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Abstract

By a Galton-Watson tree T we mean an infinite rooted tree that starts with one node
and where each node has a random number of children independently of the rest of
the tree. In the first chapter of this thesis, we prove a conjecture made in [7] for
Galton-Watson trees where vertices have bounded number of children not equal to 1.
The conjecture states that the electric conductance of such a tree has a continuous
distribution. In the second chapter, we study rays in Galton-Watson trees. We
establish what concentration of vertices with is given number of children is possible.
along a ray in a typical tree. We also gauge the size of the collection of all rays with
given concentrations of vertices of given degrees.
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Chapter 1

Conductance of Galton—Watson

trees

1.1 Introduction

Given a random variable £ that takes on positive integer values, a branching process
starts with one particle that has £ children. Each of the children in turn has a random
number of children with the law of £&. The children of children also have children and
the process continues forever. We can draw a diagram of the process by associating a
node with each particle and then connecting each node to the nodes representing its
children. This diagram, a random infinite graph, is called a Galton-Watson tree. Let
@1 be the probability that the simple random walk started at the root of the tree

(node representing the original particle) T never returns to the root.

Theorem 1 If 2 < ¢ < kg, then the distribution of the random variable Qr is abso-
lutely continuous with respect to Lebesque measure on R and the probability density

of Qr is bounded.

Remark 1. This writer believes he has a proof that the constraints 2 < & < kg
can be lifted, but it would make the exposition even more cumbersome.
Remark 2. If each edge of the tree is a wire of unit conductance, then the

effective conductance of the whole tree (from the root to infinity) is given by

Qr
Qr+1-
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Therefore, the distribution of the effective conductance is also absolutely continuous. -
Remark 3. Theorem 1 confirms a conjecture made in [7].

This chapter is devoted to the proof of this theorem. Before going into techni-
calities, we present a very vague idea of the proof. The theorem will follow from the

statement of the type

P
PQreJ) + small error, (1.1)

P(QTEI)S 5

where I and J are intervals located roughly at the same place, J being twice as long
as I. An inequality like (1.1) would have been relatively easy to verify for intervals
of a certain size if Q)7 were a sum of sufficiently large number of independent random
variables. It is not, but it is possible to condition Qr on a (random) subtree Tp C T
in such a way that the conditional distribution of Q)7 is very closely approximated by

the sum of independent random variables for almost all likely structures of Ty. Thus, -

P(Qrel)=E(P(Qrel|Th)) < %E(P(QT € J|Tv)) + small error

< P(Qr € J) + small error.

The reason why such an approximation for Q7 given T exists is because T'\ Ty will
turn out to have a large number of components that are far apart. Their contributions -
to the effective conductance of the network are nearly independent and they nearly

add up.

The organization of this chapter is as follows. Section 2 introduces the notation
used throughout this chapter. It takes advantage of the symmetry of Galton-Watson -
trees to demonstrate that sampling according to the uniform flow measure is equiv-
alent to choosing a specific node of the tree. Section 3 describes why changes in the
tree that are made far from a specific node have a very little effect on the probability
of visiting that node. Section 4 establishes that for the overwhelming majority of
realizations of a Galton-Watson tree, one can choose a lot of vertices that are visited

by the random walk with more or less the same probabilities. Section 5 studies the
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effect of removal of one or more subtrees from a tree on Q7. In particular, it tells how
closely Q7 conditioned on some subtree of the graph can be approximated by a sum
of independent random variables. Section 6 provides a regularity result for a slightly
perturbed sum of independent random variables. Section 7 gives a sufficient scaling
- condition that guarantees that a measure is absolutely continuous with respect to

Lebesgue measure. Section 8 draws upon sections 2 through 7 to prove the theorem. -

1.2 Basic notation and the uniform flow measure.

The vertices of the trees we shall consider will be elements (n1, ng,...) € N*°, with all
but finitely many n;’s equal to zero. Occasionally we will abridge such a sequence to a
finite one by removing all elements following the last non-zero term. The sequence of
all zeros is called the root. It may be abridged to an empty sequence. We turn N* into
a tree by connecting all nodes of the form (ny, ny,... ,n;) to (ny, no, ... s T, Mt 1)
(ks ngg1 > 0). For a vertex v = (ng, n, ... ,ng), we will write |[v| = k. More
generally, the length of the shortest path in some subgraph 7' of N between two
vertices v and w will be expressed by dist(v, w). Also the set of vertices v € N with
[v| = k will be denoted L. It is called the k-th gemeration or the k-th level of the
tree.

Define a collection of i.i.d random variables &, indexed by v € N that take
on positive integer values. If one imposes the constraint that (M1, na, ... ,my) is

connected to (n1, ny, ... ,ng, ngy) if and only if

0< Mg+ < ‘S(nl,nz,...,nk)a

then the resulting subgraph of N is a forest. The component 7" of the forest con-
taining the root (which we will denote 7t) is called the Galton-Watson tree. We will
say a subtree of N*° is admissible if it contains the root and all nodes of the form
(n1,...,nk_1, A1) with # < ny once it contains (n1,... ,nk_1, nx). The Galton-Watson

tree is a random admissible tree.




If v = (nq,...,ns) and w = (nq,... ,m) are two vertices in an admissible tree T
and k < I, v is said to be a predecessor or an ancestor of w and w is a descendant of
v. In the particular case, when [ = k + 1, v is said to be the parent of w, and w is a
childof v. Ungyy =...=m = 1, we call w the principal descendant of v of order
l _ k, and write w = pd(v, I — k). The principal descendants are well-defined because
& 2 1 for all nodes v.

For a vertex v in a tree T = (V,E), we will mean by T" the subtree of all
descendants of v.

We will use |I| to denote the length of I, when I is an interval. Expression #A
will always stand for the cardinality of a finite set A.

A fnnctional F(T, v, vg) deﬁned on trees and pairs of their vertices will be called
equivariant if for any isomorphism of graphs m : Ty — T5, and any two vertices v, ‘an-d‘
Vg in T ‘ | ‘ |

F(T, (vl) m(ve)) = (Tl, V1, Va).

Given an admissible tree T, let u, be the measure on L, = {v : |v| = n}, such that

for any v € Ly, .
({o}) = — Ty
in deg(rt) " deg(w) — 1’

where the product is taken over all vertices w on the path between v and the root.

The measure p, is very well known. It corresponds to the uniform flow on T'.

Proposition 1 Let F be an equivariant functional taking on positive values. Then

for any Galton-Watson tree T and a positive integer k

E(F(T, rt, pd(rt k))) (/ F(T, rt, v) d,uk(v)) (1.2)

Proof of proposition 1. Fix k and F. For m > 0 introduce a functional

F(T, v, w), if deg(v') < m for all v' such that dist(v',w) <k
Fo (T, v, w) =
0, otherwise
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Clearly, the Fi,’s are equivariant and increasing as m grows. If one knew that (1.2)

were true for all F,,, one would conclude that

E(F(T, rt, pd(rt, k))) = E( lim Fn(T, rt, pd(rt, k)))
- 7711_1)1010 E(Fn(T, rt, pd(rt, k)))

— lim E (/ Fou(T, rt, v) dﬂk(’”))

m—ro0

_E ( Tlim ( / F(T, 14, ) d,uk(v)))
_ B ( / F(T, rt, v) d,u,k('u)) o

Therefore, it is sufficient to prove (1.2) for F = F,, and in doing it we drop the

subscript m.

Let group I' be the product of the first m symmetric groups
=1z ,s,.

(We view the elements of S; as a bijective function from {1,...,4} to itself.) The
canonical projection on the i-th component will be denoted 7; : T' — S,. We need
many copies of I'. In fact, we will have a separate I, for each v € V,,, where V,, stands
for the set of sequences {(ny,...,n;)} with 0 <1 < k, subject to 1 < n; < m for all
j between 1 and [. Let

Lo = Iyev;, I

The canonical projections in I', will be denoted
[y = S7.

Canonical projections from I'y onto I, will be called 7.

For each v € T'y we will define a map

¢7 : Tk,m — Tk,m-
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Here Ty, is the set of all admissible trees such that deg(v’) < m for any v’ at the

distance k or less from the root.

Let v = (n4,...,m) be a vertex in a tree T € Tk, m and v € T'y. Suppose vy the

parent of v. (If v = rt, then v preserves v.) Then we define ¢, (v) to be the sequence

¢7U = (nla v anl)a

where

(

((ﬂ-sgg(vo)—l(Wvo))(’Y))(nj)’ if 1 < ] < [ and Vo 75 rt

5 = Y (Maegon) (TN (ng),  if 1< j <1 and v = rt

n;, ifl<j

\ . .

Once it is known where ¢, sends all the nodes of T C N® we can properly connect
the nodes in the image to get a tree YI' C N*. It is clear that ¢,(T) € Tg,m.
Furthermore, ¢, (T') is isomorphic to 7. We extend the domain of ¢, to include the
set of all admissible trees requiring it to be the identity on the trees not in Ty .

It is routine to check that every ¢, preServes the distribution of the Galton-Watson

measure on the set of all admissible trees.

Consider a tree T' and a node v € T with |[v| = k. Let I'(v) C Ty, be the set of
all v € Ty such that ¢, (v) = pd(rt, k). If vo =71, v1,... ,v,_; are the vertices on the
path connecting rt and v = (n1,... ,ny), then ¢,(v) = pd(rt, k) is equivalent to the

requirement, that

(Tgeguy (™) () =1 (0 <1< k), (1.3)

where —1 in the square brackets is used unless | = 0. Note that for { > 0 relation
o(m) =1 is satisfied by (deg(v;) — 2)! elements o € S eg(uy—1> Whereas for [ = 0 it is

true for (deg(rt) — 1)! elements o. It follows that for [ > 0

o € Ty | iy () = 1) = G D pr, = Ly (1)
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Similarly,

i

(deg(rt) —1)! 1 (1.5)

#{s € Tt | Tgeg(ryy (8) (1) = 1} = (deg(w))! #ln = deg(rt)

Equations (1.4) and (1.5) together imply that

1 _ 1
#I(v) = #FWHLIW = #Lpk(v) (1.6)

On the other hand, since ¢, is an isomorphism, given v € Ty, in any admissible tree
T there exists exactly one v € T such that ¢,(v) = pd(rt, k).

With these preliminaries in place we are ready to attack proposition 1 (for the
case F' = Fy,;). According to a longstanding tradition E(X; A) expresses the integral

of the random variable X over the event A.

E(/F(Tfrt v) dpg (v) ): (Z F(T, rt, )#ilﬁz))

lvl=k

= —#Fo, |1”| k %E (T, rt, v); ¢4(v) = pd(rt, k)) use that F' is equivariant
# " EF(¢4(T), $,(rt), ¢,(v)); 6(v) = pd(rt, k))
0 yero, lo|=k
Z E(F(¢,(T), rt, pd(rt, k)))
761“
= E(F(T, rt, pd(rt, k)))
= Z

= E(F(T, rt, pd(rt, k))).

The next to last line is a consequence of the fact that Galton-Watson measure is

preserved under ¢,. Proposition 1 is now proved.

1.3 Small changes in trees.

The main idea of the proof of Theorem 1 is to choose a set of vertices, say Vj, in such

a way that the contributions of the subtrees of their descendants 7% (v € V4) to the
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probability of return to the origin are nearly independent. The technical problem that
arises is that we may not look at these subtrees while making the choice. Therefore,
we will have a set of candidate vertices V; which may or may not be chosen to serve
in V4. Proposition 2 below ensures that the subtrees 7% with v € V4 \ ¥} do not spoil
the picture. This means the contributions of the subtrees 7% of v € V}, will be almost
independent regardless of what the subtrees T% for v € Vi \ V; are. What is being -
said here is strictly informal and the notation of this paragraph will not be used in

future.
The ‘following simple lemma will be helpful throﬁghout.

Lemma 1. Suppose in an infinite tree 7' = (V, E) there is only one node of degree

less than 3. Then for any two nodes v and w with dist(v, w) = d,

Pr(v = w) < (g)d—l ,

where Pr(v — w) denotes the probability that the random walk on T started at v

visits w.

Proof of lemma. Let 7 € V be the node of degree less than 3. Label the nodes
of the path connecting v to w, v = v, v1,..., vy4 = w. Consider the random walk

(Xi)i>o on T started at v, and set
n=inf{j : X;=v} (0<i<d)
By the strong Markov property,
Pr(v = w) = P(74 < 00) = M4 P(1,41 < 00|73 < 00). (1.7)

We claim that if v; # ¥ and v; cannot be connected to ¥ by a path entirely avoiding

all other v,;’s (0 < j < d), then

| ot

P(riy1 < oo|1 <o00) <
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Since there are at least d — 1 vertices v; that meet the assumptions of the claim,
lemma 1 will have been proved once the claim is verified. Let A; be the event that
Xr,+1 does not belong to the path from v to w. Since v; has at least 3 neighbors, two
(or just one) of them being part of the path from v to w, P(A4; |7 < co) > 5. Let
B; be the event that the random walk never returns to v; after visiting it once. Then

using lemma 1 from section 5, one gets

P(riy1 <oo|7; < 00) <1—P(A;NB;| 7 < o0)

<1-P(B;i|Ain{n < 0o})P(A;i| 7 < )

- ()

Remark 1. The conclusion of the lemma remains valid if T has no nodes of

as desired.

degree smaller than 3. The same proof with obvious simplifications applies.

Proposition 2 Suppose m < n are two positive integers. Let T = (Vi, Ey) and
T, = (Va, E») be two admissible subtrees of N®° such that any vertez in the symmetric
difference TYAT, is a descendant of some vertex of the form pd(v, n — m), where

VE L, N(VIUW). Ifvy € L, NV,

IPTl (Tt — pd(UOJ n-— m)) - PTz(Tt - pd(UO) n-— m))l

5 n—m-—1 ‘
< (6) Prvo (vo — pd(vo, n — m)).

Proof of proposition 2. We will only prove
Pr,(rt — pd(vo, n — m)) ~ Pr,(rt — pd(vo, n — m))

5 n—m-—1
(6) PTlvo (vo = pd(v, n — m)).

(1.8)

IN

The other inequality required to get the conclusion of the lemma is derived in the

same way, with 77 and 7, interchanged.
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We use a coupling procedure to construct random walks on 7} and T3 on the same
probability space. To wit, associate with each node in v € V; a sequence of vertices
Yy (j=1,2,...) selected independently among the nodes adjacent to v in 73. For
any node w adjacent to v and any j, P(Y} = w) = d—egl@. Let V4 be the set of
nodes v that belong to and have the same sets of adjacent vertices in 77 and T5. For
v € V3 \ Vy produce a similar sequence (Z});>1. It should be uniformly distributed on

the neighbors of v in T5.

The following statement defines a version of the random walk X' = (X])i>o on Ty

(started at the root). If X} is the j-th visit of X' to some vertex w, then X},, = Y;*.
1 +1 7

7

For the random walk X2 = (X?)i>o on Ty, if (X?) is the j-th visit of X? to some
vertex w, then ’

Yy, itwel

zy, ifwel\V

7 ?

2 _
Xi-l-l -

Define
r =inf{i : X? = pd(v, n — m) for some v € Ly, N T3}

It is evident from the assumptions about 7y and T, that X} = X7 for all 4 < 7.

Consequently,
{X* visits pd(vo, n —m)} C {X? visits pd(vo, n — m)} U {1 < 00}
It follows that

Pr, (rt = pd(vy, n — m)) — P, (rt = pd(ve, n —m)) <
< P({r < oo} N (X" visits pd(ve, n —m)) N (X} # pd(vy, n — m)))

By the étrong Markov property this expression is bounded by

m Pr, (pd(v, n — m) — pd(vg, n —m)).
vep, max 'y (pd( ) — pd(vo )

Using lemma 1, the Markov property, and the fact that vy disconnects v from 77°
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and, in particular, from node pd(vy, n — m), write

Pr,(pd(v, n — m) — pd(vo, n — m))

= Pr,(pd(v, n — m) = v)Pr, (v — pd(vo, n — m))

5 n—m-—1
< (6) PTI”O (vo = pd(vg, n — m)).

The inequality (1.8) is now proved.

1.4 Nodes visited with approximately equal prob-
ability.

The objective of this section is to choose many nodes in the n-th generation of the

tree that are far apart and are visited by a random walk started at the root of the

tree with more or less equal probability. It is also important to know how these

probabilities depend on n. The following proposition introduces a possible answer.

Proposition 3 On a Galton-Watson tree T where each node has between 2 and ko
children, define Qn = Pr(rt — pd(rt, n)). Then as n — oo the limit lim lﬁg% exists

almost surely. It is strictly negative and not random.

Proof of proposition 3. Once the existence of lim lgnQ—" is verified, the fact that it
is not random will follow from Kolmogorov’s 0-1 Law.

It is convenient to view a Galton-Watson tree T as a subset of a larger infinite ran-
dom tree T Intuitively one obtains T from T by introducing the root’s predecessors
and their children other than the root. The formal construction goes as follows.

Let BT, be a set of infinite sequences of non-negative integers (ni)izo subject to
the properties

(BT1) If n; = 0 for some ¢ > 0, then n; = 0 for all j > i.

(BT2) Only finitely many among n;’s can be different from 0.

Let & be a collection of i.i.d random variables having the same distribution as

&re indexed by v € BTp. An element of BTy, say v = (ng, nq,...,ng, 0, ...) with

17




e e
5] T 2

nx # 0, will be a vertex in T if and only if for all 2 < [ < k
n S g(no,nh...,n;_l,0,0,...)

and
&(no,0,0,..) —1 ifng >0

&(no,0,0...) ifng=0
Suppose v = (n,-)Z-ZO; w = (m;)i>o € T. We connect v to w and say that v is the
parent of w in T if n; = m; for all ¢ except for one index ¢ = 49, m; = 0 for all j > 4
and either (A0), (A1) or (A2) below is true.
(A0) ip=0and ng —me =1
(A1) ip > 1, miy = 0, miy < &(no,ma,... mig-1,0,0,.-.)
(A2) ip =1, n; =0 and

&(no,0,0,.) —1 ifng >0
my; S

&(no,0,0...) ifng=0
One can easily identify the Galton-Watson tree T" with the set of v = (ng, ny,...) for
which ng = 0.

For integer 7 introduce random variables Q; ;+1 = Pr(w; = wit1), B = —log Q(3).

(As usual, the subscript 7' means that we are considering the random walk on T rather
than on T'.)

The very construction of the tree 7' makes the family (R;);>o stationary in the
sense that the joint distributions of (R;);cz and (R;41)iez coincide.

By lemma, 1 from section 3

5 n-—1

On the other hand,

1 n
- > .
Ps(rt — wy) > (ko+1)
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Therefore, the R;’s have finite expectations and

—00 < lim log @n

n—0o0 n

<0

if the limit exists.

Note that Pp(rt — wy) = 7=} Q; i41. Therefore,

Z?=1 R;

log Pr(rt — w, .
lim og Pr(r wn) = — lim ==—,
n—o00 n n—oo n

so the limit does exist by the ergodic theorem.

Since $Qn < Pr(rt = w,) < @ (cf lemma 1 in section 5), the preceding para-
graph implies the statement of the proposition.

From now on we use o to denote the limit whose existence was proved in propo-
sition 3. |

Let T = (V, E) be an admissible tree, ¢;, C; and o positive numbers, m < n
positive integers. In a tree T we define GV(cy, Cy, m, n, o) to be the set of all

vertices v with |v| = m, such that

Cle—(a+a)n < PT(Tt SN pd(’U, n — m)) < Cle-(a—a)n, (1.9)

cre@tO)n=m) < P (y = pd(v, n — m)) < Cye~(@=)n=m) (1.10)

Proposition 4 Let p € (0, 1). Then there exists 61 > 0 such that for any choice of
o > 0 and 05 > 0, there exist positive numbers c;, Cy, D such that for any integers

n > m > 2, satisfying |m — pn| < 1
P(#GV (c1, Ci, m, n, 0) > exp(fin)) > 1 — Dexp(—0sn),
where #... denotes the cardinality of the set.

Proof of proposition 4. We will take advantage of the following elementary fact.

19




Lemma 1. If Z is a random variable taking values in [0, 1] and E(Z) > 0.9, then
P(Z >2/3) > 0.7.

Proof of lemma 1. By Markov’s inequality

P(Z>2/3)=P(1-Z<1/3)
=1-P(1-2>1/3)>1-3E(1-Z)=3E(Z)-2>0.7.

Before stating our lemma 2, we remark that by proposition 3 in this section there

exists K > 0 such that for £ > K

p (log(PT(Tt _I; pd(rt, k))) H) > 0.9, where H = (—~a — 0/2, —a + 6/2).
(1.11)

Lemma 2. Suppose integers m; and my are greater than K. In a Galton-Watson

tree T define two following subsets of L,,, = {v : [v| = m;}

Ap, = {w € L, : IOg(PTi:f = w)) € H},
1

B, = {w €Ly, : log(Prv (w ;;pd(w, m2))) € H} :
2

Then P(pm, (Am, N Bp,) > 1/3) > 0.4. (As usual, y,, is the uniform flow measure

on L, .)

Proof. Observe that u,,, depends on the structure of the tree before level m;,
while Prw(w — pd(w, my)) is defined in terms of the structure of the tree at the level

my and higher. If T,,, stands for the (finite) tree cut off at the level m;, this type of
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independence implies

E(pm, (B, )) = E(E(ptmy (Bmy ) | Tomy)

_E ( Z . ({w})P (IOE(PT“’('LU — Pd(w, m2))) c H I Tml))
WELm,

my

_p (log(PT(rt—wd(rt, my))) c H) E ( Z ﬂ'm1({w})>

m
2 WELm,

> (0.9) o, (Lim,) = 0.9.
where the last inequality follows from the choice of my > K. By lemma 1,
P(ttm, (Bm,) > 2/3) > 0.7. (1.12)

Furthermore, by proposition 1 applied to

1, if elrow) o py
F(T, v, w) _ dist(v,w)
0, otherwise,

Bty (Am)) = B ( [ P vty widm, <w>) — B(F(T, 1, pd(rt, m.))).

The latter quantity exceeds 0.9, since m; > K. Lemma 1 now implies
Ptimy (Amy) > 2/3) > 0.7. (1.13)
Note that if both g, (Am,) > 2/3 and py, (Am,) > 2/3, then

Hm, (Am1 an1) = ,U'm1(Am1) +.“m1(BM1) - :uml(Am UBm1) >2/3+2/3-1= 1/3-

21
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Consequently,

(ks (Amy) 2 2/3) O (i, (Bpmy) > 2/3))
(my (Amy) > 2/3) + P(ptmy (Bm,) > 2/3)

— P((tmy (Am,) 2 2/3) U (pim, (Bim,) = 2/3))

>07+0.7-1=04.

P(pimy (Amy N Bpy) > 1/3) > P
p

Lemma 2 is now proved.

Proof of proposition 4. Let ! = [\/m], m; = m — [, my = n — m Assume-
temporarily that m; and m, are greater than K. For any v € L; define u, to be the
measure on L, that has the same distribution as p,,, corresponding to 7%, the tree

of the descendants of v. (In other words, p, corresponds to the uniform flow started -

at v and stopped at the level m of the original tree.) Continuing with the same v, set .

A, = {wve L,, : log(PTun(1U—>w)) € H},
1

B, = {w €Ly : lég(PT”(w = pdw, ma))) H} .

mg

Lemma 2 allows us to write
P(uy,(A,NB,) >1/3) > 04. (1.14)

Note that the events p,(A, N B,) > 1/3 are mutually independent as v runs through

L;, a set of at least 2! elements. Indeed, these events only have to do with trees 7.

Let BAD be the event that
#{ve L : u(4,NB,) <1/3} <272
With (1.14) at hand, it is a simple large deviation estimate that

P(BAD) < 2exp(—v2') (1.15)
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for some absolute constant v.
Moreover, u,({w}) < 27™ for any v € L, and w € L,,. Hence, if the inequality
my

(1.14) is a true for some v, it has at least 22> descendants at the level m that are

both in A, and B,. Therefore, if BAD® takes place,

2m 1
# Uyer, (Av N Bv) > 2l_2? = ﬁ?m (1.16)
Remark 1. Since |m — pn| < 1 the right-hand side of (1.16) is greater or equal
to exp(61n) where n > ng for a suitable choice of 6; that may depend on p and where
quantity no also depends only on p.

Fix for a moment w € A, N B,. Since w € B,, it is immediately clear that w

satisfies (1.10), with any choice of ¢; < 1, C; > 1. In addition,

Pr(rt = pd(w, n — m)) < Prs(v = pd(w, n — m))
< Prv(v = w) Pro(w — pd(w, n —m))

< exp(—(a — 0/2)(n - 1)).

Note that [ < \/pn+1. Therefore the second inequality in (1.9) will hold for a
suitable choice of C; > 1. (Here C is allowed to depend on p, a and ¢ but, of course,

not on n.) Assuming each vertex in 7' has no more than k children

Pr(rt — pd(w, n — m)) > (%) Pr(rt = v)Pr (v — pd(w, n —m))

> (%) m (%) Pre(v = w)Pr-(w = pd(w, n.~ m)

1

> meXP(—(n —)(a+0/2))

Since [ < /pn + 1, the quantity in the previous line is greater than c; exp(—(a:+o)n)
for a suitable choice of ¢;.

We conclude that the event BAD*® guarantees

#GV (c1, Cy, m, n, o) > exp(fyn)
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where the choice of constants ¢;, C; and #; only depended on p and ¢ and o. It is

evident from (1.15) that
P(BAD®) > 1— Dexp(—6sn)

where the choice of D may depend on the value of p as [ = ,/pn. Finally the
constraints m; ~ pn — /pn > K, my = (1 — pn) > K, n > ng can be lifted, by
increasing D in such a way that 1 — D exp(f5) < 0 for all (small) n that do not meet

those constraints. Proposition 4 is proved.

Fix an admissible tree T in which any node has kg or fewer children. Let Ay, be
the event that the fandom walk on 7T started at the root visits at least two vertices

of the form pd(v, n — m) with v € GV (¢1, C1, m, n, o).

Proposition 5 In the above notation,

P(Ay,) < 3C3k2™ ! exp(—3(n — m)(a — 0)).

Proof of proposition 5. For any two nodes v; and v in GV(ci, C1, m, n, 0),
let A, ,, be the event that the random walk visits pd(v1, n — m) and then it visits
pd(ve, n —m). Clearly, |

Agy C Uy, Avy, vy

whence
P(AQv) S (#GV(Cl, Cla m, n, 0))2 max P(Av1,1}2)7 (117)

where the union and the maximum are taken over all pairs of distinct vertices v; and

vy in GV (c1, C1, m, n, o). For any such pair, using Markov property and (1.21) of
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the next section, we have

P(Au, 1) < Pros (o1 = pd(vy, n.— m)) x
X Pro (pd(v1, n —m) = v1) Ppvz (v2 — pd(ve, n — m))
< (C1 exp(~2(n — m)(a — o)) x
x (3k0(Cy exp(~(n — m)(a — 0)))
< 3k} exp(=3(a — 0/2)(n — m)).

To prove the proposition combine the inequality just obtained with (1.17) and the
fact that
#GV(CI, Cla m, n, U) S #Lm S k{)n

1.5 Approximating the probability of no return to

the root by a sum.

The purpose of this section is to investigate how a local change in a tree influences

the probability that the random walk started at its root never visits the root again.

Let T = (V, E) be an infinite tree with root rt. Suppose V; C V' \ {rt} is a finite
collection of vertices such that the shortest path between any element of V; and r
contains no other elements of V;. For v € Vi, let T, be a subtree of T obtained by
cutting off the descendants of all vertices w € V; \ {v}. (In other words, to get T},
we eliminate from T the vertices that would become disconnected from the root if all
the vertices in Vi but v were removed.) Let T be the subtree obtained by cutting off
all the descendants of all w € V;. Clearly, T, C T, C T. For any subtree S C T, let
Qs be the probability that the simple random walk on the tree S started at rt never
returns to rt. Also let A stand for the event that the random walk dn T started at

the root visits at least two points in V.
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Proposition 6 In the preceding setup,

Qr — Qr, — Y _(Qr, — Q)| < P(A)#W,

veVL

where #V, denotes the cardinality of V1.

Proof of proposition 6. We begin by associating with each node v € V a
sequence of vertices Y (here n = 1,2, ...) thatv are selected independently and
uniformly from the set of nodes adjacent to v in T. We may and will assume that the
random walk (Xj)k>o is being run in such a way, that if X; is the n-th visit to some
vertex w, then X;;; = Y. The random walk (Xk)kzo on Tj is being run according
to the same rule when X; € V' \ V4, and if X; € V; then Xj, is the parent of X;.
For v € V4, we consider the random walk (X “)k>0 on T, started at the root. It is
run much in the same way as (Xj) k>0, but with the provision that X;,; must be the -
parent of X; applied only when X; € Vi \{v}. To summarize, we have deﬁned random
walks on T, Ty and T,’s on the same probability space. Call this probability space 2.

Note that € can be represented as a disjoint union

Q=AU (U Av)qu,

veVY

where A, is the event that v is >the only vertex of V; visited by the random walk
(Xk)k>0, and Ay is the event that it visits no nodes in V;. Furthermore, lef Br (B,
B,) be the event that the random walk on T' (Tp, Ty respectively) doesn’t return to
the root. Finally, set 7, = inf{k : Xj = v}, 7 =inf{r, : v € V1}. Clearly, 7, = +00
on 2\ (AU A,), and 7 = oo on Ay.

We claim that for any v € Vi,
B, C B, C Br. (1.18)

Indeed, suppose w € BS. Then for some k > 0, Xp(w) =r. Let 4, <ia... <5 =k be

all the indexes i such that neither X? ;(w) nor X?(w) is a descendant of v. Then it is
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not hard to show by induction on s that X,(w) = X{ (w). In particular, X;(w) = r,
whence, w € BS. Thus, B¢ C B§. The first inclusion in (1.18) follows.

The second inclusion can be proved in a similar fashion. Assume w € Bjf. Then
for some k > 0, Xj(w) = 7. Let i3 < ip... < 4y = k be all the indexes ¢ such that
neither X;_;(w) nor X;(w) is a descendant of some w € V \ {v}. Then again by
induction on s, we get X?(w) = X;, (w). Therefore, X;(w) = r. Hence, w € BS. Thus,
BS C B¢, which concludes the proof of (1.18).

With (1.18) at our disposal, to prove the proposition we need to establish

|P(Br\ Bo) = Y P(B,\ Bo)| < P(A). (1.19)

vEV]

Given our construction of the random walk, a simple induction shows X! = X, for
all k¥ < 7,. It follows that B, \ By € AUA,. Also X} = X;, for k < 7. Thus,
(Br \ By) N Ay = (0. Moreover,

(Br\ Bo) N A, = (B, \ Bo) N Ay

In fact, on A, (Xx)iz0 = (X?)k>0, because A, C Ny {7 = 00}.

Consequently,

P(Br\ By) = ) P(B,\ Bo)| =1 ) P((Br\ Bo) N Au) + P((Br \ Bo) N 4)

~ > P((B,\ Bo)NAy) = Y P((B,\ Bo) N A)|

P((Br\ Bo)N A) - Y _ P((B,\ Bo) N A)

veEV]

< P(A)#W,

which shows (1.19). Proposition 6 is now proved.

Suppose T = (V, E) is a tree with root 7t and v € V is a leaf (node of degree 1)
“in T'. Let G be an arbitrary random rooted tree. Form a tree T by attaching G to

T at v. Thus, the tree of descendants of v in T is isomorphic to G. Assume that all
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vertices in T have between 2 and kg children.
Let Q1. be the conditional probability given G that the random walks on Tg
started at rt does not return to rt. Since G is random, @t is a random variables.
Recall that Pr(v — w) stands for the probability that random walk on T started

at v visits w. Set ¢, = Pr(rt — v).

Proposition 7 Referring to the preceding setup,

0 < Qrg — Qr < 3kog?

Lemma 1. Let S be a tree with root r¢, v be a child of r¢. If v and all of its
descendants have at least two children, then Ps(v — rt) < 1/2.

Proof of lemma 1. If Xy, X;,... is a random walk started at v, Y; denotes the
distance between X; and r, and F; is the o-field generated by the first i steps of the

random walk, then

< P(Y;—Yi =1|F) =1- P(Y;— Yi1 = 1| F).

Wl N

The statement of the lemma is now the result of comparison of Y; to one-dimensional
random walk (also known as gambler’s ruin problem) with bias equal to 2/3. Such a
random walk visits 0 with probability 1/2 if it was started at 1.

Lemma 2. Let v be a vertex in a rooted tree S where any vertex except v has at
least two children. Define Gg(v, v) to be the expected number of visits to v (counting
time 0) for a random walk on S started at v. Then Gg(v, v) < 6.

Proof of lemma 2. Let (Y;);>o be a random walk on S started at v. Let D be
the event that Y, is a child of ¥; and Y3 # v. Clearly P(D) > % Let Ry be the event
that (Y;);>o makes fewer than k visits to v after time 0. By lemma 1, P(R; | D) > 1/2.
Therefore,

P(R,) = P(R,|D)P(D) >

=
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Hence,

P(Re) > & (g) - (1.20)

To conclude the proof of lemma 2 write,

(v, v —1+Zl— Rk))<2()

k>0

Lemma 3. Let v be a vertex in a rooted tree T where each vertex has between 2

and kg children. Then

%PT(NE —v) < Pr(v—rt) < 3koPr(rt — v). (1.21)
0

Proof of lemma 3. We will only prove the second inequality. The proof of the
first one goes along the same lines. Let ¢1 be the probability that a particle starting
its random walk at rt¢ visits v before returning to r¢. Let ¢, be the probability that
a particle starting its random walk at v would visit ¢ before returning to v. Slnce

random walk is a reversible Markov chain,

deg rt ko
 degv ' = 2

- Pr(rt — v). (1.22)
Moreover, by a standard Markov chain argument and lemma, 2
Pr(v—rt) < Gp(v, v)g, < 64,. (1.23)

The statement of lemma 3 is now a simple combination of (1.22) and (1.23).

Proof of Proposition 7. In this proof we will deal with Q1 evaluated given
that G = Gy, where Gy is some non-random graph. Therefore, the randomness and
the probabilities involved will have to do with the stochastic nature of the random
walk, rather than with the fact that a random tree was attached to 7. Furthermore,

we assume that the random walks X, and X % on T and T respectively started at rt
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are defined on the same probability space (as in the proof of proposition 6.) Observe

that
Qr; — Qr = P(Br, \ Br) = P(B7 \ Bf,),

where Br, (Br )is the event that the random walk on Ty (respectively T') never

returns to rt. (By our coupling Br C Br,.) Consequently, Qr, — Qr > 0. Let
T, = inf{k : Xy = v}, 7y =inf{k >0 : X; = rt}.
For k < 7, Xi = XE, whence
Br\ By, C {my < o0} N {71, < 74} N {1t < 00}
Now by the strong Markov property of the random walk and lemma 3,
P(B}\ Bg,) < Pr(rt — v)Pp(v — rt) < 3kog?,

which proves the right-hand inequality of proposition 7. Proposition 7 is proved.
Our last goal in this section is to give a lower bound for Var(Qr,). We continue

with the same ‘T, v and vy as before proposition 7.

Proposition 8 Assume that the probability that a random walk on G returns to the

root of G is less than 1 and not constant a.s. Then

Ce

VG’T(QTG) 2> Zg—(%)zl
0

for some Cg > 0 may depend on G but not on T.

Proof of proposition 8. In the proof of this proposition we will distinguish between
two probability measures. Namely, RW will stand for the probabilities of the events
related solely to the random walk on 7. At the same time RG will denote the
probabilities of the events due to the randoﬁmess of G.

Lemma 4. Let N, be the number of times the random walk on T started at rt¢
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visits v before its first return to r¢. (We set N, = 0 if the root is never visited again.)

Then

RW (N, = and (1.24)

) 1

> Togk, v @
RW(N, = n) = P(N, = 1)y,

for some v < 2 and alln > 1.

Proof of lemma 4. Using lemmas 2 and 3, we obtain

RWr(rt — v) 1 1 g
> > — >
RW(N, >1)> Gr(rt, 1) RWr(v — rt) > )k )(RWT(r — )= 18k
(1.25)
Therefore, to establish lemma it will suffice to prove that
1
CRW(N,=1N, 2 ) 2 5 (1.26)

and that the quantity in the left-hand side of (1.26) does not depend on [ > 0. Since

visaleafin T,
RW(N,=1l|N,>1)=1-4, (1.27)

where ¢ is the conditional probability that the random walk on T started at vg visits
v before the root, given that it eventually visits the root. Formula (1.27) makes it

clear that the left-hand side of (1.26) does not depend on 1.

Let 7, be the time of the first visit to v by a random walk on T started at the
root. Modify 7, by setting 7, = oo if the random walk returns to rt¢ before visiting v.

Then,

RV, = 1) _ RW(N, =1, 7, < o0
,=1|N,>1)=
RWN, = 1INy 2 1) = oo 0 =7 = "W, S 1, 7, < o0) (1.28)
_ RW(N, = 1|7, < ) |
" RW(N, > 1|7, < o)




By the strong Markov property, RW (Ny > 1|7, < co) = RW (v — rt). On the other
hand, RW(N, = 1|7, < 00) equals to the probability that a random walk started at

v will visit the root before returning to v. Consequently,

RW(N, =1|7, < 00) 1

>
RW(Ny > 1|7, <o) ~ Gr(v, v) —

(1.29)

!
6,

where the second inequality comes from lemma 2. Estimate (1.26) can now be ob-

tained by combining (1.28) and (1.29). Lemma 4 is proved.

Getting back to proposition 8, let Q¢ be the RG-probability that random walk on
T started at v eventually visits vg. Clearly Q)¢ depends only on structure of the graph
G. Observe that if we fix G, then for any positive n RW (Qr,—Qr | N, = n) = 1-Q%.
By the formula of complete probability

Qry — Qr =Y (1 - QF)RW(N, = n).

n=1

Hence,

Vang(QTG) = V(M‘RG (Z QgRW(Nu = n))

n=1
= Vargg (RW(NU =1) ZQ%’H) (1.30)
. n=1

= [RW(N, = 1)'Varze (%) '

Note that
Qg )
Var
(1 — Q¢
is a continuous function of y that attains its minimum Cg on the interval [0, 5/6].
Since Q¢ is not a constant random variable, Cg > 0. By (1.30) and lemma 4,
VCL’I'Rg(QTG) Z Cg[RW(Nv = 1)]2
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gj
In view of (1.24), the last line allows us to write

Ce
Varge(Qrg) > Wzkﬁ,qﬁ

which proves proposition 8.

1.6 A regularity result for sums of independent

random variables

Let RV (n, 61, As, 02, As, 05) be the collection of random variables Sy that can be

represented in the form
Sv=X1+Xo+...+ Xy +Y,

where
(i) N is some integer satisfying exp(61n) < N < 2exp(fin).

(ii) The random variables X1,... , Xy are mutually independent. (But they may
depend on Y.)

(iii) For any integer i (1 < i < N) Var(X;) > Asexp(—262n).
(iv) For the same 7 as above P (| X;| < Ajexp(—63n)) = 1.
(v) Perturbation Y satisfies P(|Y| < Asexp(—63n)) = 1.

We will always be assuming that 6 > 63, since otherwise assumptions (iii) and

(iv) would be inconsistent for large n.

Use |I] to denote the length of an interval I. Let IL(n, 64) be the collection of all

pairs of intervals I and J on the real line such that
(vi) 7] = 21|
(vii) e~04(rH) < |I| < e
(viii) I C J
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Proposition 9 Suppose positive numbers 0;, Ao, 05, As, 03, 04 satisfy

03 — 3(02 - 03) > 04 and v (131)
0
05> 0, — 51 (1.32)

Then there exist positive numbers A, B and 6 such that for any n, any random variable

SN S RV(”) 01: A21 027 A37 03) and (I07 JO) € IL(n’ 04)

(1 + Aexp(—6n))

P(SNEIo) < 5

P(S’N € Jo) + B|I|2 (1.33)

The constants 0;, As, 02, Az, 03, 0, will be referred to as parameters of the setting.
In the course of the proof we will choose a lot of other positive constants. Such a
choice will be called legitimate if it only depends on the parameters of the setting but
not on n, Iy, Jy or random variables involved.

Proof of proposition. Changing Aj if necessary, we may assume that E(X;) =0
for all i. Choose Sy, Iy, Jo as in the proposition and let Sy = Sy — Y. Moreover,
let F} be the cumulative distribution function (c. d. f.) for X;, and F be the c.d.f.
for Sy. '

We begin by deriving an inequality that will take care of Y, the small perturbation
of Sy. Attach two segments of length A; exp(—603n) to the ends of Iy, thereby obtain-
ing a larger interval I. Reduce Jy to a smaller interval J by removing a subinterval

of length Az exp(—63n) at each end. It is clear from the definition of IL(n, ;) that
sup J — inf I < 2 exp(—64n). (1.34)
Furthermore,

P(Sy € I)) < P(Sy € 1), ; (1.35)
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P(SNEI()) < P(SNEI)
P(SNG Jo) - P(SNE J)

(1.36)

Our assumptions dictate that 64 < 03 (see (1.31)) and |Jo| = 2|Ip| > exp(—b4(n+1)).
Hence,

[I| _ |I|4+2Asexp(—03n) _ 1+ agexp(—&on)
<« <

1.
7] = 2[1] = 243 exp(—G5m) = > (1.37)

for some legitimate choice of ay and dy.

Wlthout loss in generality we may assume that supJ > 0. Set z = max(0, inf T).
Then |

J C [z — ||, z + 2|L]. (1.38)

In view of (1.32) it is possible to choose 3 in such a way, that

_01/2<,8<04 (139)
Set )\0 = exp(nﬁ)’
%5, texp(Aot) dF (2)
=T exp(hot) dF(2) (1.40)

Quantity y is well defined, because Sy is bounded. Since

/_ N texp(\t) dF(t) = % [ / " exp(\t) dF(t)] ,

oo —00

y = 5= 108 (B(exp(\5w))] o, = > 3 LB (FemO))] o

(1.41)
texp(Aot) dF (t) -

J2%
Z > _exp(Aot) dFy(t)

We will treat the following two cases separately.
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Case 1. (Large Deviation zone.) z > y.
Case 2. (Central Limit Theorem zone.) 0 <y < z.
We claim that in case 1 interval I is so far from the center of the distribution of

Sy that
P(Sy €I) < B|I)? (1.42)

for some B > 0. In view of (1.35) this is sufficient to establish proposition.

To start the proof of (1.42) observe that

P(Sy € I) < P(S, 2 y) < exp(—Xoy) E(exp(AoSn)) = exp(—roy)IIL; E(exp(Xo X;))-

(1.43)
Combining (1.41) and (1.43), we have
P(Sy € I) < TIY, | E(exp(XoX:)) exp (—Ao ff_i;‘:oteflf(():\g) ddzf,-’i(g)) (1.44)
Since 3 < 04 < 63 (cf. (1.31) and (1.39)),
Ao Xi| = exp(Bn)X; < Az exp((8 — 03)n), (1.45)
so for all sufficiently large n, and each : <n
|exp(MoX;) — 1 — Ao X;| < min(0.1X0]X;], 0.603X7). (1.46)

Remark 1. The clause requiring that n be large enough means n should be
greater than some legitimately chosen ny. Of course, we only need to establish (1.33)

for n which are large enough. Once this is done, just increase A and B to make (1.33)

true for any n.

Recall that E(X;) = 0, whence (1.46) gives

E(exp M X;)) < 1+ 6XNE(X?) < exp(0.6(XX:)?). (1.47)
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Inequality (1.46) also yields

—00

for sufficiently large n. Putting together (1.47) and (1.48), we get

[22 texp(Aot) dF;(2)
E(exp(MoX;)) exp (—)\0 T exp(At) dF;(t) )
0.9X2Var(X;)
1+ 0.6,\3VaT(X,~)>
< exp(—0.2X2Var(X;))

< exp (0.6A3Var(x,~) (1.49)

where the last inequality is true for sufficiently large n because of (1.45). It follows

from (1.43) and (1.49) that

P(Sy € I) <TIJL; exp(—0.2A3Var(X;)) < exp(—0.2N exp(28n) Az exp(—26,m))

< exp(—0.24exp((61 + 26 — 26;)n)).
(1.50)

By the choice of g (cf (1.39)), 6, + 28 — 26, > 0, whence
exp(—0.2A; exp((61 + 28 — 262)n)) < Bexp(—264(n + 1)) = B|I? (1.51)

for sufficiently large B. Now (1.42) follows from (1.50) and (1.51). This concludes

the analysis of case 1.

To begin the analysis of the second case, recall that the function

I texp(Xt) dF (1)
Jooo exp(At) dF (2)

Hp()) =

is a continuous monotonically increasing function of A\, Hr(0) = 0, and Hr()\g) = v.
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Therefore, in case 2, there exists A\; € [0, Ao] such that
Hp(A\) =z (1.52)

For this \; introduce independent random variables Y; having c.d.f. G;(¢), so that

JE o exp(Mit) dF(2)

Set Ry = SN, V;, G(t) = P(Ry < t). Our general strategy is to connect the
distribution of Ry to that of Sy, and then use Berry-Esseen inequality to compare

.P(RNEI) to P(RNEJ)

Since random variables (Y)i<i<ny are independent,

00 —00

Ft) = ( /_ " expOut) dF(t)) ( / " exp(=ht) dG(t)), (1.53)

(cf formula (2.11) in chapter 8 of [8]).

The connection between the distributions of Ry and Sy is clear from the following

lemma.

Lemma 1. For any interval D C R,

” exp()\ls)dF(s)) < P(Sy € D)

—00

P(Ry € D) exp(—X\; Sl;P D) (/

< P(Ry € D)exp(— inf D) (/ exp()\ls)dF(s)) :

—0Q

Proof of lemma 1. Lemma 1 follows from the fact that

P(Sx € D) = ( / ” exp(hut) dF(t)) ( /D exp(—/\lt)dG(t))

which is itself a consequence of (1.53).
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Lemma 2. For some legitimate a; and &;

P(SNEI) < P(RNEI)

PEwed) S Plly e T aexp(=amn). (1.54)

Proof of lemma 2. It is evident from lemma 1 that

P(SNEI) < P(RNEI)
P(SNEJ) - P(RNGJ)

exp(—A; (inf I — sup J)). (1.55)
Because of (1.34) and the fact that A\; < Ao = exp(fn)
exp(—A1(inf I — sup J)) < exp(2A\1|I]) < exp(2exp(B — 04)n) (1.56)
Assumption 3 < 6, (made in (1.39)) implies that
exp(2exp(B — 04)n) < 1+ ay exp(—d1n) (1.57)

for some legitimate a; and d;. Inequality (1.54) can be obtained by substituting (1.57)
into (1.56) and then (1.56) into (1.55). Lemma 2 is proved.

Since we are going to use Berry-Esseen inequality, it is vital to have some control

over the the first three moments of the Y;’s. It is not hard to deduce from (1.53) that

t
oo-fezinzs
Consequently,
EYi+...4Y,) = Hp(\) =1z (1.58)
Clearly, for any i1 < N
E(|Yi]*) < A3 exp(—363n). (1.59)

Lemma 3. For any ¢ > n, Var(Y;) > c;exp(—262n), with ¢y = Aj exp(—443).
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Proof of lemma 3. Let Y] be a random variable independent of Y¥; whose c.d.f.

is also G;(t). Then

Var(¥) = 3E((¥ ~ ¥))
1 Joul i< as exp(—tsm) (% — V) exp(Aru) exp(\v) dF;(u)d Fi(v)

2 Az exp(—03n 2
(f—fia eJI:I()(—Zar)L) exp(it) dF; (t))

_ 1 ji”llal”llSA3 exp(—fsn) (u — ’U1)2 exp(Arur) exp(Av1) dFi(u)dFi(vy)

2 fluzl,lvzlsAs exp(—0sm) EXP(A1u2) exp(A102) AF;(uz)dF;(v2)

(1.60)

Since in the last of line of (1.60)
max(|u; — ug|, [v1 — v2|) < 243 exp(—63n),

and A; < A\ = exp(fBn), we get from (1.60)

2 /11, Az exp(—03n
|u1],|v1|<As exp(—03n)
2 eXP( 4113 exp(,@ 63)”))i an ("(7:)

Var(Y;) > exp(—4As\; exp(—6sn)) (uy — v1)? dF(uy)dF;(vy)

> (Ag exp(—4A4;3)) exp(—20,n),
(1.61)

where the last inequality uses assumption (iii), and the fact that 8 < 6, < 65 (see
(1.31) and (1.39)). Lemma 3 is proved.

With (1.59) and lemma 3 in our arsenal it is easy to find a bound on the Berry-

Esseen ratio. Set vy = Var(R,). Generate a standard normal variable Z.

Lemma 4. There exists a legitimate C; > 0 such that for any interval [¢1, t9]

< crom (~ (% 300 -09) ).

(1.62)

‘p (R\Nﬂ}%x € [t t2]> —P(Z€[t, ti))
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Proof of lemma 4. It follows from lemma 3 that .
Necs exp(—262n) < vy. (1.63)

By Berry-Esseen inequality, (1.59), (1.63) and the definition of RV (n, 6y,...), for

some absolute constant Cy

P (R = 2)oy'”? € [t1, ta]) = P(Z € [, )]

C; Y E(YP)
= 3/2
Un

N A3 exp (—363n)
~ (Ncyexp(—26,n))3/2
< CoA3 exp(3(02 — 63))n
< NGV

< crom (- (450, 00) ).

(Here Cy = Cy A3 ) Lemma 4 is proved.

.
Ve

Next we estimate P(Ry € I) and P(Ry € J). To this end translate and dilate

intervals I and J: I, = \I/;_}”\”,, Ji = :;;_;5

Lemma 5. For some legitimate as and 9,

||
vV 27T’UN

P(Ryel)< (1 4+ ag exp(—dan)). (1.64)

Proof of lemma 5. Since the density of the standard normal distribution is

bounded by v/ 27r_1, lemma 4 gives
P(Ryel)<P(Zel)+Ciexp (— (% —3(0; — 03)) n)

< \/% + exp (— (% — 3(6 —03)) n) :
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Note that the first term in the last line can be bounded below as follows

7] : : exp(—0s — 6;)
> b e 03 —0y —6,/2)n) with by = ————— 2,
v 1 XP(( 3 4 1/ )) 1 \/%Ag

Assumption (1.31) ensures that
03 — 64 — 91/2 > —(01/2 - 3(02 — 03))
Therefore, in view of (1.66) estimate (1.65) can be simplified to the form

I
P(Ryel) < \/%(1 + ay exp(—dan))

for some legitimate az and d. Lemma 5 is proved.

Lemma 6. For some legitimate choice of a3 and 43

|7

P(RyeJ) > \/m(l — azexp(—dsn)).

(1.66)

(1.67)

(1.68)

(1.69)

Proof of lemma 6. Due to (1.38), J; is contained within 2|Io|vy~'/2 neighbor-

hood of zero. Inequality (1.63) implies

2 IplowY2 < %exp((—a1 —0,/2+ 6,)n)

Since —0; — 6,/2 + 0, < 0 (see (1.32)) and the density of the standard normal distri-

bution, call it ¢(z), is smooth,

1

¢(z) > E

(1 — agexp(—d4n)) for z € Jy,
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where a4 and 84 are chosen legitimately. It follows from lemma 4 and (1.70) that

P(Ry € J) > P(Z € J;) —Cyexp <— (% —3(0, — 03)) n)

> /] (1 — agexp(—d4n)) — Cy exp (— (9—1 —3(0; — 03)) n)
271"UN 2

> /1 (1 — azexp(—dsn))
2N

(1.71)

for some legitimate c; and d3. The last inequality in (1.71) was obtained using (1.66),
(1.67) and the fact that |J| ~ 2|I|. Lemma 6 is proved.
It can be inferred from lemmas 5 and 6 and inequality (1.37) that

P(Ry € I) - \/zl_frlm(l + az exp(—d2n)) < 1 + a5 exp(—d5n) (1.72)
P(RyeJ) ~ ‘/—Jz—%l—m(l — azexp(—d3n)) — 2 .

for some legitimate as and ds.
It remains to combine (1.36) with lemma 2 and (1.72) to establish the proposition

in case 2.

1.7 Absolute continuity of a measure under a scal-
ing condition.

Proposition 10 Suppose B, n, 0, ny and 6, are positive numbers. Assume that a
probability measure p is supported on the interval [0,1] and for any n > ny and any

pair of intervals (I, J) € IL(n, 64)

1+ exp(—0n)

5 u(J) + B|I|M. (1.73)

u(I) <

Then u is absolutely continuous with respect to Lebesgue measure. Its Radon-Nikodim

deriwative with respect to Lebesgue measure is bounded almost everywhere.

Remark 1. The proof below is straightforward but a little tedious. Appendix A
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contains a much more elegant proof due to Daniel Stroock.

Proof of proposition 10. Given any interval Iy C [0, 1] of length less than
1/2 exp(—0470), one can construct an interval I; such that |I;| = 2|I;| and Iy C I; C
[0,1]. If the length of Iy is also less than 1/2exp(—64ng), construct I, such that
|I2| = 2|I1| and Iy C I; C I,. Iterate this procedure until we get some interval |I;|
of length between 1/2 exp(—64n0) and exp(—604mp). We now point out for the future

reference that

1

|| = o=

|Ii] < 21°F exp(—04mp). (1.74)
We claim for every integer [ such that 0 <! < k — 1, there exists m; > ng such that
(I, Iiy1) € IL(my, 64)

In fact, conditions (vi) and (vii) from the definition of the classes IL(n, 64) are obvi-
ous. To address (viii), set J, = [e"%4("+1) ¢=04m) (n > ). Clearly,
n=no“mn

US2 .. Jn = (0, exp(—64n0))

Since |[;| < exp(—04ng), |I;| € Jm, for some m;. Condition (vii) is satisfied for this

choice of m.

The assumption (1.73) yields for any [

,U:(Il) < (1 +exp(—gm))ﬂ(fz+1) + B|Il|1+"- (1-75)

Set d; = % Then (1.75) is easily seen to imply

di < 1+ exp(—0my) + Bexp(—nmy). (1.76)
1+1

Multiplying (1.76) for all / from 0 through k¥ — 1 and noting that dy < 2exp(64ny),
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because |Ix| > % exp(—64ng), we obtain

do < 2 exp(04m0) I (1 + exp (—0my) + Bexp(—nmy)).

Recalling (1.74) and (viii) from the definition of IL(n, 64), write
exp(—0s(my +1)) < |I)| < 2% exp(—04my).
It follows from (1.78) that
exp(—0my) < (207P%).
Similarly,
exp(—nmy) < (247M%).

Then the change of variables m = k — [ in inequality (1.77) leads to

dy < Mo (127" + B2 ).

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)

The product in the right-hand side of (1.79) converges to some number, say C, which

is independent of the choice of |Ip|. Thus, for any interval I C [0, 1],
p(Io) < Cll|.

This inequality implies the proposition.

1.8 Proof of the theorem.

Referring to « in section 3 choose p > 0 so small that

3k3” exp(—3(1 — p)a) < exp(—2.5a) and
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(g) 7 < exp(—20p) (1.83)

‘Then choose 6; = 6, (p) as in proposition 4. Next pick ¢ > 0 in such a way that

3k3° exp(—3(1 — p)(a —0)) < exp(—2.5a), (1.84)
100 < o, (1.85)

320 < 6, and (1.86)

30 < ap. (1.87)

Set 03 = 2(a + 0), 83 = 2(a — o) and pick any 6, > 0 in the open interval

0
(02 - El 05 — 3(6, — 03)) .

The interval under consideration is non degenerate due to relation (1.86). It contains
positive numbers because of (1.85). Pick any 05 > 264. Let ¢;, C1, and D be as in

proposition 4. Find ny > 2 and ¢, > 0 such that for any n > ng, pn > 1 and

cz exp(—(a + o)n) < ¢y exp(—(a+o)n) — GTCI exp(—(a + 20)n). (1.88)

Pick an arbitrary n > ng and set m = [pn]. Then take any pair of intervals
(I, J) € IL(n, 6,).

with some n > ng. Let V C N be the set of all sequences (n;);>1 € N*° such that

ny = 1 for all integer | € [m,n — 1].

Without loss in generality we may assume that the basic probability space 2 on
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R

which random variables &, are defined is a product of two (independent) probability
spaces €; and 2, with measures P; and P, respectively. It can be further assumed
that &, with v € V are defined on ;, whereas all other £,’s are defined on £2,. In
this framework, Galton-Watson tree could be viewed as a map 7" from £2; x )5 into
the ensemble of admissible trees. Then Qr, the probability of no return to the origin

on T, is a measurable function on 2, x £2,.

By Fubini’s theorem,

P(Qrel) = f Pu(Qr(wy, ws) € T) dPy(ws).

Q2

Let us break up Q, into a disjoint union of two sets,
Q =CMMN URARE.

A sample point wy € CMMN if for some wy, for the realization of Galton-Watson

tree T' (w1, wo)
#GV (c1, C1, m, n, o) > exp(61n). (1.89)

Otherwise we say wy, € RARE.

By proposition 4 and the choice of 65,

/ Py(Qr(wn, wn) € I) dPy(ws) < D exp(—Osm)

RARFE
< D(exp(—64m))? (1.90)
S D1|I|21

where D; = Dexp(26,). Take an arbitrary w, € CMMN. Pick any w;, € ; so that
(1.89) holds. Consider a tree T} = T'(w;, wy). For the sake of convenience denote

Vo = GV (c1, C1, m, m, o) in Ty. Choose any V; C Vj, such that

exp(61n) < #V; < 2exp(in), | (1.91)
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Without loss in generality we may assume that (€, P;) is a direct product of
probability spaces (23, P3) and (Q4, P,) so that &, is defined on €3 if w is a descendant
of a vertex of the form pd(v, n — m) with v € V;. However, if w is a descendant of a
vertex of the form pd(v, n — m) with v € L,, \ V4, then &, is defined on 4. Then a

generic element w; € £, can be written as a pair w; = (ws, wy).

Let T; be some other admissible tree subject that coincides with T3 such that,
and vg € V5. Then by proposition 2 and (1.10)

| Pr, (rt — pd(ve, n — m)) — Pp,(root — })d(vo, n—m))|

5(5

n(l—p)—1
<G (—) - em@mlmm) yse (1.83)

n—m—1
) Prvo(vo — pd(vo, n — m))

S| Ot

6

< & oxp(—20pm)e-(a-o)n1-0)

The last line together with (1.88) and (1.9) in section 4 yields
c2 exp(—(a + o)n) < Pr,(root — pd(vg, n — m)) < 2C exp(—(a —o)n)  (1.92)

Obviously, Prvw (v — pd(v, n — m)) is the same in 7} and T5. Therefore, inequalities
(1.92) imply that
vo € GV (cq, 2C1, m, n, o)

in TQ.

Fix ws € Q4. Our next goal is to apply proposition 6 to T = T((, ws),ws),

a random tree on Q3 and V = {pd(v,n — m)|v € V4}. Compare the following
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properties with the stipulations made in section 6.

(i) It can be seen from (1.91) that

#V = #V1 € [exp(61n), 2 exp(6:1)n]

by the choice of V;.

(ii) Random variables @1, — Q7 are mutually independent, because they are de-

termined by disjoint collections of &,’s.

(iii) Proposition 8, formula (1.9) and self-similarity of Galton-Watson trees give

c3 exp(—4(a + o)n)Cow
kg

Var(Qr, — Qn,) >

where Cgw is Cg from Proposition 8 corresponding to G being a Galton-Watson tree.

(iv) Proposition 7 and (1.9) for GV (cy, 2C1, m, n, o) imply that for v € V
0 < Qr, — Qr, < 3koCyexp(—2(a — 0)).

(v) If we set
Y = (QT - QTO) - Z(QTu - QT0)7

veEWY

then propositions 5 and 6 would give

[V < P(A2,)#V < BCTE™ exp(—3(n — m)(a — 0))) kT
< (koC3)3k5"" exp(—3(1 — p)(e — 0)n)

< koG exp(—2.5am) < koC? exp(—2(a + o)n),

the last two inequalities being consequences of (1.84) and (1.85).

Analysis of the items (i) through (v) shows that

4
CQCGW

QT((',UJ4), wz) — constant € RV (n, 91, T, 02, max(koC'f’,3k001), 03) .
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Proposition 9 now implies that for a suitable choice of positive numbers A, B and 6

(1+ Aexp(—6n))
2

Py(Qr((-,ws),wp) € I) < Py(Qr((-,ws),w2) € J) + BII|*. (1.93)

Integrating (1.93) over {2, with respect to P, while keeping w, fixed, we obtain-

(1+ A exp(—6n))

P (Qr(-,we) €I) < 5

Pi(@r(, w) € J) + BT

for any wy, € CMMN. Next integrate over CMMN

(1 + Aexp(—6n)) y
2

/ PI(QT(wl, LUQ) € I) sz((Uz) S
CMMN

x / PuQr(wr, ws) € J)dPy(ws) + BIIP =
CMMN

/ PuQplen, wp) € I) dPy(en) < LT AP pr e ) + BT (1.99)
CMMN ‘ .

Finally, add (1.90) and (1.94) to get

P(Qrel)= /R - P1(Qr(wy, wa) € I) dPa(ws)

+ / Py(Qr (w1, ws) € I) dPy(ws)
CMMN

< (1+ Ae:;p(—Hn))P(

(@r € J) + BII|"*"

Qr € J) + B|I?,

with B' = B + D;.

The assumptions of proposition 10 are satisfied for
1(A) = (P1 x P3)(Qr(w1, w2) € A).

Proposition 10 applies to show that Q7 is absolutely continuous with bounded density.
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Chapter 2

The boundary of a Galton-Watson

tree.

2.1 Introduction

Consider an infinite rooted tree T. A ray in T is a sequence of vertices vy = rt, vy,
Vg, ... such that for any 7 > 0 v; is the parent of v;;;. The set of all rays in T is
called the boundary of the tree T' and is denoted d7". It can be turned into a metric

space by defining the distance between the rays (v;);>o and (w;);>o to equal
dist((v,—)izo, (’LU,;),;Z()) = exp(—j), where _] = max{z LU= ’LU.,'}. (21)

Considering the path connecting a vertex v # rt in an infinite tree T' = (V, E) to the
root, of the tree, define Ag(v) to be the fraction of the nodes with k children in the

path. More formally,

_ #H{w €V, deg(w) = k + 1, w disconnects v from rt}|
B ol '

Ak('u)

Given a Galton-Watson tree 7', and a sequence 7 = (7}),>1 of non-negative num-
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bers that add up to 1, let A, be the set of rays (v;)i>o in 67" such that

111)12) Ak (1),,) =Tk.

In this chapter we are computing the Hausdorff dimension of A,.

Roughly speaking we would like to know whether it is possible to find a ray in T',
in which the concentration of vertices with % children is ry for any k. If such rays
exist, we would like to be able to tell how many of them are present in the tree.

Of course, the quantity in question depends on the parameters of the Galton-
Watson tree. Set pr, = P(&: = k), mo = E(&t), qe = %’% We will be assuming that
po = 0 and my < 0. _

It was proved in [3] that the Hausdorff dimension of 6T is equal to log mo with
probability 1. The following theorem describes the typical behavior of concentration

of vertices with given numbers of children along the rays of 7.

Theorem 2 For almost every ray (in the sense of Hausdorff measure Hiogm,) (vi)izo €

0T in almost every Galton-Watson tree T

Em Ar(v;)) =qr  for all k.

Thus, A(,) is the thickest of all the sets A,. It is natural to expect that the closer
is the sequence (7%)k>1 t0 (gk)k>1, the higher the dimension of A, is. The exact
statements will be made in terms of the relative entropy also known as the Kullback-
Leibler distance between distributions. We will only need this metric in the case
of integer-valued random variables. Therefore, for our purposes it suffices to define
it as a distance between sequences of non-negative numbers. Let z = (zx)s>1 and
y = (yx)k>1 be two sequences of noh-negative real numbers that add up to 1 such
that y; = 0 whenever x = 0. Then define the relative entropy of y with respect to z

to be

O = > welos ().

k>1:y;0
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The theorem below is the main result of this chapter.

Theorem 3 Referring to the preceding setup, assume that rr, = 0 whenever py = 0.

Then for almost every tree T in the sense of Galton-Watson measure

 dim(A,) = max(logmo — H(r|q), 0).

One possible application for the theorem would be to obtain inequalities relating
the dimension and the speed of the biased random walks on Galton-Watson trees.
(See [5] and [6] for the relevant definitions and interesting results.) Some natural
estimates of this sort were conjectured in (7] and proved in [9], but the method
based on Theorem 3 should produce different bounds.

The foIlowing paragraph describes the breakdown of the chapter into sections. Sec-
tion 3 contains the proof of theorem 2. The proof uses a simple lemma on Hausdorff
presented at the end of section 2. Section 2 also explains how to convert the informa-
tion about deterministic trees into bounds on Hausdorff dimension of its boundary.
Unfortunately, it imposes stringent requirement on the trees it treats, namely, the
trees have to grow fast everywhere. This is why we need section 4 explaining how to
select a subtree of a random tree that grows almost as fast as the original tree while
doing it absolutely everywhere. Sections 6 and 7 give some upper and lower bounds
for the number of small balls in 07" necessary to cover the finite analogs of A,. The
strategy there is to use Sanov’s theorem to estimate the expected number of the balls
in the coverings. By Markov’ inequality, the bound for the expectation will imply
similar bounds for individual trees. It is possible to use the homogeneity property of
Galton-Watson tree to prove the lower bound as well. Section 5 lays the groundwork
for sections 6 and 7. Namely, it proves a certain independence statement that makes
Sanov’s theorem relevant in subsequent sections. Propositions 19 and 20 proved in
section 8 are equivalent to the theorem.

Remark. It was brought to author’s attention that a similar result in slightly

different setting was proved in [4].
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2.2 Estimates for Hausdorff dimension.

The main purpose of this section is to prove a lower bound for the Hausdorff dimension
of the boundary of an infinite deterministic tree T" that in some sense grows uniformly.
This means T' does not have pockets of slow growth.

At the end of the section we establish a lower bound for the dimension of a subset
of a general metric set in terms of the size of its e-net. It will follow from a sufficient
condition that ensures that the Hausdorff measure of certain dimension is zero for
some sets. Statements of this type aré as plentiful as mushrooms, because it is easier
to prove one than to look it up. ’

Consider an infinite rooted tree T and its boundary §7'. (The relevant definition
are included into the introduction to this chapter.) If z = (v;)i>o € 0T, then B,(z),
the closed ball of radius r centered at z, consists of all rays (w;)i>o that agree with
z up to the vertex v[_iogs). Thus, B.(z) is precisely the set of rays going through
V[—10gr]- We will say that v is the pivotal vertex for B, (z).

It is not hard to see that 67 is compact.

Recall the notions of Hausdorff measure and dimension. Given a subset A of a.
metric space X and a positive number «, the Hausdorff measure of dimension « is

given by
Hy(A) = 11_1)13 (inf {i r® : A C UB,,(z;) for some z; € X and r; < € for all z})
i=1
Then the Hausdorfl dimension of A is defined by ’phe relation
dim(A) = inf{a : H,(A) =0}.

Remark 1. For any 3 > dim(A) and any € > 0, there exists a covering of A by balls

B, (z;) with radii r; < € centered at x;’s, such that

er <L
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The following proposition derives a lower bound on Hausdorff dimension of 67T for a

tree T whose behavior can be controlled only at certain levels Lg, = {v : |v| = S;} .

Proposition 11 Suppose (S;)i>o s a strictly increasing sequence of integers with
So = 0 such that

hm (Si+1 - Sz) =00
i—00

and
Siy1 — S;=0(S;)) as1— oo. | (2.2)
Assume that in a rooted tree T = (V, E) for any ¢ and any verter v € Lg,
#(T* N Lg,,) > cexp(a(Siy1 — Si)) (2.3)

for some positive numbers ¢ and « independent of i and v. Then dim(8T) > a.

Proof of proposition 11. Pick any positive number 8 < a. We will show that
dim(8T) > B, (2.4)

and the proposition will follow, because § is arbitrary.

We will argue by contradiction. Assume that 8 > dim(6T). Set v = %ﬁ By
(2.3), the generation Lg, has at least cexp(as,) vertices. Each of these vertices has at
least cexp(a(S; — S1)) descendants in the generation Lg,, hence #Ls, > c2 exp(aS,).

Continuing this argument, we see that
#Ls, > c'exp(aS;) = exp(aS; +ilogc).

It is clear from our assumptions on S;, that ST — 00 as ¢ — co. Hence, there exists

io such that |Ls, | > exp(vip). Without loss in generality, iy can be chosen so large
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that for any 7 > 4

cexp((@ = 7)(Six1 — 5) 2 2, (2:5)

S,',B < S,;_l"y — 1. , (2.6)

By remark 1 and our assumption 8 > dim(8T'), there exists a collection of open balls

B,,(z;) with r; < exp(—io) whose union covers the entire space §7T', and
dorf<1 (2.7)
i

By compactness of 67", we may assume this collection of balls is finite. Let v; be the

pivotal vertex for B;,(z;). Since r; < exp(—iyg), |vi] > 9. Define V} = U;{v;}.

Let F; be the set of all v € Lg, \ V; that don’t ha\}e predecessors in V;. We will

prove by induction on j that for 5 > 7

#F; > exp(vS;). (2.8)

If j = 49, then F; = Lg,, because for any 4 |v;| > 4. Therefore, (2.8) is true by the

choice of ig.

Next assume that (2.8) has been established for all j < h where h is some integer

greater than ig. Set

Va=Vin(Ugts, 1Lk,
W = {w € Fj_1 : w has no descendants in V,}.

For any v; € V3, the corresponding 7; is not less than exp(—S}). It follows from (2.7)
that
(#V2) exp(—BSy) < D 17 <1 = #V5 < exp(BSh)

v;€Va

Since each element of V, has one predecessor in Fj,_1, the assumption of induction for
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j=h—1 gives
#W > #F,_1 — exp(BSh) > exp(ySh-1) — exp(BSh). (2.9)
Inequality (2.6) gives a lower bound for the right-hand side of (2.9), and we write
#W > (1 —e ) exp(vSp_1). (2.10)
Observe that for any w € W,
TN Lg, C F. (2.11)

Indeed, if w; € T N Lg, , then any wy, a predecessor of wy, is either a predecessor of
w or a descendant of w. By the definition of Fj,_; the predecessors of w are not in

V1. If wy is a descendant of w, then
Shfl = |’lU| < I’lU2| < |w1| =5,.

Therefore, if w, were in Vi, it would also be in V5, which would contradict w € W.

Hence w; has no predecessors in Vj. The inclusion (2.11) is verified.

As a consequence of (2.11), we get
(UwewTw) m Lsh C Fh

The union in the left-hand side of the last line is disjoint. Using (2.3) and (2.10),

conclude

#F, > c(1 — e 1) exp(a(Sy — Sh_1)) exp(ySn_1)
> Cexp(,-ySh)e(a_7)(Sh_Sh—l)(1 _ 6_1)

use (2.5) > exp(vSh),

which proves inequality (2.8) for j = h.
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On the other hand, the fact that
6T C UB,-i (.’L‘l)

means any ray in 67" goes through one of the v;’s. Since V; is finite, there exists
S > max{|v;| |v; € Vi}, and we may also assume k > 45. Then each vertex w € Lg,
has to have a predecessor in V;, because any ray through such a vertex has to contain
an element v € Vj, and this v cannot be a descendant of w, since |v| < Sy = |w|-
However, nodes in Fs, have no predecessors in V; and |Fs | > exp(ySk) > 0. The

contradiction just obtained proves (2.4).

‘Proposition 12 Let Ay with N > 1 be subsets of a metric space X. Assume that

each Ayn is a union of hy balls of radii exp(—N). If for some positive number «,
.
Z hy exp(—aN) < oo,
N=1

then Ho(limsupy_,o, An) =0, where as usual

limsup Ay = N2; U2, A;.
N—oo

Proof of proposition 12. Take an arbitrary positive integer n. Note that

limsup Ay C Un>ndn

N—oo

is a covering of lim supy_,,, Ay by a countable number of balls B;,(z;). Among them,

exactly hy balls have radii exp(—N) < exp(—n). Therefore,

Ha(limsup Ay) < lim > i) < lim ) hyexp(-aN) =0.
i <exp(—n) Non

Proposition 12 is proved.
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Proposition 13 Let Ay C X and hy (N > 1) be as in proposition 12. Then

log hy

dim(limsup Ay) < limsup (2.12)

N—oo N—oo

Proof of proposition 13. Choose an arbitrary 8 > limsup 1°JA’;—N Then the

series

Z hx exp(—fBN)

converges. Therefore, by proposition 2 Hg(lim supy_,., An) = 0.

Since the choice of § > lim sup 1351\};—” was arbitrary, inequality (2.12) is true.

2.3 Analysis of typical rays.

This section is devoted to the proof of theorem 2. The idea here is to find exactly the
expected value of some random variable closely related to the “raywise” concentration
of vertices with given numbers of children. This value will provide us with all the

information we need to establish the theorem.

Fix J, an arbitrary collection of positive integers. Define
Us(v) =#{w eV, deg(w)—1€ J, 0< |w| < |v|, w disconnects v from rt}.

For our purposes it will be essential to consider random variable
X, = Z exp(aU;(v)),
v:|v|=n

where o is some positive number to be chosen later.
Lemma 1. E(X,) = (mo + (Y_4cs kpr) (exp(a) — 1))".

Proof of lemma 1. Lemma 1 is based on the following simple observation. If v
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is a child of w, then

1,  the number of children of w is in J
Us(v) = Uy(w) = "
0, otherwise

Consequently, for any vertex w in a Galton-Watson tree
E ( Z exp(a(Ux(v) — Uk(w)))) =mg+ (Z kpk) (exp(a) — 1), (2.13)
v is a child of w keJ

and (2.13) holds even if we condition the expectation involved on the development of

the tree before vertex w appears.

For a Galton-Watson tree T, let T;,—1 be its finite subtree obtained by cutting off

the vertices of the n-th and higher generations. Then

E(Xn) = E(E(Xn ITn—l))

=F ( Z | Z E(exp(aUj;(v)) | Tn_l))
WELyp_1 v is a child of w

=E ( 3 explalUs(w) > E(exp(a(Us(v) — Us(w))) |Tn—1))

WELp_1 v is a child of w

by(2.13) =E( Z exp(aUJ(w))) X

wELn 1

X (mo + (Z k'pk) (exp(a) — 1))
- (m - (Z kpk) (exp(ad) - 1)) E(Xoo1).

keJ

(2.14)

Since E(Xy) = 1, the statement of the lemma can be obtained by repeated application
of (2.14).

Set g7 = D pey I
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Lemma 2. Given € > 0 there exists § > 0, such that in the Galton-Watson tree
T
P (#{v € Ln: Us(v) > (g7 +€)n} > %) < 2 exp(—6n).

Proof of lemma 2. Note that if 7" were such that

#o € Lo Usle) > (s + 9 m} > 28,

‘then

Therefore, by Markov’s inequality

P (#{v €Ly :Us(v) > (g7 +e€)n} > :_5)

< exp(—a(qs+e) n)'E(‘:i—’é)rf )
< exp (—a (g +€)m) = [mo + (s 7’%) (exp(a) — 1)]

< n?lexp (—a (g7 +¢€) (1 + gs(exp(a) — )"

The statement of lemma 2 follows from (2.15) and the fact that
exp (—a(gs +¢€) (1 +gslexp(a) — 1)) =1—ea+0(?) <1 (a— 0).

for sufficiently small a.

We return to the proof of theorem 2. In a Galton-Watson tree T define Ay C 67T
to be the set of all rays (v;);>o such that U;(vx) > (g5 +€)N. Then Ay is a union of
hx balls of radii exp(—N) in 6T, where

hy = #{’U € Ly : UJ(’U) > (QJ-l-G)N}.
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Moreover, since U;(v) = [v] Y _c; Ax(v),

limsup Ay = {(vi)i>o : lim supZAk(vi) > q;+ €}

N-oo i—00 keJ

Let Z, be the size of the n-th generation in T. Apply Borel-Cantelli lemma and
lemma 2 to conclude that for almost every Galton-Watson tree T for all sufficiently

large N
hy < —=. (2.16)

Since lim,, oo Z,my " exists and is positive almost surely the series

Z thEN
N

converges with probability 1. Apply proposition 12 with a = log mg to conclude that

Hiogme ({(Ui)izo : lim supz Ap(v) > g7 + 6}) = 0.

1—00 keJ

Since € > 0 was arbitrary, for Hiogm, almost all rays in ('u,-),-zo € oT

lim sup (Z Ak(vi)) <gqy (2.17)

1—00 keJ

almost surely.

Using (2.17) with J = {n}, we get

limsup Ap(v;) < ¢n for a.e. (v;)i>0 in a. e. T. (2.18)

t—00
On the other hand employing' 2.17 with J = Z, \ {n}, we get
lim sup (Z Ak(’vi)) <l—an, =
i—00 k£n
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liminf Ay, (v;) > ¢, for a.e. (v;)i>o in a. e. T. (2.19)

1—00

Since (2.18) and (2.19) have been established for all n, theorem 2 is proved.

2.4 Subtrees of uniform growth.

Suppose most vertices in a Galton-Watson tree 7" have at least m children. In other
words, P(&,; > m) is close to 1. There will still be pockets in T, where most vertices
have small degrees. These pockets would violate the assumptions important to our
approach to the lower bound for the Hausdorff dimension of certain subtrees. We
would like to remove these pockets without slowing down the growth of 7". That is,
we would like to select a subtree 7" C T, that branches quickly everywhere, while

growing almost as fast as T does.

An additional twist is that we will have to prove a result of this type for a branch-
ing tree somewhat more general than a Galton-Watson tree. By an inhomogeneous
Galton-Watson tree we will mean a measure on the set of all (admissible) trees con-
structed in the same way as Galton-Watson measure, except that the assumption that
&, are identically distributed is dropped. The random variables &, are still indepen-
dent. Contrary to our usual practice, in this section we do not exclude Galton-Watson

trees with leaves.

Getting down to a rigorous presentation, fix ¢ > 0 and assume that for some

sequence (mn)nZO and an inhomogeneous Galton-Watson tree T’
P& >my,)>1—c¢ (2.20)

for any vertex v € L,. Define A to be the event that the (inhomogeneous) Galton-
Watson tree T' = (V, E) has a subtree 7" = (V', E') containing the root of T such
that any vertex v € V' N L, has at least m,, (1 — 3¢) children in V".
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Proposition 14 In the preceding setup, there ezist positive numbers C, and p,
P(A|&+ > mg) > 1 — C.exp(—pe miin m;),

uniformly over all sequences (my)p>1 and the distributions of &, subject to (2.20).

Proof of proposition 14. Let (my),>0 be as in the statement of proposition.
- Without loss in generality, we may and will assume that P(&, # my) > 1 —¢€, when
|v]| = n. If some vertex v € L, has more than m,, children, just cut off the children
in excess of m,, and their descendants.
In the inhomogeneous Galton-Watson tree T' = (V, E), define subsets (V3) C V
(k > 0) inductively. Let Vo be the set of all vertices v iﬁ V with fewer than my,
children. Once V}, is constructed, we put a vertex v into Vj4, if it either has at least
3emyy| children in V; or is in V; itself. |
Lemma 1. There exists some positive number m such that if min; m; > m, then .

for any £ > 0
P(rt € Vi | & =mo) <. (2.21)

Proof of lemma 1. Inequality (2.21) is vacuously true for £ = 0, regardless of the
value of m. Suppose it has been proved for k£ = kg and some m. Let us try to verify
it for k = ko + 1. Assume &,; = myp and label the children of the root vy, ..., vp,-

Note that for any ¢ |
P(v; € Vi) < P(v; € Vo) + P(v; € Vigg | &y = 1)~ (2.22)

The first quantity in the right-hand side of (2.22) is smaller than e by (2.20). The
second one is bounded by e as well, because (2.21) was proved for k = ko. (We are
applying the result with k = ko to 7% and the sequence of the m’s started at m;.)
Thus, P(v; € Vi,) < 2e. Since the events v; € Vj, are independent (1 < i < my),

P(rt € Vigs1 | & = mo) < P(B(my, 2¢) > 3emy), o (2.23)
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where B(my, 2¢) is a binomial random variables with parameters mo and 2¢. By the

law of large numbers,

lim P(B(m, 2¢) > 3em) = 0.

m—0o0

Hence, m can be chosen so that P(B(m, 2¢) > 3em) < € for m > m. Then (2.21)

holds for & = kg + 1 by virtue of (2.23). Lemma 1 is now proved.

Lemma 2. If v € L, N (V' \ (UxVk)), then v has at least m,(1 — 3¢) children in
VA (Uk Vi)

Proof of lemma 2. Since v € L, NV, v has m, children. Arguing by contradic-
tion, assume that vi,... ,v; are distinct children of v, j > 3em, and all the v;’s just
introduced are in U;Vj. Then for some k;’s, v; € V;,. Since the V;’s are increasing,
all the v;’s with 1 < ¢ < j belong t0 Vinax{k;:1<i<j}- Then v € Viax{x;:1<i<jj+1, Which

contradicts the assumptions of lemma 2.

Returning to the proof of proposition 14, observe that if the root does not belong
to any of the Vs, then A happens. Indeed, then the root has mq children. By lemma
2, among them at least mo(1 — 3¢) do not belong to any of the V}’s either. These
mo(1 — 3¢) children must have degree m;, since they are not in V. Each of them of
them will have at least m;(1 — 3¢) children of his own that are not in UV} either.
Looking at their children, the children of their children and so on and repeatedly
using lemma 2, we construct an infinite tree. In this tree no vertex is in U;V; and

each vertex of the n-th generation has at least m, (1 — 3¢) children.

To complete the proof of the proposition we need to give an upper bound for
P(A°| &+ = mg). The reasoning here is almost the same as in lemma 1. Assume that
min; m; > m. Again label the children of the root v;,...,v,,. Note that for any

iSmO

P(v; € Vi) < P(v; € Vo) + P(vi € UpVi | &, = ma)

<e+ lim P('U,—EV}cI{:vizml)S%,
k—o0

where the last inequality is due to lemma 1. Since the events v; € UV}, are indepen-
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dent,

P(A®| &+ = mo) = P(rt € UgVi | & = myg) < P(B(my, 2€) > 3emy)

_ (2.24)
< Ceexp(—pemg) < Ccexp(—pe minm;),

where next to the last inequality is just a simple large deviation statement for binomial
random variables. Increasing C. if necessary, we can make sure that (2.24) also holds

when min; m; < m. Proposition 14 is proved.

2.5 Degrees of vertices in a random path

Observe the first N generations of a Galton-Watson tree T' and choose a vertex v in
the N-th generation at random. That is, all vertices in T with |[v| = N have the same
chance to be chosen. Lvet vo = 7t, v1,...,Uuy = v be the shortest path connecting
v to the root. Set D,-~= 6,,1.; the number of children v;. In general, the D;’s are
neither independent nor identically distributed. However, as N grows large, the joint
distribution of the sequence of the D’s with large indexes becomes very close to that
of a sequence of i.i.d. random variables. The purpose of this section is to make a
precise statement about the D's that would be almost as convenient to work with as
the true independence. In fact, we will show that the D’'s do become independent if
one knows about each level L; (¢ < N) how many vertices of each degree it contains.
(In this context “knows” means “conditions upon”)

The information of this sort will be stored in what we call plausible degree func-
tions. Fix a positive integer N. A function of two non-negative integer arguments
k(m, n) (n < N) will be called a plausible degree function if it takes on non-negative

integer values and for any 0 < n < N

Z mk(m, n) = Z k(m, n+1).

A plausible degree function k, is said to summarize a rooted tree T (up to the level

N) if for all suitable pairs (m, n), the number of nodes with m children located at
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the distance n from the root of T equals k(m, n). Any rooted tree T' is summarized
by one plausible degree function which we will denote x(T) or k(7). (The latter
piece of notation will only be used in subsequent sections where we do not assume N
to be fixed.)

Suppose kg be a plausible degree function.

Proposition 15 For a Galton-Watson tree T and n < N

(2.25)

Moreover, given that k(T) = ko, the random variables D; (0 < i < N) are indepen-
dent.

Proof of the proposition 15. Let t, = Y, ko(m, n) be the total number of vertices
in the n-th generation of the Galton-Watson tree T" under the condition x(T") = ko.
Assume that the Galton-Watson tree T' (conditioned on k(T") = ko) is originally
defined on some probability space (£, Fo, Py). That is, for each w € Qy T(w) is an
admissible tree, and the distribution of T'(w) under P, is the (conditional) Galton-

Watson measure. Let §2; be the product of symmetric groups
O =1L, 5,

with the uniform measure P;. We will define the Galton-Watson tree on the direct

product
Q= QO X Ql

with measure P = Py X P,. Pick w € )y and permutations m; € S, (1 < i < N). Note
that L; C N* (and any other generation Lj for that matter) admits a deterministic
ordering. We may assume that this ordering is chosen once and for all and label the
vertices of T'(w) N Ly wy, ..., wy, in such a way that wy < ... < wy,. Now we cut off
the T%is, (1 < j < t;) the trees of descendants of the w;’s, and permute them using

m1. Then reattach them to the w’s. As a result of this procedure, what used to be 7%
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is now attached to wr,(;), and it thereby becomes T%m1(). In the tree just obtained
label all the vertices of the second generation zi,... , 2, in the order of increasing,
and then permute the T%’s in accordance with 5. Iterate this procedure N times to
get a tree T. Even though 7 and T are not necessarily isomorphic, it is clear that

k(T) = k(T) = k.

Due to the homogeneity property of Galton-Watson trees, for any fixed set of
‘permutations (wi)lsié w the distribution of T'(w) under P is the same as that of T(w).
Consequently, T is the Galton-Watson tree conditioned upon the event k(T) = ko

defined on 2.

Let Dy,..., Dy_; be the numbers of children of the nodes on the path connecting
the root to a randomly chosen vertex of vo in the N-th generation of T. It follows |
from the preceding paragraph that the joint distribution of the D;’s (conditional upon
k(T) = ko) is the same as that of the D;s.

Given any sequence of integers (m;)1<i<y and a fixed tree T'(w) with (T) = ko,

we will compute

P (NN (D = my)) =5%P (Di = mi | Ni54, (D = my)) P(Dy—1 = my_1),
| (2.26)

where P, stands for the uniform probability measure on ;.

To do this, note that whether N}51,(D; = m;) C  is in the o-field generated
by the the permutations 7; with j > i+ 1. Moreover given the permutations m; with
J > 1+ 1, the event D; = m; is determined solely by what m;,; is. To wit, let 7"
be the tree T transformed by the first ¢ iterations described above. Backtracking the
last N — (¢ — 1) iterations, we can determine which vertex v; € Ly NT" that will
become vy after these N — (¢ — 1) iterations. Then looking at the same iterations we
can find the vertex u in the (i + 1) — st generation of T" which is the predecessor of
v;. The event D; = m; happens if and only if 7;,1 acts in such way that u becomes
a child of a vertex with m; children. Among the total of )  mko(m, i) vertices in

the (i + 1) — st generation of 7", precisely m;ko(m;, i) are children of parents with
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m,; children. Thus,

— Nol (A mmo(mi, Z)
P]_ (D'L - mll n]:l-l—l (DJ - mj)) - Zm mlio(m, 7:).

By the same token,

my_1k0(my—1, N — 1)
Yo mko(m, N—1) °

P, (Dy_1=m;) =

Then formula (2.26) yields

Py (N34 (Di = my)) = Y5 ( Emzzmmz) i)) . (2.27)

Note that the right-hand side of (2.27) is independent of the choice of T'(w) provided
#(T) = ko. Consequently, the subscript 1 in P; can be dropped:

P (ﬂi]\;l(Di = mi)) —TNv-1 m;ko(mi, 1)

S el ) (2.28)

Proposition 15 is an immediate consequence of (2.28) and the fact the joint conditional

distribution of the D!s is that of D;’s.

2.6 Upper bound for the number of covering balls.

Recall the definitions of A, (v) and the relative entropy H(r|q) given in the introduc-
tion to Chapter 2. The purpose of this section is to give the upper bound for the

number of vertices v € Ly in a Galton-Watson tree such that
Ak (’U) =~ Tk,

simultaneously for all k. Here (Tx)r>1 is a given sequence of non-negative numbers
that add up to 1, N is a large integer.
We remind our reader that the parameters of the Galton-Watson tree we are

studying are pr = P(&y = k), mo = E(&), and ¢ = Eﬂ%" Throughout our presen-
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tation the sequence r = (rx)k>1, the desired frequencies of the vertices of degree k

along the path, will be fixed. We will be assuming that ry = 0 whenever p; = 0.

Proposition 16 Given any € > 0, there ezist positive 0 and K such that for almost

evéry Galton-Walton tree

lim sup CE#Y € Ly [1Au(v) il S o for all k < K})
N—=oo » N

< logme — H(rlg) +¢,

where q = (Qk)k21-

Before attacking the proposition we prove a minor generalization of the famous Borel-

Cantelli lemma and do a simple large deviation computation.

Lemma 1. Suppose the events (A)k>1, (Bk)k>1 are such that Ay C Ag—q for
all k > 1, P(MyA;) =0, and Y, P(Bg \ Ax) < 0o. Then almost surely only finitely
many of the By’s occur.

" Proof of lemma 1. Our assumptions on (Ag)z>1 ensure that with probability 1
only finitely many of the Ay’s occur. By the standard version of Borel-Cantelli, with
probability 1 only finitely many of the events (By \ Ax)r>1 occur. Conclude that with
probability 1 only finitely many of the events

BkCAkU(Bk\Ak) (kZl)

occur.
Lemma 2. Suppose independent random variables X, ... , Xy take on values 0

and 1. Assume that P(X; = 1) < jvlg for each i. Then for any ¢ and L > 0, there

exists C > 0 such that

P(Xi+ ...+ Xn > on) < Cexp(—LN).
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Proof of lemma 2. By Markov’s inequality

P(Xi+...+ Xy 2 0N) < exp(—oNlog N)E(exp(o(log N)(X1 + ... + Xn)))
< exp(—oN log N)(m?x(E(exp((logN)Xi))))N

1 N
< exp(—oNlog N) (1 + ﬁ(eng — 1))
< exp(l —oNlogN) < Cexp(—LN),

which proves the lemma.

Proof of proposition 16. Fix an € > 0. Our first task is to select K appropri-
ately. It should be so large that the relative entropy H(r|q) changes very little if we
cut off both 7 and ¢ after the first K terms. In fact, define the sequence ¢’ = (@)k>1

in the following way.
(

9k, 1fk_<_K

g = Sexd, fk=K+1-

0, ifk>K+1

\

(The definition of 7’ is similar.) It is a trivial exercise in calculus to see that one can

choose K to be so large that
H(r'lq) 2 H(rlg) - 5. (2:29)
It is possible to choose a o € (0, 1/2) to be so small that

H(r|q) — % < (H(r|q) — %) (1 - %) , and (2.30)

H(Tl¢) > H(r'l{) - 5 (2.31)
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for any sequence of non-negative numbers 7 = (7%)1<x<x+1 such that

K+1
|re — 7| < (2K +1)o for k < K + 1 and ka=l.
k=1

For this choice of o, let By be the event that

log (#{v € Ly : |Ag(v) —r¢| < o for all k < K})

N = > logmg — H(r|q) + .

Because of the deviations that might be present in the first few generations of the
tree, it is not very convenient to deal with Ag(v). We will introduce its modification

Ar(v). Set
My = [oN/4]. (2.32)

Abusing notation slightly, we will be omitting index N. For a vertex v € Ly, let m(v)
be the vertex in Lj; located on the shortest path from v to the root. Then define a
modified quantity Ag(v)

#{w €V, deg(w) = k + 1, w disconnects v from m(v)}
N-M '

A_k(v):

(For the sake of definiteness, we adopt the following agreement. If m(v) has k chil-
dren it contributes to the cardinality in the numerator. On the other hand v is not
counted even when it has k children. Whenever we define a A of some sort, only the

predecessor may be counted.)
The values of A, and A, are close to one another, but A is easier to handle.
Lemma 3. Referring to the preceding, for any v € Ly and any &
_ . o
[Ak(v) = Ar(v)] < 5

Proof of lemma 3. Since there are only M = [0 N/4] vertices on the path between
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the root and m(v),

#{w €V, deg(w) = k+ 1, w disconnects v from m(v)} <

#{w €V, deg(w) = k+ 1, w disconnects v from rt} <

N
#{w €V, deg(w) = k + 1, w disconnects v from m(v)} + 0—4-.

Dividing the first inequality by N — M, in view of (2.32) we get

< Ap(0)(1+0/2) < Ap() + %

Ar(v) < Ax(v) 5 J_VM

Divide the second inequality of the proof by N, to get

N-M

Ag(v) < N

)

A(v) + % < Ap(v) +

w1 Q

which establishes of lemma 3.

Consider By, a modified version of By, defined to be the event that

log (#{v € Ly : |Ag(v) — | < 20 for all k < K})
N

> logmy — H(r|q) +e.
It follows from lemma 3, that

By C By - (2.33)

Therefore, the proof of proposition 16 boils down to establishing that for almost
every Galton-Watson tree only finitely many of the By’s (and whence of the By's)

occur.

Our plan is to divide the plausible degree functions into two classes, called RGLRy
and EXCPy. (Since N will vary, the plausible degree functions and the classes we
are about to introduce will be supplied with a subscript.) Informally, trees in RGLRy
branch as one would expect from the Law of Large Numbers, while trees in EXCPy

exhibit deviant behavior at one or more levels. Moreover, at each level we will impose
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on the trees in RGLRy only finitely many conditions. This means we will have no

direct control over the values of ky(m, n) € RGLRy for large m.
We will say ky € RGLRy if the following holds.
(i) 3, k(m, M) > md'"2.
(ii) For all integer n € [M, N] and all m < K

. 1 )
K’(ma n) — Pm ;H(Ilﬂ 'n) < m;ﬁ)(l, n)

(iii) N'mly < ¥, k(m, N) < Nm{'.
Otherwise ky € EXC Py.
Let Ay be the event that for some n > N k,(T) € EXCP,. (The function &, (T)

summarizes the tree T up to the level n.)

Of course, it is our goal to establish that the sequences of events (Ay)y>1 and
BN21 satisfy the assumptions the lemma 1. The inclusion property of the sequence
(An)n>1 is evident. Therefore, to prove proposition 16 we need prove the following

lemma 4 and lemma 5.
Lemma 4. In the above notation, Y, P(By \ Ax) < oo.
Lemma 5. For the events (Ax)n>1 introduced above, P(NyAy) = 0.

Proof of lemma 4. By the telescoping property of conditional probabilities

P(By\ Ay) = E (P(By \ Ax|&(T))) = E(P(BN | k(T)); &(T) € RGLRy),
(2.34)

because if the tree T is such that By \ Ay occurs, then ky(T) € RGLRy.
Pick any ko € RGLRy and estimate P(By | k(T) = ko). By Markov’s inequality
and the definition of By,

P(By | 6n(T) = ko) < exp(—N(logmgy — H(r|q) +¢€)) x 035
x E(#{v € Ly : |Ap(v) — 14 < 20 for all k < K} | kn(T) = ko).

Set ty = >, ko(m, N). Since kg is assumed to belong to RGLRy, condition (iii)
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yields
N7tm) <ty < Nmi'. (2.36)

Let v be a randomly chosen vertex among the ¢y vertices of the N-th generation in
T, the D;’s be as in section 2.4. As a matter of notation when we use the D’s, all the
probabilities involved are meant to be conditional upon «(T') = ko. Define pp to be

the empirical measure on the integers:

Then

E(#{ve Ly : |Ay(v) —rg| <20 forall k < K} | 65(T) = ko)
= txP(lpp({k}) — | < 20 for all k < K). (231)
We would like to apply Sanov’s Theorem to estimate the latter quantity, but there
are two problems. First, the random variables (D;)a<i<n—1 are not identically dis-
tributed. We need a coupling argument tor rectify the situation. Second, neither we
have control over the tails of D;, nor does the right-hand side of (2.37) call for the
information on these tails. Therefore, we will have to trim D; at K. To this end, we

need f(z) = min(z, K + 1) and

N-1

1
IJ’f(D) = N-—-M Z 6f(Di)'
=M

Observe that if X is a positive integer random variable such that |P(X = k)—r;| < 20
for all £ < K, then

P(f(X)=k+1)—rgy = (1 —’ZP(f(X)zk)) — (1—Zrk)

k<K k<K
<) |IP(X =k) — | < 2Ko.

k<K
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Using this observation for an X whose distribution is up, write

P(lup({k}) — x| <20 for all k < K)
(2.38)
< P(I/,Lf(D)({k}) — T;cl < 2Ko for all k < K+ 1).

Apply proposition 15 and the assumption (ii) on o to obtain

K . .o
. ' .7'{'0(.77 7‘)
> IP(Di = j|kn(T) = ko) —gs1 =), ~ = gj
p N 0) J o= zmmmo(m, ’L) J
K .
27 1
< —_ < —,
= Z (K +1)2N% = N?

J=1
Since the D;’s are independent (given ky(T') = ko), it may be assumed without loss
in generality, that there are independent random variables 7;’s defined on the same

probability space as D;, such that for any : > M

(D) # ) < 53 Pl =mm) = (2.39)

Define the empirical measure corresponding to 7’s:

1 N-1
My = N-M ;6171"

7

We are now in a position to use our coupling argument. Write

Pllaseoy (K}) — i) < 2K for all k < K +1) < P(#{i = f(D) %} > o(N — M)
+ P(lpn({k}) — il < 2K + 1)o for k < K +1).

(2.40)
By Sanov’s Theorem (cf [2, p. 70]), (2.29) and (2.31),
—r < <
lim sup P(lun({k}) — 7] < 2K +1)o for all k < K +1) < —H{g) + €
N-ro0 N-M 3 (2.41)
2
< —H(rlg) + 5-
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Furthermore, in view of the first inequality in (2.39), lemma 2 gives

oy P F(D) £ 0} 2 0N =0) .42

N—oo N

Recall that M = [cN/4]. Putting together (2.40), (2.41) and (2.42), we have

| M <2Kofork< K+1 9
sy PN T SO R SKAD) () (g 2)
N—o0o
” (2.43)

Then use (2.37) and (2.38) in the left-hand side of the last line, and (2.30) in the
right-hand-side to conclude that ’

E(#{v e Ly : |Ag(v) —1%| £ 20 for k < K} | kn(T) = ko) <

lim su <
N—)oop N
t 5) .
< lim sup logty _ H(rlq) + o€ (2.44)
N—o00 6
Since ty is constrained by (2.36),
. logty
]\}1_1)130 N = log my. (2.45)
Infer from (2.35), (2.44) and (2.45) that
P(B T)= |
lim sup (By | (T) = o) < (2.46)
N—o0 N » 6

for ko € RGLRy. Lemma 4 follows from (2.34) and (2.46).

Proof of lemma 5. Let Zy = #L; stand for the size of the k-th generation. It
is very well known from the theory of branching processes (e.g. see [1, p. 9]) that

limy, 00 2 exists and is positive almost surely. It follows that for all k > ko
0
Zy = E kx(T)(m, k) > mﬁ/z and

7




k :
Therefore, condition (iii) in the definition of RGLRy is satisfied for xy(T) whenever
N > ko. If in addition N is so large that M = [0.N/4] > ko, then (i) is also satisfied.

By the very construction of the Galton-Watson tree, given Z, k,(T)(m, k) (here
n > k) is distributed binomially with parameters Z; and p,,. Therefore, by Chebi-

shev’s inequality

k(T (m, k) } 1 k)2
Pl|—F—— —pn| > Zy >
( Z Pl gy B
(256(K + 1)*k*)pm(1 — pm) —k/2
i ; 4 mO .
o
Clearly,
256(K + 1)*k*pk%(1 — p)  —
Z (K+1) af (1-p )mok/2<oo.

It follows that for all but finitely many M > ko and all m < K

e, M) = 3 (i, M)| < sz SOl m). (M = [oV/4)

almost surely. This is precisely condition (ii). Lemma 5 and proposition 16 are now

proved.

2.7 Lower bounds for the number of covering balls.

The purpose of this section is to give a lower bound for the number of vertices v € Ly
in a Galton-Watson tree T such that Ag(v) = i simultaneously for several k’s. The
simplest result that can be established here is the bound for the expected number of
such vertices. However, it turns out that using some clever trick (which was shown to
this writer by Balint Virag), this result can be upgraded to a bound that holds with
probability close to 1. The notation in this section is the same as in the preceding

one.
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Proposition 17 Let 3, o, and K be positive numbers. Assume that
B < logmy — H(r|q). (2.47)
Then there exists Ny such that for any N > Ny

E(#{veLn: |Ax(v) —1i| <o forallk < K}) > exp(BN). (2.48)

- Proof of proposition 17. We begin by reducing the unconditional expectation in
(2.48) to a conditional one. The condition will be that the tree T' (up to the level N)-
is summarized by a plausible degree function kx(7T) € RGLRy. According to lemma,

5 of the preceding section,
J\;l_l)rgo P(kn(T) € RGLRy) > 1 — Iél_I)IgoP(ﬂNAN) = 1.
Consequently, if Ny is chosen to be large enough, then for N > N,
P(HN(T) € RGLRN) > 1/2

Hence, for such V

E(#{veLly:|Aw)—rg| <oforallk <K})>

1 ' 2.49
> §E (#{v € Ly : |Ax(v) —1x| <o forall k < K} | kn(T) € RGLRy) . (249)

The next step we need to take is to replace Ag(v) by Ag(v) described in the preceding

section. Without loss in generality we may assume (cf (2.47)) that

B < logmgy — %. (2.50)

Indeed, decreasing the value of o, we will make inequality (2.48) even sharper.
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Set M = [0N/4] and define Ag(v) as in the previous section. It follows from

lemma 3 of that section that if |A(v) — rx| < /2 for some node v € Ly, then

|Ag(v) — r¢| < 0. Conclude from (2.49) that

E(#{ve Ly : |Ax(v) —ri| <o forall k < K}) >
>

1 _
§E (#{v e Ly : |Ax(v) —ri| < o/2for all k < K} | kn(T) € RGLRy) .

(2.51)

Fix kg € RGLRN. and let the D;’s, up, py(p), the n;’s, pu, and ¢y stand for what they

did in the preceding section. Write

E(#{ve Ly : |Ac(v) —ri| <o/2forall k < K} kn(T) = ko)
=tyP(lup({k}) — | < o/2forall k < K).

This time use the coupling argument in the following way:

P(lup({k}) — x| < /2 for all k < K)
> P (|uy({k}) — 4| < 0/4 for k < K)
— P (#{i| f(Di) #mi} 2 (0o(N — M))/4) .

By lemma 2 of the previous section

log (P (#{z 2 f(Di) #mi} > ﬂN4_—Ml))

lim su = —00.
N—)oop _ N
By Sanov’s theorem (cf. [2, p. 70]),
- log (P(|um({k}) = 4] < 0/4 for k < K)
> — .
it N-M > ~Hrh)
Combining (2.53), (2.54) and (2.55), we arrive at
.. log (P(jup({k}) — 1| < o/2 for all k < K))
> — .
it N-M = ~Hrh)
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Due to the fact M = [0 N/4] and (2.52), estimate (2.56) implies the following inequal-
ity
liAlrninflog (E (#{ve Ly : |Akv) —re| <a/2forall k < K} | kn(T) = ko))
—00

H
> lim inft—N _ Hlrlg)
N-ooo 1—0

> B,

(2.57)

where the last inequality is just a restatement of (2.50). (That limit involving ¢y
was handled via (2.45).) Since the choice of kg € RGLRy was arbitrary, inequalities -
(2.51) and (2.57) together give that

: — < <
li]\l;ninf log (E (#{v € Ly |Ak(v3v ri] < o for all k < K})) S 8
—0o0

Proposition 17 is now proved.

Proposition 18 Under the assumptions of proposition 17, for any € > 0 there ezists

a positive N such that

P(#{v € Ly : |[Ax(v) —re| <o forallk < K} >expSN)>1—ce. (2.58)

Proof of proposition 18. We will actually prove a stronger statement. Namely, we

will establish, that for almost every tree T in the sense of Galton-Watson measure

lim ing 198 G € L+ |Ak(v) —ri| < o for all k < K})

im in N > . (2.59)

Our strategic goal is to reduce the inequality (2.59) to a survival statement for a
certain Galton-Watson tree. (Of course, the underlying distribution of the number of

children in this new tree will be different.)
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Take an arbitrary 8, € (B, logmg — H(r|g)). By proposition 17 applied with /2

and f; in lieu of o and 3, we are able to find an NV; such that
E(#{v € Ly, : |Ax(v) — | < o/2for all k < K}) > exp(BiN). (2.60)

Fix for a while a vertex v in the original tree T, and focus our attention on 7", the
tree of descendants of v. For any vertex, w € T?, such that |w| > |v| + Ny, let u(w)

be its predecessor such that dist(u(w), w) = N;. Define

, #{u €T’ : deg(u) =k +1 and u disconnects w from u(w)}

Next we construct a Galton-Watson tree S,, which we will call a supertree. The root

of S, is v. The children of v in S, are all the vertices w in T% N L4+ n, such that
|AL(w) — 14| < % for all k < K.

More generally, if u is a vertex in the supertree S, then the children of u in S, are

the vertices w in T% N L4+, such that
IAL (w) — 7| < % for k < K. (2.61)

It is clear that S, is a Galton-Watson tree. The expected number of children of a

vertex in S, equals to
E#{v e Ly : |As(v)—rx| <o/2forall k < K}). (2.62)

Call this quantity m,. It is clear from proposition 17 that if N; is large enough
m; > 1. Therefore, the survival probability of S, (i.e. the probability that S, is
infinite), is positive.

In the original Galton-Watson tree one can choose an infinite sequence of vertices
V1, Vg, ... in such a way that no v; is a descendant of some other v; and all the |v;|’s

are divisible by N;. For this sequence, the survivals of the (Sy,)i>1 are mutually
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independent events. (Indeed each survival only depends on the structure of 7 and
these trees do not overlap.) These events have the same positive probability. Hence,

a Galton-Watson tree will almost surely have a vertex Vo such that S, survives.

Let ¥; be the number of children in the -th generation of Su- By a standard.

theorem,

exists and is positive almost surely. Using estimate (2.60) for m, one can write
Yi 2 Cexp(B.V;1), (2.63)

where the constant C' may depend on the original tree 7" and the choice of v,.

Lemma 1. There exists lo (which may depend on v, and T), such that for any

[ > 1y, and any vertex w in the /-th generation of S,
|Ax(w) — 74| < o for all & <K.

Proof of lemma 1. Let wy = vy, Wi, ..., w; = w, be the path connecting w to v,
in S,,. Then the path between w and the root of 7" can be subdivided into pieces by
vertices wy, w; . .. » Wi—1. In any piece between Some w; and w;y,, the fraction of the
vertices with % children doesn’t deviate from Tr by more than /2 by the definition of
Suo (cf. (2.61)). The concentration of vertices with % children in the piece between the

root and vy is not known, but as grows its contribution to Ag(w) becomes negligible.

More formally,

.
Ap(w) = Ak(vo)fvog;lf_\f,%irl k(i)
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In view of (2.61), the last line implies that

Ay (vo)]vo| |vol M :
A —rg| < - + Al (w;) —
I k(’UJ) Tk' - lNl + l’Uo' TklNl + l’Uo' lNl + |’U0| ;I k(w ) Tkl
< |Ak(wo)[vo| — |vo|r N ( IN; ) (g)
- IN; + |’Uol IN; + |’U0| 2
|vo
—_ 2
_lN1+|v0[+a/ < o,

if [ is sufficiently large. Lemma 1 is proved.

Observe that the {-th generation of S, is a subset of Ljy4+n,;- Thus, we can infer

from lemma, 1, that

log (#{v € Ljoj+nut  |Ak(v) — | < o for all k < K})

lim inf
lllzlnlxl)l |’U0|+N1l
- logV;
>1 _—
 limint o N
IOgC + ﬂlNll

use (2.63) > liminf

> p.
l—=o0 . |’U0| + Nyl IB

This proves statement (2.59) along the sequence of N = |vg| + N1l which includes all
sufficiently large multiples of N;. Obviously, in the same way we can establish (2.59)
for the sequences of N’s that have other residues modulo /V;. This proves proposition

18.

2.8 Proof of the main theorem.

Given a Galton-Watson tree T, let A, be the set of rays (v;)i>o in 6T such that

lim;_, oo Ag(v;) = ri. for all positive integers k.

Proposition 19 For almost every Galton-Watson tree T

dim(A,) > logmg — H(rl|q).
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Proof of Proposition 19. Assume H(r|q) < logmy, since otherwise there is nothing
to prove. Pick any 8 < logmg — H(r|g). According to proposition 18, for any integer
K there exists Ng suth that

P (#{v € Ly, : |Ax(v) — x| < K7 for all k < K} > exp (BNk)) > (2.64)

=] W

We may further assume that the sequence (Ng)x>1 is strictly increasing and N, is

so large that
1-—- 01/4 exp(—p1/4 exp(,BNl)) > 0, (265)

where Cy/4 and p;/4 are as in proposition 14. It is easy to choose positive integers

(ix)k>1 in such a way that

K-1
Nk =o (Z z'jN,-) as K — oo (2.66)
j=1

Put together an infinite sequence Ny,... , Ny, Na,... , Ny, N3... , N3,... where each
Nk is taken i times. Let S; stand for the sum of the first 2 terms of this sequence.

(Of course, Sy = 0.) Then, it is easy to see from (2.66) that
S,' — Si—l = O(S,) as 1 — oo. (267)

It is our intention to define an inhomogeneous Galton-Watson tree R whose i-th
generation consists of some vertices in the S; — th generation Lg, of the original
‘Galton-Watson tree T = (V, E). Suppose i is a positive integer, and K is the index
for which S; — S;_1 = Nk. Then vertices v € Lg, , and w € Lg, will be connected to

one another in R if v is a predecessor of w, and for any £k < K
#{u eV : deg(u) = k+ 1, u disconnects w from v} 1

-l < =.
N M >F

(2.68)
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Set
mi—1 = exp(SNk). (2.69)

Connecting vertices of Lg, , and Lg, as above for all integer ¢ we get a graph. We
define R to be the component of the graph containing the root. It is clear that R
is an inhomogeneous Galton-Watson tree. Moreover, comparing (2.64) to (2.68), one
notes that Ny were chosen in such a way, that the assumptions of proposition 14 are
satisfied with e = 1/4 and the (m;)’s introduced by (2.69).

Apply the conclusion of that proposition. Due to (2.65), with positive probability
R will have an infinite subtree R' such that, each vertex in the i-th generation of -
R’ has at least Tt children in R'. Consider a subtree T" = (V’, E') of T = (V, E)
defined in the following way. A vertex v € V will belong to V' if it has descendants
in R'. Clearly all vertices of R’ itself are also in 7. Apply proposition 11 to 7" with
c=1/4, « = § and the sequence (S;);>1 defined above. Then dim(67") > 8.

Summarizing the conclusion of the two preceding paragraphs, write
P(dim(é7") > B8) > 0. (2.70)

Lemma 1. Referring to the preceding setup, 67" C A,.

Proof of lemma 1. Let (v;);>o be a ray in 67". Clearly, vs, € R’ for all integer
i. Fix integers k and K >k, and set h =},  4;N;. By the construction of R’ (cf.
(2.68)), for any g > h

#{u €V : deg(u) = k + 1, u disconnects vg, from vg,,, }
—r

< = 2.71
NKl k|l = K’ ( )

where K is the index for which S;1; — Sy = Nk,. (In fact, we ought to write 1/K;
instead of 1/K in the right-hand side of (2.71), but it is clear that K; > K.)
It follows from (2.71) that for any g > h,

{u eV : deg(u) = k+ 1, u disconnects vs, from vg,} <
## — 7| <

1
—. @27
S, — Sh k&P
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Therefore,

.. 1 . 1
hgrﬁglfAk(vsg) % <r < llgglfAk(vsg) + & (2.73)

Since K > k was arbitrary

gli)r{.lo Ag(vs,) = 1.

In view of relation (2.67), the existence of the limit of the A;s along the subsequence

of (Sk)k>1 implies the existence of the limit along the whole sequence:

le}IgJ Ak (’1.)1,) =Tk.

Lemma 1 is proved.

As a corollary of lemma 1 and the remark immediately preceding it, we get
P(dim(A,) > B) > 0.

However, a little though reveals that Kolmogorov zero-one law applies to the event

dim(A,) > . Hence, P(dim(A,) > 8) = 1. Since 8 < logmq — H(r|q) was arbitrary,
dim(A;) > logmg — H(r|q)

almost surely, as desired.

Proposition 20 If H(r|q) < logmyg then for almost every Galton-Watson tree T

dim(A,) < logmg — H(r|q).

Proof of proposition 20. Pick an arbitrary ¢ > 0. Find ¢ and K as in propo-
sition 16. For a tree T' define Ay C 6T to be the set of rays (vs)i>0, such that

IAk('UN) — Tkl S_ o for all k S K.
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It is evident that Ay is a union of hy balls of radii exp(—N), where

hy =#{v € Ly : |Ax(v) — | <o forall k < K}

Moreover, A, C limsupy_,., Anx. On the other hand, by proposition 16

log hn

. < B '
]\}1_1)1(1)0 <logmg— H(r|q) +¢
Applying proposition 13 with X = §7', we obtain

dim(A,) < logmy — H(r|q) +e.

Proposition 20 now follows from the fact the ¢ > 0 was chosen arbitrarily.
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Appendix A

Here we give a cute proof of Proposition 10 due to Daniel Stroock.

Let T,, be the o-field generated by the intervals [k27", (k + 1)27"] with integer
k. Define p, to be the restriction of u to Fj,. Then u, is absolutely continuous with
respect to the restriction of Lebesgue measure to IF,,. We denote the corresponding

Radon-Nikodim derivative f,(z). It is clear from (1.73) that
frar(z) < (1 +exp(=6n)) fu(z) + 277 (A.1)

for sufficiently large n. It is routine to infer from (A.1) that the sequence of functions
(fn)n>1(z) is uniformly bounded, whence also uniformly integrable. By a standard
result from the basic measure theory, lim,_,o fn(z) exists almost surely, is bounded
and equal to the Radon-Nikodim derivative of 4 with respect to Lebesgue measure.

Proposition 10 follows.
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