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Abstract

Modern fiber optic communications networks multiplex data onto many different
channels, each with its own carrier frequency. In order to meet rising demand for
high data rates, researchers have begun to consider methods to use the bandwidth
of optical fibers more efficiently. In particular, more efficient use might come from
operating fewer channels with each channel at a higher data rate, or perhaps even,
ultimately, from operating one ultrafast time division multiplexed channel. High data
rate optical channels already surpass the limits of electronic processing, which today
cannot handle rates greater than 40 Gbit/s. Researchers must design the individual
hardware elements, like address recognizers, demultiplexers, and regenerators, that
will be necessary for any practical system. One promising idea is to make these
devices all-optical. Already all-optical logical switching has been demonstrated at
100 Gbit/s and all-optical demultiplexing at hundreds of Gbit/s. But, in any long
haul system, it is also necessary to develop optical pulse regenerators to regenerate
data encoded as optical pulses before those pulses become too distorted to detect.
This thesis investigates an all-optical pulse regenerator that reshapes, retimes, and
amplifies optical data pulses. A Faraday polarization rotator mirror is used to make
it much more polarization stable than other designs. The physical principle on which
it is based, the nonlinear index of refraction, is a nearly instantaneous effect and,
therefore, does not suffer from the speed limitations of modern electronics. We test
the design for its switching window, bit error rates, and sensitivity to timing jitter to
show its usefulness as an optical pulse regenerator.
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Title: Professor

Thesis Supervisor: Scott A. Hamilton
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Chapter 1

Introduction

Optical fibers provide most of the bandwidth available in long distance communica-

tions systems. Researchers continue to seek new ways to use all the available low

loss sections of the optical fiber bandwidth, exceeding 25 THz [1]. It is not enough,

however, to demonstrate propagation of optical signals using this bandwidth. At such

high data rates, networks must be able to process these signals for tasks like address

recognition before any such system can become practical. Many researchers forsee

the use of optical time division multiplexing (OTDM) in high data rate systems. In

OTDM systems, signals are digitally encoded as short optical pulses, perhaps shorter

than a picosecond, and different data channels are interleaved in time [2]. The many

tasks required in a high data rate TDM system include time multiplexing and demul-

tiplexing of data [3], wavelength conversion [4], ultrafast data encryption [5], address

recognition [6], and clock recovery [7]. Unfortunately, electronics are limited today to

about 40 Gbit/s and cannot process the billions or trillions of bits per second in such

an OTDM system. Researchers are, however, investigating alternatives that forego

the conversion of the optical signal to electronic data. Instead, photonic data are pro-

cessed using ultrafast all-optical techniques. This thesis studies a design for all-optical

pulse regeneration, a problem that has received much attention in the last decade.

Pulses that propagate long distances acquire unwanted distortions that make them

difficult or impossible to detect. Any long-haul system will require periodic pulse

regeneration, and the most efficient and cost-effective solution may be optical rather

13



than electronic [8].

A number of ideas for all-optical regenerators have been demonstrated (for ex-

ample, see [9, 10, 11]). Many of these designs use an intensity dependent index of

refraction to achieve an optically controlled nonlinear phase shift. An important

design choice is the nonlinear waveguide medium. Some designs, like the nonlinear

optical loop mirror [12], use optical fiber as the onlinear medium; others, like the

ultrafast nonlinear interferometer (UNI) [13] and the semiconductor laser amplifier

in a loop mirror (SLALOM) [14], use a semiconductor optical amplifier (SOA). The

SOA has a very high nonlinear index of refraction, which makes it possible to use

short (~1 mm) devices and low optical pulse powers. This advantage is important

in optical logic, where low latency switching is often necessary for a successful de-

sign. The UNI has already been shown to switch pulses at 100 Gbit/s in all-optical

logic [13]. SOA's have a gain recovery time that is long compared to the nearly in-

stantaneous effects of the nonlinear index of refraction in optical fiber. This recovery

time can cause amplitude patterning in the output of the switch. Pulse patterning

is an important obstacle to overcome in switch design [15]. One possible solution to

the problem of pulse patterning is pulse position modulation (PPM) [16]. Optical

fiber, on the other hand, provides an ultrafast nonlinear index and a nearly lossless

transmission medium. The nonlinear index in fiber, however, is relatively small and

longer lengths (~km) must be used to induce the necessary phase shift. This length

can cause unwanted distortions in the pulses as they propagate down the fiber [17].

For long-haul short optical pulse transmission, PPM may be undesirable due to its

increased sensitivity to timing jitter compared with on-off key data. For regeneration,

however, low latency switching is not required, and optical fiber based switches can

be used. The distortions that accompany long propagation in fibers can be reduced

by using low dispersion fibers like dispersion shifted fiber. Thus, in the application

of regeneration, optical fiber is an important alternative to semiconductor optical

amplifiers.

Several regenerator designs use fiber as the nonlinear medium [18]. The UNI

itself can be adapted to fiber. This thesis investigates an all-fiber variation we call
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the folded UNI. In this thesis we also present the results of switching experiments

in the folded UNI and demonstrate this device as an all-optical regenerator. The

folded UNI's advantage is its inherent polarization stability. The UNI, as mentioned

above, has been shown to perform well as an all-optical switch. But, temperature

variations and other slow changes in the fiber can cause the polarization to drift.

After a length of time on the order of 30 minutes the polarization of the pulses in the

UNI must be adjusted. The design of the folded UNI makes it unnecessary to control

the polarization of pulses already in the switch.

Chapter 2 presents the nonlinear Schrddinger equation and the basic theory needed

to understand optical pulse propagation in fiber, which includes dispersion and the

nonlinear index of refraction. In Chapter 2 we also introduce two examples of all-

optical switches, which are useful for optical pulse regeneration.

Chapter 3 reviews previous work in all-optical switching, specifically, the NOLM

and the SLALOM. Chapter 3 also lists some important qualities of a good regener-

ator design and summarizes the disadvantages of the NOLM and the SLALOM in

regeneration.

Chapter 4 uses much of the theory developed in Chapter 2 to show how one

can measure the dispersion and nonlinear index of refraction of optical fiber. Both

of these parameters are important in choosing fiber for the folded UNI regenerator

design. This chapter also presents a numerical model to simulate pulse propagation

in fiber.

Chapter 5 introduces the design of the folded UNI and gives the experimental

setup used to test the folded UNI. The chapter presents data on the switching window,

which is important in showing the ability of the folded UNI to correct timing jitter in

an incoming network data stream that is to be regenerated. In Section 5.4 we discuss

the results of a bit error rate test on the folded UNI. Finally, Chapter 5 presents

results on the folded UNI's application to a regenerative XOR all-optical logic gate.

Chapter 6 summarizes this thesis and makes suggestions for future work.
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Chapter 2

Physics of All-Optical Switching

The all-optical switches presented in this thesis are various types of fiber interfer-

ometers. This chapter intoduces the physical principles that describe the behavior

of these fiber interferometer switches. The first section of this chapter introduces

the intensity-dependent index of refraction, the physical principle on which most all-

optical switches and many all-optical regenerators are based. The intensity-dependent

index of refraction can induce a phase shift in an optical pulse. From this simple

principle, one can create a fiber interferometer. The second section of this chapter

describes a fiber switch, the ultrafast nonlinear interferometer (UNI). The final sec-

tions introduce the important physical properties of fiber and of the various nonlinear

media that are relevant to the problem of all-optical regeneration.

2.1 The Intensity-Dependent Index of Refraction

The intensity-dependent index of refraction is given by

n = no + n2l (2.1)

where no is the linear index, n2 is the nonlinear index, and I is the intensity of

the electric field envelope. This intensity-dependent index is a consequence of the

nonlinear interaction of the optical field with the medium of propagation. More
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specifically, in SI units, we have

D(r, t) = EoE(r, t) + P(r, t) (2.2)

where D is the electric displacement, E is the electric field, and EO is the permittivity

of free space. The nonlinear effects are included in P:

P(r, t) = EOX E(r, t) + PNL(r, t). (2.3)

X), the linear susceptibility, is a matrix that describes propagation for low optical

intensities. PNL is the nonlinear polarization

PNL(r, t) = EofX(2) :EE + X(3EEE + (2.4)

= P(2)(r, t) + P 3 (r, t) + - --

where x(') is the second order susceptibility and X( is the third order susceptibility.

They are second and third order tensors respectively. Notice that Equations 2.3

and 2.4 express each of the cartesian components of P(r, t) as a multivariable Taylor

series expansion in the three cartesian components of E(r, t), where the constant term

of that expansion is zero [19]. That is, P(r, t) is a nearly arbitrary function of E(r, t)

where P = 0 if E = 0. Assuming the pulses are propagating down a one-dimensional

wave guide in the z direction, r becomes simply z. To do these calculations, we now

assume that we can expand E(z, t) in a Fourier series as

E (z, t) = ENt(w,,) e'(0n- W"t) (2.5)
n

In Equation 2.5, we have assumed that the waves are propagating in the z direction

down a waveguide. We also expand the polarization in a Fourier series to get

P(b) (r, t) = P (b)(n)e-iWnt (2.6)
n
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where the r dependence of P(b) has been supressed for notational convenience. Be-

cause E and P are real, E(n) = E*(--n) and P(b)(W') = P(b)*(-o) The ith

component of f(2) is given by

p()(~Wn ) =j Z(n (+ Win; Wn, Wm)Eij(Wn)Ek(wm) e(3 +8m (2.7)
jk (nm)

where i, j, and k can be any of the cartesian components of the field, x, y, and

z. Ej(Wn) is the j vector component of E(Wn) of Equation 2.5. The notation (nm)

requires that the sum be performed over Wn and wm such that Wm + Wn remains at

a fixed value no matter the values of Wn and Wm. More generally, the expression for

P(b) is given by

A.(b)( + m+.)ZZx .. (nw + ;w w,+

jk- (nm -) (28)
k..( m..)[5j (Wn)5Ek (Wm) -..-. ei(On+Om+---)Z.(28

For a more thorough and similar description of the nonlinear polarization, see [20].

Now we show how the nonlinear polarization yields the intensity dependent index

of refraction. We assume a medium where the only significant susceptibilities are X(I)

and X(). This assumption is reasonable in the silica glass of optical fibers, where X(2

is zero because of the amorphous nature of SiO 2 . To begin, we consider the problem of

two interacting plane waves at different optical frequencies. We simplify the problem

by first assuming that the fields are copolarized along the x axis:

E,(z, t) = E(wi)ei"" + c.c. with E(wi) = ,Ex(wi)elz (2.9)

E 2 (z, t) = N(w2 )e-i2t + c.c. with E(w2 ) = E,x(w 2 )e 02z (2.10)

where c.c. denotes the complex conjugate, and w, and w2 are parameters for E rather

than variables on which E is functionally dependent. We assume that E1 is much

more intense than E2 . Let us call El the pump and E2 the probe.
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Equation 2.2 becomes, in the Fourier domain,

D(z, w) = coE(z, w) + P(z, w) (2.11)

We would like to calculate the effect of the pump on the probe. Thus, we are interested

in calculating P( 3) (w 2 ), which is the nonlinear polarization of the component of b at

frequency w2 . The ith component of P(3)(w) is given by

P.M (3)
P3 (W Wn +Wm +Wr)Z Xikl (w + Wm + Wr;Wn wm7 wr)

jkl (nmr) (2.12)

E(wa) Ek (Wm)EI (wr jeian+m+pr )z.

If we substitute in w2 for Wn + Wm + Wr we can calculate P(3)(w 2 ):

jkl (nmr) (2.13)

nE (Wn)Ek (Wm)EI (wr)e i(n+,.+r)z(

Four facts help us evaluate Equation 2.13.

1. The sum over (nmr) is covered in only six cases, assuming that w, # w 2 . For

example, wn = W2 , Wm = wi, and Wr = -w 2 . The other 5 cases are just the other

possible distinct assignments of ±Wi, 2 to Wn,m,r that still yield Wn+Wm+wr = W2-

2. Because the E of Equation 2.5 is real, E(-wi) must equal E*(wi). Thus,

E(w)E(-wi) equals JE(wi)12.

3. Because silica is an isotropic medium, X 3 ) must be zero if the indices, ijkl, take

on values that repeat an odd number of times. For example, X(3yy = X 0

becuase in the first case x and y are repeated an odd number of times, and

in the second x and z are repeated an odd number of times. If, for example,

XiyY 0 0, then a field in the +y direction would create a response in the

+x direction. But the symmetry of an isotropic medium implies that there is

no reason there should be a response in the +x direction rather than the -x
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direction. Moreover, because both E1 and E2 are polarized on the x axis, the

sum over jkl in Equation 2.13 is nonzero only when jkl are all x. Therefore,

we are concerned only with x,.W which is nonzero only when i = x. So, the
(3) . (3)

only relevant nonzero Xijkl is XxxxX, and, for simplicity, we drop the subscripts.

4. The intrinsic permutation property states that X (WnAWm+wr;wn,wm,wr) =

Xi (n + Wr + Wm; Wn, Wr, W). This equation is true because the names of the

subscripts themselves are arbitrary and, therefore, interchangeable, although

Equation 2.13 implies that a change in the order of w's requires a corresponding

change in the order of the subscripts of X

These four points imply that all X(3) tensor values relevant to this problem have

the subscripts xxxx and have some ordering of wi, -wi, and w2, and thus are all

equal. Therefore, we drop all subscripts and arguments of x(3) to obtain

PNL(w2) = (iP ) i(w2) = i6coX( 3) Ix(wl) 2 (w2 )e 5 2 Z (2.14)

where k3 is defined in Equations 2.9 and 2.10. Substituting Equation 2.3 into Equa-

tion 2.2 and taking it into the Fourier domain, we have

D(r, w) = coE(r, w) + EOX() - (r, w) + PNL(r, w). (2.15)

We are interested in the component of the field at the probe frequency w2 so we

consider Equation 2.15 only at w2 :

D(r, w2) = foE(r, w2) + EOj() -E(r, W2 ) + PNL (r, w2 ). (2.16)

We substitute Equation 2.14 and the positive frequency component of Equation 2.10

into equation 2.16. All of the vectors are nonzero only for their x components, so we

drop the vector notation

D(zw 2) = [oEx(W2) + CoX( 1) k(W 2 ) + 6cox (3)Ik(Wi)I25x(w 2 )]eil2Z. (2.17)
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In Equation 2.17, f(w 2 ) depends on both the pump field at carrier frequency w, and

the probe field at carrier frequency w2. We can rewrite Equation 2.17 as

D(z,w2) = EO(1 + X()+ 6X( 3)I5x(w1)1 2)Ex(w2 )e02z = Eef fx(W 2 )xe02z

where

6 efI = co(1 + X(1) + 6X (3)|E(wi)1 2 ).

(2.18)

(2.19)

By the definition of the index of refraction, we have n2 = C2 PiEeff. In a nonmagnetic

medium, this equation reduces to

n2 =ef f
Co

(2.20)

In Equation 2.18, we see that IEx(wi) 12 implies an intensity-dependent refractive

index. By Equation 2.9, the pump wave is given by El(z, t) = i [x(wi)e(01z-''1t)+c.c.]

so that the time averaged electric field intensity is given by

(IE1(z, t)12) = 25&(wi)5*(wi) = 2I5x(wi)12 . (2.21)

Thus, assuming a linear relationship between the index of refraction and the electric

field intensity, we have

n = no + 2n2IEk(wI)12. (2.22)

We substitute Equations 2.22 and 2.19 into Equation 2.20 to get

[no + 2n 2 I x(wi)12]2 = 1 + X (1) + 6X (3)Ex(w 1 )12 . (2.23)

The left side of Equation 2.23 equals

no + 4non 2lE(wi) 2 + 4n0lEx(wi)l 4 ~ n + 4non 2l5x(wi)12 (2.24)
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where we assume that n2 «no. If we substitute the approximation of Equation 2.24

into Equation 2.23, then we have

n2 + 4non 2IEx(Wi)1 2 = 1 + X )+ 6X( 3 5(01)12 . (2.25)

From Equation 2.25, we find that

no= 1 + xG)(W2 ) (2.26)

and that

n2 = .() (2.27)
2no

Remember, that in this derivation it was assumed that the pump was much more

intense than the probe. Therefore, the effect of the pump on the index of refraction

seen by the probe was much more significant than the effect of the probe on the

same index of refraction. This change in index of refraction changed the optical path

length for the probe, in effect adding a phase shift to the probe. The case we studied

in this section demonstrated the phase shift induced on a probe by a very intense

pump. This effect, where a signal of one carrier frequency induces a phase shift in

a signal of a different carrier frequency is called cross-phase modulation (XPM) [21].

Nonetheless, a probe signal, even in the absense of a pump signal, can induce a phase

shift in itself. This effect is called self-phase modulation (SPM). In this thesis, we

shall limit our discussion to the case of an intense pump with a probe too weak to

induce a noticeable phase shift in itself.
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Figure 2-1: Nonlinear Mach-Zehnder interferometer.

2.2 Examples of All-Optical Switches

2.2.1 The Nonlinear Mach-Zehnder Interferometer

The nonlinear index of refraction has been used in a number of optical interferome-

ters, including the nonlinear optical loop mirror (NOLM) and the ultrafast nonlinear

interferometer (UNI). Before describing the operation of the UNI in Section 2.2.2, we

first consider the simple Mach-Zehnder interferometer (see Figure 2-1). In the non-

linear Mach-Zehnder interferometer the incoming signal pulses are split by a 50/50

splitter into two paths. One path is purely linear and nondispersive (for example, it

could simply be free space). The other path contains a nonlinear medium, perhaps an

optical fiber, which has an intensity-dependent index of refraction. Suppose that the

signal pulses have a carrier wavelength of A0 . Also, let L, be the length of the linear

medium and let L,1 be the length of the nonlinear medium. If the lower path contains

only linear material with an index of refraction equal to ni, then the linear medium's

optical path length is nL 1 . The upper path contains a nonlinear medium, and its

index of refraction is given by nr' + n2'c, where n"' is the linear index of refraction,

n 2 is the nonlinear index of refraction, and I is the intensity of the control pulse

that temporally overlaps the signal pulse. The optical path length of the nonlinear

medium is (no' + n21c)Lna.

We would like to calculate the relative phase shift induced between the signal
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pulses in the two arms of the interferometer. Taking the difference of the two optical

path lengths, we have

n'Li - (nn' + n 2Ic)Lni. (2.28)

Dividing by Ao/27r gives us the relative phase shift:

(Prei = 2,'Ll - (nn' + n 2Ic)Li ]. (2.29)
Ao [o 0(.9

At the output, the signal pulses in the two optical paths are recombined. If, at the

input, we have a signal with a field given by E, = i(Ee-iwot+c.c.) then at the output

we have the field

1 1
Et = (Ese-iwot + c.c.) + -(Ese-iwoti" + c.c.) (2.30)

2 2

where each term in Equation 2.30 is the field from one of the two arms. From this

equation, we calculate the time averaged intensity:

Io.t oC (|E 0ut| 2 )

= (I(Ese-iwote cos + c.c.j2 )2 (2.31)
= 2 E S2cos(2  )

0c Ix cos 2 4re)

Because 'I ,ei is linearly related to I, we can control the phase shift between the pulses

in the two arms to cause constructive or destructive interference at the output. The

output intensity, in normalized units, is plotted against the relative phase difference

in Figure 2-2.

We can easily apply this interferometer to all-optical switching. The presence or

absence of the control pulse can determine whether or not a signal pulse is transmitted.

In the absense of control pulses, both arms are linear. Suppose we adjust L, and L",

so that, when no control pulses are present, a 7r relative phase shift is added between
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Figure 2-2: Normalized output intensity of the nonlinear
ter versus <rl.a.

Mach-Zehnder interferome-

the signal pulses in the two arms. The pulses destructively interfere at the output

and no signal pulses are transmitted. On the other hand, when control pulses are

present and when they are intense enough to induce another 7r phase shift between

the pulses in the two arms, the signal pulses in the two arms constructively interfere

at the output and are transmitted.

Although simple, the nonlinear Mach-Zehnder design has several problems. First,

there may be undesirable and uncontrollable asymetries between the two arms. If

the carrier wavelength is 1550 nm, then even small variations in temperature between

the two arms could affect the difference in their optical path lengths enough to move

the bias point of the switch from ON to OFF. Even acoustic vibration from ambient

sound could noticeably affect the switch's performance. Active electronic control of

the path length could stabilize these asymetric variations, but it adds hardware and

complexity. Another problem with the nonlinear Mach-Zehnder interferometer arises

when the medium used in the nonlinear arm does not have an instantaneous response.

The ultrafast nonlinear interferometer discussed in Section 2.2.2 uses a semiconductor

25

0.9

0.8

0.7

2? 0.6

0w 0.5

.
0
z

0.3

6

-- --- -- ----- -- - - ---

---------- --

- - -- -- ---- -- -- ---- --- --- - - - ----

- --- - - - -- - -- - - ---

- -- - - - - -

------------- - - - - --

-------------- - -- -- - -

-- - -- - --- - ---- --

- ..- ..-.-- - ----- -

--- -- - -- -- - - -- ---

- ------ --

-- -- - --------- - - - - -

-- -- ---- -- - - -- -

U



based nonlinear medium that is described by several effects that range in speed from

several femtoseconds to several nanoseconds [22]. The long carrier density relaxation

will affect switching if the nonlinear response exceeds one bit length. A control pulse

might then induce a phase shift both in the pulse it temporally overlaps and in a

subsequent pulse. N. S. Patel wrote simulations showing distortion of a 40 Gbit/s

pulse stream due to long-lived index changes in a semiconductor based nonlinear

Mach-Zehnder interferometer [23].

2.2.2 The Ultrafast Nonlinear Interferometer (UNI)

Many of the problems with the nonlinear Mach-Zehnder interferometer are mitigated

if the switch design is changed to the ultrafast nonlinear interferometer shown in

Figure 2-3. The UNI is a single arm interferometer (SAI). Rather than having signal

pulses propagate through two separate arms, the signal pulse is temporally separated

into two pulses, which propagate down a single arm. Therefore, the thermal and

acoustic variations that limite the nonlinear Mach-Zehnder interferometer's perfor-

mance do not affect the UNI. The UNI has been demonstrated to switch at rates

up to 100 Gbit/s without the active control that would be necessary in the Mach-

Zehnder [24].

The UNI can modulate the data pattern of the control pulses onto the signal

pulses. The signal pulses enter at the left of the UNI. The first polarization con-

troller (PC1) is set so that each signal pulse is linearly polarized and passes max-

imally through the polarizer (PZR1). A length of birefringent fiber, aligned at 45

degrees to the linearly polarized signal pulses, separates each signal pulse into two

equally-intense temporally-separated orthogonal polarizations. The control pulses, of

a different wavelength than the signal pulses, are coupled into the UNI in a 50/50

coupler. They temporally overlap one of the two signal pulse polarizations. These

control pulses will be used to switch the signal pulses ON or OFF. The semiconductor

optical amplifier (SOA) is used as the nonlinear medium in the UNI. In the SOA, a

control pulse induces a phase shift in the signal pulse polarization that it temporally

overlaps. The two polarization components of the signal pulse are recombined tem-
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Signal BRF BRF

Figure 2-3: The Ultrafast Nonlinear Interferometer (UNI) separates the signal pulse
into orthogonal components. The control pulse induces a phase shift in one compo-
nent; both components are then interfered at PZR2. The components are polarization
controllers 1, 2, and 3 (PCi, PC2, and PC3), polarizers 1 and 2 (PZR1 and PZR2),
birefringent fiber (BRF), semiconductor optical amplifier (SOA), and band pass filter
(BPF).

porally in the second length of cross-spliced birefringent fiber and then interfered in

the polarizer (PZR2). The control pulses are then filtered out in the band pass filter

(BPF).

SOAs provide a very high nonlinear index of refraction, with rt 2 on the order of

10-6 m2 /W [22]. In contrast, optical fibers typically have an n2 on the order of

10-20 m2 /W [21]. In optical switching applications, the SOA's high nonlinear index

of refraction can be an important advantage. At 100 Gbit/s, pulses are separated

in time by only 10 ps. In an SOA, which can be less than 1 mm long, only one or

two pulses will be propagating in the nonlinear medium at any point in time. If we

use fiber as the nonlinear medium, then its low nonlinear index force would require

hundreds of meters of fiber to acheive the desired nonlinear phase shift. A 500 m

length of fiber, when used as the nonlinear medium in an all-optical switch, creates a

logical latency of 250,000 bits simultaneously propagating in the fiber. Although this

latency could cause problems in many applications of all-optical switching, it does

not necessarily affect regeneration.
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2.3 Relevant Physical Properties

In this section, we will discuss several physical properties of optical fiber that are

relevant to all-optical nonlinear switching. First, we will discuss chromatic dispersion

and its effects on the propagation of Gaussian pulses in optical fibers. Then, we

will derive the nonlinear wave equation used to describe pulse propagation in an

optical fiber, the nonlinear Schrbdinger equation (NLS). Last, we will discuss loss

and birefringence and their role in all-optical switching and regeneration.

2.3.1 Dispersion

A short optical pulse contains many frequencies. In fact, the shorter the pulse is in

time, the wider it is in the frequency spectrum. In a dispersive medium, each fre-

quency component propagates down the fiber at a different speed, leading to pulse

distortion. These dispersive effects are very important in deciding which nonlinear

medium to select for an all-optical switch or regenerator. We can express these disper-

sive effects mathematically by defining a frequency dependent propagation constant,

O(w). After propagating a distance z, the component of the field at w, E(w), receives

a phase shift of /(w)z to become E(w)eO(w)z.

We consider first the case of the dispersion of a Gaussian pulse, because this

problem can be solved analytically. We expand O(w) in a Taylor series around the

carrier frequency wo:

1
O(w) = 0 + 01 (W - wo) + I0 2 (W - wo)2 + (2.32)

2

The constants 0#, in 2.32 are equal to |- #0 is an initial and constant phase

shift on the pulse. /1 is the group delay and determines the velocity of the center of

the Gaussian pulse envelope. #2 is called the group velocity dispersion (GVD) and,

as we will see later, causes the pulse width to increase. We write the electric field for
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the pulse at z = 0 as

E(z = 0, t) = Eo exp 2t2 In 2 e iWot

where we have dropped the c.c. because dispersion is a linear effect, making the c.c.

term is unnecessary.

(FWHM) is

This optical pulse's full width at half its maximum intensity

TFWHM =TO.- (2-34)

The propagation of the Gaussian pulse in a dispersive medium is easily solved in the

frequency domain, so we calculate the Fourier transform of this field:

E(z = 0,w) = E(z = 0, t)e~Ct dt

-AL:

(2.35)
EO exp 2t21 In 2 e(w-w)t dt.

T2

We can easily solve this equation by completing the square in the exponent and

consulting standard integral tables [25]:

TOE(z = 0,w) = T exp
2 2ir ln2 ex

S-( WO)2T2
81.2 (2.36)

Thus, the spectrum of the Gaussian pulse is another Gaussian pulse in w with a

spectral intensity FWHM of

4ln2
AWFWHM TO (2.37)

In a purely dispersive medium, in which nonlinear effects are negligible, the field,
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after propagating a distance L, is given by

E(z = L, w) = E(z = 0,w)e (w)L

- E~ = ~(2.38)
= (z =0, W)e i,8+,3 ('-WO)+ '12 (-WO)+--. ]L

where we have substituted Equation 2.32 into O(w). We neglect terms higher than

#2 because in fiber 03 only becomes significant for very short pulses. Then we have

from Equation 2.38

E(z = L, w) = E(z = 0, w) e0+8P-WO)+-, -WO)]L

T0  To2 i 2 L 2O exp - (W_ WO)
2 27rn2 epn 2 8 In2 2 (2.39)

+ i#1L(w - wo) + ioL].

Equation 2.39 is still a Gaussian pulse with the same spectral intensity FWHM given

in Equation 2.37. So the spectrum of the pulse has the same envelope, but now has a

phase shift equal to #(w)L. We take the inverse Fourier transform of Equation 2.39

to see how the pulse evolves in time at z = L:

E(z = L, t) = j E(z = L, w)eiwt dw

T____ [ -(-- ) 1L)2 To2 1 (2.40)
2 = e i(3oLwot) eo exp OI n
2 /2-,r In 2 2In 2 T04 + 4#2 L2

where # is a phase factor given by

-(02 L -- t)2
0(t, z = L) = 1. (2.41)

4 0 _ j0

As can be seen in Equation 2.40, the pulse is still a Gaussian, although a new phase

factor is present, and the pulse's width has changed. We now make several important

definitions related to the coefficients, /n, in the propagation constant that will help us

to understand the physical significance of each coefficient. First, the phase velocity
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of the pulse, v4 = wo//3, is the speed at which the carrier frequency propagates

through the medium. Second, the group velocity, v. = 1/#1 is the speed at which the

pulse envelope propagates through the medium. Last, we call #2 the group velocity

dispersion, which is related to the rate at which the pulse broadens in a second order

dispersive medium.

We can justify the definition for the phase velocity, v, by looking at the factor

ei(floz-ot) of Equation 2.40 and noticing that a point of constant phase exists at

/Oz - wot = 0, so vp = dz/dt = wo/#o. This exponential factor is the underlying

carrier freqency. We can justify the other definitions by looking at the argument of

the exp in Equation 2.40:

-(t - 1z) 2T2
n4/3 )(2.42)

21n2 $ + 4#Z2)

To justify the definition of the group velocity, we note that the center of the pulse

exists where t - / 1z = 0 and so, v. = dz/dt = 1/#1. To justify the group velocity

dispersion, we note that /2 influences the pulse width. A larger #2 implies a larger

denominator in Equation 2.42 and, therefore, a wider gaussian in Equation 2.40. It

is also useful to calculate the intensity FWHM, as we did in Equation 2.34:

2In 2 _T4

TFWHM = T1n2 2 + 42Z2  (2.43)
To 4(ln 2)2

In Figure 2-4 we plot a Gaussian pulse propagating in a second order dispersive

medium. As can be seen in the plot and in Equation 2.40, the pulse broadens and its

peak intensity drops as the pulse propagates farther in fiber. This distortion, caused

by the second-order dispersion, has a significant effect on the choice of nonlinear

medium for the all-optical switch or regenerator. For example, the decreased peak

intensity of the pulse reduces the effect of the nonlinear index of refraction, which is

the principle on which all switches in this thesis are based. The lower intensity causes

a smaller phase shift, forcing the use of a longer nonlinear medium.

Dispersion causes other problems as well. In the UNI described in Section 2.2.2,
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Figure 2-4: Dispersion induced broadening of a Gaussian pulse in an optical fiber.

the signal pulses are separated temporally into two orthogonal polarizations. Ideally,

the separation is larger than the pulse width. If it is not, as may happen because of

dispersive broadening, the two orthogonally polarized pulses may induce unwanted

phase shifts in each other. In the UNI, this problem is solved by using an SOA with

high nonlinearity and a short interaction length in order to decrease the dispersive

effects. But if we consider using optical fiber as the nonlinear medium, as we will

later in this thesis, we must use longer interaction lengths. The design of any fiber

based all-optical switch must account for the long interaction lengths and dispersive

effects of the fiber.

2.3.2 The Nonlinear Schrodinger Equation

In many cases in fiber optics, the dominant physical effects are second-order disper-

sion and the nonlinear index of refraction. Both of these effects are included in the

nonlinear Schr6dinger equation (NLS), a wave equation often used in modelling pulse

propagation down an optical fiber. Here we provide an outline of the derivation of

the NLS. For a more thorough development see Boyd [20].
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First, we assume that the electric field can be represented as a slowly-varying

envelope, A(z, t):

E(z, t) = A(z, t)e(Ooz-Wot) + c.c. (2.44)

where we assume the wave propagates in the z direction with propagation constant

00 = wofii-2. As before, we define the Fourier transform as

E(z, w) = E(z, t)e-' dt. (2.45)

The one-dimensional wave equation is

0 2 E

0z 2 (2.46)
a2 D

- 0 Yo t2 = 0.

Now we relate D and E by the constitutive relation

D(z, w) = c(w)E(z, w) (2.47)

where the dielectric constant E includes both the linear and nonlinear components.

In the Fourier domain, Equations 2.46 and 2.47 yield

O2g

z 2 - Po E M( W 2 k = 0 . (2.48)

We take the Fourier transform of Equation 2.44 and assume propagation in the +z

direction only to get

E(z, w) = A(z, w - wo)efoz + A*(z, -w - wo)e- 5 0z
(2.49)

~ A(z, w - wo)eoz

Now we substitute Equation 2.49 into Equation 2.48, use the relation O(w) = wl toc,
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and make the slowly varying envelope approximation (that is, 2 A/0z 2 = 0), to get

200 + (W2 _ 2 )A = 0. (2.50)az0

We make another approximation, 32 - e ~ 23o(13 - 0o), and substitute it into

Equation 2.50:

w - wo) - i(# - Oo)A(w - wo) = 0. (2.51)
az

Now we approximate the propagation constant O(w) with a truncated Taylor series

that has an extra term, A#NL OC A 2 . This extra term accounts for the nonlinear

index of refraction derived in Section 2.1:

O(w) = '30 + (W - wo)O 1 + (W - wo) 20 2 + M/NL

1 1 dv 9  w 0  (2.52)
= #O + (W - WO)- - (P _ WO)2 g 1,0 + n21W

vg (wo) vg (wo) dw c

By using Equation 2.52, we account for dipsersion up to and including second-order

dispersion and the nonlinear index of refraction. We substitute Equation 2.52 into 2.51

and take the inverse Fourier transform to get

aA DA 1 02 A
+0 + 2 -2 - iNLA = 0. (2.53)

We can make a transformation to a moving reference frame,

T = t - #1z and U(z, T) = A(z, t), (2.54)

to get

aU 1 2U
=--i 2  + iA3NLU

az 2' Or2 (2.55)
1 2 U

2 2 5 T2 + U2U

where we have used the fact that M#NL OC JU12 and where 7 is the nonlinear coefficient.
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In Equation 2.55 the dispersion is expressed in the first term on the right side of the

equation and the nonlinear phase modulation in the second term. The group delay,

#1, has fallen out of Equation 2.55 because the moving reference frame, given by

T = t - 01z, moves with the group velocity of the pulse envelope. In this way, a

pulse at carrier frequency wo remains centered at T = 0. Zakharov and Shabat,

in a monumental paper, discovered exact solutions to the NLS [26]. Nontheless,

adding other terms to this equation to account for effects other than dispersion and

the nonlinear index of refraction, render the equation unsolvable. Methods exist

that solve these equations numerically, and one such method, the split-step Fourier

method [21], generated the plot in Figure 2-4.

We can understand Equation 2.55 better by considering two cases: one in which

7 is negligible and the other in which #2 is negligible. If -y is negligible, we consider

pulse propagation in the presence of dispersion alone:

-- 1 2 .2U (2.56)
19Z 2 aT2

Equation 2.56 is solvable by taking its Fourier transform with respect to T:

OU(z w') _1' = -i3 2 w'2 g(z, w') (2.57)
Oz 2

which has the simple solution

(z,w') = U(z = 0, w')e iwz. (2.58)

Equation 2.58 describes the effects of second order dispersion, as we discussed in

Section 2.3.1. Notice that the magnitude of U(z, w') does not change. Nonetheless,

the magnitude of the same function in the time domain, U(z, T), broadens as the pulse

propagates. Now, if /2 is negligible, we consider pulse propagation in the presence of

the nonlinearity alone.

au= Uj2U. (2.59)
az
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Equation 2.59 is solved by considering U in polar form. We can easily verify the

solution

U(z, T) = U(z = 0, T)eU-OTz. (2.60)

From Equation 2.60, we see that a phase shift is added to the pulse that is proportional

to y and to the intensity of the pulse. This phase modulation is exactly what we expect

from Section 2.1, where we discussed the nonlinear index of refraction. Also notice

that, unlike the case above with just the dispersion term, the magnitude of the time

domain pulse, IU(z, T)I, does not change. But, the magnitude of the same pulse in

the frequency domain does change.

In single mode fiber (SMF), only the HE,, mode is excited. Nonetheless, if z

is the direction of propagation, then the electric field can be considered polarized

in either the x or y direction to good approximation. Thus, even single mode fiber

supports two different modes of polarization [21]. Equation 2.55 does not account for

two possible polarizations or loss in the fiber. To include these effects, we must use a

coupled set of two partial differential equations:

A i O 2  +A = i(|Ax| 2 + |Ay| 2 ) Ax + A*A e-2iAez (2.61)
2 &T 2 +2A 3YIx 3 x AY~i/

MAY i a2  +1 yL~ 2 +2 ~I-x -~ 2 12'\ UA*2 2iAflz.+ 3 12 + AY = i-(|Ay2 |Ax|2)Ay + A*'-2s7 (.2
O9z 2 2T 3 ~ ' 3 1 Y1

X- x 2.2

In these equations, a is the loss in the fiber, A, and AY are the electric field envelopes

in the x and y directions, and A0 = #1x - 01y. So, these equations still account for

dispersion and the nonlinear index of refraction, but also account for the fiber loss

with a and linear birefringence with A\. The linear birefringence causes each of the

polarization components to propagate at different rates. In fact, microbending in the

fiber causes the value of the birefringence to change randomly down the length of the

fiber, causing the polarization to change quickly and unpredictably. This effect will

be important in the design of all-optical regenerators. One last interesting point in
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these equations is the nonlinear terms: ky (IA, 2+ !Ay12)A, and 'y(IAy12 + IAx12 )Ay.

Notice that the intensity of AY affects the index of refraction seen by Ax only two-

thirds as strongly as the intensity of Ax itself. This weakening of the nonlinear index

of refraction between orthogonally polarized fields will also affect regenerator design.

2.3.3 Effects of Loss and Pulse Envelope Shape on Phase

Shift

In this thesis, we test all-optical regenerators that use silica optical fibers to pro-

vide the nonlinear medium. Optical fibers are inherently low-loss. The single mode

fiber common in communications has a loss of about 0.25 dB/km at a wavelength

of 1550 nm. As pulses propagate in fiber, their peak intensity falls and, therefore,

the intensity-dependent index of refraction decreases. The all-optical switches we

presented above all operate by inducing a 7r phase shift in one pulse with respect

to another. These two pulses are then interfered at the output. Therefore, any loss

increases the length of fiber or magnitude of optical power needed to induce that

phase shift. Because longer fibers can entail more noise and distortion from effects

like Rayleigh scattering and dispersion, we must consider carefully how substantial

the loss is. We must also remember that each pulse has a nonuniform intensity, so

low intensity wings on the pulse receive a smaller nonlinear phase shift than the high

intensity peak.

Let U(z, r) be the pulse envelope on a carier of frequency wo. As we did for

dispersion in section 2.3.1, we expand the change in JU(z, T)1 2 as a Taylor series:

a IU(z,)12 = -caU(z,Tr)I2 - aNLIU(z, )12 + (2.63)

The first term on the right accounts for linear gain or loss (a is positive for loss and

negative for gain). In this thesis, we will neglect higher order nonlinear loss terms.

aNL, for example, accounts for nonlinear losses such as two-photon absorption, which

can become significant with high optical powers [27].
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If we neglect higher order losses, then we have

U(Z, = U(z = 0,'T)12I-z. (2.64)

First, let us consider how much longer a fiber with loss must be to induce the same

self-phase modulation that would be induced in a lossless fiber. To simplify the

problem, we assume that the pulse has uniform intensity. In a lossless fiber of length

LO, the self-phase modulation induced from Equation 2.60 is

<(T) = fyU(z = 0, r)12 dz
Jo (2.65)

= yIU(z = 0, r) 2 Lo.

In a lossy fiber of length L, the self-phase modulation induced is

(D )= J yIU(Z, )2 dz

- Y1 U(z = 0, T)1 2 1 -e

Equations 2.65 and 2.66 imply that if the phase shift induced in a lossless fiber of

length LO is to be the same as that induced in a lossy fiber of length L, then we must

have Lo = [1 - exp(-aL)J/a. The larger a is, the longer the lossy fiber must be.

Now, let us consider a pulse with a nonuniform Gaussian envelope:

U(z = 0, T) = Ae-'T 2  (2.67)

where A is a positive constant. For simplicity, we assume that the pulse is propagating

in lossless media. We would like to consider the effects of nonuniform pulse intensity

on the output pulses. To test this in an ideal example, consider the nonlinear Mach-

Zehnder interferometer of Figure 2-1. Instead of having control pulses, the signal

pulse induces a phase shift in itself due to SPM. We assume that both the nonlinear

arm and the linear arm have matched lengths of L. The signal pulse is split at a
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Figure 2-5: Output pulse contrasted with input signal pulse after passing through a
nonlinear Mach-Zehnder interferometer with yA 2L = -K

50/50 splitter. We need to calculate the relative phase shift induced across the pulse

in the nonlinear arm with respect to the pulse in the linear arm. We only need to

refer to Equation 2.60:

U(z, T) = U(z = 0, T)ei-'U(z=O,)Iz

-> (N() ) = 7 A2,-2r2/T2 L.

(2.68)

-y is inherent to the particular nonlinear medium in the nonlinear Mach-Zehnder

interferometer. To simplify the analysis, we let A2 L = 7r/-y. This choice gives us a

maximum phase shift at T = 0, where <D = 7r. The phase shift, however, is not uniform

over the entire pulse. The maximum phase shift occurs at the pulse center and falls to

zero at the pulse edge. When the signal pulse from the linear path is interfered with

the signal pulse from the nonlinear path, we get perfect cancellation at the peak. But,

the amount of cancellation falls off at the edges. Figure 2-5 shows the input signal

pulse and contrasts it with the output pulse. Ideally, the output pulse is identically

zero, but Figure 2-5 shows two substantial pulses at the output. This condition is an
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important problem, which we consider later in this thesis. One solution is to have

a separate control pulse induce the phase shift in the signal pulse that propagates

down the nonlinear arm. The control pulse carrier frequency determines its velocity.

If chosen care fully, the control pulse "walks through" the signal pulse and thus

distributes the nonlinear phase shift more evenly across the signal pulse. The output

in Figure 2-5 is ideally zero across the entire pulse width. Because most of the signal

pulse power is in the center of the pulse, the walk through does not have to be very

large to improve the switching.
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Chapter 3

Previous Work in All-Optical

Switching

Higher digital data rates require shorter optical pulses, and researchers have already

been looking ahead to design the components required in high speed optical networks.

Today, electronic processing of signals cannot operate faster than 40 Gbit/s. If we

expect to see systems exceeding 100 Gbit/s, then we must consider how to implement

them using optical processing [28]. A large body of research in all-optical pulse

regeneration already exists. In Chapter 2, we saw an example of an all-optical switch:

the ultra fast nonlinear interferometer (UNI). The nonlinear medium in the UNI

is the semiconductor optical amplifier. In this thesis, we will use optical fiber as

the nonlinear medium. The nonlinear index of refraction in optical fiber occurs on

the order of femtoseconds. As mentioned before, all-optical switches and all-optical

regenerators are often very similar. An all-optical switch, after all, performs as a

regenerator by using network data pulses as control pulses and locally generated

clock pulses as signal pulses. In this way, the data (control) pulses coming off the

network modulate their own data pattern onto the clock (signal) pulses. In this and

later chapters, we will refer to the signal pulses as clock pulses when that is the

purpose they serve. We will use the terms "data" and "control" similarly.

Although all-optical switching and all-optical regeneration are functionally similar,

the goals and, therefore, the details of design are very different. Regenerators must
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use distorted data pulses as control pulses to switch local clock pulses. The data

pulses may be attenuated, their amplitude envelopes may be distorted, and they may

have moved from the center of their own bit intervals (timing jitter). Regenerators

must be designed to deal with these distortions. Different classes of regenerators exist.

3R regenerators reamplify, reshape, and retime network data pulses. 2R regenerators

only reamplify and reshape network data pulses. In this chapter, we introduce several

common all-optical regenerator designs. In the first section, we describe the nonlinear

optical loop mirror (NOLM) [29] and its use in both 2R and 3R regeneration. In

the second section, we discuss a variant of the NOLM called the terahertz optical

asymetric demultiplexer, sometimes also called the semiconductor laser amplifier in

a loop mirror (SLALOM) [14]. In the final section, we discuss some of the problems

in these designs and how they may be overcome.

3.1 The Nonlinear Optical Loop Mirror

The nonlinear optical loop mirror (NOLM) has been studied for more than a decade

as a demultiplexer [12], switch [30], and pulse regenerator [3]. For all-optical demul-

tiplexing, the NOLM has been demonstrated to operate at 640 Gbit/s [31]. Like the

UNI, the NOLM uses the nonlinear index of refraction to induce a phase shift in a

pulse. The nonlinear medium of the NOLM is optical fiber [29]. The NOLM is more

easily understood if we first consider the linear optical loop mirror, depicted in Fig-

ure 3-1. The linear optical loop mirror is simply a loop of fiber joined at the ends by

a 50/50 coupler. Pulses that propagate into the input of the loop mirror are simply

reflected back out the input with a delay caused by the propagation time through the

loop. In an ideal loop mirror, no power exists at the output.

This mirror works because of the phase shift added by the 50/50 coupler. Any

power that couples across from port 1 to port 4 in Figure 3-1 receives a ir/2 phase shift

with respect to any power that propagates directly from port 1 to port 3. The signal

pulses entering at the input of the loop mirror are split into two counterpropagating

pulse streams, each identical to the original, but attenuated by 3 dB. The clockwise
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Figure 3-1: The linear optical loop mirror.

propagating stream we refer to as CW and the counterclockwise one as CCW. The

power there is the sum of two pulse streams: the CW stream, which propagates from

port 1 to 3 to 4 to 2 and receives no relative phase shift; and the CCW stream, which

couples across from port 1 to 4 and then couples across from port 3 to 2. Because the

CCW stream is coupled between fibers twice, it acquires a ir phase shift at the output

with respect to the CW stream and destructively interferes. The power at the input

is again the sum of two different pulse streams: the CW stream, which propagates

from port 1 to 3 and then couples across from port 4 to 1; and the CCW stream,

which also couples across from port 1 to 4 and then propagates from port 3 to 1.

The CW and CCW fields each couple between fibers once. Thus, the relative phase

between the two streams does not change and they constructively interfere. So, any

pulse launched into the input of the loop mirror is simply reflected back with a delay

equal to the propagation time through the loop.

3.1.1 The NOLM as a 2R regenerator

In a nonlinear optical loop mirror, a phase shift is induced by some nonlinear effect

as well as by the coupler. With this imbalance, we can control whether the signal

pulses are switched out of the input or the output of the loop mirror. One example

is the self-switch shown in Figure 3-2. The self-switch loop contains a short segment
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Figure 3-2: The self-switch (left) and the plot of input power verses output power of
an ideal self-switch (right).

of dispersion compensating fiber (DCF) and a long segment of dispersion shifted

fiber (DSF). DSF has a #2 that is nearly zero at the carrier frequency of the signal

pulses. As discussed in Section 2.3.1, #2 = 0 implies that the signal pulses will

not broaden substantially due to the GVD in DSF. DCF, on the other hand, has

a very large #2, and pulses propagating through it broaden substantially. Because

the DCF is placed far from the center of the loop, an asymetry exists between the

path that the CW pulse stream takes and the path that the CCW pulse stream

takes. The CW pulse stream propagates first through the DCF, where those pulses

are broadened by the group velocity dispersion. Even if no loss is present, the peak

power of each pulse is decreased for the remaining portion of their trip around the

loop. The CCW pulse stream, on the other hand, propagates through most of the

loop before reaching the DCF and its peak power remains nearly constant while it

propagates through the DSF. Because the nonlinear phase shift induced by SPM is

proportional to the instantaneous intensity of the pulse envelope, the CCW pulses are

phase shifted more than the CW pulses. Let us assume Gaussian pulses with initial

peak envelope amplitude UO. Let us also assume that the GVD in the dispersion

compensating fiber lowers the peak intensity of the Gaussian pulses by some constant
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factor independent of the initial intensity (see Section 2.3.1). Finally, let us assume

that the DCF segment is too short to induce a measurable nonlinear phase shift in

either pulse stream. Then, the phase shift induced at the center of the pulses in the

CCW stream is -yIUo12 L, where L is the length of the DSF fiber in the loop. The phase

shift induced in the CW stream is -yaU02L, where a gives the drop in peak power due

to the effects of group velocity dispersion in the DCF segment. The relative phase

difference between the two pulse streams at the output is

-y(1 - a) UoI12 L + 7r, (3.1)

where the 7r comes from the phase shift added by the coupler to the CCW pulse

stream. Equation 3.1 implies that the power switched to the output of the NOLM self-

switch depends on the input power. The normalized output power versus normalized

input power for the self-switch is shown on the right in Figure 3-2.

This self-switch, with an optical amplifier like an erbium doped fiber amplifier

(EDFA), can operate as a 2R regerator, reamplifying and reshaping, though not

retiming, a pulse stream. An EDFA at the input can provide the amplification, and

the loop itself reshapes the pulses. If the data pulse stream has some desired peak

intensity, we can bias the self-switch by choosing the apropriate length of DSF to

completely switch that peak power to the NOLM output. If we bias the self-switch

at the first peak in the plot in Figure 3-2, then small additive noise at the peak is

attentuated. Moreover, the tails of the pulse are attenuated, and the pulse width

narrowed.

3.1.2 The NOLM as a 3R Regenerator

The nonlinear optical loop mirror can also serve as a 3R regenerator. A very basic 3R

regenerator design is shown in Figure 3-3. As in the UNI, control pulses and signal

pulses are separated by their carrier wavelength. The band pass filter at the output

of the NOLM filters out the control pulses. In the case of regeneration, the control

pulses are the network data pulses, amplified to provide the necessary nonlinear phase

45



Dispersion
shifted fiber

Control pulses (network 3 4
data stream)

Signal pulses (local 50/50 Output
clock stream) 1 2 BPF

Figure 3-3: The nonlinear optical loop mirror with control pulses adding an imbalance
between CW and CCW pulse streams for 3R all-optical regeneration.

shift via XPM. The signal pulses are locally generated clock pulses. In the absence of

data pulses, the NOLM becomes simply an optical loop mirror and the clock pulses

are switched back out the input. If data pulses are present, then they are coupled onto

the loop mirror to temporally overlap the clockwise propagating clock pulses. These

amplified data pulses copropagate with the CW clock pulses, inducing a nonlinear

phase shift in the CW clock pulses. By adjusting the power of the data pulses, we

can control how much of the clock pulses' energy is switched out the output. For the

regenerator application, we would bias the NOLM so that the presence of data pulses

completely switches out any clock pulse it temporally overlaps to the output port. In

this way, the output clock pattern matches the original data pattern.

Of course, the simple description above neglects many important details. First, the

regenerated pulse stream that we see at the output is at a different carrier wavelength

than the original data pulse stream. We can overcome this problem by alternating

carrier wavelengths in the network, switching the carrier wavelengths of the data and

clock pulses from one regenerator to the next. This solution, however, complicates

the network design. Second, although the data pulses do not copropagate with the

counterclockwise propagating clock pulses, they do, nonetheless, pass through them.

The data pulses propagate quickly through the CCW clock pulses, but they still

induce a small phase shift in those clock pulses. Third, the control pulses are not
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Figure 3-4: Walk-off of a data pulse through a clock pulse. Timing jitter in the data
pulse makes the time at which it is coupled onto the NOLM, relative to the clock
pulse, unpredictable.

square, so the phase shift they induce in the CW clock pulses depends, in part, on

the clock pulse intensity profile. This problem was discussed in Section 2.3.3 and in

Figure 2-5.

Let us discuss these last two points in more detail, since they will be useful in

understanding the folded UNI described in Section 5.1 later. The group velocity dis-

persion of fiber causes pulses of different carrier frequencies to propagate at different

rates. We can, therefore, have a data pulse walk through the clock pulse it temporally

overlaps. This walk-off eases two problems: the dependence of the phase shift on the

intensity profile and the timing jitter in the incoming data pulses. In Figure 3-4, the

data pulse is shown as three pulses, each one representing a possible arrival time due

to timing noise caused by the network. The walk-off designed into the regenerator

between the data and clock pulses ensures that in spite of the timing jitter, the data

pulse will, for some time, temporally overlap the clock pulse. During that time, the

data pulse will induce a nonlinear phase shift in the clock pulse.

Researchers have carefully studied the effects of this walk-off on the NOLM's

switching performance [32]. Let us begin by assuming a stream of Gaussian control
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pulses in a NOLM of length L:

00t - nT - z 2
Pdata(Zt) = E xnPoexp -('TO L ) (3.2)

where Pdata is the intensity profile of the data pulses, T is the bit period, t, is the

total walk-off time of the control pulses with respect to the signal pulses, x, is 1 for

a "mark" (that is, for the presence of a control pulse) and 0 for a "space" (absence

of a control pulse), and To is related to the intensity full width at half maximum by

TFWHM = 2T 0\/IH2. The signal pulses are taken as a moving reference frame. Hence,

the argument of the exponential in the control pulses is t - nT - Lw z, so that after

propagating from z = -L/2 to z = L/2, the center of the control pulses have moved

tw seconds with respect to the signal pulses. Let us assume that disperive effects

are negligible. We also assume that the control pulses are much more intense than

the signal pulses, so that the phase shift is caused by the control pulses only. At

each length element, dz, along the fiber, Equation 2.60 predicts that the phase shift

induced in the signal pulse is equal to YPdatadz. Thus, the total phase shift induced

in the signal pulses by the control pulses is given by the integral

qc = J YPdata(z, t) dz. (3.3)

We can solve this integral by separating it into two integrals:

00 
( 

-. nT-)z

#c =7 Ex nPoexp [ TO L dz +
2_1 n=-o: 

(3.4)
ML *C t -nT - tz 2
fo E xnPoexp - TO l z

We solve Equation 3.4 in terms of the error function defined by

2 f t
erf (t) = exp(-u 2 ) du. (3.5)

If we make the substitution u = (t - nT - tz)/To and notice that this changes the
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limits of integration (that is, we must change the limits from the values of z to the

corresponding values of u), then we get the solution

T= 2vxyLROTOE n erf(t + tw/2 - nT
tw n-o2 TO(36

- erf(t - tw/2 - nT

TO

We can use Equation 3.6 to calculate the switching window of this NOLM 3R regen-

erator. The switching window is a plot of the switched out power versus the relative

temporal separation of the control and signal pulses. For example, let us assume that

we have no walk-off between the two pulses. Let us also assume that the signal pulses

are too weak to induce any phase shift in the control pulses, and that the control

pulse peak power is biased to induce a 7r phase shift in the part of the signal pulse

that that peak temporally overlaps. If we assume that both pulses are Gaussian, we

can calculate the phase shift induced in the signal pulse given a certain separation

of the two pulses. Also, using Equation 2.31, which shows that the power reflected

out the input of the NOLM is proportional to cos 2 (0,/2), we can calculate the power

switched out. Figure 3-5 shows the switching window for 2.5 ps Gaussian signal and

control pulses with no relative walk-off between the two. The switching window's full

width at half maximum is about 3.3 ps.

Now, we consider the switching window of signal and control pulses that have a

relative walk-off of 8 ps. We can calculate it just as we did for the case of no walk-off,

but with tw = 8 ps substituted into Equation 3.6. The resulting qc is substituted into

cos 2(q$0/2), giving the induced phase of the clock pulses. If we again assume 2.5 ps

Gaussian signal and control pulses, then we obtain the switching window shown in

Figure 3-6. The switching window's full width at half maximum is 8.0 ps. Notice that

the switching window with walk-off is not only wider, but has a long center section in

which the switching is complete. If the control pulse falls in this section, it is switched
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Figure 3-5: NOLM switching window for 2.5 ps FWHM clock and data pulses with
no temporal walk-off.

out unaltered. The height of this plateau is calculated using Equation 3.6:

<plateau = 27PoLvW ( -- (3.7)

Moreover, the wider switching window increases the tolerance for timing jitter in the

control pulses. Walk-off between clock and data pulses does have disadvangtages for

optical regenerators. For a long walk-off, like 8.0 ps, the control pulse temporally

overlaps the signal pulse for only a fraction of the length of the fiber in the NOLM.

So, the smaller interaction length between the signal and control pulses reduces the

phase shift. We must, therefore, either use a longer NOLM or higher powers in the

control pulse. Each of these two solutions can make more significant other effects

that we neglected, like dispersion, Rayleigh scattering, and Raman scattering.

We must also remember that the control pulses cause a nonlinear phase shift in

the counterclockwise propagating signal pulses, even though they do not propagate

in the same direction. This interaction reduces the relative phase difference between

the counterpropagating signal pulses. Let us assume that the temporal length of
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Figure 3-6: NOLM switching window for 2.5 ps FWHM clock and data pulses with 8
ps of relative walk-off.

the bit slot width, T, is much less than twice the length of the NOLM. That is,

cT < 2nL where n is the index of refraction of the fiber. Thus, each counterclockwise

propagating signal pulse passes through many clockwise propagating control pulses.

If we assume that half of the control pulses are marks and half are spaces, then the

phase shift induced in the counterclockwise propagating signal pulses is

OccW = 2-PoLV/'() (3.8)

and the power switched to the output is

P0, (t) oc 1 - cos 2 (& - ccW).
2

(3.9)

In fact, in the folded UNI design we will be considering later, the assumption cT <

2nL is reasonable because the bit period's temporal length at 10 Gbit/s is 10 ps,

which corresponds to a spatial length of 20 mm. The fiber length used in the folded

UNI is typically hundreds of meters long.
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3.2 Semiconductor Laser Amplifier in a Loop Mir-

ror (SLALOM)

Both types of nonlinear optical loop mirror described in Section 3.1 required some

kind of imbalance to supply the nonlinear phase shift between the clockwise (CW)

and counterclockwise (CCW) rotating clock pulses. In Section 3.1.1 a segment of

dispersion compensating fiber created the imbalance. In Section 3.1.2 data pulses

coupled onto the NOLM to temporally overlap the clockwise propagating clock pulses

provided the imbalance. In both cases, the nonlinear phase shift was induced by fiber

nonlinearities caused by the third order nonlinear effects described in Section 2.1.

The nonlinear phase shift, however, could be induced using a semiconductor optical

amplifier (SOA). The UNI described in Section 2.2.2, for example, used an SOA to

provide the nonlinear phase shift. A NOLM that uses an SOA to provide the nonlinear

phase shift is called a semiconductor laser amplifier in a loop mirror (SLALOM)

and is also often called a terahertz optical asymetric demultiplexer (TOAD) [14]. A

SLALOM is shown in Figure 3-7. Because the SOA provides a high nonlinearity,

the device can be made much smaller than the NOLM and the switching power is

lower [14].

In the absence of the SOA, the SLALOM behaves just like the linear loop mirror

described in Section 3.1.1. The presence of the SOA provides gain. Pulses launched

into the input are split into clockwise and counterclockwise propagating pulse trains.

The SOA's offset from the center of the loop causes an imbalance between CW and

CCW pulses. As in Sections 3.1.1 and 3.1.2, we would like to characterize the transfer

relationship between the input power and the output power. We assume that the fiber

loop itself is lossless and dispersionless. Let td be the round trip time of the fiber loop

and let T/2 be the pulse propagation time from the center of the loop to the SOA.

The input field is given by Ei,(t) = Ai,(t)eiwt + A&(t)ewt. The complex gain seen

by CW pulses will be

gew(t) = Gew(t) -exp(i4~c(t)) (3.10)
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Input 50/50 output

Figure 3-7: In the SLALOM, the imbalance between clockwise and counter clockwise
propagating clock pulses is provided by an SOA set off-center in the loop. The DSF
is dispersion shifted fiber and the PC is a polarization controller.

where Ge (t) is the magnitude of gew (t) and /c (t) is the phase of gew(t). G,,,(t) and

0,,(t) are given by

Gc,(t) = g t + d- ) and cw(t) = # t + t - . (3.11)

The counterclockwise propagating pulses do not arrive at the SOA until T seconds

later than the corresponding CW pulses. So, the gain applied to the CCW pulses is

9ecw(t) = Gcew (t) -exp(i~cew(t)). (3.12)

For these pulses, GcCW(t) and #ccw(t) are given by

GeCW(t) = g t + + and $ccw (t) = t + d+ . (3.13)

In the fiber NOLM described in Section 3.1, switching occurred because of a nonlinear

phase shift, which was fast enough for us to consider to be instantaneous. The

SLALOM, on the other hand, depends on the gain of an SOA to generate the nonlinear
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index of refraction, which we cannot condsider instantaneous. In fact, operation of

the SLALOM relies on the gain saturation of the SOA. So, the complex gain on any

particular pulse depends on the effects of preceeding pulses.

As we did in Section 3.1, we calculate the field at the output,

Eou= Aout(t) -eiwt + A* e(t) . eiwt. (3.14)

The field is the sum of the two counterpropagating pulse trains. The CW pulse train

never crosses through the coupler in order to reach the output arm of the SLALOM.

The CCW pulse train must cross the coupler twice to reach the output arm and thus

receives a -r phase shift. Adding these two fields at the output arm gives

1 1
Aot = - Ai,(t- td) eiw tgem(t - td) - (t - td) - eiWt gec (t - td)2 2 (3.15)1

= Aj, (t - td) -Z dit - [gew (t - td) - gceW(t - td)].2

The factor of 1/2 comes from our assumption that we have a perfect 50/50 coupler.

Half of the power in each pulse train is coupled to the input of the SLALOM and

half to the output. Each term in Equation 3.15 receives a phase shift of wtd because

of the optical path length of the loop. The second term in Equation 3.15 is negative

because of the -7r phase shift induced by the coupler.

Now we can calculate the output power. By Equation 2.21, we know that the

power of the pulses is given by 2Aut(t) - A* (t) assuming that Aout(t) is a slowly

varying envelope over the carrier. With this assumption, we can calculate Pout:

Pot = 2Aout(t) -A*(t)

I G 2 (t-td)Pil[1 + -2GC.. -O(c CW (3.16)
1U G2 G (.6
= gL~t- t)Pi 1+G W 2 G"' cos(q#cm - #ccw)].

From Equation 3.16 we notice two important facts: the output power depends on

the ratio of the CCW and CW gains, Ag = (Gecw/Gew); and the output power

depends on the phase difference A0q =#cu - occw. We can alter the values of Ag and

A0 by saturating the semiconductor optical amplifier. There is no need to develop a
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precise theory of gain dynamics in the SOA here because this simple model sufficiently

describes the operation of the SLALOM.

There are several ways to get the gain and phase differences, Ag and A0$, many of

which depend on saturation of the SOA. If a short intense pulse propagates through

the SOA, then gain in the SOA can become saturated. The gain does recover, however,

and the recovery time constant is on the order of 100 ps. Figure 3-8 shows gain

saturation in an SOA after the arrival of a short pulse at t = 10 ps. Any pulse that

arrives while the gain is saturated will see a smaller gain than it would if the amplifier

were unsaturated. It is on this fact that the three principle methods for obtaining

phase and xsgain differences are based.

1. A single pulse enters the input of the SLALOM. The CW pulse saturates the

gain of the SOA. If we make T smaller than the gain recovery time, Te, then the

CCW pulse propagates through a saturated SOA.

2. Two pulses enter the SLALOM input temporally spaced by approximately T

seconds. The CCW portion of the first pulse saturates the SOA so that the CW

portion of the second pulse propagates through a saturated SOA.

3. This case will interest us the most. As in the first two cases, a signal pulse enters

at the output. Moreover, a control pulse is coupled on at another point in the

loop, as shown in Figure 3-9. If timed properly, the control pulse can saturate

the SOA after the arrival at the SOA of the CW signal pulse but before the

arrival of the CCW signal pulse. Thus, the CCW pulse sees a saturated SOA.

The control pulse could be at a different carrier wavelength. CP2 in Figure 3-9

would then be a wavelength dependent coupler. If such a coupler is used, switch

efficiency is maximized becuase no CW signal pulse power couples out of the

loop and all the control pulse power couples into the loop.

The third point in the list above is the one relevant to 3R pulse regeneration. In this

case, the control pulses are replaced with network data pulses and the signal pulses

with local clock pulses.
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Figure 3-8: SOA gain saturation due to the arrival of a short intense pulse at 10 ps.
The recovery constant Te is on the order of 100 ps and the small signal gain is 100.
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SOA D
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Figure 3-9: SLALOM with control pulses that saturate the SOA. This design can be
applied as a regenerator by replacing the control pulses with data pulses. In order to
maximize switch efficiency, CP1 is a 50/50 coupler and CP2 is a wavelength dependent
coupler.
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3.3 Considerations Specific to Regeneration and

Problems with Loop Mirror Switches

All-optical logical switches and all-optical regenerators very often have similar designs.

After all, an all-optical switch, like the UNI described in Section 2.2.2, can be adapted

to a regenerator design. When used as a regenerator, the control pulses are replaced

with network data pulses in the UNI. The signal pulses, which are switched on or off

by the presence or absence of control pulses, are replaced by locally generated clock

pulses. Some of the considerations of regenerator design, however, are different from

those of general switch designs. The regenerator design challenges we will focus on

in this thesis include:

1. We must expect timing jitter on the incoming data stream. As we will see in

Section 4.1, one possible solution is to have the data and clock pulses "walk

through" each other.

2. The time it takes to switch a pulse is not so important in regeneration. That

is, logical latency does not matter.

3. The polarization drifts slowly in fiber because of changes in the fiber due to

temperature changes and twisting. In the UNI, this problem requires the active

monitoring of 3 polarization controllers. In Section 5.1, we will present a regen-

erator that provides inherent polarization stabilization within the regenerator.

4. Acoustic effects can cause changes in the polarization too fast to actively mon-

itor. In fiber NOLMs, the pulses propagate in the same length of fiber, but

they counterpropagate. Thus, polarization changes in the fiber may affect CW

clock pulses but not the CCW clock pulses, causing asymetry and higher error

rates. In Section 5.1, we will present a regenerator that is insensitive to acoustif

effects.

As mentioned in the list above, the fiber NOLMs of Sections 3.1.1 and 3.1.2 are

very sensitive to acoustic vibrations. Sound waves cause time varying pressure in the
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fiber of the NOLM, which, in turn, cause birefringence in the silica, thus altering

the polarization of the pulses as they propagate [33]. Because the pulses counter-

propagate, a particular CW pulse may see different fiber characteristics than the

corresponding CCW pulse. At the output the different polarizations of the two clock

pulses recombine but no longer have the same polarization and only imperfectly inter-

fere with each other. This acoustic sensitivity can be reduced by symmetric wrapping

of the fiber loop around a drum [34]. The folded UNI, introduced in Section 5.1, will

offer another solution to acoustic sensitivity without the need for special wrapping of

the fiber.

The SLALOM does not have the same problems with acoustic senstitivity because

the nonlinear medium is an SOA rather than a long length of fiber. The loop is very

short and thus less sensitive to vibration. The SLALOM, however, does suffer from

problems related to gain saturation of the SOA. As described in point 3 of the list

in Section 3.2, the SLALOM can operate as a switch or a pulse regenerator. The

SLALOM works most effectively in data demultiplexing, where every n-th data bit is

switched out. The signal pulses in this case are the data pulses. Every n-th contol bit

period contains a control pulse, which saturates the SOA after the arrival at the SOA

of the CW signal pulse but before the arrival of the CCW signal pulse. The resulting

phase difference between the CW and CCW signal pulses causes that signal pulse

to switch out the output. Subsequent CW and CCW signal pulse pairs propagate

through a slowly recovering saturated SOA (see Figure 3-8). Because of the relatively

slow recovery and the fact that a CW signal pulse and its corresponding CCW signal

pulse arrive at the SOA at almost the same time, they see nearly identical gains.

Thus, they are reflected back out the SLALOM input. Ideally, the SOA will have

completely recovered by the time the next control pulse arrives to saturate it.

For regeneration, however, the control pulses are the network data pulses, and

we cannot predict which control bit intervals will contain pulses and which will not.

Thus, there may be two consecutive pulses in the control stream. The first one satu-

rates the SOA, causing an imbalance in the complex gain seen by the corresponding

CW and CCW signal pulses. When the second control pulse arrives at the SOA, it
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has not yet had time to fully recover. It does saturate the SOA, but because the

SOA was already partially saturated, the difference in the complex gains seen by the

CW and CCW signal pulses will not be as large. Therefore, the switched out power

of this pulse is less than that of the preceeding pulse This effect causes patterning of

the output pulse power in a way that depends on the control pattern. The UNI also

shows similar patterning problems, which can be solved by using pulse position mod-

ulation of the data [16]. The folded UNI, presented in Section 5.1, uses optical fiber,

which provides a nonlinear medium with an instantaneous response. This response

eliminates patterning effects in the output pulse streams.
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Chapter 4

Characterization of Fiber as a

Nonlinear Medium

The folded UNI, presented in Section 5.1, uses fiber as a nonlinear medium. Many

of the parameters of fiber vary from spool to spool. This chapter will cover how we

choose the values for various design parameters, like the length of the nonlinear fiber,

the value of its dispersion, the carrier frequencies of the control and signal pulses, and

the nonlinear index of refraction. First, we discuss measurement of the dispersion of

the fiber and how that dispersion influences our choice of carrier frequencies. We also

will discuss measurement of the nonlinear index of refraction, and its influence on

fiber length.

4.1 Dispersion and Walk-off

As discussed in Section 3.1.2 and shown in Figure 3-4, we can correct timing jitter

in network data pulses by having the data pulses, which serve as control pulses,

walk through the locally generated clock pulses. We can create this walk-off between

two pulses by using the fact that two pulses of different carrier frequencies can have

different group velocities. In this section we describe how we measure group velocity

dispersion and how we use this information to select specific fiber types and fiber

lengths. We will measure group velocity dispersion by directly measuring relative
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group delays of a sine wave modulation as a function of carrier wavelength.

Optical fiber comes in many types. Most have a step change in the index of

refraction. That is, the index of refraction of the inner cylindrical core is uniform

and higher than that of the cladding that surrounds it. The core and cladding are

made from SiO 2 molecules. Dopants such as GeO 2 and P2 0 5 can raise the index of

refraction of the core, while dopants like boron and flourine can lower the index of

refraction of the cladding. Manufacturers of fiber can also control the radius of the

core. Typical multi-mode fibers have a core radius of 25-30 pm. Single-mode fiber,

the standard in modern communications, has a core radius of 2-4 pm. The width of

the cladding is around 50-60 /Lm for both single and multi-mode fiber. More thorough

information can be found in Agrawal's text [21].

The dopant levels and core diameter all affect the dispersion of the fiber. As in

Section 2.3.1, we expand the propagation constant / as a Taylor series:

/(w) = #0 +'31(W - wo) + 10 2 (W - wo)2 +- (4.1)

where the 03, in Equation 4.1 are equal to 0'.=W0. In Section 2.3.1 we discussed

the effects of dispersion on a Gaussian pulse. In particular, we solved for the case

in which 30, #1, and #2 were the only nonzero coefficients in Equation 4.1. 1/#3 is

called the group velocity vg because it is the propagation speed of the peak of the

Gaussian pulse. The value of 02 determines the rate at which the Gaussian pulse

width increases. Because we would like the pulses to maintain their shape as they

propagate down the nonlinear medium, 02 ought to be as nearly 0 as possible. The

typical carrier wavelength in optical fiber communications is 1550 nm. If we expand #

around the frequency corresponding to 1550 nm, then dispersion-shifted fiber (DSF)

has a value of 02 that is very nearly zero. In this thesis, we test only dispersion-shifted

fiber as the nonlinear medium. As we shall see in Section 5.1, the pulse broadening

induced by dispersion in fiber is undesireable.

We would like to know the relative group delay of pulses of different carrier fre-

quencies, from which we can calculate /1. We start by modulating a sine wave onto
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an optical carrier and launching the sine modulation into the fiber to test. Then,

by varying the carrier frequency, we measure the relative arrival delay as a function

of carrier frequency on a high speed digital sampling scope. Figure 4-1 shows the

experimental setup. A tunable CW source provides the optical carrier. The Mach-

Zehnder modulator modulates a 10 GHz sine wave onto the optical carrier. A 10 GHz

RF synthesizer provides the electrical input and triggers the digital sampling scope.

After the modulated carrier propagates down the test fiber, an erbium-doped fiber

amplifier amplifies the signal. The traces taken on the scope contain several cycles

of the sine modulation and are avergered over hundreds of traces to eliminate noise

in the signal. Traces are recorded for every 2.5 nm change in carrier wavelength and

stored on computer. The fast Fourier transform (FFT) provides the spectrum of those

traces. The FFT has a DC peak, showing the DC offset, and peaks at plus and minus

the frequency of the modulation. The relative group delay is calculated by measuring

the phase at these modulation peaks as a function of carrier wavelength. This group

delay, however, is not the group delay of just the test fiber, but of the test fiber, the

fiber in the setup, and the fiber in the erbium doped fiber amplifier. To separate the

group delays of the test fiber from the rest of the fiber, we repeat the experiment

without the test fiber and then subtract those group delays from the group delays

calculated in the experiment with the test fiber. Figures 4-2, 4-3, and 4-4 show the

measured group delays as a function of optical carrier wavelength for DSF fibers of

lengths 500 m, 2000 m, and 4000 m, respectively.

The second order dispersion is given by

d2/(w) do 1(w)
2- dw2  dw (4.2)

The data shown for 01(w) are plotted against A. So, if we let / 1(A) = 01(=

then, applying the chain rule to Equation 4.2, we get

d# 1 (A) dA
dA d(4.3)
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Figure 4-1: Experimental setup to measure group delay as a function of carrier fre-
quency. MZM is a Mach-Zehnder modulator and EDFA is an erbium doped fiber
amplifier.
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Figure 4-2: Plot of relative group delay of sine wave modulation versus the wavelength
of the carrier for the 500 m spool of DSF used in this thesis. The curve is a least
squared error parabolic fit.
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Figure 4-3: Plot of relative group delay of sine wave modulation versus the wavelength
of the carrier for the 2,000 m spool of DSF used in this thesis. The curve is a least

squared error parabolic fit.
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Figure 4-4: Plot of relative group delay of sine wave modulation versus the wavelength
of the carrier for the 4,000 m spool of DSF used in this thesis. The curve is a least
squared error parabolic fit.

Because A = 27rc/w, we have from Equation 4.3

27rc d3 _ A2 do,
02 (W) = - = - - - (

W2 dA 27c dA

In Figures 4-2, 4-3, and 4-4, a parabola is fit to the data points by least squared

error minimization. In each case, the parabola shown is L 1, where L is the length

of the relevant fiber. For the three spools of fiber that we will study, the parabolas

are given by

500 m: #1 = 4.15 x 10 1A2 - 1.28 x 10- 4A

2000 m: 01 = 2.06 x 10 1A2 - 6.27 x 10-5A

4000 m: #1 = 3.67 x 10 1A2 - 1.13 x 10-4A

(4.5)
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where we have neglected the constant term because we are only interested in relative

delays. #1 has units of s/m and A has units of meters. Substituting these into

equation 4.4, we get

500 m: #2 = -4.41 x 10- 8A3 + 6.82 x 10- 14 A2

2000 m: #2 = -2.18 x 10- 8A3 + 3.33 x 10- 1 4A 2  (4.6)

4000 m: #2 = -3.89 x 10--8A 3 + 6.00 x 10- 14 A2

where /2 has units of s2 /m and A has units of meters. These three equations will

be useful to us in Section 4.2.3, where we measure the nonlinear index of refraction.

We also use them to determine the carrier wavelengths we will operate at in the

folded UNI design presented in Section 5.1. Although we test at 10 Gbit/s, which

corresponds to a bit period of 100 ps, the pulse widths we use only have a 2.5 ps

intensity FWHM. For this reason, we design our switch to have a switching window

of 2 to 3 ps in width. Figures 4-2, 4-3, and 4-4 give the group delays between pulses

of two different carrier wavelengths. Because of the double pass through the DSF in

the folded UNI design, the group delays read off the chart must be doubled. The

desired delay is achieved with the 500 m spool at a signal carrier wavelength of 1555

nm and a control carrier wavelength of 1545 nm. It is under these conditions that we

will primarily test.

4.2 Measurement of the Nonlinear Index of Re-

fraction

The nonlinear index of refraction was discussed in Section 2.1. Self-phase modulation

(SPM), a consequence of the nonlinear index, was discussed in Section 2.3.2. In that

section, we derived the nonlinear Schr6dinger equation (NLS):

aU 1 ( 2 U

- = - -i/ Z2 2 + Y) U 12 U (4.7)Oz 2 19-F
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where U is the pulse envelope, #2 is the second order dispersion, 7 is the nonlinear

coefficient, and T is a time frame that moves at the group velocity f1. The second

term of the right side of Equation 4.7 accounts for self-phase modulation. This section

explains and justifies a method to measure y, which depends on the nonlinear index

of refraction.

4.2.1 Effects of Self-phase Modulation

The method we use to measure y assumes that dispersion is negligible. That is, #2
in Equation 4.7 is zero, leaving us with

OU(z, T)0___'_ = i71U 2 U. (4.8)az

As we showed in Section 2.3.2, the solution to Equation 4.8 is easily verified as

U(z, T) = U(z - 0, T)e i-U(z 0 )I2z. (4.9)

In this section, we consider the effects of SPM on pulse propagation and see how we

might use these effects to directly measure the value of -y.

In particular, we will look at the effects of SPM on a pulse's spectrum. As can

be seen in Equation 4.9, SPM simply adds a phase shift at each point of the pulse's

envelope. The phase shift at a point in the envelope is proportional to the intensity

of the envelope at that point. So, the magnitude of the pulse envelope is not affected,

but the magnitude of the pulse's spectrum is affected. It is useful to introduce the

concept of instantaneous frequency. Given the complex sinusoid

y(t) = Ae-O(t), (4.10)

the instantaneous frequency is defined by

wi(t) = dt) (4.11)
dt
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Of course, one cannot truly identify a frequency component for each point in time, as

the Heisenberg uncertainty principle shows. Nonetheless, the value of a pure frequency

is given by the change in phase divided by the corresponding change in time. This

idea, taken to its instantaneous limit, gives Equation 4.11. The case we are studying

is a Gaussian envelope modulated onto a carrier at frequency wo. So, we are most

interested in the deviation of the instantaneous frequency from wo. The phase change

caused by self-phase modulation #NL is given by the argument of the exponential in

Equation 4.9. The deviation in frequency is given by

Jw(T) = dNL (4.12)
d~r

where #NL (T) is the phase induced by SPM. The top plot of Figure 4-5 shows the phase

induced by SPM on a Gaussian pulse (solid line) and on a third order super-Gaussian

(dashed line). The second plot shows the resulting deviation of instantaneous fre-

quency from wo, also know as frequency chirp. As we can see from Figure 4-5, the

leading tail of the Gaussian shifts to lower frequencies and the lagging tail shifts to

higher frequencies. Because frequencies are added to the pulse, the spectrum broad-

ens.

Now, let us consider what happens as a pulse propagates down a fiber in which

dispersion can be neglected. The pulse's evolution is described by Equation 4.9. We

start with a Gaussian envelope of a pulse with carrier frequency wo:

U(z = 0, r) = VPoexp ( (4.13)

Figure 4-6 shows the spectrum of the pulse at several points in its propagation. Each

subplot in the figure is labeled by the amount of nonlinear phase shift induced at the

peak of the Gaussian, which is proportional to the distance of propagation. Although

the spectrum is changing, the magnitude of the pulse in time is not changing. When

the nonlinear phase shift at the peak of the pulse has reached 1.57r, there appears a

trough in the middle of the spectrum that dips to zero. It is this interesting fact that

we shall use to measure the value of -y in Section 4.2.3.
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3

Figure 4-5: The top plot shows the phase shift induced by SPM on a Gaussian pulse
and on a super-Gaussian pulse of order 3. The bottom plot shows the frequency chirp
of the same pulses. Both plots are in normalized units.
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Figure 4-6: Calculated spectra of an SPM-broadened pure Gaussian pulse. The
spectra are labeled by the phase shift induced at the peak of the pulse. Notice the
difference in scale of the top three and bottom three plots.

4.2.2 Numerical Solution to the NLS

In Section 4.2.1 we neglected dispersive effects and loss in the fiber. We must, there-

fore consider the effects of dispersion and loss before we can make any measurement

of y. The nonlinear Schr6dinger equation with the loss term is:

1 02U(z, T)

2 aT 2 2 U(z, r) + i-yU(z, r)12U(z, r).
2

The standard numerical method used to solve this equation is the split step Fourier

method. In this method, Equation 4.14 can be rewritten in operator notation as

where the operators are give

aU(z r)
Uz (L + N)U(z, T)
B9z

n by

z 1 a2 fLf = -- f- - 2  ,
2 2 aT2
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Nf = i(.lf72

The formal solution to Equation 4.15 is

U(z = Z2, r) = e*+U(z = zi,r)

where

' = (z2 - zi)L and Q = jN(z, r) dz.

(4.18)

(4.19)

In general these two operators cannot be dealt with separately because exp(4J + Q) 4

exp(T) exp(Q). But, if z 2 - zi is very small, then the equality

exp(T + Q) = exp(xF) exp(Q) (4.20)

is very nearly true.

In the slit-step Fourier method, we consider the nonlinear and linear operators sep-

arately. First, we assume periodic boundary conditions with period T. The solution

to the nonlinear part, as shown in Section 2.3.2, is simply

U(z, T) = U(z - 0, T)eiylU(z=Or)12z (4.21)

The solution to the linear part can be found by assuming U

solution:

(z, r) has a Fourier series

00

U(z,T) = 1 Un(Z)e'

n=-oo

(4.22)

where wn = 27rn/T. The linear part of Equation 4.15 is

OU(z, r) 1 a2 U(z, r) -a U(z).
az 2 0T 2 2

(4.23)
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If we substitute in Equation 4.22, we obtain

0 aUn(Z) ( .4 )
WnZ ei: (2i/2 2w_ 2 (4-2(z)ei4)z,

n=-oo n=-oo

yielding the system of equations

OUn (z) 1
_ (Z_ = - )Un(z). (4.25)az 2 2

The solutions to Equations 4.25 are

Un(z) = Un(z = O)e(2i/32 -n)z. (4.26)

Thus, we have solved the linear part of the NLS in the frequency domain and the

nonlinear part of the NLS in the time domain.

Now we consider putting these two solutions together. The spatial coordinate z is

discretized into steps of length Az. We begin with initial conditions of U(z = 0, T),

where U has period T along the temporal axis T. To demonstrate the split step

method, let us consider a slightly simpler version of it. First, we neglect dispersion

and use Equation 4.21 to solve for U at z = Az. Let us call the results of that

calculation UNL (z = Az,T). Now we have to calculate the effects of dispersion by

taking UNL(z = Az, T) into the frequency domain to get UnL(z = Az, wa). We use

UN L (z = Az, wn) as the initial conditions for one spatial step of dispersion, from z = 0

to z = Az. Then we return to the time domain to obtain U(z = Az, r). We repeat

these steps for all subsequent spatial steps. The solution will converge more quickly

to the correct solution if we interleave the steps, as shown in Figure 4-7. Instead of

solving an entire spatial step of dispersion and then using those intial conditions to

solve another full spatial step of SPM, we begin with a half step of dipsersion, then a

full step of SPM, and finally a half step of dispersion. We then repeat for subsequent

spatial steps.

To run this simulation on a computer, we cannot let the n of Equation 4.22 vary

from -oc to oo. Instead we truncate the series to vary from -N to N, where we
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z=O z=Az z=2Az

Figure 4-7: The split-step Fourier method of solutions involves alternate applications
of the linear and nonlinear operators. Linear steps are labeled with an "L" and
nonlinear steps are labeled with "NL." The axis shown is the discretized spatial axis.

choose N based on the accuracy of simulation desired. Once we choose this truncation

constant, we can use the fast Fourier transform and inverse fast Fourier transform to

move between the frequency and time domains. The fast Fourier transform grows in

computational difficulty by the order of N log N, which is why this method is often

preferred to much slower algorithms based on the finite difference method. Nonethe-

less, we must keep in mind the the approximations we have made that can lead to

error: space is discretized into small intervals so that we can make the assumption

of Equation 4.20; the initial conditions, and, therefore, the solution is assumed to be

periodic; in the frequency domain, higher frequencies are truncated from the Fourier

series expansion of U; the FFT actually calculates the discrete time Fourier series

rather than the desired continuous time Fourier series. We must also keep in mind

that at the periodic boundaries, if the function is not continuous and does not have

a continuous derivative, then the numerical solution may behave undesirably. After

all, most physical pulse trains are continuous at bit boundaries and have countinuous

derivatives.

Let us use this algorithm to demonstrate the effects of dispersion and SPM to-

gether on the spectrum. As mentioned in Section 4.2.1, when the phase shift induced

by SPM at the peak of a Gaussian pulse reaches 1.57r, there appears a trough in

the middle of the spectrum of the Gaussian. But, we cannot necessarily neglect the

second order dispersion in an optical fiber. Using the MatLab code that is given

in Appendix A, we simulate the propagation of a 2.5 ps optical pulse with a Gaus-
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Figure 4-8: Spectrum of a 2.5 ps intensity FWHM Gaussian pulse with .565 W peak
intensity after propagating 3135 m in dispersionless optical fiber. - is set at 0.002
m- 1W-1. With those parameters, the phase shift acquired at the peak of the pulse
is 1.57r. Therefore, the trough is at its minimum.

sian envelope and .565 W peak optical power. The fiber is 3135 m long and has

y = .002 m- 1 W- 1. If the fiber is dispersionless (i.e., #2 = 0), then the spectrum at

the end of the fiber is given by Figure 4-8. The spectrum shown is that of the enve-

lope. The true spectrum is identical, except that it is centered around the frequency

of the carrier, ±wo, rather than 0. The trough's minimum value at this point tells us

that the phase shift at the peak is 1.57r, and from this fact and the fact that 32 = 0

we can deduce the value of -y. Unfortunately, for nonzero #2 this trough may not

appear. In Figure 4-9, we show the propagation of the same pulse down the same

fiber, except that the fiber has /2 = -20 ps 2 /km. This value is typical for standard

single mode fiber. As Figure 4-9 shows, we would not be able to deduce the value of

-y solely from the spectrum. This fact will be very important in our analysis of the

method of measuring 7 suggested in Section 4.2.3.
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Figure 4-9: Spectrum of a pulse with the same parameters as described in Figure 4-8,
except 32 = -20 ps 2 /km. Notice the difference caused by the nonzero dispersion.

4.2.3 Experimental Measurement of -y

Many of the most significant nonlinear effects are included in the self-phase modula-

tion term of the nonlinear Schr6dinger equation. The accurate measurement of the

nonlinear index of refraction n2 and, therefore of -y, is very important. Measured val-

ues of n 2 vary from 2.2 x 10-20 to 3.4 x 10-20 m2 /W and depend on core composition,

dopant types and levels, and whether or not the fiber is polarization maintaining [21].

The value of -y also depends on the effective area of the fiber core. For a given power

level, a smaller core area implies a larger power per unit area, which yields a larger

value of 7. This last point is especially significant to us. The dispersion shifted

fiber used in the folded UNI of Section 5.1 has a smaller core area than conventional

communications fiber. It is this smaller core area, in fact, that shifts the dispersion

zero to 1550 nm. The smaller core area also increases the effects of the self-phase

modulation. Both the lower value of /2 and the larger value of -y will help us in the

measurement of y.

Several methods have been proposed to measure the nonlinear index of refrac-
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tion [35], and some focus on dispersion shited fiber [36], the fiber we use in this

thesis. As mentioned in Sections 4.2.1 and 4.2.2, if an optical pulse propagates down

a dispersionless medium with SPM only, then the trough in the center of the spectrum

reaches its minimum when the nonlinear phase shift at the peak of the pulse 0bmax

reaches 1.57r. This effect is shown in Figure 4-6. Knowing the peak power required

for a pulse to obtain this value of qmax after propagating down a given fiber can be

used to deduce the value of -y. Let us assume that we can neglect dispersion in the

fiber. Let us also assume that the pulse has the initial form

U(z = 0, T) = Poe-2 2 /T2 , (4.27)

where PO is the peak intensity of the pulse and T is related to the intensity full width

at half maximum TFWHM by

T = TFWHM (4.28)

We need an equation that relates the peak power PO with -y. We know from Equa-

tion 4.9 that the nonlinear phase shift induced at the peak is given by

qmax = yPOL (4.29)

where L is the length of the fiber. In the experiment, we increase the peak power

until we observe the minimum in the trough in the spectrum. We then know that

qmax in Equation 4.29 equals 1.57r, giving us

1.57r
1.5= (4.30)

PO,1.57rL

where PO, 1.5, is the peak power required to induce a 1.57r phase shift in the center

of the pulse. Because the pulses are so short, we cannot directly measure their peak

power. If we know the pulse width, the time averaged power, and the pulse repetition
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rate, then we can deduce Po. The energy per pulse is

Energy /0 \WdT VEeg= f U(Z, r) 12 d-r = TPo .r (4.31)
Pulse _T 2

The time averaged power is given by

Energy f P = e x R TPoR (4.32)Pulse 2

where R is the pulse repetition rate. In Equation 4.32, we can directly measure P and

R. To calculate PO, we still need to measure T. Equation 4.28 relates T to TFWHM.

Although the pulses are too short to make any direct pulse width measurement, we

can measure the autocorrelation pulse width. If we assume the Gaussian pulse shape

of Equation 4.27, then the autocorrelation is given by

A(t) = j 1U(z = 0,r)12 IU(z = 0,r +t)1 2 dr = P02Tve-2t2/2. (4.33)

If we call the full width at half maximum of the autocorrelation TAC,FWHM, then we

have, by Equation 4.33,

TAC,FWHM = T '2 n 2. (4-34)

This equation gives us the necessary relationship between T and the measurable

quantity TAC,FWHM. Combining Equations 4.30, 4.32, and 4.34 and letting P -+ P1.5,,

we obtain

1.5r 3/ 2 TAC,FWHMR (435)
4LP.57, /n 2

where P1.5, is the time averaged power necessary to induce a 1.57r phase shift at

the Gaussian pulse's peak. Now we can obtain -y from the measurable quantities in

Equation 4.35.

Equation 4.35 suggests that we can measure y by varying the power of the pulses.

The experimental setup is shown in Figure 4-10. The 1550 nm source is an actively
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Figure 4-10: Experimental setup for measuring y. EDFA stands for erbium doped
fiber amplifier, and the source generates 2 ps Gaussian pulses at 10 GHz.

Table 4.1: /2 for various carrier wavelengths in the three spools of fiber tested

500 m 2000 m 4000 m

/2 (ps 2 /nm) at 1545nm -0.37 -1.2 -0.71

/32 (ps 2 /nm) at 1550nm 0.16 -0.91 -0.24

/2 (ps2 /nm) at 1555nm -0.91 -1.4 -1.2

mode-locked fiber laser generating ~2 ps intensity FWHM Gaussian pulses. The pulse

repitition rate is 10 GHz. We can observe spectral intensity on the optical spectrum

analyzer and we simply adjust the variable optical attenuator until the characteristic

trough reaches its minimum, as shown in Figure 4-6. At that point, <bma equals

1.57r, and thus we can measure the time averaged optical power in the fiber and apply

Equation 4.35.

Nonetheless, the development above assumed that dispersion is negligible in the

test fiber. To test this hypothesis, we run simulations with the dispersion measure-

ments of Section 4.1. Equation 4.6 gives us measurements of #2 as a function of

carrier wavelength. Table 4.1 shows values of #2 for several carrier wavelengths in

the three spools of fiber tested in this thesis. We should note that these data were

obtained from the derivative of an interpolation of discrete data, and should only be

taken as an estimation of the true value of 32. Nonetheless, in all cases shown, the

second order dispersion measured for DSF is much less than the 20 ps2 /nm that is

typical for 1/321 in standard single mode fiber, as expected.

We would like to use these data in a simulation to determine whether or not the

dispersion of these spools of dispersion shifted fiber are significant enough to affect the

spectrum. Let us assume the autocorrelation full width at half maximum of the initial
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Figure 4-11: Spectra of pulse propagation at the end of a 500 m DSF spool for various
peak powers. The inset shows a boxed area of the plot for detail.

pulse is Gaussian with TAC,FWHM = 3.0 ps. Let us also assume the input into the

test fiber is a 10 GHz pulse stream. Finally, we assume that -y .003 m- 1 W-1. We

test, in simulation, the 500 m spool of fiber at a carrier wavelength of 1550 nm, where

#2 ~ 0.2 ps2 /nm. If we assume no dispersion, then qma = 1.57r occurs at a peak

power of PO = 3.14 W by Equation 4.30. We must check, however, that dispersion

plays a negligible role in propagation in 500 m of DSF so that this minimum still

occurs at PO = 3.14 W. The results are shown in Figure 4-11, where the spectra are

shown for three test cases. The three plots are the spectra at peak powers of 3.2, 3.3,

and 3.4 W. The minumum trough in the spectrum occurs at a power of PO = 3.3 W.

The peak power of PO = 3.14 W, given the assumptions of this test, corresponds

to an time averaged power of P ~ 71 mW, as can be seen by Equation 4.32. The

peak power of Po = 3.3 W corresponds to a time averaged power of P ~ 7.5 mW.

In this case, the error is less than 5%. In Section 4.1, we decided that the desired

walk-off between the control and signal pulses was best acheived in the 500 m spool of

DSF. Thus, this length of DSF was placed in the experimental setup of Figure 4-10.
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Our experimental measurement of -y in the 500 m spool of DSF, using the method

developed in this section, was .0022 W-m-1 .
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Chapter 5

Design and Testing of the Folded

UNI

The measurements of nonlinearties and dispersion in Chapter 4 provide us with in-

formation necessary to design and predict the behavior of the folded UNI. In this

chapter, we introduce the folded ultrafast nonlinear interferometer (FUNI) [37]. Like

the UNI, the FUNI is a single arm interferometer that uses a nonlinear medium to

induce a phase shift in an optical pulse. The nonlinear medium of the folded UNI is

optical fiber rather than a semiconductor optical amplifier. Moreover, the folded UNI

uses reflection of the pulses from a Faraday mirror to stabilize polarization within

the switch. This inherent polarization control solves many of the difficulties raised in

Section 3.3. In the first section, we present the basic design of the folded UNI. The

second section describes the experimental setup, including optical pulse sources. The

third section presents measurements of the switching window. The fourth section

gives the results of bit error rate tests on the FUNI. The fifth section discusses the

results of the tolerance of the folded UNI to timing jitter. In the final section we test

the sensitivity of the FUNI to timing jitter.
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Figure 5-1: In the folded UNI, a Faraday mirror provides polarization stabilization.
PCi and PC2 are polarization controllers, PBS is a polarizing beam splitter, DSF is
dispersion shifted fiber, BPF is a band pass filter, BRF is birefringent fiber, FM is a
Faraday mirror, and EDFA is an erbium doped fiber amplifier.

5.1 The Folded UNI

Although the UNI has been demonstrated to switch at 100 Gbit/s [13], this device has

only recently been considered for all-optical 3R regeneration [38]. Acoustic effects on

the polarization are negligible in the UNI because the two orthogonal polarizations of

the signal pulse, after being split in the birefringent fiber of Figure 2-3, co-propogate

closely through the optical fiber. The UNI does, however, suffer from slow polarization

drifts, and the three polarization controllers in Figure 2-3 must be actively monitored.

In the folded UNI, shown in Figure 5-1, a Faraday mirror added to one end of the

optical path creates inherent polarization stabilization within the switch.

The folded UNI works in a way similar to the UNI of Section 2.2.2 and can be

applied in a very direct manner to all-optical 3R regeneration [37]. Incoming network

data pulses serve as control pulses and locally generated clock pulse serve as signal

pulses in the FUNI. That is, the presence or absence of a data pulse determines

whether or not the corresponding clock pulse is switched out the "Regenerated Data"

port of Figure 5-1, thus modulating the data pulse stream's bit pattern on the clock
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pulse stream. The circulator, shown with a curved arrow in Figure 5-1, passes optical

power from port 1 to port 2 and from port 2 to port 3. PC1 controls the polarization

of the local clock pulses to be linear and to pass maximally through the polarizing

beam spliter. A 3 m length of birefringent fiber (BRF), cross-spliced at 450 to the

PBS splits each clock pulse into two orthogonal components separated temporally by

5 ps. The network data stream is coupled onto the regenerator at the 50/50 coupler.

The coupling is timed so that the data pulses are each coincident with one of the

two temporally separated orthogonal clock components. After the clock and data

pulses pass through the dispersion shifted fiber, the Faraday mirror rotates all the

pulses by 90' and reflects them back through the FUNI. Due to microbending and

slight fabrication irregularities, each point in the optical fiber has an instantaneous

orientation and strength of birefringence. The 900 Faraday rotation, therefore, ensures

that all birefringent effects accumulated during propagation from left to right are

undone during the reverse trip through the folded UNI.

To see how regeneration occurs, we note two cases: for each clock pulse, a data

pulse is either present or absent. If there is no data pulse, then the Faraday rotation

and reflection ensures that the clock pulse is recombined temporally in the birefringent

fiber. Moreover, because of the 90' Faraday rotation, the left propagating clock

pulse arrives with a polarization orthogonal to clock pulses propagating right at the

PBS. Therefore, the left propagating clock pulse is reflected, rather than transmited,

at the PBS. If, on the other hand, a data pulse is present, then it couples onto

the FUNI at the 50/50 coupler in Figure 5-1 so that it temporally overlaps one of

the two orthogonal polarizations of the clock pulse. Remember that two orthogonal

polarizations of the clock pulse were separated temporally in the birefringent fiber.

Whichever of these two polarizations temporally overlaps the data pulse receives a

nonlinear phase shift. The nonlinear medium in the folded UNI is dispersion shifted

fiber, used to minimize the undesired effects of group velocity dispersion [39]. The

erbium doped fiber amplifier in Figure 5-1 is adjusted to amplify the data pulse power

until a 7r phase shift is induced in one of the two clock polarizations. This nonlinear

phase shift makes the FUNI appear to be a half wave plate oriented at 45' to the
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clock pulse. Because it behaves like a half wave plate, the FUNI rotates the linearly

polarized clock pulse by 900. Taken with the 900 rotation of the Faraday mirror, the

left propagating clock pulse arrives at the PBS with the same polarization it had

when it first propagated to the right through the PBS. It is, therefore, transmitted

through the PBS and then directed out port 3 of the circulator. The band pass filter

removes the data pulses, leaving behind the regenerated data pattern modulated into

the clock pulse train.

Because the Faraday mirror reflects pulses back down the same path, pulses prop-

agating to the right interact with pulses propagating to the left. This interaction is

similar to the one between the CW and CCW pulses of the fiber NOLM discussed

in Section 3.1.2. But, in the case of the folded UNI, the clock pulses are separated

temporally rather than into counterpropagating CW and CCW pulse streams. So,

as each temporally separated orthogonal polarization of a clock pulse propagates to

the right, both interact with the pulses that are propagating to the left. In this

way, the effects of this interaction are smaller in the FUNI than in the fiber NOLM.

Nonetheless, the interaction can be different between the two temporally separated

orthogonal polarizations of a clock pulse. Recall from Equations 2.61 and 2.62 that

polarization affects the magnitude of the nonlinear phase modulation. For example,

consider a left propagating data pulse that is polarized in the x direction and a right

propagating clock pulse that is separated temporally into two polarizations, one in

the x direction and one in the y direction. In the folded UNI then, the phase shift

induced in the y directed component of the clock pulse will be two thirds that of the

phase shift induced in the x directed component of the clock pulse.

5.2 Experimental Setup

The experimental setup for testing the folded UNI is shown in Figure 5-2. The trans-

mitter block in Figure 5-2 consists of an RF synthesizer driving a mode-locked fiber

laser, which produces 2 ps pulses at a 10 GHz repetition rate, a data pattern gener-

ator, and an electro-optic modulator (EOM). It is important to note that although
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many of the tests reported in this thesis operate at 10 GHz, the pulse widths are on

the order of 2 to 3 ps and may, therefore, support data rates of up to 200 GHz. The

data is generated in the transmitter by an Anritsu MP1761B Pulse Pattern Genera-

tor. The RF drive from the pattern generator is an NRZ data pattern that controls

an electro-optic intensity modulator, labeled EOM in Figure 5-2. The EO modulator

impresses an on-off keyed data pattern on the 10 GHz optical pulse train generated

in the mode-locked fiber laser data source. The data pattern is a pseudorandom

bit stream that can be nonrepeating for up to 231 - 1 bits at a rate of 10 Gbit/s.

The regenerator block in Figure 5-2 also contains an RF synthesizer driving a mode-

locked fiber laser that produces 2 ps pulses at a 10 GHz repetition rate, a folded UNI

regenerator, and a dithering phase-locked loop (DPLL) clock recovery circuit. The

network data input to the folded UNI is provided by the transmitter block and the

regenerator clock pulse train is generated in the regenerator pblock. In the folded

UNI, band pass filter 1 (BPF1) filters out the data pulses after the clock pulses have

been switched, as described in Section 5.1. The other band pass filters, BPF1 and

BPF2, filter out-of-band spontaneous emission noise introduced by the erbium doped

fiber amplifiers (EDFA's).

Both pulse sources are actively mode-locked erbium doped fiber lasers in a sigma

configuration and produce a single polarization [40]. The lasers can be tuned in the

range of about 1545 nm to 1560 nm. In the experimental setup, each mode-locked fiber

laser is tuned to a different carrier frequency. Figure 5-3 shows the autocorrelation

trace of a pulse from the fiber laser. The trace itself has a full width at half maximum

of 2.7 ps. If we assume a Gaussian pulse shape, then the intensity FWHM of the pulse

is 1.9 ps.

5.3 FUNI Switching Window

When data pulses are coupled into the FUNI, they may not perfectly temporally

overlap one of the orthogonal clock pulse polarizations. That is, the peak of the data

pulse may not overlap the peak of the clock pulse. In order to characterize the switch
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Figure 5-2: Experimental setup to test the Folded UNI as an all-optical regenerator.
Solid lines represent optical paths and dotted lines represent electrical paths. EDFA
stans for erbium doped fiber amplifier, BPF for band pass filter, EOM for electro-
optic modulator, FM for Faraday mirror, PBS for polarizing beam splitter, BRF for
birefringent fiber, DSF for dispersion shifted fiber, MLFL for mode-locked fiber laser,
and DPLL for dithering phase-locked loop.
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Figure 5-3: Autocorrelation trace of a 1.9 ps pulse from a PriTel laser source operating
at 10 GHz.

transfer characteristic as a function of the relative delay between the clock and data

pulses, we measure the folded UNI switching window. The switching window plots

the power switched out the "regenerated data" port of the folded UNI as a function

of the relative delay between the signal pulse and the data pulse. The experimental

setup used to measure the switching window is shown in Figure 5-4. A plot of the

folded UNI's switching window with the 500 m spool of DSF, with the signal pulses

at 1550 nm, and with the control pulses at 1545 nm is shown in Figure 5-5.

Measuring the switching window requires both RF sources in the experimental

setup. To measure the switching window, we need to vary the delay between the

signal and data pulses. We also set the data pattern generator to produce only

"marks" (i.e., all bit periods contain an optical pulse). One direct way to make this

measurement is to manually adjust the variable delay in the data pulse arm of the

folded UNI. Then we could simply measure the power at the regeneration port for

each delay setting. A much quicker method, shown in figure 5-4, is to set one RF

synthesizer at 10 GHz and the other at 10 GHz plus 10 kHz. These RF synthesizers

drive two mode-locked fiber lasers. The control pulse train has a carrier wavelength
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Figure 5-4: Block diagram of experimental setup for taking a switching window. The
control and signal pulse trains are at slightly different pulse rates to cause a walk-off
that varies with time. The switching window appears on the sampling oscilloscope.

of 1545 nm and the signal pulse train has a carrier wavelength of 1556 nm. Every

1 x 10-4 seconds, i.e., at every millionth pulse, the peak intensities of the two optical

pulse streams temporally overlap again. At the output of the folded UNI, we place

a photodiode that is slow enough to average over several hundreds of pulses. The

output of the photodiode is sent to a oscilloscope, which scans over a period of 100

ps to give us the switching window.

The switching window can give us some idea of the folded UNI all-optical regen-

erator's tolerance to timing jitter in the bits of the optical data stream. A wider

switching window implies a larger allowable relative delay between a data pulse and

the clock pulse it temporally overlaps. Figure 5-5 shows a switching window with the

signal pulses at a carrier wavelength of 1550 nm and the control pulses at a carrier

wavelength of 1545 nm. The two peaks are a consequence of the splitting of the sig-

nal pulses into temporally separated orthogonal polarizations. The control pulse can

overlap either of these temporally separated polarizations, and each peak corresponds

to one of these two cases. Each peak in the switching window has a full width at

half maximum of ~5 ps, implying a tolerance to timing jitter on that order. We could

widen the switching window by using a longer length of fiber or by adjusting the

carrier wavelengths of the clock and data pulses, increasing the walk-off between the
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Figure 5-5: Switching window of the folded UNI with the 500 m spool of fiber, with
the signal pulses at 1550 nm, and with the control pulses at 1545 nm.

clock pulses and the data pulses.

5.4 FUNI Regenerator Error Performance

In the bit error rate test, we place a receiver at the regenerated data port of the

regenerator block of Figure 5-2. This receiver operates at our 10 GHz data test rate,

and includes a variable optical attenuator, a low noise gain flattened MPB erbium

doped fiber amplifier to amplify the optical signal, and a high speed photodiode to

convert the optical pulses into electrical signals. These received electrical signals are

detected and the folded UNI performance as an all-optical regenerator is quantified

using an Anritsu 12.5 GHz bit error rate tester (BERT). Figure 5-6 shows the exper-

imental layout for the receiver. In the bit error rate test, the bit error rate of the

regenerated data from the folded UNI is measured as a function of the power supplied

to the receiver. We control this power with the variable optical attenuator.

The first choice of fiber was the 500 m spool. The clock pulse carrier wavelength
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Figure 5-6: The receiver used to test the bit error rate of the folded UNI as a function
of receiver input power. The EDFA is an erbium doped fiber amplifier and the PD is
a photodiode.

was set at 1556 nm and the data pulse carrier wavelength was set at 1545 nm. By

Figure 4-2 these wavelengths yield a walk-off of ~3 ps between the data and clock

pulse streams during the dual pass through the 500 m DSF spool (remember that

one must double the value read off the figure because both pulse streams propagate

twice through the fiber). As shown in Section 4.2.3, -y is large enough for the network

data pulses to induce the required 7r phase shift in the clock pulses in the 500 m DSF

spool.

The results of a bit error rate test with these parameters are shown in Figure 5-7.

The solid circles show the results of a baseline test, where the data pulse stream at

1556 nm was input directly into the receiver without first propagating through the

folded UNI. The hollow circles show the bit error rate of the regenerated data stream

coming out of the folded UNI. Both sets of points have linear regressions plotted

through them. As shown in Figure 5-7, the folded UNI incurs a 1 dB power penalty

at a bit error rate of 10-. There is also no observable error floor. The control energy

was 4.7 pJ per pulse and the signal energy was 170 fJ per pulse. The folded UNI,

if it is truly behaving as a pulse regenerator, ought to improve the error rate rather

than incur a penalty. In this test, however, it is important to note two points. First,

the data stream we are testing did not come off a network. It is a locally generated

optical pulse stream with a data pattern modulated onto it. Therefore, the data

pulses are not distorted, and we should not expect improvement in the pulses from

the folded UNI. Second, although the amplifier in the receiver is gain flattened, there

is nonetheless a ripple in the gain as a function of optical wavelength. The ripple is

as wide as 1 dB over the gain spectrum of erbium. The data pulses in the baseline
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a baseline test. The signal carrier wavelength is 1556 nm and the control carrier
wavelength is 1545 nm.

test are at a different carrier frequency than the regenerated data pulses of the folded

UNI bit error rate test. Thus, wavelength dependence in the erbium doped fiber

amplifier could cause the 1 dB power penalty in the bit error rate test of the folded

UNI. The folded UNI, therefore, has been successfully demonstrated as an all-optical

pulse regenerator.

5.5 Sensitivity to Timing Jitter

Regenerators must be able to correct timing jitter introduced in the data pulses during

long propagation. The carrier wavelengths were chosen to introduce walk-off between

the data and clock pulses, as described in Section 3.1.2. Larger walk-off times allow

for more timing jitter tolerance. The walk-off time, however, cannot be so large

that data pulses in one bit period pass through the signal pulse in a neighboring

bit period. Moreover, larger walk-off times reduce the effective interaction length

between the data pulse and the clock pulse because the peak intensity of the data pulse

merely passes through the peak of the clock pulse rather than remaining temporally
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Figure 5-8: Setup for testing the tolerance of the folded UNI to timing jitter. The
data pulses are amplified by an erbium doped fiber amplifier (EDFA), and a single
RF synthesizer drives both mode-locked fiber lasers.

overlapped with it.

In Section 5.4, the bit error rate was plotted against the received power. In this

section, the received power is held constant, and the bit error rate is plotted as a

function of the relative delay between the data pulses and the clock pulses. The

experimental setup is shown in Figure 5-8. As in Section 5.4, a pattern generator and

EO modulator impress a data pattern on the control pulses. The control pulses have a

carrier wavelength of 1545 nm and the signal pulses have a carrier wavelength of 1555

nm. In this setup, however, a single RF synthesizer drives both mode-locked fiber

lasers. Using a single synthesizer minimizes all unwanted timing jitter between the

data pulses and the clock pulses. Instead, timing is adjusted with the variable delay

and is held fixed until a bit error rate is taken. The results are shown in Figure 5-8.

These data show that the folded UNI performs at a bit error rate of better than 10-9

for a relative delay between data and clock of up to 4 ps.
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5.6 Regenerative XOR

One application of all-optical switches is the logical XOR, important for tasks such as

address recognition. All-optical XOR has been shown already [41]. The folded UNI

can also operate as an XOR switch. In particular, the nearly instantaneous nonlinear

index of refraction makes it well-suited to a regenerative XOR operation. Figure 5-10

shows the the folded UNI operating as a regenerative XOR. The control pulses are

the optical channels labeled "A" and "B" in the figure. Instead of a single control

pulse overlapping one of the two orthogonal signal pulse polarizations, channel "A"

pulses overlap with one signal pulse polarization while channel "B" pulses overlap

with the other, as shown in Figure 5-10. If neither "A" nor "B" are present, then

there is no relative phase shift between the polarizations of the signal pulse and so it

is not switched out. If only one is present, then one of the signal pulse polarizations is

shifted by -F and the other is not, so the signal pulse is switched out the regeneration

port. If both "A" and "B" are present, there is no relative phase shift again, and the
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Figure 5-10: The folded UNI as it is applied to regenerative XOR.

signal pulse is not switched out. Thus, the folded UNI operates as an XOR gate.

Figure 5-11 shows the experimental setup used to test the XOR operation of the

folded UNI. Two actively mode-locked fiber laser sources supply the 10 GHz optical

pulse streams for the signal and control pulses. The pattern generator described in

Section 5.2 drives a 2x2 electro-optic switch producing one pattern for the top path,

labeled "A," and the inverse pattern for the bottom path, labeled "B." Pulse stream

"B" is then delayed by 31 bit periods, producing two pseudorandom bitstreams. These

pseudorandom streams pass through a passive multiplexer with multiple-bit delays

to produce 10, 20, 40, or 80 Gbit/s pseudorandom pulse streams. The signal pulses

also pass through the multiplexer, in the opposite direction, to generate a 10, 20, 40,

or 80 Gbit/s signal pulse stream. A high speed 50 GHz photodiode (PD) detects the

output of the folded UNI and displays the pulse pattern on the oscilloscope.

The results for 10 and 40 Gbit/s XOR tests are shown in Figures 5-12 and 5-13.

In the 10 Gbit/s test, the time averaged signal pulse power into the folded UNI was

5.9 dBm and the time averaged control pulse power was 10 dBm. In the 40 Gbit/s

test, because of the higher bit rate, the signal pulse stream power was 12 dBm and

the control pulse stream power was 16 dBm. The top plot is pattern "A," the middle

plot is pattern "B," and the bottom plot is the XOR of the two patterns. The XOR

is successfully executed with good contrast. Much of the noise seen in the 40 Gbit/s

data is caused by ringing in the photodiode's impulse response.
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Figure 5-11: Experimental setup used to test the folded UNI XOR.
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Figure 5-12: The top plot shows the photodiode output of channel A after regen-
eration in the FUNI. The middle shows the same for channel B. The bottom plot
shows the regerated XOR of A and B. All voltages are normalized. A and B are at
10 Gbit/s.
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of A and B at 40 Gbit/s. All voltages are normalized.
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Chapter 6

Conclusions and Future Work

Optical pulse regeneration will be an essential component to any high data rate

time division multiplexed fiber optic network. All-optical pulse regeneration is faster

than electronic processing and does not require opto-electronic conversion of data

encoded in optical pulses. We showed in this thesis that the folded ultrafast nonlinear

interferometer (FUNI) can operate as a regenerator and has many advantages to other

regenerator designs.

The Faraday rotating mirror in the folded UNI gives it inherent polarization sta-

bility. The close temporal spacing of the orthogonal polarizations of the clock pulses,

after passing through the birefringent fiber, ensures that each sees the same fiber

in the same conditions. Any changes in fiber properties caused by bending or vi-

bration would have to occur faster than the approximately 5 ps separating the two

polarizations for the effect to be noticeable.

Within the folded UNI, therefore, there is no need for polarization control. The

polarization of the incoming clock and network data pulses, however, must be con-

trolled. An erbium doped fiber ring laser generates the local clock pulses at a single

polarization. Therefore, by using polarization maintaining fiber to deliver these clock

pulses to the folded UNI, the folded UNI regenerator design does not need active

monitoring of the clock pulses. The polarization of the network data pulses must be

controlled before they pass through the polarizing beam splitter. We can adjust the

polarization controller on the data pulse stream by simply maximizing power switched
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out the "regenerated data" port of the folded UNI.

The folded UNI uses optical fiber as a nonlinear medium. The nearly instanta-

neous nonlinear response of fiber eliminates amplitude patterning on the regenerated

output. Patterning is a serious challenge in designs that use semiconductor optical

amplifiers (SOA), which have slow gain recovery times. Moreover, high logical latency

is unimportant in regeneration, so the high nonlinear index of refraction of the SOA

becomes less of an advantage.

In this thesis, we have discussed and demonstrated a method to directly measure

the second order dispersion of optical fiber. We chose dispersion shifted fiber (DSF),

which has low second order dispersion, so that dispersion would not be a significant

effect in the folded UNI. In the same measurement, we found the relative group

delays of pulse propagation in optical fiber. With these data we selected the carrier

frequencies to generate the desired walk-off between the data and clock pulses. This

walk-off corrects some of the effects of timing jitter in an incoming optical data stream.

We also tested a method of measuring the nonlinear index of refraction. We

verified in simulation that the dispersion of the DSF used in the folded UNI was

not significant compared to the self-phase modulation. The value of -Y measured in

Section 4.2.3 was close to the value of - in similar DSF lengths reported in [42]. -y

determines the length of fiber and intensity of data pulses needed in optical pulse

regeneration.

The testing of the folded UNI itself included the measurement of the switching

window. These data help determine the ability of the folded UNI to correct timing

jitter. A wider window, if still smaller than a single bit period, can tolerate more

timing jitter than a narrower window. We also tested the bit error rate of the folded

UNI, comparing it to a baseline test without the folded UNI. In these tests, we

showed a ~5 ps wide switching window and a 1 dB power penalty in bit error rates

when compared to a baseline test. The 5 ps switching window is important for the

tolerance of timing jitter. The 1 dB power penalty is a consequence of gain ripple in

the receiver's erbium doped fiber amplifier.

The folded UNI was also applied to a regenerative XOR. Implementing the XOR
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in a device like the UNI is technically difficult because of the patterning effects caused

by the SOA. We showed that, even at rates of 40 Gbps, a high speed photodiode could

clearly detect the output XOR of two psuedorandom bit streams.

The folded UNI still requires more testing. The folded UNI is sensitive to the

network data pulse polarization. This polarization can drift slowly over time because

of temperature and other changes in the network outside the folded UNI regenerator.

Slow drifts can be controlled by maximizing the power switched out the "regenerated

data" port of the folded UNI with simple electronic feedback. There could, however,

also be quick changes in the polarization caused by acoustic vibrations somewhere in

the network. Moreover, in time division multiplexing, different streams are interleaved

in time so that a one data pulse may have a different state of polarization than

a subsequent one. These sorts of polarization changes may not be correctible with

simple electronic feedback and place another design burden on the rest of the network.

Somehow the network will have to suppress noise vibrations and it must be consistent

in adding data pulses of only a particular polarization. This dependence of the folded

UNI on the data pulse polarization will have to be addressed. Researchers have

already suggested polarization independent switch designs [43, 44, 45].

Also, the folded UNI regenerator, as it is now designed, requires different carrier

wavelengths for the data pulse stream and the clock pulse stream. The regenerated

pulse stream is at the clock pulse carrier wavelength, so that the regenerated output

is at a different carrier wavelength than the data input stream. This use of two

wavelengths places yet another burden on network design: the design of the network

will have to alternate with the alternating carrier frequencies. I would like to consider

regenerator designs that rely on a single carrier wavelength for both the data pulse

stream and the clock pulse stream. We still would need a way to separate data

pulses from clock pulses. One way to discriminate between the network data pulse

stream and the clock pulse stream, other than by wavelength, is by using orthogonal

polarizations. Using polarization to filter the data pulses from the clock pulses may,

however, introduce more polarization sensitivity to the regenerator.

The folded UNI also has high loss, causing the output power to be low. We have
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to reduce losses in the design to properly amplify the signal at the receiver. The

50/50 coupler, for example, unnecessarily adds 6 dB of loss, 3 dB for each direction

of propagation. We will test a design that replaces the 50/50 coupler in the folded

UNI regenerator with a wavelength division multiplexing coupler.

This thesis tested the bit error rate, switching window, and dependence of the bit

error rate on the relative delay between the data and clock pulses. Nonetheless, the

data pulses were brought directly from their source. In a more realistic test, we would

first have the data pulses propagate down a long length of fiber, as would happen in

a real network. I would first like to use a fiber loop, through which data pulses would

propagate a number of times, and then test the regenerator on the resulting distorted

data. Ultimately, I would like to test the folded UNI in a true long haul system.
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Appendix A

Split-Step Fourier Code

% Solves i*Uz = -.5*i*k_2*Utt + i*gamma*U*IUV^2 with the FFT.

% Get values for the number of divisions for solving PDE

fprintf('\nEnter the number of time divisions\n');

N = input('(will be rounded to nearest power of 2): ');

% N is rounded to the nearest power of two so FFT will be faster.

N = 2^(ceil(log2(N)));

M = input('Enter the number of space divisions: ');

Len = input('Enter the total length of fiber to calculate over:

% N-1 and M-1 are used because N element column vectors, where each
% element is analagous to a fence post, delineate only N-1 intervals.

% timetot is the period of the periodic boundary conditions.

timetot = 10OOe-12;

dt = timetot/(N-1);

dz = Len/(M-1);

% k_2 is part of the propagation constant, alpha accounts for loss in

% the fiber.

%k_2 = 0;

k_2 = 1.6e-28;

%k_2 = -20e-27;
k_3 = 0;

alpha = 0;

%gamma = .0019;
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gamma = 3e-3;

% q is number of time steps stored in solution matrices, U and spect.

% The original number of time steps, N, is downsampled to q in the

% funtion file titled dsamcvec.

q = 250;

% Lower case u is a column vector containing the data for all t at z=0.
% u2 holds the data for all t at the current value of z in the calculation.

% Capital U will be contain the u2's at certain evenly spaced values of z.

% The initial conditions are generated in the m-file ''initial,'' given
% below.
u = initial(N, timetot);

% dsamcvec reduces u to a column vector with q rows.
% The code for dsamcvec is given below.

U = dsamcvec(u, q);

u2 = fft(u);

spect = dsamcvec(fftshift(u2), q);

% u2 will be saved in U at equal spacings of z. The number of u2's saved

% is given by r.

r = 10;
if M>r

index = round(linspace(2,M,r-1));

else

index = [2:1:M];

end

% w is the radial frequency.

w = [0:(N/2),(1-(N/2)):(-1)]*2*pi/timetot;

eta = transpose((i*.5*k_2*(w.^2) + (i/6)*k-3*(w.^3) - alpha/2));

eta = exp(eta*dz);

% In the next line, we execute one half step of the linear operator.

u2 = u2.*sqrt(eta);

count2 = 1;

for count = 2:M

u2 = ifft(u2);

mag = abs(u2);

% The next line executes one full step of the nonlinear operator.

u2 = u2.*exp(i*gamma*mag.^2*dz);

u2 = fft(u2);

% The next line executes one full step of the linear opeartor.
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u2 = u2.*eta;
if count == index(count2)

count2 = count2 + 1;
spect = [spect, dsamcvec(fftshift(u2), q)];

U = [U, dsamcvec(ifft(u2), q)];

(count/M)*100

end

end

u2 = ifft(u2);

u2 = u2.*exp(i*gamma*mag.^2*dz);

u2 = fft(u2);

u2 = u2.*sqrt(eta);

u2 = ifft(u2);

tau = linspace(-timetot/2, timetot/2, q);

z = linspace(0, Len, r);
figure

omega = linspace(-(2*pi/timetot)*.5*N, (2*pi/timetot)*.5*N, q);

waterfall(omega, z, transpose(abs(spect)) .^2)

colormap([0 0 0]);

figure

waterfall(tau, z, transpose(abs(U)).^2)

colormap([0 0 0]);

* **** *** *** ** **** ******* * **** *********** *

function y = initial(N, timetot)

T = linspace(-timetot/2, timetot/2, N);

C = 0;

XTO = 1.36e-12;

T_0 = 1.80e-12;

P_0 = 3.3;

%P_0 = 4.8175;

% Gaussian

y = ((P_0)^.5)*(exp(-(T.^2)./(T_0)^2))';

% Chirped Gaussian
% y = P_0*(exp(-((+C*i)/2)*(T/T_0).^2))';

% Hyperbolic Secant
% y = P_*(sech(T/.5e-12).*exp(i*C*T.^2/(2*T_0.^2)))';

% Super Gaussian
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% y = (P_0^.5)*(exp(-((1+C*i)/2)*(T/T).^6))';

% Square wave
% y = (P_0^.5)*(abs(T)<T_0)';

function y = dsamcvec(cvec, q)

% Reduces an nx1 column vector to a qxl column vector

% unless n<q.

[m n] = size(cvec);

if m>q
y = cvec(round(linspace(1, m, q)), 1);

else

y = cvec;

end
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