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Abstract

We introduce new, readily computable invariants of Legendrian knots and links in stan-
dard contact three-space, allowing us to answer many previously open questions in contact
knot theory. The origin of these invariants is the powerful Chekanov-Eliashberg differential
graded algebra, which we reformulate and generalize. We give applications to Legendrian
knots and links in three-space and in the solid torus. A related question, the calculation of

the maximal Thurston-Bennequin number for a link, is answered for some large classes of
links.
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Chapter 1

Introduction

1.1 Legendrian links in standard contact R3

There has recently been an explosion of interest in contact geometry, largely because of
its impact on the geometry and topology of three-manifolds. Contact geometry is also
intricately linked with the theory of four-manifolds; see, e.g., [KM] for a link between
contact structures and four-dimensional gauge theory.

In studying contact three-manifolds, two special classes of knots and links, Legendrian
and transversal, play a critical role. Probably the first application of knots in contact
geometry was Bennequin’s famous demonstration [B] of the existence of “exotic” contact
structures on R3, using transversal unknots; this work inspired Eliashberg’s central tight-
versus-overtwisted dichotomy for contact structures on three-manifolds [E2]. Since then,
Legendrian knots have been instrumental in distinguishing between homotopic contact
structures on manifolds such as homology spheres [LM] and the three-torus [Kanl]. Knots
in contact geometry have also produced consequences for general three-manifold topology;
for instance, Rudolph [Ru3| has established a relationship between invariants of Legendrian
knots and sliceness.

The question underlying contact knot theory is simple: when are two Legendrian or
transversal links the same, i.e., isotopic through Legendrian or transversal links? This
question, first explicitly stated in [Ar], also appears in Kirby’s problem list [Kir]. We
restrict our attention to links in R?® with the standard contact structure, since this provides
a local model for any contact manifold. We will further devote our attention solely to
Legendrian links, which are better studied and seem to have more structure; the study of
Legendrian links may also produce results for transversal links.

An isotopy through Legendrian links is called a Legendrian isotopy. There are two “clas-
sical” Legendrian-isotopy invariants of Legendrian knots in standard contact R, Thurston-
Bennequin number and rotation number. (The story for multi-component links is similar
but a bit more complicated.) The first result towards a classification of Legendrian-isotopy
classes of knots was Eliashberg and Fraser’s demonstration [EF] that the classical invariants
completely determine the Legendrian-isotopy class of an unknot. Since then, the classical
invariants have also been shown to form a complete set of invariants for torus knots and
the figure eight knot [EH].

A breakthrough on the Legendrian isotopy problem occurred in 1997, when Chekanov
[Ch] and, independently, Eliashberg and Hofer (unpublished) showed that there are knot
types for which the classical invariants do not suffice to characterize Legendrian-isotopy




classes. More specifically, they demonstrated that there are two 53 knots, in the familiar
terminology of the knot table from [Rol], which have the same classical invariants, but are
not Legendrian isotopic.

The tool they used is a new invariant of Legendrian links, which we will call the
Chekanov-Eliashberg differential graded algebra (DGA). Eliashberg and Hofer derived this
algebra from a relative version of the contact homology introduced in [E4]. The beauty of
the DGA is that, unlike general contact homology, there is a simple method for comput-
ing it from knot diagrams. Chekanov, motived by the relative contact homology picture,
discovered a purely combinatorial formulation of the DGA, and proved its invariance com-
binatorially, in [Ch]; his work is the starting point for most of this dissertation.

Etnyre, Sabloff, and the author [ENS] have since given a rigorous treatment of the
relation between Eliashberg and Hofer’s relative contact homology and Chekanov’s com-
binatorial theory. By using ideas from Floer homology concerning coherent orientations,
[ENS] also lifts the DGA for a Legendrian knot K from an algebra over Z/2, graded over
Z/(2r(K)), to one over Z[t,t™!], graded over Z.

The Chekanov-Eliashberg DGA, though extraordinarily useful as a tool for distinguish-
ing between Legendrian links, has two drawbacks. The first is that, in practice, it can be
difficult to use. Chekanov defines the DGA in terms of the Lagrangian projection of a Legen-
drian link, but it is not easy to manipulate Lagrangian-projected knots. More importantly,
it is hard in general to tell when two DGAs are the same. Until now, the only known tech-
nique was to use polynomials defined by Chekanov, which we call the Poincaré-Chekanov
polynomials; in essence, these calculate the homology of a finite-dimensional quotient of the
DGA. These polynomials, however, are useful only in some cases.

The second drawback of the Chekanov-Eliashberg DGA is that it vanishes for any Legen-
drian link which is a stabilization. In practice, this renders it useless for any link which does
not maximize Thurston-Bennequin number, since stabilization lowers Thurston-Bennequin
number by one. It is thus important to know when a link maximizes Thurston-Bennequin
number, and to find invariants which do not vanish for stabilized links.

Broadly speaking, the goal of this dissertation is to improve our understanding of Leg-
endrian links in standard contact R? by addressing the problems mentioned above. We will
reformulate the DGA in the front projection, which is much more often used in practice
than the Lagrangian projection, and refine the DGA in the process. Next we introduce new
computable invariants from the DGA, most notably the characteristic algebra; these are
quite a bit more effective in distinguishing between Legendrian links than previously known-
invariants. We use our new techniques to answer several open questions about Legendrian
links. Finally, we describe invariants which may give interesting information for stabilized
links, and we calculate the maximal Thurston-Bennequin number for two large classes of
links, two-bridge links and three-stranded pretzel links.

There is obviously much still to be done in this subject. Eliashberg, Givental, and
Hofer [EGH] have recently introduced a notion of symplectic field theory which generalizes
contact homology; we would like to understand invariants of Legendrian links obtained from
symplectic field theory. Also, one important property of Legendrian knots is that we can
perform Legendrian (—1)-surgery on them to obtain another tight contact manifold [E3].
Does the new manifold encode the Chekanov-Eliashberg DGA of the knot, and does the
DGA give us information about the manifold? Further, more specific open questions are
asked throughout this dissertation, but especially in Sections 3.2 and 6.4 and Remark 5.2.7.

Here is an outline of the rest of this dissertation. We supply the necessary technical
background in Section 1.2, and review Chekanov’s construction of the DGA in Section 1.3.
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Chapter 2 defines the DGA (more precisely, the lifting described in [ENS]) for front projec-
tions of knots, and discusses an improved version of the DGA for links as well. In Chapter 3,
we define the characteristic algebra and demonstrate how it incorporates previously known
invariants. Chapter 4 is devoted to applications of the theory from Chapters 2 and 3, specifi-
cally to distinguish between several previously indistinguishable Legendrian knots and links.
Chapter 5 introduces a new construction, the Legendrian satellite, and uses it to establish
some results about Legendrian links on the solid torus; in the future, Legendrian satellites
may also produce useful invariants of stabilized links. In Chapter 6, we address a slightly
different subject by computing maximal Thurston-Bennequin numbers for two-bridge and
pretzel links.

To make this dissertation more self-contained, we include proofs in Appendix A of the
main results about the Chekanov-Eliashberg DGA for the front-projection picture, rather
than simply referring to the Lagrangian-projection proofs from [Ch] and [ENS]. Appendix B
gives a table of maximal Thurston-Bennequin numbers for prime knots with nine or fewer
crossings, improving on the table from [Tan)].

A note about original content: a fair amount of this dissertation has already appeared
in preprints by the author. Chapters 2, 3, and 4 are taken from [Ng3], while the content
of Chapter 6 for two-bridge links, as well as Appendix B, is from [Ng2]. Although not
explicitly used here, [Ngl] is subsumed into Section 4.1. No material from the coauthored
papers [ENS] and [NT] appears in this dissertation, although results from these papers are
cited in Chapters 2 and 5, respectively.

1.2 Background material

This section is a clearinghouse for the definitions and results needed for the rest of the
dissertation, and also indicates the conventions we will use. We will also suggest a way in
which this dissertation connects with the theory of transversal links.

A contact form on a smooth three-manifold M is a global 1-form a such that a Ada # 0
everywhere on M; then ker o gives a completely nonintegrable distribution on M, which we
call a contact structure. We may view contact structures as the odd-dimensional analogue
of symplectic structures on even-dimensional manifold. A contactomorphism between two
contact manifolds is a diffeomorphism mapping one contact structure to the other.

As a matter of convention, we will use the word “link” to denote either a knot or a
link. Links which are not knots will be called “multi-component links” for clarity where
necessary. All multi-component links are assumed to be ordered; that is, there is a specific
ordering to the components of the link. If L;,... , L are the ordered components of a link
L, we write L = (Lq, ..., Lg).

A Legendrian (resp. transversal) link in a contact three-manifold M is a link on which
o vanishes identically (resp. never vanishes). Two Legendrian links are Legendrian isotopic
if they are isotopic through Legendrian links; we may similarly define transversal isotopy
for transversal links. The relative version of a celebrated theorem of Gray [Gr| implies that
two links are Legendrian isotopic if and only if there is an ambient contact isotopy of M
mapping one to the other.

The standard contact structure on R3 is given by o = dz—y dz. By Darboux’s Theorem,
any point in a contact three-manifold has a neighborhood contactomorphic to R? with the
standard contact structure.

There are two standard methods of representing Legendrian links in standard contact

11




Figure 1-1: The Legendrian Reidemeister moves which relate Legendrian-isotopic fronts.
The same moves, reflected about the z (horizontal) axis, are also allowed.

R3 via projections to R?: the Lagrangian projection to the xy plane, and the front projection
to the zz plane. We consider each of these projections separately.

Given the Lagrangian projection of a link, we can recover the link by setting z =
Jydz. This is unique, up to translation in the z direction for each component of the
link. The Lagrangian projection of a link gives a link diagram in R?, i.e., an immersion
of the appropriate number of copies of S! into R?, along with overcrossing-undercrossing

information. Determining conversely whether a link diagram is the Lagrangian projection of

a Legendrian link is not easy, although a reasonably useful necessary-and-sufficient condition
is given in [Ch]. The signed area [ ydz enclosed by a component of the link diagram must
be zero; each crossing in the link diagram also implies an inequality on the areas of the
regions into which the diagram divides R2. We will deal only with generic link diagrams,
for which all crossings are transverse double points.

Define a front to be an immersion of some number of copies of S? into R?, with no vertical

. tangencies, and smooth except for cusp singularities where the front changes direction in z.

The front projection of a link is a front, and we.can recover the link from its front by setting
y = dz/dz. It is unnecessary to specify overcrossing-undercrossing information for fronts,

since the strand with greater negative slope has smaller y coordinate and hence crosses over

the other strand. We will deal only with generic fronts, for which all singularities are either
cusps or double points. .

For practical purposes, fronts are often more useful than Lagrangian projections, be-
cause of the difficulty mentioned above in determining when a link diagram represents a
Legendrian link. There is a simple condition, in terms of fronts, for two Legendrian links
to be Legendrian isotopic: they must be related by a series of the Legendrian Reidemeister
moves shown in Figure 1-1 [Swil.

The two classical invariants of oriented Legendrian knots under Legendrian isotopy are
the Thurston-Bennequin number tb and the rotation number r; these can be easily defined
for either projection. For the front projection of an oriented Legendrian knot K, we define

tb(K)=#><+#><—#><—#><—#>
) =5 (#0+ < - > - 4=

For the Lagrangian projection of K, we define

ib(K) = # > - #X,
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Figure 1-2: Stabilization of a Legendrian link, in the front projection.

and r(K) is the counterclockwise rotation number (in revolutions) of K traversed once in
the direction of its orientation.

Remark 1.2.1. Regular isotopy and Lagrangian projection. Recall that a regular isotopy
of knot diagrams is an isotopy which avoids the usual Reidemeister move I (adding or
subtracting a loop). In the Lagrangian projection, a Legendrian isotopy is a special case of
a regular isotopy. In this context, tb and r may be more familiar as the classical regular-
isotopy invariants, writhe (cf. Figure 6-1) and Whitney degree; see [Kaul].

Note that tb(K) is independent of the orientation of K, while r(K) is negated when we
reverse the orientation. It is easy to see that tb and r are preserved by Legendrian isotopy.

For oriented multi-component Legendrian links L, we may also define b and r as above;
in this case, however, tb and r for any subset of the link components also give classical
invariants. For instance, for a two-component oriented link L = (L1, Lg), the full set
of classical invariants is given by {tb(L),tb(L1),7(L1),tb(L2),7(L2)}. Note that r(L) =
7(L1) +r(L2), and that (tb(L) — tb(L1) —tb(L2))/2 = 1k(L1, L) is the usual linking number
of Ly and Ls.

The operation of stabilization on Legendrian links adds a zigzag to a segment of a front,
as shown in Figure 1-2. (Both §; and S_ will be called stabilizations.) It can be checked
that, up to Legendrian isotopy, stabilization is independent of the segment chosen, as long
as it is chosen in a fixed link component. Thus, for a Legendrian knot K, S; (K) and S_(K)
are well-defined up to Legendrian isotopy, and Sy commutes with S_. We have

tb(S.(L)) = th(L) — 1
r(S+(L)) = r(L) £ 1.

In particular, links with maximal Thufston—Bennequin number cannot be stabilizations.

Remark 1.2.2. Transversal knots. If K1 and Ky are Legendrian knots of the same topo-
logical isotopy class, then they are Legendrian isotopic after applying a suitable number of
positive and negative stabilizations to each knot [FT]; a corresponding result also holds for
links. We call K; and K stably Legendrian isotopic if there exists an n such that (S;)"K;
and (S;)"K; are Legendrian isotopic.

The concept of stable isotopy is mainly useful because of transversal knots. Any Leg-
endrian knot K can be slightly perturbed in the direction of the positive normal to K
within the contact structure, to obtain a transversal knot K+, and any transversal knot is
transversally isotopic to such a K*. The following result is well-known; see [EFM].

Theorem 1.2.3. If K1 and Ky are oriented Legendrian knots, then the transversal knots
Ki" and K; are transversally isotopic if and only if K1 and Ko are stably Legendrian
isotopic.

At present, there are no known transversal links which are smoothly isotopic and have the
same transversal linking number, but are not transversally isotopic. We hope in the future
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to use our techniques for Legendrian links to construct examples of such transversal links;
see Remark 5.2.7. '

Remark 1.2.4. Legendrian mirrors and inverses. There are other interesting operations
besides stabilization that we can perform on Legendrian links. Given a Legendrian link
L, let the Legendrian mirror m(L) be its image under the contactomorphism (z,y, z)
(z,—y,—2), and let the inverse —L be L with each component’s orientation reversed. (In
the front projection, m(L) is the reflection of L about the z axis.) We have tb(m(L)) =
tb(—L) = tb(L) and r(m(L)) = r(~L) = —r(L).

It is asked in [FT] if m(L) is always Legendrian isotopic to L when (L) = 0; clearly
m(L) is always smoothly isotopic to L. Similarly, we can ask if —L is always Legendrian
isotopic to L when r(L) = 0, for link types L which are invertible, i.e., smoothly isotopic to
their inverses.

In [Ngl], the author answers the question of [FT] by giving an example such that
r(L) = 0 and m(L) is not Legendrian isotopic to L; this argument is reprised in Section 4.1.
A recent result of Etnyre and Honda implies that there are invertible connected sums
K 1#K; of Legendrian knots K, Ky with r(K1#K3) = 0 and —(K1#K2) not Legendrian
isotopic to K1#K,. It is not presently known whether there is a Legendrian knot K of
invertible, prime topological type, with r(K) = 0, which is not Legendrian isotopic to —K.
We believe, however, that the DGA over Z[t,t™!], which depends on orientation, should be
able to provide examples of such a knot.

1.3 Chekanov’s construction of the DGA

In this section, we summarize Chekanov’s original construction of the DGA invariant from
[Ch], which uses the Lagrangian projection. We will reformulate this construction carefully
in the front projection in Chapter 2, which is self-contained; the reader may thus skip to
Chapter 2 with no difficulty.

For simplicity, we will confine our discussion to knots. Chekanov defined the DGA of a
Legendrian knot K as an algebra over Z/2 graded over Z/(2r(K)); by imposing a coherent
set of orientations on the appropriate moduli spaces, J. Etnyre, J. Sabloff, and the author
[ENS] subsequently lifted this DGA to an algebra over Z[t,t~!], where t is an indeterminate,
graded over Z. We outline the definition of the original DGA over Z/2, and refer the reader
to the two sources above for complete details.

Let K be a Legendrian knot in standard contact R, whose Lagrangian projection is
a link diagram which we also call K. Label the crossings of K by ai,...,a,. The DGA
for K is the free, noncommutative unital algebra A = (Z/2)(a1,... ,an), with grading and
differential given below.

To define the grading on A, we temporarily perturb K so that the two intersecting
branches at all crossings are orthogonal. For a crossing a;, consider a path in K beginning
at the undercrossing at a; and following K until we reach the overcrossing at a;. The

_ l N
+ ’ -
Figure 1-3: Signs associated to the four quadrants at a crossing.
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counterclockwise rotation number (in revolutions) of this path is of the form —(2k 4 1)/4
for some integer k; then let dega; = k. It is easy to check that, modulo 2r(K), this is
well-defined. Extending this degree map to all of A (with degl = 0) gives a grading of A
over Z/(2r(K)).

We next define the differential on A. At each crossing, label the four quadrants near
the crossing by the signs given in Figure 1-3. (Note that these signs are the negation of the
signs in [Ch], since we use a differently oriented contact form on R3.) Define an admissible
immersion on K to be an immersion f from the disk D?, with some number of marked
points on its boundary, to R?, satisfying the following conditions:

e f(OD?) lies in K, and f|sp2 is smooth away from the marked points;
e f maps marked points to crossings of K;
e fmapsa neighborhood of a marked point to exactly one quadrant at a crossing;

o of the signs associated to the resulting quadrants for all marked points, exactly one is
a+.

The crossing with the + sign is called the positive corner of the admissible immersion; the
crossings with — signs are called the negative corners.

Consider an admissible immersion f with positive corner at a;. We associate to f
the monomial a(f) = aj, - - - a;,, where a;,,... ,a;, are the negative corners of f, taken in
counterclockwise order starting after a;. (If f has no negative corners, then we set a(f) = 1.)
Now we define ’

da; =Y _al(f);

here the sum is over all diffeomorphism classes of admissible immersions with positive corner
at a;. We can extend this differential to all of A by setting (1) = 0 and imposing the Leibniz
rule 8(vw) = (Ov)w + v(Ow).

Remark 1.8.1. Motivation. Admissible immersions are natural objects of study in the rel-
ative contact homology theory developed in [E4]. Since the Reeb vector field in standard
contact R® points in the z direction, Reeb chords in R?® beginning and ending on K corre-
spond to crossings of the Lagrangian projection of K. In the symplectization R3 x R of R3,
relative contact homology studies holomorphic curves with boundary on ¥ x R which limit
to Reeb chords at +oo in the R direction, with one Reeb chord at +oco and some number
of Reeb chords at —oo. If we project to R3, these holomorphic curves become admissible

immersions, with the limiting Reeb chords becoming positive and negative corners. See
[ENS] for more details.

Ezample 1.3.2. For the figure eight knot shown in Figure 1-4, with » = 0 and tb = —3, we
can calculate that as, a4, a5,a7 have degree 1, a3, a3 have degree 0, and ag has degree —1.
The differential 9 is given by

fa1 = ag + agas + agazasag day 1+ a3 + asagas
das = 1+ aja3+ asasay Jay = 1+ a3+ agagasas
Oag = das = dag = 0.

The major properties of the differential are that 8> = 0 and 8 lowers degree by 1; the
reader may verify that these properties hold for the example above.

15




as\ ¥ +] d¢

Figure 1-4: The Lagrangian projection of a figure eight knot. Crossings and 4 quadrants
are labelled; — quadrants are omitted to reduce clutter.

Of course, the importance of the DGA stems from the fact that it gives a Legendrian-
isotopy invariant. There is a concept of equivalence of DGAs under which two Legendrian-
isotopic knots have equivalent DGAs; see Section 2.2. Although it is often not easy to tell
when two DGAs are equivalent, Chekanov [Ch] introduced a set of polynomial invariants,
derived from the DGA, which are straightforward to compute. He then used these Poincaré-
Chekanov polynomials (see Section 3.2 for their definition) to distinguish between two 5
knots with identical classical invariants. '

Remark 1.3.3. Admissible decompositions. The Chekanov-Eliashberg DGA is not the only
known nonclassical invariant of Legendrian isotopy in standard contact R®. Chekanov and
Pushkar [CP] have developed another invariant based on so-called admissible decompo-
sitions of fronts, inspired by the work of Eliashberg [E1l]. It seems that the admissible-
decomposition invariant is closely related to the Poincaré-Chekanov polynomials; see [Fu].
In particular, there is no known example of Legendrian knots which can be distinguished
through admissible decompositions but not through the Poincaré-Chekanov polynomials.

16




Chapter 2

Chekanov-Eliashberg DGA in the
front projection

This chapter is devoted to a reformulation of the Chekanov-Eliashberg DGA from the
Lagrangian projection to the more useful front projection. In Section 2.1, we introduce
resolution, the technique used to translate from front projections to Lagrangian projections.
We then define the DGA for the front of a knot in Section 2.2, and discuss a particularly
nice and useful case in Section 2.3. In Section 2.4, we review the main results concerning
the DGA from [Ch] and [ENS]. Section 2.5 discusses the adjustments that need to be made
for multi-component links.

2.1 Resolution of a front

Given a front, we can find a Lagrangian projection which represents the same link through
the following construction, which is also considered in [Fer] under the name “morsification.”

Definition 2.1.1. The resolution of a front is the link diagram obtained by resolving each
of the singularities in the front as shown in Figure 2-1.

The usefulness of this construction is shown by the following result, which implies that reso-
lution is a map from front projections to Lagrangian projections which preserves Legendrian
isotopy.

Proposition 2.1.2. The resolution of the front projection of any Legendrian link L is the
Lagrangian projection of another link which is Legendrian isotopic to L.

Note that Proposition 2.1.2 is a bit stronger than the assertion from [Fer| that the regular
isotopy type of the resolution is invariant under Legendrian isotopy of the front.

Proof. We will deal only with a Legendrian knot K; the proof for multi-component links is
similar. It suffices to distort the front K smoothly to a front K’ so that the resolution of
K is the Lagrangian projection of the knot corresponding to K'.

X=X <—( >—>0
— — —-
/ /
Figure 2-1: Resolving a front into the Lagrangian projection of a knot.
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Figure 2-2: A front projection for the left-handed trefoil (top) is distorted (middle) so that
the corresponding Lagrangian projection (bottom), given by y = dz/dz, with the same =
axis as the middle diagram, is the resolution of the original front. The exceptional segments
in the middle diagram appear as corners. ’

We choose K’ to have the following properties; see Figure 2-2 for an illustration. Suppose
that there are at most k points in K with any given z coordinate. Outside of arbitrarily
small “exceptional segments,” K’ consists of straight line segments. These line segments
each have slope equal to some integer between 0 and k—1 inclusive; outside of the exceptional
segments, for any given z coordinate, the slopes of the line segments at points with that
z coordinate are all distinct. The purpose of the exceptional segments is to allow the line
segments to change slopes, by interpolating between two slopes. When two line segments
exchange slopes via exceptional segments, the line segment with higher z coordinate has
higher slope to the left of the exceptional segment, and lower slope to the right.

It is always possible to construct such a distortion K’. Build K' starting from the left; a
left cusp is simply two line segments of slope j and j+1 for some j, smoothly joined together
by appending an exceptional segment to one of the line segments. Whenever two segments
need to cross, force them to do so by interchanging their slopes (again, with exceptional
segments added to preserve smoothness). To create a right cusp between two segments,
interchange their slopes so that they cross, and then append an exceptional segment just
before the crossing to preserve smoothness.

We obtain the Lagrangian projection of the knot corresponding to K' by using the
relation y = dz/dz. This projection consists of horizontal lines (parallel to the z axis),
outside of a number of crossings arising from the exceptional segments. These crossings can
be naturally identified with the crossings and right cusps of K or K !, In particular, right
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cusps in K become the crossings associated to a simple loop. It follows that the Lagrangian
projection corresponding to K’ is indeed the resolution of K, as desired. O

2.2 The DGA for fronts of knots

Suppose that we are given the front projection Y of an oriented Legendrian knot K. To
define the Chekanov-Eliashberg DGA for Y, we simply examine the DGA for the resolution
of Y and “translate” this in terms of Y. In the interests of readability, we will concentrate on
describing the DGA solely in terms of Y, invoking the resolution only when the translation
is not obvious.

The singularities of Y fall into three categories: crossings (nodes), left cusps, and right
cusps. Ignore the left cusps, and call the crossings and right cusps wertices, with labels
ai,... ,a, (see Figure 2-3); then the vertices of Y are in one-to-one correspondence with
the crossings of the resolution of Y.

As an algebra, the Chekanov-Eliashberg DGA of the front Y is defined to be the free,
noncommutative algebra with unity 4 = Z[t,t~](a1,... ,an) over Z[t,t~!] generated by
ai,...,a,. We wish to define a grading on A, and a differential 0 on A which lowers the
grading by 1.

We first address the grading of A. For an oriented path 7 contained in the diagram
Y, define ¢(y) to be the number of cusps traversed upwards, minus the number of cusps
traversed downwards, along 7. Note that this is the opposite convention from the one used
to calculate rotation number; if we consider Y itself to be an oriented closed curve, then
r(K) = —c(Y)/2.

Let the degree of the indeterminate ¢ be 2r(K). To grade A, it then suffices to define
the degrees of the generators a;; we follow [ENS].

Definition 2.2.1. Given a vertex a;, define the capping path 7;, a path in Y beginning and
ending at a;, as follows. If a; is a crossing, move initially along the segment of higher slope
at a;, in the direction of the orientation of Y'; then follow Y, not changing direction at any
crossing, until a; is reached again. If a; is a right cusp, then «; is the empty path, if the
orientation of Y traverses a; upwards, or the entirety of Y in the direction of its orientation,
if the orientation of Y traverses a; downwards.

Definition 2.2.2. If g; is a crossing, then dega; = ¢(;). If a; is a right cusp, then dega;
is 1 or 1 — 2r(K), depending on whether the orientation of Y traverses a; upwards or
downwards, respectively.

as

X

Figure 2-3: The front projection of a figure eight knot, with vertices labelled.
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We thus obtain a grading for A over Z. It will be useful to introduce the sign function
sgnv = (—1)9°? on pure-degree elements of A, including vertices of Y; note that any right
cusp has negative sign.

Ezample 2.2.3. In the figure eight knot shown in Figure 2-3, a1, a2, a3, a4, a7 have degree
1, while a5, as have degree 0. For an illustration of Definition 2.2.2 for a knot of nonzero
rotation number, see Remark 4.3.1.

Remark 2.2.4. The Thurston-Bennequin number for K can be written as the difference be-
tween the numbers of positive-sign and negative-sign vertices in Y. Since degt = 2r(K),
we conclude that the graded algebra A incorporates both classical Legendrian-isotopy in-
variants.

We next wish to define the differential 0 on A. As in [Ch], we define Oa; for a generator
a; by considering a certain class of immersed disks in the diagram Y.

Definition 2.2.5. An admissible map on Y is an immersion from the two-disk D? to R2
which maps the boundary of D? into the knot projection Y, and which satisfies the following
properties: the map is smooth except possibly at vertices and left cusps; the image of the
map near any singularity looks locally like one of the diagrams in Figure 2-4, excepting the
two forbidden ones; and, in the notation of Figure 2-4, there is precisely one initial vertex.

initial vertices corner vertices

o

corner vertex
(counted twice)

(downward)

other allowed singularitiesv forbidden singularities

Figuré 2-4: Possible singularities in an admissible map, and their classification. The shaded
area is the image of the map restricted to a neighborhood of the singularity; the heavy line
indicates the image of the boundary of D?. In two of the diagrams, the heavy line has been
shifted off of itself for clarity. The diagram with heavy shading indicates that the image
overlaps itself. The last two diagrams are forbidden in an admissible map.
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The singularities of an admissible map thus consist of one initial vertex, a number of corner
vertices (possibly including some right cusps counted twice), and some other singularities
which we will ignore. One type of corner vertex, the “downward” corner vertex as labelled
in Figure 2-4, will be important shortly in determining certain signs.

Remark 2.2.6. Forbidden singularities. The possible singularities depicted in Figure 2-4 are
all derived by considering the resolution of Y, but it is not immediately obvious why the two
forbidden singularities should be disallowed. To justify this, call a point p in the domain
of an admissible map, and its image under the map, locally rightmost if p attains a local
maximum for the z coordinate of its image. (More sloppily, a point in the image of the
map is locally rightmost if it locally maximizes z coordinate in the image.) Observe that
any locally rightmost point in the image of an admissible map must be the unique initial
vertex of the map: this point must be a node or a right cusp, which cannot be a negative
corner vertex (cf. Figure 2-4). In particular, there must be a unique locally rightmost point
in the image. Of the two forbidden singularities from Figure 2-4, the left one is disallowed
because the initial vertex is not rightmost, and the right one because there would be two
locally rightmost points.

To each diffeomorphism class of admissible maps on Y, we will now associate a monomial
in Z[t,t"'](a1,... ,an). Let f be a representative of a diffeomorphism class, and suppose
that f has corner vertices at a;,, ... ,a;,, counted twice where necessary, in counterclockwise
order around the boundary of D?, starting just after the initial vertex, and ending just before
reaching the initial vertex again. Then the monomial associated to f, and by extension to
the diffeomorphism class of f, is

a(f) = (sgn f) "Ny, -+ aj,

where (sgn f) is the parity (+1 for even, —1 for odd) of the number of downward corner
vertices of f of even degree, and the winding number n(f) is defined below.

The image f(8D?), oriented counterclockwise, lifts to a collection of oriented paths in
the knot K. If a; is the initial vertex of f, then the lift of f(8D?), along with the lifts of
the capping paths v;, —v;,,... , —7;j,, form a closed cycle in K. We then set n(f) to be the
winding number of this cycle around K, with respect to the orientation of K.

Definition 2.2.7. Given a generator a;, we define

> a(f) if a; is a crossing
Oa; = ¢ 1+ aff) if a; is a right cusp oriented upwards
t=1 + > a(f) if a; is a right cusp oriented downwards,

where the sum is over all diffeomorphism classes of admissible maps f with initial vertex
at a;. We extend the differential to the algebra A by setting 8(Z[t,t~']) = 0 and imposing
the signed Leibniz rule d(vw) = (8v)w + (sgnv)v(dw).

Remark 2.2.8. Consistency of definitions. The power of ¢ in the definition of the monomial
a(f) has been taken directly from the definition in [ENS] of d for the resolution of Y. It
is easy to check that the signs also correspond to the signs in [ENS], after we replace a; by
—a; for each a; which is “right-pointing”; that is, near which the knot is locally oriented
from left to right for both strands.

Remark 2.2.9. Unoriented knots. Definition 2.2.7 depends on a choice of orientation of the
knot K. For an unoriented knot, we may similarly define the differential without the powers
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of t; the DGA is then an algebra over Z graded over Z/(2r(K)), still a lifting of Chekanov’s
original DGA over Z/2.

Remark 2.2.10. Stabilizations. If K is a stabilization, then it is easy to see that there is an
a; such that da; = 1 or da; = t!. In this case, d(a; — a;0a;) = 0 or d(a; — ta;da;) = 0 for
all j, and the DGA collapses modulo tame isomorphisms (see Section 2.4). This was first
noted in [Ch, §11.2].

Ezample 2.2.11. We may compute (somewhat laboriously) that the front in Figure 2-3
satisfies

Oa; = 1+ag— t2a60,4a6a7 — t2(1 — ta6a5)a3a6a7 + ta6a2(1 — tag — t2a7a4a6)a7
3&2
3&3

1 — tasag

t_l — ag — tasa7a4
Oay = Oas = Oag = dar; =0.

See Figure 2-5 for a depiction of two of the admissible maps counted in da;.

To illustrate the calculation of the sign and power of ¢ associated to an admissible map,
consider the term t3agasasagar in 8a; above. The sign of this term is (— sgn as)(—sgnag) =
+1; see Example 2.2.3. To calculate the power of £, we count, with orientation, the number
of times the cycle corresponding to this map passes through a;. The boundary of the

as

Figure 2-5: The admissible maps corresponding to the terms ag (top) and t3agasaszagar
(bottom) in Haq for the front from Figure 2-3. The heavy lines indicate the image of the
boundary of D?; the heavy shading indicates where the images overlap themselves. For
clarity, the images of the maps are redrawn to the right.
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immersed disk passes through a;, contributing 1; -; trivially does not pass through a;,
contributing 0; and —3, —6, —77 pass through a;, while —v5 does not, contributing a total
of —4. It follows that the power of ¢ is ¢~ (110-4) = ¢3,

2.3 Simple fronts

Since the behavior of an admissible map near a right cusp can be complicated, our formu-
lation of the differential algebra may seem no easier to compute than Chekanov’s. There
is, however, one class of fronts for which the differential is particularly easy to compute.

Definition 2.3.1. A front is simple if it is smoothly isotopic to a front all of whose right
cusps have the same z coordinate.

Any front can be Legendrian-isotoped to a simple front: “push” all of the right cusps to the
right until they share the same z coordinate. (In the terminology of Figure 1-1, a series of
ITb moves can turn any front into a simple front.)

For a simple front, the boundary of any admissible map must begin at a node or right
cusp (the initial vertex), travel leftwards to a left cusp, and then travel rightwards again to
the initial vertex. Outside of the initial vertex and the left cusp, the boundary can only have
very specific corner vertices: each corner vertex must be a crossing, and, in a neighborhood
of each of these nodes, the image of the map must only occupy one of the four regions
surrounding the crossing. In particular, the map is an embedding, not just an immersion.

Ezxample 2.3.2. It is easy to calculate the differential for the simple-front version of the
figure eight knot given in Figure 2-6:

Oa; = 14 ag+tapas Oay = 1+ agay — agag — tagaigas
das = 1-—tagayg Oas = a7+ a11+tanasar
daz = t7!—aip —taoanras dag = —taipar — tagai — t2aipai1asar

3(1.7 = Bag = 6ag = Bam = 30,11 =0.

For the signs, note that a1, az, a3, a4, and ag have degree 1, a7 and a;; have degree —1, and
the other vertices have degree 0; for the powers of ¢, note that s, v4, 75, Y6, ¥7, Y10, and
711 pass through a;, while the other capping paths do not.

Figure 2-6: A simple-front version of the front from Figure 2-3, with two admissible maps
drawn. The top shaded region corresponds to the term tajpas in da;; the bottom shaded
region corresponds to the term —tajga; in Hag.
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2.4 Properties of thg DGA

In this section, we summarize the properties of the Chekanov-Eliashberg DGA. These results
were originally proven over Z/2 in [Ch], and then extended over Z[t,t!] in [ENS]. Proofs
are provided, in the front-projection setup, in Appendix A; see also [ENS] for Lagrangian-
projection proofs.

Proposition 2.4.1 ([Ch],[ENS]). For the DGA associated to a Legendrian knot, 0 lowers
degree by 1. ‘

Proposition 2.4.2 ([Ch],[ENS]). For the DGA associated to a Legendrian knot, 8% = 0.

To state that the DGA is invariant under Legendrian isotopy, we need to recall several
definitions from [Ch] or [ENS].

An (algebra) automorphism of a graded free algebra Z[t,t"]{ay, ... ,a,) is elementary
if it preserves grading and sends some a; to a; + v, where v does not involve a;, and
fixes the other generators aj,j # i. A tame automorphism of Z[t,t~'](as,... ,ay) is any
composition of elementary automorphisms; a tame isomorphism between two free algebras
Z[t,t (a1, ... ,an) and Z[t,t"1](by, ... ,b,) is a grading-preserving composition of a tame
automorphism and the map sending a; to b; for all 2. Two DGAs are then tamely isomorphic
if there is a tame isomorphism between them which maps the differential on one to the
differential on the other.

Let E be a DGA with generators e; and eg, such that e; = tej, Oez = 0, both e; and
e> have pure degree, and dege; = deges + 1. Then an algebraic stabilization! of a DGA
(A =1ZJt,t )(a1,... ,a,),0) is a graded coproduct

(S(4),08) = (4,0) I (E,d) = (Z[t,t  )(a1,... ,an,e1,€3),d),

with differential and grading induced from A and E. Finally, two DGAs are equivalent if
they are tamely isomorphic after some (possibly different) number of (possibly different)
algebraic stabilizations of each.

We can now state the main invariance result.

Theorem 2.4.3 ([Ch],[ENS]). Fronts corresponding to Legendrian-isotopic knots have
equivalent DGAs.

Corollary 2.4.4 ([Ch],[ENS]). The graded homology of the DGA associated to a Legen-
drian knot is invariant under Legendrian isotopy.

2.5 The DGA for fronts of links

In this section, we describe the modifications of the definition of the Chekanov-Eliashberg
DGA necessary for Legendrian links in standard contact R3. Here the DGA has an infinite
family of gradings, as opposed to one, and is defined over a ring more complicated than
Z[t,t~1]. The DGA for links also includes some information not found for knots.

Let L be an oriented Legendrian link, with components Lj,... ,Lg; in this section,
for ease of notation, we will also use L,L1,...,L; to denote the corresponding fronts.

! This is not related to the stabilizations of Figure 1-2.
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Chekanov’s original definition [Ch] of the DGA for L gives an algebra over Z/2 graded
over Z/(2'r'(L)), where r(L) = ged(r(L1),.-.,7(Ly)); we will extend this to an algebra
over Z[tl,tl yee sty ty ] graded over Z, and our set of gradings will be more refined than
Chekanov’s. We will also discuss an additional structure on the DGA discovered by K.
Michatchev [Mi].

As in Section 2.2, let a1,...,a, be the vertices (crossings and right cusps) of L. We
associate to L the algebra

A= Z[tl,tl_l,... ,tk,tl;l](al,... ,0n),

with differential and grading to be defined below.

For each crossing a;, let N, (a;) and N;(a;) denote neighborhoods of a; on the two strands
intersecting at a;, so that the slope of Nj(a;) is greater than the slope of Ny (a;); then Ny(a;)
is lower than Nj(a;) in y coordinate, since the y axis points into the page. If a; is a right
cusp, define N,(a;) = Ni(a;) to be a neighborhood of a; in L. For any vertex a;, we may
then define two numbers u(a;) and I(a;), the indices of the link components containing
N.(a;) and Ni(a;), respectively.

For each j = 1,...,k, fix a base point p; on L;, away from the singularities of L, so
that L; is oriented from left to right in a neighborhood of p;. To a crossing a;, we associate
two capping paths 7}* and 'y1 7% is the path beginning at p,(q,) and following L, ,,) in the
direction of its orientation until a; is reached through Ny(a;); 7. is the analogous path in
Ly(,;) beginning at p;(4,) and ending at a; through N (a;). (If w(a;) = l(ai), then one of ~;*
and 'yf will contain the other.) Note that, by this definition, when a; is a right cusp, 7;* and
'yf are both the path beginning at py(,;) = Pi(e;) and ending at a;.

Definition 2.5.1. For (p1,... ,pk-1) € 7ZF-!, we may define a 7Z grading on A by

de 1 if a; is a right cusp
ga; = . . .
¢ c(v) —e(vh) + 20u(a;) — 2P1(a;) if s is a crossing,

where we set p,, = 0. We will only consider gradings on A obtained in this way.

The set of gradings on A is then indexed by ZF~1. Our motivation for 1nclud1ng precisely
this set of gradings is given by the following easily proven observation.

Lemma 2.5.2. The collection of possible gradings on A is independent of the choices of
the points p;.

Remark 2.5.3. Signs. We may define the sign function on vertices, as usual, by sgna; =
(—1)4e8%_ This is well-defined and independent of the choice of grading: sgna; = —1 if a;
is a right cusp; sgna; = 1 if a; is a crossing with both strands pointed in the same direction
(either both to the left or both to the right); and sgna; = —1 if a; is a crossing with strands
pointed in opposite directions. Note that th(L) = >, sgna;.

Remark 2.5.4. If a; is contained in component L;, the degree of a; may differ from how
we defined it in Definition 2.2.2 with L; a knot by itself. It is easy to calculate that the
difference between the two degrees will always be either 0 or 2r(L;).

The differential of a generator a; is still given by Definition 2.2.7, but we must now
redefine a(f) for an admissible map f. Suppose that f has initial vertex a; and corner
vertices aj,,...,a;,. Then the lift of f(0D?) to L, together with the lifts of v, —'yzl-,
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St R i 71!1’ e "71!".” form a closed cycle in L. Let the winding number of this cycle
around component L; be n;(f). Also, define sgn f, as before, to be the parity of the number
of downward corner vertices of f with positive sign.
We now set
C!(f) — (sgnf) tl—ﬂl(f) . 't,:nk(f)alil Y T
The differential 9 can then be defined on A essentially as in Definition 2.2.7, except that
we now have 8(Z[ty,t",. .. ,tx,t;']) = 0, and

g 14+ > a(f) if a; is a right cusp.

{Ea( f) if a; is a crossing

Note that the signed Leibniz rule does not depend on the choice of base points pj, since, by
Remark 2.5.3, the signs (sgna;) are independent of this choice. Also, because of a different
choice of capping paths, we always add 1 to a right cusp, rather than adding either 1 or
t~1, as in Definition 2.2.7.

Remark 2.5.5. There is a simple way to calculate n;(f): it is the signed number of times
f(8D?) crosses p;. Indeed, the winding number of the appropriate cycle around L; is the
signed number of times that it crosses a point on L; just to the left of p;- No capping
path 7% or %, however, crosses this point. Hence n;(f) counts the number of times f(8D?)
crosses a point just to the left of p;; we could just as well consider p; instead of this point.

We next examine the effect of changing the base points p; on the differential 3. Consider
another set of base points f;, giving rise to capping paths 7%, »75, and let £; be the oriented
path in L; from p; to p;. Then

,-‘)',!5 _ ’Y;‘ — ' vEu(a,-)i N‘u(ai) C E’u(a.-)
Eu(a,-) - Lu(a,-)a N'u(a"i) Z Eu(a,-):
and similarly for 4} — .. We conclude the following result.

Lemma 2.5.6. The differential on A, calculated with base points p;, is related to the dif-
ferential calculated with p;, by intertwining with the following automorphism on A:

a;, Nu(a;) C €u(e;) and Ni(a:) C &yay)
s l_(ii)ai, Nu(a;) C €u(as) and Ni(a:) ¢ &yay)
' tu(ai)%is Nu(a:i) € €u(a;) and Ni(a;) C &yay)

tu(a,—)tl_(:‘.)ai, Nu(ai) € &u(a) and Ni(a:) & €i(a,)-

Ezample 2.5.7. Consider the link L in Figure 2-7, with base points as shown. To give a
grading to the DGA on L, choose (p1, p2) € Z2. We calculate the degree of a4 as an example:
u(as) = 2, l{as) =1, c(7¥) = 0, and ¢(v}) = —1, and so degag = 1+ 2p3 — 2p1. The full
list of degrees is as follows:
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Figure 2-7: An oriented link L with components L, L2, and L3', with corresponding base
points p;, p2, and p3 marked but not labelled.

dega; =1 degas =1+42p2 —2p; degay = —-1+2p;
degas =1 degas =1 — 2po degag = —14+2p1 —2p9
degaz =1 degag =1—2p degag = —1 + 2pa.

The differential d is then given by

Oay =1+t + t1t51a3a4 + t1t3—10.7a6 day = tgt‘;lagas dar = agag
Oas =141t + t2t§1a9a5 + asag Oas = agasg Oag =0
dag = 1+ t3 + asag + agar dag =0 dag = 0.

We can now state several properties of the link DGA, the analogues of the results for
knots in Section 2.4.

Proposition 2.5.8. If (4,8) is a DGA associated to the link L, then 8*> = 0, and 8 lowers
degree by 1 for any of the gradings of A.

The main invariance result requires a slight tweaking of the definitions. Define elemen-
tary and tame automorphisms as in Section 2.4; now, however, let a tame isomorphism
between algebras generated by aj, ... ,a, and by,..., b, be a grading-preserving composi-

tion of a tame automorphism and a map sending a; to ( ,kn=1 t;’,’,"m) b;, for any set of integers

{Vkm}. (This definition is motivated by Lemma 2.5.6.) Define algebraic stabilization and
equivalence as before.

Proposition 2.5.9. If L and L' are Legendrian-isotopic oriented links, then for any grad-
ing of the DGA for L, there is a grading of the DGA for L' so that the two DGAs are
equivalent.

The proofs of Propositions 2.5.8 and 2.5.9 will be omitted here, as they are simply variants
on the proofs of Propositions 2.4.1 and 2.4.2 and Theorem 2.4.3, given in Appendix A; see
also [Ch].

Remark 2.5.10. Allowed gradings. Our set of gradings for A is more restrictive than the set
of “admissible gradings” postulated in [Ch]. To see this, we first translate our criteria for
gradings to the Lagrangian-projection picture, and then compare with Chekanov’s original
criteria.
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Consider a Legendrian link L with components Ly, ... , Ly. By perturbing L slightly, we
may assume that the crossings of mgy(L) are orthogonal, where 74, is the projection map
(z,9,2) = (z,y); as usual, label these crossings ai,... ,a,. Choose neighborhoods Ny(a;)
and Ni(a;) in L of the two points mapping to a; under 74y, so that Ny(a;) lies above N;(a;)
in z coordinate, and let u(a;) and I(a;) be the indices of the link components on which these
neighborhoods lie.

For each j, choose a point p; on Lj, and let 8; be an angle, measured counterclockwise,
from the positive z axis to the oriented tangent to L; at p;; note that 6; is only well-defined
up to multiples of 2. Let 7,(a;) be the counterclockwise rotation number (the number of
revolutions made) for the path in m(Ly,(,,)) beginning at Pu(a;) and following the orientation
of Ly, until a; is reached via Ny(a;); similarly define r;(a;). Then the gradings for the
DGA of L are given by choosing (p1, ... ,pr_1) € Z*1 and setting

dega; = 2(ri(as) — ru(ai)) + (Ou(a;) — Ou(a;))/™ + 2Pu(a;) — 2P1(a;) — 1/2-

By comparison, the allowed degrees in [Ch] are given by

dega; = 2(ri(ai) — ru(a:)) + (Oia;) — Ou(as)) /™ + Pu(as) — Pi(a) — 1/2-

The difference arises from the fact that Chekanov never uses the orientations of the link
components; this forces ;) and 6,(,,) to be well-defined only up to integer multiples of ,
rather than 2m.

We now discuss an additional structure on the DGA for a link L, inspired by [Mi]. More
precisely, we will describe a variant of the relative homotopy splitting from [Mi]; our variant
will split something which is essentially a submodule of the DGA into k2 pieces which are
invariant under Legendrian isotopy.

Definition 2.5.11. For _71 # jo between 1 and k, inclusive, define T'j,j, to be the module
over Z[t1,t7",... ,tk,t; '] generated by words of the form a;, ---a;,, with u(a;,) = ji,
lai,,) = jo, and u(a,p+1) = l(ai,) for 1 <p <m —1. If j; = jp = j, then let T'; j, be the
module generated by such words, along with an indeterminate e;. Finally, let ' = @I, ;,.

The indeterminates e; will replace the 1 terms in the definition of d; see below. Note that
% € Tu(agi(ay):

Although T itself is not an algebra, we have the usual multiplication map I'j,j, X T'j,js —
T'jijs, given on generators by concatenation, once we stipulate that the e;’s act as the
identity.

Our introduction of I" is motivated by the fact that da; is essentially in T'u(as)i(a;) for all
i. Define d'a; as follows: if u(a;) # l(a;), then &a; = 8a;; if u(a;) = l(a;), then &a; is da;,
except that we replace any 1 or 2 term in da; by €u(a;) OF 2€y(a;)- (It is easy to see that
these are the only possible terms in da; which involve only the ¢;’s and no ar,’s.)

Lemma 2.5.12. &'a; € Ty(q,)(a;) for all i.

Proof. For a term in Oa; of the form a;, ...a;,, where we exclude powers of t;’s, we wish
to prove that u(a;;) = u(as), l(ai,) = I(a;), and wu(ai,,,) = l(a;,) for all p. Consider
the boundary of the map which gives the term a;, ...a;,. By definition, the portion of
this boundary connecting a;, to a;,,, belongs to link component /(a;,) on one hand, and
u(a;,,,) on the other. We similarly find that u(a;,) = u(a;) and I(a;, ) = I(a;). O
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Definition 2.5.13. The differential link module of L is (T, d'), where we have defined d'a;
above, and we extend & to I' by applying the signed Leibniz rule and setting d'e; = 0 for
all j. A grading for T is one inherited from the DGA of L, with dege; = 0 for all j.

We may define (grading-preserving) elementary and tame automorphisms and tame
isomorphisms for differential link modules as for DGAs, with the additional stipulation that
all maps must preserve the link module structure by preserving I';, ;, for all j1, j2. Similarly,
we may define an algebraic stabilization of a differential link module, with the additional
stipulation that the two added generators both belong to the same I';, j,. As usual, we then
define two differential link modules to be equivalent if they are tamely isomorphic after
some number of algebraic stabilizations. We omit the proof of the following result, which
again is simply a variant on the proofs given in Appendix A.

Proposition 2.5.14. If L and L' are Legendrian-isotopic oriented links, then for any grad-
ing of the differential link module for L, there is a grading of the differential link module
for L' so that the two are equivalent.

In this dissertation, we will not use the full strength of the differential link module. We
will, however, apply first-order Poincaré-Chekanov polynomials derived from the differential
link module; we now describe these polynomials, first mentioned in [Mi]. For the definition
of augmentations for knots, and background on Poincaré-Chekanov polynomials, please refer
to Section 3.2.

Assume that 7(Lq) = --- = r(Lg) = 0, and let T" be the differential link module for L,
with some fixed grading. We consider the DGAs for L and Ly, ... , L over Z/2; that is, set
t; =1 for all j, and reduce modulo 2.

Definition 2.5.15. Suppose that, when considered alone as a knot, the DGA for each of
Ly,...,L; has an augmentation €1, ... ,e;. Extend these augmentations to all vertices a;
of L by setting

e(as) = {Eu'(an(ai) if (a) = (as)

0 otherwise.

We define an augmentation of L to be any function € obtained in this way.

An augmentation €, as usual, gives rise to a first-order Poincaré-Chekanov polynomial
PE’:l()\); we may say, a bit imprecisely, that this polynomial splits into k¥ polynomials
P;f;z (M), corresponding to the pieces in I';,;,.

The polynomials P;]?l ()\) are precisely the polynomials P%'*()) for each individual link
component L;. For practical purposes, we can define P;I’Jl.z (M) for j1 # j2 as follows. For
a; € T'j,j,, define Bél)ai to be the image of da; under the following operation: discard all
terms in da; containing more than one a,, with u(an,) # l(am), and replace each ar, in da;

by £(am) whenever u(am,) = l(am). If we write Vj,;, as the vector space over Z/2 generated
2

by {a; € T'j,j,}, then oy preserves Vj ;, and (Bél)) = 0. We may then set I—"J’.':l’gl.2 (A) to be

the Poincaré polynomial of 69) on Vj,j,, i.e., the polynomial in A whose X! coefficient is the

dimension of the i-th graded piece of (ker 6£1)) /(im 621)).

We may also define higher-order Poincaré-Chekanov polynomials PJ'-EI’;L2 (A) by examining
the action of &’ on I';, ;,, but we will not need these here.
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The following result, which follows directly from Proposition 2.5.14 and Chekanov’s
corresponding result from [Ch], will be used extensively in Chapter 4.

Theorem 2.5.16. Suppose that L and L' are Legendrian-isotopic oriented links. Then, for
any gwen grading and augmentation of the DGA for L, there is a grading and augmentation
of the DGA for L' so that the first-order Poincaré-Chekanov polynomials 1-"J-€1’;2 for L and
L' are equal for all jy, jo.

Remark 2.5.17. While 1-")%!1(—1) = tb(L;) as usual, we also have P;I’Jl-z(—l) = k(L;,,Lj,),
the linking number of L;, and Lj,, for j; # j;. Also, we have PO Pjal’;z(—l) = tb(L).
We conclude that the first-order Poincaré-Chekanov polynomials incorporate the classical
invariants for oriented links (see Section 1.2.

Ezxample 2.5.18. For the link from Example 2.5.7, an augmentation is any map with e(a;) =
0 for ¢ > 4. Then Bél) is identically zero, and the first-order Poincaré-Chekanov polynomials

simply measure the degrees of the a;. More precisely, for a choice of grading (o, p2) € 72,
we have

Pleil(,\) = A stil(A) = \H20,2—2m P‘fil()\) — \1-2m
Pfél()‘) = A" H2p1-2p2 Pzeﬁl(’\) - P;;:él(/\) — \1-202
Pleél(A) = A—1+2P1 PQE:;'I(A) — A—1+2p2 P;;él(A) -\

Remark 2.5.19. Unoriented links. For unoriented links, we simply expand the set of allowed
gradings (p1,. .. ,pr—1) to allow half-integers, as in [Ch]. Indeed, a grading of half-integers
(p1,... ,pr—1) corresponds to changing the original orientation of L by either reversing the
orientation of {L; : 2p; odd}, or reversing the orientations of L; and {L; : 2p; even}. We
may deduce this by examining how the capping paths and degrees change when we change
the orientation (and hence base point) of one link component L;.
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Chapter 3

The characteristic algebra

We would like to use the Chekanov-Eliashberg DGA to distinguish between Legendrian iso-
topy classes of knots. Unfortunately, it is often hard to tell when two DGAs are equivalent.
In particular, the homology of a DGA is generally infinite-dimensional and difficult to grasp;
this prevents us from applying Corollary 2.4.4 directly.

Until now, the only known “computable” Legendrian invariants—that is, nonclassical
invariants which can be used in practice to distinguish between Legendrian isotopy classes of
knots—were the first-order Poincaré-Chekanov polynomial and its higher-order analogues.
However, the Poincaré-Chekanov polynomial is not defined for all Legendrian knots, nor is
it necessarily uniquely defined; in addition, as we shall see, there are many nonisotopic knots
with the same polynomial. The higher-order polynomials, on the other hand, are difficult
to compute, and have not yet been successfully used to distinguish Legendrian knots.

In Section 3.1, we introduce the characteristic algebra, a Legendrian invariant derived
from the DGA, which is nontrivial for most, if not all, Legendrian knots with maximal
Thurston-Bennequin number. The characteristic algebra encodes the information from at
least the first- and second-order Poincaré-Chekanov polynomials, as we explain in Sec-
tion 3.2. We will demonstrate the efficacy of our invariant, through examples, in Chapter 4.

Although the results of this chapter hold for links as well, we will confine our attention
to knots for simplicity, except in Remark 3.1.5.

3.1 Definition of the characteristic algebra

The definition of our new invariant is quite simple.

Definition 3.1.1. Let (A4,8) be a DGA over Z[t,t '], where A = Z[t,t"!]{(a1,... ,an), and
let I denote the (two-sided) ideal in A generated by {fa; |1 < ¢ < n}. The characteristic
algebra C(A, 8) is defined to be the algebra A/I, with grading induced from the grading on
A.

Definition 3.1.2. Two characteristic algebras A;/I1 and Ay/I, are tamely isomorphic if
we can add some number of generators to A; and the same generators to I;, and similarly
for Ay and I, so that there is a tame isomorphism between A; and Aj sending I to Io.

In particular, tamely isomorphic characteristic algebras are isomorphic as algebras. Strictly
speaking, Definition 3.1.2 only makes sense if we interpret the characteristic algebra as a
pair (A,I) rather than as A/I, but we will be sloppy with our notation. Recall that we
defined tame isomorphism between free algebras in Section 2.4.
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A stabilization of (4, ), as defined in Section 2.4, adds two generators e;, ez to A and
one generator es to I; thus A/I changes by adding one generator e; and no relations.

Definition 3.1.8. Two characteristic algebras A;/I) and Ay/I, are equivalent if they are
tamely isomorphic, after adding a (possibly different) finite number of generators (but no
additional relations) to each. :

Theorem 3.1.4. Legendrian-isotopic knots have equivalent characteristic algebras.

Proof. Let (A,0) be a DGA with A = Z[t,t)(as,... ,a,). Consider an elementary auto-
morphism of A sending a; to a; + v, where v does not involve a;; since d(a; + v) is in I,
it is easy to see that this automorphism descends to a map on characteristic algebras. We
conclude that tamely isomorphic DGAs have tamely isomorphic characteristic algebras. On
the other hand, equivalence of characteristic algebras is defined precisely to be preserved
under stabilization of DGAs. : ' a

Remark 3.1.5. Characteristic module for links. In the case of a link, we may also define
the characteristic module arising from the differential link module (T, &) introduced in
Section 2.5. This is the module over Z[t1, 7, ... ,tk,t,zl] generated by I', modulo the
relations

’Ul(alai)’vz =0:1v € Pj1j2a a; € Pj2js,’l)2 € Pj3j4 for some 71,72, 73, j4.

Define equivalence of characteristic modules similarly to equivalence of characteristic alge-
bras, except that replacing a generator a; by tf(la,- )& Or tlﬂ(::i)ai is allowed. Then Legendrian-
isotopic links have equivalent characteristic modules. An approach along these lines is used
in [Mi] to distinguish between particular links.

3.2 Relation to the Poincaré-Chekanov polynomial invari-
ants

In this section, we work over Z/2 rather than over Z[t,t~!]; simply set ¢ = 1 and reduce
modulo 2. Thus we consider the DGA (A4, 9) of a Legendrian knot K over Z/2, graded over
Z/(2r(K)); let C = A/I be its characteristic algebra.

We first review the definition of the Poincaré-Chekanov polynomials. The following
term is taken from [EFM].

Definition 3.2.1. Let (A,0) be a DGA over Z/2. An algebra map € : A — Z/2 is an
augmentation if e(1) = 1, e 0 @ = 0, and ¢ vanishes for any element in A of nonzero degree.

Given an augmentation ¢ of (A4,9), write A, = kere; then d maps (A4,)" into itself
for all n, and thus & descends to a map 8™ : A./A"*! — A./A™t1. We can break
A /AZ+! into graded pieces Y ;cz/(an(k)) C™, where C™ denotes the piece of degree i.
Write az(n) = dimg/, ker(8(™ : Ci(n) — Cff)l) and ,@fn) = dimz/; im(8™ : Cfi)l — Cz-(") ), so
that az(-") — ,Bfn) is the dimension of the i-th graded piece of the homology of (™).

Definition 3.2.2. The Poincaré-Chekanov polynomial of order n associated to an augmen-
tation € of (A, 6) is PE,‘n(A) = ziEZ/(Z’I‘(K)) (afn) - ,B,fn)) Az
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Note that augmentations of a DGA do not always exist.

The main result of this section states that we can recover some Poincaré-Chekanov
polynomials from the characteristic algebra. To do this, we need one additional bit of
information, besides the characteristic algebra.

Definition 3.2.3. Let ; be the number of generators of degree i of a DGA (A4, 3) graded
over Z/(2r(K)). Then the degree distributiony : Z/(2r(K)) — Z>o of A is the map i — ;.

Clearly, the degree distribution can be immediately computed from a diagram of K by
calculating the degrees of the vertices of K.

We are now ready for the main result of this section. Note that the following proposmon
uses the isomorphism class, not the equivalence class, of the characteristic algebra.

Proposition 3.2.4. The set of first- and second-order Poincaré-Chekanov polynomials for
all possible augmentations of a DGA (A, D) is determined by the isomorphism class of the
characteristic algebra C and the degree distribution of A.

Before we can prove Proposition 3.2.4, we need to establish a few ancillary results.
Our starting point is the observation that there is a one-to-one correspondence between
augmentations and maximal ideals (a1 + ¢1,... ,an + ¢p) C A containing I and satisfying
¢; = 0 if dega; # 0.

Fix an augmentation e. We first assume for convenience that € = 0; then I C M, where
M is the maximal ideal {(a;, ... ,ay). For each i, write

Oa; = O1a; + O2a; + O3a;,

where 01a; is linear in the aj, 0za; is quadratic in the a;, and J3a; contains terms of third
or higher order. The following lemma writes 0; in a standard form.

Lemma 3.2.5. After a tame automorphism, we can relabel the a; as ay, ... ,ax,b1,... by,
. ,Cn_ar for some k, so that 81a; = b; and S1b; = dic; = 0 for all i.

Proof. For clarity, we first relabel the a; as @;. We may assume that the a; are ordered so
that da; contains only terms involving a@;, j < %; see [Ch]. Let i; be the smallest number
so that 01a;, # 0. We can write 61d;, = a;, + v1, where j; < ¢; and the expression v; does
not involve a;,. After applying the elementary isomorphism a;, — a;, + v, we may assume
that V1 = 0 and 61&,,-1 = &jl.

For any a; such that 6,ad; involves a;, , replace a; by @; +a;,. Then 8;a; does not involve
aj, unless ¢ = i3; in addition, no 641@; can involve a;, , since then Bf&,- would involve a;, . Set
a1 = a;, and by = a;,; then 81a1 = b; and 01a; does not involve a; or b; for any other 1.

Repeat this process with the next smallest @;, with 1a;, # 0, and so forth. At the

conclusion of this inductive process, we obtain ai,... ,ax,b1,...,bx with d1a; = b; (and
O1b; = 0), and the remaining a; satisfy 81a; = 0; relabel these remaining generators with
c’s. O

Now assume that we have relabelled the generators of A in accordance with Lemma 3.2.5.

Lemma 3.2.6. ,3(1) is the number of b; of degree £, while ﬂl(z) — ﬁgl) is the dimension of
the degree £ subspace of the vector space generated by

{02bi, Ozci, aibj + biaj, bibj, bicj, cib;},

where 1, j range over all possible indices.
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Proof. The statement for ,6 is obvious. To calculate ﬂ(z) B(l), note that the image of
8?2 in A/A3 is generated by da; = b; + Gaa;, Ob; = Dob;, Hc; = 02¢;, O(a;a;) = azb; + biaj,
0(a;b;) = b;bj, 8(bia;) = bb;, d(aic;) = bicj, and d(c;aj) = c;b;. O

We wish to write ,Bgn) in terms of C, but we first pass through an intermediate step. Let
N® be the image of I in M/M™*!, and let 5‘(3") be the dimension of the degree £ part of
N®™). Lemma 3.2.8 below relates ,Bgn) to 61(_,") forn =1,2.

Lemma 3.2.7. 621) is the number of b; of degree £, while 6§2) — 6}1) is the dimension of the
degree { subspace of the vector space generated by

{02bi, 0aci, a;b;, biaj, bbs, bicj, c;ib;},
where 1,j range over all possible indices.

Proof. This follows immediately from the fact that I is generated by {8a;, db;, dc;}. O
Lemma 3.2.8. 8{") = 6 and 8% = 6&) — 3, 6p6-0_

Proof. We use Lemmas 3.2.6 and 3.2.7. The first equality is obvious. For the second
equality, we claim that, for fixed < and j, a;b; only appears in conjunction with b;a; in the
expressions Ob,, and dac,y,, for arbitrary m. It then follows that 5}2) ,8(2) is the number
of a;b; of degree £, which is Y, dpdp_p_1

To prove the claim, suppose that &b, contains a term a;b;. Since 83b, = 0 and
02(a;b;) = b;bj, there must be another term in 82b,, which, when we apply ;, gives b;b;;
but this term can only be b;a;. The same argument obviously holds for dacp,. O

Now let &€ be any augmentation, and let M, = (a1 + €(a1),... ,an + €(an)) be the

corresponding maximal ideal in A. If we define N and 65") as above, except with M
replaced by M,, then Lemma 3.2.8 still holds. We are now ready to prove Proposition 3.2.4.

Proof of Proposition 3.2.4. Note that
(Me /M) /N = (M, /1) /(M /T)™;

the characteristic algebra C = A/I and the choice of augmentation ¢ determine the right
hand side. On the other hand, the dimension of the degree £ part of M./MP*! is v, if
n =1, and y¢+ Y p Yeye—r if n = 2. It follows that we can calculate {6?)} and {522)} from
C, e, and 7.

Fix n = 1,2. By Lemma 3.2.8, we can then calculate {ﬂg")} and hence the Poincaré-
Chekanov polynomial

Pe,n(A) — Z (( (n) + ,3(") (‘") (")) AL
4

Letting e vary over all possible augmentations yields the proposition. O

Remark 3.2.9. Another set of invariants, similar to the Poincaré-Chekanov polynomials, are
obtained by ignoring the grading of the DGA, and considering ungraded augmentations.
In this case, the invariants are a set of integers, rather than polynomials, in each order. A
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proof similar to the one above shows that the first- and second-order ungraded invariants
are determined by the characteristic algebra.

Remark 3.2.10. The situation for higher-order Poincaré-Chekanov polynomials seems more
difficult; we tentatively make the following conjecture.

Conjecture 3.2.11. The isomorphism class of C and the degree distribution of A determine
the Poincaré-Chekanov polynomials in all orders.

Remark 3.2.12. In practice, we apply Proposition 3.2.4 as follows. Given two DGAs, stabi-
lize each with the appropriate number and degrees of stabilizations so that the two resulting
DGAs have the same degree distribution. If these new DGAs have isomorphic characteristic
algebras, then they have the same first- and second-order Poincaré-Chekanov polynomials
(if augmentations exist). If not, then we can often see that their characteristic algebras
are not equivalent, and so the original DGAs are not equivalent. Thus calculating char-
acteristic algebras often obviates the need to calculate first- and second-order Poincaré-
Chekanov polynomials.

Remark 3.2.13. Abelianized characteristic algebras. Note that the first-order Poincaré-
Chekanov polynomials depends only on the abelianization of (A4,8). If the procedure
described in Remark 3.2.12 yields two characteristic algebras whose abelianizations are
isomorphic, then the original DGAs have the same first-order Poincaré-Chekanov polyno-
mials.

On a related note, empirical evidence leads us to propose the following conjecture, which
would yield a new topological knot invariant.

Conjecture 3.2.14. For a Legendrian knot K with mazimal Thurston-Bennequin num-
ber, the equivalence class of the abelianized characteristic algebra of K, considered without
grading and over Z, depends only on the topological class of K.

Here the abelianization is unsigned: vw = wv for all v, w.

Remark 3.2.15. Scheme interpretation. We can view the abelianization of C in terms of
algebraic geometry. If C = (Z/2)(a1, ... ,an) /I, then the abelianization of C gives rise to a
scheme X in A", affine n-space over Z/2. Theorem 3.1.4 immediately implies the following
result.

Corollary 3.2.16. The scheme X is a Legendrian-isotopy invariant, up to changes of co-
ordinates and additions of extra coordinates (i.e., we can replace X C A™ by X x A C A™+! )-

There is a conjecture about first-order Poincaré-Chekanov polynomials, suggested by
Chekanov, which has a nice interpretation in our scheme picture.

Conjecture 3.2.17 ([Ch]). The first-order Poincaré-Chekanov polynomial is independent
of the augmentation .

Augmentations are simply the (Z/2)-rational points in X, graded in the sense that all
coordinates corresponding to a; of nonzero degree are zero. It is not hard to see that the
first-order Poincaré-Chekanov polynomial at a (Z/2)-rational point p in X is precisely the
“graded” codimension in A" of T, X, the tangent space to X at p- The following conjecture,
which we have verified in many examples, would imply Conjecture 3.2.17.

Conjecture 3.2.18. The scheme X is irreducible and smooth at each (Z/2)-rational point.
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Chapter 4
Applications

In this chapter, we give several illustrations of the constructions and results from Chap-
ters 2 and 3, especially Theorems 2.5.16 and 3.1.4. The first four examples, all knots,
both illustrate the computation of the characteristic algebra described in Section 3.1, and
demonstrate its usefulness in distinguishing between Legendrian knots. The last three, all
multi-component links, apply the techniques of Section 2.5 to conclude some results about
Legendrian links.

Instead of using the full DGA over Z[t,t71] or Z[tl,tl_l, R 7 t,:l], we will work over
Z,/2 by setting ¢ = 1 and reducing modulo 2. We hope soon to have applications of the full
algebra. :

4.1 Example 1: 62

Our first example revisits the argument of [Ngl], which showed that there exist knots not
Legendrian isotopic to their Legendrian mirrors. Let K be the unoriented Legendrian knot
given in Figure 4-1, which is of knot type 62, with 7 = 0 and tb = —7. Here we will use the
characteristic algebra to give a proof which is essentially identical to the one in [Ngl], but
slightly cleaner.

With vertices labelled as in Figure 4-1, the differential on the DGA (4, 8) for K is given
by A= Z(al, e ,a.g,bl,b2> and

8a; = 1+ agash ' days = agag
daz = 1+ b1(1+ asas+ agas) fas = agag
by = ag+ (1 + asag + aga4)a3 day = 1+ agag

303 = Baﬁ = aag = 3019 = 3b1 =0.

Figure 4-1: Front projection for the Legendrian knot K, of type 63, with vertices labelled.
The use of a; and b; to label the vertices is not related to the a; and b; from Lemma 3.2.5;
we use a and b to denote vertices of odd and even degree, respectively.
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The ideal I is generated by the above expressions. More precisely, I = (f1, f2, [3, fa, f5, fe),
where

fi = 1+agash fa = aeas
fo = 1+ bl(l + asag + a9a4) fs = aoag
fs = ag+ (1+ asag+ agag)as fe = 1+ agas.

The characteristic algebra of K is then given by C = A/I.

The grading on A and C is given as follows: a1, a2, as, a7, and ag have degree 1; b1, b2
have degree 0; and a3, as, ag, ag have degree —1.

Note that the characteristic algebra for the Legendrian mirror of K is the same as
C = A/I, but with each term in I reversed.

Lemma 4.1.1. We have

c= (Z/2)<a1) -+ 05, a’71a8abl, b2) /
(1 + agasby, 1 + biagas, 1 + aZa?, 1 + asas + asas + asajas).

Proof. We perform a series of computations in C = A/I:

ag = ag + (1 + agag)as = ar8(a'9a6) =0;
1+ asag + agas = agasbi(1 + asag + agas) = asas;

ag = (1 + asag + aga4)a3 = agag.

Substituting for ag and ag in the relations f; yields the relations in the statement of the
lemma. Conversely, given the relations in the statement of the lemma, and setting ag = 0
and ag = agag, we can recover the relations f;. O

Decompose C into graded pieces C = ®;C;, where C; is the piece of degree 1.
Lemma 4.1.2. There do not exist v € C_1,w € C1 such that vw =1 € C.

Proof. Suppose otherwise, and consider the algebra C’ obtained from C by setting b; =
1,81 = az = a4 = ag = a7 = 0. There is an obvious projection from C to C’ which is an
algebra map; under this projection, v,w map to v’ € C',w’ € C{, with v'w’ =1 in C'.
But it is easy to see that C' = (Z/2){a3,as) / (1 + agas), with ag € C'_; and ag € ], and it
follows that there do not exist such v/, w’. a

Proposition 4.1.3. K is not Legendrian isotopic to its Legendrian mirror.

Proof. Let C be the characteristic algebra of the Legendrian mirror of K. Since the relations
in C are precisely the relations in C reversed, Lemma 4.1.2 implies that there do not exist
v € C,w € C_; such that vw = 1. On the other hand, there certainly do exist v € C;,w €
C_1 such that vw = 1; for instance, take v = ag and w = —a3b;. Hence C and C are not
isomorphic. This argument still holds if some number of generators is added to C and C,
and so C and C are not equivalent. The result follows from Theorem 3.1.4. O

Remark 4.1.4. More generally, the characteristic algebra technique seems to be an effective
way to distinguish between some knots and their Legendrian mirrors; see Remark 4.2.5 for
another example. Note that Poincaré-Chekanov polynomials of any order can never tell
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between a knot and its mirror, since, as noted above, the differential for a mirror is the
differential for the knot, with each monomial reversed.

4.2 Example 2: 7,4

Our second example shows that the characteristic algebra is effective even when Poincaré-
Chekanov polynomials do not exist. In addition, Examples 2, 3, and 4 are the first examples,
known to the author, in which the DGA grading is not needed to distinguish between knots.

Consider the Legendrian knots K, K3 shown in Figure 4-2; both are of smooth type
74, with r = 0 and tb = 1. We will show that K; and K, are not Legendrian isotopic.
We present this example before the 63 and 72 examples of Sections 4.3 and 4.4 because the
algebra is a bit simpler in this case.

The differential on the DGA for K is given by

0ay = 1+ bybrby Oas = 1+ brbg

Oaz =1+ bibyby Oag = 1+ bgby

Baz = by(1+babs)  Oby = agbaby + brbsay
Oag = (1 + bzby)by Obs = brag — asby;

the differential for K is given by

Oa1 = 1+ (1 + bsbs + baby + bgbr + bsbsbebr + bsasashr )by

Oaz = 1+ b1brby

Oaz = by(1 + bgbs)

Oayq = b3 + bs + by + b3babs + b3babr + babgbr + bsbgby + b3bsbsbebr + asagbr + bybsasagar
dag = 1 + brbg

Figure 4-2: The fronts for the Legendrian knots K; and K>, of type 74, with vertices
labelled.
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Oby = brbsay + agbr + as(1 + babs + babr + bebr + bybsbgbr + baasashr)
6b5 = a5b7.
Denote the characteristic algebras of K1 and Kz by C; = A/I, and C; = A/I;, respec-

tively; here A = (Z/2){a1,... ,a6,b1,... ,b7), and I; and I are generated by the respective
expressions above.

Lemma 4.2.1. We have
C1 = (Z/2){a1, a2, a3, a5,b1,b2,ba, b5, b7) / (1 + brbabr, biba + baby, bibr + brby, babr 4 brby).

Proof. In Cq, we compute that

b1bgbr = b1babrbibrby = b1brbs =1
b3 = b1bybabz = b1b7bgbrbabs = b1b7bebr = biby
be = b1babrbe = b1bs
a4 = bibrbsay = bragbyby

ag = bibsbrag = bibaasbr;
substituting for a4, ag, b3, bg in the relations for C; gives the result. ' O

Lemma 4.2.2. There is no expression in C1 which is invertible from one side but not from
the other.

Proof. Tt is clear that the only expressions in C; which are invertible from either side are
products of some number of by, bs, and by, with inverses of the same form. Since by, by, b7
all commute, the lemma follows. O

Lemma 4.2.3. In Cs, by is invertible from the right but not from the left.

Proof. Since bybg = 1, by is certainly invertible from the right. Now consider adding to Cy
the relations b; = 1, b3 = by, by = bg, b2 = bs = 0, and a; = 0 for all . A straightforward
computation reveals that the resulting algebra is isomorphic to (Z/2)(bg,b7) / (1 + brbs), in
which by is not invertible from the left. We conclude that b7 is not invertible from the left
in Cy either, as desired. d

Proposition 4.2.4. The Legendrian knots K1 and Ko are not Legendrian isotopic.
Proof. From Lemmas 4.2.2 and 4.2.3, C; and Cp are not equivalent. O

Remark 4.2.5. Although C; and C3 are not equivalent, one may compute that their abelian-
izations are isomorphic. It is also easy to check that K; and Ky have no augmentations,
and hence no Poincaré-Chekanov polynomials.

The computation from the proof of Lemma 4.2.3 also demonstrates that K5 is not Leg-
endrian isotopic to its Legendrian mirror; we may use the same argument as in Section 4.1,
along with the fact that bg and b7 have degrees 2 and —2, respectively, in Cp. By contrast,
we see from inspection that K; is the same as its Legendrian mirror.
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K,

Figure 4-3: The oriented Legendrian knots K3 and Kjy, of type 63.

4.3 Example 3: 63

This section provides another example of the efficacy of the characteristic algebra when
Poincaré-Chekanov polynomials do not exist. It is also the first example, known to the
author, of two Legendrian knots with nonzero rotation number which have the same classical
invariants but are not Legendrian isotopic. The knots are K3, K4 shown in Figure 4-3; both
are of smooth type 63, with » = 1 and tb = —4.

We will omit some details in both this section and Section 4.4, since the arguments in
both sections are very similar to the argument from Section 4.2.

Remark 4.3.1. We will not need these for the computation, but for both K; and Kj, by has
degree 0, by, b3 have degree —2, and a; has degree —1 for all 3.

Over Z/2, the differential on the DGA for K3 is given by

0a1 =1+ ((1 + bsbz)az + ae(1 + b2b3))as

Oas =1+ agas(1 + bzba)

O0ag =1+ bybz + a5((1 + bgbz)ar + ag(1 + b2bs))
Oag = by + b3 + bababy

Oa7 = by + b3 + b1babs;

the differential for K4 is given by
30,1 =1+ 06(1 + b3b2)a3
Oaz =1+ (1+ agaq) (b1 + b3 + bib2bs) + as(as + a7 + asagar)(1 + babs)

Oas = (1 + asae)(1 + bzba)
Oay = by + bg + bzbob.

Denote the characteristic algebras of K3 and K4 by C3 and C4, respectively.
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Lemma 4.3.2. We have

C3 = (Z/2)(a1,a2,a3,a4, a6, b2, b3) /
1+ a3(1+ bzbg)a3(1 + b3b2),1+ (1 + bgbg)a3(1 + b2b3)a3).

Proof. In C3, we compute that

(1 + b1b2)(1 + b3ba) = 1+ (by + b3 + bybabs)by = 1
(14 b3b2)(1 + b1b2) = 1+ ba(by + b + baboby) = 1
b1 = azas(1 + b3bz)by = agasbs
as = as((1 + bgbz2)ar + ag(1 + babs))ag = (1 + babs)as
as(1+ bgba) = ((1+ bsba)ar + ag(1 + babs))agas(1 + baby) = (1 + bsba)ar + ag(L + babs)
a7 = (14 b1ba)(1 + bgba)ar = (1 + bibz)(as(L + bsby) + ag(1 + babs));

substituting for a5, a7, b; in the relations for C3 gives the result. O

Lemma 4.3.3. There is no expression in Cs which is invertible from one side but not from
the other.

Proof. Tt follows from the representation for Cs given by Lemma 4.3.2 that the expressions
a3, 1+bb3, and 1+ b3b, are all invertible (from both sides). The only invertible expressions
in C3 which are invertible from either side are derived from these, and are hence invertible
from both sides. |

Lemma 4.3.4. In Cy, a3 is invertible from the left but not from the right.

Proof. Since ag(1+bzbz)as = 1, a3 is invertible from the left. Now consider adding to C4 the
relations a5 = (b3+1)as, ag = (b3+1)as, by = 1+a3(bs+1)as, b = 1,01 = ay = a4 = a7 = 0.
The resulting algebra is isomorphic to (Z/2)(as,bs) / (1 + ((bs + 1)as)?), in which a3 is not
invertible from the right. O

Proposition 4.3.5. The Legendrian knots K3 and K4 are not Legendrian isotopic.

Remark 4.8.6. The abelianizations of C3 and C, are isomorphic. Neither K3 nor K, has a
Poincaré-Chekanov polynomial; it can also be shown that K3 and Ky are each isotopic to
their Legendrian mirrors (with, of course, the reverse orientations).

4.4 Example 4: 7,

Our next example applies the characteristic algebra to a case where the first-order Poincaré-
Chekanov polynomials exist but fail to distinguish between two knots. Let K5 and Kg be
the unoriented Legendrian knots shown in Figure 4-4; both are of smooth type 75, with
r=0and tb = 1.
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- Figure 4-4: The Legendrian knots K5 and Kg, of type 72.

The differential on the DGA for Kj is given by

da; =1+ ((1+ brbe)bs + b7 (1 + agas) (1 + bab1)
Oax =1+ ((bl + b3 + bybabs)by + (1+ blbz)(l + azaq))br + (1 + b]bz)a3b7a,6
dag = (1+ b7b6)(1 + b5b4) + b7(1 + agas )by

dag = 1 + bgbr
dbz = a3(1 + brbg)bs + azbr(1 + agas)
0bs = bras;

the differential for Kg is given by

fa; =1+ b7(1 + b2b1)
daz = 1+ ((by + bg + bib2bz) (1 + babs) + (1 + b1b2)(1 + azaq)bs)(1 + bebr)
+ (((b1 + b3 + bibabs)ba + (1 + byb2)(1 + azas)) (1 + asae) + (1 + bibz)azas) by

day = brby
Oag = 1+ brbg
Obs = asby
0bs = asby.

Denote the characteristic algebras of K5 and K¢ by C5 and Cg, respectively.
Lemma 4.4.1. We have

Cs = (Z/2)(a1,a2,a4,a6,b1,b2,b3,bs, b7) / (1 + (1 + bzbl)b7, 1+ b7(1 + bzbl), boby + b1b2>.
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Proof. In Cs, we compute that

as = (1 + bgbr)as =0
a3 = ag(bs + by + brbgbs) (1 + bab;) = 0
bs = by + (1 + bgbr)bs = b ((1 + brbg)(1 + bsbg) + byby) = 0
be = (1 + byb2)brbg = 1 + byby;

substituting for a3, as, bs, bs in the relations for Cs gives the result. O

Lemma 4.4.2. There is no expression in Cs which is invertible from one side but not from
the other.

Lemma 4.4.3. In Cs, by is invertible from the right but not from the left.

Proof. Since brbg = 1, by is invertible from the right. Now consider adding to Cg the
relations by = 1, by = bg + 1, b3 = by = bs = 0, and a; = O for all i. The resulting algebra is
isomorphic to to (Z/2)(bg, b7) / (1 + brbs), in which b; is not invertible from the left. O

Proposition 4.4.4. The Legendrian knots K5 and Kg are not Legendrian isotopic.

Remark 4.4.5. K5 and Kg have the same abelianized characteristic algebras, as usual, and
the same degree distributions; hence, by Proposition 3.2.4, they have the same first-order
Poincaré-Chekanov polynomial, which we can calculate to be A + 2.

4.5 Example 5: triple of the unknot

In this section, we rederive a result of [Mi] by using the link grading from Section 2.5. Our
proof is different from the ones in [Mi].

Definition 4.5.1 ([Mi]). Given a Legendrian knot K, let the n-copy of K be the link
consisting of K, along with n — 1 copies of K slightly perturbed in the transversal direction.
In the front projection, the n-copy is simply n copies of the front of K , differing from each
other by small shifts in the z direction. We will call the 2-copy and 3-copy the double and
triple, respectively.

Let L = (L1, L3, L3) be the unoriented triple of the usual “flying-saucer” unknot; this
is the unoriented version of the link shown in Figure 2-7.

Proposition 4.5.2 ([Mi]). The unoriented links (L1, Lz, L3) and (La, L1, L3) are not Leg-
endrian isotopic.

Proof. In Example 2.5.18, we have already calculated the first-order Poincaré-Chekanov
polynomials for (L1, L, L3), once we allow the grading (p1, p2) to range in (3Z)?, as stip-
ulated by Remark 2.5.19. The polynomials for the link (Lg, L1, L3) and grading (01,02) €
(3Z)* are identical, except with the indices 1 and 2 reversed:

Pleil()\) =\ PZEI,I()‘) = )\~ 1+201-202 P?::il()‘) = )\1—202
P]‘::él(A) — A1+20'2—20'1 P;él(A) =) P;él(A) — )\1—201
Py =a"t2r PRl = At PEI(Y) = A
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It is easy to compute that there is no choice of p1,p2, 01,02 for which these polynomials
coincide with the polynomials for (Li, La, L3) given in Example 2.5.18. The result now
follows from Theorem 2.5.16. O

4.6 Example 6: double of the figure eight knot

In [Mi], it is asked whether there is an unoriented Legendrian knot whose double is not
Legendrian isotopic to the double with components exchanged. We will give an example of
such a knot in this section. ’ /

Let L = (L1, L) be the unoriented double of the figure eight knot, shown in Figure 4-5.
To calculate gradings, we temporarily give L an orientation and base points as marked. We
have labelled the vertices of L so that a; € Ty for 1 <4 < 7, a; € 'y for 8 < i < 14,
a; € Ty for 15 < i < 21, and a; € [y for 22 <4 < 28.

Proposition 4.6.1. The unoriented links (L1,Lz) and (L2,L1) are not Legendrian iso-

topic.

Proof. As usual, we work modulo 2 and ignore powers of £; and t3. An easy calculation on
the DGAs for L; and L shows that any augmentation ¢ of the DGA for L, as defined in
Section 2.5, must satisfy £(ag) = £(a7) = e(a13) = £(a14) = 1 and e(a4) = e(as) = e(an) =

L

Figure 4-5: The link L, with vertices labelled (the a’s are suppressed). To calculate gradings,
orientations and base points are given.
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€(a12) = 0. With that in mind, we find that

8Mazs = as
8Ma1g = a15 + aze ?1)
War = ave +a 0;az3 = agy

21 = a6 + a17
° 0Mazs = azr + ags,

and Bél)ai = 0 for all other a; € '3 or a; € Ty;.
Given the orientations and base points from Figure 4-5, we calculate the degrees in I'5
and I'y; to be

(1+2p1  for ai1g,

2p1 for a1y, a1,
—1+4+2p; for ais,a1s,a17, aso,

dega; = ¢

1-2p for agz,as3, a4, ass,

—2p for ag7,ass,

| —1—2p1 for ag.

It follows that Pj3'(A) = A1+201 4 2X~1+201 and PSY(N) = 2014201 £ \~14+201 We disregard
the orientations of L; and Ly by allowing any p; € %Z.

For the link (Lq,L;) and a choice of grading oy € %Z, we have the same Poincaré-
Chekanov polynomials, except with indices 1 and 2 switched; hence, for (L2, Ly), Pfél A =
2A\1+291 4 \~1+201 Tt s clear that this is never equal to Pg3'(\) for (Ly, Ly) for any choice
of p3,01. The result follows. O

4.7 Example 7: Whitehead link

In this section, we give an example where orientation is important. Consider the Legendrian
form of the Whitehead link shown in Figure 4-6, with oriented components Ly and Lo, and
let —L; denote L; with reversed orientation, as usual. By playing with the diagrams, one
can show that (L1, L2), (La, —L1), (—L1,—Ls), and (—Lsg, L) are Legendrian isotopic, as
are (—Li, La), (—L2,~L1), (L1,—L2), and (—Lo, —L;). It is also the case that these two
families are smoothly isotopic to each other. We will show, however, that they are not
Legendrian isotopic.

L,
; §§ z; L
. I,
L,

Figure 4-6: The oriented Whitehead link. On the left, a form which is recognizably the
Whitehead link; on the right, the Legendrian-isotopic form which we will use.
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Figure 4-7: The oriented link (L1, L), with vertices labelled and base points as shown.

Proposition 4.7.1. The oriented links (L1, L2) and (—Ly, L) are not Legendrian isotopic.

Proof. Refer to Figure 4-7 for vertices and base points. Any map & with £(a;) = 0 for
¢ >3 is an augmentation. The only a; with a; € I'12 are a4 and a7, both of which satisfy
Oa; = 0; their degrees are degas = —1 + 2p; and degay = 2p; for some p; € Z, and so
P (A) = A2 4 A~ 1420,

On the other hand, if we reverse the orientation of L; (and choose a new base point
p1 on the lower half of L;), then we find degas = 207 and degay = 1 + 20, for some
01 € Z, and so PH(A) = A1+291 4 X291 [t follows that, regardless of the choice of py, 071,
the polynomial P5'(\) will be different for (Ly, Ly) and (—Li, Ly). O

Examples 6 and 7 will be applied to knots on the solid torus in Chapter 5.
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Chapter 5

Legendrian satellites

In the smooth category, there is a satellite construction which glues a link in the solid torus
S! x R? into a tubular neighborhood of a knot in R® to produce a link in R3. The motivation
for this chapter is that there is a Legendrian form of this construction which is invariant
under Legendrian isotopy. We can then deduce results about Legendrian solid-torus links
from results about Legendrian R® links, and vice versa. In addition, we hope in the future to
use Legendrian satellites to give nontrivial, nonclassical invariants of stabilized Legendrian
links in R3.

We define the construction in Section 5.1, and show how it immediately implies facts
about solid-torus links, including some that could not be shown using any previously known
techniques. In Section 5.2, we show that the DGAs of some simple Legendrian satellites
of stabilized knots, unfortunately, do not contain any useful information; the key step is
Lemma 5.2.4, which is proven in Section 5.3. The computation performed in Section 5.3 may
be of interest as the first involved computation known to this author which works directly
on the DGA, rather than manipulating easier invariants such as the Poincaré-Chekanov
polynomials or the characteristic algebra.

5.1 Construction

The solid torus S! x R? inherits a contact structure from R3. View S! x R? as R3 modulo
the relation (z,y, z) ~ (z+1,9, z); then the standard contact structure o = dz—ydz on R?
descends to the solid torus. As in R3, Legendrian links in the solid torus may be represented
by their front projections to the zz plane, with the understanding that the z direction is
now periodic. If we view S x R? as [0, 1] x R? with {0} x R? identified with {1} x R2, then
we can draw the front projection of a solid-torus Legendrian link as a front in [0, 1] x R with
the two boundary components identified. We depict the boundary components by dashed
lines; see Figure 5-1 for an illustration. For a Legendrian link L in the solid torus, let the
* endpoints of L be LN ({0} x R?), that is, the points where the front for L intersects the
dashed lines.
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