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Abstract

The multiple-access interference (MAI) encountered by Direct-Sequence Code-Division
Multiple Access (DS-CDMA) users in a multipath fading environment is a key issue in
the detection of mobile communication users. The MAI is one of the major reasons for
the degradation in performance of multiuser communication systems over single-user
systems. Although the optimum detection technique, Maximum-Likelihood Sequence
Estimation (MLSE), is well known, its complexity is exponential with the number
of users, which makes it computationally unattractive. This thesis presents a mul-
tiuser detector that performs close to the optimum detector while drastically reducing
the decoding complexity. The detection technique is based on a channel-shortening
algorithm and will allow for group detection of a subset of the users via the MLSE.
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Chapter 1

Introduction

1.1 Motivation and Scope

The world of wireless communication has experienced an explosive growth in the past

few years. As seen in Figure 1-1 [14], there are almost 100 million service subscribers in

the United States; worldwide, there exist over one billion wireless service subscribers

[9]. Although the most popular wireless application has been mobile voice telephony,

the wireless community has been migrating towards data applications, such as e-

mail, fax, and video. Figure 1-2 [7] shows Qualcomm's prediction that by the year

2004, half the wireless service subscribers will be data users. Additionally, the third

generation (3G) wireless standard, for which the expected deployment is in 2002, will

integrate voice, data, and multimedia applications [3]. The migration from voice to

data carries with it the need for improved performance.

1.2 Thesis Focus

The transformation from wireless voice to wireless data is causing exponentially in-

creasing demand for wireless capacity. Voice applications are not as vulnerable to bit

errors as data applications, which is why performance is another mandatory consid-

eration. Multiuser detection, which refers to data detection of multiple users trans-

mitting in a non-orthogonal complex, is one of the solutions for improving the quality

of wireless data applications.

An inherent characteristic of a wireless communication environment is the presence

11
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Figure 1-1: Wireless Subscribership in US: June 1985-June 2000

of multiple users, all sharing the same wireless channel. This multiuser environment

requires a multiple-access technique that allows the users to transmit simultaneously

with minimal interference over each other. One such technique that has become very

popular over the last few years is Direct-Sequence Code-Division Multiple Access

(DS-CDMA). This is a non-orthogonal multiple-access technique in which each user

experiences some interference from every other user. The best performance is achieved

when users are separated using multiuser detection. The optimum multiuser detector

for CDMA systems is the Maximum-Likelihood Sequence Estimator (MLSE), devel-

oped by S. Verdu, which can be thought of as doing an exhaustive search over all

possible sequences transmitted by the users [10]. For a K-user system, where each

user is transmitting either +1 or -1 with equal probability at each time slot, the

optimum detector would need to compute all 2 K possible bit combinations at each

time slot. For a 30-user system, that translates to over 1 billion combinations!! Due

to the exponential dependence of the computational complexity on the number of

users, this kind of a detector is not a practical consideration for today's real-time

12
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Figure 1-2: Mobile Subscribers and Mobile Data Users

systems.

The purpose of this research is to explore the tradeoffs between performance and

complexity and to develop a multiuser detector that yields near-optimum performance

at reasonable complexity. In this thesis, we introduce a group detection technique

that uses a channel-shortening method to suppress the interference caused by users

outside of the group. The outline of the thesis is as follows. Chapter 2 provides

a background of digital communication theory, including single-user, multiuser, and

wireless communication systems. Chapter 3 describes the optimum multiuser detector

and presents well-known suboptimal linear detectors. In Chapter 4, we derive the

channel-shortening multiuser detector; simulation results are presented in Chapter 5.

Finally, conclusions and future work are discussed in Chapter 6.

13
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Chapter 2

Digital Communication Theory

The first part of this chapter presents an overview of a simplified single-user digi-

tal communication system. Modulation, the additive white Gaussian noise (AWGN)

channel, and detection in an AWGN channel are discussed. The focus then shifts

to the multiuser communication system, where we present the three most com-

mon multiple-access methods: Time-Division Multiple Access (TDMA), Frequency-

Division Multiple Access (FDMA), and Code-Division Multiple Access (CDMA). The

last section of the chapter discusses the characteristics of the CDMA channel.

2.1 Single-user Communication

Sk W r(t)

{ak } Modulator Channel P Demodulator {ak I

Figure 2-1: Simplified Digital Communication System

Figure 2-1 represents a simplified block diagram of a digital communication sys-

tem. The discrete information symbols, ak, are fed into the modulator, which converts

the digital data into an analog waveform, Sk(t). The waveform is transmitted and

passed through a channel, which adds noise to the analog signal. At the receiver,

the demodulator processes the distorted signal, r(t), and produces an estimate of the

transmitted symbols, 4k.

15



2.1.1 Modulation

The information symbols, ak, may take on any value in the discrete set {0, 1, ... , M -

1} with equal probability, where M is the cardinality of the information symbol

set. The modulator maps each symbol into a distinct waveform in the set S =

{ so(t), si(t),..., sM-1(t)}. The selected signal, Sk(t), is sent over the channel, as

shown in Figure 2-1.

When the information symbols are binary digits taking on values in the set {0, 1},

they are called bits, and binary modulation, such as antipodal signaling or binary

phase shift keying (BPSK), is used. In this situation, the modulator maps the {O, 1}

symbol set into the signal set {s(t), -s(t)}, respectively [6]. Throughout this thesis,

we will assume BPSK modulation.

2.1.2 AWGN Channel

The most common type of channel assumed in digital communication systems is the

Additive White Gaussian Noise (AWGN) channel, shown in Figure 2-2. In this model,

the channel response is assumed to have no distortion and the only signal degradation

is due to the presence of the thermal noise, n(t), generated by the receiver antenna

and front-end electronics [12]. Furthermore, the noise is assumed to be independent

of the transmitted signal.

Channel

Sk (t) + -+r(t)

n(t)

Figure 2-2: Additive White Gaussian Noise (AWGN) Channel

The additive white Gaussian noise, n(t), is a sample function of the AWGN pro-

cess, N(t). A random process can be well-modeled as a white-noise process as long

as it has a flat power spectral density (PSD) within the occupied frequencies, B, of

16



the system of interest, and the noise outside of B is independent of the noise within

B [13]. Explicitly, any process, w(t), with a PSD, Sww(f), that is flat within the

bandwidth of interest and is independent of the noise outside the bandwidth, i.e.

SWW(f) - C2, IfI < B (2.1)

where B is the bandwidth, acts as a white-noise process for the system and can thus

be replaced by the ideal white-noise model

S..(f) = 2 (2.2)

and

R, (T) = Ur26(T), (2.3)

where R., is the autocorrelation function of the noise.

A continuous-time stochastic process x(t) is defined to be a Gaussian process

when, for all choices of the deterministic function a(t), the scalar

z = f a(t)x(t)dt (2.4)

is a Gaussian random variable with a probability density of the form

1 -m

Pz(z) = 2iU2 e (2.5)

where m is the mean, and o2 is the variance [13].

2.1.3 Detection

As shown in Figure 2-1, the transmitter sends a waveform, Sk(t), from a set of wave-

forms, S, known at both the transmitter and receiver. At the receiver, the objective is

to detect the transmitted waveform. The optimum detection technique that minimizes

the probability of error, assuming an equiprobable signal set, is maximum-likelihood

detection. This detector can be implemented using a matched-filter or correlator

receiver, as shown in Figures 2-3 and 2-4, respectively [13].

In Figure 2-3, we see that the received signal is fed into a bank of matched filters,

17
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r(t) -

Maximum

- 00SmI-1(T - t)

Figure 2-3: Matched-filter realization of the AWGN optimum detection rule

where each filter is matched to a signal from the signal set, S. Following the filter is a

sampler that produces the sufficient statistic, defined as all the information necessary

to produce a minimum-probability-of-error decision. The result of the sampler is

then fed into a decision device that chooses the transmitted signal as the one with

the maximum sufficient statistic.

The correlator receiver, seen in Figure 2-4, is an equivalent optimum detector,

but the received signal is now correlated with the basis functions of the signal set, S,

where each signal in S can be expressed as

L

Sk(t) ~ Zojk OP(t) (2.6)
j=1

where {O(t)} are the L basis functions, L < M, and ajk is the result of projecting

Sk(t) onto O5(t).

When BPSK modulation is used, the signal set includes s(t) and -s(t). Assuming

an AWGN channel, as in Figure 2-2, the received signal is

r(t) = Sk(t) + n(t), (2.7)

18
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Figure 2-4: Correlator realization of the AWGN optimum detection rule

where Sk(t) E { Ess(t), -f'E s(t)} and n(t) is a sample function of a zero-mean

AWGN process with San(f) equal to a'. The signal energy of the transmitted wave-

forms is E, = fj s!(t)dt, where we have assumed that the signals are normalized

to unit energy, so that f s2 (t)dt = 1. According to Figure 2-4, the received signal

should be projected onto the basis set. In the BPSK case, there is only one basis and

thus, it suffices to correlate r(t) with s(t), which results in the sufficient statistic

y = f6r(t)s(t)dt

= f0 Sk(t)s(t)dt + f6 n(t)s(t)dt (2.8)

Sk+fl

where the signal component is Sk E {V/E , -V'E } and n is a zero-mean Gaussian

random variable with variance a2 . The discrete-time signal constellation is thus

{v/ET, -VE-}, and can be seen graphically in Figure 2-5.

From Figure 2-5, we observe that the optimum decision boundary occurs halfway

between the points at zero. Thus, the probability of error, defined as the probability

of deciding upon the wrong transmitted waveform, is the probability that the noise

19
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Figure 2-5: BPSK Discrete-Time Signal Constellation

value exceeds V/E 5 . More formally,

P (E) =- In > ~]=Q ( )(2.9)

where the Q-function is defined as the tail probability of a normal Gaussian distribu-

tion,

Q(x) = e- 2/2dt. (2.10)

2.1.4 Single-User Bound

In the previous section, we derived the probability of error for a single user commu-

nicating a BPSK-modulated signal. Because the information symbols are bits, the

symbol energy, Es, is equal to the bit energy, Eb. Assuming an AWGN process of

power spectral density N0 /2, the probability of error from (2.9) becomes

2Es
P(E) = Q (2.11)

where the quantity I is called the signal-to-noise ratio (SNR) per bit. The above

probability of error expression is also called the single-user bound and serves as a

useful measure of comparison against detection in a multiuser communication system,

as will be seen in subsequent chapters.

20



2.2 Multiuser Communication

Multiuser communication refers to the case in which several users share a common

channel. There are several ways for users to share a channel, and one type of mul-

tiuser communication is a multiple access communication system, in which several

users transmit over a common channel. Multiple access methods are the basis for

wireless communication networks, such as satellite, cellular, and mobile communica-

tion networks [5]. A common example of multiple access communication from today's

society is cellular telephones communication with a base station [10]. The received

signal at the base station is a superposition of the users' signals distorted by noise.

The main objective of the receiver is to approximate with low probability of error the

information message transmitted by each user.

2.2.1 Multiple Access Communication

The three most popular multiple access methods for multiuser communication are

time-division multiple access (TDMA), frequency-division multiple access (FDMA),

and code-division multiple access (CDMA).

Orthogonal Techniques: TDMA and FDMA

In TDMA, the frame duration, T, is divided into N non-overlapping time slots of

duration T/N each. Each user wishing to transmit is assigned to a particular time slot

within each frame, and because there are N time slots, the system can accommodate

up to N users. Here, the users take turns transmitting and do not interfere with each

other.

A similar method is FDMA, where the available channel bandwidth, F, is divided

into N non-overlapping subchannels of bandwidth F/N each. Again, each user is

assigned a subchannel in frequency on which to transmit. Because the users are non-

interfering in frequency, the system can support up to N simultaneous transmissions.

21



Non-orthogonal Technique: CDMA

We observe that in the orthogonal multiple-access methods, TDMA and FDMA,

the channel is partitioned into independent single-user subchannels. Thus, under

ideal assumptions of zero inter-symbol interference (ISI) and no nonlinearities, the

subchannels are mutually orthogonal and there is no interference among the users.

Subsequently, each user's transmitted signal is detected independently from the rest.

Alternatively, in CDMA, the signal transmissions among the multiple users overlap

completely both in time and frequency. Direct-sequence CDMA is obtained by mul-

tiplying each user's data signal by a distinct signature sequence. The multiplication

by the signature sequence has the effect of spreading each user's signal over the entire

available frequency spectrum, which is why CDMA is also known as spread-spectrum

multiple access. The signature sequences assigned to each user are not orthogonal,

and thus, the users' signals are correlated. Therefore, CDMA is a non-orthogonal

multiple access technique for which the detection techniques discussed above must be

revised.

2.2.2 Advantages of CDMA

Spread-spectrum communication techniques have many beneficial characteristics. Some

advantages of CDMA, such as privacy and frequency reuse, are discussed below.

In spread-spectrum communication, each user is assigned a unique code that

spreads that user's signal over the total available bandwidth. The result of the

spreading is a decrease in the power spectral density, making the user's signal hidden

in noise. Additionally, the pseudorandom properties of the signature codes make the

user's signal appear as noise, making it even harder to detect without knowledge of

the signature sequence. The spreading allows the users to remain undetectable and

thus, introduces a privacy aspect not present in non-spread-spectrum methods [4].

In a cellular wireless system, the terrestrial area is theoretically divided into hexag-

onal shapes, called cells. Each cell has a base station which receives and decodes the

information transmitted by users in that cell. In orthogonal multiple access tech-

niques, such as TDMA and FDMA, the users in adjacent cells must be provided

22



disjoint slots, which is achieved by allowing each cell communication on a different

frequency band. This leads to limited frequency reuse, where typically, a frequency

slot is reused only once every seventh cell. Additionally, frequency plan revision and

user channel reallocation are required every time a new cell is introduced. With a

spread-spectrum technique, such as CDMA, universal frequency reuse applies not only

to users in the same cell, but also to those in all other cells. The channel allocation

problem is also alleviated [11].

2.3 The Code-Division Multiple-Access Channel

2.3.1 Basic Synchronous CDMA Model

In a wireless cellular communication system, users within a cell are transmitting

to one base station, thus, sharing the same channel. In practice, CDMA users are

asynchronous. To ease the mathematical analysis of asynchronous systems, it is

common practice to model the users as synchronous. The analysis of a synchronous

system later simplifies the extension to asynchronization. In [10], it is shown that K

asynchronous users sending a stream of 2M + 1 bits can be modeled as (2M + 1)K

users, each transmitting one bit. Thus, even though on the uplink, where the users

transmit to the base station asynchronously, we represent them in a synchronous

communication model.

Multiple-access techniques using orthogonal codes yield the best performance for

synchronous systems, such as the downlink in cellular communication systems, where

the base station broadcasts the superposition of the users' signals simultaneously. The

synchronization guarantees orthogonality among the users' signals. For asynchronous

systems, however, the use of orthogonal spreading codes degrades performance sig-

nificantly. This is due to the fact that orthogonality is not maintained between time-

shifted versions of the signals, resulting in the possibility of high cross-correlation

among these asynchronous signals. Thus, in asynchronous systems, it is beneficial to

use spreading sequences which are not necessarily orthogonal, but instead have low

cross-correlation values.
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We assume the synchronous CDMA model with antipodal modulation adopted

from [10], where the received signal at time t is given by:

K

r(t) I= Akbksk(t) + n(t), t E [0, T] (2.12)
k=1

where

" T is the symbol interval in seconds

" K is the number of users

* Sk(t) is the signature waveform assigned to the kth user

* Ak is the path gain of user k

" bk E {-1, +1} is the bit transmitted by the kth user

" n(t) is a zero-mean complex Additive White Gaussian Noise (AWGN) process

with a power spectral density of N0/2 per dimension.

2.3.2 Signature Waveforms

Each user is assigned a unique signature waveform, which is the "code" in CDMA

that distinguishes each user from the rest. The unique signature waveforms assigned

to each user, known to the transmitter and receiver, are normalized to unit energy

kt sk(t) 12- f s (t)dt = 1 (2.13)

and have cross-correlation given by

STPij = (si, s) = Zsi(t)sj (t)dt (2.14)

where pij = pji, 1 < i, j < K.

The cross-correlation matrix of the signature waveforms for a K-user system is
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1 P12 --- P1K

R P12 1 .. P2K (2.15)

PIK P2K - 1

2.3.3 Discrete-Time Synchronous Model

In most communication systems, detection and decisions are not made on the continuous-

time received signal, r(t), but rather on the discrete-time vector, r. This continuous-

to-discrete time conversion can be achieved by a bank of filters, where each filter is

matched to a different signature waveform, as shown in Figure

User 1

--- s(T - t) r
t =T

User 2

S 2(Tt) r2
t =T

r(t )

User K

t =T

Figure 2-6: Matched-Filter Bank

For any vector x, let xT denote the transpose of x. We can now write (2.12) in

vector form given by

r = RAb + n (2.16)

where
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A = diag([A,, A 2 , -- ,AK]) (2.17)

b =[bib2,- - -bK T(2.18)

n n,, n2, , nK T2.19)

r rir2, . , rK T(2.20)

and the rks are the result of passing r(t) through the bank of filters in Figure 2-6.

The output of the matched filter for the kth user is

STrk r(t)Sk(t)dt(2.21)

= Akbk +E Ajb pik + nk
j#k

where the middle term represents the multiple-access interference (MAI) and the

noise quantities, nk, are samples of a complex Gaussian random variable with mean

zero, variance N0 /2 per dimension, and covariance matrix NR. We observe that the

output of each matched filter contains information about every other user's signal in

the form of the MAI. Thus, it makes sense to perform joint decoding of the users'

signals using all of the sufficient statistics for detection of all users. This topic of

multiuser detection will be discussed in the next chapter.

2.3.4 Fading

In a classical communication system, the main signal degradation is due to the ther-

mal noise. In a wireless environment, however, additional degradation exists due to

multipath fading. The term fading is used to describe the amplitude fluctuation of

a radio signal over some period of time or travel distance. Multipath fading refers

to the situation when two or more versions of the transmitted signal arrive at the

receiver with different amplitudes and phases. The effect of multipath fading is due

to the presence of reflecting objects and scatterers in the channel. These effects result

in multiple versions of the transmitted signal that arrive at the receiver antenna at

slightly different times. The random phases and amplitudes of the different multipath

components cause fluctuations in the strength of the transmitted signal [8].
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Throughout this thesis, we will assume frequency-flat fading, which affects the

received amplitudes but does not introduce signature waveform distortion. Addition-

ally, the spectral characteristics of the transmitted signal are preserved at the receiver,

even though the strength of the received signal changes with time due to fluctuations

in the gain of the channel caused by the multipath [8]. The phase and amplitude

fluctuations in the signal translate to modeling the path gains, {Ak}, in (2.12) as

time-varying coefficients with a certain probability distribution [10]. When the path

gain for each user, Ak, is modeled as a zero-mean complex-valued Gaussian process,

the envelope, Ck = jAkj, at any instant in time takes on a Rayleigh distribution

fc, (ck) =ckek/2 (2.22)

which is frequently used to describe the non-line-of-sight paths common in a mobile

wireless environment.

2.4 Summary

In this chapter, we presented a brief background of communication theory. We saw

that single-user communication theory can be applied to multiuser communication

systems that employ orthogonal multiple-access techniques. In CDMA, the cross-

correlations of the signature sequences are non-zero and thus, the transmission signals

are not orthogonal, resulting in multiple-access interference among the users. Due to

the presence of the MAI, the optimal detection techniques of TDMA and FDMA

systems are no longer optimal and multiuser detectors in the presence of MAI must

be investigated.
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Chapter 3

Multiuser Detection

In the previous chapter, we introduced the CDMA channel and showed that the

sufficient statistic is the discrete-time vector of matched-filter outputs

r = RAb + n (3.1)

where R is the correlation matrix of the signature sequences, A is the channel ma-

trix, b is the vector of transmitted bits, and n is a zero-mean Gaussian noise vector

with covariance matrix NR. Assuming perfect channel estimation and thus, perfect

knowledge of the channel coefficients, {Ak}, the objective of the receiver is to detect

with low probability of error the transmitted sequence of bits, b. In this chapter, we

describe multiuser detection techniques, including the optimum detector and several

suboptimal linear detectors.

3.1 The Optimum Multiuser Detector

The optimum receiver for synchronous CDMA, developed by Verdu, exploits the

structure of the MAI and is defined as the receiver that selects the most probable

sequence of bits given the received signal [10]. The optimum detection rule under

equiprobable hypotheses is the Maximum-Likelihood (ML) rule, which is equivalent

to the minimum-distance rule for the Additive White Gaussian Noise (AWGN) chan-

nel. Jointly optimum decisions are obtained by a Maximum-Likelihood Sequence

Estimator (MLSE) that selects the most likely sequence of transmitted bits by all of

the users given the received sequence.
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In detecting the transmitted bits, all possible noise-free received vectors are cal-

culated. The vector that has the smallest distance to the actual received vector is

chosen as the most likely transmitted sequence of bits. For the K-user synchronous

system with antipodal modulation, each user transmits either +1 or -1 during each

time slot. Thus, there are 2 K different possible transmitted bits at each time slot.

It is obvious that for a large number of users, the complexity is enormous. Conse-

quently, the optimum multiuser detector is unrealizable for most practical applica-

tions. This inefficiency of the optimum detector has motivated researchers to develop

less computationally-intensive suboptimum receivers.

3.2 Suboptimum Linear Detectors

3.2.1 Conventional Single-User Detector

In conventional single-user detection, the received signal is passed through a bank of

filters, where each filter is matched to each of the signature sequences of the users,

to obtain the discrete-time data shown in (3.1) . The outputs of the matched-filter

bank are passed to the decision device, where estimates of the transmitted bits are

made independently for each user. A block diagram of the conventional detector is

shown in Figure 3-1.

From 2.3.3, we know that the output of the matched filter for the kth user is

IT
rk r(t)sk(t)dt(3.2)

= Akbk +E Abipik +nk.
j:Ak

It is clear that the middle term, which is the MAI, is what distinguishes the multiple

user case from that of the single user. If the signature waveforms are orthogonal,

then the cross-correlation is zero and the MAI disappears, making the conventional

single-user detector the optimum solution. That is not the case in CDMA, where

the waveforms are correlated for the reasons mentioned in Section 2.3.1; thus, the

single-user detector simply ignores the MAI when applied to multiuser detection.

If the cross-correlation coefficients, pij, are sufficiently low and each user's signal
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Figure 3-1: Conventional Detector

is received at the same power, the conventional detector performance is tolerable.

The advantage of this detector is that the complexity grows linearly with the number

of users. The disadvantage comes in when there is fading and the users' received

power levels are not equal. Even though the correlation coefficient may be low, an

interferer whose power level is strong relative to other users has the ability to drown

out other low-power users. This situation is called the near-far problem in multiuser

communication and requires power control to be used if the conventional single-user

detection is to be employed [5].

It is worthwhile to note that for some time, the single-user matched filter has

been considered to be almost optimal for channels with a large number of equal-

power users. If we consider, again, the second term in equation (3.2), we can say that

it can be accurately approximated by a Gaussian random variable using the Central

Limit Theorem if K is sufficiently large. Then, the problem reduces to detection in

an AWGN channel, and the conventional detector is optimal. This is true, in fact, if

we assume that the receiver for user k has access to rk only. However, if the receiver

is allowed to look over all outputs of the matched-filer bank to detect bk, then using

only rk to determine bk is not the optimum solution [10].
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3.2.2 Decorrelating Detector

One property that makes the conventional detector unattractive is its inability to

detect users with unequal received powers without some type of power control. The

decorrelating detector completely cancels the interference of other users, yet has the

linear-growth complexity property of the conventional detector.

To motivate the decorrelating detector, lets first assume that the signals are re-

ceived noise-free. Thus, the received signal is

r = RAb. (3.3)

If the signature sequences and thus, the columns of R, are linearly independent, then

RR, is invertible. We can obtain the transmitted bits perfectly without knowledge

of the received amplitudes, {Ak}, by multiplying the sufficient statistic vector by the

inverse of R, so that

R-'r = Ab. (3.4)

We have completely decorrelated the users and now, we can do a simple sign decision

to obtain the bit estimates, b [10].

Returning to the original model and including the noise yields

R-r = Ab + R-'n (3.5)

and the estimate of the transmitted bits becomes

b = sgn (R-r) (3.6)

as shown in Figure 3-2. We observe that each user is still free from interference caused

by any of the other users and is only distorted by the noise due to R-1 n. However,

the new noise vector now has a covariance matrix R-1 as opposed to -R before

the processing. Because of the structure of R, the diagonal values of R 1 are higher

than those of R, and thus, the new covariance matrix actually enhances the noise.

Thus, in some situations, other suboptimal linear detectors may perform better than

the decorrelator detector.
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Figure 3-2: Decorrelating Detector

3.2.3 Minimum Mean- Square-Error Detector

When the received signal amplitudes are unknown, the decorrelating detector is a

sensible choice, as seen in the previous section. To counteract the noise enhance-

ment problem of the decorrelating detector, we can obtain another detector so as to

minimize the mean-square error (MSE). We seek a linear transformation, Tr, where

matrix T is the one that minimizes the MSE

J(b) = E [(b - Tr)T(b - Tr)] . (3.7)

The result of the minimization yields

T = (R± Io (3.8)

and thus, the output of the detector becomes

S= sgn [(R + N) r] . (3.9)

The MMSE receiver structure is shown in Figure 3-3 [5]. The performance of the
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MMSE detector, as well as other detectors discussed in this chapter, is presented in

the next section.

sK(t)

x f t --- b

0 t =*2 2W

X fdt -

Figure 3-3: Minimum Mean-Square Error (MMSE) Detector

3.3 Summary

In this chapter, we introduced the concept of multiuser detection, which is a joint

decoding technique for DS-CDMA users. The optimum multiuser detector is the

MLSE and yields the best possible performance; however, it is too complex to be

implemented in practice. The implementation in today's systems are the conventional

single-user matched filter receivers, which offer the least complexity. However, the

performance of the single-user matched filter is inadequate for data communication

systems and its susceptibility to the near-far problem may cause further degradation.

The decorrelator detector completely cancels the multiple-access interference, but

causes noise enhancement. The MMSE detector minimizes the mean-square error

between the estimated and actual transmitted bits, but still leaves some multiuser

interference in the system.
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Figure 3-4 shows the performance curves of the detectors for 4 users with cross-

correlation matrix

1 -0.25 -0.25 -0.25

-0.25 1 -0.25 -0.25
R = . (3.10)

-0.25 -0.25 1 -0.25

--0.25 -0.25 -0.25 1

The horizontal axis is the signal-to-noise ratio (SNR) in decibels (dB), and the vertical

axis represents the bit-error-rate (BER). Although the decorrelator and the MMSE

detectors outperform the conventional single-user detector, there is still a gap between

the linear detectors and the optimum MLSE. This gap leaves a lot of room for studying

the tradeoffs between performance and complexity of multiuser detectors.

4 users, p=-0. 25

10 - -0- Single-user Bound
10 ...-.-- MLSE

-*--. MMSE
.- Decorrelator
--- Matched Filter

10-

10 - . .......

0 1 2 3 4 5 6 7 8 9 10
Eb/NO (db)

Figure 3-4: Performance of Multiuser Detectors
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Chapter 4

The Channel-Shortening Multiuser
Detector

In the last chapter, we presented some well-known multiuser detectors, including the

optimum maximum-likelihood sequence estimator, as well as some suboptimal linear

multiuser detectors. We showed that the decorrelator detector and the MMSE de-

tector perform better than the matched-filter detector with reasonable complexity;

however, their performance is still far from the optimum MLSE, which is too complex

to be implemented for realistic applications. In this chapter, we investigate the trade-

offs between performance and complexity and develop a group detector that performs

close to optimum but with a manageable complexity.

4.1 The Communication Model

We assume the synchronous CDMA model with antipodal modulation adopted from

[10] and described in section 2.3.1. We reiterate its key features here for convenience.

The received signal at time t is given by:

K

r(t) = 3 Akbksk (t) + n(t), t E [0, T] (4.1)
k=1

where

" T is the symbol interval in seconds

" K is the number of users
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* Sk(t) is the signature waveform assigned to the kth user

" Ak is the path gain of user k

* bk E {-1, +1} is the bit transmitted by the kth user

" n(t) is a zero-mean complex Additive White Gaussian Noise (AWGN) process

with a power spectral density of N0 /2 per dimension.

We assume perfect channel estimation, so that the receiver has full knowledge

of the path gains, {Ak}. The discrete-time synchronous CDMA model from Section

2.3.3 is

r = RAb + n (4.2)

where

A = diag([Al, A2 ,- -.,AK) (4-3)

b =[b, b2, - ,bK ]T(4.4)

n =[i, n2, ... , nKT  (4.5)

r=[rl,r 2 ,...,rK (4.6)

The discrete-time vector, r, forms a sufficient statistic for the detection of the users.

4.2 Problem Formulation and Derivation

The system model has K mutually interfering users and thus, we can say that the

multiuser channel has K taps. The optimum multiuser detector, the MLSE, finds the

most likely sequence of bits transmitted by the K users given an observation, r, with

complexity of 2 K. However, for large K, the MLSE is too computationally complex

to be implemented in practice.

The multiuser detector developed in this research is composed of two steps, as

shown in Figure 4-1. First, the channel memory is reduced from K to L by the

application of a linear channel-shortening technique to the received vector, r. This
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Figure 4-1: Channel-Shortening Multiuser Detector

technique makes it appear as if there were only L users in the initial system by

suppressing the other K - L users. In the second step, the result is fed into the

optimum detector, which performs MLSE on the output of the shortened channel.

Consequently, the decoding complexity is reduced from 2 K to approximately 2L, L <

K.

The idea of channel shortening for multiuser detection was inspired by the im-

pulse response shortening technique developed by Al-Dhahir and Cioffi in [1, 2] for

equalization in Digital Subscriber Lines (DSL). However, the following mathematical

derivation of the channel-shortening multiuser detector differs significantly from that

of the equalizing channel-shortening technique.

We define the K x K channel matrix, 9 = RA, to have the following structure:

A 1 2 A 2,12

A2

A1p1K A2P2K

... AKP1K

... AKP2K

... AK
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[4t-

Q =



The received vector from (4.2) now becomes

r = Ob + n. (4.8)

We wish to shorten the K-tap multiuser channel to L taps in order to detect the bits

transmitted by a subset of L users from the set of K users. We call the subset of users

to be detected and suppressed UD and Us, respectively. Next, we define a weighting

vector

wT = [W 1 w 2 ... WK} (4.9)

which will multiply r to achieve the channel shortening. We assign the columns of Q

to be

Q, A, [1 P12 ... PIK]T

2 = A 2 [P12 1 ... P2K] (4.10)

QK = AK [P1K P2K ... .

Applying the weighting vector to the observation vector results in

K

wTr = wT ibi + wTn. (4.11)

We now want to maximize the Signal-to-Interference-and-Noise Ratio (SINR), where

the signal power refers to the power contributions of the users in UD, and the

interference-plus-noise power refers to the power contributions of users in Us and

the noise, n. This condition results in the following optimization problem

Z wT (RQ7QT)W
ww

w W (jq + NoR w
jEUs

where i and j are mutually exclusive. Denoting the signal power as C = f2, f2T

iEUD
NO

and the noise-plus-interference power as B = ZT + R, the maximization of
icUs 2
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(4.12) becomes

wTCw
max wTBw (4.13)

This maximization problem is equivalent to maximizing wTCw while keeping wTBw

constant. Applying the Cholesky factorization to matrix B, we obtain its square root

matrix, F, such that

B = F TF. (4.14)

Consequently, the denominator of (4.13) becomes

WTBw = WTFTFw

= VT 

(4.15)

(4.16)

where v = Fw, and (4.12) can now be written as

vT(F-1)TCF-lv
max

y vTv
(4.17)

The optimization problem of (4.13) has been reformulated to maximizing vT(F 1 )T CF-1v

subject to the constraint vTv = c, where c is some constant. We now apply the La-

grange multiplier to obtain

L(v) = vT(F- 1 )TCF-lv + A(c - vTv)

Taking the partial derivate with respect to v and setting it to zero yields

'L(v) = 2vT(F )T CFlv - 2AvT

(vT(F-)TCF-1

(F 1 )TCF-lv

- 0

= AvT)T

= Av (4.18)

where v and A are the eigenvector and eigenvalue, respectively, of (F 1 )TCF-1.

Substituting (4.18) into the numerator of (4.17) transforms the maximization

equation of (4.12) into
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wTCw - vAv A
=Tw- ~ = A (4.19)WTBw VTV

In order to maximize the above expression, we must choose v to be the eigenvector

corresponding to the largest eigenvalue of (F-1)TCF-'. Because we want to perform

optimum detection on the L users of the shortened channel using MLSE, we must

have L observations coming out of the channel shortening. Therefore, we select

vi, 1 < i < L, to be the L eigenvectors corresponding to the highest L eigenvalues

of (F-1 )TCF-l, counting multiplicities. The weighting matrix W in Figure 4-1 now

becomes

wT

WT

W = 2 (4.20)

T
LWL

where

wi = F-1 vi, 1 < i < L. (4.21)

The task of choosing the group of users to detect, UD, is not a trivial one and adds

a level of optimization to the above problem. However, when the cross-correlations

of the signature waveforms are equal, pij = p when i 74 j, the problem becomes

easy. From here on, we will assume that the signature waveforms have equal cross-

correlation values.

In the equipower scenario, the users are received at the same power, and any com-

bination of L users can be selected to be in UD. In the case of a fading channel, where

the users' received powers are not necessarily equal, the users are detected according

to the received power, with the L highest-power users detected first. Following the

detection of the L users, we perform successive interference cancellation to cancel

the MAI inflicted by the L users onto the rest of the K - L users not yet detected.

Then, we recompute the variables used in the optimization and apply the channel

shortening to the next L users. This procedure is repeated until all users have been
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detected.

Using the multiuser detection scheme described in this chapter, a group of L users

are jointly detected using the MLSE with a complexity of 2L. Since there are K

users, the channel-shortening multiuser detection procedure will be employed K/L

times, with a groups of L users being detected each time. We ignore the complexities

associated with Cholesky factorization and triangular matrix inversion since they are

negligible compared to the complexity of the MLSE. Thus, under the assumption that

the signature waveforms have equal cross-correlation values, the channel-shortening

detector has complexity ; 2L, L < K, which is a significant reduction over the 2 K

complexity of the MLSE.
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Chapter 5

Simulation Results

We now present simulation results showing the performance, in terms of bit-error-

rate (BER), of the channel-shortening detector derived in Chapter 4. We compare

the performance of this detector to the multiuser detectors described in Chapter 3.

We model the equipower case, when the users' received signals are assumed to have

equal power. The path gains, Ak, are set to 0.5 + j0.5, where j = /-1. Figure 5-1

shows the performance of the 4-user system mentioned in Section 3.3, where the users

are received at equal powers and the cross-correlation matrix is

1 -0.25 -0.25 -0.25

-0.25 1 -0.25 -0.25
R0= (5.1)

-0.25 -0.25 1 -0.25

--0.25 --0.25 -0.25 1

As we observe from the BER plot, shortening the multiuser channel achieves im-

provement in performance over the linear multiuser detectors. It is not surprising

that the shortened two-tap channel yields a better performance than the shortened

one-tap channel. The more taps that we keep in the channel, the better the perfor-

mance will be. This makes sense because we never completely cancel the multiple

access interference; therefore, by performing multiuser detection on users within the

group, we are not utilizing all of the information contained in the data of users out-

side of the group. The more taps, or users, that we keep in the channel, the more

information we keep, and thus, performance improves as the number of taps in the
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Figure 5-1: Multiuser Detectors Performance for 4 equipower users

shortened channel increases. If all K taps are kept, the channel-shortening detector

is equivalent to the MLSE.

Next, we examine the performance of a 15-user system. The cross-correlation

matrix has the form of (2.15) with Pzj = -1/15, 1 i, j 15, i #L j. Figure 5-2

shows the performance when 15 equipower users are detected three at a time using the

channel-shortening detector. We observe a significant improvement in performance

over the conventional matched-filter detector.

Figure 5-3 shows the performance of the channel-shortening multiuser when 15

users are communicating over a Rayleigh fading channel. In the Rayleigh fading case,

the signals transmitted from different users undergo independent fades, and the path

gains are modeled as samples of independent complex Gaussian random variables

with mean zero and variance 0.5 per dimension. We assume quasi-static fading in

which the Aks are constant during a frame of 100 bits and vary from frame to frame.
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Figure 5-2: Multiuser Detectors Performance for 15 equipower users

Following the channel shortening, we detect three users at a time using successive

interference cancellation, and once again, observe a considerable gain in performance

over the conventional matched-filter detector.

For the 15-user system described above, the channel is shortened to three taps,

yielding a decoding complexity of approximately 5 -2' versus the 215 complexity of

the MLSE detector. We note the tradeoff between complexity and performance of

the channel-shortening multiuser detector. If we keep all K taps in the channel by

letting UD = {1, 2, - - -, K}, the channel-shortening detector becomes the MLSE, and

we achieve optimum performance with 2K complexity. As we decrease the number of

taps we keep in the channel, complexity decreases at the expense of performance. If we

shorten the channel to one tap, the channel-shortening group detector becomes linear,

with a complexity of K. However, the performance is better than the decorrelator

and the MMSE detectors, as shown in Figure 5-1. It is interesting to point out
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15 users, shortened to 3 taps, p=-1/15
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Figure 5-3: Multiuser Detectors Performance for 15 users in a Rayleigh Fading Chan-
nel

that shortening the channel to two taps yields a complexity of 2 = K. Thus, by

shortening the channel to two taps instead of one, we obtain an improvement in

performance while maintaining the linearity of the detector.
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Chapter 6

Conclusions and Future Work

This thesis presented a background of multiuser detection theory and derived a

channel-shortening multiuser detector for wireless communication systems. This

chapter summarizes the research results and provides a framework for future work.

6.1 Summary

The area of multiuser detection has received a lot of attention from researchers during

the past few years. Although the optimum detection scheme, the MLSE, has been

known for a long time, its complexity prevented it from being an implementable

detection technique in a system of many users. This problem of complexity motivated

researchers to develop less complex multiuser detectors.

Two very common linear multiuser detectors are the decorrelator and the min-

imum mean-square error detector. Although these two detectors outperform the

conventional single-user matched-filter receiver, the gap between the linear detectors

and the optimum detector encourages further investigation of the tradeoffs between

performance and complexity of multiuser detection techniques.

In this thesis, we derived a channel-shortening technique that strengthens the

presence of the group of users to be detected while suppressing both the interference

of users outside the group and the noise. This technique was combined with the

MLSE to yield a multiuser detector that achieves near-optimum performance with

a significant decrease in complexity, under the assumption that the cross-correlation

values of the users' signature waveforms are equal.
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6.2 Future Work

In this research, we derived the channel-shortening matrix for the general case of

the correlation matrix. The choice of the group of users to detect and the group

to suppress, however, was made under the assumption that the signature sequences

have equal cross-correlation values. An interesting problem is the determination of an

efficient way to select the groups and their cardinalities when the correlation matrix

is arbitrary. The optimal way to pick the group of users to detect is to perform

an exhaustive search over all possible groups until the one that yields the highest

Signal-to-Interference-and-Noise ratio is found. This method, however, has the same

complexity problem as the MLSE, and is not likely to be an implementable solution.

Intuition suggests to choose the most powerful, yet the least correlated users to detect

as a group; however, a good solution with low complexity has not been found, and

the selection of groups remains an open problem.

In this thesis, we did not investigate the effects of channel coding on the perfor-

mance of the detectors. Additionally, we assumed perfect channel estimation, which

yields knowledge of the channel matrix. An interesting possibility for future work is

to extend the analysis of this thesis to asynchronous coded multiuser systems com-

municating over a fast-varying channel.
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