are performed on a stack. Any operation will require that the information be saved onto

the stack before the operation can be informed.

Thus, for all instructions, the operands within the instruction consist primarily of

variables. Thus, any non-variable object found within a statement needs to be assigned to

a system variable before it can be operated on. The following is a list of all the available

instructions:

" Label Instruction: This instruction is used to represent a marker within the list of

instructions that other instructions can refer to. It contains a string that represents

the name of the label. The following is the convention for label names:

" All labels marking locations relevant to the entire program start with the
"$program" string. For example, the label marking the location where global
variables are declared is labeled "$programglobals."

" All labels marking locations relevant to functions start with the "$function_
string. For example, the start location of the "main" function is labeled
"$functionmain."

* All other labels start with the "$label_" string and are followed by a number.
The number is read from a counter that is incremented every time a label of
this type is created. This prevents duplicate labels from being created.
Additional text may follow the number in the label depending on how the
label is being used.

" Global Variable Declaration Instruction: This represents the declaration of a

global variable. It contains a field that holds a variable that represents the global

variable being declared.

* Local Variable Declaration Instruction: This represents the declaration of a local

variable within a function. It contains a field that holds a variable that represents

the local variable being declared.

37

" Assign Literal Instruction: This represents the setting of a variable to a literal

expression. An example would be "x=4; ". This instruction contains a variable

and a field to hold the literal expression.

" Assign Location Instruction] & Assign Location Instruction: These two

instructions are used to represent the setting of the contents of one variable to that

of another variable. Two instructions are needed to represent this because of the

way the pseudocode is constructed in the code generation stage. The instructions

contain the two variables that are involved in this assignment.

" Assign Array Location Instruction 1, Assign Array Location Instruction 2 &

Assign to Array Instruction: This represents assigning the contents of a variable to

an element found in an array. Three instructions are needed to represent this

because of the way the pseudocode is constructed in the code generation stage.

The instructions contain the two variables that are involved in this assignment.

" Array Pointer Instruction: This represents the copying of the contents of an entire

array to another array.

* Assign Binary Operation Instruction. This represents a binary operation being

performed on two variables with its result being assigned to another variable.

This instruction contains three variables representing the two operands and the

variable where the result is being stored. In addition, it contains the operation that

is being performed.

" Assign Pre-Unary Operation Instruction: This represents a unary operation being

performed on the variable where the operation came before the operand in the

original C code. This instruction contains a variable representing the operand, a

variable representing the location where the result is being set to and the operation

being performed.

38

* Assign Function Call Instruction: This represents the setting of a variable to the

result of a function call. This instruction contains the variable where the result is

being set to and afunction call object representing the function that is being

called.

* Function Call Begin Instruction: This represents the start of a call to a function.

It contains the name of the label where the function is to be located based on the

label convention described earlier, the name of the function, the return type of the

function and a flag indicating whether the function is an ICB function.

* Function Call Statement Instruction: This represents the calling of a function

where the function call was a stand-alone statement in the original C code (the

function call was not being used as part of a statement or expression). This

instruction must be preceded by afunction call begin instruction. It contains a

function call object representing the function that is being called.

* Function Call Expression Instruction: This represents the calling of a function

where the function call was an expression in the original C code (the function call

was being used as part of a statement or expression). This instruction must be

preceded by afunction call begin instruction. It contains afunction call object

representing the function that is being called.

* Branch True Instruction: This instruction represents a branch to a label

instruction if the variable that is given is true. This instruction contains a variable

that represents the condition of the branch and the name of the label to branch to.

* Branch Push True Instruction: This instruction represents a branch to a label

instruction if the variable that is given is true. This instruction contains a variable

that represents the condition of the branch and the name of the label to branch to.

This instruction is used only with the "H " operation and is needed because of the

way code generation generates the pseudocode for the "II" operation.

39

* Branch False Instruction: This instruction represents a branch to a label

instruction if the variable that is given is true. This instruction contains a variable

that represents the condition of the branch and the name of the label to branch to.

* Branch Push False Instruction: This instruction represents a branch to a label

instruction if the variable that is given is true. This instruction contains a variable

that represents the condition of the branch and the name of the label to branch to.

This instruction is used only with the "&&" operation and is needed because of

the way code generation generates the pseudocode for the "&&" operation.

* Jump Instruction: This instruction indicates a jump to a label instruction. This is

similar to any of the branch instructions. However, the jump takes place under all

circumstances unlike a branch which relies on a condition. This instruction

contains the name of the label to jump to.

" PrintfLInstruction: This instruction represents a printf statement. It contains a

field indicating the space needed for the arguments of the printf statement. This is

required due to the way the pseudocode is constructed in the code generation.

" Return Instruction: This instruction represents a return statement. This

instruction contains a variable representing what is being returned if something is

being returned.

" Function Start Instruction: This instruction indicates the start of a function and

contains the name of the function.

" Function End Instruction: This instruction indicates the end of a function.

40

* Cast Instruction: This instruction represents a casting operation. It contains the

original data type of the expression that is being casted and the data type that the

expression is being casted to.

* Logidn Instruction: This is a special instruction used specifically for the "H" and

"&&" operations. This instruction is needed because of the way code generation

generates pseudocode for the "|I" and "&&" operations. This instruction

corresponds to the LOGIDN command in pseudocode.4

* String Literal Instruction: This is a special instruction used only to handle string

literals.

4.4.2 Details of Flattening Process

The flattener is designed to generate an intermediate structure that closely resembles

the final pseudocode that is generated by the compiler. Thus, the order of the instructions

is dictated by the proper formatting of the final pseudocode.

The first thing that is dealt with in the final pseudocode is global variables. Thus, the

flattener will add instructions for global variables first. It adds a label instruction

indicating the start of global variable handling, reads in the list of global variables from

the program object, and adds a global variable declaration instruction for each global

variable that is found.

Next, the flattener needs to flatten all the functions. For each function, the flattener

first appends a function start instruction to indicate the start of a function. It then

4 To see how this instruction is used, look at the description into how binary operation expressions are
flattened.

41

accesses the local variables of the function and appends a local variable declaration

instruction to the instruction list for each local variable in the function and adds the local

variable to the hashtable of local variables. Similarly, arguments of the function are read

in and saved to the hashtable of arguments.

Next, the flattener begins flattening the statements within the function. Each

statement and the expressions within the statement will yield a specific set of instructions.

A method was created that flattened all types of statements and a method was created to

flatten all types of expressions. The following describes how each type of statement is

flattened:

" Assignment Statement: If the expression is being assigned to an element in an

array, then assign array location instruction 1, 2, and the assign to array

instruction are used. In the process, the expression representing the index of the

array we are writing to is passed to the expression flattener between the first and

second instructions and the expression representing what we are assigning to the

array is passed to the expression flattener between the second and third

instructions. If the expression is being assigned to a non-array, then assign

location instruction] and assign location instruction are used. In between the

first and second instructions, the expression representing what is being assigned to

the variable is passed to the expression flattener for flattening.

" Function Call Statement: This is broken down into afunction call begin

instruction and afunction call statement instruction. In between the two

instructions, all of the arguments of the function are passed to the expression

flattener to be flattened.

" IfElse Statement: First, the expression representing the condition of the statement

is passed to the expression flattener. Then a branchfalse instruction is used to

42

represent a branch to the else block if the condition was false. The statements

within the if block and the else block are then passed to the statement flattener to

be flattened. In between the if block and the else block, label instructions are

placed to mark the beginning and end of each block.

* While Statement: First, the expression representing the condition of the statement

is passed to the expression flattener. Then a branchfalse instruction is used to

represent a branch to end the looping if the condition was false. The statements

within the block are then passed to the statement flattener to be flattened. Label

instructions are placed to mark the beginning and end of the block and ajump

instruction is placed after the block of statements to represent the looping process

of the while statement.

* For Statement: A for statement consists of two sets of statements, an expression,

and a block of statements that are to be looped through. Of the two sets of

statements, one of them is meant to be executed once before the start of the for

loop. This set of statements is first passed to the statement flattener for flattening.

Next, the expression representing the condition of the for loop is passed to the

expression flattener. Then, the block of statements is passed to the statement

flattener. Lastly, the set of statements that was meant to be executed at the end of

every iteration is then passed to the statement flattener. In between each of the

parts of the for statement, label instructions are placed that keep track of where

specific parts of the for statement begin and end. In additionjump and branch

instructions are used for flow control around the various parts of the for loop.

* PrintfStatement. First, the string in the printf statement is passed to the

expression flattener. Then, each of the arguments of the printf statement is passed

to the expression flattener. Once that is completed, a printf instruction is added to

the list of instructions

43

" Return Statement. The expression that is being returned is sent to the expression

flattener and a return instruction is added to the list of instructions.

" Post Unarv Operation Statement & Arithmetic Assignment Operation Statements:

If the result is being assigned to an array, then the assign array location] and 2

instructions are used and the index that is being used is passed to the expression

flattener between the first and second instructions. Otherwise, the assign location

1 instruction is used. This is followed by the flattening of the expression being

operated on. Once that is completed, an assign binary operation instruction

expression is added. The unary operation is translated to an equivalent binary

operation (i.e.: "++" is turned into adding 1 to the expression). Lastly, an assign

location instruction is added on if the result is assigned to a non-array and the

assign to array instruction is added on if the result is being assigned to an array.

The following describes how the different types of expressions are flattened:

* Location Expression. If the location is an array, then the assign array location]

and 2 instructions are used and the expression that indicates the index of the array

being used is passed the expression flattener in between those two instructions.

Otherwise, the assign location] instruction is used. This is followed by the

flattening of the expression being operated on. Lastly, an assign location

instruction is added on if the location is a non-array and the assign to array

instruction is added on if the location is an array.

" Function Call Expression: This is broken down into afunction call begin

instruction and a function call expression instruction. In between the two

instructions, all of the arguments of the function are passed to the expression

flattener to be flattened.

44

* Binara Operation Expression: For operations other than "&&" and "II," the

operands are sent to the expression flattener to be flattened and an assign binary

operation instruction is added. However, for a "&&" and "II" operation, special

instructions need to be created. The reason is that all other binary operations are

translated into a single equivalent command in the code generator. For example,

addition of two integers becomes the ADD2 command. However, "&&" and "I1"

do not have direct translations. Instead, for "&&," the code that will be generated

by the code generator looks at the first operand. If it's false, it returns false. If

it's true, the value is the value of the second operand. Similarly for "Hl,"the code

that will be generated by the code generator looks at the first operand. If it's true,

it returns true. If it's false, the value is the value of the second operand. To

represent this, the flattener will first flatten the first operand and assign it to a

system variable via an assign location instruction. Then, a branch push true

instruction is inserted if the operation is a "HI" operation and a branch pushfalse

instruction is inserted if the operation is a "&&" operation. Then, the flattener

will flatten the second operand, assign it to a system variable via an assign

location instruction and insert a logidn instruction.

* Pre Unary Operation Expression: The expression that is being operated on is sent

to the expression flattener to be flattened and an assign pre-unary operation

instruction is added.

* Cast Expression: A cast instruction is added to the list of instructions.

* Non-String Literal Expression: An assign literal instruction is added to the list of

instructions.

* String Literal Expression: A string literal needs to be treated specially due to the

special way it is handled in the pseudocode. When a string literal expression is

encountered, ajump instruction is added. This is followed by a string literal

instruction and a label instruction with the label that the previous jump instruction

45

jumped to. This is followed by an assign literal instruction. This is needed

because in the final pseudocode, a string literal is stored with the instructions.

This will become more evident after analyzing the code generator.

Once all the statements and expressions of a function have been flattened, the

flattener will append afunction end instruction and will then flatten any other functions

that follow. Once all functions have been flattened, the flattener can save all the

information to theflat program object. In addition, any information in the program

object pertaining to ICB files needs to be copied over to theflat program object. Any

information pertaining to ICB files does not need to be analyzed during this stage since

the data structure holding ICB files is not hierarchical and does not need to be flattened.

The binary code that was read in merely needs to be downloaded to the controller board.

As evident from analyzing the way the flattener deals with the program object passed

from the parser, the flattener removes all hierarchy within the code and breaks it down

into a linear list of instructions. The only remaining features of the old hierarchy are the

labels that are used to indicate where portions of the instructions begin and end.

4.5 Code Generation

The last step of the compiler is the code generation module. This module takes in a

flat program object generated by the flatten stage as its input and outputs the final

pseudocode that can be downloaded to the controller board to be executed on the board's

virtual machine.

46

Code generation is divided into two stages. The first stage is the primary stage where

most of the code is generated. The second stage serves to fill in missing addresses.

These missing addresses arise from labels whose actual address has not been determined

since the code has not been fully built yet. For example, if we have a function call to a

function that has not been built yet, the code generator is uncertain of the exact address

location of where to jump to. The second stage of code generation will have that

information available and will fill in any of the missing address locations.

4.5.1 How the Stack Machine is Organized

The pseudocode that is generated is designed to be executed on a stack machine. The

stack machine for the virtual machine on the controller board consists of a single stack

for each process. If multiple processes are running on the virtual machine, then each

process is given a separate stack.5 Items can be pushed and popped off any of those

stacks. Items can be read from or written to anywhere on the stack by referencing the

address relative to the stack pointer. The stack pointer points to the next free space on the

stack.

All temporary memory space is provided on the stack except for global variables and

the actual code. Global variables are stored starting at address location OxBFCO while

the program's code is stored starting at address location 0x8000. Each address is for one

byte of memory.

5This implementation of Interactive C will not take advantage of multiple processes. Instead, there is only
one process running and one stack in use.

47

4.5.2 Stack Conventions

In general, operations that are performed on the stack have their arguments pushed

first before the operation is performed. The operation will then pop the operands and

may then push the result onto the stack.6

When a function is call, there are two parties involved: the caller and the callee. The

caller is responsible for the following:

* Pushing the return address onto the stack

* Pushing the arguments in order onto the stack

" Jumping to the location of the function

The callee is responsible for the following:

* Pushing local variables onto the stack

* Pushing the return value onto the stack (if there is one)

" Pn in the 1ca I1 variahles and 2nvthin that wsi -,shed nnto the st-ac while

0

0

executing the program

Popping off the arguments of the function

Returning to the address indicated by the caller of the function

Figure] illustrates how the stack is used when calling a function. In step (a), the

caller is about to call the function, in step (b) the callee is about to execute the code in its

body, in step (c) the callee is about to return back to the caller. The pseudocode "return"

instruction pops the return address from a specified address into the stack, removes the

6 This is the general convention of the instructions in the pseudocode. For more details on how each
operation works, see Appendix C.

48

space allocated for arguments and local variables, and restores the return value to the top

of the stack when returning.

Return Address

Argument 1

Argument 2

Argument 3
SIP

(a)

Caller about to call
the function

SP

Return Address

Argument 1

Argument 2

Argument 3

Local Variable 1

Local Variable 2

Local Variable 3

(b)
Callee about to
execute code

Figure]

SP

Return Address

Argument 1

Argument 2

Argument 3

Local Variable 1

Local Variable 2

Local Variable 3

Return value

(c)
Callee about to

return

While a function is executing, temporary space will be needed to execute statements.

However, the convention is that after each equivalent statement in the user's source code,

the stack must clean up after itself and the stack pointer must return back to pointing at

the location right after the last local variable. This effectively means that all information

must be stored either as a local variable, argument, or a global variable. For example,

after executing the pseudocode that is equivalent to the statement "x= 1 + 1; ", the result

should be stored in the location allocated for the variable "x." Any temporary space that

was used should be eliminated.

The temporary space and space allocated for variables depends on the data type. The

following lists the number of bytes each data type requires:

49

Data Type Number of Bytes Required
Int 2
Char 2
Long 4
Float 4

Arrays are stored in the same locations as a regular variable. Items in the array are

pushed in reverse order onto the stack. However, following all the members of the array,

an integer indicating the size of the array and the current address of where the array is

located is pushed onto the stack (if the array is a local variable or an argument, then the

address is the current stack address, if the array is a global variable, then the address is

the address where the array is being stored in the global variable space). Figure 2

illustrates how an array with the items 1,2,3,4,5 is stored:

5

4

3

2

1

5

Current Address

Figure 2

There is an exception to this convention for strings. Strings are not stored in the stack

and are instead stored in the pseudocode's memory. When a string is used, its value is

50

placed in the pseudocode. A jump instruction will jump over the string constant when the

code is executed.

4.5.3 Internal Information Kept During Code Generation

During code generation, a lot of information needs to be kept. This information keeps

track of what has been generated and where particular items are located in memory. The

following describes what information is kept:

" Program counter: This points to the address where the code is to be written

next.

" Stack pointer. This points to the address of the top of the stack (the next free

stack space). The actual address of the stack pointer is unknown and is not

necessary since any reference to the stack will only be based on a certain

offset from the stack pointer (i.e.: 2 more than the stack pointer address).

Thus, knowledge of the actual address is unnecessary. The code generator

starts the stack pointer address at an arbitrary value of 0 and adjusts it

accordingly as items are pushed and popped from the stack.

" A stack ofstack pointer address. Since this particular stack machine does not

have a frame pointer, the exact location of the border between the elements of

one function and another are unknown when executing the code. Thus, the

code generator must keep track of this information so that when a function has

completed its execution and is ready to return control back to the function that

called it, the amount of space to free up is known. This information is kept in

a stack since multiple layers of function calls, including recursive calls to the

same function, may occur.

51

" Hashtable of labels: Labels are used as substitutes to address locations that

may not be known when the code is generated. However, as code generation

proceeds, the actual address will eventually be known and this table will map

the name of the label to the actual address so that stage two of code generation

can use this table to fill in the missing addresses.

" Hashtable ofglobal variables: This table maps global variable names to the

address where they are found.

" Hashtable of local variables: This table maps function names to another

hashtable that maps the local variables of each function to their stack pointer

location address.

* Hashtable of arguments: This table maps function names to another hashtable

that maps the arguments of each function to the offset from the start of the

local variables to this function. For example, if the function has two

arguments, then the first argument will be two bytes away and the second

argument will be zero bytes away from the local variables of the function (the

first argument is further away since it was pushed onto the stack first).

" Hashtable ofstrings: Since strings are stored in the pseudocode instructions,

the exact address location of where the string is located needs to be known. A

table that maps the string to the actual address is utilized for this task.

" Hashtable of the argument depth for each function: This table maps each

function name to the amount of space that is needed to store all the arguments

of this function. This is used by a function to determine how much space to

free after the call to that function is complete.

52

4.5.4 Format of Pseudocode

The pseudocode is designed to follow a specific format as follows:

0 Initialization code: This is code that is executed to initialize the program. The

initialization code varies depending on whether there is a function named

"main." If there is a "main" function, the stack machine will execute the main

function automatically. Under this case, the initial code consists of the

following:

" Pushing a 0 on the stack.
" Pushing a 2 on the stack.
" Pushing the address of the "main" function onto the stack (the address will

initially be a label that will be filled in after stage two of code generation).
This is done so that the program is aware of the location of the "main"
function.

" Pushing a 5 onto the stack.
* Pushing a 256 onto the stack.
" Startprocess
" Popping 2 bytes off the stack
" Haltnotify

If the initial code does not contain a "main" function, then the initial code

consists of the following:

" Pushing a label "$labelO"
" Jumping to the "$program globals" label.
" Recording "$labelO" as the value of the program counter at this point

This code is necessary to initialize the global variables. If there is a "main"

function in the program, then it is the responsibility of the "main" function to

initialize all global variables before any other code is executed. However, if

there is no "main" function, then the code must start out by going to the global

variable initialization routines before any code is allowed to execute.

* Global Variable Initialization Code: This code is used to push the global

variables into the appropriate location. The code is as follows:

53

" Initint
e Sprel 0 0
" Push2 191 192: this pushes the address where the global variables are to

be stored
" Setsp
* For each global variable, its initial value is pushed onto the stack. If an

initial value was not given, then a value of 0 is pushed.
" A jump to the label "$program_end." This jumps to code that is found at

the end of the pseudocode that completes the initialization procedure.

* Code for each function: The next section consists of the code for each

function. What gets produced depends on what is in the function. Each

function will start with a checkstack command that checks that the amount of

stack space required by the function is actually available. The actual amount

of space required is unknown until the entire function has been built. Thus,

the command takes a label as its argument. The label will be filled in during

stage two of code generation.

* Ending code: The last section consists of code that is actually called by the

initialization code. There are two different scenarios for this code. The first

scenario is when there is no ICB code to load. Under this circumstance, the

code is as follows:

" Fetchreg 0
" Setsp
* Mret0

However, if ICB code is present, then the code will be loaded in this section

of code. More details about how ICB code is loaded can be found in section

4.5.6.

54

4.5.5 Details of How Instructions Are Translated to Pseudocode

Each instruction that is read in from theflattenedprogram will be translated in a

specific way into pseudocode instructions. The following describes how each instruction

is translated:

* Global Variable Declaration Instruction: This instruction results in the pushing of

the initial value of the variable into the location where global variables are stored.

During the flattening process, this instruction is only generated in the beginning

of the list of instructions to correspond with the fact that global variable

declarations take place in the beginning of the code generation process.

* Local Variable Declaration. This instruction results in the pushing of the initial

value of the variable onto the stack. Like the global variable declaration

instruction, this instruction is found in the beginning of a function when the

instructions are generated during the flattening stage. This corresponds to the fact

that local variable declarations occur in the beginning of functions in the

pseudocode.

* String Literal Instruction. This instruction corresponds to the usage of a string.

Since strings are stored in the pseudocode's memory space, the string literal needs

to be incorporated into the program. This simply involves writing each character

of the string into the pseudocode's memory. Since what is found in the

pseudocode's memory is normally executed, ajumpi instructions needs to be

added that jumps over the characters of the string so that they don't get executed.

* Cast Instruction: This instruction is translated into one of the following

pseudocode instructions:

55

Type of Cast Instruction
Integer + Float int2fl
Float 4 Integer fl2int
Long 4 Float lng2fl
Float 4 Long fl2lng

These instructions will convert whatever value is on the top of the stack to the

appropriate type. Adjustments to the stack pointer will need to be made when

converting between an integer and a float.

" Function Start Instruction: This instruction results in a checkstack operation that

verifies that enough stack space is available for this function to proceed.

" Function End Instruction: This instruction results in a mretO pseudocode

instruction that takes as an argument the number of bytes to pop off the stack.

This value includes all local variables and arguments.

* PrintfInstruction: This instruction will result in a push operation that pushes the

number of arguments in the printf statement onto the stack. This is followed by

the printfpseudocode instruction and a pop statement that pops off the number of

arguments value that was pushed on earlier.

" Jump Instruction: This instruction results in ajumpi instruction that takes in as an

argument the address to jump to. Since the actual address may not be known, a

label is left in its place that will be filled in during stage two of code generation.

" Branch True Instruction: This instruction results in ajtrue instruction that takes in

as an argument the address to jump to. Since the actual address may not be

known, a label is left in its place that will be filled in during stage two of code

generation.

56

* Branch False Instruction: This instruction results in affalse instruction that takes

in as an argument the address to jump to. Since the actual address may not be

known, a label is left in its place that will be filled in during stage two of code

generation.

" Branch Push True Instruction:. This instruction results in ajptrue instruction that

takes in as an argument the address to jump to. Since the actual address may not

be known, a label is left in its place that will be filled in during stage two of code

generation.

" Branch Push False Instruction: This instruction results in ajpfalse instruction that

takes in as an argument the address to jump to. Since the actual address may not

be known, a label is left in its place that will be filled in during stage two of code

generation.

" Function Call Begin Instruction: This instruction initializes a function call and

saves the value of the stack pointer. If the function being called is found in an

ICB file, then the label representing the address of that function is pushed onto the

stack.

* Function Call Expression/Statement Instruction: Both of these instructions

represent calls to a function. Both instructions will result in ajumpi pseudocode

instruction to the label that represents the address of the function. However, for a

function call statement instruction, if the function returns something, then it needs

to be popped since the value is not being used by anybody. If the function

happens to be an ICB function, then a special pseudocode instruction callm] is

used instead of the jumpi. Callml uses the address pushed when analyzing the

function call begin instruction.

" Return Instruction: This instruction is specifically for situations where a value is

returned. If no value is returned by a function, then the code provided after

57

translating thefunction end instruction will suffice. However, if a value is

returned, then the value being returned is accessed and pushed onto the stack.

Then, the mretO/mret2/mret4 pseudocode instruction is added. Which of the

pseudocode instructions is used depends on the data type of what is being

returned.

* Assign Binary Operation Instruction: First, the operands for this operation have

already been pushed onto the stack since the expressions representing the

operands were flattened in the flattener before the statement representing this

entire operation. The code generator needs to first determine the address of the

variable that the result of this operation is being set to. The value of this address

is pushed onto the stack. Next, the binary operation command is added to the

pseudocode.

" Logidn Instruction: This instruction results in a logidn instruction.

" Assign Pre Unary Operation Instruction: First, the operand for this operation has

already been pushed onto the stack since the expression representing the operand

was flattened in the flattener before the statement representing this entire

operation. The code generator needs to first determine the address of the variable

that the result of this operation is being set to. The value of this address is pushed

onto the stack. Next, the operation's instruction is added to the pseudocode.

* Assign Literal Instruction: This instruction will result in the pushing of the literal

onto the stack. If the value is a negative value, then the absolute value will be

pushed first, then the neg2/neg4/fneg operation will be applied to negate the value

after it has been pushed onto the stack

" Array Pointer Instruction: This instruction is used when an array is accessed in its

entirety rather than accessing a single element of the array. This instruction will

result in the pushing of the address where the array is found onto the stack.

58

" Assign Array Location 1 Instruction: This is the first instruction in a sequence of

instructions that are created in the flattener when assigning to an array. This

instruction will result in a pseudocode instruction to push the address of the array.

" Assign Array Location 2 Instruction: This instruction will result in the

pseudocode instruction arefl/are2/aref4 that accesses the actual address of the

array item.

" Assign to Array Location Instruction: This instruction will result in a poke2/poke4

instruction that assigns the value to an array.

" Assign Location 1 Instruction: This instruction pushes the address of the variable

we are reading in onto the stack.

" Assign Location Instruction. This instruction will either push the value of the

variable onto stack, store it in a global variable, store it in a local variable, or store

it in an argument.

* Label Instruction: This instruction will, under most cases, result in the label being

set to the current program counter in the hashtable of labels. However, there are

special labels that are treated differently:

" $program start: This will trigger the code generator to generate code for the
initialization section of the pseudocode.

* $programglobals: This will trigger the code generator to generate code for
global variable initialization section of the pseudocode.

59

4.5.6 Building of ICB code

As mentioned in section 4.5.4, ICB binary code is built at the end of all the

pseudocode. Unlike normal user code, each ICB file is built separately in the

pseudocode. For each ICB file, the relevant information is available in theflat program

object. Most of what gets actually downloaded is already available to us. However, there

are addresses within the ICB code that need to be adjusted based on the address that the

ICB code is built in.

These adjustments can be made by accessing the list of locations within the ICB code

where addresses are located. For each location, the value is then adjusted based on where

the code provided in the ICB file was built and where the code actually gets built. For

example, if the code in the file was built in 0x8000 and the code is now being built in

0x8080, then 0x80 should be added to each address found in the ICB code.

Once the adjustments are made, the code can be downloaded as follows:

" First, ajumpi is added. This jumps to a label that is found after the ICB code.

" The ICB code is downloaded

* A label is added to mark the spot where the jump statement in the first step will

jump to. The jump is added so that when the pseudocode is executed, the binary

code is not executed.

Once the code is downloaded, the compiler needs to record the addresses where

functions and global variables are found. These addresses also need to be adjusted to

reflect where the code is being built.

In addition, some ICB files contain a special function called "initializemodule."

This function initializes the ICB code and needs to be executed immediately. Thus, if

60

such a function in found in an ICB file, then it has to be run and the following

pseudocode is appended:

" A push command to push the address of the "initialize module" function.

" Push 0 onto the stack

" Callml

" A Pop2 command that pops off what is returned by the "initializemodule"

function.

4.5.7 A Simple Example

The following is an example of how the pseudocode is generated for the statement

"x=2+3 ;." First, the instructions that are generated for this statement in the flatten

stage are as follows:

Assign Location 1
Assign Literal: Assigns "2" to a system variable
Assign Literal: Assigns "3" to a system variable
Assign Binary Operation: Assigns results of operation onto
Assign Location: Assigns result of operation to variable x

a system variable

These instructions are then translated to the follow pseudocode instructions

* push2 191 190: this assumes that x is global variable
* push2 0 2
* push2 0 3
* add2
* poke2

As evident in this example, when many of the instructions are given to the code

generator, the instructions that were previously passed are unknown. Thus when

translating certain instructions that require arguments (i.e.: Assign Binary Operation

61

S

0

0

S

S

Instruction), the code generator simply assumes that code to push the operands onto the

stack has already been generated. Thus, the code generator is merely a direct translator

and relies on the previous stages of the compiler to generate correct code.

4.6 Compiling Interactively Entered Code

When compiling code that is executed interactively, numerous portions of the

compiler are omitted and some extra features are required. The following describes how

each module of the compiler is affected:

* Scanner. The scanner is not affected.

* Parser: Normally, the parser will return a program object that represents the

entire program. However, in the case of interactively entered code, an entire

program is not created. Thus, three special constructs were added in stage two of

the parser that accept the following:

" Expressions
" Statements
" A block of statements enclosed in braces

These special constructs are given the lowest precedence. Thus, they are only

reached if all other constructs have already failed. This allows the parser to

function for normal programs. However, for interactively entered code, the parser

will not be able to find correct constructs for the interactively entered code since

none of the code is found within a function. Thus, the only constructs that will

work are the ones specified for interactively entered code.

* Flattener. The flattener has a special method for handling interactive code. This

method only accesses portions of the flattener that generate instructions for

62

statements and expressions. All sections of the flattener that handle functions and

initialization of global variables are not accessed.

* Code Generation: The code generator only generates pseudocode for statements

and expressions. All the initialization code and ending code is omitted. In

addition, the code generator for interactively entered code requires the address

locations of global variables and functions of previously loaded files. The code

generator uses this information if the interactively entered code happens to

reference such information.

In addition, when code is entered interactively, all information related to previously

loaded files is left unchanged.

63

Chapter 5

Board Module

The board module contains all the functionality that allows the compiler to interact

with the controller board. The proper protocols for interacting with the controller board

are based on what is done by the current implementation of Interactive C.

The board module has two different ways to download code. One method is for

loading files while the other is for loading and executing interactively entered code. Both

methods take in a listing of the compiled pseudocode as its input.

5.1 Details of Board Downloading

The protocol for loading interactively code uses a subset of the methods used in

loading code. To download interactively entered code, the following protocol is used:

" The code is downloaded to the controller board in 100 byte blocks starting at

address OxC200. This address marks the beginning of space that is used by the

controller board to run interactively entered code.

" Writes the constant 186 directly after the spot where the code is downloaded to.

186 represents the haltnotify pseudocode command.

" Reads and saves initial location of the stack pointer from address OxC302.

0xC302 is the designated address where the value of the stack pointer is stored.

64

" Writes the address OxC200 to the process buffer (OxC300).

" Clears memory at location OxOB.

" Writes 0 to location 0x309. Location Ox309 is where the status of the process

being executed is stored. Setting it to 0 resets the value.

" Read in the value at memory location OxOB

" Read in the final stack pointer value.

" Read in the value located at the final stack pointer. This contains the value being

returned for interactively entered code.

" Save the initial stack pointer back to location OxC302.

The protocol for loading code uses the protocol described above. However,

additional steps are taken before running the above protocol:

" Kill all processes

" Kill all interrupts

" Download code to the controller board in 100 byte blocks starting at address

0x8000.

Once these steps are completed, the board module will proceed with the same steps

that are used to download interactively entered code. However, the code that is

downloaded during this step jumps to the location where the code is initialized. This will

allow the initialization routines to be executed.

The user is mostly kept away from any of the details of the board module. However,

the user is informed of the size of the file being loaded and the address location where the

code is going to.

65

Chapter 6

Conclusions

The new implementation of Interactive C satisfies the requirements of compiling C

files, compiling ICB files, compiling LIS files, supporting interactive mode, and

interfacing with the controller board through a serial connection. The program was

divided into modules to ease implementation and facilitate future changes made to the

code. While the program performs the functionality of the current implementation of

Interactive C, it also provides improved handling of errors and improved portability

through the use of Java. In addition, the new implementation lays the groundwork for

improvements in the hardware that Interactive C can support.

While the program is useable at its current state, there is much room for

improvement. The following are items where this program can be improved:

* Downloading Speeds: Unfortunately, the Java package for interfacing with the

serial port (javax.comm) is very slow. As a result, the amount of time required to

execute the board module every time a file is loaded is excessively long. Time

should be invested in finding a speedier way of downloading code.

* Optimizations: While test trials have found that the code is relatively optimal, an

investigation should be done into whether significant optimization algorithms

66

should be incorporated. These optimizations may include dead-code elimination,

mathematical simplifications, and loop unrolling.

* Additional Language Support: Additional language support should be looked into

to expand the language the user can utilize. For example, support for multi-

dimensional arrays may be added in the future.

67

Appendix A

Language Definitions

A.J Lexical Considerations

All identifiers and reserved words are case sensitive. The reserved words are:

#define, atan, break, char, const, cos, else, explO, exp, float, for, if int, log, logO, long,
null, printf return, sin, sqrt, tan, void, while

Comments can be stated by either the following two methods:

" Start with // and terminate with the end of the line
* Start with /* and terminate with */

White space (one or more spaces, tabs, page-breaks, line-breaks, comments) may appear

between any lexical token.

68

A.2 Reference Grammar

<program>
<preprocessor>

<fielddecl>
<method decl>

<method-block>

<block>

<ifblock>

<statement>

<if-statement>

<for statement 1>

<for statement 3>

<location>

<preprocessor>* <field decl>* <method decl>*
#define <id> <literal expression>

<type> (<vardecl_arg>}+, ;
{<type> I void} <id> ([{<type> {<id> I <id>'[' 'I' }}+,I
<method-block>

4
4
4

'{' <var-decl>* <statement>* '}'
{ <statement>* '}'

' <if statement>* '

4 <location> = <expr>;
<location> <postun op>;
<location> <arithassignop> <expr>;
<methodcall> ; I
if (<expr>) {<if block> I <ifstatement>}

[else {<ifblock> I <ifstatement>}]
while (<expr>) { <block> I <statement> } I
for ([<for statementl>+,] ;<expr>; [<for statement_3>+,])

{<block> I <statement>}
printf (); I
printf (<stringliteral> [, <expr>+,]);

break ; I
return [<expr>];

4 <location> = <expr>; I
<location> <postun op>; I
<location> <arith_assignop> <expr>;
<methodcall> ; I
if (<expr>) {<ifblock> j <ifstatement>}

[else {<if-block> <ifstatement>}

while (<expr>) { <block> <statement> } I

for ([<for statement_l>+,];<expr>; [<for statement_3>+,])
{<block> I <statement>}|

printf (); I
printf (<stringliteral> [, <expr>+,])

return [<expr>];

4 <location> = <expr>
4 <location> = <expr> I

<location> <postun op>
<location> <arithassign op> <expr>
<methodcall>

4 <id> I
<id> '-[' <expr> -'

69

<x> Means that x is a nonterminal
X Means that x is a terminal
[x] Means there are zero or one occurrences of x
x* Means zero or more occurrences of x
x+,1 Means a list of one or more comma separated

occurrences of x
Separates alternatives

{ } Large braces are used for grouping

<expr>

<method call>

<vardecl>

<vardeclarg>

<post un op>

<arith assignop>
<type>

<id>

<literal expression>

<number>

<int literal>

<longintliteral>

<hex literal>

<longhexliteral>

<binliteral>

<longbin literal>

<floatliteral>

<char literal>

<stringliteral>

<char>

4* <id> (<expr>+,) I <id> ()

4 <type> {<vardecl_arg>}+,

4 <id> I
<id> = <literal expression> F
<id> ' [<int_literal> <charliteral>] '
<id> '[' [<int_literal> <char literal>] ' = '{' [{<number>}+,

S{<char-literal>}+,] '}' I
<id> ' [<int_literal> F <charliteral>]] <stringliteral>

4 ++ I --
4 += F -= + * /= F &= F 1= F ^ >= <
4 char F float int F long
4 <alpha> <alphanum>*

4 <number> I <char literal> F <stringliteral>
4 <int_literal> I <longint literal> F <hex-literal> F

<longhex literal> I <bin-literal> F <longbin literal> F
<floatliteral>

4 <digit> <digit>*

4 <digit> <digit>* [L1l]

4 0 xjX <hexdigit> <hex digit>*

4 0 xjX <hexdigit> <hex digit>* [Ll]

4 0 bIB <bindigit> <bin digit>*

4 0 bIB <bindigit> <bin-digit>* [L1l]

4 <digit>* . <digit> <digit>* [eFE [-I+] <digit> <digit>*] I
<digit> <digit>* . <digit>* [eFE [-I+] <digit> <digit>*] I
<digit> <digit>* [eFE [-I+] <digit> <digit>*]

4 '<char>'

4 " <char>*

4 Any 8-bit ASCII character

70

4 <location> I
<methodcall>
<literalexpression>

<expr> + <expr> F
<expr> - <expr>
<expr> * <expr>
<expr> / <expr> F
<expr> <expr>
<expr> << <expr> F
<expr> >> <expr>
<expr> & <expr>
<expr> <expr> F
<expr> <expr>
<expr> < <expr>
<expr> > <expr> F
<expr> <= <expr>

<expr> >= <expr>

<expr> == <expr>

<expr> <expr>
<expr> && <expr>
<expr> |1 <expr>
- <expr> I

<expr> F
~ <expr> I
sin <expr> I
cos <expr>
tan <expr> F
sqrt <expr>
atan <expr>
loglO <expr>
log <expr> I
explO <expr>
exp <expr> I
(<expr>) F
(<type) <expr>

<alphanum>

<alpha>
<digit>
<hex-digit>

<bin digit>

* <alpha> I <digit>
*a b c y...y z A B C Y .. YIZ
*0 1 2 9..9
4 0 1 2 ... 9 Ia jb f AIB ... F

0 1

A.3 Precedence Definitions

Operator Associatively

() [I]Left to right
S~++ - Right to left

*'. /Left to right
+ - Left to right

<< >> Left to right
< <= > >= Left to right

== I = Left to right

& Left to right
Left to right

Left to right
&& Left to right

I Right to left
+ -= *= /= &= | ^ <<= Right to left

Left to right

A.4 Semantic Rules

1. Duplicate variable names within the same scope are not allowed.

2. A #define variable cannot share a name with any other variable regardless of the

scope.

3. #define variables cannot be associated with non-char arrays.

4. No functions should share the same name.

5. All variables and functions need to be declared.

6. An array declaration must indicate its size. The declared size of the array can be

an integer or a char literal.

7. Initial values for any variable declaration must be a literal value of the same type

as the declared type of the variable.

71

8. The initial value list of an array must be less than or equal to the declared size of

the array.

9. An array index must be an integer or a char literal.

10. Casting is only allowed to and from a float.

11. exp, exp10, sin, cos, tan, atan, log, log10, sqrt operations must be performed on

floats

12. mod, bitnot, lognot, logor, logand, bitxor, bitor, bitand, >>, << operations can

only be performed on int operands.

13. +, -, *, /, =, !=, <, >, <=, >= operations can only be performed on operands of the

same type

14. / operation cannot be used on a long

15. A return expression must be of the same type as the return type of the function.

16. If a function is declared to return something, then it must have a corresponding

return statement in all possible execution paths.

17. The data types of the arguments in a printf statement must correspond to what is

indicated in the string of the printf statement.

18. The number of arguments in a printf statement must correspond to what is

indicated in the string of the printf statement.

72

Appendix B

ICB File Format

The ICB file format consists of three primary components:

" Binary code assembled in one location

* Binary code assembled in another location

" Internal references, variable references, and function references.

B.1 Binary Code

The binary code that is given in an ICB file is to be downloaded directly to the

controller board. The code is found in two separate blocks that are built in two different

addresses. This is done to allow the parser of an ICB file to be able to detect address

locations within the ICB file. Any binary code that differs between the two blocks

consists of code that refers to an address within the binary code. Such addresses need to

be adjusted according to the final location of the binary code. The addresses are each two

bytes long.

Each line of binary code follows a special format. The following lists what is found

in a line of binary code:

0 Si: The first item in a binary code line is the "SI" string. This string alerts

whatever's parsing the ICB file that this line contains binary code

73

* Byte count: The byte count is a one-byte value of the number of bytes to be found

after the last byte of the byte count.

* Address code was build: The address where this line of code was built is next.

This is a two byte address value.

* Binary code: The remaining string of this line except for the last byte is the binary

code.

0 Checksum: The last byte of the line is the checksum. If everything on that line of

code except for the "SI" string was added in one-byte blocks, the value should

sum to something that ends in OxFF in hexadecimal.

The first block of binary code consists of consecutive lines of binary code. The block

of binary code is terminated by a line that starts with the string "S9" which indicates that

that line is not a data line and should be ignores. That line after the "S9" line starts the

second block of code that was built in a different address locations. This block is also

terminated by a line that starts with "S9."

B.2. Internal references, variable references, and function references

Following the two blocks of code are various internal references. Most of these

references can be ignored by the ICB parser since these references are not relevant to the

final code that is loaded. However, found within these internal references are references

to the variables and functions that can be referenced.

Variable references are start with the string "variable_" followed by the name of the

variable. Similarly, function references start with string "subroutine_" followed by the

name of the function. Following the name of the function or variable is the address

74

where the variable can be accessed or the function can be called. Everything else on that

line is irrelevant and can be ignored.

This address is a two byte address that was built according to the address used to

build the second binary code block. These addresses needed to be adjusted depending

upon where the final binary code is loaded by the compiler. This information allows

another program to be aware of what global variables and functions are available and the

addresses to access them.

75

Appendix C

Available Pseudocode Instructions

C.J General Instructions

Instruction code Arguments Pops PushesValue
add2 2 None 2 two byte operands Result of + operation
sub2 4 None 2 two byte operands Result of - operation

mult2 4 None 2 two byte operands Result of * operation

div2 6 None 2 two byte operands Result of operation

bitand2 1 None 2 two byte operands Result of & operation

bitor2 10 None 2 two byte operands Result of ^ operation

bitxor2 12 None 2 two byte operands Result of = operation

equal2 14 None 2 two byte operands Result of < operation

t2 16 None 2 two byte operands Result of < operation

gt2 18 None 2 two byte operands Result of > operation

Ishift 0 None 2 two byte operands Result of !< operation
Iognot2 22 None 1 two byte operand Result of! operation

logidn2 24 None 1 two byte operand Result of logical identity

bitnot2 26 None 1 two byte operand Result of ~ operation
neg2 28 None 1 two byte operand Result of negation operation

add4 30 None 2 four byte operands Result of + operation
sub4 32 None 2 four byte operands Result of - operation
mult4 34 None 2 four byte operands Result of * operation

1t4 36 None 2 four byte operands Result of < operation

gt4 38 None 2 four byte operands Result of > operation

equal4 40 None 2 four byte operands Result of == operation
neg4 42 None 1 four byte operand Result of negation operation

push2 4 1 two byte argument None Argument onto stack

push4 46 1 four byte argument None Argument onto stack

pushblock 48 No. of bytes to be pushed and None Bytes given in argument

pp2 inline data of bytes to be pushed

pop2 0 None Two bytes from stack None

pop4 52 None
Four bytes from stack None

peeki 4 Two byte address None argument's address

peeki2 6 Two byte address None argu nt'value found at

76

peeki4 58 Two byte address None Four byte value found at
peek1________________________ NnTwby__adresomta nduargument's address
peekl 60 None Two byte address from stack One byte value found at address

_______found on stack

peek2 62 None Two byte address from stack Two byte value found at addres
_______found on stack

peek4 64 None Two byte address from stack Four byte value found at
_________ ______address found on stack

Two byte value that is the
speek2 66 None One byte offset specified offset away from the

stack pointer
Two byte value that is the

speek4 68 None One byte offset specified offset away from the
stack pointer

pokeil 70 Two byte address One byte value to be written to None
address specified in argument

pokei2 72 Two byte address Two byte value to be written to Noneaddress specified in argument

pokei4 74 Two byte address Four byte value to be written to Noneaddress specified in argument
One byte value and two byte

pokel 76 None address, writes value to address None
specified
Two byte value and two byte

poke2 78 None address, writes value to address None
specified
Four byte value and two byte

poke4 80 None address, writes value to address None
specified
One byte value and two byte

pokel nopop 82 None address, writes value to address One byte value that was popped
specified
Two byte value and two byte

poke2nopop 4 None address, writes value to address Two byte value that was popped
specified
Four byte value and two byte Four byte value that waspoke4nopop 86 None address, writes value to address Foubev
specified popped

bitset 88 None Two byte value and address, Nonesets address location to value

bitclr 90 None Two byte value and address, Noneclears address location

Two byte value and one byte Two byte value just popped to
spoke2 92 None offset specified offset from stack

oe pointer

Four byte value and one byte Four byte value just popped to
spoke4 94 None offset specified offset from stack

pointer
umpi 96 Two byte address to jump to None None

ump 98 None Two byte address to jump to None

false 100 Two byte address to branch to Two byte conditional, jumps if Noneconditional is 0

true 102 Two byte address to branch to Two byte conditional, jumps if None
_____________________conditional is anything but 0

pfalse 104 Two byte address to branch to Two byte conditional, jumps if If jump taken, pushes a 1, else
conditional is 0 pushes a 0

ptrue 106 Two byte address to branch to Two byte conditional, jumps if If jump taken, pushes a 1, else
conditional is anything but 0 pushes a 0
Number of bytes indicated by

mretO 108 Number of bytes to pop off stack argument. Then pops return Noneaddress off stack and saves that Nn
as the program counter.
Number of bytes indicated by Pushes two byte return value on

mret2 110 Number of bytes to pop off stack argument. Then pops return stack The return value is savedaddress off stack and saves thatas the program counter. beoeayhngiIopd

77

Number of bytes indicated by Pushes four byte return value orargument. Then pops returnmret4 112 Number of bytes to pop off stack aren stack and saves that sack The return value is saved

as the program counter. before anything is popped.

Two byte index and two byte Address where a char array iten
arefl 114 None address where array is located, indicated by index and array

address is located.

Two byte index and two byte Address where an int array item
aref2 116 None address where array is located. indicated by index and array

address is located.

Two byte index and two byte Address where a float or long
aref4 118 None address where array is located. array item indicated by index

and array address is located.
A two byte argument. The

addsp 122 current value of the stack is None None
modified by the argument

sprel 124 A two byte argument None Sum of current value of stack
pointer and argument

A two byte argument. A run
time error will be generated if

checkstack 126 the amount of free space None Noneavailable in the stack is less
than what is indicated by the
argument.

setsp 128 None Two byte value, the stack None
pointer is set to that value.

fl2int 130 None Pops a four byte float Pushes two byte at
representation of float value.

int2fl 132 None Pops a two byte int. Pushes flour byte float
representation of i at value.

ing 134 None Pops a four byte float. Pushes four byte long
representation of float value.

sb 146 None 2 a four byte lo ns Pushes flour byte float
m t 136 None Pop2 a fourbyte ang, representation of long value.

fadd 138 None 2 four byte operands Result of + operation

fsub 140 None 2 four byte operands Result of - operation
fmuit 142 None 2 four byte operands Result of < operation

fdiv 144 None 2 four byte operands Result of operation

fequal 146 None 2 four byte operands Result of == operation
fit 148 None 2 four byte operands Result of < operation

fgt 150 None 2 four byte operands Result of > operation

fneg 152 None 1 four byte operand Result of negation operation

fsqrt 154 None 1 four byte operand Result of sqrt operation

fexp 156 None 1 four byte operand Result of exp operation

flOtx 158 None 1 four byte operand Result of explO10 operation
fx2y 160 None 2 four byte operands Result of x to the power y

fin 162 None 1 four byte operand Result of log operation

flog 164 None 1 four byte operand Result of os10 operation
fatan 166 None 1 four byte operand Result of atan operation

fsin 168 None 1 four byte operand Result of sin operation
fcos 170 None 1 four byte operand Result of cos operation

Iftan 172 INone 1 four byte operand IResult of tan operation

78

C.2 Special Instructions

Instruction alcode Description

fl2ascii 174 Takes a floating point number and an address to a string, returns a string.

printlcd2 176 Pops two byte word and prints to LCD.

printf 178 Pops string and arguments and prints on LCD.

printstring 180 Pops address where string is located and prints that string on LCD.

printchar 182 Pops char off stack and prints on LCD.

startprocess 184 Special task control command.

haltnotify 186 Special task control command.

killprocess 188 Special task control command.

defer 190 Special task control command.

systime 192 Special task control command.

loadreg 194 Takes one byte argument specifying register to write to. Pops value at top of stack and write
to specified register.

fetchreg 196 Takes one byte argument specifying register to read from. Takes value at specified register
and pushes onto stack..

bench 198 Returns integer indicating how many machine cycles were able to execute in one
milliseconds of real time.

callml 200 Calls function specified in an ICB file. Pops two bytes representing argument to function and
pops address to jump to. Jumps to address

initint 202 Initializes 6811 interrupts to pcode defaults, de-installing any binary module routines.

undefined 204 Undefined instruction.

79

Appendix D

Listing of Source Code

" Main Module
o ic.java: main file, contains "main" function to execute program

" Board Module
o board/board.java: contains all code for interfacing with controller board

" Compiler Module
o compiler/compiler.java: main file for compiler module
o compiler/compilerlnfo.java: data structure that holds information to be returned from

compiler module to main module
o compiler/compilerLISInfo.java: data structure that holds information to be returned

from compiler module to main module when compiling a LIS file
o compiler/errorMsg.java: data structure used to hold error messages
o compiler/Opcode.java: file holding all translations from names of pseudocode

commands to numeric representation of pseudocode command
o compiler/OpType.java: file holding encodings of all operations (i.e. +, -

o compiler/VarType.java: file holding encodings of all data types (i.e. int, long)
o Scanner Sub-Module

- compiler/Yylex: JLex input file
o Parser Sub-Module

- compiler/parse 1.cup: stage one parser CUP input file
- compiler/parse 1 Info.java: data structure holding information to be returned

from stage one parser to compiler
- compiler/parse2.cup: stage two parser CUP input file
- compiler/parse2lnfo.java: data structure holding information to be returned

from stage two parser to compiler
- compiler/parselnteractivelnfojava: data structure holding information to be

returned from stage two parser to compiler after compiling interactively
entered code

- compiler/Expression.java: expressions used in creating parse tree
" compiler/BinOpExpression.java
* compiler/CastExpression.java
* compiler/FunctionCallExpression.java
* compiler/LiteralExpression.j ava
* compiler/LocationExpression.java
" compiler/PreUnOpExpression.j ava

- compiler/Function.java: data structure used to describe a function
" compiler/ProgramSignature.java: data structure representing a program

signature

80

" compiler/Program.java: data structure representing a program, subclass of a
program signature.

" compiler/Statement.java: statements used in creating parse tree
" compiler/ArithAssignOpStatement.java
" compiler/AssignmentStatement.java
" compiler/BreakStatement.java
* compiler/ForStatement.java
" compiler/FunctionCallStatement.java
" compiler/IfElseStatement.java
* compiler/PostUnOpStatement.java
* compiler/PrintfStatement.java
" compiler/ReturnStatement.java
" compiler/WhileStatement.java

- compiler/Variable.java: data structure used to describe a variable
o Flattener Sub-Module

" compiler/flatten.java: main file for flattener
" compiler/flatProgram.java: data structure used to hold flattened program
" compiler/Instruction.java: instructions used in flattened program

* compiler/ArrayPointerlnstruction.java
" compiler/AssignArrayLocationlnstruction.java
* compiler/AssignArrayLocationInstruction 1.java
* compiler/AssignArrayLocationlnstruction2.java
* compiler/AssignBinOpInstruction.java
* compiler/AssignFunctionCalllnstruction.java
* compiler/AssignLiterallnstruction.java
* compiler/AssignLocationlnstruction.java
* compiler/AssignLocationlnstruction .java
* compiler/AssignPreUnOpInstruction.java
* compiler/AssignToArraylnstruction.java
* compiler/BranchFalselnstruction.java
* compiler/BranchPushFalselnstruction.java
* compiler/BranchPushTruelnstruction.java
* compiler/BranchTruelnstruction.java
* compiler/CastInstruction.java
" compiler/FunctionCallExpressionlnstruction.java

* compiler/FunctionCalllnstructionBegin.java
" compiler/FunctionCallStatementlnstruction.java
* compiler/FunctionCallEndlnstruction.java
* compiler/FunctionStartInstructionjava
* compiler/JumpInstruction.java
* compiler/Labellnstruction.java

* compiler/Logidnlnstruction.java
* compiler/Printflnstruction.java
* compiler/Returulnstruction.java
" compiler/StringLiterallnstruction.java
" compiler/VarDecllnstruction.java

o compiler/GlobalVarDecllnstruction.java
o compiler/LocalVarDecllnstruction.java

81

o Code Generator Sub-Module
- compiler/codeGen.java: main file for code generator
" compiler/codeGenlnfo.java: data structure that holds information that is

returned from code generator to compiler module

82

References

1. Aho, Alfred; Sethi, Ravi; Ullman, Jeffrey. Compilers. Reading, Massachusetts:

Addison Wesley. 1988.

2. Appel, Andrew. Modem Compiler Implementation in Java. Cambridge: Cambridge

University Press. 1998.

3. Muchnik, Steven. Advanced Compiler Design & Implementation. San Francisco:

Morgan Kaufmann. 1997.

4. http://www.cs.princeton.edu/-appel/modem/j ava/CUP/, CUP Parser Generator for

Java

5. http://www.cs.princeton.edu/-appel/modem/java/JLex/, JLex: A Lexical Analyzer

Generator for Java

6. http://www.handyboard.com, The Handy Board

83

