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Abstract

The emergence of wireless communications has transformed the concept of "any time,
any where" telephony and Internet access into a reality. However, techniques for
improving or maintaining acceptable levels of channel integrity and information re-
liability that have conventionally been applied to wirelined systems are no longer
appropriate for the wireless medium. Specifically, wireless channels are plagued with
the existence of multipath fading, which often degrade the signal-to-noise ratio (SNR)
at the receiver and make correct signal detection and decoding more difficult.

Diversity techniques are commonly applied to such systems to ameliorate the ef-
fects of the fading. This thesis deals with the simultaneous exploitation of spatial and
temporal diversity through space-time codes. Space-time codes are effective means
of achieving transmit diversity as well as exploiting the fact that the capacity of a
multiple transmit and receive antenna system grows at least linearly with the number
of transmit antennas.

The theory and fundamentals of Euclidean space forward error correction (FEC)
codes have been well explored and established. The construction technique presented
in this thesis aims to extend the performance improvements of these codes by provid-
ing additional coding gain and introducing diversity gain, both of which are inherent
to space-time codes. A detailed description of the encoding and decoding mechanisms
for space-time codes based on Euclidean space channel codes are presented as well as
the diversity order achieved by them. Simulation results will verify that Reed-Muller
RM(1,3) and extended Hamming codes achieve diversity orders of 2 and 3, respec-
tively.

Thesis Supervisor: Vahid Tarokh
Title: Associate Professor
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Chapter 1

Introduction

Wireless communications provide the necessary mobility for providing communication

and, more recently, Internet access to more places, in effect, extending the accessi-

bility of such services beyond the realm of the public switched telephone network

(PSTN). The current megatrend in mobile communications is the merging of mobile

communication technology with the Internet to give birth to a whole new suite of

mobile Internet applications [1]. Furthermore, with already more than one billion

subscribers worldwide, subscribership to wireless services is expected to exceed those

of wireline services by the year 2005 [2]. With the integration of communication into

information technology, the UMTS Forum expects that by 2010, the 90 million mo-

bile subscribers in Europe using mobile multimedia services will make up 60% of total

data traffic [1].

Parallel to increasing demand for wireless accessibility is a growing list of wireless

applications that are constantly evolving and developing. The mobile cellular phone

handset no longer simply places and accepts phone calls but now acts a portable

office, providing data through Internet access and multimedia capabilities. In fact,

it is expected that by 2004, the increased functionality of mobile handsets will cause

tetherless access to the Internet to surpass PC access and that mobile terminals

will eventually replace PC's as the principle man-machine interface of the future

[1]. Figures 1-1 and 1-2 [1] illustrate projected trends in telecommunications and

information technology.
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Figure 1-1: Traffic growth for different access systems

Providing means to support these additional services is the main objective of

many third generation (3G) wireless standards such as GSM EDGE, WCDMA and

CDMA2000. Other wireless applications include wireless local area networks (LANs),

digital broadcasting, and wireless local loops.

1.1 Motivation

Incorporation and support for these new wireless applications introduces a whole host

of new challenges that must be addressed and resolved. Several such challenges are

as follows:

High bandwidth efficiency: Bandwidth is a scarce and consequently, expensive

commodity and should be utilized efficiently and cost-effectively.

High data rate: Multimedia traffic often include applications with different data

rate requirements. Supporting these applications over existing frequency band

designations requires the use of higher-level modulation in order to achieve

higher data rates.
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Figure 1-2: Trends in voice and data services

Resource allocation: Inherent to multimedia applications are differences in quality

of service (QoS) tolerances; for example, a voice application may be more tol-

erant of errors but less tolerant of delay in contrast to data applications, which

impose antithesis requirements.

Mobility: In addition to multipath fading, which already plagues stationary wire-

less environments, the element of relative motion between the transmitter and

receiver makes the physical channel time-varying and hence factors such as

Doppler shift must be taken into account.

Portability: Especially for wireless systems that support mobile handheld devices

such as cellular phones or portable radios, the size, weight, shape and battery

life of the devices themselves are quite important. Low power consumption by

all physical components as well as highly power-efficient coding schemes should

be implemented to prolong the life of devices.

Privacy and security: In addition to minimizing interception of voice calls by other

wireless users, the introduction of data applications warrants the provision of
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data security and encryption capabilities.

Evidently, providing support for multimedia applications over wireless channels has

introduced many new challenges and problems of interest to both academia and in-

dustry. This thesis aims at providing means for increasing the effective data rate

over wireless channels by making transmissions over such a medium more robust to

noise and other distortions. This is achieved by using space-time codes, which are

codes that employ both spatial and temporal diversity techniques. Diversity tech-

niques exploit certain channel characteristics, which would otherwise be detrimental

to conventional receivers for wireless systems.

1.2 Thesis Outline

The remaining chapters of this thesis are organized as follows. Each chapter assumes

basic knowledge of the fundamental concepts in the field, but can be read indepen-

dently from each other.

Chapter 2 reviews the new challenges and characterizing parameters associated

with modelling wireless channels. It also reviews the concept of diversity and

provides a brief review of transmit and receive diversity techniques.

Chapter 3 reviews concepts associated with the new code paradigm that are space-

time block codes.

Chapter 4 introduces the new code construction technique of space-time block codes

from Euclidean space block codes and presents an analysis of the diversity order

of the space-time codes resulting from the new construction.

Chapter 5 details the simulation written to evaluate the performance of this new

construction scheme and discusses findings derived from simulation results.

Chapter 6 summarizes the main ideas of the thesis and suggests directions for future

research endeavors.
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Chapter 2

Wireless Channel Conditions

In contrast to wired systems, the channel for wireless communications is time-varying

and, if mobility is a feature, highly dynamic. Due to complexities created by the

presence of multipath components, modelling the channel as additive white Gaussian

noise (AWGN) is no longer appropriate. Consequently, new parameters must be

introduced to more accurately describe the channel of a wireless communications

system.

However, before proceeding to these introductions, it should be noted that the

AWGN channel model is still useful for establishing an upper bound on system per-

formance. In a wireless environment, there exists, in addition to the thermal noise of

AWGN, multipath components, which often have the effect of attenuating the received

signal. Furthermore, since radio channels are a shared-medium, there is multiple ac-

cess interference from other users, which can obscure the original signal. Naturally,

the bit error rate (BER) for a given signal-to-noise (SNR), resulting from the incor-

poration of these latter two factors in the channel model, is expected to be greater

than the BER for the simple AWGN channel model. Hence, if multipath mitigation

or diversity techniques are employed, then the resulting BER is bound to improve

and approach the limit set by the BER of the AWGN channel, thus explaining why

the AWGN channel typically upper bounds system performance [3].
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Cell Classification Size Comments
Large cells < 30 km no LOS component
Small cells < 1 km LOS is probable
Microcells < 100 m LOS is a feature

Table 2.1: Line-of-sight dependency on cell size

2.1 Propagation models

Unlike for wired communications, the propagation path between a transmitter-receiver

(T-R) pair can be time-varying and unpredictable. There exists three principle mecha-

nisms that affect the propagation of electromagnetic waves through such time-varying

channels [4]:

Reflection: An electromagnetic wave experiences a change in direction when im-

pacting obstacles whose dimensions are significantly larger than the wavelength

of the wave.

Diffraction: Electromagnetic waves bend and spread out around objects with sharp

irregularities such as edges.

Scattering: Electromagnetic waves disperse when they traverse through dense medi-

ums composing of obstacles with dimensions smaller than the wavelength of the

wave; for example, foliage, street signs and lamp posts can induce scattering.

The received signal manifests these three effects in two ways: large-scale path loss and

small-scale fading. Furthermore, the presence of an LOS component, which depends

on cell size and shape, can profoundly affect the propagation characteristics of the

system [3]. Table 2.1 [4] lists some typical numerical guidelines.

2.1.1 Mobile Radio Propagation: Large-Scale Path loss

The large-scale propagation model captures the macroscopic variations in signal

strength over T-R separation distances, typically on the order of several hundreds

18



Environment Path Loss Exponent, n

Free space 2
Urban area cellular radio 2.7 to 3.5
Shadowed urban cellular radio 3 to 5
In building line-of sight 1.6 to 1.8
Obstructed in building 4 to 6
Obstructed in factories 2 to 3

Table 2.2: Path-loss exponents for different environments

to thousands of meters [4]. The signal strength is affected by two factors: distance-

dependent path loss and log-normal shadowing.

Log-distance Path Loss Model

For both indoor and outdoor radio channels, signals experience attenuation in signal

strength over long distances. This attenuation can be described as a function of the

T-R separation distance, d and a path-loss exponent, n. Table 2.2 lists the typical

path loss exponents n for various mobile radio environments [4]. The average path

loss in decibels is [4]:

PL[dB] = PL(do) + 10n log , (2.1)

where do is the close-in reference distance, which depends on the coverage of the

cellular system. For large-coverage cellular systems, do is 1 km; for microcellular

systems, do is typically smaller, such as 1 m or 100 m [4].

Log-normal Shadowing

Equation (2.1) does not capture the effects of obstacles in the propagation path. The

random shadowing effects that occur over a large number of measurement locations,

which are characterized by the same T-R separation distance but have dissimilar

shadow clutter distributions in the propagation path, can be described by a log-normal

distribution. The resulting effect is called log-normal shadowing [4]. Consequently, a
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more complete description of the path loss is:

d
PL(d)[dB] =PL(d0 ) +1n log- + X,. (2.2)

PL(d) is log-normally distributed with a mean equal to the mean distance-dependent

expression, given by equation (2.1). The randomness of the fading is captured by X,

which is a log-normal zero-mean random variable (RV) with a variance in decibels on

the order of 6 dB.

2.1.2 Mobile Radio Propagation: Small-Scale Fading

Due to obstacles in the path of propagation between the transmitter and receiver, the

original signal gets deflected in various directions, and consequently, multiple time-

delayed versions of the signal arrive superimposed at the receiver. These replicas are

often attenuated in amplitude and shifted in phase with respect to the original sig-

nal. The result can be either constructive or destructive interference, which becomes

manifested as signal enhancement or fading, respectively.

Since the replicas arrive at the receiver at different times than the original signal,

the spread in time over which "echoes" of the original signal can still be discerned

is quantified by the multipath delay spread in the time-domain and by the coherence

bandwidth, in the frequency-domain.

Furthermore, since the environment of the propagation path may be changing, the

channel is characterized as being time-varying. Additional quantities used to parame-

terize the channel under these conditions include coherence time and Doppler spread.

The coherence time is the maximum delay between two replicas of a signal, such that

the correlation between them is small. Hence, two replicas separated by a time differ-

ence less than the coherence time will be highly correlated. The relationships between

these quantities are outlined in Table 2.3.

The terminology is admittedly confusing. Channel characteristics depend on the

relationship of the bit or symbol period T to either the multipath spread or coherence

time. An attempt to clarify these relationship is as follows [4]:
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Terminology and Relationships
Term Symbol Relationship
Multipath spread Tm
Coherence Bandwidth A fc
Coherence time Atc

reciprocalsDoppler Spread WDS

Table 2.3: Wireless channel parameters

Small-Scale fading
Based on multipath delay spread

Flat Fading Frequency Selective Fading
1. BW of signal < Afc 1. BW of signal > Afc
2. Tm < Symbol period 2. T > Symbol period
3. No channel-induced ISI 3. Channel-induced ISI

Table 2.4: Small-scale fade dependency on multipath delay spread

Flat fading: The fading characteristics of the channel are constant over the band-

width of the signal. Furthermore, the multipath delay spread is smaller than

the symbol period; therefore, the existence of multipath does not cause adjacent

symbols or their "echoes" to interfere with each other.

Frequency Selective fading: Different frequencies within the bandwidth of the sig-

nal are faded to different degrees than other frequencies. Moreover, due to a

multipath spread greater than one symbol period, adjacent symbols sent in time

will overlap at the receiver resulting in channel-induced intersymbol interference

(ISI).

A channel can change due to relative motion between the transmitter and receiver.

Consequently, it can be categorized as exhibiting either fast or slow fading, depending

on the speed of the moving terminal.

Fast fading: If the mobile is moving quickly relative to one symbol period, then

the motion of the mobile will affect the fading characteristics acting on the

transmitted signal.
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Small-Scale fading
Based on Doppler spread

Fast Fading Slow Fading
1. BW of signal < WDS 1. BW of signal > WDS
2. At, < Symbol period 2. At, > Symbol period
3. Channel variations faster than 3. Channel variations slower than

baseband signal variations baseband signal variations

Table 2.5: Small-scale fade dependency on Doppler spread

Slow fading: If the mobile is moving slowly relative to one symbol period, then the

effects of the motion can be neglected and the mobile can be treated as being

virtually stationary.

Tables 2.4 and 2.5 summarize the main points behind these channel qualifiers.

Hence, in a flat fading channel lacking LOS with local scatterers, the fading due

to multipath is modelled by a complex Gaussian RV. Written in polar form, the

amplitude of the RV is Rayleigh-distributed and the phase is uniformly-distributed.

This is the channel model that is assumed for the analyses and simulations presented

in this thesis.

To effectively combat distortions due to multipath, the conventional technique of

increasing transmit power, as used in AWGN channels, is no longer sufficient. In

fact, it was found that for AWGN channels, the SNR need only be increased by 1-2

dB; however, for multipath channels, increases on the order of 10 dB are necessary

to achieve comparable performance improvements [5]. Often, system requirements

prohibit such large expenditures of power and/or bandwidth, hence motivating the

need to find alternative means for achieving reliable transmissions in a multipath

fading channel [5].

A logical solution to this problem would be to provide the receiver with replicas

of the original signal that could be manipulated or combined in such a way that the

original signal can be decoded more reliably. These replicas, coined diversity, come

in several forms, the most common being in time, frequency and space.
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2.2 Diversity

Diversity is best exploited under channel conditions that best promote independence

between the fade coefficients affecting each signal replica. Often, sending these repli-

cas is compared to the act of interleaving bits within a repetition code to break up

burst errors, hence obtaining independent errors [6]. As aforementioned, there are

three principle forms of diversity:

" Temporal Diversity - typically used in conjunction with time interleaving and

channel coding, the transmitted signals are sent multiple times to the receiver

[5]. This technique is most effective when the difference in signal replica trans-

mission times exceed the coherence time (At), of the channel; signals transmit-

ted within one coherence time of each other will be have a nonzero correlation

and consequently experience dependent fading [6]. Consequently, it is desirable

to have a fast-fading channel such that the wait time between transmissions can

be minimized. This is an especially important requirement for delay sensitive

applications such as voice applications.

" Frequency Diversity - the replicas of the same signal are modulated up to mul-

tiple carrier frequencies and are transmitted simultaneously or in parallel. The

key to this technique is having the carrier separation exceed the coherence band-

width (Af)c of the channel. This ensures that the replicated transmissions are

independent and allows the multipaths to be resolved and effectively processed

by the optimum wideband signal receiver, the RAKE receiver [6].

" Spatial or Antenna Diversity - multiple transmission and receive antennas are

used to provide redundancy in the spatial domain. The receive antennas should

be spaced sufficiently far apart to ensure that multipath components of the

received signals experience independent propagation delays [6]. Based on the

Jakes model, which is appropriate for receivers surrounded by many local scat-

terers, such as a remote unit, this minimum separation is on the order of half
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a wavelength1 . However, for basestations, which are typically erected at higher

elevations, there are far less scatterers, so separations on the order of ten wave-

lengths may be needed [5]. Furthermore, in contrast to both temporal and

frequency diversity, spatial diversity does not require additional expenditure in

time or bandwidth for its implementation because all signals are transmitted

simultaneously and over the same frequency bands [7].

In many cases where there is Rayleigh fading and the channel is either non-frequency

selective or is slowly time-varying, frequency and temporal diversity cannot each

be individually exploited. Consequently, spatial diversity is needed. Smart coding

over multiple transmit antennas exploit transmit diversity and using multiple receive

antennas automatically result in full receive diversity. The next section will elaborate

on these two notions.

2.2.1 Transmit versus Receive Diversity

As previously mentioned, there are two types of diversity that can contribute to

the overall diversity gain of a multiple input, multiple output (MIMO) system with

multiple transmit and receive antennas. They are transmit and receive diversity,

respectively. In a practical system where physical limitations are a factor in system

design, using antenna arrays are typically only employed at the basestation because

incorporating multiple antennas on a small handheld device such as a cellular phone

is often unrealistic. In this case, downlink transmissions will benefit from transmit

diversity and uplink transmissions will benefit from receive diversity [8].

Receive Diversity Techniques

Full receive diversity has been historically exploited using multiple receive antennas

employing maximal receive ratio combining (MRRC) techniques. This optimum lin-

ear combining technique uses diversity to combat multipath fading and to suppress

'Physical limitations in current system designs often prevent the incorporation of multiple receive
antennas on platforms the size of cellular phones. Consequently, the use of antenna arrays is typically
implemented at the basestation.
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interference, thereby increasing the capacity of the system while also improving its

performance [10].

Essentially, a signal is sent from the single transmit antenna and is received by

multiple receive antennas. The receive antennas are spaced at least half a wavelength

apart to promote independence between replicas [8] or, in other words, to ensure

that each replica of the original signal undergoes independent fading. MRRC weights

and combines the received signals to maximize the signal-to-interference plus noise

ratio (SINR) at the receiver. Assuming perfect channel estimation, these weights are

typically equal to the complex conjugate of the complex Gaussian fading coefficient

associated with the channel between each transmit-receive antenna pair.

In other words, if the signal so was broadcast to all M receive antennas and the

fade coefficients corresponding to each transmit-receive antenna pair is characterized

by am~m=1,...,m, then

rm = amso + rm VM = 1, ... , M

where 77m represents the circularly symmetric additive white Gaussian noise at the

mth receive antenna. Optimum linear combining or MRRC would yield the sufficient

statistic

M

So = 3 rm
m=1

MRRC is an example of one technique that captures the full receive diversity

benefit of multiple receive antennas [12]. There exists numerous other techniques for

extracting receive diversity in single input/multiple output channels. The principle

ingredients for these techniques include using coding and/or modulation in conjunc-

tion with array processing and beamforming.

Receive diversity is a topic that has been well-understood and established. In con-

trast, techniques for deriving transmit diversity have been relatively underdeveloped.
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Transmit Diversity Techniques

Transmit diversity systems use processing at the transmitter to spread the information

across multiple transmit antennas [10]. Historically, these systems have been viewed

as being more difficult to design than those that exploit receive diversity because in

the absence of feedback, the transmitter has nearly zero knowledge about the channel.

Transmit diversity schemes typically allow each transmit antenna to send a sig-

nal different from that sent from other antennas. Hence, a linear combination of

these different signals is received by the single receive antenna. These combination

coefficients are unknown at the transmitter but it is assumed they can be perfectly

estimated at the receiver [8].

In other words, if Snln=1,...,N are the different signals simultaneously sent during

one channel access by each of the N transmit antennas, then the received signal is

N

r = Z ansn - T.
n=1

The an's are assumed to be known at the receiver but not at the transmitter.

The first scheme that used linear processing at the transmitter to spread the

information across multiple transmit antennas was introduced by Wittneben [13].

This technique was a variation on SIMULCAST networks, which broadcasted the

same signal from antennas mounted on different basestations 2. It was shown that

sending the same signal over each transmit antenna yielded no diversity gain; however,

if conventional or non-bandwidth expanding basestation modulation techniques such

as those presented by Wittneben are employed over SIMULCAST, then diversity

gains equal to that of MRRC can be achieved.

Seshadri and Winters [14] presented two signaling schemes that also achieved

transmit diversity. The first one, a special case of the scheme presented by Wittenben,

delays transmissions from successive antennas by multiples of the symbol interval T.

For example if si(t) is sent from antenna 1, then the signal sent from antenna 2 is

2 Note, these techniques can be applied to transmit diversity systems that assume the transmit
antennas are on the same basestation.
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si(t - T) and the signal sent from antenna i is si (t - (i - 1)T). The purpose of these

delays is to artificially introduce multi-path distortion to the receiver, thereby making

the channel frequency selective. It was shown in [14] that a maximum likelihood

sequence estimator (MLSE) can resolve these deliberate multipaths at the receiver

and realize a diversity benefit of N if N transmit antennas are used [15].

The second scheme derives diversity advantage from channel coding. A rate N

channel code encodes k information bits into a N-symbol codeword and transmits

these code symbols over non-overlapping time slots from different antennas using time

multiplexing. The maximum likelihood decoder reduces to correlating received signal

vector with every possible codeword and selecting the codeword that yields the highest

correlation. If the channel code has minimum Hamming distance dmin < N, then

maximum likelihood decoder provides diversity dmin [14]. A side-effect of imposing

orthogonality on the transmission of code symbol is an N-fold reduction in bandwidth

efficiency.

However, if the coding at the transmitter and receiver are designed carefully,

the orthogonality requirement can be somewhat relaxed. The resulting scheme will

extract diversity as well as coding advantage without sacrificing bandwidth efficiency.

Space-time codes, which are designed for the generalized MIMO system, are examples

of such codes.

Space-time codes: Joint exploitation of transmit and receive diversity

Space-time codes use transmit diversity techniques over multiple transmit antennas

and linear combining techniques similar to MRRC at the receive antennas to extract

both transmit and receive diversity. However, unlike some of the transmit diversity

techniques presented previously, these schemes do not require bandwidth expansion.

The block coding technique for two transmit and M receive antennas introduced

by Alamouti [5] provided a fundamental basis for the more generalized space-time

block codes based on orthogonal designs described by Tarokh, Jafarkhani and Calder-

bank [16], which essentially extended Alamouti's designs to N transmit antennas.

These space-time codes exploited full transmit diversity and were characterized by
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decoders based on simple linear processing techniques.

Naguib, Seshadri and Calderbank [10] proposed a scheme for using space-time

codes and exploiting the spatial and temporal structure of these codes to develop

minimum mean-squared error (MMSE) interference suppression and maximum like-

lihood (ML) techniques. They demonstrated how the joint space-time block coding

and MMSE interference suppression could be beneficial to high capacity and high

data rate applications. One example of such a technique is to form a concatenated

code where the outer code is a conventional channel error correcting code and the

inner code is the space-time code. The inner space-time code provided means for

interference suppression and also provided the outer code with soft decisions which

the channel decoder could use to provide further protection against channel errors.

In fact, this concept of concatenating codes forms the basis of the code construction

being presented in this thesis.

2.3 Summary

Several important parameters commonly used to describe a wireless channel were

presented in this chapter. Through their definition and discussion, it became apparent

that unless the effects of multipath were mitigated, they would hinder the possibility

for reliable communication over wireless mediums. Hence, the method of applying

diversity techniques was introduced. Several forms of diversity were discussed, but

the majority of the discussion focused on the types and merits of antenna or spatial

diversity techniques. Ultimately, the concept of joint spatial and temporal diversity

exploitation was presented through a discussion of space-time coding.
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Chapter 3

Space-time codes

Space-time codes are typically employed over multiple input, multiple output (MIMO)

systems. Suppose there are N transmit and M receive antennas. During P consecu-

tive transmission slots or channel accesses , N signals are transmitted simultaneously

from each of the N transmit antennas. It can be assumed that inter-transmission

times will exceed the coherence time of the channel and that the antennas will be

spaced sufficiently far apart so that the signals transmitted from the different antennas

during the different time slots will experience independent fading.

Each receive antenna detects the superposition of the N transmitted signals, at-

tenuated by large-scale and small-scale fading and distorted by noise. The signals

received at each receive antenna are all statistically similar; however, since the fading

characteristics between each transmit and receive antenna pair are different and inde-

pendent from each other, realizations of each actual received signal will be different.

Figure 3-1 is a block diagram illustrating the basic steps involved in space-time

coding [17]. A realistic channel model is the flat fading channel, which holds the

path gains constant over a block of multiple channel accesses, but changes from block

to block. Let s, (t) denote the signal transmitted from the nth transmit antenna

(n = 1, ... , N) and let rm(t) denote the signal received at the mth receive antenna

29



ant 1
MODULATOR t

ant 2

info source -+ -> space-time coder
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Figure 3-1: Space-time encoder block diagram

(m = 1,..., M).

N

rm(t) = Z n,mSn(t) + rhm(t) (3.1)
n=1

an,m is the path gain associated with the channel between the nth transmit antenna

and m'h receive antenna. They are independent complex Gaussian RVs with

variance - per real dimension.

r7m(t) is the zero-mean complex Gaussian noise associated with the mth receive an-

tenna. The variance of this noise is 2SNR per real dimension.

This ensures that rm(t) will have a signal-to-noise ratio of SNR. To see this, note

that the complex variance of an,m and rqm(t) are 1 and N' respectively and sn (t)

is assumed to have unit energy. Hence, since the an,m's are independent, the power

in the signal part of rm(t) is EN I I = 1 and the power in the noise part of rm(t) is

SNR

3.1 An capacity argument for using space-time codes

The capacity and performance of systems with one transmit antenna and multiple

receive antennas or multiple transmit antennas and one receive antenna have been

well established. However, as shown through the independent efforts of Telatar [11],
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# tx antennas # rx antennas Capacity
1 M CyM - log M
N 1 CN,1 ~ log(1 + SNR)
N N CN,N~ N
N M CN,M ~min(N, M)

Table 3.1: Capacity limits

and Foschini and Gans [12], the capacity of a MIMO system far exceeds that of single

antenna systems. More importantly, if the number of transmit antennas N does not

exceed the number of receive antennas M, then the capacity of such a system is at

least linearly proportional to N [7].

Generally, when comparing the performance of systems using multiple transmit

and/or receive antennas, it is more appropriate to use outage capacity instead of

Shannon capacity, which is a limit derived for additive white Gaussian noise channels.

Telatar derived the outage capacity under the assumption that fading was con-

stant over each channel use, but changed independently between successive channel

uses. Foschini and Gans derived the outage capacity under the assumption of block

fading. Both outage capacities and error exponents were derived for multiple trans-

mit antenna systems with Gaussian channel noise [7]. Note that though the outage

capacities in the limit that N -+ oc for both first and third system configurations in

Table 3.1 tend to infinity, the capacity of the MIMO system grows significantly faster.

In contrast, the capacity of the second configuration saturates at log 2(1+ SNR) and

becomes independent of N.

Intuitively, there should exist some threshold value of N above which adding

transmit antennas will not increase the capacity of the system. This question was

addressed in [7], where it was shown that there is little to gain terms of outage

capacity when N > 4. The reader is encouraged to read [7] for a more comprehensive

proof of this claim. Furthermore, it is evident from the standard formula for Shannon

capacity that a 3 dB increase in SNR only increments the transmission rate by one

bit/cycle; however, for MIMO systems, a similar increase in SNR increments the
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transmission rate by N bits/cycle. From these three arguments, the merits of using

multiple antennas at both transmitter and receiver become apparent.

Outage capacity outline an outage region, which exhibits the following three prop-

erties [8]:

1. The edge of the region is a surface of constant mutual information 1 correspond-

ing to a target transmission rate.

2. Within the region, reliable communication is not possible at the desired trans-

mission rate.

3. Outside the region, reliable communication is possible at or above the desired

transmission rate.

Figure 3-2 illustrates the outage regions for various vector-coding and scalar-coding

schemes [8]. The lines outline surfaces of constant mutual information for various

(ai, a 2) pairs, where a 1 (abscissa) and a 2 (ordinate) are independent fade coefficients

associated with two parallel channels.

Vector-coded antenna systems use vector-valued codebooks, where the ith ele-

ment in the N-symbol vector codeword specifies what is to be transmitted over the

ith transmit antennas. Space-time codes are examples of vector-codes. Scalar-coded

codebooks use conventional codes in conjunction with linear preprocessing at the

input to the antenna array on the transmitter side. The preprocessing converts a

multiple-input/single-output system into a single-input/single-output system. Ex-

amples of preprocessing techniques include time and frequency multiplexing, time

and frequency shifting, and randomized time-weighting as described in [8].

It was shown by Narula et al. that using vector-coding is optimal in the sense

that they approach the performance limits of a multiple input/single output channel.

In fact, if I, represents the average mutual information achieved by each transmit

1Mutual information I(X; Y) = H(X) - H(X I Y) [9]. It is a -measure of achievable rates for
reliable communications [8].
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Figure 3-2: The outage region for a target transmission rate of 1 nat per symbol

antenna for coding scheme x where
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time/frequency division multiplexing

time/frequency shifting

randomized time weighting

it was proven in [8] and further illustrated in Figure 3-2 that in general,

(3.2)ITD/FD < IOPT

ITS/FS IOPT

IRAN IOPT

Furthermore, let CRAy represent the capacity of a single antenna system with

Rayleigh fading (i.e no spatial diversity) and CAWGN represent the capacity of a

AWGN channel at a specific average SNR level. It has been shown that the capacity

of vector-coded systems under conditions of infinite spatial diversity and fixed tempo-

33

3

2.5r -,

2

0.5

-- IRANJ

4



ral diversity approaches CAWGN, and that the capacity of scalar-coded systems under

the same conditions approaches CRAY [8]. These findings further support the claim

made earlier that AWGN channels upperbound the performance of MIMO systems.

Typically,vector-coding require computationally intensive and inefficient decoder

algorithms. Hence, there has been considerable interest in scalar-coding, which is sub-

optimal to vector-coding but provide low-complexity decoding algorithms [8]. How-

ever, the recent works of Foschini and Gans as well as Tarokh, Seshadri and Calder-

bank have given birth to vector-codes which do not suffer from complex encoding and

decoding strategies.

Space-time codes are the vector-codes developed by Tarokh et al. that are appro-

priate to MIMO systems and provide an essential stepping stone for approaching its

capacity limits. In fact, it was shown that using space-time diversity techniques could

potentially achieve a significant fraction of the calculated outage capacity limits for

the MIMO system [7]. There are two flavors of space-time codes: block codes and

trellis codes. This thesis focuses on introducing a construction for the former.

3.2 An improved performance argument for using

space-time codes

Similar to coding and shaping gains associated with Euclidean space codes, perfor-

mance improvements derived from space-time codes are quantified by the coding and

diversity gains they provide.

Diversity gain or diversity order DG is used to quantify how many replicas of

the original signal were successfully extracted from the received signal. Note, how-

ever, that it is not a benefit derived merely from using multiple transmit and receive

antennas.

As shown by Alamouti [5], it is very easy to exploit full receive diversity using

maximal ratio receive combining (MRRC) techniques; however, extracting diversity

advantage from using multiple transmit antennas is not so trivial a task.
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For an encoding scheme that achieves transmit diversity order R < N in a N

transmit, M receive antenna system, the overall diversity order is R * M. The maxi-

mum diversity order DGma, for such a system is N * M.

Space-time codes are examples of codes that can extract transmit diversity or-

der when used in conjunction with multiple transmit antennas. The importance of

achieving high diversity order is best shown through the generalized expression for

probability of error, P. Specifically, it has been shown that for Rayleigh fading

channels,

1
Pe ~ SNRDG (3.3)

Hence, increases in DG exponentially improve system performance.

3.3 Space-time block codes

Channel codes are typically designed to encode the original information symbols in

such a way as to improve their robustness against channel noise and distortions. The

codewords produced by (n, k) binary channel codes for Gaussian channels are 2 k n-

tuples that can be geometrically represented as vectors or discrete code points in the

subspace of the vector space S, which is the space consisting of all 2' of the possible

binary n-tuples. The AWGN is represented as a spherical noise cloud centered about

each code point, where the radius of the noise sphere is proportional to the variance

of the noise [6].

The optimal maximum likelihood decoder for a Gaussian channel simplifies to a

minimum distance rule, which essentially takes the received n-tuple and decodes it

into the codeword to which it is the closest. Consequently, to minimize the probability

that a received n-tuple will fall into the noise sphere of codeword e and hence be

decoded as e if codeword c is the actual transmitted codeword, it is desirable to have

these code points spaced as far apart as possible. To this end, minimum Hamming

distance is the parameter to be maximized for binary codes [6].
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For space-time codes, the design criteria are slightly more complex; however, as

will soon become evident, the increased complexity in design criteria does not affect

the complexity of the encoding and decoding algorithms. In fact, employing simple

encoding and decoding schemes are two of the design criteria for space-time codes.

The other design criteria are related to maximizing the diversity and coding gains of

the code. However, before stating them, it is important to introduce the notation for

space-time codes that will be used throughout the rest of this thesis.

3.3.1 Notation and Terminology

Space time codes are symbolically represented by a carefully designed transmission

matrix, H, and can be optimally decoded by a maximum likelihood decoder based

on linear processing at the receiver. As seen from Figure 3-1, the output of the

coder is not a matrix, but is instead merely a serial stream of symbols that are fed

into a serial-to-parallel converter. The matrix notation introduced here is simply a

mathematical construction used to facilitate the representation and manipulation of

the code. Figure 3-3 illustrates this point.

x1 , -- x 2, ...

Space-time code
X1 X2 .~ 4Code Gen. matrix G =XiX 2 ,- 2 ,Xii--- -> S/P =

x 2 , xl---

(a)

Ant 1 Ant 2

Y Y
Space-time code timel

X1 X2 .- -> Code Gen. matrix G >X X)=> time 2

(b)

Figure 3-3: (a) Actual encoder procedures (b) Matrix representation of encoder pro-
cedures

In general, any space-time codeword can be written as a PxN codeword or trans-
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mission matrix H such as the following:

C1 ,1 C1 ,2 . . . . . .  . C1,N

H = C2 ,1  C2 ,2  . . . . . . C2,N

CP,1 CP,2 ... .. . CP,N

If Ci,32 is the code symbol to be sent during the ith time slot over the "th transmit

antenna (j 1, ... , N), then over each time slot t = 1, 2, ..., P, a single frame of

symbols Ct,i, Ct,2, ... , Ct,N will be sent simultaneously from each of the N transmit

antennas.

To avoid confusion, the following naming conventions have been established:

Codeword : This term can be used interchangeably with 'space-time3 codeword',

'transmission matrix' or 'space-time codeword matrix', such as H above.

Code Generator Matrix, G: The PxN transformation matrix applied to the in-

put vector to the space-time coder to generate the codeword.

Symbol frame: The set of space-time code symbols sent simultaneously over the

N transmit antennas during one time slot: Ct,i, Ct,2, ... , Ct,N. Note that this is

merely one row within H.

Space-time code error matrix : (STC error matrix, for short) The difference be-

tween the transmission matrices H(c) and H(e) needed to send the codewords

c and e, respectively.

C1,1 - e1,1  C1,2 - e1,2 . . . . . .  C,N - el,N

B(cCe) = H(c) - H(e) 2 - e2,1 C2 ,2 - e2,2 . . . . . .  C2,N - e2,N

Cp,1 - ep, CP,2 eP,2 ... ... CP,N - eP,N

2ci,j are not the original information symbols. They are symbols selected from a baseband signal
constellations with 2b elements.

3Henceforth, all codewords are assumed to be space-time codewords, unless otherwise specified.
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Note that if the input to the space-time coder is

X = 1, X 2 , --. , s, Xis+1, --- ss, si - -- ,. , 7 -- -, Ks+s,

then define transmission block as the (N * P)-symbol long codeword associated

with any s-symbol4 input sequence. For instance, for input sequence, x, there will be

K such transmission blocks: one for encoding x1 , ..., x, one for encoding xs+, ... , X,+s

and so forth.

3.3.2 Design Criteria for Space-time Codes

Having established the mathematical notation for space-time codes, the design criteria

related to diversity and code gains for space-time codes over Rayleigh fading channels,

as first introduced by Tarokh, et al. [7], can now be stated.

Given two codewords

C = C1,1, C1 ,2 , ... , C1,N, C2 , 1, C2 ,2 , ... , C2,N, . CP,1, CP,2, ... , CP,N, (3.4)

and

e = ei,1 , ei,2 , --- , el,N, e 2,1, e2 ,2, ... , e2,N, ...--- , eP,1 , eP,2 , ... , ePN, (3.5)

the transmit diversity order of this code is the minimum rank R (< N) of its STC error

matrix B(c, e) when taken over all possible (c, e) codeword pairs. The overall diversity

order DG is hence R*M when M receive antennas is assumed. Consequently, B(c, e)

must be full rank (R = N) to achieve full or maximum diversity order DGmax

N * M.

The coding gain CG is measured with respect to an uncoded system operating with

the same diversity gain and is related to maximizing the determinant of the matrix

A(c,e) = B(c,e)B*(c,e), where B*(c,e) is the Hermitian (conjugate transpose) of

4In many cases s = N: number of transmit antennas
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B(c, e).

As found in [7], if you define P(c -+ e) as the probability of transmitting codeword

c and deciding in favor of codeword e, then

1
P(c -+ e) < (3.6)

-(CG * SN R)DG

Evidently, error performance is significantly improved through high diversity and

coding gains. Interestingly, space-time codes based on orthogonal designs are exam-

ples of codes that achieve maximum diversity order for a given number of transmit

and receive antennas. Readers interested in learning more about these codes are

encouraged to read [16].

3.4 The Encoding Scheme for Space-Time Codes

The following lists the ingredients needed for the construction of a space-time code-

word:

1. Baseband transmission signal constellation A with 2' elements.

2. N transmit antennas, M receive antennas.

3. PxN transmission matrix H.

4. P time slots per transmission block; i.e. H has P rows.

5. k information symbols input into the space-time coder.

The last two criteria imply a code rate R = k/P.

During any single time slot, k * b bits are sent through k information symbols

si, ... , sk chosen from signal constellation A. Given generator matrix G, whose ele-

ments are typically indeterminates x 1 , ..., X, set xi = si to produce the transmission

matrix H. For example, suppose G = (_X ), which implies k = P = N = 2. The
2 1

transmission matrix would be H = ), where si and s2 are the constellation

symbols sent into the space-time coder.
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As shown in Figure 3-3(b), each row in H is sent simultaneously from each of the

N transmit antennas, during the appropriate time slot.

3.5 The Decoding algorithm for Space-Time Codes

For purposes of illustration, the decoding algorithm will be derived for the simple

example given in the previous section. From detection theory, we know that the

optimal receiver for a channel with Gaussian noise is a maximum likelihood detector,

which reduces to minimizing the following minimum distance-type decision metric

over all possible values of s, and s2:

M

3(lri,m - a1,msl - C2,mS212 + r2,m - (-e,ms*) - a2,mS* 2)
m=1

(3.7)

Expanding and removing terms that are common to all metrics regardless of choice

of s, and s2, the previous expression reduces to

M

- Z[ri,m*,ms* + r*,mai,msi + r2,mC*2ms1 + r*,mc2,ms*] +
M=1

M

,[ri,m ms2 1+ r,mcY2,ms2 - r2,maims2 - r2,mal,ms2]
m=1

Notice that all terms in (a) depend solely on si and

solely on S2; therefore, you can minimize the entire metric

independently over all possible si and S2.

M 2

1s11 2 S E can,m2+ (a)
m=1 n=1

M 2

+ 182 2 E l1n,m12 (b)

m=1 n=1

all terms in (b) depend

by minimizing each term

This metric is equivalent to using

M 2 M 2

[S(rmc*,m + r*,ma2,m)] - Si + Is1 2 , F n,m12

m=1 m=1 n=1
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to decode s, and using

M 2 M 2

[Z(ri,mcm*, - r*,mai,m)] -- 2 + |s 2 12  | an,mr12 (3.9)
m=1 m=1 n=1

to decode s2 -

If the baseband signal constellation has equal energy, such as M-PSK, then the

second terms in equations 3.8 and 3.9 drop out and the metrics for decoding si and

s2 reduce further to

M 2

[Z(ri,mz*,m + r*,ma 2,m)] - 8i (3.10)
m=1

and

M 2

[Z(ri,ma*,m - r*,cmei,m)] - s2 , (3.11)
m=1

respectively.

As shown above, the decoder reduces to simple linear processing of the received

signals ri,m and r2,m and their complex conjugates.

3.6 Summary

Through both information theoretic and performance improvement arguments, space-

time codes show great promise in aiding efforts of providing reliable communication

capabilities over wireless mediums. Many of the fundamental concepts and terminol-

ogy associated with space-time codes were introduced in this chapter. Furthermore,

a brief glance into their encoding and decoding algorithms was provided.
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Chapter 4

Concatenating Euclidean Space

Codes with Space-Time Codes

4.1 The Transmission Model

Similar to before, the channel is modelled as exhibiting block fading. The transmitter

and receivers are each equipped with N and M antennas, respectively. Without loss

of generality, choose the expected signal power at the receiver to be 1. To meet

this constraint, choose the variance of the complex Gaussian RV used to capture the

effects of Rayleigh fading and uniform phase distortions to have a variance of 1 per

complex dimension or equivalently, 0.5 per real dimension. Furthermore, normalize

the average energy of the signal constellation to be .

The signal at receive antenna mIm=1,...,M at time t is

N

rm(t) = anmd (t) + 77m(t), (4.1)
n=1

where {dn(t)n=1,...,N} Is a frame of constellation symbols to be sent simultaneously

from the N transmit antennas.

'NOTE: Normalizing all signals to have equal energy implies an assumption that all signals from
the transmit side experience the same large-scale path loss; therefore, for simplicity, large-scale
fading is ignored.
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To obtain a specific SNR level, choose the variance of the independent, zero-

mean complex Gaussian noise samples, rm(t) to have a variance of 1 per complex

dimension, or equivalently 2SNR per real dimension.

4.2 The Construction

Before introducing the construction of the space-time code, let us establish the nota-

tioncl nvicc's focr mat,ric JO ndvcr-.- hat , are t bk s,,V . as -1 llows:

A* Hermitian (conjugate, transpose) of A.

AT transpose of A.

Ai,. : th row of A.

A.,: j"h column of A.

Aij : (ith, jth) element of A.

Given N transmit antennas, choose the code generation matrix G to be a unitary

PxN complex matrix, such that G*G = I. Let CES denote the constituent, rate R

Euclidean-space (linear block 2 ) code, where the codeword length for this code is L.

Code CES will consist of 2R*L codewords of length L, where each segment of b code bits

will select a symbol from a signal constellation with 2 ' elements. Figure 4-1 illustrates

the encoding process. Note that the construction is essentially a concatenated code,

where the information symbols are first encoded by a Euclidean-space channel code

and then encoded further by the space-time code.

4.2.1 Interface between the Euclidean-space coder and the

space-time coder

In Figure 4-1, c is the stream of codewords chosen from codebook CES that are

first modulated and then fed into the space-time coder. Hence, a L-bit codeword

2 A review of relevant linear block code theory is presented in section 5.2.1
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info source
ant 2

Eucl.-space coder - -+ space-time coder S/P *

ant N

Figure 4-1: Block diagram for a space-time coder based on a Euclidean space code

will result in J = modulation symbols if a modulation with 2b elements is used.b

For example, if the modulation is binary phase-shift keying (BPSK, b = 1), then

J = L and if the modulation is quadrature phase-shift keying (QPSK, b = 2), then

J = . If the number of modulation symbol per codeword, J is greater than the

number of transmit antennas N (i.e. J = x * N), then each block of J modulation

symbols must be further fragmented into segments containing N modulation symbols.

Consequently, x transmission blocks will be needed to send a single codeword from

code CES in its entirety. For instance, suppose the codeword c is of the following

form:

C = C, C2, ..., CL

Since L = b*J = b*x*N, c can be rewritten as the following stream of modulation

symbols d:

d = di,1, d1,2 , ... , dl,N, d2 ,1, ... , d2,N .--- , dx, 1, ... , dx,N

where di,m is the modulation symbol representing b codeword bits that is transmit-

ted over the ithj,=1,...,2 transmission block and mth m=1,.,M transmit antenna. This

being the case, let block fading imply that the path gains are constant over all x

transmission blocks.
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4.2.2 Choice of Code Generator Matrix G

Thus far, the only requirement on G for our construction is that it be a PxN complex

unitary matrix. One implication of this requirement is that G*G = I, which implies

that the columns of G are mutually orthonormal complex P-dimensional complex

vectors. This property of G will later prove to be key in the simplification the decoding

process.

Unlike the code generator matrices introduced earlier, the elements of G now take

on numerical values and are no longer indeterminants. Using the matrix notation

previously introduced , a codeword is generated by creating a NxN diagonal matrix

from the modulation symbols of d, and then right-multiplying G by this diagonal

matrix. The effect of this matrix multiplication is to modulate each column of G

by one modulation symbol. Specifically, during the ith transmission block, the nth

column of G will be multiplied by djnjn=1,...,N- An example is illustrated in Figure

4-2.

di,1, di,2, di,3, di,4

di,1 0 0 0
0 di,2 0 0

0 0 di,3 0
0 0 0 di,4)

1 di, 0 0 0 di,1  di,2  di,3  di,41 -- 1 0 di,2 0 0 1 di -di,2 di,3 -di,4
74 1 - -1 0 0 di,3 0 vf di,1 di,2 -di,3 -di,4

Sd 0 0 0d, diV d,1 -di, 2 -di, 3  di,4

Figure 4-2: Encoding using matrix multiplication

Recall that dij is an element from a signal constellation with 2b points; therefore,

if J > N, then i 1, ... , -

This construction does not place any further restrictions on the choice of G; how-

ever, if N is a power of 2, then appropriately scaled Hadamard or Fourier matrices can

be used for G and consequently, the encoding and decoding algorithms can be made
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very computationally efficient through use of fast Hadamard or Fourier transform

techniques.

4.2.3 Encoding

Although previous sections provided previews into the encoding process for the our

construction, it will be formally stated here.

Using R * L bits of data, one of the 2R*L codewords in code CES is chosen.

before, let this codeword be rewritten as

d = d1,1, d1,2, ...,7 dl,N 7 d2,1, ---. d2,N, --- ... , dx,1, --- , 7 x,Ni

where dij are modulation symbols representing b channel code bits.

If x transmission blocks are needed to send one codeword from CES, then let

{ H(i)Ij=1 ,...,x = G(di, 1, di, 2 , ..., di,N)

As

(4.2)

denote a set of space-time codeword matrices where the nit n=1,...,N column in

each individual transmission matrix is di,, G.,n. Each matrix is computed every P

time slots; i.e. H(i) is computed at time t = (i - 1)P + 1.

At time t = (i - 1)P+p, matrix element Hp,,(i)|I=1 ,...,x is sent over the pthj|=1,...,P

time slot and nlh In=1,...,N transmit antenna.

The rate of transmission is R*L number of input bits - R*N*b bits per channelP*x number of channel uses needed P ispr hne

use or equivalently R*N symbols per channel use.

Figure 4-3 illustrates the encoding process with the simple 2-antenna case, using

BPSK as the modulation scheme.

47



Eucl. Space CoderI L = 4, N= 2,= I -I x = 2

4
d = di,1dj,2d2,1d2,2 

Y

1 Id 1,1  dl,2  =~time slot 1Space-time Coder,H => H(1)= -d, 1  d1 ,2  . time slot 2
v/ (di, -di,2 ) time slot 2

H(2)=- d2,1  d2 ,2  = time slot 3
V d2 ,1 -d 2,2 I time slot 4

Figure 4-3: Encoding example using a unitary 2x2 Hadamard G = ( _)

4.2.4 Decoding

The signal received at the mh m=1,...,M receive antenna is of the form

N

rtm Z &n,mdt,n + rt,m, (4-3)
n=1

Assuming perfect channel estimation; i.e. the fading coefficients an,mlI 1
1 _' can

be recovered without error, then phase distortions can be eliminated 3, and coherent

detection can be used at the receivers. Hence, the maximum likelihood detector under

the Gaussian noise condition reduces to finding the sequence of modulation symbols

d that minimizes the following decision metric:

X P M N

E E E Trm ((i - 1)P + p) - E an,mGp,nd, n 12 (4.4)
i=1 P=1 m=1 n=1

when taken over all possible codewords

d = di,1 , di,2 , ... , d1,N, d2 ,1 , ... , d2,N .--- , dx, 1, ... , dx,N-

Define Ri,m to be a vector of the P signals received during the ith 1, trans-

3 Even if an,m cannot be perfectly recovered, they generally vary slow enough for a phase-locked
loop to track them.
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mission block at the mthlm=1,..,M receive antenna. Specifically,

Rim = [rm ((i - 1)P + 1), rm ((i-1)P + 2), ... ,rm ((i - 1)P + P)]

Equation 4.4 simplifies to

RiFm -
n=1

an,mG.,ndi,n12

M N N

(R Zm - Ean,mG.,ndi,n)(R*,m - E nEmGn din)
n=1 n=1

an,mG.,nR*mdin
n=1

N

-a,mG nR,mdi,2 +
n=1

n=1
lan,m 2 din12 1G., 2 12)

(b)

(a) is independent of the codewords and can be eliminated. (b) equals 1 because of

the property that G*G = I.

Introducing the notation Azm = G*, Ri,m, this simplifies to

x N M

(~ Z A*man,mdi,n -
i=1 n=1 m=1

M

ZA,m n ,m i,n
m=1

M

+ E I Cn,m12 Idi,n
m=1

12), (4.8)

which is equivalent to the following metric:

M

( A ,m4a*,m) - di, 12 +
m=1

M

Idi,n 12(E
m=1

Ian,m12 _ 1))
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i=1 m=1
(4.5)

x

i=1 m=1

(4.6)

x M1

i=1 m=1

(I m 12

(a)

(4.7)

x N(

i=1 n=1

(4.9)



To see this, expand equation (4.9) as follows:

x N M M

((A,ma*,m) - di *an,m) - d +2 2 - 2)
~~n Sn~.s ~ n,mC im'd,n) + (E Idi,n I Gn,m I -d~i=1 n=1 M=1 m=1 m=1

x N M M M

(( Aimc4,r)(Z An mn,m) -(5 A*man,mdi,n)
i=1 n=1 m=1 m=1 m=1

indpnPndPnt of the codewnrd

M M

-(S A ,ma*,md1n) + d i,n 2 + S Idi,n12 1 n,m12 - Idi,n 2

m=1 m=1

Equation (4.9) can be further simplified if all elements of the signal constellation have

equal energy; i.e. Idi 12 equal V ' Upon invoking this additional condition on

the choice of constellation, the metric becomes

x N M

E E(E ,mA,m) - d 2(4.10)
i=1 n=1 m=1 n n in(.0

In summary, the decoding process involves first computing Ai,mi=,...,V ,N

and subsequently, t,1 anm and sending these sufficient statistics to the

Euclidean-space decoder for CES. This Euclidean-space decoder turns out to be a

minimum-distance decoder such as the Viterbi algorithm with branch metrics of the

form

M M

(I( Ai,ma*,m) - di 12 + Idi ,12 (E 1an,m12 _ 1)
m=1 m=1

Consequently, this construction introduces a simple method for turning any

Euclidean-space channel code into a space-time code without creating additional com-

plexities in the decoder. In fact, the space-time code inherits the same decoding tech-

nique as the constituent Euclidean-space channel code. This is quite a remarkable

property, which makes implementation of this construction very appealing.

Figure 4-4 illustrates the steps in the decoding process for the simplified case of a
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single receive antenna (M = 1).

co-phases outputs for
coherent detection

r(i-)P+i [1,1

R 71 = r(j 1)P+2 a, 1

r(i-1)P+P ON,1)
linear processing
at receiver

R jodified

Find Rmodified for
i = 1,...,x and send
the collective set
of metric values to
the Euclidean-space
decoder of the con-
stituent Euclidean-
space block code.

Ri,, is the vector of received signals over the P time slots of the ith transmission block

Figure 4-4: Block Diagram for the Decoder of the Space-time Code

Figure 4-5 illustrates why the property that G is a unitary matrix simplifies the

decoding process.

(a
di,1

1 d1,1
V di,1

di,1

di3
di,3
-di,3

-di,3

0 )
di,4

-di,4

-di,4

di,4

= 4(ad,1 + #d, 2 + -ydi, 3 + Odi,4 ) + ni a 2di,1 + a*(ni±+2+ 4)"

r2 = 1(adi, - /di, 2 + ydi, 3 - d, 4) + 2 2 d,,2 + (n, - n2 + 72 - n4)
r3= -(adii + #di,2 - -yd, 3 - 0di,4 ) + j'yf2 di,3 + -7*(ni + n2 - n3 - n4)

r4 = (ad, - 3d 1,2 - 7 d,,3 + 0di,4 ) + n4 I012d,,4 + -LO (ni - n2 - n3 + n4)

R1 , 1  Rmodif ied
1,1

Figure 4-5: Decoder example for 4 transmit antennas and 1 receive antenna using the
4x4 Hadamard matrix for G and codeword length L = 4

Note that multiplying the received signals on the left by G* has the effect of

decoupling from each other the signals transmitted from the other transmit antennas.

The end result is that the i'h element in Ridified is a function of only di,j, as opposed

to being a function of the superposition of all the signals (di,1 , ..., d 1,4 ). This is a direct
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benefit from the columns of G being orthonormal, a property inherent to unitary

matrices. Also, note that the noise terms in Rmodified are still uncorrelated due to

the orthogonality of the columns of G.

4.3 Analysis of Diversity Order

As mentioned in Section 3.3.2, the diversity of space-time codes is related to the

minimum rank of the STC error matrix B(d, e) when taken over all possible (d, e)

modulation symbol sequence pairs. However, unlike space-time codes based on or-

thogonal designs, which always yielded full diversity order, the transmit diversity of

space-time codes based on unitary matrices is always R < N. Hence, being that this

construction is based on a concatenated code principle, the diversity order is derived

from both the space-time code as well as the underlying Euclidean-space channel

block code.

Let us examine the STC error matrix for the construction introduced here. The

STC error matrix must be found for the entire symbol sequence, d, hence if the

number of modulation symbols needed to send a codeword from CES is longer than

the number of transmit antennas; e.g. J = xN, then x transmission blocks will be

needed to transmit d in its entirety and hence the error matrix will contain x copies

of the code generating matrix G, each copy being scaled by a different segment of

symbols from d.

Consider the case of two distinct modulation symbol sequences d and e derived

from two different codewords from CES, which are of the following form:

d = di,1 , di,2 , ... , dl,N, d2 ,1 , ... , d2,N, -. -, dX, 1, ... , dx,N

and

e = ei,1 , ei,2 , ... , el,N, e 2 , 1 , --- , e2,Ni .... , ex,l, ... , ex,N,
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The space-time code used to encode each are of the form:

(G (di, 1, di,2, , d1,N),I G (d2,1, d2,2,i ... , d2,N) --.-.-.-., G (dx,1,7 dx,2, ..., d ,N )

and

(G(ei,1, ei,2 , ... , el,N), G(e 2,1, e 2 ,2 , ... , e2,N) --..., G(ex,1, ex, 2, ... , ex,N ,

respectively, where notation for G(d, 1 , di,2 , ..., di,N) was introduced in equation (4.2).
The STC error matrix is then given by

B(d, e) = (G(di,1, di,2,..., djN) - G(ei,1, ei, 2 , . , el,N), ...... , G(dd,, d ,2, ... , d ,N) - G(ex,eex,2, ., e,N))

or equivalently,

B(d, e) = (G(di,1 - ei,1 , d1 ,2 - ei, 2 , ...,dl,N - el,N) . G(dx,1 - ex,, dx,2 - ex, 2, ... , dx,N - ex,N))

Hence, as previously noted, G appears x times in B(d, e). The scaling factor for

nIhjn=1 ,...,N column of G in its Zth 1=1,...,I appearance is the Euclidean distance (di,n -

ei,,) between the modulation symbols (di,,, and ei,n).

The rank of a matrix is a count of how many of its non-zero columns are linearly

independent. Since the code generation matrices for our construction are chosen to

be unitary, then by definition, the NxN code generation matrix will have rank N.

However, for B(d, e), the nth column of G could potentially degenerate to zero if

(di,, - ei,n) = 0. However, since this column of G appears x times in B(d, e), then

the diversity order of the space-time code is reduced only if all appearances of this

column is driven to zero; i.e. iff (di,, - ei,n) = 0 V i = 1, ... , x. Hence, the rank of

B(d, e) is the number of columns of G not scaled by zero, when viewed over all x

possible appearances of them.

Since scalings of the nth column of G depend solely on the Euclidean distances
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between the sequences di,,, d2,,, ... , d,, and ei,n, e2 ,n, ... , , let

6i(d, e) =
(di,e , d2,n, ..., d ,n) = (ei, e2,n, ... , ex,n)

else.

The motivation behind this notational definition is that if

(di,7, d2 ,n, ... , dx,n) = (ei,,, e2 ,n, -- 1,. x,n),

then (di, - ei,n) = 0 V i = 1, ... , x and hence the nth column of G cannot contribute

to rank of B(d, e). Hence, the rank of B(d, e) is EN 1 6i (d, e).

Before presenting an example, it is interesting to note that if J = N and BPSK

modulation is used, then the rank of the STC error matrix and hence the transmit

diversity order of the space-time code is the same as the minimum distance parameter,

dmin, of the constituent Euclidean-space channel block code. To see this, note that if

L = N, then x = 1, hence each column of G appears only once in the error matrix.

Example 1: L = 2N, BPSK Modulation (b = 1)

For simplicity, choose N = 2 -> L = 4. G = 1 C _

d = di, 1, d1 ,2 , d2,1 , d 2,2
e = ei,, e1,2, e2,1, e2,2

B(d, e) = - di, - ei,1  di,2 - e1,2  d2 ,1 - 2,1
V, di1 - e1,1 -(d 1 ,2 - el,2 ) d2 ,1 - e2,1

G(di,1 - ei,1 , di,2 - ei,2 ) G(d 2,1 - e2,

d2,2 - e 2 ,2
-((d 2 ,2 - e2,2)J

d2,2 - e2,2)

Table 4.1 enumerates all possible combinations of equality and inequality between

the symbols of d and e and the resulting diversity order. In essence, the diversity

order will be

0: if the scalings for both appearances of each column of G are zero,

54



d, 1, ei,1  di,2 ,e1 ,2  d2 ,e 2,1 d2 ,2 ,e 2 ,2  DG di,,ei,1  di, 2 , el,2  d2 ,, e2,1 d2 ,2 , e 2 ,2  DG
0- - - 1

54 1
- - $ 1 $ = = $ 2

2 # =4 2
5 $1 $ $ = = 2

5 $1 $ $ = 5 2
5 $ $2 5 4 $ = 2

54 54$ 2 54 $ $ 2

Table 4.1: Diversity Gain/Order (DG) when L = 2N

di, ei,1  di,2 ,ei, 2  di,3 ,e 1 ,3  di,4 ,e 1 ,4  DG di,1,ei,1  di, 2 ,e1 ,2  di, 3 ,ei, 3  dl,4 ,ei, 4  DG
- - -0 $ = = = 1

5 -1 5 = = $ 2
- -$ = 1 $ = $ = 2

- -$ $ 2 $ = $ $ 3
5 $1 $ == 2

# 2 5 4 = 3
54$ 2 $4 0 54 3

542 0 3
: $3 5 # # 4 4

Table 4.2: Diversity Gain/Order (DG) when L = N

1: if the scaling for at least one appearance of only one column of G is nonzero,

2: if the scalings for at least one appearance of both columns of G are nonzero.

Example 2: L = N, BPSK Modulation (b 1)

For simplicity, choose N = 4 =- L = 4. G= - -

d = d1,1, di,2 , d1 ,3, d1 ,4
e = e1 ,1, e1 ,2 , e 1,3 , el,4

di, - ei,1

B(d, e) d1 ,1 - e1j
'V4 di,1 - ei,,,

1,1 ~~ e,1,

di,4 - el,4
- (d,4 - ei,4 )
- (d,4 - e 1 ,4 )

d1,4 - e1 ,4

- e, 1 , d1 ,2 - e1 ,2, di,3 - e1 ,3 , di,4 - ei,4)

Table 4.2 enumerates all possible relationship combinations between the symbols

of d and e and the resulting diversity order. However, in contrast to the previous
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example, each column of G now only appears once in the STC error matrix. Con-

sequently, the diversity order will be automatically reduced by one if the scaling for

one column of G is zero. Recall that in the previous example, the scaling for one ap-

pearance of a column can be zero, but as long as the scaling for the other appearance

of the column is nonzero, the diversity is not reduced. In essence, the diversity order

for this example will be

0: if d = e,

1: if the scaling for any one column of G is nonzero,

2: if the scalings for any two columns of G are nonzero,

3: if the scalings for any three columns of G are nonzero,

4: if d # e.

Consequently, since in this case, the transmit diversity order is the same as the

minimum distance of the constituent Euclidean-space channel code, using a con-

stituent code with large dmin would maximize the diversity advantage of the concate-

nated code.

4.4 Summary

Building on the fundamental concepts of space-time codes introduced in the previous

chapter, a new code construction of concatenating Euclidean space channel codes

with space-time codes was presented. The simplicity of the encoding and decoding

processes made this technique very appealing in that the potential gains in capacity

and communication reliability can be obtained without adding significant processing

complexity. Moreover, the diversity order of codes constructed in this way was shown

to depend indirectly on the Hamming distance properties of the constituent Euclidean

space channel code. Two examples of this will be provided in the next chapter.
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Chapter 5

Simulation Description and Results

The C-based simulations written in support of this code construction technique aim

to verify performance improvements expected from both the coding and diversity

gains achieved by these codes. If the construction is viewed as a concatenated code,

then the outer code is a Euclidean-space code and the inner code is the space-time

code.

The outer Euclidean-space channel code already provides some coding gain over

uncoded signals. The concatenated nature of this construction scheme should supple-

ment the coding gain of this channel code and provide further performance improve-

ments by way of diversity gains inherent to space-time codes. Although concatenated

codes typically provide performance advantage at the expense of increased decoding

complexity [6], it has already been demonstrated that the decoding complexity for

our code construction is not increased by the concatenation. In fact, the decoder

remains the same as that of the constituent Euclidean-space channel code, requiring

only simple linear processing on the received signals prior to decoding.

This chapter is organized as follows:

Section 5.1 provides a brief overview of the simulation structure.

Section 5.2 briefly describes the two Euclidean-space channel codes that were sim-

ulated and their respective Euclidean-space decoders.

Section 5.3 presents simulation results and draw conclusions about the performance
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gains of the construction scheme.

5.1 Simulation Description

Two scenarios were modeled via simulation. Both scenarios assumed N > 1 transmit

antennas, M 1 receive antennas '. Each simulation modelled systems of rate 1

bit/sec/Hz. The two scenarios are as follows:

1. Information bits are BPSK modulated but not channel nor space-time (ST)

coded. (baseline case)

2. Information bits are rate 1 channel-coded, QPSK modulated, and then space-2

time coded as prescribed by the proposed construction technique.

The two rate I channel codes simulated are First-order Reed Muller RM(1,3)2

codes, and extended Hamming codes, both of which are (8,4,4) linear block codes.

The channel used for all scenarios simulated is modeled to be a flat Rayleigh

fading channel, distorted by complex additive white Gaussian noise. Specifically,

if CN(O, U2 ) denotes a complex Gaussian distribution with zero mean and variance

per complex dimension (or 2 per real dimension) and 8 nrn=1,...,N2 is the symbol

transmitted from nth transmit antenna, then the received signal after passing through

this channel is of the form

N

r =E hsn + 7
n=1

where hi - CN(0, 1) and r/ - CN(O, 1N). To ensure r has an effective signal-to-

noise ratio of SNR, si is normalized to have energy y.
The receivers for the uncoded BPSK system consists merely of a threshold detec-

tor. In contrast, the receivers for the coded cases first linearly process the space-time

'Note that the theory behind this construction technique is applicable to systems with more than
one receive antenna; however, no simulation support was provided for these configurations in this
thesis.

2 For the baseline case, s, are BPSK symbols. For the coded cases, the sn are complex QPSK
symbols.
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coded QPSK symbols and then perform some additional processing on the resulting

symbols to convert them into a form appropriate for the Euclidean-space channel

decoders, which have been designed for real-valued and not complex-valued inputs.

The next section will provide further detail on the channel decoders used. For

both channel codes, an additional step of inverse mapping the decoded codewords

into information sequences was needed prior to calculating the bit-error rate.

5.2 Euclidean-space Channel Codes and their De-

coders

Prior to delving into the details of the encoder and decoders of the two specific channel

codes simulated for this thesis, it would be useful to review the fundamentals behind

linear block codes and other related topics.

5.2.1 Review of Linear Block Codes

Definition: Linear Block Codes

(n, k) Linear blocks codes operate on the principle of mapping k input symbols

onto n code word symbols. If the alphabet for these symbols are elements of the Galois

field (GF(2)), then these codes are called binary linear block codes. Henceforth, all

linear block codes will be assumed to be binary and, from this point on, will be

referred to simply as code C [18].

In contrast to regular block codes, linear block codes are special in that the code

C forms a vector subspace over GF(2), which means that it exhibits all the properties

of a subspace, including linearity. This implies:

e C is required to contain the all-zero vector or codeword.

* C can be represented by a k x n generator matrix G, whose rows span the

subspace of C.
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* C is associated with a (n - k) x n parity check matrix H, whose rows span a

subspace that is orthogonal to that of C [18].

To encode using a (n, k) linear block code, right multiply a row vector with k infor-

mation bits by the generator matrix G and the result will be a n-element row vector

containing the codeword.

Definition: Perfect codes

C is considered to be a perfect code if its redundancy parameter r = n - k

meets the Hamming bound with equality. The Hamming bound is defined as follows:

A Hamming sphere of radius t contains all possible received vectors that are at a

Hamming distance t from a specific code word within the vector space of dimension

n. If the volume of the resulting Hamming sphere is V(n, t), where

Vq (, t) = (q - 1)j,

then the Hamming bound is r > logq V1(n, t) [18].

Meeting this bound with equality implies that all the Hamming spheres do not

overlap and completely fill out the n-dimensional vector space spanned by C. Hence

a perfect q-ary code of length n can correct t errors using only minimal bits of redun-

dancy.

Definition: Hadamard Matrices [18]

Hadamard matrices, Hn, of order n are n x n matrices of +Is and -is, with

the property that HnH = HTHa = nI. This implies the rows and columns of

Hn are mutually orthogonal to each other and are of length n. As shown in the

previous chapter, this latter property was very useful and was exploited in our code

construction.

Furthermore, Hn only exists for values of n that are multiples of 1, 2, 4, or multiples

of 4. The Hadamard matrices implemented in this thesis were constructed using the

Sylvester Construction method, which starts with H1 = [1] and recursively generates
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higher order Hadamard matrices as follows:

H2n (H Hs

(Hn -Hn)

5.2.2 First-order Reed-Muller Codes

Reed-Muller codes are not strong channel codes, but they have the advantage of

having simple decoders. They were used extensively in the 1960s and 1970s on space

missions, and have recently returned to the limelight due to their extremely high-

speed maximum-likelihood decoding algorithms, which is an attractive quality to

many optical communication applications [18].

The (n, k, d) parameters for rth-order Reed-Muller codes RM(r, m) are as follows

[18]:

n= 2'

For first-order Reed-Muller codes RM(1, m), these parameters simplify to

n =2"'

k = + =) +m
0 1

d= 2m-1

Encoder

The generator matrix for first-order Reed-Muller codes is a (m + 1) x (2m) matrix.

The easy way to generate this matrix is to make the first column of the generator

matrix equal to the column vector consisting of a one followed by m zeros. Subsequent

columns are simply the previous column incremented by 1 using modulo 2 arithmetic.
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For example, the generator matrix for RM(1, 3) is

0 0 0 0 1 1 1 1
G =-

0 0 1 1 0 0 1 1

0O 1 0 1 0 1 0 1j

Decoder

The maximum likelihood decoding algorithm for a Gaussian channel can be simplified

to performing a correlation operation on the received signal against all possible code-

words in the codebook. Conveniently, the rows of a N x N Hadamard matrix HN and

its complement matrix -HN enumerate all the codewords of a RM(1, M_ =1o2 N)

code. Hence, the correlation operation can be accomplished by multiplying the re-

ceived N-symbol column vector on the left by HN- Fast Hadamard transforms are

computationally efficient techniques for performing precisely this task.

The elements of the vector resulting from this multiplication are the correlation

values between each row of HN with the received vector. If the it" element of this

vector stores the correlation value with the largest absolute magnitude, the codeword

is decoded into either the i"h row of HN or -HN, depending on the sign of this

correlation value.

5.2.3 (7,4,3) Hamming Codes

Hamming codes are pioneers in the field of error correcting codes. They were in-

troduced in April 1950 and first used for forward error correction in long-distance

telephony. They are perfect codes capable of single-error correction and are parame-
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terized as follows [18]:

code word length, n

number of information bits, k

minimum distance, d

number of parity bits, r

error correcting capability, t

2" - 1

= 2" m -1

n-k =znm

= 1 bit

The generator matrix for this codes is derived by first constructing the parity-check

matrix using the following procedure:

1. Construct a matrix with (n-k)-rows, whose columns enumerate all 2 n-k possible

binary (n - k)-tuples excluding the all-zero vector. For instance, for a (7,4,3)

Hamming code, this initial matrix would look like

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1i
1)

2. Searching from the first column to the last, pick out the columns containing

only one nonzero element and move them to the end of the matrix. Arrange

those columns so that they resemble a (n - k) x (n - k) identity matrix. The

resulting matrix is the parity check matrix H.

0
0
1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1>

1i
1 J

0

H=j1

1

1

0

1

1

1

0

1

1

1

1

0

0

0 0

1 0

0 1

3. If P denotes the set of columns that do not constitute the (n-k) x (n-k) identity

matrix, then construct the generator matrix G by appending the transpose of
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P onto the end of a k x k identity matrix.

0 1 1 1 0 0 0 0 1 1
0 1 1 1
P= 01 1 P/ 1 0 1 G 0 1 0 0 1 0 1

1 1 1)1 1 0 0 0 1 0 1 1 010110 0010

110 0 0 1 1 1 0

Decoder

The Hamming distance decoder for this code involves computing a syndrome for the

received word using the parity check matrix; however, for our code construction,

a Euclidean distance decoder was required. Consequently, a Viterbi trellis decoder

based on a technique developed by Wolf [20] was implemented. For details of this

algorithm, the reader is encouraged to read [20]; however, a summary of the key steps

in the algorithm will be presented here.

Any (n, k) linear block code over GF(q) can be maximum likelihood soft-decision

decoded using a Viterbi decoder with complexity qflk, which is a significant savings

over any correlation decoder which correlates the received word against each of qk

possible codewords [20].

For a (n, k) binary (q = 2) linear block code C , there are 2k possible codewords.

A trellis is a useful way for keeping track of all 2 k codewords because each codeword

corresponds to a distinct path traversal through the trellis.

Prior to introducing the algorithm for constructing the trellis for this code, let us

establish the following notational conventions:

* If H is the (n - k) x n parity matrix for C, let hi i-1,...,ndenote the zth column

of H.

* If d specifies the depth within a trellis, then for a (n, k) code, d ranges from 0

to n.

" The states of the trellis are (n - k)-tuples, and there are qf-k such (n - k)-tuples
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that should be listed sequentially.

" Id is the subset of all possible states "active" at depth d.

SSi(d) is the "active" state node at depth d corresponding to state i E d.

ALGORITHM

1. At d = 0, the only active state is the zeroth state; i.e., 1o = 0.

2. To define the trellis for d = 1, ..., n, the states that become "activated" at depth

d is found by taking each state in Id-1 and applying the following formula:

S (d) = -(d - 1) + achd (5.1)

for all i C Id-1, j = 0, ... , q - l and aj = j E GF(q). The set of nodes derived

from applying this formula to all the "active" states in Id_1 contribute to Id.

In drawing the trellis, a line is drawn from each state in Id-1 to each new state

it "activates" by the formula above, and it is labeled by the appropriate value

of aj.

3. Any paths that do not terminate in the zeroth state at depth n are removed.

Only qk distinct paths should remain, and these paths correspond to the qk

valid codewords.

After constructing the appropriate trellis for code C, standard Viterbi decoding

algorithms can be applied over them to decode a real-valued vector that represents

the received signals. For an example of a trellis generated by the algorithm outlined

above, and for detail on applying the Viterbi decoding algorithm over these trellises,

the reader is encouraged to read [20].
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Extended Hamming codes (8,4,4)

To promote consistency between all simulations, a rate I channel code used in con-2

junction with a QPSK modulation scheme must be implemented to maintain a trans-

mission rate of 1 bit/sec/Hz. Unfortunately, Hamming codes are rate 1. However,

when the "natural" length of a linear block code is unsuitable for a given application,

its length can be altered by various means. One way of increasing the length of the

codeword is a process called extending. To create a rate 1 code from the 4 Ham-2 7

ming code, the code is extended by appending an additional redundant coordinate.

Hence the (7,4,3) Hamming code becomes an (8,4,4) extended Hamming code. Notice

that not only does the codeword length increase, but so does the minimum Hamming

weight.

The conventional method for extending Hamming codes is to add a row of ones and

the column vector [0, 0, 0, ..., 0, I]T to the parity-check matrix for the Hamming code

[18]. However, to retain the property of producing a systematic code, the extended

Hamming code will have the following generator (G) and parity check (H) matrices:

1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 0

0 1 0 0 1 0 11 H 1 0 1 1 0 1 0 0
G= H=

0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0

0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1

The encoding and decoding algorithms for this extended Hamming code remain

the same as those used for the Hamming (7,4,3) code.

5.3 Simulation Results

To provide a basis for comparison, the performance curves for systems achieving di-

versity orders 1, 2, and 3 are shown in Figure 5-1. The systems used to generate these

curves consisted of uncoded BPSK symbols being sent over one transmit antenna and

being received over one, two, and three receive antennas, respectively. As previously
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mentioned, full receive diversity can always be extracted from using multiple receive

antennas. MRRC is the linear processing performed on the received signals to produce

estimates of the transmitted signals.

100

1 01

10

1041 5 10 15
SNR [dB]

20 25 30

Figure 5-1: Diversity
BPSK systems.

gains achieved using 1, 2 and 3 receive antennas for uncoded

Notice that the slopes of each curve is approximately equal to the negative of the

diversity order. To see this, note that from equation 3.3,

Pe~

log Pe

1
SNRDG
-DG * log SNR

The two communication schemes being compared against uncoded BPSK are

shown Figures 5-2 and 5-3. Each of the three simulations were tested using 800,000

information bits, which translated to either 800,000 BPSK symbols or 800,000 QPSK

symbols. Four transmit and one receive antenna were used in simulations employing

space-time codes.

The same block fading was applied in each scenario. Specifically, the fading co-

efficients were held constant over four channel uses, which translated to either four
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QPSK
Channel block code .

4 info bits=- Reed-Muller(1,3) z>8 code bits-:

Figure 5-2: Simulation scenario #1

QPSK

Channel block code .
4 info bits-> Ext. Hamming (8,4)t8 code bits->

Space-Time code

H

Space-Time code

-H

Figure 5-3: Simulation scenario #2

BPSK symbols or four QPSK symbols. However, the implications of this channel

condition are different for each simulation. These differences are as follows:

1. In the baseline case, the fading coefficients are held constant over four uncoded

and uncorrelated BPSK symbols.

2. In the coded cases, the fading coefficients over each of the four transmit antennas

are held constant for the four time slots over which four QPSK symbols are

transmitted. Since each transmit antenna merely sends the same codeword

symbol (or some scaled version of it), each QPSK symbol is faded by a coefficient

that is held constant over the four time slots. Recall that each set of four

QPSK symbols encapsulate the eight bits constituting to one codeword. Hence,

effectively, each pair of consecutive channel code bits (constituting to one QPSK

symbol) experiences the same fade coefficients over a block of four channel

accesses, but is attenuated by a coefficient that is different from any other pair

of channel code output bits being transmitted from other transmit antennas.

Figures 5-4 shows the improvement in relative bit error rate performance when com-

paring uncoded BPSK with channel and space-time coded QPSK.

Comparing the slopes of the three curves in Figure 5-4 to those in Figure 5-1, the

following three observations can be made:
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Figure 5-4: Diversity gains achieved by transmitting channel block coded QPSK over

4 transmit antennas.

1. The uncoded BPSK system achieves a diversity order of 1.

2. The RM(1,3) channel coded QPSK system achieves a diversity order of 2 when

space-time coding is employed.

3. The extended Hamming channel coded QPSK system achieves a diversity order

of 3 when space-time coding is employed.

These simulation results agree perfectly with theoretical predictions. The uncoded

BPSK system employs a single antenna at both the transmit and receive stations.

Since each BPSK symbol within a block, defined previously as four BPSK symbols, is

attenuated by the same fading coefficient, it is not surprising to observe no diversity

gain or a diversity order of I for this system.

In contrast, when the information bits are first channel coded and then space-

time coded, diversity advantage can be achieved. The channel code amortizes each

information bit over the codeword bits; consequently, using a rate 1 channel codepn

spradsth for npu iforatin itsovr egh coewod its Tereor, tes
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eight codeword bits are correlated with each other by virtue of them constituting to

a codeword selected from a carefully designed codebook consisting of only 21 out of

28 possible eight-tuples.

The channel between each of the four transmit antennas to the receive antenna are

characterized by four independent fade coefficients, which are held constant over four

transmissions. Each pair of adjacent codeword bits is mapped to a QPSK symbol prior

to the space-time coding. Using the encoding scheme described in Section 4.2.3, each

antenna is dedicated to sending the same QPSK symbol over the four transmission

slots. As a result, each pair of codeword bits and equivalently different parts of a

single codeword experiences different degrees of fade.

Since the codeword bits are correlated, they can provide information about each

other at the receiver in the following way: Suppose of the four transmit antennas,

three of them experience deep fades. Had the bits constituting to the QPSK symbols

been uncorrelated, it would be difficult, if not impossible, for the other six bits to be

recovered. However, since the eight bits being sent over this channel form a codeword

and are consequently correlated, the two recoverable bits at the fourth antenna can

be used to derive some information about the other six codeword bits.

A repetition code can best illustrate the benefits of this scheme. Consider a

repetition code where one input bit produces a codeword which is merely the input

repeated four times. This is a rate 1 repetition code. Furthermore, suppose the

space-time coder uses four transmit antennas, each transmitting one code bit, which

in this case is a copy of the input bit, but this time, only one transmission slot is

used. This is a rate 1 space-time code. Compare the performance of this scheme to

the simple case of sending the input bit uncoded; i.e. directly over the channel, from

a single transmit antenna, bypassing the repetition channel coding.

Suppose in the latter scenario, the fade coefficient associated with the single trans-

mit antenna, a is small, indicating a deep fade. It would be very difficult for the

decoder at the receiver to recover this information bit.

In contrast, suppose in the former scenario, the fade coefficients over the four

transmit antennas are a,#, -y, and 0. Assume a, 3, -y, and 0 are independent. Con-
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sequently, if a, /, and 7 are small but 6 is large, then the bit sent over the fourth

antenna could reliably be recovered and be used to recover the other three bits be-

cause it is correlated with those bits. Specifically, in the case of the repetition code,

since all four code bits are equal, the correlation between them is maximal. There-

fore, the bit recovered from the fourth channel can be used to determine exactly what

the other three bits are because they are all supposed to be the same. This scheme

achieves full transmit diversity order of 4.

It is now apparent why the diversity advantage from using the construction scheme

presented here is derived from the fact that each QPSK symbol is faded by indepen-

dent fade variables and from the fact that the bits being mapped into QPSK symbols

are correlated. This also explains why the diversity order of the space-time code

resulting from this construction relies so heavily on the underlying Euclidean-space

channel code.

In fact, it is easy to show that without the channel code, there is no diversity gain.

Intuitively, this is a reasonable claim because without channel coding, the bits being

sent would be uncorrelated and hence the benefits of having independent fades over

the different transmit antennas cannot be realized at the receiver. A more rigorous

proof follows.

From [7], the diversity order of a space-time code is related to the minimum rank

of the space-time code error matrix B(c, e) when taken over all possible (c,e) pairs.

Consider the 4 x 4 Hadamard transmission matrix, where the four input symbols

modulating this transmission matrix are denoted as c = c1 , c2 , c3, c4 . Compare this

against the transmission matrix modulated by quadruple e = el, e2, e3, e4. Assuming

BPSK modulation, let ci, ej E (±b). The error matrix is as follows:

ci-el c2 -e 2  c3 -e 3  C4-e4

B(c, e) = c1 - el -(C2 - e2) C3 - e3 -(C4 - e4)

c1 - el c2 - e2  -(c3 - e3) -(c4 - e4)

Vi - el -(C2 - e2) -(c3 - e3) (c 4 - e4 )

Suppose the symbols constituting c and e were uncorrelated; i.e. randomly gener-
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ated. The minimum distance between the two quadruples would be 1. As an example,

suppose c = (b, b, b, b) and e = (b, b, b, -b). The resulting error matrix would be

0 0 0 2b

0 0 0 -2b
B(c, e) =

0 0 0 -2b

o 0 0 2b

The rank of this matrix is 1 and since it is the minimum possible rank when taken

over all possible (c,e) pairs, the diversity order is 1.

In contrast, consider the scenario when the symbols constituting c and e are

correlated; for instance, when they are part of a codeword. Analysis of this scenario

leads directly to the reason why Simulations #1 and #2 yielded diversity orders

greater than 1.

Simple proofs supporting the diversity orders shown by the simulations for the

two channel codes tested are presented next. However, it is first useful to establish

some notational conventions that can facilitate the analysis.

The output of the channel coders are bits that are to be paired and then sent to

a QPSK modulator. The mapping used is:

1 1
(1, 1) = (+ +-) a

1 1
(0,1) 1 (- ,± )=ab

1 1
(0, 0) 1 (- ) == c

1 1

(1,7 0) (+ , - ) == d

5.3.1 Diversity order of Simulation #1

Simulation #1 employed a Reed-Muller RM(1,3) channel code. This is an (8,4,4)

linear block code. The eight-bit codewords and the resulting four QPSK symbols

generated are shown in Table 5.1.
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Input bits Codeword bits QPSK symb. distance to (cccc)
0 0 0 0 0 0 0 0 0 0 0 0 C C c 0
0 0 0 1 1 1 1 1 1 1 1 1 a a a a 4
0 0 1 0 1 0 1 0 1 0 1 0 d d d d 4
0 0 1 1 0 1 0 1 0 1 0 1 b b b b 4
0 1 0 0 1 1 0 0 1 1 0 0 a c a c 2
0 1 0 1 0 0 1 1 0 0 1 1 c a c a 2
0 1 1 0 0 1 1 0 0 1 1 0 b d b d 4
0 1 1 1 1 0 0 1 1 0 0 1 d b d b 4
1 0 0 0 1 1 1 1 0 0 0 0 a a c c 4
1 0 0 1 0 0 0 0 1 1 1 1 c c a a 4
1 0 1 0 0 1 0 1 1 0 1 0 b b d d 4
1 0 1 1 1 0 1 0 0 1 0 1 d d b b 4
1 1 0 0 0 0 1 1 1 1 0 0 c a a c 2
1 1 0 1 1 1 0 0 0 0 1 1 a c c a 2
1 1 1 0 1 0 0 1 0 1 1 0 d b b d 4

1 1 1 0 1 1 0 1 0 0 1 b d d b 4

Table 5.1: Codewords and associated QPSK symbols for RM(1,3)

Since the minimum distance after the channel code bits are mapped into QPSK

symbols is 2, the minimum rank of the error matrix resulting from this code con-

struction will also be 2 and hence the diversity order achieved by this scenario is 2,

as supported by the performance curve generated by Simulation #1.

5.3.2 Diversity order of Simulation #2

Simulation #2 employed an extended Hamming channel code. This is also an (8,4,4)

linear block code. The eight-bit codewords and the resulting four QPSK symbols

generated are shown in Table 5.2.

Since the minimum distance after the channel code bits are mapped into QPSK

symbols is 3, the minimum rank of the error matrix resulting from this code con-

struction will also be 3 and hence the diversity order achieved by this scenario is 3,

as supported by the performance curve generated by Simulation #2.
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Input bits Codeword bits QPSK symb. distance to (c,c,c,c)
0 0 0 0 0 0 0 0 0 0 0 0 c c 0
0 0 0 1 0 0 0 1 1 1 1 0 c b a d 3
0 0 1 0 0 0 1 0 0 1 1 1 c d b a 3
0 0 1 1 0 0 1 1 1 0 0 1 c a d b 3
0 1 0 0 0 1 0 0 1 0 1 1 b c d a 3
0 1 0 1 0 1 0 1 0 1 0 1 b b b b 4
0 1 1 0 0 1 1 0 1 1 0 0 b d a c 3
0 1 1 1 0 1 1 1 0 0 1 0 b a c d 3
1 0 0 0 1 0 0 0 1 1 0 1 d c a b 3
1 0 0 1 1 0 0 1 0 0 1 1 d b c a 3
1 0 1 0 1 0 1 0 1 0 1 0 d d d d 4
1 0 1 1 1 0 1 1 0 1 0 0 d a b c 3
1 1 0 0 1 1 0 0 0 1 1 0 a c b d 3
1 1 0 1 1 1 0 1 1 0 0 0 a b d c 3

1 1 0 1 1 1 0 0 0 0 1 a d c b 3
1 1 1 1 1 1 1 1 1 1 1 1 a a a a 4

Table 5.2: Codewords and associated QPSK symbols for extended Hamming codes
(8,4,4)
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Chapter 6

Conclusions

This thesis presented a code construction which jointly exploited spatial and temporal

diversity through space-time block coding and also provided coding gain via channel

coding. This chapter summarizes the research findings and provides direction for

future research.

6.1 Summary

Multipath fading is an ailment that plagues the wireless medium. However, using

diversity techniques, chances for obtaining reliable communication can be increased in

spite of the presence of multipath. In particular, it has already been shown that space-

time codes employed over MIMO systems can benefit from the multipath environment

as well as provide significant performance improvements over single antenna systems.

Consequently, provisions for reasonably reliable communication and throughput at

high data rates makes support for multimedia Internet applications for wireless devices

a closer reality.

Although space-time block codes provide both coding and diversity gains over

uncoded systems, further coding gains can be achieved by concatenating space-time

block codes with Euclidean space channel block codes. As shown by both theoretical

as well as simulation findings, the diversity order of the resulting concatenated code

is related to combinatorial properties of the outer Euclidean space channel code.
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The construction of the code is quite simple. First the information bits are channel

coded and then the channel code bits are modulated and sent to the space-time coder.

The decoder merely involves simple linear processing of the received signals prior to

regular Euclidean-space decoding for the constituent channel code.

Hence, through simple encoding and low-complexity decoding algorithms, any

Euclidean space block code can be turned into a space-time code, while providing

significant performance improvements over uncoded systems as well as systems em-

ploying only channel coding.

Although simulations for multiple receive antenna configurations were not includ-

ing in this thesis, many of the theoretical and mathematical derivations particularly

for the decoder side are generalizable to systems with multiple antennas at both the

transmitter and receiver. Furthermore, similar performance improvements are ex-

pected for comparisons of systems with higher spectral efficiency such as p = 2 or 3

bits/sec/Hz.

6.2 Future Work

Currently, the code generator matrix, G has been constrained to be complex unitary.

Results of this choice are simplicity and low complexity at the decoder as well as

maintenance of uncorrelated noise terms after the linear processing. However, it

would be more interesting to investigate the ramifications of applying this technique

to transmission matrices of a more generalized form. Naturally, the decoder will be

more complex; i.e., it will no longer reduce to mere linear processing of the received

signals because the noises would no longer be uncorrelated. However, perhaps any

increase in decoder complexity can be offset or justified by provisions of benefits in

the form of increased capacity and system performance.
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