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Abstract
In this thesis I develop a face recognition system that is capable of detecting and
recognizing frontal and rotated faces. Two face recognition methods focusing on the
aspect of pose invariance are presented and evaluated - the whole face approach
and the component-based approach. The main challenge of this task is to develop
a system that is able to identify people under different viewing angles in realtime.
The development of such a system will enhance the capability and robustness of
current face recognition technology.

The whole-face approach recognizes faces by classifying a single feature vector
consisting of the gray values of the whole face image. The component-based ap-
proach first locates the facial components and extracts them. These components
are normalized and combined into a single feature vector for classification. The
Support Vector Machine (SVM) is used as the classifier for both approaches.

Extensive tests with respect to the robustness against pose changes are per-
formed on a database that includes faces rotated up to about 400 in depth. The
component-based approach clearly outperforms the whole-face approach on all tests.
Although this approach is proven to be more reliable, it is still too slow for real-time
applications. That is the reason why a real-time face recognition system using the
whole-face approach is implemented to recognize people in color video sequences. 1
Thesis Supervisor: Tomaso Poggio
Title: Uncas and Helen Whitaker Professor
Department: Department of Brain and Cognitive Sciences

Part of this thesis is published in Face Recognition with Support Vector Machines: Global
versus Component-based Approach, IEEE ICCV 2001.
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Chapter 1

Introduction

The development of biometrics identification systems is a very popular research topic

in artificial intelligence. Biometrics security systems have a high potential of pro-

viding a simple and powerful protection of the privacy of users and the information

stored in the mobile electronic devices, such as cellular phones and laptops. Different

kinds of biometrics security systems have been actively applied to commercial hand-

held devices. For example, face recognition screensavers have been implemented in

some laptop models, fingerprint and retinal pattern recognition technology has been

applied to high-level security building access, and voice identification is a popular

research topic in the cellular phone industry.

Among all the applications of biometrics identification, face recognition is most

suitable for automatic visual surveillance systems. Face recognition can also be easily

applied to hand-held devices given that the quality of the color display and resolu-

tion of these devices is high. That is the reason why a great deal of research has been

performed to develop new algorithms and to enhance the capability and robustness

of face recognition. The number of real-world applications, such as surveillance and

man-machine interfaces, and the availability of cheap and powerful hardware also

lead to the development of commercial face recognition systems. However, most of

these systems are only capable of recognizing frontal views of faces. The frontal

face recognition approach is adequate in access control applications where the user

is consistent from session to session, e.g. accessing a personal laptop or a cellular

phone. However, in surveillance applications where the user is often not aware of

9



CHAPTER 1. INTRODUCTION

the task, it is important for the system to handle faces rotated in depth.

Rotation invariant face recognition is an important issue to address because of

its many real-world applications, especially in surveillance. It is clear that if a robust

system is created, it will have a huge impact on many different areas of commercial

and military technology.

1.1 Previous Work

A survey on face recognition is described in [5]. Most of the previous work on face

recognition was primarily based on classifying frontal views of faces, assuming that

the person was looking straight into the camera. The approaches I adopt and develop

in this thesis build on previous work in the areas of whole-face and component-based

face recognition [8]. In order to improve the robustness of the system, rotation of

faces is taken into account in designing the system.

1.1.1 Whole-face Approach

In the whole-face approach, a single feature vector is used to represent the face

image as an input to a classifier. Some common techniques include single-template

matching, eigenfaces [13] [15], Fisher's discriminant analysis [2], and neural net-

works [7]. Eigenfaces, described in [13], represent face images in a low dimensional

feature space using principle component analysis (PCA). In [7], back-propagation

neural networks were used to perform identification. These systems work well for

classifying frontal views of faces. However, they are not robust against pose changes

since the whole-face approach is highly sensitive to translations and rotations of the

face. Figure 1.1 shows that a rotated face cannot be matched by a single whole-face

pattern. To avoid this problem, an alignment stage can be added before classifying

the face. Aligning an input face image with a reference face image requires comput-

ing correspondences between the two face images. The correspondences are usually

determined for a small number of prominent points in the face like the center of the

eyes, the nostrils, or the corners of the mouth. Based on these correspondences, the

10



1.1. PREVIOUS WORK

input face image can be warped to a reference face image. In [4], face recognition is

performed by independently matching templates of three facial regions (both eyes,

nose and mouth). The configuration of the components during classification is un-

constrained since the system does not include a geometrical model of the face. A

similar approach with an additional alignment stage was proposed in [3]. Active

shape models are used in [10] to align input faces with model faces.

a) b)c

Figure 1.1: The problem caused by rotations.

1.1.2 Component-based Approach

Alternatively, face recognition can be performed by first detecting the facial com-

ponents. The component-based approach is done by classifying local facial com-

ponents. The advantage of using component-based recognition is that local facial

components are less sensitive to translation and rotation than the whole face pat-

tern. The component-based approach can compensate for pose changes by allowing

a flexible geometrical relation between the components in the classification stage.

Elastic grid matching, described in [18], uses Gabor wavelets to extract features at

grid points and graph matching for the proper positioning of the grid. The recog-

nition was based on wavelet coefficients that were computed on the nodes of the

elastic graph. In [12], a window was shifted over the face image and the discrete

cosine transform (DCT) coefficients computed within the window were fed into a

2-D Hidden Markov Model.

11



CHAPTER 1. INTRODUCTION

1.2 Our Approach

Both the whole-face approach and the component-based approach are implemented

and evaluated in this thesis.

The whole-face approach consists of a face detector that extracts the face part

from an image and propagates it to a set of SVM classifiers that perform face recog-

nition. By using a face detector, the face part of the image is extracted and the

background around the face is removed, so that translation and scale invariance is

achieved. Due to changes in the pose and viewpoints, there are many variations in

face images, even of the same person, which make the recognition task difficult. For

this reason, the database of each person is split into viewpoint-specific clusters. A

linear SVM classifier is trained on each cluster so as to distinguish one person from

all other people in the database. A real-time face recognition system based on the

whole-face approach is also built. Figure 1.2 shows a block diagram of the real-time

system.

Face Detection
Color image from Preprocessing: SVM face
video stream Ski eteco -BG subtraction detector to

by MAP model -Dilation locate the
-CCA face

Face Recognition

SVM face recognizers to recognize faces

1/
Identity of the person

Figure 1.2: The system overview.

The component-based approach uses a face detector that detects and extracts

12



1.2. OUR APPROACH

local components of the face. The face detector consists of a set of SVM classifiers

that locate different facial components and a single geometrical classifier that checks

if the configuration of the components matches a learned geometrical face model.

The detected components are extracted from the image, normalized in size, and fed

into a set of SVM classifiers for face recognition.

The outline of the thesis is as follows: Chapter 2 gives an overview of the SVM

classifier and its application on multi-class classification. Chapter 3 describes various

image processing techniques for preprocessing the images obtained from the video

stream in real-time. Chapter 4 explains the whole-face and component-based face

recognition approaches. Chapter 5 contains experimental results and a comparison

between the two face recognition approaches. Chapter 6 concludes the thesis and

suggests future work.
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Chapter 2

Support Vector Machine Classifier

Support vector machines (SVMs) have been extensively used as classifiers in pattern

recognition. The SVM performs binary pattern classification by finding a decision

surface which separates the training data into two classes. This decision surface

is called a hyperplane. In most cases, more than one hyperplane can be found

in the process that separates the training data, as shown in Fig. 2.1a. The gray

area indicates all possible hyperplanes which separate the two classes. SVM selects

the hyperplane which maximizes the distance between the positive class and the

negative class, as shown in Fig. 2.1b. In [16], this hyperplane is described as the

optimal hyperplane with respect to the structural risk minimization.

2.1 Binary Classification

Fig. 2.1a shows a 2-D problem for linearly separable data. In many two-class pat-

tern classification problems, classes can be separated by more than one hyperplane.

SVM determines the formulation of the hyperplane, which maximizes the distance

between the two classes, and chooses it to be the decision plane. The decision plane

is denoted by f = 0 in Fig. 2.1b. Support vectors (SVs) are the closest points of

each class to the decision plane. They are the circled data points in Fig. 2.1b. The

distance from the decision plane to the SVs is denoted by M in Fig. 2.1b and is

called the margin between the two classes.

15



CHAPTER 2. SUPPORT VECTOR MACHINE CLASSIFIER

SVM belongs to the class of margin maximizing classifiers because it chooses

the hyperplane which gives the largest margin to be the decision plane. The SVM

decision function has the following form:

f (x) = ajyxi -x + b (2.1)
i=1l

where x. E IR", i = 1,2,..., 1. Each point of xi belongs to one of the two classes

identified by the label yj E {-1, 1}. The coefficients ac and b are the solutions of

a quadratic programming problem [16]. ao is non-zero for support vectors and is

zero otherwise. Classification of a new data point x in the test set is performed by

computing the sign of the right-hand side of Eq. (2.1). The distance from x to the

hyperplane is computed as follows:

Et1 ajyjxi -x + b
d(x) = '= (2.2)

11 Ef=1 ajyjxilI

The formulation in eq. (2.2) is the normalized output from eq. (2.1). It is the

distance of a data point from the decision plane. The sign of d is the classification

result for the test data x, and I d I is the distance from x to the decision plane. The

farther away a point is from the decision plane, the more reliable the classification

result is.

When the data are not linearly separable, each point x in the input space is

mapped to a point z = <D(x) of a higher dimensional feature space where the data

can be separated by a hyperplane. The mapping (D(-) is represented in the SVM

classifier by a kernel function K(., .). The decision function of the SVM is thus:

16



2.2. MULTI-CLASS CLASSIFICATION

f (x) = yiaiK(xi, x) + b (2.3)

An important family of kernel functions is the polynomial kernel:

K(x, y) = (1 + x -y)P (2.4)

where p is the degree of the polynomial. In this case, the components of the

mapping <k(x) are all the possible monomials of input components up to the degree

p. Most of the experiments in this thesis make use of the linear SVMs except for

one of the experiments done by the polynomial second degree SVM.

2.2 Multi-class Classification

In order to classify q classes with SVM, the one-vs-all approach is used. In this

approach, q SVMs are trained and each of the SVMs separates a single class from

all the remaining classes [6] in the training set. The classification in our experiments

is done by running a feature vector through all q SVMs. The identity of the person

is established according to the SVM that produces the highest normalized output

given by Eq. (2.2).

17
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=

+ *

Dimension 1

Figure 2.1: a) The gray area shows all possible hyperplanes which separate the two

classes. b) The optimal hyperplane maximizes the distance between the SVs of the

two different classes. The points (1, 2, and 3) are the SVs. The distance M is the

margin.
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Chapter 3

Preprocessing

Images from the video sequence are preprocessed in four steps. First, a skin detector

based on a maximum a posteriori (MAP) probabilistic model is used to separate the

skin pixels from the non-skin pixels in a scene. Second, background subtraction is

used to remove the static background and the background pixels that are mistaken

as skin pixels. Each of these steps generates a binary image. By combining these two

binary images, a new binary image that shows the presence of skin pixels is produced.

Third, a morphological operation is applied to dilate the combined binary image.

Finally, the connected component analysis algorithm determines the largest region

in the dilated image and claims that this is the face part of a person.

3.1 Skin Detection

The skin detector is trained and used to classify skin pixels from the non-skin pixels

in video sequences [9]. Since the presence of skin pixels represents the presence of

people, the skin detector is thus a person detection. Two separate sets of color im-

ages are used for training and testing the skin detector. The separation of the skin

part from the non-skin part of color images is based on the distinct color properties

of the human skin. Each pixel is represented by its normalized red and green colors.

The classification of a skin pixel and a non-skin pixel is performed by a maximum

a posteriori (MAP) probabilistic model adapted on a training set of skin pixels and

non-skin pixels. The input to the MAP model is the normalized red and green color

19



CHAPTER 3. PREPROCESSING

value of a pixel and the output is one of two classes: the skin class or the non-skin

class. Fig. 3.1 is a block diagram that shows the training of the skin detector.

Normalized histogramming:
RGB values R values skin histogram MA P s

-non-skin histogra

Figure 3.1: The block diagram of the skin detector.

The skin training set was obtained by taking pictures of the CBCL staff with a

CCD color camera. Twenty pictures at a resolution of 640 x 480 pixels were taken

of the faces of each person at 5 frames per second. The skin parts in these images

were extracted and labeled manually. Skin images taken at different times were used

as test set. The non-skin training set was obtained by taking pictures of the empty

office as well as some clothing samples with the same CCD camera.

The normalized red and green color space is often used for skin detection since

it reduces sensitivity to changes in illumination and intensity. By normalizing the

colors, luminance information is not taken into account. This makes the skin detec-

tor work for both light and dark skin colors. Normalized red and green color pixels

from the skin and non-skin training sets are used to construct the skin and non-skin

histograms.

Histogramming belongs to the non-parametric density estimation in which the

probability density functions depend on the data itself and the form of the function

is not specified in advance. The 256 values of red and green are quantized into 32

discrete segments with 8 values in each segment. The 2-D histograms of the skin

pixels and the non-skin pixels are obtained by dividing each of the red and green

axes into 32 bins. These histograms approximate the probability density functions

of the r-g color given the presence of a skin pixel and the presence of a non-skin pixel.

20



3.1. SKIN DETECTION

a) normaized R-values in 32 segments b) normalized R-values in 32 segments

Figure 3.2: a) The 32 x 32 bin histogram of the skin pixels in the r-g plane. b)

The 32 x 32 bin histogram of the non-skin pixels in the r-g plane. The darker color

represents higher probability of occurrence.

A 32 x 32 bin skin histogram and a 32 x 32 bin non-skin histogram are con-

structed from the skin pixels and non-skin pixels of the training set respectively.

The conditional probabilities of the r-g color of a pixel given a skin pixel P(rg I
skin) and the conditional probabilities of the r-g color of a pixel given a non-skin

pixel P(rg I nonskin) are computed. Fig. 3.2a and 3.2b show the skin and non-skin

histograms respectively. These two histograms are used to generate the MAP model

of the skin detector. The equation of the MAP model is given in Eq. (3.1):

P(rglskin) P(nonskin) (3.1)
P(rglnonskin) P(skin)

If the left-hand side of Eq. (3.1) is greater than the right-hand side, then the pixel

is classified as a skin pixel. Otherwise, the pixel is classified as a non-skin pixel. The

quantity on the right-hand side of the inequality is called the detection threshold,

which is the ratio of the a priori probabilities. The a priori probabilities can be
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estimated from the training set. A reasonable choice of P(skin) can be obtained by

dividing the total number of skin pixels by the total number of skin and non-skin

pixels. The decision boundary is determined by the border of the overlapping region

of the two histograms. A receiver operating characteristic (ROC) curve shows the

relationship between correct detection P("skin" I skin) and false positive P("skin" I
non-skin) as a function of the detection threshold. The ROC of the skin detector

test set is shown in Fig. 3.3. The performance of the classifier is determined by the

area under the ROC curve and the amount of overlap between the skin and the non-

skin histograms. Fig. 3.4b shows that a lot of background pixels were mistaken to

be skin pixels. In order to solve this problem, the background subtraction algorithm

is applied to eliminate these misclassifications.

Figure 3.3: The ROC curve of the Skin Detector.

3.2 Background Subtraction

In background subtraction, the difference between an image from the video stream

and the stored background image is computed and a binary image is produced in

order to detect new objects in the scene. In this case, background subtraction is

22



3.2. BACKGROUND SUBTRACTION 23

used to remove the background parts that are mistaken to be skin parts. This al-

lows the use of a lower skin detection threshold and thus the skin detection rate

can be increased. The background image updates itself at 0.5 frames per second.

However, it will not update when the difference between the new image from the

video stream and the stored background image is great. The updating algorithm is

designed to avoid updating when there are no new objects entering the scene. For

example, if the illumination condition in the room changes, the difference between

the stored image and the new image will be big, but there is no new object entering

the scene. An example of the binary background subtraction image is shown in

Fig. 3.4c. By combining the skin detection and the background subtraction binary

images in Fig. 3.4b and 3.4c logically, a new binary image in Fig. 3.4d is produced

which shows the presence of a person.

a) b)

C) d)

Figure 3.4: a) The original color image. b) The resulting binary image of skin

detection. c) The background subtraction binary image. d) The combined skin

detection and background subtraction binary image.



CHAPTER 3. PREPROCESSING

a) b)

Figure 3.5: a) The combined skin detection and background subtraction binary

image. b) The dilated binary image.

3.3 Morphological Operation

Mathematical morphology is a field that involves the study of topological and struc-

tural properties of objects based on their images. The goal of using a morphology

operation in binary images is to represent black pixels by regions in order to give a

complete description of the image. A region in a binary image is a set of connected

pixels with the same color. In order to group the skin-pixels into a region, the eight

neighboring pixels of a particular pixel are considered. A pixel has two horizon-

tal and two vertical neighbors that are each a unit distance from the pixel itself.

There are also four diagonal neighbors. Together they form the eight neighbors of a

pixel. A 3 x 3 all-white dilation filter is applied to the combined skin detection and

background subtraction binary images. This 3 x 3 window is convolved with the

combined binary image. If the number of black pixels within the eight neighboring

pixels is greater than the predefined minimum number of black pixels, then all the

nine pixels within the window will be set to black. Otherwise, all the nine pixels

will be set to white. Fig. 3.5a shows the image before dilation and Fig. 3.5b shows

the image after dilation.

24



3.4. CONNECTED COMPONENT ANALYSIS (CCA) 25

3.4 Connected Component Analysis (CCA)

Connectivity between pixels is commonly used in establishing boundaries of objects

and regions in binary images. Connected component analysis transforms a binary

image into a graph, where each node of the graph represents a connected region

and the boundaries of the region represent spatial relationships between regions [1].

CCA is used for finding the largest connected region in a binary image. The dilated

image is the input to the connected component analysis. The black region in the

dilated image represents the skin part. CCA finds the largest connected region and

claims that to be the face part. A bounding box is drawn to surround this region

of interest (ROI) in the original color video stream of the real-time system. Fig. 3.6

shows the ROI in the video stream. Face detection and recognition algorithms are

applied to the bounding box extracted from the video stream.

Figure 3.6: The ROI is indicated by the bounding box.
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Chapter 4

Face Recognition

4.1 Whole-face Approach

The whole-face approach consists of two stages. In the face detection stage, a face

is detected and extracted from the gray value image. In the recognition stage, the

person's identity is established.

4.1.1 Face Detection

A linear SVM face detector similar to the one described in [8] is trained and used to

extract the face part from the bounding box obtained from the video stream. The

training data for the linear SVM face detector are generated by rendering seven tex-

tured 3-D head models [17]. The heads are rotated between -30' and +300 in depth

and are illuminated by ambient light and a single directional light pointing towards

the center of the face. 3,590 synthetic face images of size 58 x 58 pixels are generated

to form the positive training data. The negative training data initially consists of

10,209 58 x 58 non-face patterns randomly extracted from 502 non-face images. The

negative training data is further enlarged to 13,655 images by bootstrapping [14].

Bootstrapping is done by applying the linear SVM face detector, which trained on

the initial negative set, to the 502 non-face images. The false positives (FPs) gen-

erated are added to the negative training data to build the final negative training

set with 13,655 images. Then a new linear SVM face detector is retrained with the
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enlarged negative training set.

The face part extracted by the SVM face detector is converted into gray values

and is re-scaled to 40 x 40 pixels. A best-fit intensity plane is subtracted from the

gray values to compensate for cast shadows [14]. Histogram equalization is also ap-

plied to remove variations in image brightness and contrast. The 1,600 gray values

of each face image are then normalized to the range between 0 and 1. Each image

is represented by a single feature vector of length 1,600 because the face image has

40 x 40 pixels. These feature vectors are the inputs to the linear SVM face recog-

nizers. Fig. 4.1 shows the training of the whole-face approach. Some face detection

results are shown in Fig. 4.2.

Face .xtraction Feature Extraction
Training set: . .iI train the SVM
gray value face SVXM face detector re-scale the extracted normalize the extracte I baarc ue recognizers,
images of the - to extract the faces faces to 40 x 40 pi xeb faces to 1600 tong one for each

su ets & ge rid of the & do histogram / feature vectors in the Speciic clusters clustering by
background equalization range of 0 and I of each subject I vs all

SVM Thce recognizers
ready for classifying
people in the test
set

Figure 4.1: The training process of the whole-face approach.

4.1.2 Face Recognition

Changes in the head pose of a person lead to strong variations in the faces. These are

considered in-class variations and they complicate the recognition task. The linear

SVM classifier cannot always separate faces of one person with different rotations

from all other people without introducing training errors. In this case, the training

set of each person is split into several smaller viewpoint-specific clusters by the

divisive binary clustering algorithm [11]. This algorithm starts with an initial cluster

that includes all the feature vectors of a person, denoted by x, E IR", i = 1, 2,. . ., N

in Eq. (4.1), where N is the number of faces in the cluster. During each iteration, the
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Figure 4.2: The upper 2 rows are the original images before face extraction. The

lower 2 rows show the face parts extracted by the SVM face detector. These face-

extracted images are the training set of the face recognition system.

7-



FACE RECOGNITION

I I

Figure 4.3: Binary tree of face images generated by divisive clustering.

algorithm creates a hierarchy by successively splitting the highest variance cluster

into two new clusters. The variance of a cluster is calculated as:

2 N
. =min{ Z I |x - x m

2}n=1
m=1

(4.1)

where xm is the average face of the cluster. The process repeats until the num-

ber of clusters reaches the predefined number. In these experiments, the predefined

number of clusters is four. After clustering, the face with the minimum distance to

all other faces in the same cluster is chosen to be the average face of the cluster.

The clusters can be arranged in a binary tree. Fig. 4.3 shows the result of clustering

applied to the training images of a person in the database. The nodes represent

the average faces and the leaves represent faces in the final clusters. As expected,

divisive clustering performs a viewpoint-specific grouping of faces.

The whole-face approach is a multi-class classification problem. The one-vs-all

strategy described in section 2.2 is applied to the SVM training. A linear SVM is
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trained to distinguish between images in one cluster (label +1) and images of other

people in the training set (label -1), so the total number of SVMs trained is equal to

the total number of clusters for all people. In this case, each SVM is associated to one

cluster of each person. The class label y of a feature vector x is computed as follows:

y = n if d.(x) + t > 0 (4.2)

y = 0 if dn(x) +t < 0

with dn(x) = max{di(x)}?i

where di(x) is the distance of pattern xi from the decision plane computed ac-

cording to Eq. (2.2). The classification threshold is denoted as t. Classification is

done according to the value of the class label y computed by Eq. (4.2) with q being

the number of clusters of all people in the training set. A non-zero class label stands

for recognition and the class label 0 stands for rejection. When di(x) is too small,
this pattern is too close to the decision plane. In this case, the system cannot tell

which class this pattern belongs to, and thus the pattern is rejected.

4.2 Component-based Approach

The whole-face approach is highly sensitive to image variations caused by changes

in the pose of the face as shown in Fig. 1.1. Since the changes in facial components

due to rotations are relatively small compared to those in the whole face pattern, the

component-based approach is implemented in order to avoid the problems caused by

the whole-face approach. Fig. 4.4 shows the training process of the component-based

approach.

4.2.1 Face Detection

In order to detect the face, a two-level component-based face detector [8] is used.

The principles of the system are illustrated in Fig. 4.5. On the first level, component
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Component Feature
Component Extraction Recombination Extraction

SVM component SVM geometric re-scale the combined train SVM face SVM face
Training Set. classifiers to extel classifier to face and convert it recognizers. one recognizers
face imattes of -- t o face components 9 reconfigure the - to feature vectors for each subject r dyog ider i

the subject from the face images tW face in the range of usto I vs alt

and re-scale them components 0 and I algonthm people

Figure 4.4: The training process of the component-based approach.

classifiers independently detect 14 facial components. On the second level, a geo-

metrical configuration classifier performs the final face detection by combining the

facial components resulting from the 14 component classifiers. The maximum con-

tinuous outputs of the component classifiers within the rectangular search regions

around the expected positions of the components are used as inputs to the geometri-

cal configuration classifier. The search regions have been calculated from the mean

and the standard deviation of the components' locations in the training images.

The geometrical classifier is used for arranging the components in the proper facial

configuration. It is provided with the precise positions of the detected components

relative to the upper left corner of the 58 x 58 window. The 14 facial components

used in the detection system are shown in Fig. 4.6a. The shapes and positions of

the components have been automatically determined from the training data in order

to provide maximum discrimination between face and non-face images [8]. The face

images in the training set are the same as that for the whole-face detector.

4.2.2 Face recognition

The component-based detector runs over each image in the training set and the

components are extracted from each image. Only 10 out of the 14 original compo-

nents are kept for face recognition because the remaining ones either contain few

gray value structures or strongly overlap with other components. The 10 selected

components are shown in Fig. 4.6b. The component-based face detector applied to

face images in the original training set shown in the first 2 rows of Fig. 4.2 and the

final training set of the component-based recognition system are shown in Fig. 4.7.
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Output of Output of Output of
Eye Classifier Nose Classifier Mouth Classifier

First Level:
Component
Classifiers

Second Level:
Detection of
Configuration of
Components

Classifier

Figure 4.5: System overview of the component-based face detector using four com-

ponents.

a b

Figure 4.6: (a) Shows the 14 components of the face detector. The centers of

the components are marked by white crosses. The 10 components used for face

recognition are shown in (b).

33

Classifier



CHAPTER 4. FACE RECOGNITION

Figure 4.7: Examples of component-based face detection. Face parts covered by the

10 components are used as training data for face recognition.

By recombining the components, background pixels are successfully removed. In

order to generate the input to the face recognition classifier, the components of each

image are normalized in size. Their gray values are normalized to a range of 0 and

1 and are then combined into a single feature vector. Again, the one-vs-all strat-

egy of multi-class classification is used. A linear SVM classifier is trained for each

person in the database. The classification result is determined according to Eq. (4.2).
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Results

5.1 Database

The training data for the face recognition system were recorded with a digital video

camera at a frame rate of about 5Hz. The training set consists of 8,593 gray face

images of five subjects; 1,383 of these images are frontal views. The resolutions of

the face images range between 80 x 80 and 130 x 130 pixels with rotations in azimuth

up to about ± 40'.

The test set was recorded with the same camera but on a separate day and with

different illumination and background. The test set includes 974 images of all five

subjects in the database. The rotation in depth is again up to about ± 40'. Fig. 5.1

and Fig. 5.2 show the experimental procedures when using the whole-face approach

and the component-based approach.

rest set; extracted histogram
9es seu, by the SVM face equalization & SVM face

gray value detector, re-scaled feature recognizers identity of people
images to 40 x 40 pixels extraction

Figure 5.1: Overwiew of the whole-face approach experiment.
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Face IXtection Face Recognition

Test set: SvM component n

gray value t". o'p'n'ts byheSMextrwtlowI SVM fam pdenyopl
face images frm the fac e giS ti c & h I stoir recoszers

& re-scale them ca in

Figure 5.2: Overwiew of the component-based approach experiment.

5.2 Experiments

Two sets of experiments were carried out.

The first set of experiments was trained on all 8,593 rotated and frontal face

images and tested on an independent test set with 974 frontal and rotated faces of

all the subjects. This experiment contained four different tests:

1. Whole-face approach with one linear SVM for each person.

2. Whole-face approach with one linear SVM for each cluster.

3. Whole-face approach with one 2nd degree polynomial SVM for each person.

4. Component-based approach with one linear SVM for each person.

The second set of experiments was trained only on the 1,383 frontal face images

but tested on the same test set used in the first set of experiments. This experiment

contained three different tests:

1. Whole-face approach with one linear SVM for each person.

2. Whole-face approach with one linear SVM for each cluster.

3. Component-based approach with one linear SVM for each person.

The ROC curves of these two set of experiments are shown in Fig. 5.3a and

Fig. 5.3b. Each point on the ROC curve corresponds to a different value of the clas-

sification threshold t from Eq. (4.2). Some results of the component-based recogni-

tion system are shown in Fig. 5.4.

In both sets of experiments, the component-based approach clearly outperformed
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Component vs. Whole Face
(Training: 6 people, 8,693 frontal and rotated, Test: 6 people, 974 Images, frontal and rotated)
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Component vs. Whole Face
(Training: 5 people, 1,383 frontal, Test: 5 people, 974 images, frontal and rotated)

1. --- -------......-- -------.... --....-....

0..... - . ...- ... . ..... ----.... .... . - ---------

0.8 ---- --------- ----------------- -------- - -------- ---------- - - - - - - - ----------------------------------

0.7 - -----.. - - - - - - - ------- -- - - - ------- - ------ - --- --- - - ----------------- ----------

-----------------------

0.6 ---- -- --------- ------- - - ------ - --------------I-- ---- ----------I --- -- ------..0

-t-component-based, lin. SVM

0.3 ...... global, clustening, in. SVM I---
global, [in. SVM

0 0.02 0.04 0.06 0.08 01 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.25

P(FP)

b)

Figure 5.3: (a) ROC curves trained and tested on both frontal and rotated faces.

(b) ROC curves trained on frontal faces and tested on frontal and rotated faces.
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the whole-face approach, even though the classifiers used in the component-based

approach (linear SVMs) are less powerful than those used in the whole-face approach

(polynomial second degree SVMs and SVMs with clustering).

Figure 5.4: Examples of component-based face recognition. The first 3 rows of im-

ages and the first image in the last row are correct identification. The last two images

in the bottom row are misclassifications due to too much rotation and unexpected

facial expression.

Clustering also leads to a significant improvement of the whole-face approach

with the training set including the rotated faces. Clustering generates viewpoint-

specific clusters that have smaller in-class variations than the whole set of images of

a person, so the whole-face approach with clustering and linear SVMs is superior to

the whole-face approach without clustering and with a non-linear SVM. This shows

that weaker classifiers trained on properly chosen subsets of the data can outperform

a single and more powerful classifier trained on the whole data set.
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Conclusion and Future Work

A whole-face approach and a component-based approach of face recognition were im-

plemented and their performances with respect to robustness against pose changes

were compared. The component-based approach detected and extracted a set of

10 facial components and arranged them in a single feature vector that was classi-

fied by linear SVMs. The whole-face approach detected the whole face, extracted it

from the image, and used it as an input to a set of viewpoint-specific SVM classifiers.

Tests were performed on both systems with a test database that included faces

rotated in depth up to about ± 400. In both sets of experiments, the component-

based approach outperformed the whole-face approach. This shows that using facial

components instead of the whole face pattern as input features significantly simplifies

the task of face recognition. However, the speed of the component-based approach is

much slower than that of the whole-face approach, since a lot more SVM classifiers

are used in the component-based approach for extracting the facial components.

This approach is not suitable for applications involving real-time systems for the

time being. Fig. 5.3a shows that the performance of the whole-face approach with

clustering is just slightly worse than the performance of the component-based ap-

proach. However, the recognition speed of the whole-face approach is a lot faster.

This is the reason why our real-time system is implemented based on the whole-face

approach.
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A potential future research topic would be to reduce the number and dimen-

sions of face components. The dimensions of the components and the combined

face images can be reduced using techniques such as the principal component anal-

ysis (PCA). Fewer facial components could be selected and used in order to reduce

the number of classifiers. These improvements could speed up the classification

rate of the component-based approach and make it more desirable for use in real-

time applications. Powerful computers with multi-processors could also be used to

parallel-process the component classifications in order to reduce the computation

time when implementing real-time systems. More experiments should be done on

larger and standardized test sets so as to compare my system with the existing ones.
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