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Abstract

The general goal of this thesis is to model the prosodic aspects of speech to improve human-
computer dialogue systems. Towards this goal, we investigate a variety of ways of utilizing
prosodic information to enhance speech recognition and understanding performance, and
address some issues and difficulties in modeling speech prosody during this process. We
explore prosodic modeling in two languages, Mandarin Chinese and English, which have
very different prosodic characteristics. Chinese is a tonal language, in which intonation is
highly constrained by syllable F0 patterns determined by lexical tones. Hence, our strategy
is to focus on tone modeling and account for intonational aspects within the context of
improving tone models. On the other hand, the acoustic expression of lexical stress in
English is obscure and highly influenced by intonation. Thus, we examine the applicability
of modeling lexical stress for improved speech recognition, and explore prosodic modeling
beyond the lexical level as well.

We first developed a novel continuous pitch detection algorithm (CPDA), which was
designed explicitly to promote robustness for telephone speech and prosodic modeling. The
algorithm achieved similar performance for studio and telephone speech (4.25% vs. 4.34%
in gross error rate). It also has superior performance for both voiced pitch accuracy and
Mandarin tone classification accuracy compared with an optimized algorithm in XWAVES.

Next, we turned our attention to modeling lexical tones for Mandarin Chinese. We per-
formed empirical studies of Mandarin tone and intonation, focusing on analyzing sources
of tonal variations. We demonstrated that tone classification performance can be signifi-
cantly improved by taking into account F0 declination, phrase boundary, and tone context
influences. We explored various ways to incorporate tone model constraints into the SUM-
MIT speech recognition system. Integration of a simple four-tone model into the first-pass
Viterbi search reduced the syllable error rate by 30.2% for a Mandarin digit recognition
task, and by 15.9% on the spontaneous utterances in the YINHE domain. However, further
improvements by using more refined tone models were not statistically significant.

Leveraging the same mechanisms developed for Mandarin tone modeling, we incorpo-
rated lexical stress models into spontaneous speech recognition in the JUPITER weather
domain, and achieved a 5.5% reduction in word error rate compared to a state-of-the-art
baseline performance. However, our recognition results obtained with a one-class (including
all vowels) prosodic model seemed to suggest that the gain was mainly due to the elimination
of implausible hypotheses, e.g., preventing vowel/non-vowel or vowel/non-phone confusions,
rather than by distinguishing the fine differences among different stress and vowel classes.
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We also examined the use of prosodic cues in recognition confidence scoring. We conducted
experiments to compare the accept/reject decision performance using only features derived
from the recognizer outputs, such as normalized acoustic scores, with that obtained after
prosodic features were included. The prosodic cues reduced the minimum classification er-
ror rate from 16.9% to 15.6% for utterance-level decisions, and from 10.9% to 10.2% for
word-level decisions, a statistically significant result. We also explored the feasibility of
characterizing directly the pitch contours of some selected common phrases in the JUPITER
domain, without intermediate prosodic transcriptions. We achieved an accuracy of 58.8%
in classifying these phrases on unseen data, based on FO features alone. We were able to
identify some interesting typical FO patterns for these phrases, and use mutual information
between these patterns to quantify interdependencies among phrases within an utterance.
These phrase models can potentially be applied to score the intonation patterns of rec-
ognizer hypotheses, which can in turn be used to resort the N-best outputs for improved
recognition/understanding accuracy or to support the rejection of erroneous hypotheses.

In this thesis, we make the following contributions to research in the area of prosodic
modeling: (1) the development of a continuous pitch tracking algorithm that is particularly
robust for telephone speech and prosodic modeling applications; (2) an empirical study of
Mandarin tone and tonal variations, which analyzes the effects of tone coarticulation, tone
sandhi, FO downdrift and phrase boundary, on the acoustic realizations of tone; (3) the
development of a mechanism which is able to combine multiple classifiers and/or selectively
score for a subset of phones in the recognition first-pass search; (4) the development and
analysis of a preliminary framework for characterizing pitch contours of spontaneous English
utterances without intermediate prosodic transcriptions; and (5) improvements in speech
recognition and confidence scoring performance using prosodic information.

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Scientist
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Chapter 1

Introduction

Prosody generally refers to the organization of spoken utterances; however, the term has

been defined in many ways in the literature. The various definitions for prosody can be

classified into three categories, after (Shattuck-Hufnagel and Turk 1996). One class defines

prosody as the collection of its acoustic correlates, i.e., fundamental frequency (Fo), dura-

tion, amplitude, and "segment quality or reduction". A second class is based on the role

of prosody in the linguistic structure, i.e., it defines prosody as the phonological organi-

zation of segments into higher-level constituents, such as utterances, intonational phrases,

prosodic words, metrical feet, syllables, etc. A third class of definition combines the pho-

netic and phonological aspects of prosody, including both the higher-level organization, and

the phonetic manifestation of this organization in the pattern of F0 , duration, amplitude,

etc., within the utterance. We believe that the third class of definition is most appropriate

for investigators of prosodic theory. In this thesis, however, we are mainly concerned with

modeling the acoustic correlates of prosody to improve the performance of human-computer

dialogue systems. Thus, we loosely specify prosody as the linguistic and extra-linguistic as-

pects of speech expressed predominantly by duration, energy, and F0 cues. For a dialogue

system, the segmental aspects of prosodic features, such as intrinsic phone duration, and

the extra-linguistic aspects, such as prosodic cues of a speaker's emotional state, all contain

useful information that can potentially be utilized to improve system performance.

In this chapter, we first motivate this thesis by describing the importance of prosody in

human speech communication, the potential uses of prosody in human-computer dialogue
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systems, and the difficulties of modeling prosody for automatic speech recognition and

understanding (ASRU). Next, we briefly describe some related research in utilizing prosodic

information in various aspects in a dialogue system. We then introduce the general goal

and approach of this thesis. Finally, we give a chapter by chapter overview.

1.1 Motivations

1.1.1 Prosody in Human Speech Communication

Prosodic information plays an important role in human speech communication. We are

able to infer a speaker's gender, age and emotion from his/her voice, regardless of what

is said. Meanwhile, the same sequence of words can convey very different meanings with

variations in intonation. For example, "next Monday" with a rising F contour generally

implies a question, while the same words with a falling F contour are usually associated

with a statement (Ladd 1996). Furthermore, the relative prominence of the two words can

give rise to even richer meanings within context. When the prominence is on the word

"next", the utterance could be emphasizing that the date is not "this" Monday or any

other Monday; when the prominence is on the word "Monday", the utterance could be

emphasizing that the date is not next "Tuesday" or "Wednesday", etc. Phrase grouping

also contributes to the interpretation of spoken utterances (Price et al. 1991). "Old men and

women") can mean "old men | and women" or "old I men and women", depending on where

the phrase boundary is. Prosody also plays a part in defining words in most languages. In

English, words are pronounced with certain stress patterns, and many minimal noun and

verb pairs, such as "permit" (noun) and "permit" (verb), are disambiguated only by the

stress position difference. In a tonal language such as Chinese, the syllable F pattern is

essential in determining the meaning of sounds, such that the syllable "d"' ("da" with a

falling F0 contour) is as different from "dd" ("da" with a rising F0 contour), as it is different

from "b"' ("ba" with a falling Fo contour).

The preceding discussions have focused on the acoustic correlates of prosody, i.e., prosodic

features. Prosody, as the higher-level organization of segments, is also an important fac-

tor in shaping the phonetics and phonology of sounds (Selkirk 1984). Studies have found

18



that segmental phonetic features are highly affected by the position of the segment in the

prosodic hierarchy, such as syllable, metrical foot, intonational phrase, etc.

The various communicative functions of prosodic features are listed as follows:

" Linguistic:

- Post-lexical: syntax, semantics, pragmatics, etc.

- Lexical: word.

" Extra-linguistic:

- Gender, age, emotion, attitude, etc.

The prosodic phenomena that serve the linguistic functions can also be divided accord-

ingly, i.e., at the lexical level. In particular, the term intonation is used to refer to the

prosodic component that carries the linguistic information above the lexical level (Ladd

1996). According to theories of intonational phonology, the intonation of an utterance can

be described by categorical events, e.g., one or more intonational phrases, each consisting

of one or more pitch accents followed by a phrase tone and then a boundary tone (Pierre-

humbert 1980); and the phrase grouping and the relative prominence of these constituents

within the utterance give rise to its "meaning" (syntactically, semantically, and pragmat-

ically). The prosodic component at the lexical level varies for different languages. For

example, it corresponds to lexical stress in English, tone in Mandarin Chinese, and accent

in Japanese.

1.1.2 Potential Uses in Dialogue Systems

With the advancement in human language technologies, speech has been accepted as a

natural method for humans to interact with computers. Many human-computer dialogue

systems have been developed at MIT and elsewhere (Zue and Glass 2000), which allow users

to access information (Goddeau et al. 1994; Glass et al. 1995; Zue et al. 2000), to conduct

transactions (Seneff et al. 1999), or to perform other problem-solving tasks, using natural

speech.
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Several language-based technologies must be integrated to build systems that are able to

interact with humans using speech. On the input side, speech recognition must be combined

with natural language processing in order for the computer to derive an understanding of

the spoken input. On the output side, language generation and speech synthesis capabilities

must be developed in order for the system to deliver well-formed verbal responses. The sys-

tem also needs to keep track of the discourse information and interpret an input utterance

appropriately within the dialogue context. Overall, a dialogue management component con-

trols the system's actions during its interaction with the user. Such actions usually include

responding to a user query, asking for additional information, requesting clarification, or

simply prompting the user to speak, etc.

The importance of prosody to the naturalness and intelligibility of speech is evident in

speech synthesis (Klatt 1987). It is not surprising that much prosodic modeling work has

been carried out on the prediction side for such applications. In a typical speech synthesis

system, some linguistic analysis is usually performed, and prosodic tags (such as phrase

boundaries, pitch accents, boundary tones, lexical stress labels, etc.) are attached to the

input text. These prosodic markers are then used to control duration, fundamental fre-

quency, energy, and segmental characteristics, through signal modification or unit selection,

to achieve the acoustic realizations of the desired prosodic structure.

Overall, prosodic modeling for speech synthesis is somewhat "easier" than for speech

recognition and understanding. On the analysis side, the speech data for synthesis are

generally from a small number of speakers and more constrained in speaking style than

those in most dialogue applications. On the modeling side, speech synthesis systems are

only concerned with generating a single acceptable rendition of a given text; while speech

on the input side can have multiple prosodic realizations and rich phonetic variations for

conveying the same meaning.

Nevertheless, prosodic information can potentially contribute to many other aspects in a

dialogue system besides speech synthesis, including speech recognition, understanding (e.g.,

syntactic/semantic analysis, etc.), and dialogue control, etc. On the speech recognition

side, intrinsic phone duration and energy measurements can be utilized to provide acoustic

constraints, in addition to spectral features, for phones; lexical stress information can be

20



used to train more accurate acoustic models (e.g., stress-dependent phone models), or to

constrain lexical search; for a tonal language like Mandarin Chinese, tone pattern is essential

in decoding the spoken words; more sophisticated prosodic models involving higher-level

constraints (e.g., syntactic boundaries, etc.) can be used to resort the recognizer N-best

list' for improved performance.

Prosody is also important to the analysis and interpretation of spoken utterances.

Phrase boundary locations can be used to resolve syntactic ambiguities or to improve the

efficiency of syntactic analysis; pitch accents can be detected to locate the focus of an

utterance and assist semantic/pragmatic interpretation; the general shape of the pitch con-

tour of an utterance (e.g., rising, falling, etc.) can be analyzed to determine the sentence

mood (e.g., question, statement, etc.) (Daly 1994), and hence, the user intention; prosodic

cues also reflect the structure of a message and play an important role in distinguishing

dialogue acts (Jurafsky et al. 1998). In addition, prosody can aid the segmentation of a

long speech recording into topics and sentences (Hakkani-Tiir et al. 1999), and help locate

speech disfluencies for improved parsing (Shriberg et al. 1997; Stolcke et al. 1998).

Prosody can also be used to explore robust dialogue strategies. The dialogue system

can infer the speaker's emotion from verbal and prosodic cues in order to react properly.

This is particularly useful during user-system error resolution, because a speaker tends to

hyperarticulate when correcting system errors, while hyperarticulated speech subsequently

causes even more recognition errors by the system (Shriberg et al. 1992; Oviatt et al.

1996). Another approach to solving this problem is using recognition confidence scores to

reject incorrect recognition hypotheses (Hazen et al. 2000a; Hazen et al. 2000b). Instead

of giving erroneous (and confusing) responses, the dialogue system can request clarification

from the user, give more detailed instructions, or take more control of the interaction. Such

accept/reject decisions in the confidence scoring framework can also potentially be improved

by using prosodic cues (Hirschberg et al. 1999; Hirschberg et al. 2000).

'A recognizer N-best list consists of the N top-scoring sentence hypotheses for an input utterance.
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1.1.3 Difficulties in Modeling Prosody

Prosodic modeling for speech recognition and understanding applications is a difficult prob-

lem due to many factors (Sagisaka et al. 1995; Shattuck-Hufnagel and Turk 1996; Kompe

1997):

" Prosody involves many linguistic and extra-linguistic aspects of a spoken utterance;

however, the acoustic manifestation of such complex phenomena is more or less con-

centrated in three basic acoustic parameters: duration, FO, and energy. When we

model only selected prosodic components, the aspects unaccounted for by the mod-

eling framework contribute to large variations in the measurements. For example,

speaker FO differences and the sentential FO downdrift contribute to large variances

in Mandarin tone features, if they are not taken into account by the tone modeling

framework.

" The intonational aspects of prosody are not well understood. Although intonational

phonology has proposed a relatively simple framework for describing the intonation of

an utterance, i.e., as a sequence of intonational phrases, each consisting of certain cat-

egorical constituents, a suitable set of descriptive units has been elusive. In addition,

automatic recognition of these constituents is a hard problem, and the correspondence

of these constituents with the meaning of an utterance is very poorly understood. For

example, although there is good correlation between prosodic phrase boundaries and

syntactic boundaries, there are also plenty of cases in which they do not match; how

to relate prominence to higher-level linguistic aspects is even more puzzling.

" There generally exist multiple prosodic realizations of a sentence to convey the same

meaning. In addition, the acoustic expression of individual prosodic events is also

highly variable. For example, a speaker can ask the question "What is the weather

in Boston?" with a rising or a falling tune, to convey the same meaning. Individual

prosodic events, such as lexical stress and pitch accents, can also be realized through

different prosodic means.

" The extraction of prosodic features is error-prone. In particular, FO detection is likely

22



to suffer from pitch doubling/halving and voiced/unvoiced decision errors. Such errors

make FO related measurements noisy and unreliable. Duration measurements are also

susceptible to alignment errors.

The current approaches used in ASRU systems are also not optimal for incorporating

prosodic constraints. For recognition systems based on hidden Markov models (HMMs), the

inherent duration model has an exponential distribution, which is clearly not appropriate.

More importantly, feature extraction in HMM systems is from a fixed-length frame; while

it is often desirable to extract prosodic features from phones, syllables, or some higher-level

constituents. A segment-based system has an advantage over frame-based systems in that

prosodic features can be extracted from segments (phones) of variable lengths. However, to

extract features from syllables or higher-level components, it is usually necessary to post-

process the phone graph obtained from a first-stage recognizer. A probabilistic framework

for syntactic and semantic analysis is also desirable for incorporating prosodic information,

because hard decisions about phrase boundaries, pitch accents, etc., are not robust, due to

high error rates in recognizing these prosodic attributes and variabilities in the realizations.

1.2 Prosody in Dialogue Systems

As mentioned previously, prosodic information can potentially contribute to many aspects in

a dialogue system besides speech synthesis, such as speech recognition, syntactic/semantic

analysis, dialogue management, etc. Many previous efforts have achieved limited success

along these dimensions. In this section, we briefly review some prosodic research related to

these aspects.

1.2.1 Prosody in Speech Recognition

Extensive work has been done on explicit duration modeling for HMM-based recognition

systems. This is due to a limitation of the HMM framework, which imposes an exponential

distribution on duration, determined by the state transition probabilities. Various tech-

niques have been explored to introduce proper duration constraints into HMM recognizers

for continuous speech. It was found in (Dumouchel and O'Shaughnessy 1995) that the
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error rate on a single-speaker read corpus was reduced by 6% when constraints for mini-

mum and maximum phone durations were imposed; however, a Gaussian mixture phone

duration model did not improve recognition. For a segment-based recognition system, du-

ration can be directly incorporated into the acoustic feature vector. Nevertheless, the use of

explicit duration models, even when the duration feature was already included in the seg-

ment models as well, improved recognition accuracy on continuous Mandarin digits (Wang

and Seneff 1998). It was also found that a sentence-level speaking rate normalization was

important to the performance improvement. A hierarchical duration model was developed

in (Chung 1997; Chung and Seneff 1999) to capture duration information at various sublex-

ical levels. The model was able to quantitatively characterize phenomena such as speaking

rate and prepausal lengthening. It also improved phonetic recognition and word spotting

performances in the ATIS air travel information domain (Zue et al. 1993).

Lexical stress is an important property for the English language, which can be used to

provide lexical constraints or to improve acoustic modeling for automatic speech recognition.

Lexical stress pattern recognition has been explored to reduce the number of word candi-

dates for large-vocabulary isolated word recognition (Aull 1984; Aull and Zue 1985; Waibel

1988), or to disambiguate stress-minimal word pairs (Freij and Fallside 1990). Acoustic

models with different lexical stress properties were trained separately for more accurate

modeling (Adda-Decker and Adda 1992; Sjdlander and H6gberg 1997). Prosodic models for

syllables with different stress properties and syllable structures improved recognition when

applied to resort recognizer N-best list (Jones and Woodland 1994). A stress-dependent

cost matrix for phone to phoneme mapping was also able to improve recognition (Hierony-

mus et al. 1992). Tone recognition has traditionally been an integral part of Mandarin

speech recognition in isolated syllable or word mode (Gao et al. 1991; Lee et al. 1993; Hon

et al. 1994; Gao et al. 1995). In more recent years, tone models have also been incorporated

into continuous Mandarin speech recognition systems (Wang et al. 1995; Cao et al. 2000;

Huang and Seide 2000). We will review work on lexical stress modeling and Mandarin tone

modeling in detail in Chapter 5 and Chapter 4 respectively.

It has also been proposed that prosodic models involving post-lexical constraints, such

as syntactic boundaries, can be used to re-rank the recognizer N-best hypotheses for im-
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proved recognition performance (Ostendorf and Veilleux 1994; Hunt 1994; Hirose 1995).

However, we have not found any recognition results in support of this approach reported

in the literature. A framework of similar flavor was developed for Japanese mora2 recogni-

tion (Hirose and Iwano 2000). Prosodic word boundaries were detected based on statistical

modeling of mora transitions of FO contours. The prosodic word boundary information was

incorporated into the second stage of a two-stage mora recognition system, which slightly

improved the recognition rates.

1.2.2 Prosody in Understanding

Despite the fact that the prosodic structure of an utterance exists independently of its syn-

tactic structure, there is a general correspondence between the two. Several studies have

found that prosodic phrase boundary locations can be utilized to assist syntactic analy-

sis. Ostendorf et al. (1993) investigated the use of phrase boundaries to resolve syntactic

ambiguities on a corpus of sentences read by radio announcers given two possible inter-

pretations. Two scoring algorithms, one rule-based and one using a probabilistic model,

rank the candidate parses by comparing the recognized prosodic phrase structure with the

predicted structure for each candidate parse. It was found that the two algorithms achieved

about 69% disambiguation accuracy, compared to a human perception accuracy of 84% on

the same data. When the scoring algorithms used hand-labeled boundary breaks instead

of acoustically detected boundaries, the performance became comparable to that of human

subjects. Hunt (1995) tackled the same problem, using an approach which did not require

hand-labeled prosodic data for training. Two prosody-syntax models were trained, without

intermediate prosodic labels, using multi-variate statistical techniques. A 73% accuracy was

achieved in resolving syntactic ambiguities for the same test as in (Ostendorf et al. 1993),

and the performance could be improved to 75% if prosodic labels were used during training.

Kompe et al. (1997) implemented a framework to incorporate prosodic clause boundary

information into the syntactic analysis of word hypothesis graphs. Syntactic boundaries

2The mora is a unit smaller than the syllable. A syllable contains at least one mora and normally contains
no more than two. In Japanese, CV (C=consonant, V=vowel) and V syllables are considered monomoraic,
whereas CVN (N= nasal consonant) and CVQ (Q= the first member of a geminated consonant) is considered
bimoraic (Shattuck-Hufnagel and Turk 1996).
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were marked according to whether they were likely to be expressed prosodically or not.

These prosodic clause boundary labels were added into the parsing grammar, which was

used to guide the search for the best word chain with prosodic boundary scores. This

approach was tested on a German corpus collected for VERBMOBILE, a system for automatic

speech-to-speech translation for meeting scheduling. The prosodic information reduced the

parse time by 92% and the number of parse trees by 96%, with a very small degradation in

parsing success rate.

1.2.3 Prosody in Dialogue Control

Prosody can also be used to improve the robustness of a dialogue system, and to enhance

the quality of user experience. For example, error detection and handling is critical to the

robustness of a dialogue system. Studies have shown that users often hyperarticulate when

trying to correct system errors (Oviatt et al. 1996); while hyperarticulated speech subse-

quently led to even worse recognition performance, due to deviations from trained acoustic

and language models (Shriberg et al. 1992). It is very important for the dialogue system to

detect the presence of such trouble, and take measures to break the cycle of recognition fail-

ure. Oviatt et al. (1998) analyzed in detail the acoustic, prosodic, and phonological changes

in user speech after different types of recognition errors. Results indicated that the primary

hyperarticulate changes in speech were durational, with increased number and length of

pauses most noteworthy. It was suggested that a dialogue system might evoke a recognizer

specialized for error handling upon detection of hyperarticulation, or use multiple recogniz-

ers for different speaking styles. A more general solution is to use recognition confidence

scores to reject any unreliable recognizer hypotheses, either caused by hyperarticulation, or

due to other reasons such as out-of-vocabulary words, noise interference, etc. The dialogue

system can take proper action, such as rejecting the utterance or requesting confirmation,

to signal the user of system difficulty and guide the user in error correction (Hazen et al.

2000a; Hazen et al. 2000b). Hirschberg et al. (1999, 2000) have found that prosodic fea-

tures are correlated with recognition performance, and prosodic information can be used to

improve the rejection of incorrect recognition hypotheses.

A related issue is to detect the emotional state of a user, because humans sometimes
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extend their inter-personal behavior into their interaction with computers. For example,

users might express their satisfaction verbally or prosodically when a system works well

for them; on the other hand, they tend to get frustrated and angry when a system keeps

making errors. Thus, it is useful for a dialogue system to detect user emotion and react

properly. Dellaert et al. (1996) explored the classification of utterances in terms of four

emotional modes: happiness, sadness, anger, and fear, on a corpus of over 1000 utterances

collected from a few speakers. The algorithm was able to achieve close-to-human perfor-

mance using only FO related features and a majority voting technique on the simulated

data. Huber et al. (1998) reported experiments on the detection of emotion (anger) us-

ing prosodic cues. Data were collected from 20 speakers, each speaking 50 neutral and 50

angry utterances. Word-based emotion classification was performed, with words in angry

utterances labeled as "emotional", and words in neutral utterances labeled as "neutral".

The acoustic modeling was by "brute-force": a total of 276 acoustic prosodic features were

extracted from each word and its surrounding context. A precision of 94% and a recall of

84% were achieved on a test set with unseen speakers. Polzin (2000) explored using both

verbal and non-verbal cues to classify three emotion modes: sad, angry, and neutral. The

corpus consists of speech segments from English movies. Emotion-specific language and

prosodic models were trained to classify the three modes. The prosodic model performed

better than the language model, and both were well above chance. As summarized above,

research on emotion detection is still largely preliminary. Finding good acoustic cues for

various emotional modes remains an interesting research problem. It is also desirable to use

data from real interactions between a user and a computer, rather than data in simulated

or acted mood, to carry out the experiments. In addition, dialogue strategies incorporating

user emotional state also need to be investigated.

1.3 Thesis Goals

The general goal of this thesis is to model the prosodic aspects of speech to improve human-

computer dialogue systems. Towards this goal, we investigate a variety of ways of utilizing

prosodic information to enhance speech recognition and understanding performance, and
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address some issues and difficulties in modeling speech prosody during this process. We

explore prosodic modeling in two languages: Mandarin Chinese and English, which have

very different prosodic characteristics. Chinese is a tonal language, in which intonation is

highly constrained by syllable FO patterns determined by lexical tones. Hence, our strategy

is to focus on tone modeling and account for intonational aspects within the context of

improving tone models. Lexical stress in English, on the other hand, is only obscurely ex-

pressed acoustically and highly influenced by intonation. Thus, we examine the applicability

of modeling lexical stress for improved speech recognition, and explore prosodic modeling

beyond the lexical level as well. Specifically, this thesis accomplishes the following tasks:

" Robust pitch tracking designed especially for telephone speech and prosodic modeling.

" Lexical tone modeling for Mandarin Chinese speech recognition.

" Lexical stress modeling for English speech recognition.

" Using prosodic cues to improve the utterance and word level confidence scoring of

recognition hypotheses.

" Characterizing pitch contours of English phrases.

Pitch detection is an important first step in the analysis and modeling of speech prosody.

The fundamental frequency is an important feature for many prosodic components, such as

lexical stress, tone, and intonation. However, pitch estimation errors and the discontinuity

of the FO space make FO related measurements noisy and undependable. Pitch detection

algorithms also have inferior performance on telephone speech, due to signal degradation

caused by the noisy and band-limited telephone channel. To address these problems, we will

first implement a novel continuous pitch detection algorithm, which is designed explicitly

to promote robustness for telephone speech and prosodic modeling.

We choose to focus our initial study of prosody on the FO contours of Mandarin Chinese

for several reasons. First, unlike the obscure correlation of prosodic features with lexical

stress in English, the syllable level FO contour in Mandarin clearly defines tone. Thus, tone

modeling presents a well defined recognition problem. Furthermore, tones in continuous

speech can vary to a great extent due to the influence from surrounding tones as well as
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higher-level factors such as intonation. Thus, tone modeling presents an interesting and

challenging research problem. It also provides us with a nice framework to address one

of the difficulties in prosodic modeling, i.e., multiple prosodic components affecting the

same acoustic signal. We can carry out the analysis and characterization of intonational

influences within the context of improving tone recognition. Finally, tone modeling can

potentially be used to improve recognition performance for continuous Mandarin Chinese

speech. Traditionally, tone information has been used to assist lexical decoding for recogniz-

ing isolated syllables or words. Some researchers have argued that tone information is not

critical in continuous speech recognition, because homophones are rare when multiple syl-

lables are grouped into words. However, we think that speech recognition errors sometimes

result in mismatched tone characteristics between the syllable hypotheses and the acoustics;

thus, tone models can be used to improve speech recognition by discouraging such errors.

To achieve this goal, we will explore and implement various methods to incorporate tone

models into the speech recognition system.

Lexical stress in English can be viewed as analogous to tone in Mandarin Chinese.

Leveraging the same mechanisms developed for Mandarin tone models, we explore the use

of lexical stress information to assist speech recognition in spontaneous English utterances.

The motivation is also similar to that for tone modeling, i.e., erroneous hypotheses will

have worse "stress scores" than the correct hypothesis. However, unlike Mandarin tones,

the acoustic manifestations of lexical stress are quite obscure. Thus, different issues are

addressed in modeling lexical stress: first, what are the most informative acoustic correlates

of stress; second, how well can the intrinsic stress properties of a vowel be determined

from the acoustics in spontaneous speech; and third, can such information improve speech

recognition performance?

Moving beyond improving speech recognition, we examine the use of prosodic cues in

recognition confidence scoring for improved accept/reject decisions. Hirschberg et al. (1999,

2000) have found that there exist statistically significant differences in the mean values of

certain prosodic features between correctly and incorrectly recognized user turns in inter-

action with a particular spoken dialogue system; and these prosodic cues can be used to

improve accept/reject decisions on recognition outputs. However, it was also found that the
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efficacy of the prosodic information was dependent on the quality of the recognition system.

We first test if the approach of using prosodic cues in utterance-level confidence scoring

can be generalized to the JUPITER system, which has been well-trained on a large corpus

of speech data. We also examine if prosodic features can be used to better distinguish

correctly and incorrectly recognized words.

Research on using prosody in syntactic and semantic analysis of spoken utterances has

been sparse. Among the limited inquiries reported in the literature, most methods relied on

an intermediate prosodic transcription to bridge the acoustics and the syntax/semantics of

the utterance. Prosodic transcription is labor-intensive and time-consuming, which makes

it impractical to transcribe large speech corpora. The prediction of these labels from acous-

tics is also error-prone. In addition, the mapping between the prosodic transcription and

the syntax/semantics of an utterance is not obvious, except for the general correspondence

of prosodic and syntactic boundaries. Thus, it is usually necessary to build sophisticated

models for predicting prosodic labels from linguistic analysis, in addition to acoustic models

for prosodic labels. We begin to explore the feasibility of characterizing directly the pitch

contours of some selected English phrases in the JUPITER domain, without any intermedi-

ate prosodic labeling. These phrases are selected from common patterns in the JUPITER

utterances, such as "what is", "tell me", etc. We seek to answer the following questions

in our experiments: (1) can we identify phrases based on F0 contour alone; (2) does the

phrase F pattern generalize across similar but not identical utterances; (3) does each phrase

have some set of canonical patterns; (4) are there interdependencies among phrases in the

utterance; and (5) will this information be useful to speech recognition or understanding?

1.4 Outline

The remainder of this thesis is organized into seven chapters. Chapter 2 describes the

design principles and the implementation of a pitch tracking algorithm, which is particularly

robust for telephone speech and prosodic modeling applications. Detailed evaluations of

the algorithm are conducted on a labeled pitch extraction reference database under both

studio and telephone conditions, and on a telephone quality Mandarin digit corpus. The
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performances, in terms of pitch accuracy and tone classification accuracy, are compared

with those of XWAVES, which is a commercially available product widely used by the speech

community for prosodic research.

Chapter 3 presents an empirical study of a number of factors that contribute to the

acoustic variations of Mandarin tones, including the overall FO declination of an utterance,

the presence of a phrase boundary, tone coarticulation, and tone sandhi. Two telephone-

quality Mandarin speech corpora used in our tone classification and speech recognition

experiments are also described.

Chapter 4 presents the tone classification and speech recognition experiments on the

two Mandarin corpora. We first describe the basic tone modeling framework, and com-

pare the tone classification performance of various refined tone models. We then describe

the implementation of two mechanisms in the recognition system for incorporating tone

model constraints. A suite of speech recognition experiments are conducted to compare the

contributions of using various tone models and different tone model integration methods.

Chapter 5 extends the framework described in Chapter 4 to modeling lexical stress for

improved speech recognition in the English JUPITER weather information domain. We study

the correlation of various FO, energy, and duration measurements with lexical stress on a

large corpus of spontaneous utterances, and identify the most informative features of stress

using classification experiments. Stress classification and speech recognition experiments

are conducted, and some analysis and interpretation of the speech recognition results are

provided.

Chapter 6 describes experiments on using prosodic features to enhance the performance

of speech recognition confidence scoring in the JUPITER domain. Various utterance-level

and word-level prosodic features are compared, together with other features derived from

the recognizer outputs, using the mutual information measure. Utterance and word confi-

dence scoring performances with and without prosodic features are compared using standard

classification and error detection criteria.

Chapter 7 describes a preliminary model for characterizing the pitch contours of some

selected English phrases in the JUPITER domain. We perform classification experiments to

examine how reliably these phrases can be distinguished by their FO contours alone. Data
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clustering experiments are conducted to identify typical patterns for the FO contours of

these phrases. A mutual information measure is used to quantify the correlation of various

FO patterns of these phrases within an utterance.

Chapter 8 summarizes the main contributions of this thesis and suggests directions for

future work.
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Chapter 2

Robust Pitch Tracking

Robust pitch detection is a crucial first step to the analysis and modeling of speech prosody.

The fundamental frequency (Fo) is an important feature for many prosodic attributes such

as lexical stress, tone, and intonation. However, it is difficult to build reliable statistical

models involving FO because of pitch estimation errors and the discontinuity of the FO space.

Specifically, inaccurate voiced pitch hypotheses and erroneous voiced/unvoiced (V/UV)

decisions can lead to noisy and very undependable feature measurements. This is especially

the case for telephone speech, due to inferior pitch detection performance caused by the

noisy and band-limited telephone channel.

This chapter describes a continuous pitch detection algorithm (CPDA), which is de-

signed explicitly to promote robustness for telephone speech and prosodic modeling appli-

cations (Wang and Seneff 1998; Wang and Seneff 2000b). It is based on a robust pitch

estimation method known as harmonic matching (Hess 1983). It also features a dynamic

programming (DP) technique of extracting the FO value at every frame, regardless of the

status of voicing, supplemented by a separate probability of voicing parameter. In the

following sections, we first give an overview of our algorithm, emphasizing some design

principles. Then we discuss some related work on harmonic matching pitch estimation and

DP pitch tracking. Next we describe the pitch tracking and voicing probability estima-

tion modules in detail. Then we evaluate the algorithm using the Keele pitch extraction

reference database (Plante et al. 1995), under both studio and telephone conditions, as

well as a telephone quality Mandarin digit corpus. We find that the CPDA is very robust
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to channel degradation, and compares favorably to an optimized algorithm provided by

XWAVES (Talkin 1995) for voiced pitch accuracy. It also significantly outperforms XWAVES

when used for a Mandarin four tone classification task.

2.1 Design Principles

We are interested in developing a pitch determination algorithm (PDA) that is particularly

robust for telephone quality speech and prosodic modeling applications. Pitch extraction

for telephone speech is an especially difficult task, due to the fact that the fundamental is

often weak or missing, and the signal to noise ratio is usually low. Frequency-domain pitch

detection techniques have been used by previous research to achieve improved robustness for

noisy and telephone speech (Schroeder 1968; Noll 1970; Seneff 1978; Martin 1982; Hermes

1988). Following these examples, we adopted a frequency-domain signal representation and

developed a robust pitch extraction method which relied on the overall harmonic structure

to identify pitch candidates. The pitch estimation method belongs to the category known

as the harmonic matching approach, as discussed in (Hess 1983). We derive reliable estima-

tions of both pitch and the temporal change of pitch using harmonic matching principles.

Furthermore, we combine these constraints in a dynamic programming search to find a

smooth and "continuous" pitch contour. In the following, we give a brief overview of the

basic design principles of our algorithm.

Our pitch estimation method is based on the observation that harmonics will be spaced

by a constant distance on a logarithmic frequency scale regardless of the fundamental. More

formally, if a signal has harmonic peaks spaced by F0 , then, on a logarithmic scale, the peaks

will occur at log F0 , log F0 + log 2, logF + log 3, ..., etc. The fundamental F only affects the

position of the first peak, and the subsequent harmonic peaks have fixed distances from the

first peak. Thus, harmonic spectra with different fundamental frequencies can be aligned

by simple linear shifting. By correlating a logarithmic spectrum with a harmonic template

(with known fundamental frequency), we can obtain a robust estimation of the log F0 of the

signal. By correlating two logarithmic spectra from the adjacent frames of a speech signal,

we can obtain a very reliable estimation of the log F change.
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Instead of determining an FO value for each frame by picking the correlation maximum,

we use a dynamic programming search to combine the log FO and A log FO estimations to find

an overall optimal solution. We consider all values (quantized in a reasonable pitch range

for human speech, e.g., 50Hz to 550Hz) as possible Fo candidates with different qualities.

The quality of a pitch candidate P is indicated by the correlation of the spectrum and the

template at the position corresponding to the difference of P and the template fundamental

frequency; and the "consistency" of two consecutive pitch candidates is indicated by the

correlation of the spectra of the adjacent frames at the position corresponding to the pitch

difference. These two constraints are used to define a score function for the DP search, and

the path in the quantized (frequency, time) search space with the highest score gives the

optimum pitch track.

To deal with discontinuity of the FO space for prosodic modeling, we believe that it is

more advantageous to emit an FO value for each frame, even in unvoiced regions, and to

provide separately a parameter that reflects the probability of voicing. This is based on

the considerations that, first, voicing decision errors will not be manifested as absent pitch

values; second, features such as those describing the shape of the pitch contour are more

robust to segmental misalignments; and third, a voicing probability is more appropriate

than a "hard" decision of 0 and 1, when used in statistical models. The continuous pitch

tracking capability is implement within the DP search module, by disallowing unvoiced state

in the search space. This is feasible also because of a favorable property of the A log FO

estimation. We will address this point in detail in Sections 2.2 and 2.3.

The pseudo-code of our proposed pitch tracking algorithm is shown in Figure 2-1, and

the implementation details will be discussed in Section 2.3. Although the CPDA is based

on the same signal representation and pitch estimation framework as the subharmonic

summation approach (Hermes 1988), both the signal processing and the tracking technique

are quite different. The use of A log FO estimation in a dynamic programming search and

the technique of "continuous" pitch tracking contribute to favorable properties for prosodic

modeling.
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N: the total number of frames in an input waveform
M: the total number of quantized pitch candidates
Pi: the quantized pitch candidates (i = 0, .. . , M - 1)
T: the harmonic template
Xt: the logarithmic-frequency spectrum at the tth frame of the input waveform
Score(t, i): the partial path score for the ith pitch candidate at the tth frame
begin

compute T
compute X0
compute the correlation of Xo and T
initialize Score(0, i) for all Pi (i = 0,..., M - 1)
for t = N -I

compute Xt
compute the correlation of Xt and Xti1
compute the correlation of Xt and T
update the partial path score Score(t, i) and

save the back trace pointer for all Pi (i = 0, ... , M - 1)
end
back trace to find the best pitch contour P(t) (t = 0,..., N - 1)

end

Figure 2-1: The pseudo-code of the proposed continuous pitch tracking algorithm.

2.2 Related Research

A comprehensive study on various pitch determination algorithms is given in (Hess 1983).

In this section, we give a brief introduction of two harmonic matching PDAs, namely,

the spectral comb method (Martin 1982), and the subharmonic summation method (Her-

mes 1988), because their underlying principles for pitch estimation are very similar to our

method. We also discuss some related work on applying dynamic programming techniques

for pitch tracking (Secrest and Doddington 1983; Talkin 1995; Geoffrois 1996; Droppo and

Acero 1998).

2.2.1 Harmonic Matching PDA

The two PDAs introduced here can be regarded as a direct implementation of the virtual-

pitch theory of human pitch perception (Terhardt 1974; Terhardt 1979). The theory assumes

that each spectral component activates not only those elements of the central pitch processor

that are most sensitive to that frequency, but also those elements that have a lower harmonic
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relation with this component. The contributions of the various components add up, and

the element with the highest harmonic activation gives the perceived pitch.

The spectral comb method (Martin 1982) is based on the observation that harmonic

peaks of a periodic signal occur at F0 , 2FO, 3FO, ..., etc. It uses an impulse sequence,

called "spectral comb", to match with the signal spectrum. The distance between pulses

equals the trial fundamental frequency P. The sum of the signal spectrum multiplied by

the spectral comb is used as the harmonic estimation function. The value of P where this

function reaches its maximum is taken as the fundamental frequency F0 . To account for the

different number of components in the sum for different trial frequencies, the impulses in the

spectral comb are weighted by a decaying factor, or the sum is normalized by the number

of impulses. In addition, only the frequency components below 2KHz are considered, and

the spectral values away from local peaks are set to zero.

The subharmonic summation method (Hermes 1988) is based on the observation that on

a logarithmic frequency scale, harmonic peaks of a periodic signal occur at log Fo, log Fo +

log 2, log Fo + log 3, ..., etc. One can sum up the spectral values spaced by log 2, log 3,

from the pitch candidate log P, and the value of P where the sum reaches its maximum gives

the pitch estimation. Similar to the spectral comb method, the spectral values are weighted

by an exponentially decaying factor in the summation. The logarithmically spaced spectrum

is obtained by interpolating a regular FFT spectrum. More specifically, the waveform is

first downsampled to 2500Hz, and an FFT is applied to obtain the spectrum of [0, 1250Hz].

The spectral values away from local peaks are set to be zero, after which the spectrum is

low-pass filtered. The spectral values on a logarithmic frequency abscissa are then obtained

through cubic-spline interpolation.

Aside from their mathematical differences, the two methods are very similar in that

they try to match the signal spectrum with an "ideal" harmonic template: in the first case,

an evenly spaced impulse sequence; in the second case, a logarithmically spaced impulse

sequence. We think that the impulse sequence is an overly simple model to represent a

harmonic structure. Small perturbations in harmonic peaks can change the weighted sum,

and thus, the outcome of the pitch estimation, which makes the two methods susceptible

to noise interference. Furthermore, these two implementations can not avoid the pitch
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doubling problem entirely, because harmonic peaks separated by 2FO are also likely to give

rise to a large peak in the weighted sum. This is especially the case when a few spectral

components are more prominent due to formant energy, or when the fundamental is missing

due to the telephone bandwidth. Our harmonic matching method will address these issues

specifically, to achieve more accurate pitch estimation, and to improve robustness under

adverse signal conditions.

2.2.2 DP Pitch Tracking

The advantage of using dynamic programming in pitch tracking is to incorporate continuity

constraints across adjacent frames; thus, a smooth pitch contour can be obtained. It is

natural that most of the score functions used for pitch tracking incorporate a transition

cost to penalize large changes in neighboring Fo hypotheses. The DP is usually combined

with voiced/unvoiced decision (Secrest and Doddington 1983; Talkin 1995; Geoffrois 1996),

because it is unreliable to impose continuity involving unvoiced frames, for which the out-

come of frame based pitch extraction is random. For example, (Secrest and Doddington

1983) includes an unvoiced state in the DP search and defines three cost functions: the

pitch deviation cost, which specifies the cost for the transition of pitch candidates from the

previous frame to the current frame; the voicing state cost, which specifies the cost of the

pitch candidates (including unvoiced state) for the current frame; and the voicing transition

cost, which specifies the cost for changing voicing status from the previous to the current

frame. The pitch deviation cost discourages large pitch changes with the exception of pitch

doubling and halving across two frames. The voicing decision is a natural outcome of the

DP search using this framework.

One can always force the DP to track pitch continuously, by disallowing the unvoiced

state in the search space. The maximum a posteriori (MAP) pitch tracking method (Droppo

and Acero 1998) essentially adopts such an approach. The algorithm uses the normalized

auto-correlation function weighted by the energy of the current frame as a probabilistic

indication for a pitch hypothesis, and the probability of the pitch change across two frames

is modeled by a zero mean Gaussian distribution. The PDA utilizes two DP passes: the first

DP pass forms pitch candidates for every frame by maximizing the total likelihood; then,
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the second DP pass performs a voicing decision and sets unvoiced frames to be zero. The

method compares favorably to two other algorithms on voicing decision errors and standard

deviation of relative pitch errors. However, the results for voiced pitch accuracy, in terms of

gross errors or the mean of absolute errors, are not reported in the paper. We suspect that

the continuous pitch tracking in this case is likely to hurt the pitch tracking performance

because of problems during unvoiced to voiced transitions, especially if rigorous continuity

constraints are applied.

We prefer a continuous DP pitch tracking framework for prosodic modeling consider-

ations. We also believe that such a framework with the appropriate transition cost can

lead to improved pitch accuracy for voiced frames. This is based on the intuition that it

is less likely to make errors when tracking the pitch for a long sequence of voiced frames,

because the values are determined collectively through continuity constraints. When V/UV

decisions are tied with DP, the voiced regions are likely to be more fragmented due to

voiced to unvoiced decision errors; and the short voiced segments (with a small number of

frames) are more likely to cause errors. The transition cost is critical to the performance

of a continuous DP tracking approach. In our PDA, we use a transition weighting that is a

robust estimation of pitch change in voiced regions, but only imposes very weak continuity

constraints during unvoiced speech frames. We found that a continuous DP incorporating

this cost function yielded superior performance to a DP search combined with V/UV in our

experiments.

2.3 Pitch Tracking

2.3.1 Signal Representation

To obtain a logarithmically spaced spectrum, we directly sample a narrow band spectrum in

the low-frequency region [fV, fe] at linear intervals in the logarithmic frequency dimension.

We define this representation as a discrete logarithmic Fourier transform (DLFT). Given a

Hamming windowed speech signal xt(n) (n = 0,1, ..., N, - 1; and N, is the window size),

the DLFT is computed as follows:
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1 N--1
Xt(i) = N Z xt(n)e -n (i 0, 1,... , N - 1) (2.1)

Sn=O

wi= 27re(lOgf i-log) S (2.2)

dlogf = (logfe - log f8 )/(N - 1) (2.3)

where N is the size of the DLFT, and T, is the sampling period of the waveform. dlogf

can be viewed as the frequency resolution in the logarithmic domain.

Notice that the DLFT formula is derived directly from the Fourier transform, with the

frequencies sampled at logarithmic intervals. An alternative approach is to compute the

spectrum using the standard FFT algorithm followed by a spline interpolation to resample

the frequencies (Hermes 1988). However, the harmonic structure in the high frequency

region is likely to be disturbed by the interpolation, due to more compressed spacing on a

logarithmic scale at high frequencies.

In the default setting, the DLFT spectrum of the speech signal is sampled between

150Hz and 1500Hz. The lower bound is chosen with consideration of the telephone band-

width, and the upper bound is chosen to include a sufficient number of harmonic peaks (at

least two for high-pitched voices). The spectrum is normalized by a plaw conversion to

reduce the dynamic range of harmonic peak height due to formant influences.

Xt(i) = log(1 + 50 - Xt(i)/Maxt)/log(51) (i = 0, 1, ..., N - 1) (2.4)

where Maxt is the maximum energy of the DLFT spectrum at the tth frame.

Maxt = max Xt(i) (2.5)

This plaw conversion holds the maximum component of the DLFT spectrum unchanged

while promoting smaller values. A second plaw is applied to reduce the dynamic range of

energy throughout the utterance, for improved V/UV decision.

Xt(i) = Xt(i) - log(1 + Maxt/100) - 50 (i = 0, 1, ..., N - 1) (2.6)
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2.3.2 Harmonic Template

We construct the harmonic template from an ideal periodic signal, e.g., a 200Hz pulse train.

The pulse train is first Hamming windowed, after which the DLFT spectrum is computed

between 110Hz and 1100Hz. The upper and lower frequency bounds are chosen such that

the template includes an appropriate number of harmonic lobes and tapers off to zero at both

ends. In our implementation, the harmonic template includes 5 complete harmonic lobes,

which will match the DLFT spectrum of a voiced signal of about 270Hz (approximately

in the middle of the FO search range of 50Hz to 550Hz). Similar to the subharmonic

summation approach, the energy of each harmonic lobe needs to be normalized. This is

done by integrating over each lobe to find its area, followed by a scaling by the reciprocal

of the area, subject to an exponential decay. The optimal decay factor is determined to be

0.85 empirically from development data. We also added negative lobes between the positive

lobes in the template to discourage pitch doubling, as described in the next section. The

negative lobes are obtained by computing the DLFT spectrum of the same pulse train at

the following frequencies:

wi = 27re- (2.7)

where logf8, dlogf, and T, are the same as in Equation 2.2. The frequency shift of loglOO

causes the spectrum to be shifted by 100Hz on the linear scale (half of the fundamental

frequency of the pulse train); thus, the harmonic peaks in the new spectrum fall precisely in

between those in the original one. This shifted DLFT spectrum is weighted by a negative

factor and added to the original spectrum to form the template.

Figure 2-2 shows the waveform, Fourier transform and DLFT for a 200Hz pulse train

and a voiced speech signal. The DLFT spectra of the signal and the pulse train are adjusted

as described above. As illustrated in the figure, the harmonics in the two DLFT spectra

can be aligned perfectly by linear shifting despite their FO differences; and the relative shift

yielding the match is determined by the FO differences and the starting frequencies of the

two DLFT spectra.
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Figure 2-2: Windowed waveform, FT, and adjusted DLFT (refer to the text for details) for
a pulse train and a voiced speech signal.

2.3.3 Two Correlation Functions

The "template-frame" correlation function provides a log FO estimation by aligning the

speech DLFT spectrum with the harmonic template, as shown in Equation 2.8.

(2-8)E T(i)X(i - n)
,' Xt(i)2

The template T(n) is the modified DLFT spectrum of a Hamming windowed impulse train of

200Hz, as described in Section 2.3.2. Xt(n) is the plaw converted DLFT of the signal at the

jth frame. The template is normalized to have unit energy in advance, so the correlation
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is normalized by the signal energy only. The bounds for the correlation, [NL, NH], are

determined by the FO range [Fmin, Fmax].

The mapping between pitch candidate P and the corresponding index in the template-

frame correlation function can be derived from Equation 2.2. Assume the index of the trial

pitch P in the signal DLFT spectrum is ip. According to Equation 2.2, we have

W = 27r . P - T, = 2 re(ogfs+ip-dlo1gf) . T5 (2.9)

The relationship of P and ip can be further simplified as:

logP log150+ip.dlogf (2.10)

ip = (logP - logl50)/dlogf (2.11)

where 150 is the low frequency bound for the signal DLFT spectrum, and dlogf is the

logarithmic frequency resolution. Similarly, the index of the fundamental frequency (200Hz)

in the template, i 200, can be determined as

i 2oo = (log200 - log11O)/dlogf (2.12)

where 110 is the low frequency bound for the template.

The relative shift to match the two frequencies in the template-frame correlation is the

difference of these two indices:

Ip = i200 - iP = (log200 - log11O - logP + logl50)/dlogf (2.13)

Conversely, we can also determine P from the correlation lag Ip by

200-150 (2.14)
110 - eip-dlogf

By substituting P in Equation 2.13 with the pitch range [Fmin, Fmax], we obtain the bounds

for template-frame correlation as
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NL = (log200 - log110 - logFmax + logl50)/dlogf (2.15)

NH = (log200 - log110 - logFmin + log150)/dlogf (2.16)

The position of the correlation maximum should correspond to the difference of log FO

between the signal and the template. However, as in all PDAs, frame based peak picking

is susceptible to pitch doubling and halving problems. The correlation function has a rela-

tively high peak when the harmonic lobes of the template align with 2FO, 4FO, 6FO, ..., etc.,

of the signal spectrum, especially when the fundamental is missing. The negative lobes

added between the positive lobes in the template can help reduce the tendency for pitch

doubling, because such an alignment will be penalized by the negative contributions from

the 3FO, 5FO, ... peaks. The weighting of negative lobes was optimized empirically to be

0.35.

The "cross-frame" correlation function provides constraints for A log FO by aligning two

adjacent frames of the signal DLFT spectra, as shown in Equation 2.17.

Ei Xt(i)Xt_1(i - n)
Rxt xt (n) = IE -_ (InI < N) (2.17)

-, Xt(i) 2 VI, Xt_1(i) 2

The correlation is normalized by the energy of both signal frames. Because FO should not

change dramatically across two frames, the correlation bound N is set to be about 10% of

the number of samples in the DLFT spectrum. The maximum of the correlation gives a

robust estimation of the log FO difference across two voiced frames.

Figure 2-3 shows examples of the template-frame and cross-frame correlation functions

in the voiced and unvoiced regions of a speech signal. For unvoiced regions, it is observed

that the template-frame correlation is more-or-less random, and the cross-frame correlation

stays fairly flat both within an unvoiced region and upon transition of voicing status. This

feature of the cross-frame correlation function is critical for the DP based continuous pitch

tracking algorithm.
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unvoiced DLFT spectra.

and "cross-frame" correlations for voiced and

2.3.4 Dynamic Programming Search

Given the constraints for log Fo and A log FO, we can easily formulate the problem of pitch

tracking as a DP search. We define the target function in an iterative manner as

Score(t, i) =
RTXo (i)

max{Score(t - 1, j) -Rxx,_1 (i - j)} + RTx(i)

where i is the index in the template-frame correlation function. The pitch value P can be
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converted from the index i by Equation 2.14 . The search is extended by inheriting the best

past score as weighted by the cross-frame correlation plus the template-frame correlation

for the current node. The pointer to the best past node is saved for back tracking upon

arriving at the last frame. Due to the logarithmic sampling of the DLFT, the search space

for pitch value is naturally quantized logarithmically, with constant AFo/FO.

The target function ensures a very smooth pitch contour. An expansion of Equation 2.18

reveals that the internal score of a particular node on the path is weighted by a series of

cross-frame weights from that node to the current node before contributing to the cumulative

score. We also tried replacing the multiplication in Equation 2.18 with addition. This

score function imposes constraints only across the neighboring frames. We obtained slight

performance improvement in pitch accuracy, because the search is more flexible to follow

abrupt changes in the pitch contour, such as those caused by glottalization. However, we

think such sensitivity is less robust for prosodic modeling, and thus, did not pursue it

further.

The DP search is forced to find a pitch value for every frame, even in unvoiced regions.

We experimented with adding a node for unvoiced state in the search and incorporating

the voicing probability into the target function. We found that this increased the number

of pitch errors propagated from the voicing decision errors. It is observed that the cross-

frame correlation stays relatively flat when at least one frame is unvoiced, as indicated in

Figure 2-3. Thus, upon transition into unvoiced regions, the best past score will be inherited

by all nodes; and the scores become somewhat random. However, once in voiced regions,

the sequence of nodes corresponding to the true pitch values will emerge because of high

internal scores enhanced by high cross-frame correlation coefficients.

Figure 2-4 shows the waveform, DLFT spectrogram, and phonetic and word transcrip-

tions for a telephone utterance. The DLFT spectrum is computed in the [150,1200] Hz

range. The search space for FO is from 50Hz to 550Hz, part of which is overlayed with the

DLFT spectrogram. As shown in the figure, the first harmonic of the spectrum is fairly

weak; nevertheless, the DP search is able to track FO whenever there is clear harmonic struc-

ture. The pitch track in unvoiced regions is arbitrarily chosen by the search and probably

does not have a meaningful interpretation.
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Figure 2-4: Waveform, DLFT spectrogram and transcriptions for the utterance "What is

the weather in Boston this ... ". Part of the quantized search space for F0 and the chosen

path are overlayed with the DLFT spectrogram.

2.4 Voicing Probability Estimation

To increase robustness for statistical modeling, the voicing decision module computes a

voicing probability for each frame instead of making a hard decision.

The posterior probabilities of a frame being voiced/unvoiced can be obtained from the

observation 0 by applying Bayesian Rules as shown in Equation 2.19, where V stands for

voiced, and U for unvoiced. P(V), P(U), P(U|V) and P(UjU) can be obtained a priori

from training data.

PV P(V0) = P(U1V)P(V)/P(0)

P= P(U10) = P(OjU)P(U)/P(0) (2.19)

P(O) = P(OIU)P(U) + P(OIV)P(V)

The observation vector includes two elements from the pitch tracking algorithm. One

is the maximum of the unnormalized template-frame correlation, which can be interpreted

as the "harmonic energy" of the signal. The second element is the minimum of the cross-

frame correlation. It is small for voiced frames and close to 1 for unvoiced frames. We

use the minimum of the forward and the backward cross-frame correlations to improve the

prediction for the first and last frames of voiced regions, following the example in (Droppo
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and Acero 1998). We also added the total signal energy and zero-crossing rate to the feature

vector because they improve the voicing decision accuracy. Mixtures of diagonal Gaussian

models were used to model the prior distributions P(OjV) and P(OIU).

2.5 Evaluation

A PDA is usually evaluated on two aspects: pitch estimation and voicing decision (Rabiner

et al. 1976). Accuracy for voiced pitch estimation can be evaluated in terms of "gross error"

rate (GER), which is the percentage of voiced hypotheses that deviate from the reference

by a certain amount (often 10% or 20%), and the mean and variance of the absolute value

of the error. The GER is a good indication of pitch doubling and halving errors, while

the mean and variance of absolute error examines the deviation of hypothesized pitch from

the reference. The voicing decision can be evaluated by the sum of voiced to unvoiced and

unvoiced to voiced errors. Since the CPDA does not make an explicit voicing decision, we

will focus the evaluation on voiced frames. Our final goal is to apply the CPDA in prosodic

modeling. In this regard, we also evaluated telephone quality Mandarin tone classification

performance using the CPDA for pitch tracking.

We compared the performance of the CPDA with an optimized algorithm provided by

XWAVES in these aspects. The XWAVES PDA is based on the robust algorithm for pitch

tracking (RAPT) method (Talkin 1995), which is a standard time-domain PDA. It relies

on peaks in the normalized cross-correlation function to generate pitch candidates. A post-

processing with dynamic programming is applied to select the best F and voicing state

candidates. The XWAVES PDA is already optimized using a large amount of hand labelled

speech data. We will use the default setting for all internal parameters of XWAVES. To

ensure similarity, both PDAs are set to have an F search range of 50Hz - 550Hz, and a

frame rate of 100Hz.
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2.5.1 Voiced Pitch Accuracy

Keele Database

We use the Keele pitch extraction reference database (Plante et al. 1995) for this evaluation,

because it provides reference pitch obtained from a simultaneously recorded laryngograph

trace as "ground truth". There are five male and five female speakers1 , each speaking a

phonetically balanced text of about 35 seconds. The speech data were recorded in a sound-

proof room using a head mounted microphone with a sampling rate of 20KHz. In order

to evaluate the PDAs under telephone conditions, we transmitted the waveforms through a

noisy telephone channel and recorded at a sampling rate of 8KHz. The transmitted wave-

forms were carefully calibrated with the originals to make sure that the pitch references are

still valid.

The reference pitch in the Keele database is computed from the laryngograph trace us-

ing a floating autocorrelation of 25.6ms duration at 10ms interval, and is later manually

validated. Besides "clearly unvoiced" and "clearly voiced" frames, there also exist some

"uncertain" frames, where visual inspection of the laryngograph and the speech waveform

reveals inconsistency in periodicity. When periodicity is observed in the laryngograph but

not in the speech waveform, the uncertain frames are labelled with the negative of the ref-

erence pitch obtained from the laryngograph. When periodicity is observed in the speech

trace but not in the laryngograph, the frame is labelled with "-1". The number and per-

centage of frames in each category are listed in Table 2-1. As reported in (Plante et al.

1995), most of the uncertain frames occur at voicing onsets and around plosive bursts. We

use only the "clearly voiced" frames for evaluation as recommended by (Plante et al. 1995),

because it is simply not clear what the pitch of the questionable frames should be. We also

suspect that the performance at bursts and voicing onsets, where most of the uncertain

frames occur, does not have a significant impact on the intended applications.

Since we do not have other verified data to optimize the parameters of the CPDA, we

set aside two speakers (fl and ml) as the development data, and tested on the remaining

eight speakers. After optimization, the same parameters are used for the CPDA in all

'(Plante et al. 1995) also reported data collected from 5 child speakers. However, the data were not
present at the ftp site for downloading.

49



Category Number of Frames I Percentage of Total (%)
Clearly Unvoiced (0) 15583 46.23
Clearly Voiced (value) 16960 50.31
Uncertain (-value) 659 1.95
Uncertain (-1) 509 1.51
Total 33711 100

Table 2-1: Number and percentage of frames in each category in the Keele database.

experiments including Mandarin tone classification.

Results and Analysis

Figure 2-5 illustrates some favorable features of the CPDA as compared to XWAVES. The

display window shows (from top to bottom) the waveform, narrow-band spectrogram, DLFT

spectrogram with pitch contour obtained by CPDA, reference pitch track provided by the

Keele database, and the pitch track extracted using XWAVES, for a few speech segments

taken from the Keele database. As observed from the figure, XWAVES is likely to make

voiced to unvoiced decision errors at segmental transitions where change in the waveform

shape is large (examples highlighted by arrows with "A" in the figure), or at the end of voiced

regions where the signal is weak (example highlighted by an arrow with "B" in the figure).

However, the CPDA is able to avoid these errors because it tries to track pitch for every

frame, and the DLFT spectra at those frames still have sufficient information about the

harmonic structure. It seems that the CPDA makes some "pitch doubling" errors where

there appear to be some irregularities with the speaker's voicing (examples indicated by

arrows with "c" the figure). This is due to the strong continuity constraints imposed in the

DP tracking score function. We believe that a smooth pitch contour is more appropriate

for prosodic modeling, so we did not try to relax the continuity constraints to correct for

those errors.

Because XWAVES makes both gross errors and voicing decision errors on voiced frames,

we divide the data into two subsets based on the outcome of XWAVES' V/UV decision, and

summarize the performance for each subset separately, as shown in Table 2-2. The table

gives both 20% GER and mean and standard deviation on absolute errors. The overall error
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Figure 2-5: (a) Waveform, (b) narrow-band spectrogram, (c) DLFT spectrogram with pitch

extracted using CPDA, (d) reference pitch track, and (e) pitch track extracted using XWAVES

for some telephone quality speech segments in Keele database.

rate counts a voicing error as equivalent to a 20% GER. All percentages are with reference

to the total number of voiced frames used in evaluation.

The performance of the CPDA is very robust to signal degradation, as indicated by the

similar performances under studio conditions (4.25% total GER) and telephone conditions

(4.34% total GER). This is achieved by using the band-limited frequency domain signal

representation and relying on the overall harmonic structure to derive pitch estimates. The

"missing fundamental" problem of telephone speech has virtually no impact because the

CPDA ignores frequency information under 150Hz. As expected, the CPDA is less accurate

for the "XWAVES:V" subset under studio quality, because it does not utilize all available

information, and favors a smooth contour. However, only 15% of the frames erroneously

classified by XWAVES as unvoiced contain gross errors in the CPDA track (1.01% vs. 6.63% of

all data). Furthermore, CPDA performs substantially better than XWAVES on both subsets

for telephone speech.

We have observed that CPDA performs better for female speech than for male speech.

When FO is low, the template-frame correlation suffers from missing low harmonics, and

the cross-frame correlation suffers from compact spacing of higher order harmonics. This
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XWAVES:V XWAVES:UV
Configuration GER Mean Std. V-+UV GER Overall

(%) (Hz) (Hz) (%) (%) (%)
Studio XWAVES 1.74 3.81 15.52 6.63 - 8.37

CPDA 3.24 4.61 15.58 1 - 1.01 4.25

Telephone XWAVES 2.56 6.12 25.10 20.84 - 23.41
CPDA 2.10 4.49 14.35 - 2.24 4.34

Table 2-2: Summary of performance on "clearly voiced" reference frames. Under each
signal condition, the voiced reference data are divided into two subsets according to whether
XWAVES determines them to be voiced, i.e., XWAVES:V and XWAVES:UV. All percentages
are with reference to the total number of "clearly voiced" frames.

can potentially be improved by using gender-dependent parameters, or by using multiple

frequency ranges for the DLFT.

2.5.2 Tone Classification Accuracy

We have demonstrated that CPDA has superior voiced pitch accuracy performance on

telephone speech compared with XWAVES. We now examine if the advantage is carried over

to prosodic modeling applications. In this regard, we compared CPDA with XWAVES on a

tone classification task using a telephone-quality, Mandarin digit corpus.

The digit corpus contains a training set of 3900 utterances, and a test set of 355 ut-

terances. The F0 contour for each utterance was first normalized by its average to reduce

cross-speaker differences. Tonal features are extracted from the syllable rhyme; they include

4 Legendre coefficients of the F0 contour, and the duration. Two sets of experiments are

conducted with and without an additional average probability of voicing feature. Refer to

Chapters 3 and 4 for detailed descriptions of Mandarin tones and tone classification.

Results and Analysis

As summarized in Table 2-3, the result using CPDA (d) for pitch tracking is significantly bet-

ter than that using XWAVES (a). We suspect that gaps in the pitch contours using XWAVES

may be blamed for the inferior classification performance. We tried two approaches to deal-

ing with the unvoiced frames when using XWAVES: (b) interpolate F0 from the surrounding
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Error Rate Error Rate
Configuration w/o PV (%) w/ PV (%)
(a) XWAVES 25.4 25.6
(b) XWAVES (intp'd) 24.1 23.6
(c) XWAVES (biased) 24.9 25.4

(d) CPDA 19.2 18.2

Table 2-3: Summary of tone classification error rate.

Digit Tonal Pinyin CPDA [XWAVES

0 ling2 31.9 51.0
1 yil 4.6 18.5
2 er4 18.5 24.4

3 sani 12.8 18.8
4 si4 24.4 27.9
5 wu3 38.0 39.4
6 liu4 10.9 16.0
7 qil 9.5 18.6
8 bal 6.5 15.3
9 jiu3 27.2 25.1

Table 2-4: Summary of tone classification error rate (in percentage) for each digit.

voiced frames, and (c) bias the V/UV decision threshold to greatly favor "voiced" decisions,

followed by interpolation. As seen in the table, neither of them are particularly successful.

Table 2-4 summarizes the tone classification error rate for each digit by the CPDA system

(d) and the best system of XWAVES (b). The largest performance gap between CPDA and

XWAVES occurs for the digit "yil", which is a front vowel with a low first formant in the

region of the second harmonic. XWAVES is likely to make pitch halving errors because of

the strong second harmonic, especially when the fundamental is mostly filtered out by the

telephone bandwidth. Digits 'qil" and "ling2", which also have front vowels, cause similar

problems for XWAVES. This explains the large degradation of performance of XWAVES on

digits with tone 1 and 2. The error rates on tone 3 for both PDAs are similar.

Figure 2-6 shows the bubble plots of the confusion matrices from the two classification

results, excluding the diagonal elements. It is observed that the confusion of tone 1 as tone
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Figure 2-6: Bubbles of classification errors for CPDA (left) and XWAVES (right).

3 or tone 4, the confusion of tone 2 as tone 3, and the confusion of tone 4 as tone 1 are

all much greater when using XWAVES. This is consistent with our previous analysis that

high pitch halving errors may be blamed. High pitch halving errors for "yil" (with tone 1)

cause the model for tone 1 to be blurred with tone 3 (when the whole segment is halved) or

tone 4 (when only the later portion of the segment is halved); and pitch halving errors for

"ling2" (with tone 2) cause the model for tone 2 to be blurred with tone 3. The only case

where the error rate for CPDA is higher is the tone 3 to tone 2 confusion. This is probably

because glottalization often occurs at the end of tone 3 due to the low falling pitch. The

pitch contour extracted by CPDA at those frames is likely to be random, which often results

in an overall rising slope. The "33 -* 23" tone sandhi rule might also contribute to the high

error rate.

2.6 Summary

In this chapter, we presented a robust pitch tracking algorithm for telephone speech and

prosodic modeling. The algorithm derives reliable estimations of pitch and the temporal

change of pitch from the entire harmonic structure. The estimations are obtained easily
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with a logarithmically sampled spectral representation, because signals with different FO

can be aligned by simple linear shifting. The correlation of the DLFT spectrum with

a carefully constructed harmonic template provides a robust estimation of the FO. The

correlation of two DLFT spectra from adjacent frames gives a very reliable estimation

of the FO change. The constraints for both log FO and A log FO are then combined in a

dynamic programming search to find a very smooth pitch track. The DP search is able to

track pitch continuously regardless of the voicing status, while a separate voicing decision

module computes a probability of voicing per frame. We demonstrated that the CPDA

is robust to signal degradation inherent in telephone speech. In fact, the overall GER for

studio and telephone speech is nearly the same (4.25% vs. 4.34%). We also demonstrated

that the CPDA has superior performance for both voiced pitch accuracy and Mandarin tone

classification accuracy compared with the optimized algorithm in XWAVES.
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Chapter 3

Analysis of Tonal Variations for

Mandarin Chinese

For a tonal language such as Chinese, fundamental frequency plays a critical role in char-

acterizing tone, which is an essential lexical feature. In this regard, we have focused our

initial study of prosody on the FO contours of Mandarin Chinese. We believe that, unlike

the obscure correlation of prosodic features with stress in English, the syllable level FO con-

tour in Mandarin clearly defines tone; and other prosodic aspects, such as intonation, can

be studied within the context of improving tone modeling.

There are four lexical tones in Mandarin Chinese, each defined by a canonical FO con-

tour pattern: high-level (tone 1), high-rising (tone 2), low-dipping (tone 3), and high-falling

(tone 4). The FO contour of a syllable spoken in isolation generally corresponds well with the

canonical pattern of its tone, although there exists variability due to vowel intrinsic pitch,

perturbation by the initial consonant, and the pitch range of a speaker, as well as other indi-

vidual differences. In addition to these variations, tones in continuous speech undergo both

phonological and phonetic modifications due to tone sandhi' and tone coarticulation, which

can cause the FO contours to significantly deviate from the canonical forms. Tones can also

be influenced by many other linguistic and paralinguistic commands, such as phrase group-

ing, sentence-level stress or focus, FO declination and downstep, sentence mode, emotion,

'Tone sandhi refers to the phenomenon that, in continuous speech, some lexical tones may change their
tonal category in tonal context.
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etc.

This chapter and the next chapter investigate the use of tone models to improve Man-

darin Chinese speech recognition performance (Wang and Seneff 1998; Wang and Seneff

2000a). In this chapter, we present empirical studies of a number of factors contributing

to Mandarin tone variations. The goal of this study is to gain some understanding of the

phonology and phonetics of Mandarin tone and intonation, and to provide some guidance

for improving statistical modeling of Mandarin tones as described in the next chapter. In

the following sections, we first give some background knowledge of Mandarin Chinese. Then

we present some related work on Mandarin tone and intonation studies. After that, we de-

scribe two Mandarin speech corpora used in our tone and speech recognition experiments:

a Mandarin digit corpus, which consists of read random digit strings and phone numbers;

and the YINHE corpus, which contains human-computer conversational speech. Finally,

we analyze a number of factors that contribute to the phonetic variations of lexical tones,

mainly using the Mandarin digit database. These factors include the overall FO declination

of a sentence, as well as the presence of a phrase boundary, tone coarticulation, and tone

sandhi. The relative contributions of these factors to tone recognition and speech recog-

nition performances, when incorporated into tone modeling, will be presented in the next

chapter.

3.1 Background on Mandarin Chinese

The Chinese language is ideographic and tonal-syllabic, in which each character represents

a syllable with a particular tone, and one or more characters form a "word." For example,

the Chinese word for "telephone" is made up of two characters: "$iN". It is pronounced

as "didn hud" (tonal pinyin2 transcription), with a falling tone for both the syllable "dian"

and the syllable "hua". The tonal pinyin can also be written as "dian4 hua4", with the

tone represented by a number. The syllable structure of Mandarin Chinese is relatively

2 "Pinyin" is a phonetic transcription system widely used to describe Mandarin Chinese syllables. The
nucleus vowel or diphthong is usually accented to signal the tone of a syllable, e.g., dd, dd, dd, dd. Alter-
natively, the tone can be marked by appending a numerical index at the end of the pinyin transcription,
i.e., dal, da2, da3, da4. The pronunciation of a syllable is completely determined with the tonal pinyin
representation.
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word
(q1_ : telephone)

character character

(q : electricity) (M : speech)
syllable tone syllable tone
(dian) (4) (hua) (4)

[initial] final [initial] final
(d) (ian) (h) (ua)

[medial] vowel [nasal] [medial] vowel [nasal]
(i) (a) (n) (u) (a) -

Figure 3-1: An example illustrating the hierarchical relationship of words, characters, syl-
lables, tones, syllable initials, syllable finals, and phonemes for Mandarin Chinese. Pinyin
symbols are used to illustrate the decomposition of syllables, which do not always corre-
spond to phonemic transcriptions. The optional components of the syllable structure are
indicated by square brackets.

simple. It is commonly described by the syllable initial and final (Wu and Lin 1989): the

syllable initial can be a single consonant or null; the syllable final always consists of a vowel

or diphthong, preceded by an optional medial glide and followed by an optional nasal ending

(/n/ or /ng/). The entire sound inventory contains a total of 22 initials (23 if the null initial

is included) and 38 finals in Mandarin Chinese. There are nearly 60,000 commonly used

characters in the language, mapping to about 410 base syllables, or 1200 tonal syllables if

distinctions in tone are considered. Disambiguation relies heavily on context, by identifying

multi-syllable words or phrases from the string of tonal syllables. Figure 3-1 illustrates

the hierarchical relationship of these elements with the Chinese word "tiN" (dian4 hua4,

telephone) 3 as an example.

There are four lexical tones and a neutral tone in Mandarin Chinese. As shown in

Figure 3-2, the average FO contours of the four lexical tones match well with the canonical

definition when spoken in isolation. The four lexical tones can be grouped according to

the FO values at the beginning or the end of the tone contour, as summarized in Table 3-1.

These groupings are useful for discussing the coarticulatory effects of tones. Unlike the

3We generally use tonal pinyin to represent Chinese words, with the English translations shown in paren-
theses. When the pinyin representation is insufficient, however, Chinese characters will be used, with both
the pinyin and the English translation shown in parentheses.
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Figure 3-2: Average pitch contours of four lexical tones when pronounced in isolation. The
time scale of each token is normalized by its duration. The data are selected from the
Mandarin digit database. Since the database consists of multi-digit strings, we consider a
digit to be "isolated" if it is bounded by silences or utterance boundaries on both sides.

High Low

Onset tone 1, tone 4 tone 2, tone 3
Offset tone 1, tone 2 tone 3, tone 4

Table 3-1: Groupings of lexical tones according to the onset and offset F values.

lexical tones, the neutral tone does not have a stable F0 contour pattern. It is usually

associated with reduced duration and energy, while the F0 contour depends largely on the

surrounding tones (Wu and Lin 1989).

3.2 Related Research

3.2.1 Tone Sandhi

Tone sandhi refers to the categorical change of a tone when spoken in the context of other

tones. The most well-known tone sandhi rule in Mandarin is the third tone sandhi rule,
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which states that a low tone is changed to a rising tone when followed by another low

tone (Chao 1968). It is supported by perceptual experiments that the changed tone is

indistinguishable from the true rising tone (Wang and Li 1967). The third tone sandhi be-

comes quite complex when there are more than two third tones in a row, and the expression

of the rule is found to depend on the prosodic structure rather than on the syntax (Shih

1986). For example, the sentence "lao3 i3 mai3 hao3 jiu3" (old Li buys good wine) can be

turned into "lao2 i2 mai3 hao2 jiu3", giving a perceived phrase boundary between "mai3"

(buy) and "hao3" (good). However, the surface realization for this utterance is not unique.

As discussed in (Shattuck-Hufnagel and Turk 1996), Cheng found that the sentence was

more likely to be read as "lao2 i3 mai3 hao2 jiu3" when spoken slowly.

Another sandhi rule concerning tone 2 is somewhat debatable, which states that a rising

tone changes into a high tone when preceded by a high or rising tone and followed by any

other tones (Chao 1968). In (Shih and Sproat 1992), however, it has been found that a

rising tone surrounded by high tones still has different FO contours from the high tone. A

perceptual study reported in (Xu 1994) further showed that most of the rising tones after a

high tone were still perceived as the rising tone, even though the FO contours were flattened.

These observations seem to suggest that the rising tone variation after high offset tones is

due to tone coarticulation, rather than a phonological change of the intended tone category.

Some tone sandhi changes depend not only on the surrounding tones, but also on the

lexical properties of the affected syllable. For example, the tonal variations for "21" (bu4,

not) do not happen for its homophones such as "p" (bu4, part) or "P" (bu4, step).

When "QF" (bu4, not) is followed by a falling tone, it is changed to a rising tone; for its

homophones, the falling tone remains unchanged (page 78 in (Modern Chinese Dictionary

1978)). Similarly, the tonal variations for "-" (yil, one) do not happen for its homophones

such as "N" (yil, cure). The variation rules are quite complex: the high tone remains

unchanged when "-'" (yil, one) is used as a word or as the last syllable of a word; otherwise,

it is changed to a rising tone if the following syllable in the word has a falling tone, and a

falling tone if the following syllable has a high, rising, or low tone (page 1337 in (Modern

Chinese Dictionary 1978)).

In speech recognition, some tone sandhi rules, such as those regarding "-" (yil, one)
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and ";f" (bu4, not), can be encoded directly in the lexicon by specifying the correct

surface form in the word (if all the necessary conditions can be determined), or by allowing

all possible forms as alternative pronunciations. The third tone sandhi rule is more difficult

to incorporate, because it is not specific to a particular word, and the surface realization can

not be uniquely determined from text analysis. Our solution is to use context dependent

models to account for the behavior of tone 3 before another tone 3. This approach seems

to be capable of capturing the majority case, i.e., the expression of third tone sandhi in the

absence of a phrase boundary, as indicated by our analysis in Section 3.4.4.

3.2.2 Tone Coarticulation

Besides the phonological sandhi changes, tones in continuous speech are also influenced by

the neighboring tones due to articulatory constraints.

Shen (1990) analyzed all possible combinations of Mandarin tones on "ba ba ba" tri-

syllables embedded in a carrier sentence and found that both anticipatory and carry-over ef-

fects existed, and they were both assimilatory in nature. The coarticulatory effects changed

not only the onset and offset F0 values, but also the overall tone heights.

However, Xu (1997) studied F0 contours of Mandarin bi-syllables "ma ma" embedded in

a number of carrier sentences, and arrived at somewhat different conclusions. He found that

anticipatory and carry-over effects differed both in magnitude and in nature: the carry-over

effects were larger in magnitude and mostly assimilatory in nature, e.g., the onset F value

of a tone was assimilated to the offset value of a previous tone; the anticipatory effects were

relatively small and mostly dissimilatory in nature, e.g., a low onset value of a tone raised

the maximum F value of a preceding tone.

It is possible that the discrepancies of these two studies arose from the relatively small

databases used in the studies. In particular, (Shen 1990) used a total of 400 tri-syllables

spoken by two speakers, with 4 tokens per tri-tone combination. We will conduct an em-

pirical study of tone coarticulation using the Mandarin digit corpus, which contains much

more data in terms of both the amount of speech and the number of speakers. The results

might be slightly influenced by factors other than tone coarticulation, because of the less

controlled linguistic and prosodic conditions. However, this is a more realistic scenario for
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tone and speech recognition systems.

3.2.3 Tone and Intonation

The interaction of tone and intonation is still not very well understood. A study was

conducted on a small set of read utterances to investigate if intonation can change the tone

contours to beyond recognition (Shen 1989). It was found that both the shape and the

scale of a given tone were perturbed by intonation. For example, interrogative intonation

raises the tone value of the sentence-final syllable as well as the overall pitch level; tone 1

rises slightly in sentence initial position and falls slightly in sentence-final position under

statement intonation; etc. However, it was concluded that the basic tone shape is preserved,

e.g., the falling tone did not become falling-rising under question intonation.

A few studies have been conducted on the interaction between tone and sentence fo-

cus (Girding 1987; Xu 1999). It has been found that the lexical tone of a syllable is the

most important factor for determining the local FO contour, while the focus extensively

modulates the global shape of the FO curve. The effects of focus are asymmetric: the FO

range of words at a non-final focus is substantially enlarged, especially the high value; the

FO range after the focus is both lowered and reduced; and the FO range before the focus

remains similar to the case with no focus.

Downstep and declination are important aspects of intonation. Downstep refers to the

phenomenon that a high (H) pitch target has lower Fo height after a low (L) pitch target;

while declination refers to the tendency for FO to gradually decline over the course of an

utterance. A broad term "downtrend" is used to describe the combined effects of the two. It

is argued in (Pierrehumbert 1980; Liberman and Pierrehumbert 1984) that the declination

in English is the outcome of the downstep of subsequent H pitch accents throughout the

utterance. However, a study of Mandarin tone 1 syllable sequences (Shih 1997) has found

that Mandarin has a strong declination effect with or without any sentence focus. The FO

decline can be modeled as an exponential decay, and the slopes of the decline are influenced

by sentence focus as well as by the length of the sentence.

As indicated in (Shen 1989), tones at sentence initial and final positions seem to behave

differently from at other positions. We will conduct a systematic study of the influence of
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phrase boundaries (including the beginning and the end of an utterance) on the four lexical

tones using the digit corpus. We will also try to characterize the overall FO downtrend

on both the digit and the YINHE corpora. Since we can not restrict the tone sequence

to be a particular pattern in "real" data, we designed a simple method to "remove" the

local FO changes caused by tones, thus, revealing the global "intonational" contour. A few

interesting observations are made from the data, including the relationship of the declination

with phrase grouping, sentence length, sentence mode, etc. However, the effects of focus on

tones will not be addressed in this thesis. This is because automatic detection of focus is a

challenging task by itself, and its detection is likely to rely on tone information. This is a

potential direction for future work as discussed in Chapter 8.

3.2.4 Domain of Tone

How tone contours align with other linguistic units in speech is an important issue for tone

modeling. Specifically, which part of the FO contour in the syllable carries tone information?

Howie (1974) argued that tones in Mandarin were carried only by the syllable rhyme

(vowel and nasal), while the portion of the FO contour corresponding to an initial voiced

consonant or glide is merely an adjustment for the voicing of initial consonants. His ar-

gument was based on the observation that there was much FO perturbation in the early

portion of a syllable. Xu confirmed in (Xu 1997) that the nasal part of a syllable carried

tone information: the tone patterns remained consistent across syllables with and without

a final nasal, and the movement of FO such as falling or rising continues all the way to the

end of the syllable. However, he observed in (Xu 1998) that, in coarticulated tones, the FO

contour of syllable "ma" immediately moved toward the first target of the next tone at the

syllable onset instead of the rhyme. He thus argued that the syllable was the appropriate

domain for tone alignment; and the large perturbation seen at the early portion of the FO

contour of a syllable was the result of the carry-over effects from the preceding tone.

From a modeling point of view, it seems more advantageous to extract tone features from

the FO contour of the syllable rhyme (vowel and nasal), because the large perturbation at

the early portion of a syllable is less relevant to the current tone, and is likely to introduce

"noise" that is dependent on the syllable structure. The syllable final is similar to the

64



syllable rhyme except for an optional medial (refer to Figure 3-1 for an illustration of

the syllable structure of Mandarin Chinese), i.e., some syllable finals have a medial glide

preceding the syllable rhyme. We have therefore decided to use the FO contour from the

syllable final for tone modeling, especially since our speech recognition system uses syllable

initials and finals as acoustic modeling units for Mandarin Chinese. Furthermore, the medial

glide in null-initial syllables (e.g., "wai") is treated as a syllable initial in our Mandarin

speech recognition system, so that the discrepancy between the syllable final and the syllable

rhyme are limited to syllables with an initial and a medial (such as "huai"), in which case

the presence of a syllable initial should have reduced the carry-over tone coarticulation

effects.

3.3 Mandarin Chinese Corpora

Two Mandarin corpora of different complexity are used in our experiments: the Mandarin

digit database, and the YINHE conversational speech database. We feel that continuous

Mandarin digits form an excellent domain in which to carry out our initial study of Mandarin

tone and intonation. First, digits cover all four lexical tones in Mandarin; thus, continuous

digit strings provide an adequate domain in which to study tones and their contextual

effects. Second, digit strings are usually spoken in phrase groups, especially long strings

and phone numbers; thus, we have sufficient data to study the dependency of tone expression

on the phrase structure. Third, those prosodic attributes that are not investigated in our

study have very weak expression in digit strings. For example, each digit is a single syllable

word, so that the variations due to lexical stress pattern differences should be minimal. We

also observe that each digit string is likely to be spoken with a relatively plain intonation,

so that the influence of focus should be small. The YINHE corpus is a linguistically rich

database which contains spontaneous speech in addition to read utterances. We will use

it to compare with the digit domain on tone and speech recognition performance, and to

examine if the tone modeling approach we undertake is adequate for conversational speech.
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DATA SET TRAIN TEST

# Utterances 3923 355

# Speakers 71 6

Table 3-2: Summary of the Mandarin digit corpus.

3.3.1 Mandarin Digit Corpus

The Mandarin digit corpus 4 was collected automatically by recording phone calls from native

Chinese speakers, and the waveform was sampled at 8KHz. A different list of 30 random

phone numbers5 (each containing 9 digits) and 30 random digit strings (each containing

5-10 digits) was given to each participant, and the subjects were instructed to read from

the list in a naturally speaking way. The phone numbers are presented in the conventional

phone number format, e.g., "(12) 345 - 6789", and the subjects are likely to follow the

grouping when prompted to read each. The random digit strings are printed without any

spacing, e.g., "12345678", so the phrase grouping for each string is up to the choice of each

subject. Table 3-2 summarizes the number of utterances and speakers for the training and

testing data sets.

3.3.2 YINHE Corpus

The YINHE database is associated with the YINHE system (Wang et al. 1997; Wang 1997),

a Mandarin counterpart of the GALAXY conversational system (Goddeau et al. 1994).

The user communicates with the computer in Mandarin Chinese, and the system is able

to provide the user with information from three knowledge domains: the city guide do-

main answers questions about a large set of known establishments in the Boston area; the

flight domain retrieves flight information worldwide from the Sabre reservations system; the

weather domain provides world-wide weather information.

The YINHE corpus contains both read and spontaneous speech collected from native

speakers of Mandarin Chinese. The spontaneous utterances were collected using a simu-

4The corpus is provided by SpeechWorks International, Inc. in Boston.
5 The random phone numbers were generated to imitate the phone numbers in Taiwan, each of which

consists of a 2-digit area code followed by a 7-digit number.
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SET TRAIN TEST1 TEST2

Utterance Type Spon. and read Spon. Read

# Utterances 4,953 194 209

# Speakers 93 6 6
Avg. # Syllables per Utterance 9.9 9.1 10.5

Table 3-3: Summary of the YINHE corpus.

lated environment based on the existing English GALAXY system. In addition, a significant

amount of read speech data was collected through a Web data collection facility (Hurley

et al. 1996). For each subject, 50 sentences within the YINHE domain were displayed in

Chinese characters through the Web page. Both the spontaneous and read utterances were

recorded through the telephone channel and digitized at an 8KHz sampling rate. The

speech data were transcribed using tonal pinyin to simplify the input task. Because of the

English based knowledge domains, a significant portion of the utterances contain English

words such as city names and proper nouns, which are transcribed using English. Manual

time-aligned phonetic transcriptions were not provided due to the tremendous effort re-

quired; instead, they were derived using a forced alignment 6 procedure during the training

process.

Utterances containing English words or partial words are excluded from training or

testing tone models. An exception is the English word "MIT", because it appears as the

only English word in more than 600 utterances. Lexical tones are not defined for the word

"MIT", so it is simply ignored by tone model training and testing. Speech data from

6 speakers are set aside to form a test set. Since we have both spontaneous and read

utterances from these speakers, the data are further divided into a spontaneous test set and

a read test set. The remaining utterances are used for training. A summary of the corpus

is shown in Table 3-3.

6Forced alignment refers to the procedure of obtaining time-aligned phonetic transcriptions by running
the recognizer in "forced" mode, in which the correct words are provided to the recognizer and the recognition
system finds the corresponding sequence of phones and their time alignments given a lexicon and acoustic
models.
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3.4 Analysis of Mandarin Tonal Variations

As described in the beginning of this chapter, the phonetics of lexical tones can be influenced

by many factors, which lead to large variances in statistical tone models. In this section, we

conduct a number of empirical studies of our Mandarin data, to find regularities that can be

utilized to reduce the variances of tone models and improve tone recognition performance. In

the following, we examine the impact of FO downtrend, phrase boundary, tone coarticulation,

and tone sandhi on the acoustic expression of Mandarin lexical tones. The FO contour for

each utterance is first normalized by the average FO of the utterance as a preprocessing

step, to account for speaker pitch range differences.

3.4.1 FO Downtrend

The effects of FO downtrend on tone are clearly demonstrated by the differences in the

average tonal contour of each lexical tone at different syllable positions of the read phone

numbers, as shown in Figure 3-3. For example, the top left plot in the figure shows the

average tone 1 contour at each of the nine positions in the phone numbers. As shown in the

plot, not only does tone 1 have an overall decreasing FO height throughout the utterance,

but also the FO within each tone 1 contour falls slightly at most syllable positions. A closer

examination of the data also reveals some details corresponding to the phrase structure

of the phone numbers ("xx-xxx-xxxx"): the tone contour seems to rise slightly before a

phrase boundary (or the utterance end); and there is a jump of FO level after each phrase

boundary. However, the local reset of FO is relatively small compared to the declination,

and the overall change of the FO level is predominantly decreasing. Similar trends can

be observed for the other lexical tones as well, although the FO contour of each lexical

tone is perturbed differently around phrase or sentence boundaries. It is clear that it is

beneficial to compensate for the FO declination, because the FO level of tone 1 at the end

of an utterance becomes similar to that of tone 3 at the utterance beginning, blurring their

distinctions. We will focus on characterizing the global declination in this section; while the

local modifications of tone contours around phrase boundaries will be discussed in the next

section.
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es at different syllable positions in the

Because both tone and intonation are manifested as F0 movements, it is difficult to

separate the two aspects in the physical F signal. Although Figure 3-3 offers a clear way

to demonstrate the declination effects on tone, it is hard to quantify the declination factor

due to the different tone contour shapes, and the approach can not be readily generalized to

utterances with a different number of syllables. We want to design a method which removes

the tonal contributions from the F0 contour, thus, revealing the underlying "intonation"

contour. Assuming that a set of utterances have similar F0 declination in the intonation

contour, we can then view the pitch contours of this set of data as a "constant" declination

component with additive "random" perturbations caused by tones. Therefore, we can use

an averaging approach to smooth out the "random" variations due to tones and obtain the
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Pitch contours of random digit strings
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Figure 3-4: Pitch contours of random digit strings and phone numbers. The starred line
represents the mean pitch contour, with the upper and lower circled lines indicating one
standard deviation. The dashed line is the linear regression line for the average FO contour.
The linear regression coefficients are also shown in the figures.

average as the underlying intonation contour.

We tested our method by plotting the FO contours of all digit data, grouped by random

digit strings and phone numbers, in Figure 3-4. The time scale of each utterance is nor-

malized by the utterance duration, so that utterances of different lengths can be aligned

in time. It is obvious from the plot that there is a steady downdrift of the mean pitch

contour, although the slope 7 for the downdrift trend is slightly different for random digit

strings and phone numbers. The FO contour plot of phone numbers also reveals a more

detailed phrase structure, which can be easily inferred from Figure 3-3. We believe that a

random digit string also has similar behavior in its FO contour at phrase boundaries. The

absence of such evidence from the plot is due to the "randomized" positions of the phrase

boundaries in the time-normalized FO contour; thus, the "averaging" also smoothed out the

phrase boundaries.

The overall FO declination of an utterance is likely to be dependent on the phrase struc-

ture. To examine carefully the relationship between the downdrift slope and the utterance

duration or phrase structure, we grouped the random digit strings according to the number

7 The slope here is actually the total declination in FO, because the time scale of each utterance is already
normalized by the utterance duration.
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Slope vs. number of syllables and phrases
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Figure 3-5: Downdrift slope of random digit strings grouped by the number of syllables and
phrases.

of syllables and phrases, and obtained average FO slopes for each subset, as plotted in Fig-

ure 3-5. The phrase boundaries for random digits are detected automatically, by locating

places where there is significant silence between two syllables. We realize that this is a very

crude scheme, because those phrase boundaries not marked by a pause will not be labeled

correctly. Automatic phrase boundary detection is another challenging task for Chinese,

which will be discussed in more detail in Chapter 8. We were not able to obtain the slopes

for utterances with 3 or more phrases, because of sparse data problems. From the plot

we can see that the amount of total declination for two-phrase utterances is consistently

smaller than that of their one-phrase counterparts, confirming that the FO base is raised

after a pause. The slopes for digit strings with five to seven syllables seem to suggest that

the amount of overall declination is larger for longer utterances (with the same number of

phrases). The slopes for utterances with eight to ten digits do not form a clear trend. We

think that this is caused by inaccuracies in the phrase boundary detection method, i.e., the

long digit strings are likely to contain undetected phrase boundaries.

Figure 3-6 shows the average tone contour for each lexical tone at different syllable

positions after a uniform FO declination factor is removed from the FO contour of each

utterance. As shown in the figure, the differences among position-dependent tone contours

due to the FO declination are greatly reduced, with a noticeable over-compensation for

tone 3. This seems to suggest that the declination factor is smaller for tone 3 than for

other lexical tones. As expected, the FO declination within a phrase group is not corrected.
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Figure 3-6: Average FO contours of four lexical tones at different positions in the read
phone numbers (xx-xxx-xxxx) after a linear declination factor has been removed from the
FO contour of each utterance.

However, the differences are relatively small compared to the inherent distinctions among

tones. The behavior of tone contours at phrase initial and final positions will be addressed

in the next section.

We are interested to know if FO downdrift is also affected by sentence mode. We exam-

ined that by comparing the mean FO contours for different types of utterances in the YINHE

domain. The utterances were labelled manually using four categories, including declara-

tive, command, wh-question, and particle-question, which is similar to the yes-no question

in English. The average number of syllables for each set of utterances is shown in Table 3-4.

As indicated in Figure 3-7, there are some differences in the FO slope, with wh-questions
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Utterance Type Average # Syllables

Declarative 9.5
Command 3.1
Wh-question 11.2

Particle-question 11.1

Table 3-4: Average number of syllables per utterance for each set of sentences in the YINHE

domain.

having the sharpest drop and commands having the least. The small slope in the "com-

mand" utterances might be an artifact due to the biased tone content, i.e., a large portion

of the data corresponds to "fan3 hui2" (go back), causing the FO contour to rise at the

end; however, the relatively short duration of this type of utterance might also play a role.

The data suggest that the particle-questions have smaller declination than wh-questions on

average. This is consistent with the observation that a speaker tends to raise the FO towards

the end of a yes-no question, which will result in a decrease in the overall FO declination.

The declarative sentences also have smaller downdrift than the wh-questions. However, it is

unclear if this is simply because the declarative sentences are shorter than the wh-questions

on average.

3.4.2 Phrase Boundary

As indicated in Figure 3-3, the lexical tones behave differently around phrase boundaries.

For example, tone 4 has much larger falling slopes at phrase-final positions, but not at

sentence finals; tone 2 at phrase-initial positions has a rising shape instead of the fall-

rise shape at other positions, and the FO excursion is also larger than in the other cases,

etc. Figure 3-8 compares the average FO contours of four lexical tones at different phrase

positions. The averages are computed using both random digits and phone numbers, and a

uniform declination factor is removed from each utterance in addition to the normalization

by the average Fo. The following observations can be made from the plots:

9 The shape of tone 1 remains fairly flat at all phrase positions, except for a minor

rising at phrase and utterance final positions. The FO level is the highest for phrase-
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Figure 3-7: Pitch contours of YINHE utterances grouped by utterance type. The starred
line represents the mean pitch contour, with the upper and lower circled lines for standard
deviation. The linear regression coefficients are also shown in the figures.

initial syllables, lowest for phrase-final and sentence-final syllables, and intermediate

for phrase-internal syllables. This is due to the sentence-based FO declination removal

instead of a phrase-based removal.

" Tone 2 has an overall rising shape; however, there is a small falling portion preceding a

larger rise at non-phrase-initial positions. The FO maximum is the largest for phrase-

initial syllables, and the FO minimum is the smallest at internal phrase-final positions.

" Tone 3 has a low falling shape, with a low FO onset at phrase-initial positions, and

higher FO onsets at other positions. The falling slope is much larger at the internal

phrase-final positions.
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Figure 3-8: Average F0 contours of four lexical tones at different phrase positions.

* Tone 4 has a high falling shape, with a much larger falling slope at internal phrase

boundaries. The F0 level differences are similar to those of tone 1.

It is surprising that there exist relatively large discrepancies between the tonal patterns

of tone 2, tone 3 and tone 4 before internal phrase boundaries and those at the end of the

utterances. This seems to suggest that the internal phrase boundaries differ somewhat from

the end-of-utterance boundaries. One possible reason is that the sentence final does not

need to be prosodically marked as strongly as the internal boundaries. Another possible

reason is that F0 at the end of an utterance is usually very low due to the overall declination,

so it is not likely to go down much further. However, we also can not rule out the possibility

that the results might be an artifact caused by pitch tracking errors at the utterance end
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due to glottalization, which frequently resulted in a flat pitch contour with doubled pitch

value. Regardless of the reasons, it seems more advantageous, from a modeling point of

view, to treat the end of utterances and the internal phrase boundaries separately.

3.4.3 Tone Coarticulation

Tone coarticulation effects can be demonstrated by comparing the average Fo contour of

each lexical tone under different tone contexts. Since it is difficult to examine the tone

contours in all 16 different combinations of left and right contexts at the same time, we

performed the studies in two steps. First we study the influences of the left context, or the

carry-over effects. Then we study the influences of the right context, or the anticipatory

effects.

Carry-over effects

Figure 3-9 shows the average FO contour of each lexical tone in different left tone contexts for

the Mandarin digit data. The influences of right contexts are washed out by the averaging.

It is evident in the plots that carry-over effects are the largest at the onset of the tonal

contours and taper off towards the end of the tone, so the FO contours of each tone in

different left contexts approach similar target values (on average) at the end. Specifically,

we can observe that all tones have a higher FO onset after tone 1 and tone 2 (high offset

tones) than after tone 3 and tone 4 (low offset tones), and the FO onset is the lowest after

tone 3. The seeming exception of tone 3 after tone 3 can be explained by the "33 -+ 23" tone

sandhi rule; the left context in this case is effectively tone 2, a high offset tone. The changes

to the average tone contour shapes in different left contexts can be adequately explained by

the interplay between the FO onset change and the inherent tone patterns. In particular,

tone 2 falls after high offset tones to reach a relatively low Fo value before rising, and tone

4 rises after tone 3 to reach a relatively high FO value before falling. In the other cases, the

onset change does not significantly conflict with the canonical tone pattern; the difference

in tone onset diminishes and the FO contour approaches the inherent tone pattern. From

the data we conclude that the carry-over effects mainly change the FO onset of the following

tone, and the change is assimilatory in nature. That is, the onset of the current tone is
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Figure 3-9: Average FO contours of four lexical tones in different left tone contexts.

assimilated by the offset of the previous tone. This is consistent with the findings in (Xu

1997).

Anticipatory effects

Figure 3-10 shows the average FO contour of each lexical tone in different right tone contexts

for the Mandarin digit data. The influences of left contexts are washed out by the averaging.

Unlike the carry-over effects, it seems that the anticipatory effects are not just limited to

the tone offset. For example, the FO of tone 1 is on average higher before tone 3 than before

tone 1 for the entire tone contour. In general, we find that the average contour shape for

each lexical tone does not change much in different right contexts, with the exception of

tone 3 before tone 3, which is due to the third tone sandhi rule. The anticipatory effects
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Figure 3-10: Average F0 contours of four lexical tones in different right tone contexts.

seem to change the overall F level. For example, similar to tone 1, tone 2 and tone 4 also

have the highest F level before tone 3 and the lowest F level before tone 1. In addition,

the slope of tone 4 seems to differ slightly depending on whether the following tone is tone

2 or tone 4. The falling slope of tone 4 is larger when followed by tone 2 and smaller when

followed by tone 4, suggesting assimilation of the F offset by the onset of the following

tone. Tone 3 appears to be only slightly affected by the right context, except for the sandhi

change. From the data, we are inclined to conclude that the anticipatory effects are mostly

dissimilatory, and the entire tone contour is affected. With the exception of tone 3, all tones

have higher F0 level before tone 3, and lower F before tone 1. However, there also seem to

be some assimilatory effects, as indicated by the plot of tone 4. Overall, the anticipatory

effects are smaller compared to the carry-over effects, as indicated by the small differences
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and tone 3 in different left tone contexts. The

of average tone contours in various right contexts. These findings are generally consistent

with those in (Xu 1997).

3.4.4 Tone Sandhi

As indicated in Figure 3-10, tone 3 before tone 3 has an average rising slope, similar to that

of tone 2. We compare the sandhi-changed tone 3 with tone 2 more carefully, fixing the right

context to be tone 3 while varying the left tone context, as shown in Figure 3-11. We can

see that, aside from some FO level differences, tone 3 before tone 3 has very similar average

contour shapes as tone 2 before tone 3, except when the left context is tone 3. This again

can be explained by the third tone sandhi rule: most "333" tone sequences are changed to

"223", so that tone 3 between two third tones should be similar to tone 2 between tone 2

and tone 3, which is the case as shown in the figure. In fact, both "333" and "233" are

realized as "223" according to tone sandhi, which is supported by the figure. It seems that,

although we did not try to infer the surface tone realization from tone sandhi rules, the

context dependent models are able to capture that in the model statistics.

We are surprised by the consistent FO level differences between tone 2 and the sandhi-

changed tone 3. As shown in the figure, tone 2 before tone 3 rises to a higher FO target

than tone 3 before tone 3 in all left contexts. We suspect that this might be an artifact due
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to differences in vowel intrinsic pitch or perturbation by the initial consonant; the YINHE

data did not exhibit such a clear difference.

3.5 Summary

In this chapter, we presented empirical studies of Mandarin tone and intonation, focusing on

analyzing sources of tonal variations. First we demonstrated the FO downtrend for Mandarin

Chinese using both position-dependent tone statistics and the average FO contour of a set

of aligned utterances. The data show that FO decreases consistently within a phrase; while

there is a jump of FO level after each phrase boundary. However, the FO hike is relatively

small compared to the declination, and the overall change of FO level is predominantly

decreasing. We then characterized the effects of phrase boundary, tone coarticulation, and

tone sandhi using a similar method, i.e., by comparing average tone contours in different

immediate contexts. The most obvious effects of a phrase boundary seem to be on the tone

excursion range. Tone 2, tone 3 and tone 4 at internal phrase-final positions reach a lower

FO target than at other positions; tone 2 at phrase-initial positions also seems to rise to a

higher FO target than at other positions. Tone coarticulation is manifested as both carry-

over and anticipatory effects, with the carry-over effects appearing to be more significant.

The carry-over effects mainly change the FO onset of the following tone, and the change is

assimilatory in nature. The anticipatory effects are more complex, with both assimilatory

and dissimilatory effects present in the data. The sandhi-changed tone 3 is similar to tone

2. It seems that a context dependent model using both left and right tone context should

be able to capture the tone sandhi variation. In the next chapter, we try to account for

these factors in tone modeling to reduce the variances of statistical tone models with the

goal of improving tone and speech recognition performances.
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Chapter 4

Mandarin Chinese Recognition

Assisted with Tone Modeling

This chapter addresses the issues of applying tone modeling to improve Mandarin speech

recognition performance (Wang and Seneff 1998; Wang and Seneff 2000a). This involves

building statistical models to classify the lexical tones, and developing mechanisms in the

recognizer to integrate these models into speech recognition.

We have explored two approaches to incorporating tone models into speech recognition.

In the first approach, top N hypotheses are first obtained from a baseline recognizer using

acoustic models only; tone models are then applied to resort the N-best outputs. The

delay due to the resorting is fairly small, because there is minimal computation in the post-

processing stage. The advantage of this approach is that context-dependent tone models

can be applied based on the information available in the N-best list. Nevertheless, the

effectiveness of this approach is dependent on the quality of the N-best list; i.e., the correct

hypothesis can not be recovered if it is not in the N-best list. In the second approach, both

the tone scores and the other acoustic scores are utilized in the first-pass Viterbi search. The

motivation for this approach is that the tone models are utilized to explore the entire search

space, so that the correct hypothesis has a better chance to benefit from the tone models.

However, it is generally difficult and computationally expensive to incorporate more refined

tone models into the first-pass search. A third possibility is to apply simple tone models in
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the first-pass recognition process, to obtain a higher-quality N-best list than that obtained

without tone models. More refined models can then be applied to the N-best list to achieve

further improvements. However, we have found that the N-best list obtained with tone

models is similar in quality to that of the baseline system, so the combined approach would

have no advantage over the pure post-processing approach.

In the following sections, we first look at some related work on tone modeling and

the incorporation of tone models into Mandarin Chinese speech recognition. Next we give

some background information for the experiments presented in this chapter. This includes

descriptions of the SUMMIT speech recognition system, and the baseline recognizers for the

Mandarin digit domain and the YINHE domain configured from SUMMIT. We then describe

the basic tone modeling framework, and compare the tone classification performance of

various refined tone models. After that, we describe the implementation of two mechanisms

in the SUMMIT system for incorporating tone models into speech recognition. We will

present a suite of speech recognition experiments, comparing the contributions of using

various tone models and different tone model integration methods to speech recognition

performance. We found that the addition of tone models significantly improved speech

recognition performance for both the digit domain and the YINHE domain. However, using

more refined tone models only yielded small additional gains in speech recognition, even

though the tone classification accuracies were improved significantly with the more refined

models.

4.1 Related Research

Substantial work has been done on Mandarin Chinese tone recognition. Tone recognition

is generally not considered as a difficult task, because there are only five tones (four lexical

tones plus a neutral tone) in the language. Nevertheless, the performance of tone recognition

systems is highly dependent on the test conditions. Very high tone recognition accuracy

has been achieved for isolated syllables in both speaker-dependent and speaker-independent

modes (Yang et al. 1988; Liu et al. 1989). An interesting study was conducted in (Liu et al.

1989) which demonstrated the effects of tone coarticulation on tone recognition accuracy.
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The best average recognition rate for isolated mono-syllabic words was 97.9%. However,

the performance on poly-syllabic words degraded, even with context-dependent tone model

pairs. The best average recognition rate was 93.8% for the first syllable of di-syllabic words,

92.0% for the second syllable of di-syllabic words, and only 85.5% for the middle syllable

of tri-syllabic words. In general, it is difficult to achieve high tone recognition accuracy

for continuous Mandarin speech due to intonation and coarticulation interferences (Wang

and Lee 1994; Wang et al. 1994; Wang and Cheng 1994; Chen and Wang 1995; Cao et al.

2000), and experiments on spontaneous telephone speech have rarely been reported in the

literature.

Most tone recognition systems adopt a hidden Markov model (HMM) framework (Wang

and Lee 1994; Wang et al. 1994; Cao et al. 2000; Huang and Seide 2000) or a neural network

(NN) framework (Chang et al. 1990; Wang and Cheng 1994; Chen and Wang 1995). There

are also a few systems that are based on other statistical or non-statistical classification

methods (Wang et al. 1990; Wu et al. 1991). Tone features are generally obtained from FO

and energy measurements. In the HMM approach, the tone feature vector is constructed at

a fixed frame rate and usually consists of FO and short-time energy plus their derivatives.

In the segment-based approaches, the tone feature vector is extracted from the entire tone

segment. Parameters for describing the FO contour shape can be obtained by fitting the

contour with a certain type of function (Wu et al. 1991), by projecting it onto some basis

functions (Chen and Wang 1990), or by piece-wise linear fitting (Chang et al. 1990).

A few tone recognition systems tried to utilize intonation or context information to

improve tone recognition performance. In (Wang et al. 1990), phrase components for both

the FO declination and the pitch accent effects were estimated for Chinese four-syllable

idioms based on Fujisaki's model (Fujisaki 1988). In (Wang et al. 1994), a two level HMM

structure was used to compensate for the sentence FO declination effect, with a sentence

HMM on the upper layer and state-dependent HMMs for tones on the lower layer. In (Wang

and Cheng 1994), a prosodic model was developed based on a simple recurrent neural

network (SRNN). The SRNN can learn to represent the prosodic state at each syllable of an

utterance using its hidden nodes. The outputs of the hidden nodes then serve as additional

features to a multi-layer perceptron (MLP) based tone recognizer. The recognition rate
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was improved from 91.38% to 93.10% with the prosodic model under speaker-dependent

mode. In (Cao et al. 2000), a decision tree clustering method was used to derive context-

dependent tone model classes with considerations for the tone context, the syllable position

in the word, and the consonant/vowel type of the syllable. The performance was improved

from 60.9% to 70.1% for five tone classification on a dictation database.

Early work on Mandarin speech recognition has been restricted to isolated-syllable mode,

in which the utterances are either single syllables or complete sentences spoken with a pause

between syllables (Gao et al. 1991; Lee et al. 1993; Lin et al. 1996). In more recent years,

Chinese speech recognition systems for isolated words (Hon et al. 1994; Gao et al. 1995)

or continuous phrases and sentences (Lyu et al. 1995; Wang et al. 1995; Ho et al. 1995;

Hsieh et al. 1996; Huang and Seide 2000; Shu et al. 2000) have also emerged. Align-

ing tone and syllable scores for isolated syllables is not an issue, because the mapping is

one to one. However, it is generally necessary to synchronize acoustic and tone scores in

multi-syllable word and continuous sentence recognition, except in systems which ignore

tone information while relying only on lexical processing and language models to resolve

homophone ambiguities (Hsieh et al. 1996; Wang et al. 1997; Shu et al. 2000). A straight-

forward method is to merge acoustic and tone features to form combined tone-acoustic

models. This approach is adopted by (Huang and Seide 2000), in which the use of tone

information greatly reduced the Chinese character error rates on a number of continuous

Mandarin speech corpora, including a telephone speech database. However, this approach

requires a large amount of training data, because syllable finals with different tones can not

be shared in training, and vice versa for tones. In (Lyu et al. 1995), tone classifications

are performed only on mono-syllabic and bi-syllabic words, while words containing more

than two syllables are determined by base syllables only. In (Wang et al. 1995), HMMs

for Mandarin sub-syllabic acoustic models and context-dependent tones are applied sepa-

rately, and a concatenated syllable matching (CSM) algorithm is developed to match the

base syllable and tone hypotheses. In (Ho et al. 1995), acoustic models are used in the

forward search and right-context-dependent tone models are applied during the backward

stack decoding. In (Cao et al. 2000), a special search algorithm is developed to integrate

acoustic and tone scores. In this way, acoustic and tone features are used jointly to find an
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optimal solution in the entire search space, while the models are trained separately to take

advantage of data sharing. We will implement a similar approach in our segment-based

speech recognition system, and compare that with a post-processing approach where tone

models are only applied on recognizer N-best outputs.

Our domain-dependent Mandarin recognizers are built on the SUMMIT segment-based

speech recognition system (Glass et al. 1996), developed at the Spoken Language Sys-

tems group of the MIT Laboratory for Computer Science. To be compatible with SUMMIT,

the tone modeling framework is based on a segment-based approach as well. In addition,

we adopt a statistical classification method using Gaussian probability density functions

(PDFs), so that the tone scores are probabilistic and can be directly used in speech recogni-

tion. It has been argued in (Fu et al. 1996) that tone modeling would not help continuous

speech recognition for Mandarin Chinese, because tone information is redundant with the

language processing model. However, we think that tone information can be used to reduce

speech recognition errors besides homophone disambiguation, as confirmed by a few other

studies as well (Cao et al. 2000; Huang and Seide 2000). In this chapter, we conduct tone

classification and speech recognition experiments on telephone speech of various degrees

of linguistic complexity. We try to improve tone recognition performance for continuous

speech by accounting for intonation and tone context influences, and to improve speech

recognition for spontaneous telephone speech by including tone modeling.

4.2 Experimental Background

The digit and YINHE Mandarin speech corpora used for our tone and speech recognition

experiments have been described in detail in Section 3.3. In this section, we give a brief

introduction to the SUMMIT speech recognition system, as well as the baseline recognizers

for the digit domain and the YINHE domain configured from SUMMIT.
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4.2.1 SUMMIT Speech Recognition System

The SUMMIT system uses a probabilistic segment-based approach to speech recognition (Glass

et al. 1996). It differs from the HMM-based framework in that acoustic landmarksi are

first detected, and the acoustic features are extracted relative to the landmarks instead

of at fixed frames. The features in a segment-based system usually span a much longer

interval than a single frame, so that acoustic-phonetic correlations can be captured by

the acoustic models. The SUMMIT recognizer can be configured to use either or both of

segment and boundary models to provide acoustic constraints. The segment models focus

on acoustic properties within segment units (usually phones 2 ), while the boundary models

capture acoustic information around landmarks (between two phones or within a phone).

The SUMMIT recognizer works as follows. Given a speech waveform, spectral features

such as Mel-frequency Cepstral coefficients (MFCCs) are first computed at a constant frame

rate. A segmentation graph is then derived using an acoustic segmentation algorithm (Glass

1988). The algorithm detects landmarks (boundaries) where spectral change between ad-

jacent frames is large, and interconnects these boundaries to form a network of segments.

Acoustic features are extracted within each segment as well as around boundaries. The

current feature vector for segments typically has 40 measurements, consisting of three sets

of MFCC averages computed over 3:4:3 portions of a segment, two sets of MFCC derivatives

computed at the segment beginning and end, and the log duration of the segment. The

boundary feature vector has 112 dimensions and is made up of MFCC averages computed

over 8 time windows around the boundaries. Principal component analyses are performed

on the acoustic feature vectors to reduce the feature dimensions as well as to "whiten" the

observation space. The distributions of the feature vectors are modeled using mixtures of

diagonal Gaussians. During training, the Gaussian mixture parameters are estimated from

pooled training tokens with K-means clustering followed by iterative EM optimization.

During recognition, the segment and boundary model scores for all segments and bound-

'Landmarks, as defined in the SUMMIT system, refer to places in the speech signal where there is significant
spectral change.

2We define phones as acoustic units which are obtained by applying a set of phonological rules to the
original phonemic form provided for each word in a lexicon. The notion of phone is used interchangeably
with the set of basic context-independent acoustic model units in this thesis.
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aries in the segmentation graph are evaluated in a computation-on-demand manner. A

forward Viterbi module utilizes the acoustic scores and bigram language model probabili-

ties to search a pre-compiled pronunciation network (lexicon). The search prunes unlikely

paths which have poor total probability scores, and finds the most plausible word and phone

sequences for the utterance. A backwards A* search can then be applied on the pruned

search space to generate the top N hypotheses. It can also apply higher-order language mod-

els to improve the speech recognition performance. More recently, the SUMMIT system has

adopted a weighted finite state transducer (FST) representation of the search space (Glass

et al. 1999). This new architecture allows a more flexible way to combine various types

of constraints through FST manipulations, and the Viterbi search is only concerned with a

single transducer encoding the entire search space. Under a typical recognizer configuration,

the FST used by the search is composed from constituent FSTs specifying diphone to phone

mappings, phonological rules, a lexicon, and a language model. A higher-order language

model, also encoded as an FST, can be used in the backward A* search to improve speech

recognition.

Although SUMMIT was originally designed for recognizing English utterances, it has

been applied successfully for various multilingual speech recognition tasks including Ital-

ian (Flammia et al. 1994), Japanese (Seneff et al. 2000), and Mandarin Chinese (Wang

et al. 1997; Wang et al. 2000). The recognizer for Mandarin Chinese is very similar to that

for English, except with Chinese-specific acoustic models, phonological rules, lexicon and

language models. The lexicon and language models are also dependent on the application

domain. The baseline recognizer for Mandarin Chinese does not include tone constraints,

except perhaps implicitly in the lexicon and the language model due to the tonal pinyin

representation of words.

Several enhancements need to be added to SUMMIT in order to incorporate probability

scores of lexical tones into Mandarin speech recognition. Above all, a pitch tracking capa-

bility needs to be implemented, which has been described in Chapter 2. Tone classifiers

can be trained in a similar manner as segment classifiers; however, new feature extrac-

tion methods need to be implemented to obtain parameters for tone contour shapes. This

process is described in detail in Section 4.3. We also experiment with two mechanisms in
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SUMMIT to incorporate tone scores into recognition, including a first-pass approach and a

post-processing approach. The first-pass approach is compatible with both the FST and

non-FST versions of SUMMIT, while the post-processing approach is currently implemented

only for the non-FST architecture 3 . The implementations are described in detail in Sec-

tion 4.4.

4.2.2 Mandarin Digit Recognizer

The baseline digit recognizer has 11 single-syllable words in its lexicon, including the alter-

native pronunciation "yaol" for digit "one". Chinese syllable initials and finals are chosen

as the phone model units, with the addition of closure, inter-word pause, glottal stop, and

nasal ending models, introduced by phonological rules. To fully exploit the small vocabu-

lary size, digit-specific segment and boundary models are used. A bigram language model

is trained from the training data. The language model constraints are fairly weak because

the digit strings are randomly generated. We achieved 4.3% syllable/digit error rate (28.7%

utterance error rate) on the test data with an A* search.

We observed high error rates for single-vowel digits "yil" (one), "er4" (two) and "wu3"

(five). Segmentation of "vowel vowel" sequence such as "wu3 wu3" is difficult, especially

due to frequent absence of glottal stops in continuous speech. The counter problem of vowel

splitting also exists. This leads to high insertion and deletion error rates for these three

digits. Digits "yil" and "wu3" also tend to be obscured in coarticulation with other digits,

such as in "qil yil" (seven one), "liu4 wu3" (six five) and "jiu3 wu3" (nine five), which

leads to even higher error rates for "yil" and "wu3". There are also several confusing digit

pairs, such as "er4/bal" (two/eight), "liu4/jiu3" (six/nine), etc., partially due to the poor

quality of telephone speech. Conceivably, these errors can be reduced by including tone

models in recognition.

3 This is due to the fact that the FST based system loses explicit references to time in the output phone
graph.

88



4.2.3 YINHE Recognizer

We modified the YINHE recognizer described in (Wang 1997; Wang et al. 1997) to form a

baseline system to carry out the tone modeling experiments. The original vocabulary for

the YINHE domain contains about 1,000 words, with around 780 Chinese words and 220

English words. To better test the effects of tone models on Chinese speech recognition, we

eliminated the English words from the vocabulary and excluded utterances that contain

English words from training and testing. The data sets of the "cleaned-up" version of the

YINHE corpus were introduced in detail in Section 3.3.

Only segment models are used by the recognizer 4 . They are inherited from the origi-

nal YINHE recognizer, with unnecessary English-specific phone models omitted. Similar to

those in the digit recognizer, the segment units are based on Chinese syllable initials and

finals, supplemented with closure, silence, glottal stop, and nasal ending models. The model

inventory covers all Mandarin syllable initials and finals except for the final "ueng", which

occurs only in a few characters of the entire language. Syllable finals with only tone differ-

ences are pooled together to train one model, so that the acoustic models have no ability

to distinguish tones. However, since words are represented using tonal pinyin, the lexicon

and the language model provide some implicit tone constraints. The baseline recognizer

achieved a syllable error rate of 8.2% on the spontaneous test data with a class bigram

model.

The YINHE data complement the digit data in several ways. First, the YINHE corpus is

linguistically richer than the digit domain and contains a significant amount of spontaneous

speech, and thus, the phonetic variabilities for both segment and tone models are larger than

those in the digit domain. Second, there are more lexical and language model constraints

in the YINHE domain, while the digit utterances are simply "random" syllable strings.

Although it seems less advantageous to use tone models in the YINHE domain than

in the digit domain, we think that tone information also has potential to reduce speech

recognition errors for the more complex YINHE utterances. For example, substitution errors

can produce incorrect tone transcriptions, and insertion and deletion errors usually result

'We felt that there were insufficient training data available for boundary models.
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in abnormal tonal segments. These errors are likely to result in bad tone model scores. We

will conduct experiments to see if tone modeling can improve speech recognition for the

spontaneous telephone speech of the YINHE domain.

4.3 Tone Classification

In this section, we present the basic four-tone classification framework and explore the use of

more refined tone models to improve tone classification performance on the digit and YINHE

data. We first introduce the simple four-tone models, focusing on describing the features

for tones. After that, we describe various refinements to the simple models, to reduce model

variances with the goal of improving classification accuracy. The refinements are motivated

by our empirical analysis of tonal variations presented in Section 3.4. Finally we summarize

the tone classification performance of different tone models on the digit and YINHE test

data. The statistical significance of the performance differences will be examined, and a

detailed analysis of the tone confusion errors will be performed.

4.3.1 Simple Four Tone Models

The dominant component in tone expression is the FO contour pattern, i.e., its average,

slope, and curvatures. There are various ways to quantify these features in a segment-based

system, by either fitting the FO contour with a certain type of function, or projecting it onto

some basis functions. We have chosen the first four coefficients of the discrete Legendre

transformation to capture the tone contour pattern following the example in (Chen and

Wang 1990), in which the Legendre coefficients were used to encode the pitch contour of

Mandarin utterances. It has been found that the distortion of the reconstructed FO contour

is fairly small if the decomposition is performed in a tone-by-tone manner, possibly because

of the resemblance between the Legendre bases and the basic tone contour patterns.

The discrete Legendre bases can not be obtained by directly sampling the continuous

Legendre polynomials, because the orthonormal properties of the bases are not preserved

under the dot product definition in the discrete space. Similar to the dot product used to

obtain Legendre polynomials in the continuous space, the dot product to derive the discrete
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Legendre bases in the vector space RM+1 is defined as:

, -) = M+1. us- Vi(4)(U Vi7 M +1 _i (4.1)

where 7= [uo U1 u2 ... uM] and i' = [vo v1 V2 ... vM]. The discrete Legendre basis vectors

can be obtained as follows (Chen and Wang 1990):

Lo(xi) = 1 (4.2)

12M
L1(1) = M (xi - 0.5) (4.3)

M+ 2

180*-M3  (2 __-__

L2(i) = M- (X_ - - + + ) (4.4)
(M - 1)(M +2)(M + 3) 6M

L 3(xi) =28000
(M - 1)(M - 2)(M + 2)(M + 3)(M + 4)

(3 - .x?+6M2 - 3M +2 X.-(M - 1)(M -- 2)(45
i- 1.5x + 10M 2  X 20M 2  (4.5)

where xi = (i = 0, 1,..., M), and M > 3. We denote the basis vectors [Lj (xo) Lj(xi)

Lj(x 2 ) ... Lj(xM)] as 1j (j = 0, 1, 2, 3). Figure 4-1 displays these polynomial functions for

the M = 29 case in the [0, 1] interval. The discrete Legendre bases for the R30 space are

obtained by sampling these functions at multiples of - in the [0, 1] interval, as illustrated

in the figure.

For a discrete pitch contour segment f = [fo fi f2 ... fM], the Legendre coefficients can

be obtained as the dot product between the pitch contour f and the Legendre basis vectors:

-.- 1 M j(i

aj = (Y , 1j) = - -E Ai -.~ (4.6)
M 1i=O

A reconstruction of the pitch contour can be obtained from the coefficients as follows:

3

f = E aj - ' (4.7)
j=o

The reconstructed contour f is usually a smoothed version of the original contour fand
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Discrete Legendre bases (length = 30)
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Figure 4-1: Discrete Legendre bases for the '7Z3 vector space. The underlying polynomials
for M = 29 are displayed with the discrete samples.

the distortion between the two vectors is found to be small for each of the four lexical

tones (Chen and Wang 1990).

It can easily be shown that the first Legendre coefficient ao is the average value of

the pitch segment, and the second Legendre coefficient a1 happens to be the slope of the

least square error regression line of the pitch segment. In addition to the four Legendre

coefficients, we also included the average probability of voicing in the tone segment and

the duration of the tone segment in the feature vector. We determined empirically that

the average probability of voicing feature improved tone classification performance. The

duration measure does not contribute significantly to tone discrimination, but it is helpful

to limit insertion and deletion errors when the tone models are applied in speech recognition.

In a speaker-independent system, it is necessary to normalize the absolute F with

respect to the average over the entire utterance, to reduce across-speaker differences. We

determined empirically whether to adjust by a ratio or a sum. Our data indicate that

the ratio gives smaller variances for the pitch-related features we have chosen; thus, the
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Legendre coefficients are scaled according to the average F of the utterance.

A principle component analysis is applied to the six-dimensional tone feature vector,

and mixtures of diagonal Gaussians are used to model the distributions of each of the four

lexical tones. Except for the average F0 normalization for each utterance, all other sources

of tonal variations, such as the F declination effects and the tone sandhi changes, are

handled implicitly by the variances of the Gaussian probability density functions.

4.3.2 F0 Downdrift Normalization

As shown in Section 3.4, the F0 level at the end of an utterance is typically much lower

than that at the utterance beginning, due to F0 declination. It is clearly advantageous to

compensate for the F0 declination, so that the F0 level distinctions between different lexical

tones will be less smeared by their relative positions in an utterance.

We started by modeling the F0 downdrift as a straight line for the digit and the YINHE

utterances. The parameters were estimated by linear regression analysis of the mean F

contours of the training data for each domain. We then subtracted this downdrift from the

F0 contour of each utterance and re-trained tone models. This significantly reduced the

tone classification errors for both the digit and the YINHE domains. A closer examination of

the model parameters revealed that the variances of the F0 related features for each lexical

tone model were also greatly reduced.

We tried a number of ways to improve the declination model to achieve further perfor-

mance improvement. One attempt is to use more refined phrase models instead of a sentence

level model, because the declination is obviously dependent on the phrase structure of an

utterance, as shown in the previous chapter. We tested this approach on phone numbers,

which usually contain three phrases in each utterance. A regression line for each phrase is

estimated from the mean F contour of all training data. However, this refinement did not

yield significant improvement over the simple sentence model. This is possibly because the

declination within a phrase is relatively small compared to the distinctions between tones,

so that the classification performance is not significantly affected. We also tried various re-

gression analyses for each individual utterance's F0 contour to approximate the intonation

component. However, the tone classification performance degraded. We observed that the
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resulting intonation curve using this approach follows the F contour too closely, and hence,

consumes part of the contribution from tones. This approach is also not robust to errors in

pitch extraction and segmental alignment, which are inevitable in automatic systems.

4.3.3 Context Normalization

As analyzed in Section 3.4, the F contour of each lexical tone is also systematically influ-

enced by the phrase boundaries and tone contexts. For example, tone 2 after high offset

tones has a relatively flat contour, making it less distinguishable from tone 1; tone 3 be-

fore tone 3 is changed completely to tone 2 due to tone sandhi; etc. It is conceivable that

the tone classification performance can be improved by taking into account the contextual

effects.

One can use context-dependent tone models to capture the differences of tone feature

distributions under different contexts. However, the classification results from using context-

dependent tone models can not be directly compared with the context-independent four tone

case, because of the complications arising from the increased number of model classes and

the splitting of the training data. We designed a classification experiment which uses the

same number of tone models trained from the same amount of data as in the simple four

lexical tone case, but with context effects "removed" from the tone measurements. This is

realized by changing the F0 contour of each tone according to its contexts to compensate for

context effects. Specifically, we characterize the context effects as the differences between

the mean of the Legendre coefficients of each context-dependent tone model and those of

the corresponding context-independent tone model. We then alter the F contour of each

tone according to its contexts, by reconstructing an Fo difference contour from the Legendre

coefficient differences according to Equation 4.7, and combining that with the original tone

F0 contour. New context-independent models are then trained from those corrected F

contours. We performed correction for the first and second Legendre coefficients, i.e., the

F0 average and slope. We found that the variances of the retrained models were significantly

reduced on those two dimensions, and the classification errors were further reduced.

During recognition, the tone context can be obtained from the recognizer N-best list.

However, it is cumbersome to modify the tone feature vector according to the context at
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run-time. Notice that the modification to the feature vector can be equivalently achieved

by shifting the mean of the Gaussian PDF, because

P(i+ -I A( , E)) = P(I I K(P - 5 , 3)) (4.8)

where - is the observation vector, c is the adjustment due to the context, and PJ( 1 , E) is

the Gaussian PDF with mean vector ' and covariance matrix E. Thus, instead of modifying

the input feature vector, we evaluate the original feature vector against the corresponding

context-dependent model, which is obtained by shifting the mean of the retrained context-

independent model accordingly. This is somewhat similar to the tied model translation

technique used in speaker adaptation (Shinoda and Watanabe 1996; Kannan and Ostendorf

1997). Alternatively, we can group context-dependent models into similar classes through

clustering techniques to handle the sparse data problem. We explored both of these methods

to train robust context-dependent tone models and obtained comparable performance in

speech recognition.

4.3.4 Summary of Tone Classification Results

Table 4-1 summarizes the tone classification results on the digit test data, and Table 4-2

summarizes the tone classification results on the read and spontaneous test sets of YINHE

data. The classification error rate using simple four tone models is 18.6% for digit data,

32.7% for read YINHE data, and 35.4% for spontaneous data, consistent with the complexity

of each data set. We excluded the neutral tone from tone models, because our initial

experiments showed that the addition of neutral tone reduced the tone model contribution

to speech recognition improvement. The refinements to the tone models achieve performance

improvements for all three data sets. However, we notice that the relative error reduction

also decreases from digit data to the more complex spontaneous YINHE data.

Statistical Significance

To examine whether the improvements in tone classification performance by using more

refined tone models are statistical significant, we performed McNemar's test between each
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System Classification Relative
Configuration Error Rate (%) Reduction (%)

Simple 18.6 -
+ Intonation 16.0 14.0

+ Intonation & Context 13.3 28.5

Table 4-1: Four-tone classification results of simple and more refined tone models on the
digit data.

System Read Spontaneous
Configuration ER(%) Rel.(%) ER(%) Rel.(%)

Simple 32.7 - 35.4 -
+ Intonation 29.5 9.8 33.1 6.5
+ Intonation & Context 27.4 16.2 31.1 12.1

Table 4-2: Four-tone classification results of simple and more refined tone models on the
read and spontaneous YINHE data (neutral tone excluded). "ER" is the tone classification
error rate. "Rel." is the relative reduction of errors from the baseline performance.

pair of classification outputs (Gillick and Cox 1989). The McNemar significance level reflects

the probability of the hypothesis that the differences between two classification results occur

by chance. We set the threshold of the significance level to be 0.05, which means that the

differences are considered as statistically significant if the probability of the differences

occurring due to chance is less than 0.05. As summarized in Table 4-3 and Table 4-4, all

classification performance differences are statistically significant.

+ Intonation + Intonation & Context

Simple 0.001 0.001
+ Intonation - 0.001

Table 4-3: Measure of statistical significance of tone classification performance differences
on the digit data. Significant differences are shown in italics, while insignificant differences
are shown in boldface (based on a threshold of 0.05). Significance levels less than 0.001
are mapped to 0.001 for simplicity.
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Read Spontaneous
+ Intonation + Intonation + Intonation + Intonation

&Context &Context

Simple 0.001 0.001 0.015 0.001
+ Intonation - 0.015 - 0.034

Table 4-4: Measure of statistical significance of tone classification performance differences
on the read and spontaneous YINHE data. Significant differences are shown in italics, while
insignificant differences are shown in boldface (based on a threshold of 0.05). Significance
levels less than 0.001 are mapped to 0.001 for simplicity.
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Figure 4-2: Bubble plots of classification errors for simple tone models (left), tone models

normalized for FO declination removal (middle), and tone models normalized for both FO

declination and context (right).

Classification Error Analysis

We have demonstrated that the tone classification performance is significantly improved

after we account for the FO declination and context effects into tone modeling. To examine

the details of the improvements, we study the change in confusion errors after each step of

tone model refinement.

Figure 4-2 shows the bubble plots of the confusion matrices of the three sets of clas-

sification results on the digit data, excluding the diagonal elements. The radius of each

bubble is proportional to the number of corresponding confusion errors, so that the size of

the bubbles in the three plots can be compared. It is observed that most types of confusion

errors are reduced after taking the FO declination and context into consideration. The most
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prominent effects of FO declination removal seem to be the reduction of confusions between

tones with different Fo averages. For example, the confusion of tone 1 with tone 2 or tone

3, the confusion of tone 2 with tone 1, the confusion of tone 3 with tone 1 or tone 4, and

the confusion of tone 4 with tone 3 are all greatly reduced. However, there is also a small

increase in confusion between tones with similar FO averages. For example, the confusion

between tone 2 and tone 3 and the confusion of tone 4 with tone 1 are slightly increased.

The context normalization seems to reduce all types of confusion errors, except for a minor

increase in confusion of tone 1 or tone 2 with tone 3. This is a small price to pay consid-

ering the greatly reduced confusions of tone 3 with tone 1 and tone 2. Similar trends of

improvements with refined tone models are also observed on the YINHE data, although the

distribution of confusion errors and the magnitude of improvements differ.

4.4 Incorporation of Tone Models into Speech Recognition

This section describes the implementation of two different mechanisms to incorporate tone

models into Mandarin speech recognition. The post-processing approach applies the tone

models to resort the recognizer N-best list, and the first-pass approach uses tone scores

directly in the Viterbi search.

4.4.1 Post-Processing

We have found that the N-best list has great potential for improved speech recognition

performance. For example, with a perfect post-selector, we could achieve less than 1%

syllable error rate and 7% utterance error rate with a 10-best list for the digit domain, as

compared to the 1-best performance of 4.3% syllable error rate and 28.7% utterance error

rate. So we first tried to apply tone models to resort the recognizer 10-best outputs to

improve speech recognition accuracy.

The post-processing scheme is similar to that proposed in (Serridge 1997). For each

syllable final in an A* path, the tone score is added to the total path score. The N-best

hypotheses are then resorted according to the adjusted total scores to give a new "best"

sentence hypothesis. We tried two methods to normalize the total adjustments to avoid
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System Sub. I Del. j Ins. J SER UER

Baseline 1.0 2.2 1.0 4.3 28.7
+ Simple 0.9 1.5 0.8 3.2 20.3
+ Intonation 1.0 1.4 0.7 3.1 19.7
+ Intonation & Context 0.9 1.1 0.8 2.8 18.0

Table 4-5: Recognition error rates (in percentage) on digit data without tone models and
with various tone models incorporated to resort the 10-best outputs. "SER" is the syllable
error rate, which is the sum of the substitution, insertion, and deletion error rates. "UER"
is the utterance error rate.

bias toward shorter strings: dividing the total tone score by the number of syllables in each

path, or adding a tone transition weight to each added tone score. The rationale for the first

method is to use the average tone score as an indication of the tone hypothesis quality of

each path; the second method tries to adjust the tone likelihood scores to be zero-centered

on average, similar to using a segment transition weight in the SUMMIT system. We also

use a scaling factor to weight the scores contributed by the tone models, which can be

optimized empirically based on recognition performance. Context-dependent model scores

can also be applied simply by converting a tone hypothesis into its context-dependent form,

with context obtained from its surrounding hypotheses.

We conducted speech recognition experiments on the digit and the YINHE data to see if

applying tone models to resort the recognizer N-best outputs can improve speech recognition

performance. We are also interested to know if the refined tone models can improve over

the simple models, as implied by the encouraging tone classification results.

Table 4-5 summarizes the speech recognition performance on the digit domain with

various tone models incorporated to resort the 10-best list; the baseline performance without

tone models is also listed for comparison. As indicated in the table, the application of simple

four tone models greatly reduced the syllable error rate from the baseline system. However,

using more refined tone models further reduced the syllable and utterance error rates only

slightly, compared to using the simple tone models.

We would like to evaluate the significance level of our recognition results, especially for

those where differences are small. Unlike the classification results, the speech recognition
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+ Simple + Intonation + Intonation
& Context

Baseline 0.001 0.001 0.001
+ Simple - 0.407 0.099
+ Intonation - - 0.171

Table 4-6: Measure of statistical significance of speech recognition performance differences
on the digit data. Significant differences are shown in italics, while insignificant differences
are shown in boldface (based on a threshold of 0.05). Significance levels less than 0.001
are mapped to 0.001 for simplicity.

hypotheses from two systems can not be matched on a syllable-to-syllable basis due to

insertion and deletion errors; furthermore, the adjacent syllables in a hypothesis are also

likely to be dependent on each other because of lexical and language model constraints.

A matched pairs segment word error test has been developed by (Gillick and Cox 1989)

to address this problem. First, the output stream from a recognizer is divided into phrase

segments (sentences or phrases bounded by long pauses) such that the errors in one segment

are assumed to be statistically independent of the errors in any other segments. A matched-

pairs test is then performed on the average difference in the number of errors in such

segments made by two algorithms. Table 4-6 summarizes the significance levels of the

differences between each pair of recognition results for the digit domain. As shown in

the table, the improvements using various tone models are all significant compared to the

baseline performance, but the relative differences among using different tone models are not

statistically significant.

We also applied the tone models to resort the 10-best outputs of the YINHE recognizer.

The read YINHE data were used to optimize the relative weight of the tone score contribution,

and the speech recognition performance is reported on the spontaneous data. Similar to

the digit domain, application of various tone models all reduced the syllable and utterance

error rates, as shown in Table 4-7. However, the improvements of more refined models over

the simple model are very small and not statistically significant, as indicated in Table 4-8.

100



System Sub. [ Del. I Ins. I SER UER]
Baseline 5.9 1.2 1.1 8.2 29.9

+ Simple 5.2 0.9 1.1 7.2 27.8
+ Intonation 5.0 0.9 1.1 7.0 26.8
+ Intonation & Context 5.0 0.8 1.1 6.9 26.8

Table 4-7: Recognition error rates (in percentage) on spontaneous YINHE data without tone
models and with various tone models incorporated to resort the 10-best outputs. "SER" is
the syllable error rate, which is the sum of the substitution, insertion, and deletion error
rates. "UER" is the utterance error rate.

+ Simple + Intonation + Intonation
& Context

Baseline 0.033 0.015 0.010
+ Simple - 0.276 0.522
+ Intonation - - 0.904

Table 4-8: Measure of statistical significance of speech recognition performance differences
on the spontaneous YINHE data. Significant differences are shown in italics, while insignifi-
cant differences are shown in boldface (based on a threshold of 0.05).

4.4.2 First-Pass

The post-processing approach can not recover the correct hypothesis if it is not in the N-

best list. Here we examine if combining tone scores with segment and boundary model

scores directly in the first-pass Viterbi search can lead to a performance that is superior to

that obtained by the resorting method, because the tone models are utilized to explore the

entire search space.

A straightforward way to incorporate tone information into speech recognition is to

augment the acoustic features with tone features, and build tone-dependent syllable final

models; thus, no change needs to be made to the recognizer. However, this approach has the

disadvantage of splitting the training data, i.e., the same tone from different finals as well as

the same final with different tones can not be shared in training. In addition, it is unclear

how to interpret the use of FO features in the non-tonal units such as syllable initials and

silences. Given that the segmental and tonal features are relatively independent of each
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other, we can build separate segment and tone models, and combine the log probability

scores for tonal segments as follows:

log P(ATz, W) = a - log P(Ajz) + / - log P(Tly) (4.9)

where F is the segment feature vector, - is the tone feature vector, A is a segment symbol

(must be a syllable final), T is a tone symbol, and AT is the combined tonal segment symbol.

This method is similar to the committee-based classifier structure described in (Halberstadt

1998) for combining heterogeneous acoustic features, where the feature vectors are assumed

to be independent of each other. The scaling factors a and 0 are used to determine the

relative weighting for the segment and tone scores, which can be adjusted empirically on

held-out data to achieve optimal recognition performance. For the segments that do not

have a well defined tone, such as the syllable initials and various silence models, the tone

score is simply ignored. Similar to the post-processing approach, we add a transition weight

to each tone score to avoid bias toward hypothesizing fewer tonal segments. The combined

tonal segment scores are used to replace the pure segment scores, so that no change needs

to be made to the Viterbi search module.

Table 4-9 summarizes the speech recognition performance on the digit domain and the

YINHE domain, with the simple models for four lexical tones incorporated into the first-pass

search or applied to resort the N-best list. As shown in the table, the performances using

the two strategies are very similar, with a slight advantage for the first-path approach. We

performed a significance test on the differences between the two methods on both domains.

The significance level of the difference is 0.219 for the YINHE data and 0.242 for the digit

data, which means that the differences are not statistically significant.

We found that the N-best list obtained using the first-pass approach was of similar

quality to that of the baseline system on the digit domain. In addition, the results shown in

the previous section suggest that more refined tone models did not improve over the simple

four tone models significantly. Thus, we did not try to apply more refined tone models on

the new N-best list to obtain further improvements.
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Domain Method Sub. j Del. [ Ins. [ SER [1 UER
Baseline 1.0 2.2 1.0 4.3 28.7

Digit Post-processing 0.9 1.5 0.8 3.2 20.3
First-pass 0.9 1.2 0.9 3.0 19.7

Baseline 5.9 1.2 1.1 8.2 29.9
YINHE Post-processing 5.2 0.9 1.1 7.2 27.8

First-pass 5.1 0.9 0.9 6.9 26.8

Table 4-9: Speech recognition error rates (in percentage) on the digit and the YINHE data
with simiple four tone models incorporated using first-pass and post-processing methods.
The baseline performance in each domain is also included for reference. "SER" is the
syllable error rate, which is the sum of the substitution, insertion, and deletion error rates.
"UER" is the utterance error rate.

4.4.3 Performance Analysis

We examined the detailed differences of speech recognition results with and without tone

models on the digit data. For the baseline recognizer, most of the errors are caused by

insertions and deletions of the single-vowel digits "yil" (one), "er4" (two) and "wu3" (five).

There are 22 deletion errors for "wu3", 22 deletion errors for "er4", 10 deletion errors for

"yil", and 16 insertion errors of "wu3", making up 57% of the 123 total errors. We find that

a large portion of the improvements obtained by using tone models are due to the reduction

of insertions errors for "er4" and "wu3" and deletion errors for "wu3". For example, by

applying tone models refined for both FO declination and context effects to resort the 10-

best list, the recognizer makes only 7 deletion errors for "wu3", 11 deletions of "er4", and

12 insertions of "wu3". There are small reductions in other types of errors as well. The

error reduction for digit "yil" is relatively small because of the flat contour pattern of tone

1: the FO contour of two first tones will not differ much from that of a single first tone,

except for duration differences; thus, the tone models are not very effective to resolve such

cases. We suspect that a separate duration model with speaking rate considerations would

be more effective to deal with such errors (Wang and Seneff 1998).

Figure 4-3 illustrates the correct recognition of the digit string "bal er4 jiu3 wu3 wu3"

(eight two nine five five) with the assistance of tone models. As shown in the figure, the

spectrogram has few acoustic cues to indicate the presence of two consecutive "wu3"'s in
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Figure 4-3: Waveform, spectrogram, pitch contour overlayed with DLFT spectrogram,

phone transcription, and word transcription for the Mandarin digit utterance "bal er4

jiu3 wu3 wu3 ..." (eight two nine five five).

the signal, which is likely to result in a deletion of "wu3" if only segmental information is

used. However, the pitch contour clearly contradicts with the hypothesis of a single "wu3",

because the contour has a rise-fall shape instead of the typical low falling contour of tone 3.

In fact, the contour supports the hypothesis of two "wu3"'s, taking into consideration the

"33 -+ 23" tone sandhi rule. The correct hypothesis is likely to succeed with the addition

of high tone model scores during speech recognition.

4.5 Summary

In this chapter, we presented tone classification and speech recognition experiments on

Mandarin telephone speech of various degrees of linguistic complexity. We developed a

segment-based tone classification framework, which uses discrete Legendre decomposition

to parameterize tone FO contours and Gaussian classifiers to estimate tone probability scores.

Using this basic framework, we demonstrated that tone recognition performance for con-
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tinuous Mandarin speech can be significantly improved by taking into account sentence

declination, phrase boundary, and tone context influences. We also developed two mecha-

nisms to integrate tone models into speech recognition. Incorporation of a simple four-tone

model into the first-pass Viterbi search reduced the speech recognition error rate by 30.2%

for the digit domain and by 15.9% for the spontaneous utterances in YINHE domain. Using

the simple four-tone model to resort the recognizer 10-best outputs yielded similar improve-

ments for both domains. However, the more refined tone models fail to further improve the

speech recognition performance significantly, even though the classification performances

indicate otherwise. This seems to suggest that a simple and efficient strategy to utilize tone

information can be achieved by integrating a simple four-tone model into the Viterbi search.
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Chapter 5

Lexical Stress Modeling for

Spontaneous English Speech

Recognition

Lexical stress is an important property of the English language. It has been suggested

in (Lea 1980) that stressed syllables provide islands of phonetic reliability in speech com-

munication: the acoustic realization of a stressed vowel tends to be more distinctive than

that of its unstressed counterpart (Lehiste 1970); phonological variations for stressed syl-

lables are more limited compared to unstressed ones when the rate of speech changes (Lea

1980); human recognition of phones by visual examination of speech spectrograms achieved

higher accuracies in stressed syllables than in unstressed or reduced syllables (Klatt and

Stevens 1972; Lea 1973); and phoneme recognition by machine obtained much higher accu-

racy on stressed nuclei than on unstressed nuclei (Jenkin and Scordilis 1996). In addition,

lexical studies have demonstrated that stressed syllables are more informative to word in-

ference (Huttenlocher 1984; Carter 1987), and knowing the stress pattern of a word can

greatly reduce the number of competing word candidates (Aull and Zue 1985). Clearly,

lexical stress contains useful information for automatic speech recognition.

Early work on lexical stress modeling has focused on the recognition of stress patterns to

reduce word candidates for large-vocabulary isolated word recognition (Aull and Zue 1985;
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Waibel 1988), or to disambiguate stress-minimal word pairs (Freij and Fallside 1990). More

recently, there have been attempts at utilizing stress information to improve continuous

speech recognition. In (Adda-Decker and Adda 1992; Sj6lander and H6gberg 1997), the

lexical stress property was used to separate phones during training to obtain more accurate

acoustic models. In (Hieronymus et al. 1992), stress-dependent phonological rules were

applied for phone to phoneme mapping. In (Jones and Woodland 1994), hidden Markov

models for "weak/strong" and "stressed/unstressed" syllables were applied to resort the

recognizer N-best outputs. A few studies also examined stress classification in continuous

speech (Jenkin and Scordilis 1996; van Kuijk and Boves 1999); however, no speech recog-

nition experiments were performed using the resulting stress models. In general, previous

research on using stress models in continuous speech recognition has been limited, and we

have not found any work on spontaneous English speech reported in the literature.

Encouraged by our results in using tone information to improve Mandarin speech recog-

nition, we are inclined to apply the same approach to model English lexical stress for

spontaneous telephone speech in the JUPITER domain (Zue et al. 2000). The motivation is

a natural extension from the Chinese case, i.e., erroneous hypotheses will have worse stress

scores than the correct hypothesis. We expect that substitution, insertion and deletion

errors sometimes result in mismatched stress characteristics between the hypothesized syl-

lable nucleus and its acoustics. By scoring for the stress pattern of a hypothesis, a system

augmented with the additional constraints provided by stress models will perform better

than a system which uses segmental constraints only. However, unlike Mandarin tones, the

acoustic manifestations of English lexical stress are quite obscure. Although it has been

found that prosodic attributes, i.e., energy, duration, and pitch, correlate with the stress

property of a vowel, these features are also highly dependent on its segmental aspects (in-

trinsic values). To complicate things further, not all lexically stressed syllables are stressed

in continuous speech. For example, mono-syllabic function words are often not stressed. In

addition, a subset of lexically stressed syllables in a sentence also carry the pitch accents

of the spoken utterance. Although "pitch accentedness" has been argued to be a more

appropriate indication of "stress" in continuous speech, their occurrences can not be pre-

dicted from orthographical transcriptions, and hence, they are less useful to a recognizer.
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On the other hand, lexical stress can easily be encoded in the lexicon of a segment-based

recognizer. However, the question remains whether it can be determined from the acoustics

in spontaneous speech with sufficient reliability to benefit recognition.

In this chapter, we test the approach of scoring the lexical stress patterns of recognizer

hypotheses to improve automatic speech recognition performance. The research issues we

want to address are: (1) how well can the underlying stress of a vowel be determined from the

acoustics in spontaneous speech, and (2) can such information improve speech recognition

performance? To answer these questions, we study the correlation of various pitch, energy,

and duration measurements with lexical stress on a large corpus of spontaneous utterances,

and identify the most informative features of stress using classification experiments. We

also develop probabilistic models for various lexical stress categories, and combine the stress

model scores with other acoustic scores in the recognition search for improved performance.

We experimented with prosodic models of varying complexity, from only considering the

lexical stress property to also taking into account the intrinsic differences among phones. We

found that using prosodic models reduced the word error rate of a state-of-the-art baseline

system in the JUPITER domain. However, the gain by using prosodic models seemed to be

achieved mainly by eliminating implausible hypotheses, rather than by distinguishing the

fine differences among various stress and segmental classes; thus, we found no additional

gain by utilizing more refined modeling.

In the following sections, we first give a brief introduction to some previous research on

lexical stress modeling for speech recognition. Then we provide some background knowl-

edge for the experiments reported in this chapter, including the JUPITER corpus and a

baseline JUPITER recognizer which incorporates stress markings in its lexicon. After that,

we study the correlation of various prosodic measurements with lexical stress and identify

the best feature set using classification experiments. Finally, we present speech recogni-

tion experiments using the basic lexical stress models and other prosodic models of varying

complexity.
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5.1 Related Research

There are usually two approaches to using lexical stress information in continuous speech

recognition. One is to build separate models for lexically stressed and unstressed phones

(usually only vowels), so that more accurate acoustic models can be obtained. The other

method is to use stress information to assist lexical decoding, by using stress-dependent

phonological rules, or by scoring explicitly for the stress patterns of the recognition hy-

potheses. In this section, we review some previous work in each category.

An apparent motivation for building stress-dependent acoustic models is that the acous-

tic realization of a stressed phone tends to be more distinctive than that of its unstressed

counterpart (Lehiste 1970). By building separate models for stressed and unstressed phones,

the models for stressed phones will be "cleaner" and provide more differentiation power.

However, previous research following this approach has shown mixed results. In (Adda-

Decker and Adda 1992), stress-dependent acoustic models were trained for continuous

French and American-English speech respectively. It was found that the addition of stressed

vowel models improved phonetic recognition performance on the French database, but not

on the English database. One possible explanation for this discrepancy is that the two

languages have very different lexical stress patterns. English has free stress, because the

stressed syllable can assume any position in a word; while the French language has bound

stress, in which the position of the stressed syllable is fixed in a word. In this study, the

"stress" for French and English also seemed to be labeled differently. The stress markings

for the French data were labeled by a human listener, and stressed words were added to

the lexicon only if they occurred in the training data. Thus, the stress in this case takes

into account sentence-level context. For the English data, it appeared that the stress labels

were obtained from dictionary definitions. In (van Kuijk et al. 1996), stress-dependent

models were trained for a continuous telephone speech database of Dutch, also a free stress

language. The stress labeling was based on lexical stress, although two sets of models

were trained depending on different treatments of monosyllabic function words. In either

case, the stress-dependent models failed to show improvement over a baseline system with

no stress markings. The authors suggested two possible reasons for the negative results.

First, there were no explicit stress-related features in the acoustic models; and second, the
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acoustic correlates of lexical stress were more susceptible to interference from higher-level

prosodic phenomena in fluent speech. A third possibility might be that the number of train-

ing examples for stressed and unstressed vowels is usually very unbalanced. Thus, a blind

separation of models by lexical stress lacks robustness due to many under-trained models.

In (Sjdlander and H6gberg 1997), a set of phone-like units (PLUs) was derived using a

decision tree algorithm, which considered phone identity, phone context, lexical stress, and

function word affiliation as possible splitting criteria. It was found that PLUs derived using

all of the above information outperformed PLUs derived using only phone information for

a Swedish spontaneous speech corpus.

The approach of using stress information in lexical decoding usually requires classifi-

cation of stress categories. Although stress can be reliably perceived by human listeners,

its manifestations in the speech signal are very complex and depend on the language. In

addition to syllable intensity, duration and pitch were also found to be correlated with lex-

ical stress in English (Lea 1980). Some studies have also used spectral features, such as

spectral change, measured as the average change of spectral energy over the middle part of

a syllable (Aull and Zue 1985; Waibel 1988); spectral tilt, measured as spectral energy in

various frequency sub-bands (Sluijter and van Heuven 1996; van Kuijk and Boves 1999);

and Mel-frequency Cepstral coefficients (MFCCs) (Jones and Woodland 1994). The stress

classification performance depends highly on the data, and also somewhat on the labeling

of stress categories. High accuracy has been achieved for recognizing the complete stress

patterns for isolated words (Aull and Zue 1985), and for distinguishing stress-minimal word

pairs (Freij and Fallside 1990; Ying et al. 1996). The performance on unlimited continuous

speech varies in the literature. In (Waibel 1988), a variety of feature combinations were

tested on four relatively small English speech databases, and a best average error rate of

12.44% was reported with energy integral, syllable duration, spectral change and FO max-

ima features. In (Jenkin and Scordilis 1996), accuracies of about 80% were obtained on the

English TIMIT database using various classifiers with 6 features from energy, duration and

pitch. The stress labeling of the data was performed manually by two transcribers. In (van

Kuijk and Boves 1999), the accuracy for a read telephone Dutch database was 72.6% at

best. The stress labeling in this case was determined automatically from a dictionary. We
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expect the classification accuracies to be higher if the stress labeling takes into considera-

tion sentence-level effects, i.e., not all lexically stressed syllables are stressed (accented) in

continuous speech (Shattuck-Hufnagel and Turk 1996).

A more important criterion is how much can the lexical stress models improve speech

recognition performance. However, we are able to find only a few studies which reported

speech recognition experiments using stress models (Hieronymus et al. 1992; Jones and

Woodland 1994). In (Hieronymus et al. 1992), a phone lattice was first derived using

hidden semi-Markov model (HSMM) based acoustic models, and a matrix of substitution,

deletion and insertion costs between each phone and phoneme pair was used during lexical

decoding. It was found that the word error rate was reduced by 66.1% when the cost

matrix incorporated stress-dependent phonemes, mapping to phones that were not marked

for stress. However, when the phones were also marked for stress, the performance gain was

not as great. In (Jones and Woodland 1994), HMMs using energy and MFCCs as features

were built for "weak/strong" (lexical-level stress) and "stressed/unstressed" (sentence-level

stress) syllables and applied to resort the recognizer N-best outputs. The word error rate

on the TIMIT database was reduced by 16% with the "strong-weak" models and by 23%

with the "sentence-stress" models.

Although several studies have tackled the problem of stress classification in continuous

speech, research on its application in speech recognition systems has been fairly limited.

In our investigation, we will build acoustic models to capture the "stressedness" of syllable

nucleus vowels and apply these stress models to score for the underlying stress pattern

of a hypothesis for additional constraints in speech recognition. The motivation of this

approach is similar to that of (Jones and Woodland 1994); however, the implementation

aspects are quite different. The speech data and the recognition task in our study are also

more challenging than those in most of the work introduced in this section.

5.2 Experimental Background

The speech recognition experiments are conducted on the JUPITER speech database, which

was collected by recording conversations between users and the JUPITER weather informa-
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User: What is the temperature of Green Bay Wisconsin?
JUPITER: In Green Bay today: high 11. Tonight: low minus 3 tonight. Is there

anything else?

User: How much snow was on the ground in Green Bay Wisconsin?
JUPITER: Sorry, I'm not sure what you said.

User: What is the snowfall in Green Bay Wisconsin?
JUPITER: In Green Bay today: mostly cloudy with some snow flurries and snow show-

ers. Is there something else you'd like to know?

User: Is there rain in Chicago?
JUPITER: In Chicago today: occasional rain. Tonight: rain, possibly a thunderstorm,

near 100 percent chance of rain. Is there something else I can do for you?
User: What is the weather in El Paso Texas?
JUPITER: In El Paso today: clear and cool, high in mid or upper 50s. Tonight: clear,

lows in mid 20s. What else would you like to know?
User: Is the sun shining in Fort Lauderdale?
JUPITER: In Fort Lauderdale today: periods of sunshine, scattered clouds. What other

information can I give you?

User: Good bye!
JUPITER: Thanks for using Jupiter! Have a nice day!

Table 5-1: Example of user interaction with the JUPITER weather information system.

tion system through a telephone. In the following, we first introduce briefly the JUPITER

corpus. Then we describe a baseline recognizer for the JUPITER domain, which was adapted

from an existing JUPITER recognizer to facilitate lexical stress modeling experiments.

5.2.1 JUPITER Corpus

The JUPITER system (Zue et al. 2000) is a telephone-based conversational interface to on-

line weather information, developed at the Spoken Language Systems group of the MIT

Laboratory for Computer Science. A user can call the system via a toll-free number and

ask weather-related questions using natural speech. JUPITER has real-time knowledge about

the weather information for over 500 cities, mostly within the United States, but also some

selected major cities world-wide. The system also has some content processing capability,

so that it can give specific answers to user queries regarding weather actions, temperature,

wind speed, pressure, humidity, sunrise/sunset times, etc. Table 5-1 shows an example

dialogue between a user and JUPITER.
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Data Set I # Utterances jJData Set # Utterances

train 84,165 - -

clean-test-1 1,819 all-test_1 2,468
clean-test-2 1,715 all-test-2 2,335
clean-test_3 1,313 all-test-3 1,861

Table 5-2: Summary of data sets in the JUPITER corpus.

A sizable amount of spontaneous telephone speech has been collected since the system

was made publicly available via a toll-free number. To date, there have been over 756,000

utterances from over 112,000 phone calls recorded since May, 1997, and the data are still

coming in. We use about 85,000 orthographically transcribed utterances in our experiments.

Table 5-2 summarizes the number of utterances in the training and various test sets. The

training set and the "clean" test sets contain only within-vocabulary utterances, while

the "all" test sets also include utterances that contain out-of-vocabulary words and other

artifacts, such as background speech, noise, etc. We use only "clean" data in the experiments

described in this chapter: the "clean-testi" set is used as development data for selecting

stress features as well as for tuning various weights; the "clean-test_2" and "clean-test_3"

sets are used for testing. The "all" test sets will be used for developing recognition confidence

measures described in the next chapter.

5.2.2 Baseline JUPITER Recognizer

The baseline recognizer was adapted from an existing JUPITER recognizer, configured from

the SUMMIT recognition system (Strdm et al. 1999). Lexical stress markings were added to

the 2,005-word lexicon to facilitate lexical stress modeling experiments. The initial stress

labels were obtained from the LDC PRONLEx dictionary, in which each word has a vowel with

primary stress and possibly a vowel with secondary stress. However, in continuous speech,

the vowels of mono-syllabic function words, such as "a", "it", "is", etc., are likely to be

unstressed or reduced. The JUPITER recognizer uses a few specific reduced vowel models as

alternative pronunciations to account for these variations. Initially, the full vowels in mono-

syllabic function words were marked with primary stress, as in PRONLEX. However, we
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WHAT is the TEMperature in GREEN BAY wisCONsin ?
(What is the temperature in Green Bay Wisconsin ?)

Table 5-3: The lexical stress pattern of an example JUPITER utterance. Stressed syllables
are indicated by capital letters.

found that too many vowels (more than 60%) were labeled with primary stress in the forced

transcriptions derived with this lexicon. We thus labeled the full vowels in mono-syllabic

function words as unstressed, with exceptions for a few wh-words such as "what", "when",

"how", etc. We realize that this is only a coarse approximation, because function words can

be stressed in continuous speech, while lexically stressed syllables in content words are not

necessarily always stressed in spoken utterances. Table 5-3 illustrates the stress labeling of

an example JUPITER utterance, with stressed syllables indicated by capital letters.

Secondary stress could be grouped with primary stress, be treated as unstressed, or be kept

as a third stress category. We decided to defer the decision until after data analysis, so

primary and secondary stress were marked distinctively in the lexicon. The reduced vowels

were also distinguished from unstressed full vowels in our data analysis for more detailed

comparison.

The baseline system uses boundary models only, because it was found that adding seg-

ment models did not improve recognition performance unless context-dependent segment

models were used, in which case the speed of the recognizer was significantly slower (Str6m

et al. 1999). This is possibly because both models use features that are based on Mel-

frequency Cepstral coefficients; thus, the context-independent segment models are some-

what redundant when boundary models are used. Our proposed approach is to reintroduce

segment models, but to restrict them to prosodic aspects only. We hope that prosodic

features can provide independent information to complement the boundary models, thus

achieving improved recognition performance. Therefore, we did not try to retrain boundary

models; the diphone labels in each boundary model class were simply expanded to cover

variations in lexical stress. Both bigram and trigram language models were used by the

recognizer, applied with the Viterbi and the A* search passes. The modified recognizer

achieved the same speech recognition performance as the original recognizer, which was the
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Set Sub. Del. Ins. WER UER
Development (clean-test-1) 4.3 1.6 1.7 7.6 20.2
Test (clean-test-2+clean-test_3) 5.8 2.9 2.2 10.9 24.8

Table 5-4: Baseline speech recognition performance on the JUPITER development data and
test data. "WER" is the word error rate, which is the sum of the substitution, insertion,
and deletion error rates. "UER" is the utterance error rate. All numbers are in percentage.

state-of-the-art real-time performance on the JUPITER domain as reported in (Str6m et al.

1999). The detailed baseline performances on the development and test data are summa-

rized in Table 5-4. Various parameters in the recognizer have been optimized to achieve the

lowest overall error rates on the development data.

5.3 Acoustic Correlates of Lexical Stress

The primary acoustic correlates of stress for English include all three prosodic attributes:

energy, duration, and pitch. Stressed syllables are usually indicated by high sonorant en-

ergy, long syllable or vowel duration, and high and rising Fo (Lea 1980). Some studies

also used spectral features such as spectral energy change, sub-band spectral energy, and

MFCCs (Aull and Zue 1985; Waibel 1988; Jones and Woodland 1994; Sluijter and van

Heuven 1996; van Kuijk and Boves 1999). In this section, we study the distribution of

various prosodic measurements for each lexical stress category, and determine the "best"

feature set for lexical stress by performing classification experiments on development data.

Some spectral features will also be examined in the classification experiments. All features

are extracted from the nucleus vowel of a syllable, so that the resulting model can be directly

incorporated into the recognition first-pass search.

Forced recognitioni was used to generate phonetic alignments (with stress marks on

vowels) for the training and development data, and alternative pronunciations in the lexicon

were determined automatically by the boundary models. These automatically derived stress

'Forced recognition refers to the recognition mode in which the correct words are provided to the rec-
ognizer and the recognition system finds the corresponding sequence of phones and their time alignments
given a lexicon and acoustic models.
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Stress Category # Tokens Percentage

Reduced 35,991 22.6%
Unstressed 48,130 30.3%
Primary Stress 63,432 39.9%

Secondary Stress 11,523 7.2%
Total 159,076 100.0%

Table 5-5: Number of tokens in each lexical stress category for 20,000 training utterances
in the JUPITER corpus.

labels will serve as the reference for both training and testing the stress models. This

"forced alignment" approach can only provide a very coarse labeling of lexical stress due

to two main sources of errors: the boundary models can make errors at choosing among

alternative pronunciations, especially between reduced vowels and unstressed full vowels;

more importantly, dictionary-defined stress will not always be expressed as acoustic stress,

even though some considerations for function words have been incorporated in the lexicon.

In practice, the forced alignment process is iterated, once the stress models are trained and

incorporated into the recognizer, to improve the quality of the transcriptions. The stress

models can also be better trained using more "distinctive" tokens of each lexical stress

category, as described in (van Kuijk and Boves 1999). The results shown in this section are

based on iterated forced transcriptions with three iterations. We observed that the phone

boundaries and the alternative pronunciations in the forced alignments all appeared to be

more accurately determined after one iteration with lexical stress models.

About 20,000 utterances in the training set are used in the analysis described in this

section. The full training set will be used to obtain the final test results. Table 5-5 sum-

marizes the number of tokens in each stress category. Vowels with primary stress form the

largest group, because all words except some mono-syllabic function words are required to

have a primary stress syllable.

5.3.1 Prosodic Feature Distributions

In this section, we study the histogram distributions of various prosodic features given each

lexical stress class. These features are grouped by energy, duration, and pitch categories,
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as described in the following. The main purpose of the histograms is to illustrate the

"distances" among the stress categories compared to the variance for each category; thus,

the units in the histograms are omitted due to their lack of importance and meaningful

physical interpretations.

Energy

The energy signal used in our analysis is the root mean square (RMS) energy, which is

computed by taking the square root of the total energy in the amplitude spectrum of the

short-time Fourier analysis of the speech. The short-time Fourier transform is computed at

every 5 ms, with a Hamming window of 25.6 ms applied to the speech signal. To reduce

variance due to "volume" differences, the raw RMS energy contour is scaled so that the

average energy of each utterance in non-silence regions is roughly equal. Three energy

measurements are extracted from each syllable nucleus vowel: the average and maximum

values of the RMS energy, and the integral of the RMS energy over the vowel duration.

Notice that the integral of the RMS energy is equivalent to the multiplication of the average

energy and the duration of a vowel.

Figure 5-1 shows histograms of each energy feature for the four lexical stress categories.

As plotted in the figure, vowels with primary stress have the highest energy, while reduced

vowels have the lowest energy. It is interesting to observe that vowels with secondary stress

have very similar energy distributions as unstressed full vowels. This seems to suggest that

secondary stress syllables are acoustically unstressed when judged by energy cues. The

energy distributions of unstressed and secondary stress vowels are in between those of the

reduced and primary stress vowels. Although there is good separation between the two

extremes, the overlap considering all categories is significant.

Duration

Duration is measured for the syllable nucleus vowel. We tried to normalize the raw duration

measure with a sentence-level speaking rate to reduce the variances caused by different

speaking rates. This is for data analysis only, because speaking rate information is usually

not available during the first-pass recognition. The speaking rate is estimated from the
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Figure 5-1: Histogram distributions of energy features for different stress classes in the

JUPITER data.

vowels of an utterance as follows:

Q E ADur (Vi)
Speaking Rate = Dur(V) (5.1)

Z Dur(V )

where Dur(Vi) is the measured duration of the ith vowel (Vi) in the sentence, and pDur(V)

is the average duration of Vi, computed from the entire corpus. The histograms of the raw

duration, logarithmic duration, and the normalized duration for the four stress categories

are plotted in Figure 5-2. The raw duration shows multiple peaks in the histograms. This

is possibly due to speaking rate differences (slow vs. fast speech), because the normalized

duration distribution does not show such characteristics. On average, stressed vowels have
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Figure 5-2: Histogram distributions of duration features for different stress classes in the
JUPITER data. The normalized duration corresponds to the raw duration measure normal-
ized with respect to a sentence-level speaking rate.

longer duration than unstressed full vowels, and reduced vowels are, as expected, the short-

est. The large overlap among the full vowel categories is partially due to intrinsic duration

interferences. We will address this issue in Section 5.4.

Pitch

The FO contour of each utterance is first normalized by a sentence-level average to reduce

variations caused by speaker pitch differences. Four FO-related measurements are examined,

including the maximum FO value within the syllable nucleus, the average and slope of the

FO contour of the nucleus vowel (similar to those of Mandarin tone contours described in

Section 4.3.1), and the average probability of voicing, which is available via the voicing
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estimation module of our pitch detection algorithm. We expect the average probability of

voicing to be higher for stressed vowels than for unstressed and reduced vowels.

Figure 5-3 shows the histograms of these features for each lexical stress category. Con-

trary to some previous findings (Lea 1980; Waibel 1988), both the average and the max-

imum F0 values show very small differences among different stress classes. The F slope

histograms show that the primary stress vowels are more likely to rise and less likely to fall

than the other classes, possibly because of their function in signaling pitch accents. The

voicing probability decreases with the "stressedness" of vowels as we expected. The overlap

of pitch features is even more severe than that of energy and duration features.
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5.3.2 Classification Experiments

The data analysis indicates that the distributions of most prosodic features differ for dif-

ferent lexical stress classes; however, the extent of overlap among classes is also significant.

In this section, we use classification experiments to determine which set of features is most

informative for modeling lexical stress. We will also include spectral tilt and MFCC features

in the classification experiments, following the examples in (Sluijter and van Heuven 1996;

Jones and Woodland 1994). Spectral tilt is characterized by the average logarithmic spectral

energy in four frequency bands (in Hz): [0 500], [500, 1000], [1000, 2000], and [2000, 4000].

The MFCC features include 6 MFCCs averaged over the vowel duration.

For each stress feature vector, a principle component analysis is first applied, and mix-

tures of diagonal Gaussians are used to model the distribution of the feature vector for each

lexical stress model. We trained models for all four lexical stress categories described in the

previous section, because there seem to be some differences among all classes, and there

are plenty of training data for each class. We listed both the four-class and the two-class

classification accuracies for comparison. The two-class results are obtained by mapping

the reduced, unstressed, and secondary stress classes into one "unstressed" class. Maxi-

mum likelihood (ML) classification is used, because we are interested to know how well the

features can perform without the assistance of priors.

Table 5-6 summarizes the classification accuracy using each individual prosodic feature.

As expected from the data analysis, the energy features performed the best, while the

maximum and average pitch features yielded the poorest results. We noticed that the

normalized duration (with respect to a sentence-level speaking rate) did not outperform the

unnormalized duration measurements at stress classification, possibly due to large intrinsic

duration interferences. We found the best-performing single feature to be the integral of

energy over the syllable nucleus vowel, which combines the average energy and the duration

information. This is consistent with the findings of a few previous studies (Waibel 1988;

van Kuijk and Boves 1999).

Based on the results of individual features, we tried classification experiments using var-

ious combinations of features, including both the prosodic and the spectral measurements,

as summarized in Table 5-7. The best set of prosodic features for stress classification consists
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(1) integral of energy
(2) maximum energy
(3) average energy

(4) normalized duration
(5) raw duration

(6) logarithmic duration

(7) maximum pitch

(8) average pitch
(9) pitch slope
(10) avg. prob. voicing

Table 5-6: Vowel stress classification accuracy
feature on the JUPITER development data.

iracy (%) A
ur-class)

47.4
47.6
45.7

37.2
36.6
41.8

32.8
33.1
35.4
43.9

(in percentage)

-curacy (%)
two-class)

71.0
69.9
70.3

62.4
62.9
61.1

56.2
52.9
64.0
62.2

of each indiv

I
idual prosodic

of the integral of energy, raw duration, pitch slope, and the average probability of voicing.

It is interesting to note that these features do not require any normalization with regard to

measurements outside of the segment itself, nor do they require explicit knowledge of the

phonetic identity. Adding spectral features improved stress classification performance, pos-

sibly because they capture the correlations between lexical stress and broad phone classes.

The highest accuracy was achieved by combining MFCC features with the best prosodic

feature set.

5.4 Speech Recognition Experiments

From our data analysis and classification experiments, it seems that prosodic features have

only limited capability at distinguishing different lexical stress categories in spontaneous

speech. In this section, we examine if scoring for lexical stress patterns in the recognizer

hypotheses using these models can improve speech recognition performance on the JUPITER

domain. We also try to refine the models by taking into account the intrinsic prosodic

differences among nucleus vowels.

The four lexical stress models are incorporated into the first-pass Viterbi search using

the same framework developed for Mandarin tones; except in this case, no phonetic segment
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Feature Combination Accuracy (%) Accuracy (%)
(four-class) (two-class)

(1)+(5)+(9)+(10) 48.5 73.0
(1)+(6)+(9)+(10) 48.3 72.9
(1-3)+(5-10) 49.4 72.6
(11) sub-band energy (4 features) 44.0 68.3
(12) MFCCs (6 features) 51.4 73.9
(1)+(5)+(9)+(10)+(11) 52.4 74.6
(1)+(5)+(9)+(10)+(12) 55.9 77.0
(1)+(5)+(9)+(10)+(11)+(12) 55.9 76.9

Table 5-7: Vowel stress classification accuracy (in percentage) of various combinations of
features on the JUPITER development data. The combinations of features are described by
feature indices as defined in Table 5-6 and this table.

Configuration 11 Sub. I Del. I Ins. I WER UER

Baseline 4.3 1.6 1.7 7.6 20.2

+ Stress models 4.1 1.6 1.5 7.2 19.6

Table 5-8: Speech recognition error rates (in percentage) on the JUPITER development data.
"WER" is the word error rate, which is the sum of the substitution, insertion, and deletion
error rates. "UER" is the utterance error rate.

models are used. Only syllable nucleus vowels are scored by the lexical stress model: for

segments that do not carry lexical stress, such as consonants and silences, the stress scores

are simply ignored (set to be zero). A transition weight is used with each applied stress

score to avoid bias toward hypothesizing fewer stressed segments.

We found that the basic lexical stress model improved the optimized baseline speech

recognition performance on the development data. In addition, the gain using only prosodic

features was greater than when MFCC features were also used, even though the stress

classification results implied otherwise. This is likely due to redundancy with the boundary

models, in which MFCC features are already used. The baseline word error rate was reduced

from 7.6% to 7.2%, a 5.3% relative reduction. The details are summarized in Table 5-8.

There also exist significant differences among the intrinsic prosodic values of different

phones. For example, the duration of the vowel /ih/ (as in city) is inherently shorter than
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Configuration Sub. Del. Ins. WER UER Significance

Baseline 5.8 2.9 2.2 10.9 24.8
+ Stress models 5.6 2.7 2.0 10.3 24.0 < 0.001

Table 5-9: Speech recognition error rates (in percentage) on the test data. "WER" is the
word error rate, which is the sum of the substitution, insertion, and deletion error rates.
"UER" is the utterance or sentence error rate. The significance level between the baseline
performance and the improved performance is also listed.

that of /ey/ (as in Monday), regardless of the stress properties. By grouping all vowels into

a few stress categories, the intrinsic values contribute to large variances in the stress models,

causing extensive overlap among the distributions. There are two approaches to improving

the models: (1) normalizing the prosodic measurements by vowel intrinsic values, and (2)

building separate models for different vowels. We experimented with the second approach,

because there are plenty of training data in our corpus. One extreme is to build prosodic

models for the complete inventory of vowels with different stress properties. However, the

speech recognition performance with the new set of models (of significantly larger size) was

virtually unchanged. We also tried less refined categories, by grouping vowels with similar

intrinsic durations into classes. However, the changes to speech recognition results were

also negligible.

Puzzled by these results, we performed an experiment in which all vowels were mapped

into one class to form a single model for "vowel-like". The recognition performance was

virtually the same as using the four-class models. This seems to suggest that the gain

by using prosodic models is mainly achieved by eliminating implausible hypotheses, e.g.,

preventing vowel/non-vowel or vowel/non-phone confusions, rather than by distinguishing

the fine differences among various stress and vowel classes.

We applied the basic prosodic model on the test data and obtained similar improvements.

The detailed recognition results are summarized in Table 5-9. The significance level of the

matched pairs segment word error test between the baseline performance and the improved

performance is less than 0.001. This implies that the improvements by using prosodic

models, although small, are statistically significant.

The recognition experiments described so far did not use any prosodic models to score
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for segments other than vowels. This is due to the consideration that some prosodic features

are not well-defined for all phones. For example, the durations of various silence models,

such as those used for modeling the pauses before and after an utterance or between words,

are somewhat arbitrary; the durations of fricatives and affricates are also likely to have

large variances. Furthermore, FO is simply not defined for unvoiced sounds. We believe

that it is more advantageous to score for only a subset of phones for which the prosodic

measurements are "meaningful" and more informative. If we blindly build prosodic models

for all phones, the scores for non-vowel segments are likely to be very noisy (due to noisy

prosodic measurements), which will dilute the more informative scores for vowels. We

conducted a recognition experiment to examine this hypothesis, in which prosodic models

for all phones were trained and applied in the recognition search. We found that the

recognition performance was worse than that in the baseline system. This suggests that the

incorporation of noisy prosodic scores for non-vowel segments actually increased confusions

during the recognition search.

5.5 Summary

In this chapter, we tested the approach of scoring the lexical stress patterns of recognizer

hypotheses to improve automatic speech recognition performance. The motivation is that

substitution, insertion and deletion errors sometimes result in mismatched stress charac-

teristics between the hypothesized syllable nucleus and its acoustics; thus, the additional

constraints provided by the stress models can improve speech recognition performance by

reducing such errors.

Towards this goal, we first examined the correlation of various pitch, energy, and du-

ration measurements with lexical stress on a large corpus of spontaneous utterances in the

JUPITER domain. We found that the distributions of most prosodic features differed for dif-

ferent lexical stress classes; however, the extent of overlap among classes was also significant.

We then performed classification experiments to identify the most informative features for

lexical stress. The best single feature for stress classification was the integral of energy over

the nucleus vowel, while the best set of prosodic features consists of the integral of energy,
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raw duration, pitch slope, and the average probability of voicing. We observed that the

best set of prosodic features were completely computable from information extracted from

the segmental region alone. It is also convenient that F difference performed better than

F0 average; thus, the sentence-level normalization is not required. Higher stress classifica-

tion accuracy was achieved by using spectral features (MFCCs) in addition to the prosodic

features. In the recognition experiments, however, it was found that the gain using only

prosodic features was greater than when MFCC features were used.

We integrated the stress model into the recognizer first-pass Viterbi search. We found

that using a simple four-class stress model achieved small but statistically significant gain

over the state-of-the-art baseline performance on JUPITER. However, more refined models

taking into account the intrinsic prosodic differences failed to improve the performance fur-

ther. Our recognition results of a one-class (including all vowels) prosodic model suggest

that the gain obtained by using prosodic models was mainly due to the elimination of im-

plausible hypotheses, rather than by distinguishing different stress and segmental classes.

This also explains the discrepancy between the recognition and stress classification experi-

ments regarding the choice of optimal features, i.e., the improved recognition performance

was not due to better classification of stress subcategories.

Although using one-class prosodic model performed as well as using more refined stress

models in improving speech recognition performance in our experiments, the ability to reli-

ably classify the underlying stress of vowels has many other potential uses in constraining

a recognition system. It is known that the acoustic realization of a stressed vowel tends to

be more distinctive than that of its unstressed counterpart, and consonants in pre-stressed

position are also known to be more clearly enunciated (Lehiste 1970). In addition, phono-

logical variations for stressed syllables are more limited compared to unstressed ones (Lea

1980). For example, phoneme /t/ is less likely to be flapped at pre-stressed position. We

can build more accurate acoustic models for stressed vowels and pre-stressed consonants,

and improve phonological rules by include stress as a factor in the conditional probability of

alternative realizations. These more sophisticated acoustic models and phonological rules

can be applied conditioned on the outcome of stress classification for the syllable nucleus

vowels for improved speech recognition performance.
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Previous experiments have found that adding phonetic segment models in addition to

boundary models did not improve recognition performance, unless tri-phone models were

used (Str6m et al. 1999). However, in our experiments, the addition of very simple prosodic

segment models was able to reduce the baseline word error rate by about 5.5%. This seems

to suggest that prosodic features, which are not accessible to the boundary models, offer

greater hope for independent information to improve recognition performance. We have

also found that it is more advantageous to apply prosodic constraints selectively, i.e., only

on phones for which the prosodic measurements are "meaningful" and more informative.

We have developed a mechanism which is able to score for a subset of phones, and to

incorporate these scores, normalized appropriately, into the first-pass recognition search.
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Chapter 6

Recognition Confidence Scoring

Enhanced with Prosodic Features

Recognition confidence scoring concerns the problem of evaluating the quality of the recog-

nizer outputs, so that proper actions can be taken by a dialogue system depending on the

reliability of the recognition hypotheses. Confidence scoring can naturally be formulated

as a two-way classification or detection problem, i.e., whether a recognizer hypothesis is

correct or not. The classification can be done on the utterance level, to determine whether

to accept or reject a sentence hypothesis. It can also be done on the more refined word

level, so that the dialogue system can be more specific about which words in the sentence

hypothesis might be problematic. Instead of accepting or rejecting the whole utterance,

the system can either request confirmation explicitly about the less reliable parts, or ignore

those parts if a coherent meaning can be derived from the rest of the utterance hypothesis.

A probabilistic implementation of such a framework has been developed for the JUPITER

weather system by Hazen et al. (2000a, 2000b) at the Spoken Language Systems group.

In this chapter, we examine the approach of using prosodic cues to improve recognition

confidence scoring on both the utterance level and the word level. Prosodic information

can potentially assist the detection of speech recognition errors for several reasons. First,

speech recognition performance depends on speaker characteristics and speaking style, or

more generally, the amount of similar training data; and such properties are often correlated
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with distinctive prosodic features. For example, the recognition performance for female

and child speech is significantly worse than for male speech in the JUPITER system (Glass

et al. 1999); and hyperarticulated speech is also likely to cause inferior speech recognition

performance (Soltau and Waibel 1998). Female and child speakers typically have higher

FO than male speakers; and hyperarticulated speech is characterized prosodically by slow

speaking rate, increased pitch and loudness, etc. Second, there are prosodic cues to speech

artifacts, which are also a significant source of recognition errors. For example, when a

user calls JUPITER from a noisy environment, the background can also be picked up by the

telephone and recorded with the speaker utterance. It is usually difficult for the recognizer

to distinguish the background speech from the user speech. However, the energy of the

background speech should be much weaker compared to that of the user utterance. Thus, the

word confidence model can utilize the energy cues to improve accept/reject decisions in this

case. Third, we expect that recognition errors sometimes result in mismatches between the

hypotheses and the prosodic measurements. For example, insertion and deletion errors are

likely to result in very short or long hypothesized phones, which are revealed by durational

cues. In the previous chapter, our recognition experiments have suggested that prosodic

models can decrease the likelihood of implausible hypotheses. We hope that "unusual"

prosodic measurements are sometimes indicative of speech recognition errors, thus, prosodic

cues can be used to improve the detection of erroneous word hypotheses in the confidence

experiments.

In the following sections, we first introduce previous work done by Hirschberg and

colleagues on using prosodic cues in utterance-level confidence scoring. Then we describe

the basics of the confidence scoring framework used in our experiments. After that, we

report the utterance-level and word-level confidence scoring experiments in detail. Finally,

we conclude with a short discussion and summary.

6.1 Related Research

Using prosodic information to predict speech recognition performance has been explored by

Hirschberg et al. (1999, 2000) on a couple of recognition systems and application domains.
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The main motivation is that there exist prosodic cues to utterances that are typically not

well modeled by a speech recognizer's training corpus, such as high pitch, too loud, too

long, etc. In addition, a speaker often hyperarticulates when trying to correct system er-

rors (Oviatt et al. 1996), and hyperarticulated speech is subsequently more likely to cause

recognition errors by the system (Soltau and Waibel 1998). Thus, the prosodic character-

istics of an utterance are likely to correlate with the performance of the speech recognition

system on this utterance. Eight prosodic features were examined by the authors as potential

cues to predict system errors in recognizing or understanding each user turn or utterance.

These features include maximum and mean FO values, maximum and mean energy values,

total duration, length of the pause preceding the turn, number of syllables per second in the

turn (tempo), and percentage of silence within the turn. It has been found that there exist

statistically significant differences in the mean values of a subset of these prosodic features

between correctly recognized vs. misrecognized user turns, although the features in the

subset vary for the two systems used in the studies. These prosodic cues were used by a

rule-based classifier to perform accept/reject decisions on recognition outputs, in conjunc-

tion with other information such as acoustic confidence score, language model, recognized

string, likelihood score, and system prompt. The results seem to suggest that the effi-

cacy of prosodic features depends highly on the quality of the recognition system. In the

system which used "older" recognition technology and "poorer performing" acoustic and

language models, the prosodic features achieved a large improvement over using acoustic

confidence alone (over 50% reduction in classification errors), and the best-performing rule

set included prosodic features. However, in the system which was better trained for the

recognition task, adding prosodic features improved only modestly over acoustic confidence

features alone (less than 7% error reduction).

In our investigation, we first test if the approach of using prosodic cues in utterance-level

confidence scoring can be generalized to the JUPITER system, which has been well-trained

on a large corpus of speech data. We found that there are differences in both the means

and the variances of some prosodic measurements between correctly and incorrectly recog-

nized utterances, with the variances generally larger for misrecognized utterances. This is

consistent with the intuition that "outliers" are more likely to be incorrectly recognized.
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Since the confidence scoring module in our experiments is based on a Bayesian classification

framework, we use an information theoretic measure (namely, the mutual information be-

tween a feature and the correct/incorrect labeling) to evaluate the effectiveness of prosodic

features. We will also perform experiments comparing the recognition error detection per-

formance using only features derived from the recognizer outputs, such as acoustic scores,

with that obtained when the feature set is augmented with additional prosodic features.

We also examine if prosodic features can be used to better distinguish correctly and in-

correctly recognized words. Although the methodology is quite similar to that used in the

utterance-level confidence scoring, the underlying assumptions are somewhat different, as

described previously. Mutual information measures and word-level confidence experiments

will be used to test this approach.

6.2 Experimental Background

In this section, we provide some background knowledge for the experiments described in

this chapter, including the basics of the confidence scoring module, the speech data, and

the labeling of the data. The details of the confidence scoring framework can be found

in (Kamppari and Hazen 2000; Hazen et al. 2000a; Hazen et al. 2000b).

6.2.1 Experimental Framework

The confidence scoring module developed by Hazen et al. is based on a Bayesian formulation.

For each recognition hypothesis, a set of confidence measures are computed to form a

confidence feature vector. The feature vector is reduced to a single dimension using a simple

linear discrimination projection. Distributions of this raw confidence score for correct and

incorrect hypotheses are obtained from the training data. A probabilistic confidence score

is then obtained using maximum a posteriori probability (MAP) classification, with the

raw confidence score as the input. The threshold of the MAP log likelihood ratio can be

varied to set the operating point of the system to a desired location on the receiver-operator

characteristic (ROC) curve, to balance between high detection rate and low false alarm

rate. In our experiments, the minimum classification error rate is chosen as the desired
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operating point for both the utterance-level and word-level recognition error detection.

Hazen's confidence models used 15 features for detecting utterance-level recognition

errors, and 10 features for detecting word-level recognition errors. These features try to

measure whether the input speech is a good fit to the underlying models used by the

system, as well as whether there are many competing hypotheses that have similar scores.

For example, among the 15 utterance features, the total score (i.e., the sum of acoustic,

language model, and pronunciation model scores) for the top sentence hypothesis is used to

measure the match between the hypothesis and the models; while the drop in total score

between the top hypothesis and the second hypothesis in the N-best list tries to measure

the "distance" between competing hypotheses. The complete inventory of the 25 utterance

and word features is listed in Appendix A for reference. These features will be referred to

as ASR features in the rest of this chapter, because they come from the automatic speech

recognition (ASR) system. The ASR features are used to train baseline utterance and word

confidence models, to be compared with confidence models using additional prosodic cues.

The ultimate evaluation criterion for the confidence scoring module is the understanding

performance. However, since we do not address the problem of incorporating the confidence

scores into a dialogue system, we will only evaluate the classification performance. In

particular, the figure of merit (FOM), which is the area under the ROC curve, and the

minimum classification error rate are used for evaluation.

6.2.2 Data and Labeling

We have provided a description of various data sets in the JUPITER corpus in Table 5-2.

The confidence models should be trained using a set of data that is independent of the data

used for training the recognizer, because the models are used to evaluate the recognizer's

performances on unseen data. In our experiments, the utterance and word confidence models

are trained on the "all-test-A" data set. In addition, the "allitest_3" set is used as held-out

data for feature selection, and the "all-test_2" set is used for testing.

The data must be labeled for training and testing the confidence models. Each utterance

is first passed through a recognizer to generate a 10-best list, because some utterance-

level ASR features depend on the information in the N-best outputs. The labeling of
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Utterance Word
Set # Cor. # Incor. ER # Cor. # Incor. ER

Training 1,602 866 35.1% 9,907 2,017 16.9%
Development 1,050 811 43.6% 6,010 1,629 21.3%
Test 1,415 920 39.4% 9,013 1,795 16.6%

Table 6-1: Number of correct (cor.) and incorrect (incor.) hypotheses on the training,
development, and test data for the confidence experiments. The error rate (ER) is the
number of incorrect hypotheses divided by the total number of hypotheses. The error rate
for the utterance hypotheses corresponds to the sentence error rate. The error rate for
the word hypotheses is different from the recognition word error rate, because the deletion
errors are not counted.

the utterance hypotheses is somewhat arbitrary and depends on the purpose. In Hazen's

experiments, the goal of the utterance confidence scoring is to reject very poorly recognized

utterances, because the word-level confidence scoring can deal with hypotheses with partial

errors. Thus, fairly complex criteria are used to label the utterance hypotheses. We simply

mark an utterance as incorrectly recognized if there are any errors in the best sentence

hypothesis. This follows the example in Hirschberg's experiments so that the results of the

utterance-level confidence experiments can be compared. The labeling for the word-level

hypotheses is very straightforward. Correctly recognized words in the hypothesis are labeled

as correct, and incorrectly recognized words are labeled as incorrect. Only words in the top

sentence hypothesis are used for training. Table 6-1 summarizes the number of correct

and incorrect utterance and word hypotheses on the training, development, and test data

sets. Notice that word deletion errors do not contribute to incorrect word hypotheses. The

overall error rates on these data sets are much higher than on clean in-vocabulary speech,

due to the inclusion of utterances with out-of-vocabulary words and artifacts.

6.3 Utterance-Level Confidence Scoring

6.3.1 Utterance-Level Prosodic Features

We have examined twelve utterance-level prosodic features as potential candidates for pre-

dicting speech recognition errors. Three features are related to F, two features are related
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to energy, and the remaining seven features capture various kinds of timing information of

a user utterance. The details of these features are listed as follows:

" utterance-mean FO: the average FO of all vowels in an utterance.

" utterance maxFO: the maximum FO of all vowels in an utterance.

" utterance-meanpv: the average probability of voicing of all vowels in an utterance.

" utterance-mean-energy: the mean RMS energy of all vowels an utterance.

" utterance-max-energy: the maximum RMS energy of all vowels an utterance.

" pause1_duration: the duration of silence before the utterance in a recording. This

is to indicate if an utterance is truncated at the beginning because the speaker started

speaking before the recording started.

" pause2_duration: the duration of silence after the utterance in a recording. This is

to indicate if an utterance is truncated at the end due to end-point detection errors.

" utterance-duration: the duration of an utterance (excluding anterior and posterior

pauses).

" utterance-percent-silence: the percentage of silence (as indicated by sum of inter-

word pause durations) within an utterance.

" utterance-speaking-rate: the utterance speaking rate as defined in Equation 5.1,

which is computed as the sum of expected vowel durations divided by the sum of

measured vowel durations in an utterance.

" utterance-num-syllables: the number of syllables in an utterance.

" utteranceAempo: the number of syllables in an utterance divided by the utterance

duration.
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6.3.2 Feature Selection

We are not sure which of the utterance-level features described in the previous section

contribute substantial information to the detection of utterance hypothesis errors, and how

they compare to the ASR features. In (Hirschberg et al. 1999), a T-test was used to

determine if the means of prosodic features differed statistically for correctly and incorrectly

recognized user turns. Our preliminary analysis revealed that there were differences in both

the means and the variances of the prosodic measurements between the two classes, with the

variances generally larger for misrecognized utterances. Given that the confidence scoring

module uses a probabilistic framework, we believe that the mutual information measure

will be a good indication of the effectiveness of each confidence feature. In the following,

we first give a brief introduction of the concept of mutual information. We then compute

the mutual information between each utterance feature and the utterance "correctness"

labels. Finally we describe the feature selection procedure based on the mutual information

ranking of the features.

Mutual Information

For two random variables X and Y with a joint probability mass function p(x, y) and

marginal probability mass functions p(x) and p(y), the mutual information I(X; Y) is de-

fined as:

I(X;Y) = 1 p(x,y) log p(xy) (6.1)
xXGXyCY p(x) p(y)

It can be proven that

I(X; Y)= H(X) - H(XIY) (6.2)

where H(X) is the entropy of the random variable X, and H(XjY) is the conditional entropy

of X given Y. Thus, the mutual information can be interpreted as the relative reduction of

uncertainty of X due to the knowledge of Y, and vise versa. The mutual information will

have a value of 0 if X and Y are independent of each other.
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Utterance-Level Feature Ranking

Assume that X is the correct/incorrect labeling of a hypothesis, and Y is an utterance

feature. To compute the mutual information between X and Y, we need to obtain the joint

and marginal distributions of X and Y.

Although most of the utterance confidence features used in our study are continuously

distributed, we can use the histograms to approximate the probability mass functions. The

histogram distributions of a feature for correct and incorrect utterance hypotheses, i.e.,

p(ylx = correct) and p(ylx = incorrect), can easily be obtained from the training data.

The joint distribution can then be computed from the conditional distributions as follows:

p(x, y) = p(ylx = correct)p(x = correct) + p(ylx = incorrect)p(x = incorrect) (6.3)

The priors of X, p(x), and the histogram distribution of the feature Y, p(y), can be directly

obtained from the training data. Thus, we can compute the mutual information according

to Equation 6.1.

Table 6-2 summarizes the mutual information between each utterance feature and the

utterance correctness label. The features in the table are ordered by the mutual information

measure, and the prosodic features are indicated in bold fonts. As shown in the table,

the features with high mutual information are mostly from the ASR system. This is not

surprising, because the ASR features are directly linked to the performance of a recognition

system. Nevertheless, some prosodic features also provide significant information about the

labels. In particular, the percentage of silence within an utterance, average and maximum

FO values, utterance duration and tempo are among the "best" prosodic features. Figure 6-

1 shows the histogram distributions of the percentage of silence feature and the mean

FO feature for the correct and incorrect classes. It seems that utterances with a high

percentage of internal silence are more likely to be incorrectly recognized. The internal

pauses are usually associated with hesitation, emphasis, or hyperarticulation, which are not

typical in the JUPITER training data. Utterances with high mean FO are also more likely

to be incorrectly recognized. This is consistent with the recognition results that female
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Feature Mutual Information

total-drop .409
average-purity .296
frac-high-purity .247
acoustic-score-per-bound .243
total-score-per-word .195
lexical-score-per-word .177
nbest-frac-high-purity .171
lexical-drop .161
nbest-average-purity .157
total-score .145
utterance-percentage-silence .144
acoustic-score .117
lexicalscore .114
utterance-meanFO .099
utterance-maxFO .092
utterance-total-duration .092
utteranceAempo .090
utterance-max-energy .082
utterance-mean pv .075
acoustic-drop .075
pauselduration .070
utterance-speaking-rate .068
num-words .056
utterance-mean-energy .054
pause2-duration .049
utterance-num-syllables .043
nbest .006

Table 6-2: Ranking of utterance-level confidence features by mutual information.
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Figure 6-1: Histogram distributions of two example prosodic features for the correctly and
incorrectly recognized utterances.

and child speech have considerably higher error rates. There are also a few incorrectly

recognized utterances with measured mean FO of 0. This is because there are no vowels in

the hypothesis, which is a clear indication that the hypothesis is likely to be wrong.

Feature Selection Procedure

It is desirable to obtain the performances of all feature combinations on development data to

find the optimal feature set. However, the computation requirement is tremendous, because

N features can lead to 2 N - 1 feature combinations. Instead, we pick only features that

provide substantial information about the labels, i.e., those with high mutual information

with the correct/incorrect labeling of the utterance hypotheses. Specifically, we rank-order

the utterance features according to the mutual information measure, and add each feature

incrementally into the feature set. In this way, at most N feature combinations need to

be tested. The utterance confidence model using the subset of features is trained on the

training data, and tested on the development data. The feature set that yields the best

performance on the development data is chosen as the final feature set. The underlying

assumption of this process is that, if a feature can not improve the performance, then any

feature with lower mutual information can not improve the performance either. This is only

an approximation, because the features are generally not independent of one another.
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System FOM 11 MER (%) I Significance Level

Baseline .900 16.9
+ Prosodic Features .912 15.6 .018

Table 6-3: Figure of merit (FOM) and minimum classification error rate (MER) for the
utterance-level confidence scoring with only ASR features and with ASR and prosodic fea-
tures combined. The McNemar significance level between the two classification results is
also listed.

6.3.3 Experimental Results

We obtained the performance of utterance-level accept/rejection decisions with only ASR

features and with ASR and prosodic features combined. The features are selected using

the procedure described in the previous section. In the experiment which used only ASR

features, we found that all 15 ASR features improved the performance on the development

data when added incrementally into the feature set. In the experiment which used both

ASR and prosodic features, we found that the top 25 features (out of 27 total features) in

Table 6-2 improved the performance on the development data when added incrementally.

Figure 6-2 plots the ROC curves of the utterance-level classification experiments on

the test data. As shown in the figure, the addition of prosodic features pushed the ROC

curve towards the upper-left corner slightly. This means that the correct acceptance rate

is improved if the false acceptance rate is kept the same, or, the false acceptance rate is

reduced if the correct acceptance rate is maintained. The figure of merit and the minimum

classification error rate are summarized in Table 6-3 for the two system configurations.

The McNemar significance level between the two classification results is 0.018, thus, the

improvement is statistically significant given a 0.05 threshold.

6.4 Word-Level Confidence Scoring

6.4.1 Word-Level Prosodic Features

We have examined 9 word-level prosodic features as potential candidates for predicting

word-level speech recognition errors. Three features are related to FO, two features are
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Figure 6-2: ROC curves of utterance-level speech recognition error detection using only
ASR features and using both ASR and prosodic features.

related to energy, and the remaining four features capture various timing information of a

hypothesized word.

" word-meanFO: the average FO of all the vowels in a word.

" word-maxFO: the maximum FO of all the vowels in a word.

" word-average _pv: the average probability of voicing of all the vowels in a word.

" word -mean -energy: the difference between the utterance maximum energy and the

mean RMS energy of all vowels in a word.

" word -max -energy: the difference between the utterance maximum energy and the

maximum RMS energy of all vowels in a word.

" word-speaking -rate: the word speaking rate, computed as the sum of the expected

vowel durations in a word divided by the sum of the measured vowel durations in the

word.
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* word nurnsyllables: the number of syllables in a word.

" word-duration: the duration of a word.

" after-word-pause-duration: duration of pause after a word.

6.4.2 Word-Level Feature Ranking

Table 6-4 summarizes the mutual information between each word feature and the word

correctness label. The features in the table are ordered by the mutual information, and the

prosodic features are indicated in bold fonts. The word energy features, which have been

normalized by the maximum utterance energy, are among the "best" prosodic features. This

is possibly because they are good indications of background speech, as discussed previously.

Similar to the utterance features, the top word features are all ASR features. However,

prosodic features compare favorably to some ASR features; and more importantly, they

provide independent information, and hence, are more likely to bring additional gain.

6.4.3 Experimental Results

We obtained the performance of word hypothesis error detection with only ASR features

and with ASR and prosodic features combined. The features are selected using the same

procedure as for utterance features. In the experiment which used only ASR features, we

found that all 10 ASR features improved the detection performance on the development

data when added to the feature set. In the experiment which used both ASR and prosodic

features, only the top 13 features in Table 6-4 improved detection performance on the

development data when added incrementally to the feature set.

Figure 6-3 plots the ROC curves of word-level classification experiments on the test

data. As shown in the figure, the addition of prosodic features also pushed the ROC curve

towards the upper-left corner slightly. Table 6-5 summarizes the FOM and MER for the

two system configurations. The McNemar significance level between the two classification

results is 0.0005, which implies that the difference is statistically significant.
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Feature Mutual Information

utt-score .264
frac-nbest .164

bound-diff-from-max-mean .161
bound-score-mean .152
bound-score-min .113
word-max-energy .043
word-mean-energy .043
bound-norm-score-mean .043
word speaking-rate .040
word-meanFO .040
word-mean-pv .038
word-maxiFO .033
after-word-pause-duration .032
bound score-std-dev .031
word-duration .025
num-bounds .012

word num-syllables .006
num-nbest .001
bound-likelihood-mean .0003

Table 6-4: Ranking of word-level confidence features by mutual information.
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Figure 6-3: ROC curves of word-level speech recognition error detection using only ASR
features and using both ASR and prosodic features.

6.5 Summary

In this chapter, we explored the use of prosodic cues in recognition confidence scoring. Our

utterance-level confidence experiment results are generally consistent with previous work

by Hirschberg and colleagues. We observed that prosodic cues achieved small but statis-

tically significant improvement in the detection of utterance hypothesis errors. There are

two potential explanations for the relatively smaller gain. First, the user behavior in the

two cases seems to differ. The data used in the experiments in (Hirschberg et al. 1999)

contain a high percentage of hyperarticulated speech due to high recognition error rates in

the dialogue system used for data collection. These hyperarticulated user turns are likely

to be misrecognized; thus, prosodic cues are effective for detecting such problems due to the

distinctive prosodic characteristics of hyperarticulation. On the other hand, the JUPITER

recognizer has been trained on large amounts of speech data and performs relatively well

on in-domain queries. Most user queries are spoken with "normal" prosody; thus, prosodic

cues are less indicative of the recognizer performance. However, prosodic cues can help
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System FOM MER (%) I Significance Level

Baseline .913 10.9
+ Prosodic Features .925 10.2 0.0005

Table 6-5: Figure of merit (FOM) and minimum classification error rate (MER) for the
word-level confidence scoring with only ASR features and with ASR and prosodic features
combined. The McNemar significance level between the two classification results is also
listed.

identify female or child speech, which usually have inferior performance to male speech un-

der the JUPITER recognizer. Second, the confidence classifier model used in our experiments

is relatively simple. In particular, the classifier is only able to deal with numerical features;

in addition, all features are reduced to a one-dimensional feature by a linear discrimination

projection, which implies a linear decision boundary in the feature space. We expect the

prosodic cues to be more effective if the classifier can pay more attention to "outliers",

because many prosodic features have a "wider" distribution for incorrectly recognized ut-

terances than for correctly recognized utterances. The same analysis also applies to the

word-level experimental results.

The best utterance-level prosodic feature (as indicated by the mutual information mea-

sure) is the percentage of silence in the utterance; and utterances with a high percentage of

silence are more likely to be incorrectly recognized. This is in direct contrast to results ob-

tained in (Hirschberg et al. 2000), where the correctly recognized turns have a significantly

higher percentage of internal silence. This seems to suggest that the prosodic characteris-

tics of correctly and incorrectly recognized utterances could have different characteristics

in different systems. However, we believe that the principle of looking for prosodic cues to

recognition errors is generally applicable.

The framework for word-level confidence scoring can be generalized to perform phrase

boundary detection. We will explore this possibility in detail in Section 8.2 when discussing

future work.
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Chapter 7

Characterization of English

Intonation Contours

Research on using intonation in the linguistic analysis of spoken utterances has been sparse.

Among the few inquiries reported in the literature, most methods rely on an intermediate

prosodic transcription to serve as a bridge between the acoustic realization of the intonation

and the syntactic/semantic structure of the utterance (Ostendorf et al. 1993; Kompe et al.

1997). These methods need to address several difficult issues. First, prosodic transcription,

e.g., using ToBI convention for English (Silverman et al. 1992), is a challenging and time-

consuming task, which makes it impractical to transcribe large speech corpora manually.

Second, automatic recognition of intonational events (especially pitch accents, phrase tones,

etc.) from the acoustic signal is difficult and error-prone (Ostendorf and Ross 1995). This

also hampers the development of reliable methods to perform automatic prosodic transcrip-

tion. Third, the mapping between prosodic events and the syntax/semantics of an utterance

is still very poorly understood, except for a general correspondence between prosodic phrase

boundaries and syntactic boundaries. For this reason, most studies have focused on using

prosodic phrase boundary locations to resolve syntactic ambiguities (Ostendorf et al. 1993;

Hunt 1995) or to improve parsing efficiency (Kompe et al. 1997). Although there have

been efforts towards automatically describing and classifying intonation contours (Grigoriu

et al. 1994; Jensen et al. 1994; Ostendorf and Ross 1995; ten Bosch 1995), their use in
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linguistic analysis or speech recognition has been limited, largely due to the missing link

with linguistic identities.

We are interested in developing a framework to model the intonational aspects of certain

syntactic/semantic structures in English utterances, without using intermediate prosodic

transcriptions. There are two important characteristics in our proposed approach. First,

we want to build acoustic models directly for certain linguistic components in an utterance,

without using prosodic labels as an intermediate layer. In this way, we can avoid the

labor-intensive prosodic labeling process as well as the necessity of predicting prosodic

labels from linguistic analyses. We can use data-driven methods to derive distinct FO

patterns/categories for the linguistic components in our modeling framework, which can be

regarded as analogous to prosodic labels. Second, we only model part of the prosodic space

of an utterance, in particular, phrases that bear important communicative functions. We

believe that such an approach is more robust than trying to characterize the intonation of

an entire utterance, especially for spontaneous speech. This is based on the observation

that spontaneous speech consists of "islands of acoustic reliability" surrounded by casually

enunciated "fillers". The "fillers" are likely to contribute "noise" if they are included in

the modeling framework. We envision that the phrase models can potentially be applied

to score the intonation patterns of recognizer hypotheses, which can in turn be used to

resort the N-best outputs for improved recognition accuracy or to support the rejection of

erroneous hypotheses.

In this chapter, we examine the feasibility of such a framework by performing a pilot

study on characterizing the pitch contours of some selected English phrases in the JUPITER

domain. As a starting point, we select five common types of phrases in the JUPITER corpus,

such as "what is", "tell me", city names, etc., to carry out our study. These phrases also

carry important information in the JUPITER domain, so that they are likely to have a signif-

icant impact on the system performance. We will develop acoustic models to characterize

the intonation contours of these phrases, and seek to answer the following questions in our

experiments:

* Can we identify phrases based on FO contour alone?
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" Does phrase Fo pattern generalize across similar but not identical utterances?

" Does each phrase have some set of canonical patterns?

" Are there interdependencies among phrases in an utterance?

" Will this information be useful to speech recognition or understanding?

In the following sections, we first give an overview of our experimental methodology,

including selection of data for training and testing, acoustic characterization of the selected

phrases, and the objectives of the experiments. After that, we present and discuss the results

of each experiment in detail. Aspects related to prosodic theories and potential applications

of this framework in speech recognition and understanding will also be addressed in the

discussions. Finally, we conclude with a brief summary.

7.1 Experimental Methodology

7.1.1 Data Selection

One of the key issues in intonation modeling is to find an inventory of model units. In

our experimental framework, we want to explore the feasibility of directly modeling certain

linguistic structures in English utterances. Thus, we decide to begin with a number of

common phrases in JUPITER utterances in our initial investigation. In this way, the unit set

covers some "typical" basic linguistic patterns in the JUPITER utterances, and there will be

sufficient data for acoustic model training.

Five classes of two-syllable words/phrases are selected from the JUPITER corpus, includ-

ing "<whatis>", "<tell_me>", "<weather>", "<SU>", and "<US>". Each "phrase"

class consists of a list of words/phrases with the same stress pattern, which have also been

chosen to have similar semantic properties, so that they are likely to serve similar syntactic

functions. In particular, each phrase class consists of words that can be substituted into

the following sentence template to produce a well-formed sentence:

<what-is> | <teiLme> the <weather> iniforion <SU> I <US>
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<what-is>: what is, how is, ...
<tell-me>: tell me, give me, show me,
<weather>: weather, forecast, dew point, wind speed,
<SU>: Boston, Paris, Monday,
<US>: Japan, Detroit, tonight,

Table 7-1: Five common phrase classes and examples for each class in the JUPITER weather
domain.

For example, the "<weather>" class contains words or compound words like "weather",

"forecast", "wind speed", "dew point", etc., all of which have "stressed unstressed" stress

pattern and refer to some kind of weather information (general or specific); the "<US>"

class consists of "unstressed(U) stressed(S)" two-syllable words for place names or dates;

while the "<SU>" class consists of "stressed(S) unstressed(U)" two-syllable words for place

names or dates, etc. Example words/phrases in each class are listed in Table 7-1. The

complete listing of distinct entries in each phrase class is given in Appendix B.

Utterances that match exactly the above sentence template in the JUPITER corpus are

chosen to form a test set. We will conduct experiments to classify the intonation contours

of the five phrase classes on this set, and to study the correlation of the intonation contour

patterns among the phrases in these utterances. However, we must train acoustic models

for the phrase contours using different data. To ensure similarity between the training and

test data for the five phrases, an instance of a phrase is used for training only if it occurs

at particular positions in an utterance. Specifically, the "<whatis>" and "<tell_me>"

phrases are constrained to be from the beginning of an utterance; the "<weather>" phrase

is limited to be from an intermediate position in an utterance; and the "<SU>" or "<US>"

phrases are selected only from the end of an utterance. Thus, the training set consists of

utterances which contain the five phrases at positions described above, excluding those that

match exactly the test sentence template. In this way, we can ensure the independence of

training and test data and examine if the phrase FO patterns can generalize across similar

but not identical utterances. The data selection criteria are summarized and illustrated by

some example training and test utterances in Table 7-2.
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Test <whatis> I <tell-me> the <weather> iniforlon <SU> <US>
What is the weather in Detroit?
Give me the wind speed for Friday.

Training <what-is> I <tell-me> ...
What is the humidity in Honolulu Hawaii?
Give me the weather for Chicago for tomorrow.
... <weather> ...
Yes, I would like to know the weather in New York.
Can you tell me the sun rise for anchorage?
... <SU> I <US>
Tell me the wind speed for concord new Hampshire today.
And what is the time in Frankfurt?

Table 7-2: Criteria for selecting training and test utterances ("I" means or and "...."

means "any words"). Test utterances are selected to match the "test" template. Training
utterances are selected to match any of the three "train" templates but not the "test"
template. Two example utterances for each template are shown below the template, with
the effective phrases for training and testing highlighted in italics.

7.1.2 Feature Extraction

The principal acoustic correlates of intonation include all three prosodic features: funda-

mental frequency, energy, and duration (Ladd 1996). However, FO is the feature most closely

related to intonation. Hence, to limit the scope of our initial investigation, we use only FO-

based measurements to characterize the phrase intonation pattern. Specifically, we describe

the FO contour of a phrase using its constituent syllable FO contours, with each syllable

FO contour characterized by the FO average and slope. Thus, for the two-syllable phrases

chosen for our study, each token will be represented by a four-dimensional vector, consisting

of the FO averages and slopes of the two syllables. In general, a phrase of N syllables can be

characterized by a 2N-dimensional vector using the same paradigm. The phrases forming

the model inventory do not have to be of equal number of syllables, because the phrase

models are intended to be applied in a post-processing framework. We have chosen only

two-syllable phrases in our study, mainly to obtain classification performance to evaluate

the feasibility of our proposed approach.
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Partial Syllabification

We only have phonetic and word alignments for the utterances in the JUPITER domain,

which were obtained automatically by running the JUPITER recognizer in forced recognition

mode. To extract FO features from a syllable, or more precisely, the sonorant regioni of a

syllable, we need to determine the boundaries of the sonorant regions from phonetic and

word transcriptions. This can be formulated as the problem of deciding the association

of sonorant consonants between two adjacent syllable nuclei (vowels or syllabic consonants

such as "el", "em" and "en"). The task is somewhat easier than completely syllabifying a

phone sequence, because the non-sonorant phones do not need to be processed, and in fact,

provide clear separating boundaries. We designed a multi-pass procedure to perform the

task, which looks for cues (e.g., fricatives, stops, word boundaries, etc.) that can unambigu-

ously divide sonorant phones between two adjacent syllable nuclei, and uses heuristics to

handle ambiguities. Although this procedure is currently implemented to process phonetic

and word transcription files, the basic algorithm can also easily be implemented within a

recognizer to process N-best outputs or a phone graph.

The following rules (in the order listed) are used by the algorithm to decide the attach-

ment of sonorant consonants between two adjacent syllable nuclei:

1. If there are one or more non-sonorant phones (i.e., stops, fricatives, silences, etc.)

between two syllable nuclei, then the sonorants before the first non-sonorant phone

are attached to the first syllable nucleus, and the sonorants after the last non-sonorant

phone are attached to the second syllable nucleus.

2. If there is an /ng/ or post-vocalic /l/ or /r/ 2 between two syllable nuclei, then the

sonorant boundary is at the end of this phone.

3. If there is only one sonorant consonant separating two vowels, then the sonorant

consonant is split into two halves, with each half merged with the adjacent vowel.

'The sonorant region of a syllable consists of the nucleus vowel and any preceding and following sonorant
consonants (nasals and semivowels).

2 Post-vocalic /I/ and /r/ are distinguished by specific labels in the JUPITER recognizer.
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4. If there is a word boundary between two adjacent vowels, then the sonorant boundary

is at the word boundary.

5. For any remaining un-processed two consecutive sonorant consonants, the /m y/ and

/n y/ phones are merged with the second syllable nucleus, others are separately at-

tached to the adjacent vowels.

Rule 3 is very important for dealing with ambiguities in determining syllable boundaries.

We believe that splitting an inter-vocalic sonorant consonant is a more robust solution than

trying to associate it with one of the syllable nuclei, because segmentation involving a

''vowel nasal/semivowel vowel" sequence is already error-prone in the automatically derived

phonetic transcriptions. Thus, we prefer this rule to rule 4, which relies on word boundary

information to infer syllable boundaries. However, this will not affect the case where two

words are separated by a short pause, because rule 1 should have been applied to make the

correct association.

Rule 5, although simplistic, is an adequate solution for our data. After the first four rules

are applied, the remaining un-processed sonorant sequences are those with two sonorant

consonants between two syllable nuclei within a word (we have not observed three or more

consecutive sonorant consonants within a word). There is no English syllable with two

consecutive nasals, which implies that there must be a syllable boundary between two nasals.

Syllables containing two consecutive semivowels are rare in English, with the exception of

the /r 1/ sequence in a few words such as "snarl". Hence, it is safe to assume that there is a

syllable boundary between two semivowels in our data. Syllables with a "semivowel nasal"

sequence seem to only exist in mono-syllabic words or word-final syllables (e.g., in words

like "warm", "snowstorm", etc.), which should have been taken care of by rule 4. Thus,

we can assume that there is a syllable boundary between a semivowel and a nasal after

rule 4 is applied (e.g., in words like "warmer", "morning", etc.). For "nasal semivowel"

combinations, we have observed that /m y/ and /n y/ seem to always occur within one

syllable (e.g., in "accumulation", "California", etc.), while the others seem to be separated

by a syllable boundary (e.g., in "someone", "only", etc.). Thus, after merging /m y/ and

/n y/ with the following vowel, we can assume that there is a syllable boundary between
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any remaining two sonorant consonants.

7.1.3 Experiments and Objectives

Three experiments are conducted to address the questions proposed at the beginning of this

chapter. We only give a brief description of the experiments here. The details are covered

in the next section.

Acoustic models for the five phrase classes are trained on the training data, and phrases

in both the training and the test utterances are classified using these models. The clas-

sification accuracy reflects the ability to identify these phrases based on F information

only, while the classification performance differences between the training and test sets are

indicative of how well the phrase F patterns generalize from the training utterances to the

test utterances.

Intonation theories have described the intonation contour as a sequence of discrete events

with distinctive categories (Ladd 1996). We are interested in knowing if we can identify

canonical F0 contour patterns, which are analogues to distinctive categories in acoustic

representation, in a "data-driven" manner. We are also interested in knowing if the acoustic

realizations of various phrases within the same utterance are dependent on one another. For

example, is the F0 pattern of the "<whatis>" phrase (at the beginning of an utterance)

correlated with that of the "<SU>" phrase (at the end of an utterance); or are these two

phrases realized independently of each other, due to the "distance" between them in the

utterance?

Data clustering is performed on the phrase F contours in the training utterances, to

identify typical F contour patterns for each of the five phrase classes. Initial clusters are first

obtained by unsupervised clustering. These clusters are then filtered by a "self-selection"

process, to ensure that the clusters are indeed "typical" patterns for the data. We then use

a mutual information measure to quantify the correlation of various F contour patterns

among the phrases within an utterance. Each phrase in the test data set is classified into one

of the F0 patterns obtained in the clustering experiment. Mutual information is computed

for each pair of phrase F0 patterns to determine if there exist interdependencies among

phrases in the utterance.
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7.2 Experiments and Discussions

7.2.1 Phrase Classification

We first perform classification experiments to examine how well phrases can be identified

by their FO contours. As described in the previous section, each phrase token is represented

by a four-dimensional vector, consisting of the Fo averages and slopes of the two constituent

syllables. A principal component analysis is first applied on the collection of training vectors

to "whiten" the observation space. Mixtures of diagonal Gaussian models are then trained

to characterize the distributions of the rotated feature vectors for the five phrase classes.

Maximum likelihood (ML) classification is used, because our purpose is to evaluate the

ability to identify phrases based on FO information alone, without the assistance/interference

of priors. The FO contour of each utterance has been normalized by its mean value, to reduce

variances due to speaker pitch differences.

To examine how well the phrase models generalize from training data to test data, we

applied the phrase models to classify the phrases in both the training and the test utterances.

The five-class classification accuracy is 60.4% on the training data, and 56.4% on the test

data. The detailed classification confusions among phrases in the training data and in the

test data are summarized in Table 7-3 and Table 7-4, respectively. The performance on the

unseen test data is only slightly worse than that on the training data, and the confusion

matrices for both sets clearly show that the results are significantly better than chance. We

are inclined to conclude that there exists information in the FO contours of the five phrases

that can be used to distinguish these phrases.

As shown in the tables, the confusions are high between phrases at the same utterance

positions, and significantly lower between phrases at opposite positions (i.e., the beginning

vs. the end of an utterance). This is possibly due to the general declination of Fo contours,

which causes the FO levels of the utterance-initial phrases to be higher than those of the

utterance-final phrases. Thus, the "position" differences among phrases might have helped

the classification performance. However, we believe that the ability to distinguish the

phrases is not entirely due to FO level differences caused by FO declination, as indicated by

the confusions between phrases at the same utterance positions. To further verify that, we
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<what-is> I <tell-me> I <weather> <SU>_I <US> # Tokens

<what-is> 55.87% 23.74% 13.43% 5.80% 1.16% 6193
<tell-ne> 11.29% 68.11% 16.40% 2.49% 1.71% 762
<weather> 6.94% 10.45% 68.74% 7.20% 6.67% 3013

<SU> 6.46% 3.90% 10.82% 60.29% 18.53% 6130
<US> 2.87% 4.05% 11.33% 24.32% 57.43% 592

Table 7-3: Classification confusions among phrases in the training utterances. The reference
labels are shown in the first column, the hypothesized labels for the phrases are shown in
the first row, and the number of tokens for each phrase class is summarized in the last
column.

<what-is> [<tell-me> I <weather> <SU> I <US> # Tokens

<whatis> 45.82% 19.22% 25.63% 7.94% 1.39% 718
<tell-me> 16.88% 53.25% 15.58% 9.09% 5.20% 77
<weather> 4.91% 0.63% 68.18% 12.45% 13.83% 795

<SU> 4.46% 3.42% 15.33% 52.53% 24.26% 672
<US> 3.25% 1.63% 13.01% 16.26% 65.85% 123

Table 7-4: Classification confusions among phrases in the test utterances. The reference
labels are shown in the first column, the hypothesized labels for the phrases are shown in
the first row, and the number of tokens for each phrase class is summarized in the last
column.

performed two-class classification experiments for phrases at the same utterance positions,

i.e., "<what-is>" vs. "<tellme>", and "<SU>" vs. "<US>". The classification accuracy

on the test utterances is 68.9% for "<whatis>" vs. "<tell_me>" (at utterance start), and

73.2% for "<SU>" vs. "<US>" (at utterance end), both well above chance on unseen

data. This strongly suggests that the FO patterns of these phrases differ, in the absence of

significant FO declination effects. We will analyze the FO contours of these five phrases in

detail in the data clustering experiment.

7.2.2 Data Clustering

We performed K-means clustering on the training tokens of each phrase class to identify if

there exist canonical FO patterns. As in the classification experiments, a principle compo-

nent analysis is also applied on the four-dimensional feature vector prior to the clustering,

mainly to normalize the variance on each dimension. A Euclidean distance metric is used
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in the clustering algorithm.

The K-means clustering algorithm can always find an arbitrary number of data clusters,

especially when the input data are noisy and the specified number of clusters is small

compared to data size. In order to ensure that the output clusters are indeed "typical"

patterns for the data, we experimented with the number of clusters used by the algorithm,

and applied a self-selection process to filter out "bad" clusters after the initial clusters

were obtained. The selection procedure works as follows. We train a diagonal Gaussian

model for each data cluster obtained by clustering, and re-assign each token into one of the

clusters through classification. A threshold is applied on the classifier probability score of

each token, to discard tokens that are not well-represented by any of the Gaussian models.

The remaining tokens in each data cluster are then counted, and clusters with a significant

number of tokens are retained as "typical" patterns for the phrase.

We settled on a maximum number of 8 clusters in the K-means clustering algorithm.

After the "self-selection" procedure was applied, 3 to 4 FO contour pattern clusters emerged

for each type of phrase. We represented each cluster by the mean FO contour of the con-

stituent tokens in the cluster, as displayed in Figure 7-1. These clusters will be referred to

as subclasses in our discussions hereafter. The number of tokens in each cluster/subclass is

shown in the legends of the figure, along with the name of each subclass, which has been

chosen arbitrarily to uniquely identify the clusters.

As shown in Figure 7-1, most phrase subclasses differ significantly in shape, except for

subclasses of the "<tellme>" phrase and two subclasses of the "<whatis>" phrase (i.e.,

"what-is-C4" and "what -is-C6"). This suggests that the subclasses are not simply due to

variations caused by speaker Fo range differences. Several interesting observations can be

made from the figure. For example, the "what-is-C4" and "what-is-C6" patterns seem to

demonstrate the "peak delay" phenomenon (Silverman and Pierrehumbert 1990; van Santen

and Hirschberg 1994), i.e., the accented syllable has a rising FO contour, while the following

unaccented syllable has a significantly higher FO level than the previous accented syllable.

The subclasses of the "<SU>" and "<US>" phrases are particularly "expressive", possibly

due to the fact that these phrases are likely to be accented (because they convey important

information such as a place or a date), and they carry a phrase tone as well (because they are
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at the end of an utterance). There are three patterns for the "<US>" phrase: rising ("US-

Co"), falling ("US-C2"), and flat' ("US-C3"). It is interesting to note that the average FO

contours of the first syllable (unstressed) for the three subclasses are virtually the same,

while the large differences among subclasses are only on the second syllable (stressed). This

seems to be consistent with the intonation theory that only stressed syllables are likely to

be accented. The first syllable lacks variation because it does not carry any intonational

events, while the second syllable is responsible for signaling both the accents (if any) and the

phrase boundary tone. The "<SU>" phrase also has the basic rise, fall, and flat patterns.

However, the first syllable in the "<SU>" phrase also demonstrates variations, possibly

due to its role in carrying pitch accents. In particular, the "SU-C1" and "SU-C4" patterns

have higher FO levels for the first syllable. We suspect that the first syllable in these two

subclasses is more accented. The "SU-C7" pattern is fairly "plain", and its mean FO contour

is very similar to that of the "US-C3" pattern.

We listened to some utterances labeled with the "SU-C2" or "US-CO" patterns, and

generally perceived a rising (question) intonation. These subclasses possibly correspond

to the L* H-H% and L* L-H% patterns described in the ToBI labeling convention (Sil-

verman et al. 1992). However, we are unable to systematically relate these acoustically

derived classes to categories defined in prosodic labeling conventions. It will be interesting

to perform the data clustering experiment on prosodically labeled data to facilitate such

comparisons.

7.2.3 Correlations of Phrase Patterns

We have identified a set of canonical FO patterns for each phrase using a "data-driven"

approach. We now use these subclasses to examine if there exist correlations among the

acoustic realizations of the phrases within an utterance, e.g., if certain FO contour patterns

of the "<whatis>" phrase are more likely to occur with certain FO contour patterns of

the "<SU>" phrase in the same utterance. The test set is used to carry out this study,

because the utterances in the test set are more homogeneous and each contains exactly

three phrases.

3 The slight falling slope of this subclass is likely due to an overall FO declination.
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_ weather-CO weather-Cl weather-C3 SU-Cl j SU-C2 SU-C4_j SU-C7

what-is-Ci -0.16 0.42 -0.29 0.25 -0.35 -0.21 0.13
what-is-C4 -0.58 0.06 0.06 0.10 0.58 -0.35 -1.01
what-is-C6 0.67 -0.15 -0.10 -0.68 -0.27 0.52 0.47
what-is-C7 0.12 -0.28 0.12 -0.03 -0.28 0.10 0.23

weather-CO - - - -0.70 -1.59 0.71 0.87
weather-C3 - - - 0.28 -0.08 -0.11 -0.21
weather-C3 - - - -0.07 0.23 -0.13 -0.14

Table 7-5: Mutual information between each pair of subclass patterns calculated for phrases
in utterances matching "<what-is> the <weather> inIforlon <SU>." The subclass patterns
have been described graphically in Figure 7-1. Mutual information measures larger than
0.5 or smaller than -0.5 are highlighted in boldface. A total number of 610 utterances is
used in the computation.

We use the mutual information measure to quantify the correlation, which is based on

the frequency counts of the phrase subclasses in the test utterances. Analogous to the "self-

selection" process used in data clustering, we trained a diagonal Gaussian model using the

training tokens in each phrase subclass 4 , and classified the phrases in the test utterances

into one of the subclasses. We then counted the number of each individual subclass and

the number of each subclass pair in the test utterances. The mutual information between

a pair of subclasses, A and B, is computed as follows:

M(A, B) = log P(AIB)= log P(AB)(71)
P(A) P(A)P(B)

The mutual information between A and B is zero if A and B are statistically independent

of each other, positive if A is more likely to occur with B, and negative if A is less likely to

occur with B.

Table 7-5 shows the mutual information between each pair of subclasses for three phrases,

i.e., "<whatis>", "<weather>", and "<SU>", computed using 610 test utterances. The

number of tokens in each phrase subclass on the test data is summarized in Table 7-6. The

"<tell_me>" and "<US>" phrases are ignored, due to sparse data for these two phrases in

4The five-class classification accuracy on the test data can be improved to 58.8% if the phrase models are
trained using only training tokens in the subclasses, i.e., data that have "survived" the selection procedure
in data clustering, instead of using the entire training data.
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<what-is> # Tokens][ <weather> # Tokens][ <SU> # Tokens

what-is-Ci 135 weather-CO 71 SU-Cl 181
what-is-C4 167 weather-Cl 200 SU-C2 181
what-is-C6 81 weather-C3 339 SU-C4 79
what-is-C7 137 - - SU-C7 169

Table 7-6: Number of tokens in each subclass of "<whatis>", "<weather>", and "<SU>"
phrases on the test data.

the test utterances. Most of the mutual information measures between subclasses are close

to zero, which implies that the correlation between those subclasses are small. However,

we have observed a few subclasses which have large positive or negative values for their

mutual information with some other subclasses. We plotted the compatible subclass pairs

(those with large positive mutual information measures) in Figure 7-2, and the incompatible

subclass pairs (those with large negative mutual information measures) in Figure 7-3, for

easy reference.

The "weather-CO" subclass (with a high, falling mean F contour) seems to have strong

"preferences" with regard to other phrase subclasses. For example, the mutual information

between "whatis-C6" (with a very high, rising mean F contour) and "weather-CO" is 0.67.

From the mean F0 contours of "what-is-C6" and "weather-CO" shown in Figure 7-2, it

seems that these two Fo patterns may form one intonation phrase. On the other hand,

the mutual information between "what-is-C4" (with the lowest F among all subclasses

of "<whatis>") and "weather-CO" is -0.58, which suggests that these two patterns are

highly incompatible. The mean F0 contours of "what-is-C4" and "weather-CO" are shown

in Figure 7-3 along with other incompatible pairs. Intuitively, we think that it is difficult

(and unnatural) to start a "<weather>" word from an F0 onset that is higher than the F

offset of the preceding syllable. However, the number of "weather-CO" tokens in the test

data is relatively small; thus, the mutual information might not be very robustly estimated.

There also seem to be some "long-distance" correlations between the "<what_is>" phrase

and the "<SU>" phrase. For example, the "what-is-C4" pattern (very low Fo) seems to be

more compatible with the "SU-C2" pattern ("question intonation"), and least compatible

with "SU-C7" (the "plain" pattern).
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Figure 7-2: Compatible subclass pairs as indicated by mutual information measures.
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Although we are generally unable to derive linguistic explanations for these observations,

it is interesting to know that there exist certain correlations among phrases in an utterance.

We developed a framework which is able to quantify these correlations using statistical

methods. Such information can potentially be utilized to provide additional constraints in

scoring phrase F0 patterns, in a way similar to using language models in word recognition.

7.3 Summary

In this chapter, we presented preliminary experiments towards developing a framework to

model the intonational aspects of certain syntactic/semantic structures in English utter-

ances, without using intermediate prosodic transcriptions.

We selected five common two-syllable "phrases" from the JUPITER corpus to form our

initial model inventory. We characterized these phrase contours using a concatenation

of F features extracted from its constituent syllables, and trained a diagonal Gaussian

mixture model for each phrase. We obtained a five-class classification accuracy of 60.4%

on the training set, and 56.4% on unseen test data. Our various classification results

clearly indicate that there exists information in the F contours of the five phrases that

can be used to distinguish these phrases. We can expand this framework to include more

phrases, even of variable lengths. In general, a phrase of N syllables can be characterized

by a concatenation of its constituent syllable features. These models can be applied in

a post-processing framework, to score the intonation patterns of recognizer hypotheses.

We hypothesize that these scores can be used to resort the N-best outputs for improved

recognition accuracy, or to support the rejection of erroneous hypotheses.

We also performed an unsupervised data clustering experiment to identify typical F

contour patterns for each of the five phrases. This is of both practical and theoretical

interest, because intonation theories have described the intonation contour as a sequence

of categorical events (Ladd 1996). We want to know if we can identify canonical FO con-

tour patterns, which are analogous to distinctive categories in acoustic representation, in a

"data-driven" manner. We found some interesting F patterns from the clustering process.

However, we are unable to systematically relate these acoustically derived classes to cate-
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gories defined in prosodic labeling conventions. It will be interesting to perform the data

clustering experiment on prosodically labeled data to facilitate such comparisons.

Using the automatically derived phrase subclasses, we are able to describe a phrase

contour symbolically and use statistical methods to quantify the correlations between each

pair of phrase patterns. We found that there were compatible and incompatible phrase

pattern pairs, and some of these observations correspond well with our intuitions. Although

we are generally unable to derive linguistic explanations for these observations, we can

nevertheless describe them in a quantitative way. Such information can potentially be

utilized to provide additional constraints in scoring phrase FO patterns, in a way similar to

using language models in word recognition.

We consider our initial experimental results as promising. As possible directions for

future work, we can expand this framework to include more phrase patterns, incorporate

more prosodic features into acoustic modeling, and test the models in recognition and

confidence modeling tasks.
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Chapter 8

Summary and Future Work

8.1 Summary

As we have pointed out in the introduction (Chapter 1), prosodic cues, namely, FO, dura-

tion, and energy, play an important role in human speech communication. At the lexical

level, prosody helps define words and shapes the segmental property of sounds. Above the

lexical level, prosody structures a message into sentences and smaller phrases, determines

the sentence mood, and marks the focus of a sentence. Prosody also conveys extra-linguistic

information such as gender, emotion and attitude of a speaker. Prosodic models can po-

tentially be used in many aspects of a human-computer dialogue system, including speech

recognition, syntactic/semantic analysis, topic segmentation, dialogue act determination,

dialogue control, speech synthesis, etc.

In this thesis, we have explored prosodic models for Mandarin Chinese and English tele-

phone speech along various dimensions, within the context of improving speech recognition

and understanding performance in dialogue systems. In the following, we briefly recapitu-

late the methodologies and main results of our explorations, followed by a summary of the

main contributions of this thesis.

Robust Pitch Tracking

Pitch detection is a critical first step in the analysis and modeling of speech prosody. The

fundamental frequency is an important feature for many prosodic components, such as
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lexical stress, tone, and intonation. However, pitch estimation errors and the discontinuity

of the FO space make FO related measurements noisy and undependable. Pitch detection

algorithms also have inferior performance on telephone speech, due to signal degradation

caused by the noisy and band-limited telephone channel. To address these problems, we have

implemented a novel continuous pitch detection algorithm (CPDA), which has been designed

explicitly to promote robustness for telephone speech and prosodic modeling (Chapter 2).

The algorithm derives reliable estimations of pitch and the temporal change of pitch from

the entire harmonic structure. The estimations are obtained easily with a logarithmically

sampled spectral representation (i.e., DLFT spectrum), because signals with different FO

can be aligned by simple linear shifting. The correlation of the DLFT spectrum with an

ideal harmonic template provides a robust estimation of FO. The correlation of two DLFT

spectra from adjacent frames gives a very reliable estimation of FO change. The constraints

for both log FO and A log FO are then combined in a dynamic programming search to find a

very smooth pitch track. The DP search is able to track FO continuously regardless of the

voicing status, while a separate voicing decision module computes a probability of voicing

per frame. We have demonstrated that the CPDA is robust to signal degradation inherent

in telephone speech. In fact, the overall gross error rate for studio and telephone speech is

nearly the same (4.25% vs. 4.34%). We have also demonstrated that the CPDA has superior

performance for both voiced pitch accuracy and tone classification accuracy compared with

an optimized algorithm in XWAVES.

Lexical Tone Modeling for Mandarin Chinese Speech Recognition

We first performed empirical studies of Mandarin tone and intonation, focusing on analyzing

sources of tonal variations (Chapter 3). We demonstrated an FO downtrend for Mandarin

Chinese using both position dependent tone statistics and the average FO contour of a set

of aligned utterances. The data show that FO decreases consistently within a phrase; while

there is a jump of Fo level after each phrase boundary. However, the FO hike is relatively

small compared to the declination, and the overall change of FO level is predominantly

decreasing. We then characterized the effects of phrase boundary, tone coarticulation,

and tone sandhi using a similar method, by comparing average tone contours in different
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immediate contexts. The most obvious effects of a phrase boundary seem to be on the tone

excursion range. Tone 2, tone 3 and tone 4 at internal phrase-final positions reach a lower

FO target than at other positions; tone 2 at phrase-initial positions also seems to rise to a

higher FO target than at other positions. Tone coarticulation is manifested as both carry-

over and anticipatory effects, with the carry-over effects appearing to be more significant.

The carry-over effects mainly change the FO onset of the following tone, and the change is

assimilatory in nature. The anticipatory effects are more complex, with both assimilatory

and dissimilatory effects present in the data. The sandhi-changed tone 3 is similar to tone

2. It seems that a context dependent model using both left and right tone context should

be able to capture the tone sandhi variation.

We incorporated tone models into speech recognition and tried to account for the tonal

variation factors in tone modeling for improved tone classification and speech recognition

performances (Chapter 4). We first developed a segment-based tone classification frame-

work, which used discrete Legendre decomposition to parameterize tone FO contours and

Gaussian classifiers to estimate tone probability scores. Using this basic framework, we

demonstrated that tone recognition performance for continuous Mandarin speech can be

significantly improved by taking into account sentence declination, phrase boundary, and

tone context influences. We then implemented two mechanisms in the SUMMIT speech

recognition system to incorporate tone model constraints: first-pass and post-processing.

Integration of a simple four-tone model into the first-pass Viterbi search reduced the base-

line speech recognition error rate by 30.2% for the digit domain and by 15.9% for the

spontaneous utterances in the YINHE domain. Using the simple four-tone model to resort

the recognizer 10-best outputs yielded similar improvements for both domains. However,

further improvements by using more refined tone models were small and not statistically

significant. This suggests that a simple and efficient strategy to utilize tone information

can be achieved by integrating a simple four-tone model into the first-pass Viterbi search.

Lexical Stress Modeling for Spontaneous English Speech Recognition

Lexical stress in English is the analogy of tone in Mandarin Chinese. Leveraging the same

mechanisms developed for Mandarin tone modeling, we tested the approach of scoring
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the lexical stress patterns of recognizer hypotheses to improve speech recognition perfor-

mance (Chapter 5). The motivation is also similar to that for tone modeling, i.e., erroneous

hypotheses will have worse "stress scores" than the correct hypothesis. However, unlike

Mandarin tones, the acoustic manifestations of lexical stress are quite obscure. To address

this issue, we first examined the correlation of various pitch, energy, and duration mea-

surements with lexical stress on a large corpus of spontaneous utterances in the JUPITER

domain. We found that the distributions of most prosodic features differed for different

lexical stress classes; however, the extent of overlap among classes was also significant. We

then performed classification experiments to identify the most informative features for lex-

ical stress. The best single feature for stress classification was the integral of energy over

the nucleus vowel, while the best set of prosodic features consisted of the integral of energy,

raw duration, pitch slope, and the average probability of voicing. Higher stress classifica-

tion accuracy was achieved by using spectral features (MFCCs) in addition to the prosodic

features. In the recognition experiments, however, it was found that the gain using only

prosodic features was greater than when MFCC features were also used. We observed that

the best set of prosodic features were completely computable from information extracted

from the segmental region alone. It is also convenient that F difference performed better

than F0 average; thus, the sentence-level normalization is not required.

We integrated the stress model into the recognizer first-pass Viterbi search. We found

that using a simple four-class stress model achieved small but statistically significant gain

over the state-of-the-art baseline performance on JUPITER. However, more refined models

taking into account the intrinsic prosodic differences among vowels failed to improve the

performance further. Our recognition results of a one-class (including all vowels) prosodic

model seemed to suggest that the gain of using prosodic models was mainly due to the

elimination of implausible hypotheses, e.g., preventing vowel/non-vowel or vowel/non-phone

confusions, rather than by distinguishing different stress and segmental classes. We have

also found that it is more advantageous to apply prosodic constraints selectively, i.e., only

on phones for which the prosodic measurements are "meaningful" and more informative.
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Recognition Confidence Scoring Enhanced with Prosodic Features

Moving beyond improving speech recognition, we examined the use of prosodic cues in

recognition confidence scoring for improved accept/reject decisions (Chapter 6). Hirschberg

and colleagues (1999, 2000) have found that there exist statistically significant differences

in the mean values of certain prosodic features between correctly and incorrectly recognized

user turns, and these prosodic cues can be used to improve accept/reject decisions on

recognition outputs. However, it was also found that the efficacy of the prosodic information

was dependent on the quality of the recognition system. We first tested if the approach of

using prosodic cues in utterance-level confidence scoring can be generalized to the JUPITER

system, which has been well-trained on a large corpus of speech data. We found that

there were differences in both the means and the variances of some prosodic measurements

between correctly and incorrectly recognized utterances, with the variances generally larger

for misrecognized utterances. This is consistent with the intuition that "outliers" are more

likely to be incorrectly recognized. We observed that prosodic cues achieved small but

statistically significant improvement in the detection of utterance hypothesis errors. We

also examined if prosodic features can be used to better distinguish correctly and incorrectly

recognized words. Although the methodology is quite similar to that used in the utterance-

level confidence scoring, the underlying assumptions are somewhat different. We expect

that there exist prosodic cues to speech artifacts (such as background speech), which are a

significant source of recognition errors. Furthermore, "unusual" prosodic measurements are

sometimes indicative of speech recognition errors. We found that prosodic cues achieved

small but statistically significant improvement in the detection of word errors as well. The

receiver-operator characteristic (ROC) curves were also improved overall in both cases.

Characterization of English Intonation Contours

We presented preliminary experiments towards developing a framework to model the intona-

tional aspects of certain syntactic/semantic structures in English utterances, without using

intermediate prosodic transcriptions (Chapter 7). We selected five common two-syllable

"phrases" from the JUPITER corpus to form our initial model inventory. We characterized

these phrase contours using a concatenation of FO features extracted from their constituent
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syllables, and trained diagonal Gaussian mixture models for these phrases. We obtained

a five-class classification accuracy of 60.4% on the training set, and 56.4% on unseen test

data (which can be improved to 58.8% if using only "clean" training examples). Our various

classification results clearly indicate that there exists information in the F0 contours of the

five phrases that can be used to distinguish these phrases. These models can be applied

in a post-processing framework, to score the intonation patterns of recognizer hypotheses.

We hypothesize that these scores can be used to resort the N-best outputs for improved

recognition accuracy, or to support the rejection of erroneous hypotheses.

We also performed an unsupervised data clustering experiment to identify typical F

contour patterns for each of the five phrases. This is of both practical and theoretic interest,

because intonation theories have described the intonation contour as a sequence of categor-

ical events (Ladd 1996). We want to know if we can identify canonical Fo contour patterns,

which are analogues to distinctive categories in acoustic representation, in a "data-driven"

manner. We found some interesting F0 patterns from the clustering process. However,

we are unable to systematically relate these acoustically derived classes to categories de-

fined in prosodic labeling conventions. It will be interesting to perform the data clustering

experiment on prosodically labeled data to facilitate such comparisons.

Using the automatically derived phrase subclasses, we were able to describe a phrase

contour symbolically and use statistical methods to quantify the correlations between each

pair of phrase patterns. We found that there were compatible and incompatible phrase

pattern pairs, and some of these observations correspond well with our intuition. Although

we are generally unable to derive linguistic explanations for these observations, we can

nevertheless describe them in a quantitative way. Such information can potentially be

utilized to provide additional constraints in scoring phrase F patterns, in a way similar to

using language models in word recognition.

Thesis Contributions

In summary, we have made the following contributions to research in the area of prosodic

modeling in this thesis:

9 The development of a continuous pitch tracking algorithm that is designed specially
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for telephone speech and prosodic modeling applications.

" An empirical study of Mandarin tone and tonal variations, which analyzes the effects

of tone coarticulation, tone sandhi, and some intonation components, on the acoustic

realizations of tone.

" The development of a mechanism which is able to combine multiple classifiers and to

selectively score for a subset of phones in the recognition first-pass search.

" The development and analysis of a preliminary framework for characterizing pitch

contours of spoken English utterances without intermediate prosodic transcription.

" Improvements in speech recognition and confidence scoring performance using prosodic

information.

8.2 Future Directions

This thesis has explored a wide range of topics in the area of prosodic modeling. Many

aspects of the work presented in this thesis can be improved or extended. Some methodolo-

gies and empirical results are also potentially useful for other applications. In this section,

we mention some of these directions for future work.

Several aspects of the pitch tracking algorithm can be improved. First, the dynamic pro-

gramming search back traces the optimum pitch contour upon arriving at the last frame in

the utterance, which causes a significant delay in the overall pipe-lined recognition process.

This can be improved by allowing the DP to back track periodically, e.g., whenever the best

node score is much higher than the scores of its competitors, or upon transition from voiced

regions to unvoiced regions. In case of conflicting paths, back tracking from later frames

should have higher priority than any back tracking from previous frames. Although this is

still not a completely pipe-lined design, the delay could be significantly reduced. Second, it

is usually necessary to normalize a pitch contour by its average value in prosodic modeling.

This function can be implemented within the pitch tracking algorithm, e.g., the average Fo

value can be estimated during back tracking, utilizing voicing probabilities to discount FO

values from unvoiced frames.
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We have designed various ways to separate tonal and intonational aspects in Mandarin

Chinese utterances, which are both manifested mainly as F0 movements. We demonstrated

the F0 downtrend for Mandarin Chinese using position-dependent tone statistics and the

average F0 contour of a set of aligned utterances. We also characterized the effects of

phrase boundary, tone coarticulation, and tone sandhi using a similar method, by comparing

average tone contours in different immediate context. This methodology can be extended

to studying the effects of pitch accent or lexical stress, by comparing the average tone

contours between accented/unaccented or stressed/unstressed syllables. However, such a

study is likely to rely on the availability of a corpus with pitch accent and lexical stress

labels.

The empirical study on Mandarin tone and intonation is not only useful for improving

tone recognition, but also useful for Mandarin speech synthesis. The F0 downtrend and the

context-dependent tone models (including dependencies on tone context, phrase boundary,

pitch accent, lexical stress, etc.) can be utilized to construct a target F0 contour from

a prosodically tagged Chinese sentence. The F0 downtrend modeling can be improved

for synthesis applications. We have found that F0 downtrend can be better characterized

on the phrase-level than on the utterance-level; however, we have chosen a sentence-level

modeling due to the unavailability of phrase boundary information during recognition. A

phrase-level characterization can easily be incorporated into a synthesis system, because

the phrase boundaries are usually provided in the text input.

The dependency of tone expression on phrase boundary and pitch accent can also po-

tentially be utilized to identify phrase boundaries and pitch accents, which can in turn be

used in higher-level linguistic processing. For examples, tone 2, tone 3 and tone 4 before a

internal phrase boundary reach a lower F target than at other positions, while tone 2 at

a phrase-initial position seems to rise to a higher F target than at other positions. Other

studies have found that pitch accent (focus) enlarges the F range of words at a non-final

focus, and the F0 range after the focus is both lowered and reduced (Xu 1999). Such in-

formation can be used in addition to durational and pause-related cues in detecting phrase

boundaries and pitch accents.

Although using prosodic features improved accept/reject decisions in both utterance-
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level and word-level confidence scoring, the gain by using prosodic features is relatively

small. We suspect that the simple confidence classifier model used in our experiments might

not be optimal for incorporating prosodic features. In particular, the classifier is only able

to deal with numerical features; in addition, all features are reduced to a one-dimensional

feature by a linear discrimination projection, which implies a linear decision boundary.

We expect the prosodic cues to be more effective if the classifier can pay more attention

to "outliers", because many prosodic features have a "wider" distribution for incorrectly

recognized utterances than for correctly recognized utterances. It is desirable to design a

probabilistic classifier which is able to (1) use both numerical and symbolic features, (2)

exploit dependencies among features, and (3) handle complex decision boundaries.

The confidence scoring framework can easily be adapted to perform phrase boundary

detection. Prosodic features on the utterance-level and word-level have been extracted to

support accept/reject decisions of recognition hypotheses. These features include not only

simple prosodic measurements, such as mean and maximum F0 for a word or an utterance,

pause duration after a word, etc., but also complex measurements such as utterance and

word speaking rates. In general, we can obtain raw or normalized prosodic measurements

from utterance-, word-, syllable-, and segment- levels, given the recognizer N-best outputs.

With a modest amount of labeled training data, we can identify the best features for phrase

boundary classification, using the mutual information based feature selection procedure

described in Section 6.3.2. Hypothesized phrase boundaries with probability scores can

be inserted into the recognizer hypotheses, which can be input to the TINA probabilistic

parsing system (Seneff 1992). The parsing grammar can be augmented with optional phrase

boundaries at appropriate locations, similar to the approach described in (Kompe 1997).

We have also begun to develop a framework to model the intonational aspects of certain

syntactic/semantic structures in JUPITER utterances, without using intermediate prosodic

transcriptions. Our experiments on classifying five common two-syllable phrases on unseen

data, based on F0 information only, have shown promising results. We can expand this

framework to include more phrases, potentially of variable lengths. These phrases can be

chosen from common structures in the parsing grammar, with considerations for stress pat-

terns. These phrase models can be applied in a post-processing framework, to score the
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intonation patterns of recognizer hypotheses. We can use these scores, appropriately nor-

malized, to resort the recognizer N-best outputs. This is similar to the approach of scoring

for the lexical stress patterns of recognizer hypotheses, except that the phrase models cap-

ture higher-level constraints and more contextual information. We can also build intonation

models for the key concepts in a domain, such as place names in the JUPITER system. We

can use these models to support the rejection of erroneous key word hypotheses, which are

particularly important to the understanding performance.
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Appendix A

ASR Confidence Features

The following 15 utterance-level confidence features are taken from (Hazen et al. 2000b) to

train the baseline utterance confidence model:

1. total-score: the total score from all models (i.e., the acoustic, language, and pro-

nunciation models) for the top-choice hypothesis.

2. total-score-per-word: the average score per word from all models for the top-choice

hypothesis.

3. lexical-score: the total score of the N-gram model for the top-choice hypothesis.

4. lexical-score-per-word: the average score per word of the N-gram model for the

top-choice hypothesis.

5. acoustic-score: the total acoustic score summed over all acoustic observations for

the top-choice hypothesis.

6. acoustic-scoreper-bound: the average acoustic score per acoustic observation for

the top-choice hypothesis.

7. total-drop: the drop in the total score between the top hypothesis and the second

hypothesis in the N-best list.

8. acoustic-drop: the drop in the total acoustic score between the top hypothesis and

the second hypothesis in the N-best list.
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9. lexical-drop: the drop in the total N-gram score between the top hypothesis and the

second hypothesis in the N-best list.

10. average-purity: the average N-best purity of all words in the top-choice hypothesis.

The N-best purity for a hypothesized word is the fraction of N-best hypotheses in

which that particular hypothesized word appears in the same location in the sentence.

11. frac-high-purity: the fraction of words in the top-choice hypothesis which have an

N-best purity of greater than one half.

12. nbest-average-purity: the average N-best purity of all words in all of the N-best

list hypothesis.

13. nbest frac-high-purity: The percentage of words across all N-best list hypotheses

which have an N-best purity of greater than one half.

14. nbest: the number of sentence hypotheses in the N-best list. This number is usually

its maximum value of ten but can be less if fewer than ten hypotheses are left after

the search prunes away highly unlikely hypotheses.

15. num-words: the number of hypothesized words in the top-choice hypothesis.

The following 10 word-level confidence features are taken from (Hazen et al. 2000b) to

train the baseline word confidence model:

1. bound-score-mean: the mean log likelihood acoustic score across all acoustic ob-

servations in the word hypothesis.

2. bound-norm-score-mean: the mean of the acoustic likelihood scores (not the log

scores) across all acoustic observations in the word hypothesis.

3. bound-score-min: the minimum log likelihood score across all acoustic observations

in the word hypothesis.

4. bound-score-std-dev: the standard deviation of the log likelihood acoustic scores

across all acoustic observations in the word hypothesis.
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5. bound diff-from-max-mean: the average difference, across all acoustic observa-

tions in the word hypothesis, between the acoustic score of a hypothesized phonetic

unit and the acoustic score of highest scoring phonetic unit for the same observation.

6. bound-likelihood-mean: mean score of the catch-all model across all observations

in the word hypothesis.

7. num-bounds: the number of acoustic observations within the word hypothesis.

8. frac-nbest: the fraction of the N-best hypotheses in which the hypothesized word

appears in the same position in the utterance.

9. num-nbest: the number of sentence level N-best hypotheses generated by the recog-

nizer.

10. utt-score: the utterance confidence score generated from the utterance features de-

scribed above.
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Appendix B

Complete Word/Phrase List

The following is a complete list of words and phrases occurred in the training data for each

of the five phrase classes:

* <what-is>

how is what are what is what was

* <tell-me>

give me show me tell me

* <weather>

dew point

weather

forecast

wind speed

pressure

wind speeds

0 <SU>

Aalten

Athens

Beaumont

Bombay

Brownsville

Camden

Christchurch

Akron

Austin

Bedford

Bosnia

Brunswick

Charleston

Cleveland

Asheville

Bangkok

Berkeley

Bridgeport

Cairo

Chile

Dallas

Asia

Bangor

Bismarck

Brisbane

Cambridge

China

Dayton

sun rise sun set

Amherst

Baghdad

Belgium

Boston

Brussels

Charlotte

Concord
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Denmark

England

Falmouth

Florence

Glasgow

Hilo

Ireland

Kansas

Lisbon

Medford

Munich

Newport

Pittsburgh

Portsmouth

Raleigh

Salem

Strasbourg

Texas

Tucson

Venice

Worcester

0 <US>

Beirut

Detroit

Kunming

Peru

Tahoe

today

Denver

Erie

Fargo

Frankfurt

Greenland

Holland

Israel

Kenya

London

Melbourne

Nashville

Norfolk

Pittsfield

Princeton

Richmond

Scotland

Stuttgart

Thursday

Tuesday

Warsaw

Zaire

Belize

Eugene

Kuwait

Pierre

Taipei

tonight

Dublin

Europe

Fiji

Fresno

Greenville

Houston

Jackson

Lansing

Lowell

Memphis

Nassau

Oakland

Plymouth

Provo

Rio

Scranton

Sunday

today

Tulsa

Wednesday

Zurich

Berlin

Iran

Madrid

Quebec

Taiwan

Ukraine

Durham

Fairbanks

Finland

Friday

Hamburg

Huntsville

Jordan

Lhasa

Mali

Monday

New York

Paris

Poland

Pueblo

Russia

Springfield

Sydney

Tokyo

Tunis

weekend

Brazil

Iraq

Marseille

Shanghai

Tehran

Vermont

Egypt

Fairfax

Flagstaff

Georgia

Hartford

Iceland

Juneau

Lincoln

Maui

Moscow

Newark

Phoenix

Portland

Quito

Rutland

Stockholm

Tampa

Trenton

Utah

Whitehorse

Cancun

Japan

Nepal

Spokane

Tibet

Xian
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