
Improving the Performance of TCP in the
Presence of Packet Reordering

by

Peter D. Yang

S.B., Electrical Engineering & Computer Science
Massachusetts Institute of Technology (2000)

Submitted to the Department of Electrical Engineering & Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering & Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 23, 2001 MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

© 2001 Peter D. Yang. All rights reserved. JUL 11 2001

The author hereby grants to MIT permission to LIBRARIES
reproduce and distribute publicly paper and electronic

copies of this thesis and to grant others the right to do so.

A uthor
Department of Electrical Engineering and o uter Science

\"ay 23, 2001

C ertified b y ...
Professor Hari Balakrishnan

Thesis Supervisor

Certified by
Professor Robert Morris

Thesis Supervisor

Accepted by
Protessor ArthIr U. Smith

Chairman, Department Committee on Graduate Theses

Improving the Performance of TCP in the
Presence of Packet Reordering

by

Peter Yang

Submitted to the Department of Electrical Engineering & Computer Science

May 23, 2001

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering & Computer Science

Abstract

Packet reordering adversely affects the behavior and performance of the Transmission
Control Protocol (TCP), the predominant transport protocol on today's Internet. This
shortcoming is becoming a problem of increasing importance, as packet reordering is on
the rise on some Internet paths. The issue at the heart of TCP's poor performance in the
presence of packet reordering is its inability to distinguish well between packet loss and
packet reordering. In particular, the fast retransmission algorithm, which was added to
TCP to improve its performance in the presence of packet loss, often misinterprets reor-
dered packets as lost packets. This is problematic, as TCP uses packet loss as an indica-
tion of congestion. Thus, in addition to retransmitting the packet, a TCP sender per-
forming a fast-retransmission also reduces its sending rate by cutting its congestion win-
dow in half. The spurious triggering of these actions when reordering is present need-
lessly degrades end-to-end throughput.

We have designed and implemented a backwards-compatible extension to TCP that helps
to disambiguate packet reordering from packet loss, greatly reducing the number of spuri-
ous fast retransmissions even when excessive reordering occurs. Our approach, which
modifies only the receiver, involves withholding for a short, adaptively-determined period
of time the duplicate acknowledgments produced by out-of-order packets, rather than
sending them back to the sender immediately. Doing so provides the receiver with more
time to distinguish between loss and reordering before either setting off a fast re-transmis-
sion or resuming normal data flow. Experimental results for connections using our modi-
fied receiver show significant improvements in TCP performance in the presence of re-
ordered packets, achieving, in cases of heavy reordering, more than five times the transfer
throughput of connections using an unmodified receiver. As a result, we believe the intro-
duction of our scheme augurs well for the future of TCP over paths that reorder packets.

Thesis Supervisor: Hari Balakrishnan Thesis Supervisor: Robert Morris
Title: Assistant Professor Title: Assistant Professor

Acknowledgments

First and foremost, I would like to thank my advisors, Professor Hari Balakrishnan and

Professor Robert Morris, for all their guidance and support as I progressed through this

project. They provided a great deal of insight in helping me grapple with the project itself,

and their enthusiasm and wealth of knowledge helped both my interest in and knowledge

of the field of networking to grow greatly in the past year. In addition, I am grateful for the

understanding they showed throughout this project and, more specifically, the flexibility

they showed in allowing me to find a thesis that better fit my skills and interests after an

abortive attempt at another project fell to the wayside.

I also thank my officemates, Sidney Chang and Nick Feamster, and my pseudo-office-

mate, Bodhi Priyantha, for their friendship and support throughout the long hours in lab

that this project required.

Finally, I would truly like to thank my family: my father, Dr. Ho-Seung Yang; my

mother, Mrs. Myung-Sook Yang; and my brother, the soon-to-be-Dr. Anthony Yang. I

thank them in part for their encouragement during this year, but mostly for the constant

love and support they have always shown me in everything that I have done.

Contents

1 Introduction 11
1.1 The Problem 11
1.2 Our Solution 12
1.3 Research Motivation 14
1.4 Research Contributions 15

2 Background 17
2.1 Causes of Packet Reordering 17

2.1.1 Link-level parallelism 18
2.1.2 Per-packet multipath routing 19
2.1.3 Routing cache misses 20
2.1.4 Ad-hoc mobile networking 21

2.2 Effects of Packet Reordering on TCP 21
2.2.1 Cumulative and duplicate acknowledgments 22
2.2.2 Effects due to TCP's

fast-retransmission algorithm 23
2.2.3 Other effects 26

2.3 Prior Work 27
2.3.1 D-SACK and the Eifel algorithm 28
2.3.2 Adjusting the fast-retransmission threshold 30

3 Design 33
3.1 Design Goals 33
3.2 Design Description 35

3.2.1 Main idea: Withholding duplicate ACKs 37
3.2.2 Adaptively-determined threshold 38
3.2.3 Pacing out acknowledgments 44

4 Implementation 49
4.1 Additions to Protocol Control Block 49
4.2 Modifications to tcp-input() 51
4.3 Modifications to tcp output() 53

5 Results 55
5.1 Test Setup 56
5.2 Performance 59

5.2.1 In-order packet delivery 59
5.2.2 Packet reordering 60
5.2.3 Packet loss 64

6 Conclusion 71

7

8

Figures

Figure 2.1

Figure 2.2

Figure

Figure

Figure

3.1

3.2

3.3

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

TCP's fast-retransmission algorithm

Spurious fast-retransmission due to reordering

Our solution: withholding dupACKs at receiver

Stride of reordering illustrated

Two scenarios for releasing ACKs in our scheme

Values of rcvnxt and rcvmaxnxt

Throughput versus maximum reordering stride for
connections using 50-ms path delays.

Throughput -vs- maximum reordering stride for
connections using 100-ms path delays.

Throughput -vs- maximum reordering stride for
connections using 200-ms path delays

Number of spurious fast-retransmissions per
100 packets for connections using unmodified
TCP receiver

Number of spurious fast-retransmissions per
1000 packets for connections using the modified
TCP receiver.

Throughput -vs- maximum reordering stride
for connections with 0.5% packet loss rates
over 50-ms path delays.

Throughput -vs- maximum reordering stride
for connections with 0.5% packet loss rates
over 100-ms path delays.

Throughput -vs- maximum reordering stride
for connections with 0.5% packet loss rates
over 200-ms path delays.

Throughput -vs- maximum reordering stride
for connections with 1% packet loss rates
over 50-ms path delays.

9

23

25

36

40

45

50

61

61

62

63

63

65

65

66

68

Figure 5.10

Figure 5.11

Throughput -vs- maximum reordering stride
for connections with 1% packet loss rates
over 100-ms path delays.

Throughput -vs- maximum reordering stride
for connections with 1% packet loss rates
over 200-ms path delays.

10

68

69

Chapter 1

Introduction

1.1 The Problem

Opinions vary about the extent of packet reordering on paths in today's Internet. A num-

ber of studies of Internet packet dynamics have found it to be a rare occurrence and have

observed that only 0.3% of all packets on the Internet arrive at their receiver out of order

[21, 27]. However, studies have also found that reordering is becoming an increasingly

common component of traffic over some Internet paths. As part of the same studies that

found reordering to be rare, TCP connections in which up to 36% of the packets exhibited

reordering were also observed. More strikingly, a study of the packet dynamics of the

routers that make up the MAE-East exchange suggests that the probability that a TCP flow

passing through that exchange will experience some degree of reordering is greater than

90% [3]. While one of the original purposes of the TCP was to transparently handle end-

to-end reordering of application data in the network, subsequent modifications to the pro-

tocol have been added under the assumption that significant degrees of reordering are not

common. As a result, TCP has become less robust in its handling of reordered data, and

packet reordering has been found to adversely affect the behavior and performance of the

TCP protocol itself.

11

In particular, the fast retransmission algorithm [24], which was added to TCP to

improve its performance in the presence of packet losses, causes the protocol to handle

reordered packets in the same manner that it does lost packets. Because TCP interprets

packet losses to be an indication of congestion in the network, the fast retransmission

algorithm will spuriously retransmit a packet that the receiver has already received, and, in

a move detrimental to the throughput of the connection, cut the size of the sender's con-

gestion window in half. Together, these actions work to needlessly decrease the end-to-

end throughput of a TCP connection that encounters reordering. The purpose of the exten-

sions to TCP proposed in this thesis is to prevent these needless drops in throughput by

attempting to eliminate spurious activation of the fast-retransmission algorithm. In turn,

this will allow TCP to more robustly handle reordering in the network without degradation

of its own performance.

1.2 Our Solution

In this thesis, we implement specific modifications to the 4.4 BSD TCP implementa-

tion that prevent the needless triggering of the fast-retransmission algorithm and avoid the

corresponding drop in TCP throughput. In particular, we develop a receiver-based scheme

in which the sequence of incoming TCP data segments is observed and tested for packet

reordering. In cases where reordering is detected, the subsequent duplicate acknowledg-

ments produced at the receiver are not immediately sent back to the TCP sender immedi-

ately. Instead, they are withheld at the receiver and are released later in one of two

carefully controlled ways. If the number of packet arrivals causes the number of withheld

12

acknowledgments to exceed an adaptively-determined threshold, packet loss is suspected

and the duplicate acknowledgments are released in a controlled manner to trigger a fast-

retransmission at the sender. Otherwise, acknowledgments are held until reordering is

resolved, to forestall triggering a fast-retransmission. If reordering of the flow is resolved

before the threshold is crossed, the correct sequential acknowledgments are sent back to

the sender and data transmission continues without a drop in throughput. In effect, our

scheme gives the TCP connection greater time to distinguish between packet reordering

and packet loss, rather than immediately sending back the duplicate acknowledgments that

would set off a spurious fast-retransmission at the sender.

In experiments testing the performance of our mechanism over some specific topolo-

gies that cause packet reordering, our modified TCP receiver proved to perform signifi-

cantly better than a receiver using a normal, unmodified TCP implementation. More

specifically, while the throughput of a TCP connection using the unmodified receiver

dropped by more than 80% in cases of heavy reordering, we found that connections using

our modified receiver suffered almost no drop in performance, with throughput of the con-

nection virtually equalling that of a TCP connection where no reordering was present.

Similarly, our results show that, in cases of extreme reordering, the number of spurious

fast-retransmissions in connections using our scheme was reduced by almost 95% in com-

parison to connections using unmodified TCP receivers.

13

1.3 Research Motivation

TCP is now a mature protocol that is ubiquitous on the Internet, with several modifica-

tions and improvements to its original mechanisms made over the years. However, very

little work has previously been done to address its poor performance in the face of packet

reordering. The reasons for this are twofold, and are the result of a "chicken or egg" prob-

lem. On one hand, since TCP is known to perform poorly in the presence of out-of-order

packets, much of the Internet has been constructed to reduce the occurrence of reordering.

On the other hand, researchers contributing to the design and optimization of TCP

observed that little packet reordering occurred in this Internet, and thus saw little need to

improve the protocol to handle this rarely-seen case. Thus, as a result of these equal and

opposite forces, little has been done to increase TCP's robustness in the face of reordering.

However, recent developments have caused this situation to change and have sparked

interest in improving TCP's performance in the presence of reordering. First, previously

noted, some studies have found that the incidence of reordering in some paths in today's

Internet is on the rise. Thus, because reordering causes current TCP implementations to

perform poorly, there is an immediate need to modify TCP to improve its performance in

these situations. A second, more proactive reason to pursue research in this area is to

enable the use of new network technologies that induce packet reordering. Such disparate

technologies as multipath-routing and ad-hoc mobile networking all show promise in

increasing the reach of the Internet, but currently have limited applicability due to TCP's

inability to handle packet reordering. Modifying TCP to more robustly handle packet

reordering would increase both the applicability of and interest in such technologies.

14

1.4 Research Contributions

The two main contributions of this thesis are the novel solution it provides to the prob-

lem of TCP's poor performance in the presence of packet reordering and the ease of

deployment that our specific design facilitates.

1) A solution to a problem of growing importance

In this thesis, we introduce a new scheme for increasing TCP's robustness in the face

of packet loss that both improves end-to-end throughput for reordered flows and matches

the performance of unmodified TCP in cases of in-order packet delivery. Modifying TCP

to handle this case is still a relatively unexplored area of research, and we feel that our

scheme provides a simple and elegant solution to this problem of growing importance.

2) A solution that is easily deployable in today's Internet

By providing a backwards-compatible solution that is implemented solely in the

receiving end of a TCP connection, we provide a mechanism that can be easily deployed

by only those users who wish to use it in networks that reorder packets. It does not require

the adoption of new TCP options or the cooperation of the sending end of the connection.

We believe this is one of the great advantages of our scheme, as it allows any user who is

part of a network that induces packet reordering and who wishes to improve their through-

put to plug our mechanism into their TCP receiver at their own choosing.

15

16

Chapter 2

Background

The current architecture of the Internet has been constructed with the implicit goal of

keeping packets in the network in order. In designing networking equipment and proto-

cols, network designers have been able to use as a premise for their designs a model of the

Internet in which packets in the network are routed through FIFO queues that keep indi-

vidual flows in order. One of the results of this practice is that TCP, in its current form,

relies heavily on this assumption of in-order delivery in many of its mechanisms, such as

fast-retransmit and the use of cumulative acknowledgments. As a result, TCP's perfor-

mance has been optimized for in-order delivery and is adversely affected by packet reor-

dering.

2.1 Causes of Packet Reordering

However, this paradigm of the Internet as an in-order delivery network has begun to break

down, in large part due to the recent phenomenon of exponential growth in network usage.

Rather than being a direct result of the increase in Internet traffic, reordering has instead

been introduced into the network as a result of practices used by ISPs and router designers

at the link and network layers to cope with increasing network loads. In particular, three

optimizations introduced by network designers - parallelism in links between routers, per-

17

packet multipath routing, and the use of routing table caches - are factors contributing to

the current increase in packet reordering in today's Internet.

A second source of packet reordering is the introduction of entirely new types of net-

works onto the Internet that do not rely on the current fixed infrastructure of the Internet.

Instead, technologies of this type have dynamic physical infrastructures that are more flex-

ible and easily deployable. However, as a consequence of their dynamism, networks of

this type induce reordering of the packets that travel over their paths. Ad-hoc mobile net-

works are an increasingly popular technology that have this property.

2.1.1 Link-level parallelism

The increased use of parallel links between routers is discussed in depth in [8], and the

paper argues that reordering comes as a natural result of this parallelism. In particular, the

use of 'hunt groups', or collections of ports that act as a virtual link between routers, in the

DEC routers used in the MAE-East exchange is identified as causing packet reordering

over paths using those routers. In this scheme, these parallel links are used as a low-cost

means of increasing the bandwidth over a single link. A number of lower bandwidth links

are grouped together to approximate the bandwidth of a single higher-bandwidth, higher-

cost link; for example, ten 100Mbps links may be bundled together to approximate a sin-

gle Gigabit/sec. link.

However, one result of this practice is that packets from a single flow can be divided

up among the parallel links. As a result, head-of-line blocking in the individual ports of a

virtual link can result in reordering when packet sizes are variable and a number of flows

18

are multiplexed through the same virtual link. More importantly, the paper shows that if a

fair arbitration scheme is used to determine which port is allowed to transmit a packet,

blocking can also occur, resulting in reordering.

2.1.2 Per-packet multipath routing

A second cause of reordering is discussed in [22]. As described in this paper, per-

packet multipath routing (or 'route fluttering', as it is termed in the paper) is a network

layer mechanism that, like link-level parallelism, is deliberately used to mitigate the

effects of increased network load on an overburdened route. This is done by splitting the

load on a packet-by-packet basis between two distinct routes to the destination. While

multipath routing does fulfill a load balancing function, fluttering between two routes with

differing round-trip times has the problematic effect of causing out-of-order packet arrival

for an individual TCP flow, unless the round-trip times for the two links are identically

matched. As with parallel links, the degree of reordering can vary widely, as the delay

over each link can fluctuate with congestion.

While a number of traffic dispersion schemes of this type have been proposed [13], the

very fact that TCP performs poorly in the presence of packet reordering has resulted in the

general non-deployment of per-packet multipath routing in the global Internet. As a

result, most multipath routing today is performed at the granularity of individual TCP

flows, to keep the packets of each flow in-order. Part of the purpose of this project is to

increase TCP's robustness to allow greater use of schemes like per-packet multipath rout-

ing that cause packet reordering but would allow for more efficient use of network

19

resources.

2.1.3 Routing cache misses

A third possible cause of reordering is an artifact of some earlier router architectures.

The use of routing table caches in fast-path line cards was a practice that helped routers

cope with increased load on high-speed links. While router designers are increasingly

using schemes like Cisco's Express Forwarding [6] that store entire routing tables in the

forwarding path, older router designs placed small routing table caches in the fast-path to

allow them to directly forward packets without performing a full slow-path route lookup.

However, in certain cases, route cache misses can cause packets to be reordered within

a router. In particular, if a long string of packets from a single flow arrive at a line-card

input port and their destination address is not in the cache, all arriving packets from that

flow are forwarded to the slow-path CPU in order to do a route lookup. However, once the

forwarding entry for the first packet in the flow is found, it will also be written to the cache

and any succeeding packets in the flow will be automatically forwarded through the fast-

path using the route cache. However, a full route-lookup will need to be performed for the

remaining packets that are queued in the slow-path. The greater delay for these packets in

comparison to ensuing packets in the flow that are forwarded through the fast path will

cause the packets stuck in the slow-path to be reordered within the flow. While this sce-

nario will only affect a few packets at the beginning of flows whose destination addresses

are not included in the cache, in routers that serve a large number of destination addresses

and exhibit little locality in caching addresses, a large number of cache misses could cause

20

reordering in a significant number of flows.

2.1.4 Ad-hoc mobile networking

Ad-hoc mobile networks such as MIT's CarNet/Grid system [20] are networks that do

not rely on any fixed network infrastructure to route data [5, 17]. Instead, constantly mov-

ing mobile nodes use one another, rather than dedicated routers, to create networks paths

from a source to a destination. While such a scheme increases the flexibility and deploy-

ability of mobile networks, the constantly changing nature of the ad-hoc network paths

between a mobile source and a mobile destination results can result in significant reorder-

ing of packets travelling in such a network. As a result, current versions of TCP will not

work well with ad-hoc mobile networks, and increasing TCP's performance in the pres-

ence of reordering will help to more seamlessly integrate such networks into the infra-

structure of the Internet.

2.2 Effects of Packet Reordering on TCP

In order to understand the effects of packet reordering on the performance of TCP, it is

important to have an understanding of the specific mechanisms that are affected and the

strong packet ordering assumptions these mechanisms rely upon. In particular, the fast-

retransmission mechanism [24, 25, 26, 14, 15] relies heavily on TCP's implied assumption

of packet ordering to make its prediction about which packets have been lost due to con-

gestion in the network and, as a result, is adversely affected by packet reordering.

21

2.2.1 Cumulative and duplicate acknowledgments

One of the key features of TCP is its use of acknowledgments (ACKs) for each seg-

ment of data sent. The receiving end of a TCP connection sends back an acknowledgment

to the sender telling the TCP sender that a segment has been received and which segment

it expects to receive next. TCP communicates this information by including in the ACK

an acknowledgment number that corresponds to the sequence number of the next packet

expected by the receiver. TCP uses a system of cumulative acknowledgments to set this

acknowledgment number, with the value set to indicate to the sender that the receiver has

received all packets with sequence numbers less than the acknowledgment number. Such

a system provides a level of redundancy that makes the TCP protocol more robust to the

loss of ACKs in the network.

In TCP using cumulative acknowledgments, the acknowledgment numbers sent from

the receiver to sender should monotonically increase if data packets are not being lost or

reordered in the network. However, if a data segment is received that is not the next

expected in-sequence segment, the receiver will not return the usual ACK for the next-

expected segment after the incoming segment. Instead, a duplicate acknowledgment will

be generated for the next-expected segment after the most recently received in-order seg-

ment. Thus, a duplicate acknowledgment tells the sender that a segment has been

received; however, this received segment is not the next-expected packet in the sequence.

A duplicate acknowledgment also tells the sender that the expected packet has still not

been received at the other end.

22

2.2.2 Effects due to TCP's fast-retransmission algorithm

Originally, TCP used only a timeout-based system to determine if packets were lost

and subsequently retransmit them. However, as the detrimental effects of waiting more

than a round-trip time to retransmit a packet became apparent, the fast-retransmission

algorithm [24, 25, 26, 14, 15] was added to TCP to allow TCP senders to more quickly

Fast retransmission
-cwnd cut in half

1

AC2

Figure 2.1: TCP'sfast-retransmission algorithm: a packet is retransmitted upon reception of three duplicate
ACKs at the sender The sender's cwnd is also cut in half

detect and retransmit segments that were assumed to be lost. Rather than wait for an entire

retransmission timeout before assuming that a packet has been lost, this mechanism makes

an educated guess about which segments have been lost by observing the stream of

23

acknowledgments that arrives at the TCP sender. Relying on the fact that ACKs from the

receiver should be monotonically increasing for an in-order data stream, the fast retrans-

mit mechanism assumes at the sender that a segment has been lost when three duplicate

ACKs arereceived. It then proceeds to retransmit the missing segment to the receiver. In

addition, TCP also cuts the congestion window cwnd to half its previous value and sets the

slow-start threshold ssthresh equal to the value of cwnd. These actions, called the fast-

recovery mechanism, are performed in conjunction with fast-retransmission under the

assumption that packet losses, as detected by fast-retransmit, are indications of congestion

in the network. The use of the fast-retransmission mechanism significantly improves

TCP's performance in the presence of packet losses, as the connection is not required to

wait an entire costly retransmission time-out before retransmitting a packet that is pre-

sumed to be lost.

However, in the case where reordering exists in the network, the presence of the fast-

retransmission algorithm causes TCP to handle reordered packets in the same manner it

does lost packets. If the next-expected packet arrives more than three packets out-of-

order, at least three dupACKs will have already been sent by the time that the packet actu-

ally does arrive. As a result, because TCP interprets three dupACKs as a packet loss and

packet losses are interpreted as an indication of congestion in the network, the fast retrans-

mit and fast recovery algorithms will spuriously retransmit a packet and erroneously cut

the size of the sender's window in half. TCP's throughput is needlessly decreased as a

result of its incorrect assumption of loss.

24

Spurious fast
retransrission

1v

6 Segment not lost
& is received here

Figure 2.2: A diagram of a spurious fast-retransmission due to reordering. Because the packet arrives
more than three packets out-of-place, three dupACKS are sent to the sender before the packet arrives and a

fast-retransmission is incorrectly triggered.

The particular source of this problem is the small three duplicate ACK threshold used

to trigger fast-retransmissions, which is a value based on TCP's bias towards in-order

delivery. RFC 2001 [24] actually codifies this bias, stating:

Since TCP does not know whether a duplicate ACK is
caused by a lost segment or just a reordering of segments, it
waits for a small number of duplicate ACKs to be received.
It is assumed that if there is just a reordering of the seg-
ments, there will be only one or two duplicate ACKs before
the reordered segment is processed, which will then gener-
ate a new ACK. If three or more duplicate ACKs are
received in a row, it is a strong indication that a segment has
been lost.

25

Thus, the fast retransmission threshold was set under the premise that any reordering

in the network results in packets arriving no later than three segments after the segment

with the previous sequence number. While this is an accurate assumption for an Internet

that keeps packets in-order, in an Internet where parallel links exist or multipath routing is

used, this is a faulty assumption and will cause TCP to regard reordered packets as lost

packets, resulting in spurious fast retransmissions and corresponding drops in throughput.

If packets are greatly reordered within a single window, it is possible that multiple retrans-

mits will occur and that the value of cwnd will be decreased to a very low value, a problem

discussed in [3]. If this continues over the lifetime of a flow, TCP will not be able to prop-

erly open its congestion window, growth of cwnd will be stunted, and will not correctly

utilize its allocated bandwidth [11].

2.2.3 Other effects

In addition to the detrimental effect on throughput caused by the fast retransmission

mechanism's spurious reduction of the congestion window, reordering affects TCP in a

number of other ways. Most prominently, the header prediction algorithm [16, 26] pro-

cesses packets in a fast path through the TCP code in the case where "TCP is receiving

data [and] the next expected segment for this connection is the next in-sequence data seg-

ment." Any packets that do not fit this profile, including out-of-order packets, are pro-

cessed more slowly through TCP's general slow-path, resulting in greater processing time

at the receiver. Thus, reordering affects performance by adding to the per-packet process-

ing time at the TCP receiver. Similarly, additional processing overhead is incurred by the

26

receiver in retrieving packets in the correct order from TCP's reordering buffer. In addi-

tion, bandwidth is wasted through the unnecessary retransmission of packets that are

received but are more than three packets out of order.

Reordering can also occur in the reverse path, and TCP acknowledgments can experi-

ence the same type of reordering that data segments do, resulting in a loss of self-clocking

and bursty TCP transmitter behavior [3]. Thus, reordering has a number of negative

effects on TCP performance in addition to its impact on the fast-retransmission algorithm.

However, as we believe the unnecessary decrease in throughput caused by spurious fast-

retransmissions is by far reordering's most detrimental effect on TCP's performance, that

is the problem focused on in this project.

2.3 Prior Work

The incidence of reordering in today's Internet has been explored in a number of studies

[3, 21, 27]. The examination of the packet dynamics at MAE-East [3] also includes an in-

depth exploration of the effects of reordering on TCP. While the problem has been well-

defined in this manner, almost no published work existed that discusses implementations

of possible changes to TCP that would allow it to more robustly handle packet reordering

and improve its performance. Recently, however, three schemes have been proposed that

tackle the problem in different ways.

27

2.3.1 D-SACK and the Eifel algorithm

The first scheme, outlined by Sally Floyd in [10], proposes extensions to SACK TCP that

would allow spurious fast-retransmissions that occur due to reordering to be detected and

essentially be "undone". The main idea behind this scheme is that a spurious fast-retrans-

mission caused by reordering will result in the TCP receiver receiving a duplicate data

segment -- the original out-of-order packet and the packet sent by the fast-retransmission

mechanism when it predicted that the original packet was lost. This prediction is made

based on the fact that packet duplication in the network itself is rare (this is supported by

experimental data in [21]). Thus, duplicate packets can be used as an indication of spuri-

ous fast-retransmission. If news of this reception of a duplicate segment can then be

relayed back to the sender, the sender can determine a posteriori that a fast-retransmission

was unnecessary and undo the reduction of the congestion window, doubling it and return-

ing it to its proper size.

This scheme requires a mechanism by which the receiver can notify the sender that it

has received a duplicate segment. Floyd's email discusses a proposed change to SACK

which, when a TCP data segment that has already been covered by the cumulative ACK

(ie. is a duplicate of a previously received segment) arrives at the receiver, would then use

the first SACK block of the resulting duplicate acknowledgment to tell the sender which

duplicate segment has been received.

This recommendation was documented in July 2000 in RFC 2883 [12], which outlines

a SACK extension called D-SACK (with the D standing for 'duplicate') that incorporates

the changes Floyd outlines in her email. It also includes a description of the fast-retrans-

mission 'undo' scheme. However, while both documents propose these changes to SACK

28

TCP, no known implementation is known of at this time. Because this scheme requires

the adoption and implementation of the new D-SACK option at all TCP senders and

receivers, it is less desirable than a scheme implemented only at the sender or receiver. In

addition, in 'undoing' the reduction of cwnd caused by the fast-retransmission, cwnd is

instantaneously doubled in size. This causes a burst of packets to be transmitted at once,

which is detrimental to TCP performance and congestion control.

The Eifel algorithm [18] uses the same scheme that Floyd proposes for "undoing" spu-

rious reductions of the sender's cwnd. However, rather than requiring the use of a new

option, this design uses either timestamps or bits in the TCP header's reserved fields to

notify the sender of reception of duplicate segments. This scheme in its implemented

form is subject to the same shortcomings as the D-SACK scheme, namely the need for

modifications to both the sender and receiver and burstiness due to sudden inflation of the

congestion window. While Reiner Ludwig, Eifel's designer, does acknowledge the second

problem in his paper, he does not address it in his actual implementation.

However, in addition to undoing false reduction of the congestion window due to spu-

rious fast-retransmissions, both the D-SACK scheme and the Eifel algorithm are also able

to detect and undo spurious retransmissions caused by timeouts. This is by virtue of their

use of duplicates segments as an indication of unnecessary retransmission, as spurious

retransmissions of both the timeout and fast-retransmit variety will result in duplicate

packets at the receiver. While spurious timeouts are currently a rare occurrence on the

Internet, Ludwig postulates in his paper that they will become more common as hosts that

use packet-radio networks and that, as a result, can become disconnected for seconds at a

29

time without losing data become more ubiquitous on the Internet. Thus, the Eifel algo-

rithm and D-SACK cover a greater number of cases than our scheme, which only

addresses the specific problem of spurious fast-retransmissions due to reordering.

In her email, Floyd also states that notification from receiver to sender that a duplicate

segment has been received could also "be used to modify [the sender's] dupACK thresh-

old." Such a modification could forestall future fast retransmissions by increasing the

amount of time that TCP has to distinguish between packet losses and packet reordering.

By increasing the threshold, TCP can prevent losses from being confused with reordering

by the fast-retransmission logic. However, she fails to go into detail about how such a

scheme would be implemented.

2.3.2 Adjusting the fast-retransmission threshold

Such a scheme is discussed as part of Vern Paxson's examination of end-to-end packet

dynamics and the corresponding network pathologies [21], which suggests adjusting the

value of the fast-retransmission threshold to better handle the effects of packet reordering.

The paper distinguishes between 'good' sequences of duplicate ACKs (those that corre-

spond to actual packet losses) and 'bad' sequences (those that cause unnecessary retrans-

missions due to packet reordering). The ratio of good to bad retransmissions is then used

to quantify the effect of adjustments made to both the duplicate ACK threshold and the

waiting time, which is defined as a delay that the receiver observes before sending out a

duplicate ACK.

Paxson's examination illustrates the trade-off that comes as a result of adjusting the

duplicate ACK threshold. For example, raising the threshold to four duplicate ACKs

30

increases the good/bad ratio 2.5 times, but at a cost of 30% fewer actual fast-retransmis-

sion opportunities (as a greater number of time-outs will occur before the threshold is

reached). Lowering the threshold to two dupACKs gains approximately 70% more oppor-

tunities for fast-retransmissions, but also causes the good/bad ratio to decrease by a factor

of three as more reordering events are interpreted as losses. However, adding a wait time

of 20 ms to the receiver before generating a second dupACK keeps the fast-retransmit

opportunities the same while keeping the good/bad ratio nearly the same as for the three-

ACK threshold. While adding this optimization would require modifications to both the

sender and receiver (thus complicating the implementation and deployment of the solu-

tion), this problem can be dealt with by implementing the wait time as part of the sender

by delaying the triggering of the fast-retransmission algorithm by 20 ms after the duplicate

ACK threshold has been surpassed.

Paxson's scheme incorporates many of the same concepts that will be used in this

project. In particular, adjusting the threshold value to reduce spurious retransmissions and

implementing the modifications solely in either the sender or receiver are features also

used, in modified form, in our strategy. However, the scheme Paxson describes in [21]

statically sets the threshold value, requiring users to manually tune their TCP connections

and live with the trade-off between decreased performance caused by reordering or

decreased performance caused by a greater number of RTOs. In contrast, we propose a

scheme that will in effect dynamically adjust the retransmit threshold. By doing so, we

intend to both equal TCP's throughput in situations where little reordering occurs and

improve its performance in the presence of reordering by limiting the number of spurious

31

fast-retransmissions. In doing so, the hope is that a more robust TCP will give the user the

best of both worlds when it comes to TCP throughput.

32

Chapter 3

Design

3.1 Design Goals

A number of design criteria were considered when determining how to modify TCP to

handle packet reordering, including:

1) Improved TCP throughput for flows that experience reordering in the network

For reasons described previously, the main goal of this project is to make TCP more

robust in the face of packet reordering in the network.

2) Minimal effects on TCP in the absence of reordering (i.e., throughput equal to

unmodified TCP when no reordering is present)

While the problem being explored is improving TCP's performance when reordering

is present, any modifications to TCP must also ensure that throughput in the normal case

where no reordering is present is not adversely affected. This is because it is expected that

the bulk of the data flow will consist of correctly ordered packets. Any mechanisms we

introduce should also behave robustly in cases of actual packet loss and approximate as

closely as possible TCP's performance in those situations. We believe that these goals are

of great importance, as normal performance must be unaffected in order for any proposed

changes to TCP to be adopted by users.

33

3) Implementation in the TCP stack of either the sender or receiver, not both

Another decision that was made was to implement any changes to TCP solely in either

the receiver or sender. The basis for this decision was the fact that any solution that was

implemented in both the sender and receiver would require that the modified TCP be

deployed by the independent parties administering each of the ends of a TCP connection.

While common sense would dictate that any modification to TCP that clearly provides

performance benefits would immediately be added to existing implementations of TCP/IP

stacks, this is not necessarily the case. For example, the SACK option was presented to

the Internet community in an RFC in 1996 and has been shown to clearly improve TCP's

performance [8]. Despite this fact, in a December 1999 study of an AT&T modem pool

where 58% of SYN packets contained 'SACK permitted' messages, only 5% of corre-

sponding TCP senders responded with ACKs where SACK was also enabled. Thus, only

5% of the resulting TCP connections actually used SACK [9]. While a dialup modem

pool is clearly a biased sample, this example does serve as an indication of the difficulties

in deploying a change to TCP that requires both sender and receiver modifications.

In this specific case, while SACK has become standard issue in the TCP stacks of most

OS's used in the personal computers that initiate most TCP connections and are the pri-

mary TCP data receivers on the Internet, few of the high-volume servers that comprise

most of the TCP senders chose to use it at the time of the study. This may have been

because the administrators of servers have little incentive to implement an update that pri-

marily benefits the other end of the connection at an increased processing cost for the

server. Thus, the case of SACK shows that, in cases where a desired modification to TCP

34

must be implemented at both ends of a connection to work, differing incentives may cause

uneven implementation of such features. Because cooperation of both ends of the connec-

tion is required for such a modification to work, the level of its acceptance will track the

end-user group that more slowly implements the change.

It should be noted that high throughput and reordering of segments are an issue that

greatly affects the user at the TCP receiver that is receiving data but have little impact on

the TCP sender transmitting that data. Because of this, implementing a solution in the

receiver would allow those users who know that they will be connected to a network that

causes a great deal of packet reordering to use the modified receiver at their own choosing,

without requiring the cooperation of the party at the other end. Thus, a solution that does

not rely on cooperation between the TCP sender and receiver and preferably can be imple-

mented solely in the receiver was decided upon as one of the essential design criteria.

3.2 Design Description

The solution described in this thesis to address TCP's decreased performance in the face

of packet reordering is based on a single observation. TCP's degradation in throughput in

the presence of reordered packets is a direct result of spurious triggering of the fast-

retransmission algorithm at the TCP sender. In particular, the algorithm's use of the low

three dupACK threshold results in an erroneous fast-retransmission when reordering in the

network causes a packet to arrive more than three packets out of sequence. Thus, the

desired goal of our solution is to eliminate these throughput-reducing spurious retransmis-

sions caused by reordering.

35

3

ACK 2
ACK 2
ACK 2

Figure 3.1: Our solution: Provide receiver with additional time to disambiguate packet loss and packet
reordering before setting off the fast-retransmission mechanism at the sender We accomplish this at the

receiver by withholding dupACKs for a dynamically-determined amount of time, rather than sending them
back to the sender immediately

To accomplish this goal, we propose enhancements to TCP that give the receiver addi-

tional time to distinguish between loss and reordering before sending the dupACKs that

trigger a fast-retransmission at the sender. As such, the operation of our mechanism can

conceptually be separated into three parts. In the first, reordering of incoming segments is

detected and duplicate ACKs are withheld at the receiver, rather than being sent back

immediately to the sender. At the same time, for each packet that arrives out of order, the

36

receiver determines how far out of order the packet is and uses that value to possibly

update the value of the reordering threshold, which is used as the cutoff for determining

the number of reordered packets that can arrive before we assume that a packet is lost

rather than reordered. Finally, when either the next-expected packet arrives or the number

of incoming reordered segments exceeds the threshold, indicating loss, the appropriate

duplicate or sequential acknowledgments are sent back to the TCP sender.

3.2.1 Main idea: Withholding duplicate ACKs

To forestall throughput-reducing spurious fast-retransmissions and adhere to the

design criteria, a receiver-based solution was explored in which the receiver holds onto

duplicate ACKs rather than immediately sending them back to the sender. In this scheme,

the receiver observes the sequence numbers of incoming data segments and determines if

packets are arriving out of order. In cases where reordering is detected, the receiver with-

holds the dupACKs until either the reordering is resolved and the correct in-order segment

arrives, or until reordering is not resolved and the number of arriving segments increases

the number of withheld dupACKs beyond an adaptively-determined threshold. If reorder-

ing is resolved before the number of incoming packet arrivals exceeds this threshold, the

withheld dupACKs are discarded and the correct sequential ACKs for the data segments

corresponding to the withheld dupACKs are paced out in their place. As a result, a spuri-

ous fast-retransmission and its corresponding erroneous halving of the sender's cwnd are

prevented, and the throughput of the connection is maintained. The cost to the connection

in this scheme is the increase in the round-trip time incurred when ACKs are withheld at

the receiver, rather than being immediately sent back to the sender. However, the argument

37

at the heart of this project is that the reduction in throughput-reducing spurious fast-

retransmissions far outweighs this added delay.

3.2.2 Adaptively-determined threshold

In order for this scheme to work on the global Internet, a threshold is required to

account for packet losses. In a network with no losses, it would be sufficient to simply

withhold all duplicate ACKs until the next-expected packet arrives and reordering is

resolved. However, packet losses are an inherent part of the Internet and retransmission

timeouts are expensive operations on a high-bandwidth link. Thus, though it is impossible

to unequivocally determine that a packet which has not yet arrived at the receiver has been

lost and not reordered, a method for roughly differentiating between the two conditions is

an important part of this scheme. The adaptively-determined threshold used in our mecha-

nism fulfills that role, as it is used by the receiver to determine the number of dupACKs to

hold on to before assuming that the next-expected packet has been lost rather than reor-

dered.

One of the key design considerations for our scheme is the manner in which this

threshold is dynamically set at the receiving end of the TCP connection, as well as the

underlying metric used as its basis. We wish to set the threshold high enough to allow

almost all cases of reordering to be resolved before the number of packet arrivals crosses

the threshold, while not setting it so high as to cause a large delay before dupACKs are

sent back in cases of actual packet loss. As such, we believe that an approximation of this

ideal threshold value can be found by setting it to the maximum amount of packet reorder-

38

ing that the TCP flow has experienced over many packet arrivals. If it is assumed that the

level of reordering is not continually increasing, which is a valid assumption for the causes

of reordering discussed previously, this value provides a reasonable estimate of a maxi-

mum bound on the amount of reordering the flow is experiencing and will encounter in the

future. As a result, setting the threshold to this value, and subsequently withholding ACKs

for packet arrivals until the number of arrivals crosses the threshold or reordering is

resolved, should provide the receiver with enough time in almost all cases to make the

decision about whether a packet has been lost or has been delayed due to reordering.

The decision to use this method to set the threshold leads to the question of how to

measure and quantify the amount of packet reordering observed by a TCP receiver. In our

scheme, we wish to use a metric that accurately reflects the degree of reordering observed

within the flow. An examination of the manner in which TCP handles packet reordering

reveals a natural way to measure this. When reordered TCP segments (i.e., segments with

sequence numbers greater than that of the next-expected packet) arrive at the receiver, they

are not discarded and instead are buffered in a structure called the reordering queue. We

first define a metric called the degree of reordering of each of the segments in the queue.

This corresponds to the difference between the starting sequence number of the next-

expected packet after the last in-order packet received and the next-expected packet after

each out-of-order packet that is placed in the queue. We then use a metric called the stride

of reordering to quantifiy the maximum degree of reordering that a packet in the flow is

currently experiencing. It does so by measuring the degree of the most out-of-order

packet, which is the segment in the queue that begins with the highest sequence number.

39

In doing so, we measure the greatest amount within the sequence number space that a

packet is currently out of order in the flow.

[6 9 10 H 12 13 114 15 16 17

stride = 6

Figure 3.2: Value of the stride of reordering in one example of out-of-order arrival at the receiver Sequence
numbers of packets that have already been received are marked with squares. In this example, the stride

equals 6. This is the difference between the sequence numbers of next-expected segment after segment 5 (the
highest in-order segment received) and segment 11 (the highest out-of-order segment received).

The reordering stride accurately quantifies the current, instantaneous level of reorder-

ing in a flow in the manner we desire. If no packets are being reordered in the network, the

reordering stride will equal zero, correctly indicating that packets are arriving in order. If

packets arrive greatly reordered and a packet from much later in the flow arrives much ear-

lier than the next-expected segment in the flow's sequence, the difference between the

sequence numbers of the next-expected packet and the packet expected after the arriving

packet will be large, correctly indicating a large amount of reordering in the flow.

By setting the threshold to equal the maximum stride seen over a large number of reor-

dered packet arrivals, an educated guess can then be made that a packet loss has occurred

40

if the number of reordered packet arrivals exceeds the threshold, as we have not seen lev-

els of reordering of greater values than that in the past. In this case, the withheld duplicate

acknowledgments are then paced out from the receiver at a rate that approximates that

with which the corresponding packets arrived at the receiver. In the event of actual packet

loss, the transmission of these withheld dupACKs will correctly trigger the fast-retrans-

mission algorithm at the sender.

In addition, the throughput of the connection is only minimally affected by this mech-

anism. The sender, as part of the fast-recovery algorithm, will continue to send new seg-

ments upon reception of each dupACK, and the only cost incurred will again be the

increased delay caused by the withholding of the ACKs. In the case where the next-

expected packet arrives after the threshold is exceeded and the pent-up dupACKs have

already been released (ie. where the amount of reordering is greater than the threshold),

the throughput of the connection suffers due to the spurious halving of cwnd. However, as

this spurious retransmission would have occurred if an unmodified TCP receiver were

being used, there is no loss of performance over normal TCP. Thus, because the number of

spurious fast-retransmissions that are avoided as a result of this mechanism far outweighs

the number it causes, the withholding of dupACKs and the use of a reordering threshold

work together to greatly increase the throughput of a TCP connection that experiences

packet reordering.

While the use of this threshold-based scheme works well in general, care must be

taken to handle a number of special cases. In particular, while one of the great advantages

of our scheme is that it is implemented solely in the receiver, a drawback is that our mech-

41

anism is not privy to pertinent information about the flow that is known only to the TCP

sender. As a result, there exist two degenerate cases that our design has been modified to

handle. In the first, since the receiver has no information about the size of the sender's

window, cwnd, it is possible that the number of packet arrivals used as the threshold

exceeds the window size. In such a case, if a packet is actually lost but the threshold is not

crossed, the number of packet arrivals would not exceed the threshold and the receiver

would stall without releasing any ACKs. To handle such cases, a timeout was introduced

that approximates the time it takes for a packet with a degree of reordering equal to the

maximum stride value to arrive at the receiver. If no packets arrive at the receiver before

the timeout expires, we can assume with a fairly strong degree of certainty that no more

packets will be arriving at the receiver as, in the past, we have not waited for longer than

this time for any packet to arrive. The timeout value was calculated to be the threshold

value times the value of a weighted-moving average of packet-interarrival times calculated

at the receiver.

The source of a second degenerate case in our scheme is the fact that the receiver can-

not unequivocally determine if, when a segment arrives and resolves reordering, that seg-

ment is the reordered segment it has been waiting for or the retransmission of a lost

segment. If the segment that arrives and resolves the reordering is in fact a retransmitted

segment rather than an out-of-order segment, we do not wish to use its stride value in our

determination of the maximum stride used as the threshold, as the threshold will not pro-

vide an accurate measure of the past level of maximum reordering. Instead, in this case, it

will incorrectly be set to a full window size. In addition, all other stride values calculated

for all packet arrivals that arrive after the lost packet should not be counted in the threshold

42

calculation, since the failure of that packet to arrive was in fact due to loss and not reorder-

ing and our threshold is intended to be a measure of reordering only. To handle such

cases, the time interval between when the next-expected packet failed to arrive in order

and the time of its actual arrival is measured. It is then compared to the round trip time

estimator kept at the TCP receiver and, if the measured time interval is greater than this

RTT, it is assumed that the packet that resolves the reordering is a retransmission. In such

cases, all stride values calculated for all packets in this interval are disregarded when

determining the threshold value.

Another related design decision involves determining which stride values to use in the

calculation of the threshold. In previous versions of our designs, the reordering stride was

calculated for every packet arrival, no matter if it was an in-order packet or an out-of-order

packet. The design was later changed to only record the stride for out-of-order packet

arrivals only. The reason for doing this was that by choosing the threshold from among

only stride values produced by reordered packets increases the robustness of our scheme

in the presence of intermittent reordering (for example, reordering caused by routing

cache misses). In such scenarios, long periods of in-order delivery would result in a

threshold value of zero. As a result, each transitory period of reordering would result in a

spurious fast-retransmission as the threshold was being set. In addition, once the transi-

tory period of reordering ends, the threshold is again driven down to zero by the in-order

packet flow, and the receiver will be unprepared for the next instance of reordering that

occur. In contrast, by only recording the value of the stride for actual reordered packets,

we maintain a viable threshold between instances of reordering that gives the mechanism a

better chance to resolve the reordering when such transient cases occur.

43

A side-effect of this change was that it resulted in our code performing no actions dur-

ing in-order packet flow. As a result, it ensures that our scheme for improving TCP's per-

forms in the face of reordering as well as normal TCP in cases of normal, in-order packet

flow, which was one of our original design goals. Because only duplicate acknowledge-

ments are withheld and the next expected packet arrives as anticipated in cases of correct

packet ordering, the corresponding sequential cumulative ACK is sent upon each packet

arrival (or delayed appropriately if delayed acknowledgments are being used). Neither the

dupACK withholding mechanism or threshold come into play, and operation at the modi-

fied receiver is identical to that of an unmodified receiver. Thus, throughput for the con-

nection is not affected.

3.2.3 Pacing out acknowledgments

Once reordering is resolved or the threshold is crossed, the appropriate acknowledg-

ments, either sequential or duplicate, are released from the receiver back to the sender. To

maintain the self-clocking nature of ACK stream back to the sender and prevent ACK

compression, the withheld acknowledgments must be paced out to the sender at carefully

spaced intervals, rather than being burst back at once. In addition, in the case of sequential

ACKs, the acknowledgments being sent must be relabelled with the correct cumulative

acknowledgment numbers corresponding to the sequence numbers of the data segments

that arrived at the receiver.

44

ACK2
K

Reord thresh
=4

1

2

A K2

5

6

2

9

ACK 2
A2

2
2

Reordthresh
=4

Figure 3.3: The two scenarios for releasing ACKs:ln the first, reordering is resolved before the threshold is
crossed and sequential ACKs are sent back. In the second, the threshold is crossed and packet loss is

assumed. The withheld dupACKs are sent back to the sender In both cases, the ACKs being sent are paced
out at calculated intervals.

The ideal behavior in this case would be to pace the acknowledgments out at the same

packet interarrival times with which their corresponding data packets arrived at receiver

and with acknowledgment numbers corresponding to the exact sequence numbers of the

arriving packets. However, the wide variation in the number of reordered packets that can

be withheld, coupled with the desire to limit the amount of state used to implement this

scheme, dictated that an approximation be used. Rather than record the sequence number

of and interarrival time between each reordered packet, the total time interval between the

arrival of the first out-of-order packet and the time at which either reordering is resolved or

the threshold is exceeded is kept. In addition, in cases where reordering is resolved, the

45

1

2

interval of ACK numbers between the value of the next-expected packet after the reor-

dered packet and the next-expected packet for the flow after reordering is resolved are also

recorded. The withheld ACKs are then paced out at regular intervals, with the interpacket-

spacing calculated to be the total time interval over which the packets arrived divided by

the number of packets to be paced out. In addition, when sequential ACKs are being

paced out, the ACK numbers of the acknowledgments being sent out are evenly spaced out

over the interval between the sequence number of the next-expected segments before and

after reordering is resolved. While not perfect, we believes these approximations are suffi-

cient to maintain the self-clocking behavior of the TCP connection.

Two additional features were instituted as part of the mechanism for pacing out

acknowledgments. First, if the delayed acknowledgments [4, 2] are in use, the number of

acknowledgments sent back to the sender is set to equal the ceiling of half the number of

withheld acknowledgments. Second, to optimize performance, the duplicate acknowledg-

ments corresponding to the first two reordered packet arrivals are sent back to the sender

immediately, rather than being withheld. The rationale behind this is that we wish to trig-

ger the fast-retransmission mechanism as quickly as possible is cases where the number of

packet arrivals at the receiver exceeds the threshold and packet loss is assumed. Thus, if

the threshold is exceeded and the withheld dupACKs are sent back, the fast-retransmission

mechanism will be triggered upon reception of the first paced-out dupACK, rather than

having to wait for the third. In this case, the number of dupACKs sent back is adjusted to

reflect the fact that two dupACKs have already been sent.

46

In our design, the first two dupACKs are sent back immediately upon reception of the

first two reordered data segments, before it is known if reordering is resolved or the thresh-

old is crossed. Thus, the two dupACKs will be sent even in cases where reordering is

resolved and sequential ACKs are sent back. In this case, the number of sequential ACKs

sent back does not reflect the fact that two dupACKs were sent and equals the original

number of ACKs withheld at the receiver (or half that number, in the case of delayed

ACKs). The reason this is possible is that the TCP sender, upon reception of the first two

dupACKS, performs no actions other than to note the arrival of those dupACKs and then

wait for the arrival of either the third dupACK or the resumption of normal data flow.

Thus, in the case where reordering is resolved and sequential ACKs are sent back, the

transmission of the two dupACKs has no effect on the sender (other than wasted band-

width) and the full number of sequential ACKs can and should be sent back. Note that if

sender has implemented Limited Transmit [1], which causes the sender to send additional

segments upon reception of the first two dupACKs, this feature of our design should not

be used. However, as most Internet hosts do not yet support Limited Transmit and since

the sending of the first two dupACKs optimizes performance for our scheme and is trivial

to remove, it remains a part of our current design.

47

48

Chapter 4

Implementation

The mechanisms described in the previous chapter were implemented and tested in the

TCP stack of version 4.1 of the FreeBSD operating system, which is based on the 4.4 BSD

release. Extensions to the existing TCP implementation included the addition of a number

of variables to the TCP protocol control block, which is a structure used to keep informa-

tion about a TCP connection over its lifetime. In addition, modifications were made to

both the tcp_input () and tcp-output () routines, which are called upon reception

and transmission of a segment, respectively.

4.1 Additions to Protocol Control Block

A number of variables and structures were added to the TCP protocol control block (PCB)

to modify it to handle reordering. Though this increased the amount of per-connection

state required for hosts using the modified TCP receiver, it was necessary to add these

structures to the PCB due to the fact that out mechanism requires the use of certain ele-

ments of state over the entire lifetime of a flow. Thus, the important variables added to the

PCB include a counter used added to keep track of the number of dupACKs being with-

held, the reordering threshold for the connection, and a circular buffer to hold the reorder-

49

ing stride values for recent reordered packet arrivals. The value of the threshold variable

was set to be the maximum stride value in this circular buffer.

F1 2 F3 [4 F-6 _L]i 9 10 E 12 13 14 15 16 17

Rcv nxt R cv max nxt

Figure 4.1: Values of rcv_nxt and rcvmaxnxt in one example of packet reordering. Sequence numbers of
packets that the receiver has received are marked with a square.

An examination of the specific manner in which BSD TCP handles reordered packets

revealed a straightforward method to calculate the actual values of the reordering stride for

each reordered packet arrival, using existing a single existing PCB variable together with

others we introduce. A TCP receiver does not discard any out-of-order segments that it

receives while it waits for the next-expected segment to arrive. Instead, these out-of-order

segments are buffered in the reordering queue, and a duplicate acknowledgment is sent to

the sender upon reception of all packets that are not the next-expected segment. The start-

ing sequence number of the next-expected segment is indicated by the PCB variable

rcv_nxt, and reordering is resolved when the rcvnxt arrives at the receiver. All

consecutively numbered segments in the reassembly queue up to the newly updated value

50

of rcv_nxt are then passed on to the application, and a non-duplicate ACK is sent to the

transmitter to tell it the next expected segment using this new value of rcv_nxt. To calcu-

late the stride, we first institute a new PCB variable, rcvmaxnxt, that indicates the

sequence number of the next expected segment after the highest received segment to this

point in the same way that rcvnxt indicates the next-expected segment after all consec-

utively received segments to this point. The highest-received segment corresponds to the

most highly reordered segment for this flow, and the difference between rcv_max_nxt

and rcv_nxt provides exactly the stride value we are looking for.

4.2 Modifications to tcpjinput()

The majority of the modifications to the FreeBSD TCP segment processing code

occurred in the tcp_input () module, which is run upon reception of a TCP segment

by a host. An examination of this code reveals the existence of the TCP_REASS macro.

The purpose of this macro is to determine if a segment arriving at the receiver is out-of-

order. If the segment is out-of-order, it is placed on the reassembly queue and an immedi-

ate dupACK is generated. In-order segments cause a delayed ACK to be scheduled and

are passed to the application through the socket receive buffer. In addition, their arrivals

cause a number of statistics to be updated, including rcvnxt.

The existence of the TCP_REASS macro in the tcp_input () code was leveraged

in the implementation of the modifications. Almost all the necessary code was imple-

mented within the macro, and it also provided pre-existing tests to determine if a packet

51

was out-of-order or not. No code was modified in the code that handles in-order packet

arrivals, which makes up the remainder of the tcp-input () module. Thus, since no

actions are performed on correctly ordered packets by our code, it is safe to assume that

in-order performance of the connection is virtually unaffected.

If the TCPREASS macro deems a packet to be out of order, additional operations are

performed. While, conceptually, our scheme involves withholding ACKs at the receiver,

in practice this would require to much memory to in the receiver's PCB. Instead, a reor-

dering counter, which measures the number of reordered packet arrivals and, conse-

quently, the number of dupACKs to transmit back, is incremented. Then, checks are

performed to see if reordering has been resolved (by checking to see if the value of

rcv_nxt has changed since the last packet arrival) or the threshold has been exceeded.

If either of these actions has occurred, a function named tcp-reorderrelease () is

called that generates and paces out the correct number of sequential or duplicate ACKs,

based on the value of the reordering counter. If reordering has not been resolved and the

threshold has not been exceeded, no additional actions are performed, as the mechanism is

in the process of accumulating dupACKs and the counter has already been updated to

reflect the number of withheld ACKs.

The tcp-reorderrelease () function was implemented in tcp_input ()

and is responsible for the pacing out of ACKs from the receiver upon resolution of reor-

dering or exceeding of the reordering threshold. This task is accomplished in practice by

using the BSD timeout queue [7], which allows calls to functions to be executed a speci-

fied amount of time in the future. Calls to the tcp-output () function, which is

52

responsible for the generation and transmission of ACKs, are placed on the timeout queue

to allow ACKs to be paced out at pre-specified time intervals.

The fact that the timeout queue requires that a pointer to the argument for the function

placed in the queue be used (rather than the argument itself) posed a problem, since the

argument to tcp-output () is the TCP PCB, the values of which constantly change

over the lifetime of the connection. As a result, an additional data structure, the TCP PCB

snapshot, was created to hold the values of PCB variables like rcv_nxt whose values

change by the time the call to tcpoutput () is finally executed off of the timeout

queue. Because it is conceivable that additional instances of reordering could occur while

the ACKs corresponding to another reordering event are still being paced out, a circular

buffer of snapshots was created to hold the state necessary to pace the ACKs correspond-

ing to each event one after the other. In addition, ACKs for other data segments that arrive

while withheld ACKs are being paced out are also placed on the timeout queue and the

requisite data for those ACKs is placed in the circular buffer of snapshots. This is neces-

sary so as to prevent our receiver from causing ACK reordering, as the ACKs for the arriv-

ing data segments will have acknowledgment numbers greater than those of those waiting

to be paced out on the timeout queue.

4.3 Modifications to tcp-output()

While less extensive than those made to tcp-input (), modifications also were

made to the code responsible for the transmission of acknowledgments, the

53

tcpoutput () module. The main modifications to this module were twofold. First,

the tcpoutput () function was modified so as to include the correct acknowledgment

numbers in the ACKs that are released when reordering is resolved, as tcpoutput ()

is the function that is placed on the timeout queue by tcpreorderrelease () In

the case where the threshold is exceeded, it is sufficient to include the current value of

rcv_nxt as the duplicate ACK number, since this is the packet that needs to be retrans-

mitted. Since this is the default behavior of TCP, no modification is needed. However, in

the case where reordering is resolved, code was added to renumber the ACKs with

increasing ACK numbers equally spaced within the interval between the old, pre-resolu-

tion value of rcv_nxt and the current value. The last ACK corresponds to the segment

that resolved the reordering (i.e., the last of the released sequential ACKs should have the

value of rcvnxt when reordering was resolved as its ACK number).

Additionally, the ACK flag in an outgoing segment is turned off if a call is made to

tcp-output () while dupACKs are being accumulated. This will occur only if the

receiver has a data segment of its to send during the time that dupACKs are being accumu-

lated. In this case, the ACK flag must be turned off because, by default, all segments are

sent with an ACK. If a large number of data segments are sent from the receiver for some

reason while reordering is unresolved and the ACK flag is left on, duplicate ACKs would

be sent back to the sender in the data segments, triggering the very fast-retransmission that

the withholding of dupACKs seeks to avoid.

54

Chapter 5

Results

The exact effects of reordering on the performance of a TCP connection are heavily

dependent on the characteristics of that connection. The bandwidth and delay of the path

being used by the connection, as well as the packet sizes used, all play a role in determin-

ing the degree of reordering and its resultant effect on TCP. In addition, the exact timing

and distribution of the spurious retransmissions caused by packet reordering during the

duration of the connection factors heavily in determining the exact level of throughput

degradation that the connection experiences. These factors make it difficult to quantify

both the exact amount of degradation of throughput that reordering causes in TCP and the

effect of our scheme in improving that performance. In his paper describing the Eifel

algorithm [18], Ludwig notes this and argues that it is impossible to definitively evaluate

the throughput improvement that his scheme provides in the presence of reordering.

However, to examine the effectiveness of our modified TCP in improving transfer

throughput in the face of reordering, we chose to test its performance in specific reorder-

ing scenarios in an actual network. In particular, a Dummynet [23] was set up between

two hosts and used to simulate a multipath network topology that would induce reordering

of packets between the two end of a TCP connection. Performance of our modified

receiver was compared to that of an unmodified TCP receiver by recording the throughput

55

of data transfers performed over the network using the Test TCP (TTCP) tool in conjunc-

tion with the modified and unmodified receivers. In addition, the numbers of spurious

fast-retransmissions that occurred in connections using each of the receivers were com-

pared. This was measured using the number of completely duplicate packets received at

the receiver, which is an accurate count of the number of spurious fast-retransmissions

when packet duplication is rare, as it is in today's Internet.

5.1 Test Setup

A series of tests were run over a number of networks with various bandwidth-delay prod-

ucts. Different multipath topologies, corresponding to different levels of reordering, were

used to produce the necessary levels of packet reordering needed to test the effectiveness

of our scheme in the presence of reordering. All links had bandwidths of 1.5Mbps, and a

fixed packet size of 500 bytes was used. Topologies using three different sets of delays

were used to provide the different pipe-sizes required to test the effects of different

degrees of reordering. They included:

1) 50 ms path tests:

a) 50 ms: A single link with a 50 ms delay between sender and receiver, corre-

sponding to normal network conditions with no reordering. The pipe size (band-

width-delay product) of a 1.5Mbps link with a delay of 50 ms is 9375 bytes. As

such, a single link in this topology is capable of holding 18.75 500-byte packets

when completely full.

56

b) 50 ms/37.5 ms: Two parallel paths from sender and receiver, with one path con-

figured to have a delay of 50 ms and the other having a 37.5 ms delay. Packets had

an equal probability of being sent over either link to the receiver. The difference in

the bandwidth-delay products of the two links corresponds to the maximum reor-

dering stride possible for a TCP connection using this reordering-inducing net-

work. In this case, the difference in the bandwidth delay products was 2704 bytes,

or a quarter of the largest possible window size for this connection. This value also

corresponds to a maximum possible reordering stride of approximately five 500-

byte packets; in other words, the most a single packet could get out of order in the

flow was five packets, and degrees of reordering for individual packets in the flow

could range from zero to five. Thus, in this topology, the levels of reordering high

enough such that, in most instances of reordering, more than enough dupACKs are

generated to trigger a spurious fast-retransmission at the sender.

Only a single path with a delay of 50 ms was created between the receiver and

sender, so as to not induce ACK reordering and its resulting detrimental effects.

c) 50 ms / 25 ms: Two paths from sender to receiver, one having a delay of 50 ms,

the other having a delay of 25 ms, with a single 50 ms return path. The maximum

reordering stride for this topology was equal to nine packets, which corresponded

to 50% of the largest window size for this connection. Thus, the 50 ms multipath

topologies were used to test relatively low levels of reordering, where most cases

of reordering generated by the multipath configuration are of degrees such that

they will barely produce enough dupACKs to cause a spurious fast-retransmission

57

(i.e., the degree of reordering will be of levels such that around three dupACKs

will be generated in a single instance of reordering).

2) 100 ms path tests:

a) 100 ms single path, providing a non-reordering link between sender and re-

ceiver and corresponding to a pipe size of 18,750 bytes (37.5 packets).

b) 100 ms / 75 ms, providing a multipath topology that reordered packets with a

maximum reordering stride of nine packets (25% of window).

c) 100 ms / 50 ms, corresponding to a maximum possible reordering stride of nine-

teen packets (50% of window) for connections over these paths. Thus, these tests

correspond to heavier levels of reordering, where degree of most instances of reor-

dering will be high enough to generate more than three dupACKs and trigger a

spurious fast-retransmission.

3) 200 ms path tests:

a) 200 ms single path, supplying a non-reordering network and having a pipe size

of 37,500 bytes. Thus, 75 packets can fit in the pipe when full.

b) 200 ms / 150 ms, inducing reordering on packets passing over this topology,

with a maximum reordering stride of nineteen packets (25% of window).

9) 200 ms / 100 ms, inducing reordering levels with a maximum reordering stride

of thirty-seven packets (50% of window). Thus, the 200 ms path delay topologies

corresponded to cases of heavy reordering, where specific instances of reordering

58

will result in high threshold values in the dupACK withholding mechanism at the

receiver.

In addition to testing our modified receiver's performance in the presence of packet

reordering, we also tested its performance in the face of packet loss. Dummynet was used

to induce packet loss rates of 0.5%, 1%, and 5% on the each of the topologies and their

resultant levels of reordering.

5.2 Performance

To evaluate the true effectiveness of our scheme, its performance under the three different

conditions mentioned above was tested: normal in-order packet delivery, packet reorder-

ing, and packet loss. In addition, the throughput of connections using our modified

receiver under conditions of combined packet reordering and packet loss was examined to

determine the robustness of our scheme under such conditions.

5.2.1 In-order packet delivery

For each of the single link topologies where no packet reordering occurred, the con-

nections using the modified receiver achieved throughputs virtually equal to those of con-

nections using the unmodified TCP receiver. For instance, connections using the modified

receiver over the network with a 50-ms path delay achieved an average throughput of

1217.02 kbps (Figure 5.1). This was virtually equal to the average throughput of 1217.04

kbps for the connections using the unmodified TCP receiver over the same topology. Sim-

ilar performance numbers were seen over each of the other delays. Thus, the modified

59

receiver met the design goal of minimally impacting TCP under normal, in-order opera-

tion and achieving a level of throughput equal to that of an unmodified receiver subject to

the same conditions. This is to be expected, as the implementation of our mechanism in

the receiver does little to affect on the code that handles in-order packet processing at the

receiver.

5.2.2 Packet reordering

In each of the multipath topologies that caused reordering of packets, the detrimental

effects of reordering on TCP performance could clearly be seen in connections using the

unmodified receiver (Figure 5.1). For the topologies corresponding to the 50 ms delay,

throughput dropped by almost 38%, from 1217.04 kbps when no reordering was present.

Performance suffered even more for the larger delay topologies, as the combination of

larger possible reordering stride resulting in more fast-retransmissions and larger absolute

reductions in window sizes when cwnd was halved by a spurious fast-retransmission

worked together to drive down the throughput of the connection. Most strikingly, for the

200 ms topology, throughput dropped almost 80% in the case where the maximum possi-

ble reordering stride was on the order of half of a window size.

In stark contrast, for all delays, connections using the modified TCP receiver achieved

throughputs virtually equal to those of normal TCP when no reordering was present. For

example, for the 100-ms delay, the connection averaged 1163.77 kbps for the heaviest

60

Throughput Over 1.5 Mbps / 50 is Paths
Throughput: bps x 103

1.40 -

1.30

1.20 -'.

1.10

1.00

0.90

0-80

0.70

0.60 -

0.50 -

0.40 -

0.30

0.20 -

0.10 -

O.0o -

O.00 2.00 4.00 6.00 S.o

lodifiedRecciver
4odifiedRccviver

Maxi mum sti de (paw kels)

Figure 5.1: Plots of throughput versus maximum reordering stride for the topologies based on 50-ms path
delays. A maximum stride of zero corresponds to the case where no reordering is present. The benefit of our
modified receiver can clearly be seen as, in the case of heaviest reordering, throughput increases more than

50% over the unmodifed receiver and equals that of the case when no reordering is present.

Throughput Over 1.5 Mbps / 100 im Paths
Throughput: bps x 103

10.00 15.00

o4diifiadRceivcr
-Unxmodifi dRcei-vcr

Maximum stri do (pac kets)

Figure 5.2: Throughput -vs- maximum reordering stride for 100-ms path delays. Reordering in this topol-

ogy results in a larger number of spurious fast-retransmissions, and the modified receiver offers almost three
times the throughput of the unmodified receiver.

61

1.50 -

1.40 -

1.30 -

1.20

1.10

1.00

0.90

0.80 -

0.70 -

0.60 -

0.50 -

0.40 -

0.30 -

0.20

0.10

O.0

0.00 5.00

Throughput Over 1.5 Mbps / 200 ums Paths
Thmoughput; bps x 103

UoditicdReci-vcr
1.50 -- U riodifi edReceiver

1.40

1.30

1.20

1.10

LCaO - -0.90 -

0.40 -

0.0 -

0.60

0.50

0240

0.00 -
0 . d I Maximu stride (packets)
0.00 10.00 20.00 30.00

Figure 5.3: Throughput -vs- maximum reordering stride for 100-ms path delays. The benefits of our modi-
fied receiver can most clearly be seen in this case of heavy reordering, as it increases throughput more than

five times over that of the unmodified receiver.

An examination of the number of spurious fast retransmissions brings the effectiveness of

the modified receiver into sharper focus. Over the 10,000 packets sent in each test, con-

nections using the unmodified receiver on reordered networks averaged between 2.68 and

4.95 cwnd-halving spurious fast-retransmissions per 1000 packets sent (Figure 5.2). In

contrast, connections using the modified receiver averaged anywhere between 0.16 and

1.12 spurious fast-retransmissions per 1000 packets (Figure 5.3). This corresponds to

reductions of more than 95% in the number of spurious fast retransmissions for the heavi-

est levels of reordering. Thus, the effectiveness of the modified receiver and its withhold-

ing of dupACKs in reducing the number of spurious fast-retransmissions, and the resultant

gain in throughput, can clearly be seen in the results of these tests.

62

of Spurious Fast-
Topology Retransmissions

(per 1000 packets)

50 ms single link 0

50 ms / 37.5 ms 2.68

50ms / 25 ms 4.08

100 ms single link 0

100 ms /75 ms 2.06

100 ms / 50 ms 3.74

200 ms single link 0

200 ms/ 150 ms 3.18

200 ms / 100 ms 4.95

Figure 5.4: Number of spurious fast-retransmission per 1000 packets for connections using the unmodifed
TCP receiver

Figure 5.5: Number of spurious fast-retransmissions per 1000 packets for connections using the modified
TCP receiver The use of the modified receiver decreases the number of these throughput-decreasing

retransmissions anywhere from 80% to more than 95%.

63

of Spurious Fast-
Topology Retransmissions

(per 1000 packets)

50 ms single link 0

50 ms / 37.5 ms 0.16

50ms / 25 ms 0.16

100 ms single link 0

100 ms /75 ms 0.20

100 ms/ 50 ms 0.20

200 ms single link 0

200 ms / 150 ms 0.89

200 ms /100 ms 1.12

5.2.3 Packet loss

In addition to testing our scheme's effectiveness in its primary purpose of improving per-

formance in the face of packet reordering and its effectiveness in cases of in-order deliv-

ery, it was also important to verify its robustness in cases of packet loss. This is because

the trade-off in our design is that the receiver is given greater time to disambiguate packet

reordering from packet loss, but at the cost of increased delay and increased time to iden-

tify and react to actual packet loss. Thus, it is important that our scheme both show

improved performance in the presence of reordering and, in the presence of packet loss,

offer performance comparable to that of a connection using an unmodified TCP receiver.

As such, the performance of our modified receiver was tested in the same topologies previ-

ously tested, but with packet loss rates of 0.5%, 1%, and 5%. In addition, our original

tests can be seen as tests in the presence of no packet loss, as loss was negligible in our

Dummynet.

The 0.5% packet loss rate corresponds to a case where the number of fast-retransmis-

sions caused by packet losses is nearly equal to the number of spurious fast-retransmis-

sions caused by reordering in our topologies (ie. 50 fast-retransmissions caused by loss per

1000 packets sent vs. -26 to -49 spurious retransmissions per 1000 packets caused by

reordering). Both the 1% and 5% loss rates corresponded to cases where retransmissions

due to loss greatly outnumbered spurious retransmissions due to reordering.

64

Throughput: 1.5 Mbps / 50 ms Paths, with 0.5% Packet Loss Rate
Throughput: kbpu

- -....

2.00 4.00 6.00 8.00

IMadifiedReceiver

U xrmcodifl tdRcr-e ivr

Maxi mum stri do (pac kcla)

Figure 5.6: Throughput -vs- maximum reordering stride for connections with 0.5% packet loss rates over
50-ms path delays. The modified receiver also offers increased throughput in this case, where the number of

fast-retransmissions due to packet loss is similar to the number of spurious fast-retransmissions.

Through put: 1.5 Mbps / 100 ums Paths, with 0.5% Packet Loss Rate
Throughput: kbpa

5.00 10.00

McodifiadRccivcr

U znrmodifiedRcccive r

15.00

Figure 5.7: Throughput -vs- maximum reordering stride for connections with 0.5% packet loss rates over
100-ms path delays. Again, the benefit of our scheme is apparent for comparable levels of packet loss and

reordering. In this case, throughput increases more than five times in the worst case.

65

150.00

100.00

550.00

500.00

450.00 - -

400.00 -

350.00-

300.00 - -

250.00

200.00

150.00

100.00

50.00

O.O

0.00

75000 -

100.00 -

650.00 I-
600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

O.O

0.00

Ii

Maxi mumn stri de (pac kfts)

Throughput: 1.5 Mbps /200 ims Paths, with 0.5% Packet Loss Rate
Throughput: k-bpu

I I IIAcditiedRccovivar
750.00 - -UnmodifiedReceivcr

700.00 -

650.00 -

600.00 -

550.00

500.00 -

450.00 -

400.00 -

35000

300.00

250.00 -

200.00 -

150.00 -

100.00 -

50.00 -

I. r I 3 Maxi mum stri de (pac ks)
0.00 10.00 0.0 30.00

Figure 5.8: Throughput -vs- maximum reordering stride for connections with 0.5% packet loss rates over
200-ms path delays. Again, the benefit of our scheme is apparent here.

For topologies experiencing 0.5% packet loss rates (where the number of retransmis-

sions due to packet loss were roughly of the same magnitude as those caused by reorder-

ing), our modified receiver produced higher throughputs across all levels of reordering

(Fig. 6.6. - 6.8). For example, for the maximum level of reordering, corresponding to a

maximum possible reordering stride of thirty-seven 500-byte packets over a 200-ms link,

connections using our scheme averaged 379.17 kpbs, while connections using the unmod-

ified receiver over the same topology averaged only 165.52 kbps. In these cases, the per-

formance benefit that our dupACK withholding scheme provides in the face of reordering

far outweighs the performance loss caused by the additional withholding delays.

In tests over topologies that induced 1% packet loss rates (and the number of possible

retransmissions due to loss outnumbered those due to reordering by a 2-to-1 or 3-to-1

66

ratio), our scheme had performance poorer than unmodified TCP in almost all cases. This

is to be expected, as for each packet actually lost, higher thresholds due to the presence of

reordering causes the connection to wait for a longer period of time before identifying

actual packet loss and triggering a retransmission. In fact, this is the configuration that

would cause our scheme to perform least favorably, when only some reordering is present,

but the incidence of reordering is greatly outstripped by the incidence of packet loss. In

those cases, for each actual packet loss, the connection will have to wait for an additional

time equal to delay caused by the withholding mechanism. In addition, for cases of infre-

quent reordering, the benefits of preventing spurious retransmissions due to reordering

will not be experienced enough by the connection to outweigh these additional delays.

However, even for packet losses of this level, our scheme still improved on the perfor-

mance of unmodified TCP in the case of heaviest reordering. In a 200ms/100ms delay

multipath topology where reordering could be on the order of up to 39 packets, our

scheme once again outperformed unmodified TCP (Figure 5.11), as the performance ben-

efit derived from preventing spurious fast-retransmissions once again outweighed the drop

in throughput due to additional delays.

In the tests for 5% packet loss rates, levels of throughput were uniformly low, across

all configurations of delay and reordering and no matter whether the modified or unmodi-

fied receiver was used. This is most likely due to the fact that, since 1 in every 20 packets

were being lost, windows sizes were driven to consistently low values due to repeated

retransmissions and their resultant decrease in the size of cwnd.

67

Throughput: i5 Mbps / 50 ims Paths, with %
Throughput: kbpa

500.00

450.00 -

4CO.00 -

350.00 -

300.00 -

250.00 -

200.00 -

150.00 -

I I I -- I I
- -,- --- ~' - .. _

50.00 F-

0.00

0.00 2.00 4.00 6.00 8.00

Packet Loss Rate

qdificdRcoaivvr

ModifiedRcivcr

Maxi munm stri de (pac kv1s)

Figure 5.9: Throughput -vs- maximum reordering stride for connections with 1% packet loss rates over 50-
ms path delays. In situations where packet loss far outstrips reordering, our scheme shows a slight degrada-

tion in performance, resulting in throughput 10% lower than connections using an unmodified receiver

Throughput: 1.5 Mbps / 100 ims Paths, with % Packet Loss Rate
Thmoughput: kbpu

I I I I ModificdRcceiver
-U irmodifi edRc0iver

10.00 15.00
Maxi rMuZ Stri ide tpac kies)

Figure 5.10: Throughput -vs- maximum stride for connections with 1% packet loss rates over 100-ms paths.
Performance again tails that of the unmodified receiver but by less than 5% in this case, as negating the

effects of even low relative levels of reordering results in performance gains.

68

500.00

450.00 -

400.O -

350.00 -

Goo.CO -

250.CO -300.00-

150.00 -

100.00 -

50.0O -

0.00

0.00 5.00

Throughput: 15 Mbps / 200 ms Paths, with % Packet Loss Rate
Thmoaghpul: krbpa

McoficdReciere
500.00 UnmcdifiedRecciver

450.00

400.00

350.00

300.00

250.00 -

200.00 -

150.00 - -'-- ------ -

100.00

50.00

0.00-
0.00 F

Mami zaam aftr dc (pac kets)
0.00 10.00 20.00 30.00

Figure 5.11: Throughput -vs- maximum reordering stride for connections with 1% packet loss rates over
200-ms path delays In this case, as reordering increases, the performance gain of our scheme in the face of
reordering begins to outpace the degradation in performance due to loss as the level of reordering increases

and the effects of spurious fast-retransmissions begin to take their toll on the connection.

Thus, from the results of our experiments, it is possible to conclude that receivers

implementing our dupACK withholding scheme offer significantly improved performance

in cases where the incidence of reordering greatly outstrips the level of packet loss and in

cases where the incidence of both anomalies are equal, while having slightly degraded

performance in cases where the incidence of packet loss is much greater than that of reor-

dering. However, one of the strengths of our scheme is that it can be implemented solely

in the receiver and at the choosing of the individual user. Thus, users themselves can eval-

uate the dynamics of the networks they are using and, if reordering is the main pathology

they observe in their network, can implement our receiver and benefit from the significant

gains in throughput it provides.

69

70

Chapter 6

Conclusion

Our scheme for improving TCP's decreased performance in the face of packet reordering

is based on a single observation. The degradation in TCP transfer throughput in the pres-

ence of packet reordering is a direct result of spurious triggering of the fast-retransmission

algorithm at the TCP sender. Thus, the desired goal of our solution was to eliminate these

throughput-reducing spurious retransmissions caused by reordering.

The mechanism we implemented for improving TCP's throughput in the presence of

packet reordering achieves this goal, as evidenced by the fact that connections using a

modified receiver that implements the duplicate ACK withholding mechanism exhibit

almost no drop in throughput in the face of large amounts of packet reordering. This can

be contrasted with the performance of unmodified TCP, which experiences a significant

drop in throughput due to a large number of reordering-induced spurious fast-retransmis-

sions. As such, our experimental results have found that, in cases where extreme levels of

reordering exist, our scheme can provide up to five times the throughput when compared

to connections using the unmodified receiver. In addition, in cases where both reordering

and packet loss exist, our scheme offers more than twice the performance of the unmodi-

fied receiver in cases where reordering and loss are equally likely while only showing a

degradation in throughput of less than 10% in cases where the incidence of loss far out-

strips that of reordering.

71

In addition to achieving the chief goal of improving the performance of TCP in the

face of packet reordering, the implemented solution also adheres to the other design crite-

ria we set out to meet. The dupACK withholding scheme allows the entire mechanism for

eliminating fast retransmissions to be implemented purely in the receiver. In addition, the

throughput for a TCP connection over a path that causes no packet reordering and which

uses our dupACK-withholding modified receiver is equal to that of a connection using an

unmodified receiver.

As stated previously, there is a current need to modify TCP to be able to robustly han-

dle packet reordering, both to allow it to adapt to current levels of reordering and also to

allow the protocol to be used with networking technologies that induce packet reordering.

The receiver-based modifications to TCP discussed in this thesis have been shown to

improve TCP's performance in the presence of reordering without affecting its perfor-

mance under normal conditions. As a result, this solution is a viable option for users who

wish to improve the performance of their TCP connections in the face of reordering.

72

References

[1] Allman, M., Balakrishnan, H., and Floyd, S. Enhancing TCP's Loss Recovery Using
Limited Transmit. RFC 3042. January 2001.

[2] Allman, M. On the Generation and Use of TCP Acknowledgments. Computer Com-
munication Review, Vol. 28, No. 5, October 1998.

[3] Bennett, J., Partridge, C., and Shectman, N. Packet Reordering is Not Pathological
Network Behavior. IEEE/ACM Transactions on Networking, Vol. 7, No. 6, Dec.
1999. pp. 7 8 9 -7 9 8 .

[4] Braden, R. Requirements for Internet Hosts - Communications Layers. RFC 1122.
October 1989.

[5] Broch, J., Maltz, D., Johnson, D., Hu, Y., and Jorjeta, J. A Performance Comparison
of Multi-Hop Wireless Ad Hoc Network Routing Protocols. In Proc. of the 4th
ACM/IEEE Mobicom. October 1998

[6] Cisco Systems. Cisco Express Forwarding Feature Module. http://www.cisco.com/
univercd/cc/td/doc/product/software/ios112/ios112p/gsr/cef.htm. Copyright 1998-
99.

[7] A. Costello and G. Varghese. Redesigning the BSD Callout and Timer Facilities.
Technical Report WUCS-95-23, Washington University in St. Louis, November
1995. http://www.cs.wustl.edu/cs/techreports/1995/wucs-95-23.ps.gz.

[8] Fall, K. and Floyd, S. Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP. Computer Communication Review, Vol. 26. No. 3. July 1996. pp. 5-21.

[9] Floyd, S. Questions: SACK TCP Deployment: What Fraction of the Bytes/Packets/
TCP-Flows in the Internet are SACK-capable? http://www.aciri.org/floyd/ques-
tions.html

[10] Floyd, S. Re: TCP and Out-of-Order Delivery. end2end-Interest mailing list. Feb. 2,
1999.

[11] Floyd, S. TCP and Successive Fast Retransmits. http://www.aciri.org/floyd/papers/
fastretrans.ps. May 1995.

[12] Floyd, S., Mahdavi, J., Mathis, M., and Podolsky, M. An Extension to the Selective
Acknowledgment (SACK) Option for TCP. RFC 2883. July 2000.

73

[13] Gustafsson, E and Karlsson, G. A Literature Survey on Traffic Dispersion. IEEE
Network. March/April 1997. pp. 28-36.

[14] Hoe, J. Improving the Start-up Behavior of a Congestion Control Scheme for TCP. In
Proceedings of ACM SIGCOMM '96, August 1996.

[15] Hoe, J. Startup Dynamics of TCP's Congestion Control and Avoidance Schemes.
MIT Master's of Science Thesis. June 1995.

[16] Jacobson, V. 4BSD TCP Header Prediction. Computer Communication Review, Vol.
20, No. 2, April 1990. pp. 13-15.

[17] Johnson, D. Routing in Ad Hoc Networks of Mobile Hosts. In Proc. of the IEEE
Workshop on Mobile Computing Systems and Applications. December 1994.

[18] Ludwig, R. and Katz, R. The Eifel Algorithm: Making TCP Robust Against Spurious
Retransmissions. ACM Computer Communications Review, Vol. 30, No. 1. January
2000.

[19] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. TCP Selective Acknowledg-
ment Options. RFC 2018. October 1996.

[20] Morris, R., Jannotti, J., Kaashoek, F., Li, J., and DeCouto, D. CarNet: A Scalable
Ad- Hoc Wireless Network System. Proceedings of the 9th ACM SIGOPS European
Workshop: Beyond the PC: New Challenges for the Operating System. September
2000.

[21] Paxson, V. End-to-End Internet Packet Dynamics. IEEE/ACM Transactions on Net-
working, Vol. 7, No. 3, June 1999. pp. 277-292.

[22] Paxson, V. End-to-End Routing Behavior in the Internet. IEEE/ACM Transactions
on Networking, Vol. 5, No. 5, October 1997. pp. 601-615.

[23] Rizzo, L. Dummynet: A Simple Approach to the Evaluation of Network Protocols.
ACM Computer Communication Review, Vol. 27, No. 1. January 1997. pp. 31-41.

[24] Stevens, W. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. RFC 2001. Jan. 1997.

[25] Wright, G. and Stevens, W. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley Publishing Company, 1994.

74

[26] Wright, G. and Stevens, W. TCP/IP Illustrated, Volume 2: The Implementation.
Addison-Wesley Publishing Company, 1995.

[27] Zhang, Y, Paxson, V., and Shenker, S. The Stationarity of Internet Path Properties:
Routing, Loss, and Throughput. www.aciri.org/vern/papers/stationarity-
MayOO.ps.gz. May 2000

75

