
Dynamic QoS Resource Allocation in Bluetooth Piconet

by

Gaurav Tuli

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 6, 2001

Copyright 2001 Gaurav Tuli. All rights reserved. BARKER

The author hereby grants to M.I.T. permission to reproduce an MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so. JUL

LIBRARIES

Author

Department of Electrical Engineering and Computer Science

February 6, 2001

Certified by_

Gopal Krishnan

VI-A Company Thesis Supervisor

Certified by

Accepted by

Professor Kai-Yeung (Sunny) Siu

TheaU_uervisor

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

A I

2

Dynamic QoS Resource Allocation in Bluetooth Piconet

by

Gaurav Tuli

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 6, 2001

ABSTRACT

The purpose of this thesis was to address the issue of resource allocation in the bandwidth-constrained
environment. We focus on the provisioning of resources to adaptive multimedia applications that can
change coding schemes based on available resources. We explore the issues behind designing a general
call-level QoS system that reserves paid-for resources for these applications. Our primary contribution is in
the algorithms for network admission control. Here we introduce a dynamic resource negotiation scheme
that not only allows for adaptive flows during traffic execution, but also for QoS re-negotiations with
existing flows at the point of admission decision for a new flow. Results show noteworthy increases in call
acceptance rates and average number of users receiving their requested QoS.

VI-A Company Thesis Supervisor: Gopal Krishnan
Title: Chief Architect, Motorola, Semiconductor Products Sector

M.I.T. Thesis Supervisor: Kai-Yeung (Sunny) Siu
Title: Associate Professor, MIT Department of Mechanical Engineering

3

4

Acknowledgments

This work would not have been possible if it were not for
Gopal Krishnan, my supervisor at Motorola, who never
ceased to amaze me with his ideas, insight and dedication.
Thank you to Professor Siu for providing the essential
academic perspective and reviewing our drafts. I owe my
sincerest thanks to my family for their endless love and
support, and instilling into me their wonderful appreciation
of education. And finally, thank you to those people who
have remained so close to me, you know who you are, and
without you I would never have reached where I am today.

5

6

Table of Contents

I Introduction

1.1 Motivation and Introduction

1.2 Main Contributions

1.3 Thesis Structure

2 Background

2.1 Quality of Service (QoS)

2.2 Mobility

2.3 Bluetooth

2.4 Available Bit Rate Applications

2.5 Dynamic QoS Management

3 Problem

3.1 Problem Statement

3.2 Solution Overview

4 Design

4.1 QoS Framework

4.2 QoS Parameter Selection

4.3 Utility Model

4.4 Literature Survey of Dynamic Schedulers

4.5 Dynamic Admission Control Algorithm

4.6 Interval Maintenance System Overview

7

5 Simulation and Results

5.1 Simulation Environment

5.2 Results

5.3 Analysis

6 Conclusion

Bibliography

Appendix A: Simulation code

8

CHAPTER 1

INTRODUCTION

1.1 Motivation and Introduction

Short-range wireless connectivity is seeing an emerging demand in consumer and

enterprise markets as handheld devices are growing in usage and popularity. Both

business and personal users are feeling the increasing need to have effortless,

instantaneous connections to local area networks wherever they are. Additionally, they

are demanding ad hoc (instantaneous) connections between their personal devices to

exchange information with other users and/or to synchronize data between their own

electronic devices. Enterprise users are realizing the benefits of replacing the traditional

tethered Ethernet in their offices with wireless connections. According to market

research firm Frost & Sullivan, this wireless local area network (WLAN) market in the

United States will see a 20.7% compound annual growth rate from 1996-2003 and

Yankee Group projects $1.3 billion in revenue in the WLAN space by 2002 [YAN00].

Many business trends are leading the way for the need for wireless connectivity.

First and foremost, there has been significant growth in mobile infrastructure for

communications. Companies depend even more on real-time information for their

employees. Users' productivity increases dramatically when they can communicate

easily with coworkers. Additionally, employees are working more frequently from many

9

different locations: home, office, and on the road. Virtual private networks and public

access stations are becoming more vital.

For many small devices it will be essential to offer wireless connectivity because

without it, the benefits of mobility are lost. Products such as cell phones and personal

uigial as istans (rIAs) UCU111 111Ldasingly useful a synchronizatin amngsL edLa

other and with laptops/desktops can occur wirelessly and instantaneously. Beyond just

these devices, wireless solutions offer the convenience of reaching networked appliances

that cannot be tethered easily. Companies are designing network-enabled appliances

such as washing machines and microwaves for which a wireless network connection

would be most applicable [YANOO]. An entire home can be networked without the

clutter and labor needed for wiring Ethernet.

Wireless connectivity is an alternative to traditional tethered Ethernet and new

technologies such as HomePNA (a home-networking kit that allows PC's to network

through traditional phone jacks). For homes with fewer phone jacks or regulations

surrounding their use (such as in Europe), wireless networking is the obvious solution. In

offices, the convenience of moving a laptop from one local area network to a conference

room to another local area network while retaining a video conference call is invaluable.

Corporate users can bring their work home more easily by having their office laptop

instantly attach itself to their home network when they arrive home. These future

personal area networks (PANs), where PDAs, laptops and cell phones are all

communicating wireless, are expected to transport a broad spectrum of traffic including

audio, video, pictures and data.

10

As a response to this growing demand, many proposed standards have emerged to

offer this kind of connectivity to consumers. These include, among others, Bluetooth and

IEEE 802.1 lb and HomeRF. The Bluetooth protocol aims to be the lowest cost and most

robust solution to short-range wireless connectivity. Bluetooth was conceptualized by

Ericsson and developed by the Bluetooth Special Interest Group as a cable replacement

technology primarily for low-cost mobile devices. The first release of the protocol came

in 1999 with very low power consumption and data rates of up to 1 Mbps. The range

varies from 10 meters for low power to 100 meters for the full power device. For

Bluetooth enabled devices, the key feature is its ability to instantaneously connect

devices when they are within transmitting distance of each other. A user's PDA will

automatically synchronize itself with his laptop when he brings them close together. Two

Bluetooth laptops can also instantly network with each other to allow for file exchange

when they are near one another. The technology supports up to 8 nodes per piconet and

uses a Frequency Hopping Spread Spectrum scheme in the 2.4 GHz range. The

emergence of the scatteret concept will allow a greater number of devices in a Bluetooth

network. A noticeable feature for voice/data convergence is that Bluetooth can support up

to 3 simultaneous voice channels while still running 5 other data flows [BLU99].

One of the major problems facing this technology however, is the fair handling of

heterogeneous traffic to guarantee a specified level of quality of service (QoS). The

proposed Bluetooth standard attempts to addresses this issue, however we believe many

improvements can be made in the manner Bluetooth handles real-time traffic such as

voice telephony and streaming video.

11

Support for such multimedia applications over the Internet is presently in very

early stages. Real-time traffic can run seamlessly in corporate environments where

bandwidths range from 1 Mbps to 100 Mbps, however an environment where bandwidth

is constrained and inconsistent poses a large barrier for these applications. In public

access networks for example, the guaranteeing or reservation of resources in a highly

contentious, low resource environment is a very difficult problem. The Internet

Engineering Task Force (IETF) has been developing recommendations towards issues

related to security, pricing and guaranteeing of services in the Internet. Because of the

best-effort nature of packet transmission in the Internet, IETF has devised protocols to

expand the ability of public access networks to handle real-time traffic. These include

the Resource Reservation Protocol (RSVP), Internet Protocol version 6 (IPv6), and Real-

Time Transport Protocol (RTP).

QoS in Bluetooth faces similar issues as public access networks. It was designed

as a low-bandwidth, low-power consumption protocol ideal for mobile environments.

Thus, available resources are changing rapidly as users move in and out of a Bluetooth

network, making maximum resource utilization a difficult task.

1.2 Main Contributions

The primary focus of this research is to address the issue of resource allocation in

the bandwidth-constrained, mobile, Bluetooth environment. For our study, resource

allocation consists of three distinct functions: admission, scheduling and maintenance.

We focus on the provision of resources to adaptive multimedia applications that can

change coding schemes based on available resources. We explore the issues behind

12

designing a general call-level QoS system that reserves paid-for resources for these

applications. We hope the research is applicable in most mobile environments where

available resource conditions are changing frequently. Our key contribution and focus is

in the algorithms for Bluetooth network admission. Here we introduce a dynamic

resource negotiation scheme that not only allows for adaptive flows during traffic

execution, but also for QoS renegotiations with existing flows at the point of admission

decision for a new flow.

More specifically, our main contributions include:

* Recommendations on a QoS signaling framework suitable in the mobile

environment

. A selection of essential QoS parameters with negotiable parameter

windows

. A versatile model of resource utilization in a paid-for-resource

environment

. A survey of dynamic scheduling routines

. Algorithms for optimal bandwidth provisioning at admission control

. Stochastic simulation of network at point-of-admission decision

. Recommendations for QoS interval maintenance routines

1.3 Thesis Structure

The remainder of this thesis is arranged as follows:

. Chapter 2 provides background information on many of the important issues

related to our research including quality of service, mobility, Bluetooth

13

technology, adaptive rate multimedia applications and dynamic QoS

management.

* Chapter 3 presents our problem statement, proposed approaches and the

solution overview.

utility. We survey dynamic schedulers and detail and justify our admission

algorithms. Additionally we discuss options for interval maintenance

routines.

- Chapter 5 discusses the simulation environment and results of our research in

admission algorithms.

* Chapter 6 offers concluding remarks and an overview of directions for future

work in this area.

14

CHAPTER 2

BACKGROUND

2.1 Quality of Service

2.1.1 QoS Overview

Future personal area networks (PAN) are expected to reliably transport a broad

spectrum of traffic including audio, video, pictures and data. Each of these traffic types

places a different set of requirements on the network carrying it. Digital audio and video

streams found in modem multimedia applications for example, demand a level of service

quality that is not necessarily attainable by traditional "best effort" networks. The nature

of this type of data requires that networks provide for low delay, jitter and packet loss so

that a continuous and timely data stream is received at the destination. Multimedia data

can often tolerate a certain level of loss or corruption, but its delay requirements are often

stringent so that the stream remains uninterrupted. On the other hand, data traffic (such

as FTP transfer), which is more latency tolerant, requires a strict level of data reliability.

The varying requirements of different data types leads to the need for a measure

of service quality so that each type of traffic can define its requirements. The traditional

measures of service quality are delay, jitter, bandwidth and reliability [FH98]. Delay is

the length of time elapsed from transmission to arrival. For interactive network

applications, long delay is undesirable. Jitter is the variation in delay experienced by the

receiver. High levels of jitter result in a discontinuous stream, which is inadequate for

15

audio and video. Bandwidth is the maximum transfer rate associated with a transmission

channel. Multiple flows may occupy the channel and share a given bandwidth. Some

applications require low bandwidth, such as the transmission of control information,

whereas others demand high bandwidth, such as video streams. Finally reliability is a

meiSUr 0f a 11twU.Lrk's error rate. 1111s inL1tUes osing packtLs UUe L) congestion or

retransmitting due to corruption. An unreliable voice stream may sound broken and

"crackly" at the receiver.

These measures of service quality can be used to broadly categorize traffic into

two classes summarized in the table below:

Class I Class II

Name Real-time Non-real-time

Examples Voice & video Data services

Delay Bounded Unbounded

Jitter Bounded Unbounded

Bandwidth Guaranteed Not guaranteed

Reliability Loss-tolerant Zero-loss

Time Probably defined Not defined

Time Slots Defined N/A

Table 2.1: Traffic Classes

Having defined measures of service quality we can now use the following

definition of quality of service (QoS):

16

A network that provides QoS differentiation for applications must also be able to

reliably deliver this QoS consistently and predictably [FH98]. There are 3 primary

approaches in guaranteeing a given set of QoS parameters. The first method treats all

traffic equally by simply assigning a maximum packet delay that can be guaranteed. The

other two methods rely on the fact that the data being transmitted is either class I (time-

bounded) or class II (not time-bounded). Method 2 gives highest priority to class I

services and allows them to run to completion before class II services can begin

transmitting. Method 3 allows both classes to transmit simultaneously, however if class I

services are not meeting their QoS guarantees because class II is also transmitting, then

class II will be temporarily delayed towards transmission of data within the latency

tolerant interval. Method 3 obviously has the best bandwidth efficiency of the three in

heterogeneous traffic but may require a complex algorithm to allow for arbitration

between Class I and Class II packets [SET98].

2.1.2 QoS Survey

Because most of our work involves the provision of QoS in some manner, we

provide here a brief survey of existing QoS systems. We divide the mechanisms of

delivering QoS by the network stacks/layers.

17

Quality of service is a set of the measures of service quality a given

application requires for proper operation.

2.1.2.1 Physical layer

We view the physical layer as the lowest level of hard-wired paths within a

network where the primary concern is the delivery of bits (in whatever form they are

rLCe1VeU 1r1m hihe 1ayers) intR d channel. T1us aL tMs 1ayr, pruvisioing Of Q03 can

only be done through providing multiple paths (multiple frequencies / tones for Digital

Subscriber Lines and multiple time slots for Bluetooth) to destination. In this form, the

QoS provided is termed differentiated services. Traditionally, the creation of multiple

paths has been for backup purposes, as would be needed in the case that a primary link

fails, but with TDM based services the multiple paths are increasingly aimed at QOS

convergence. However, if the two paths offer different physical characteristics that result

in distinct bandwidth and delay properties, higher layers protocols can transmit data

through either path depending on the QoS requirements of the data.

Problems with this method are two-fold. First, higher layers implement signaling

systems so that the receiver can determine traffic parameters. Unless intelligent signaling

is implemented, the feedback mechanism between the sender and receiver will result in

the lowest quality of service link in multiple paths to shape the flow. This removes the

effectiveness of having multiple paths at the physical layer. Secondly, asymmetric

send/receive paths could result in ineffective signaling where the receive path

acknowledgments may give inaccurate measures of link latency.

2.1.2.2 Link Layer

18

The link layer frames data for point-to-point, error-free transport through the

physical layer. QoS is implemented in this layer in Asynchronous Transfer Mode (ATM)

networks and proposed by IEEE 802.1p for Ethernet LANs. ATM provides a very broad

but complex virtual circuit system to provide QoS in its networks. It differentiates traffic

into 4 requirement sets and guarantees service in some form for each of them. Constant

Bit Rate (CBR) applications require a constant level of bandwidth and maximum delay

bound. These include voice and some video applications and are given virtual circuit

treatment by ATM. Real-time and non-real-time variable bit rate traffic (rt-VBR and nrt-

VBR) are treated as applications that transmit at variable rates through the lifetime of

their connection. Rt-VBR traffic is categorized as multimedia streams that can tolerate

some cell loss or impaired cells. Because of the delay requirements of the flows, when

cells rt-VBR traffic become excessively delayed, they become of little or no value to the

receiver. Nrt-VBR traffic is targeted for transaction-based applications where traffic is

expected in bursts. In such traffic, a bandwidth guarantee is required for the applications

to run effectively, though delay is not a necessary component. Available bit rate (ABR)

applications dynamically modify their coding scheme to adjust to the available resources

in the network. ATM provides feedback to the originators of this traffic class so that they

can fully utilize the network for their service. Finally unspecified bit rate (UBR)

applications are essentially best effort. Flow control and time synchronization between

the source and destination do not occur. This type of handling is appropriate for data

transfers, such as with FTP.

The primary problem associated with ATM QoS handling is its complexity and as

a result, network administrators have been hesitant to use its diverse features. Added to

19

this problem however, is that ATM is not widespread enough to have these QoS

implementations be useful. For true end-to-end QoS in an ATM system, the entire

connection must have ATM at the link layer. This is a rare case however. More often

than not, ATM only provides the link layer at a small segment of the larger traffic path.

As a rcsult, thc cnd-to-end characteristics are what shape the flow and the effectiveness

of the QoS implemented in ATM is significantly reduced. Additionally, higher layer

protocols that manage flow and congestion control in their own way will force ATM to

receive inaccurate information on its own portion of the flow.

IEEE 802.1p provides mechanisms for prioritized traffic in an Ethernet or token

ring environment. At the link layer, it defines a user priority field that offers up to 8

different priority levels. Specialized queuing systems ideally would be able to map this

priority field into a relative queuing order in LAN switches and routers.

2.1.2.3 Network Layer

At the network layer in the global Internet, we look to TCP to provide any

mechanisms for quality of service. For reliable, adaptive rate transmission (this does not

necessarily imply adaptive-rate applications as in ABR traffic), TCP provides several

end-to-end procedures for congestion avoidance. In an attempt to find a stable point

where the sender and receiver are performing at optimal and equal rates, TCP uses two

mechanisms. First TCP slow start incrementally injects traffic at a higher rate (by

increasing TCP window sizes) until congestion in the network is seen. When this occurs,

the second mechanism, congestion avoidance, significantly (often halving) reduces the

window size and lets slow start take over again. This system of slow start and congestion

20

avoidance works well in most situations. However, where many flows are

simultaneously existing, an unstable state can be reached when all are hitting congestion

at the same time on a consistent basis.

Other network layer mechanisms are:

. Resource Reservation Protocol (RSVP) provides a signaling mechanism for

notification of necessary allocations

. Prioritized packet discarding in queues based on Internet Protocol's (IP) Type of

Service parameter

. Scheduling algorithms that provide preferential treatment towards

differentiated services (e.g. priority queuing, weighted fair queuing)

2.2 Mobility

The introduction of mobility into personal area networks introduces problems and

complexities not found in traditional stationary networks. A mobile ad hoc network is

characterized as a distributed system of independent mobile nodes connected through a

wireless medium. These nodes act as both hosts and routers in an ever-changing network

topology. Mobile ad hoc networks are often relatively low-bandwidth (as compared to

stationary LANs) and are dynamically interference prone. Because mobility allows

freedom to move over short distances, network conditions can change frequently and

drastically. Users in a mobile environment can move in and out of the ad hoc network as

they wish, and thus available resources within the network are changing unpredictably.

Thus, the issue of predictable response to this changing environment is an essential

21

problem to QoS in a mobile system. Such networks require highly adaptive architectures

to maintain a reasonable level of network utilization.

The impact of mobility on QoS has two key components:

. Link type

L 1-in~k opertbIIs in C moiesys-tems are signifLicanly different WhaI

traditional cabled networks because of low bandwidth and higher

unreliability. Modem wireless systems are often an order of magnitude

less in bandwidth than fixed networks. Therefore, multimedia

applications which can have bandwidth requirements on the order of Mbps

may run seamlessly in a wired Ethernet, but will face considerable

obstacles in the wireless environment. Therefore, in providing QoS,

mobile systems must try to dynamically utilize as much of the available

resources as possible.

. Movement

As devices move from one mobile network to another, a handoff occurs so

that the flow may continue uninterrupted. This puts stringent

requirements on the QoS management system because it must either

predict mobility or face frequent connection blocking. Because movement

causes variation in the available resources of a particular link, QoS

systems must provide operational ranges rather than hard allocations.

Movement also adds the requirement that the mobile QoS architecture

must accommodate the frequent entrances and exits of devices. However

the prediction of mobility is beyond the scope of this thesis.

22

2.3 Bluetooth

2.3.1 Overview

The Bluetooth protocol is an open standard for mobile wireless connectivity

between PCs and communication devices. It is an industry-backed development targeted

for voice and data transfer amongst devices over short-range (approximately 10m). It

operates in the unlicensed 2.4 GHz Industrial-Scientific-Medical (ISM) band where it

performs coordinated frequency hopping. Initially created as a cable-replacement

technology, its applications were meant to include simple ad hoc networking between

PCs and peripheral devices (such as PDAs and cell phones). Because of low-cost and

low-power consumption projections, the 9mm by 9mm Bluetooth chip's applications have

expanded to also include home networking and advanced network-enabled wireless

appliances. Additionally, the protocol benefits by connectivity that does not require line-

of-sight and works well through most walls and objects.

The Bluetooth Special Interest Group (SIG), the certification and standardization

body for the protocol, consists of 2000 member companies and was founded by Ericsson,

IBM, Intel, Nokia and Toshiba. Additionally, primary supporters include Motorola,

Microsoft and Lucent. By using the resources and expertise of each of these companies,

the technology has grown to be a robust and rapidly growing protocol. In its present

form, it supports 780 Kbps in asymmetric mode (721 Kbps down-link, 57.6 Kbps up-

link) and 432.6 Kbps in symmetric form. Additionally, it can support one asynchronous

data channel with 3 synchronous voice channels simultaneously or a single voice/data

23

channel. With these facilities, applications such as hands free headsets and automatic

synchronization with personal devices are intended to work seamlessly.

2.3.2 Network Profile

Tle 1uet-oohLII dU IaUL; and stationary networking scheme allows Ror grouping of

clients into piconets and the extension of piconets into Scatterets. Devices can exist

standalone or as members of a piconet as they move within and out of range. Piconets

grow in an ad hoc manner from 2 members, to include up to one master and 7 slaves.

Although all members have equivalent device specifications for Bluetooth, a master is

designated to synchronize the clock and frequency hopping pattern amongst piconet

members. Additionally, a client can be a slave in 2 piconets or the master in one and a

slave in another. This allows for scatterets, or several interconnected piconets (see

Figure 2.1). Each non-parked member of a piconet has a 3-bit active member address to

distinguish it from other clients. Sniff and hold modes are also low-power modes

(similar to park), however members retain their addresses and still participate in the

network periodically. Clients enter a piconet from standby mode when they are in range

of another Bluetooth device by either sending or receiving an inquiry or page instruction.

24

Figure 2.1: Bluetooth Scatternet

2.3.3 Architecture

The Bluetooth architecture, for our purposes, can be generally categorized into 5

roles. The RF unit operates the antenna and Bluetooth frequency hopping scheme. The

Link Controller (LC), or baseband, manages the low-level link responsibilities and

provisioning of data and voice channels for higher layers. The Link Manager (LM)

directs the management and creation of baseband links. The Logical Link Control and

Adaptation Layer (L2CAP) is responsible for providing connection oriented and

connection-less links to higher layers. Finally, above L2CAP are additional interface

protocols to the application layer.

2.3.3.1 RE

The RF control hardware operates the Bluetooth radio at 2.4 GHz using a 0 dBm

antenna which results in very low power consumption. It uses a frequency hopping

spread spectrum scheme to hop between 2.402 GHz and 2.480 GHz. Using hops of 1

25

Piconet X

P ic o n e t Y P ic-- - - -Z
Piconet YPiconet Z

.-- - --- - Save - . Master - ---- ----

MHz, it can achieve hopping rates up to 1600 hops/sec. This results in a 625 pis time-

slot. Bluetooth has a maximum symbol rate of 1 Mb/s.

2.3.3.2 Link Controller

The Link Controller is the baseband operations of Bluetooth devices. Bluetooth

LC provides physical layer link specifications for two link types. Both use Time

Division Duplex (TDD) schemes and support 16 different packet types. The packet types

provide a variety of services including various levels of error checking, relative packet

prioritization and multiple time-slot packets (1, 3 or 5 time-slot lengths). The link types

may change at any point during transmission. The two link types are:

. Synchronous Connection Oriented Link (SCO)

SCO links are point to point, connection-oriented links, primarily used for

time-constrained voice applications. They offer no packet retransmission

but have reserved time-slots for ordered and timely packet delivery. The

link is symmetric and both the master and slave can transmit without

polling. Slaves can have up to 2 SCO connections to different masters.

The master can have up to 3 simultaneous SCO links outgoing to slave(s).

. Asynchronous Connection-less Link (ACL)

ACL links provide packet-oriented connection-less transmission primarily

for data applications. The master designates link bandwidth and

transmission is selected on a per-slot basis. The link can be asymmetric

and slaves can only transmit when polled by the master. Link integrity is

26

protected with packet retransmission. Broadcast messages are also

supportable over this type of link.

The baseband also provides mechanisms for error correction and security:

. 1/3 and 2/3 rate forward error correction (FEC) coding

The FEC can be selected as needed based on the quality of the link. This

provides some flexibility for bandwidth utilization at this layer.

. Automatic repeat request (ARQ) with time-outs

Bluetooth utilizes an unnumbered stop-and-wait protocol for

transmissions. The receiver is expected to acknowledge a packet receipt

in the next time-slot if the header error check and cyclic redundancy check

both pass.

. Security

The Bluetooth LC allows one-way, two-way or no authentication based on

a challenge-response system. This allows for personal device

authentication. Additionally, encryption is provided to protect individual

connections through a multi-bit stream cipher.

2.3.3.3 Link Manager

The Link Manager directs the Link Controller state machine shown in figure 2.2.

It is a signaling mechanism that handles baseband link construction and destruction,

security levels and control. It provides link abstractions to higher layers by

communicating with other device Link Managers using the baseband protocols. It

27

negotiates the link types as well as monitoring of these links. Within the links, it

designates frame types on a per-packet basis. It provides authentication and encryption to

higher layers using the mechanisms in the baseband described in the previous section.

Finally the LM is responsible for setting devices into the various active and low-power

m-d-s:11'UUU6.

. Sniff Mode

Sniff mode is a low-power setting for Bluetooth devices where it is only

required to listen for transmissions at a specified time interval (negotiated

by the LM). At only these time-slots, the master can transmit to this slave.

. Hold Mode

In Hold mode, a device turns off its receiver for all packets except specific

notices to reactivate the connection. Either the slave or master can send

this notice. Extended periods where the receiver is off will save power for

the client.

- Park Mode

Park mode allows devices to remain synchronized with the piconet but

requires them to give up their active member address. They do not

participate in the piconet but are alert for page commands.

28

Standby Disconnected

Connected /
Transmitting

--- -- - -- Connected with
Active Member

Address

Hd Sniff

Low-Power
Consumption

Modes

Synchronized
Prk ithout Active

Member Address

Figure 2.2: Device Mode State Machine

2.3.3.4 Logical Link Control and Adaptation Protocol

The L2CAP layer provides 3 types of channels to higher layers using the LM to

setup baseband links. These are:

1. Command signaling channels

2. Connection-oriented, bi-directional, symmetric or asymmetric

channels for point-to-point communication

3. Connection-less, unidirectional, point-to-multipoint channels

These channels allow for several key features of the L2CAP layer. Specifically, L2CAP

manages higher-layer protocol multiplexing, signaling, and data segmentation and re-

assembly. These essential tasks are handled at this layer because lower layers have no

protocol ID's within packets and have very small transmission units. The L2CAP layer

29

provides an interface for larger packet sizes to be passed in and segmented packets to be

sent to lower layers.

2.3.3.5 Additional Interface Protocols

Aove L2CAPlie adiional inerface protls to the application layer. These

include, amongst others, the Service Discovery and Association Protocol (SDAP). SDAP

is a mechanism for clients to find out what Bluetooth services are available on a specific

device. Each device can run a SDAP server that can be queried for available services.

To use SDAP, a client searching for a service will set up a L2CAP channel to a remote

Bluetooth device. Next it will perform a query for services, asking for either a class of

services or a specific service. The SDAP will respond with instructions to connect to the

chosen service. Because SDAP's services are now complete, the client may connect

through a separate channel to the specific service requested.

2.4 Available Bit Rate Applications

Many modem applications have redefined themselves to accommodate the lack of

prevalent QoS systems in public networks. Because the resources available to a

multimedia application can change over time (even more so in a mobile environment as

noted previously), some real-time applications have become adaptive. The simple,

inefficient solution to variable rate applications is over-provisioning resources to

accommodate peak rate bandwidths and other requirements. This will waste significant

resources that are very valuable in mobile environments.

30

Many methods of accommodating or designing adaptive multimedia applications

exist, and at various layers in the network [VANOO]. The following table summarizes the

techniques used:

Physical Layer Adaptive power control

Data Link Layer Error control and adaptive reservation

Network Layer Dynamic rerouting

Transport Layer Dynamic renegotiation of services

Application Layer Variable error control, encoding and compression

Bandwidth smoothing and rate shaping

Adaptive synchronization

Table 2.2: Adaptive Media Techniques

Application layer techniques can be categorized into active or passive methods.

Active methods will dynamically redefine the applications traffic characteristics to fully

utilize the available network resources. Passive techniques have pre-prepared

mechanisms of adapting to changing traffic conditions. Two available active techniques

we would like to highlight are rate shaping and adaptive error control. Rate shaping is

the dynamic adjustment of video encoding schemes to adapt to variable network

conditions. The adaptable parameters include frame rate and quantization level.

Adaptive error control is a technique where a variable forward error check is used to

match resource availability with user's error service requirements [BT98, BFT99]. A

popular example of many of these techniques is found in MPEG compression standards

and Real Networks audio and video packages.

2.5 Dynamic QoS Management

31

Dynamic QoS management addresses the changing nature of QoS requirements of

traffic sources and the available system resources. Allocated resources are adjusted

based on the current level of performance achieved. Such a mechanism is necessary

when applications are given control of network usage. For instance, variable bit-rate

applicAationsL h1aVe_ %,1ang6ing bandILwidth needsU thRVUghl ther 111C 01 their connections.

Therefore, many dynamic QoS methods exist for catering to these changes by monitoring

and updating a set of QoS parameters associated with each flow [GVSS96, ROMW,

FR97, ACH98, LB99, BS].

The following table summarizes some of the existing dynamic management

methods:

In [BDDM93] flows are distinguished into several classes as characterized by their QoS
specifications. By monitoring the number of refused connections and cell loss,

bandwidth is dynamically updated.

In [FR97] heuristics are used to determine the amount of change for real time bandwidth

adjustments based on assessment of the actual verses requested loss ratio.

In [ZK95] flows are individually divided into segments because of the variable

requirements of real-time traffic. Thus QoS requirements are renegotiated on a per-

segment basis for all traffic flows.

In [GVSS96] required bandwidth is estimated by counters kept at both the sender and

receiver and these amounts are used to compute an adjustment value.

In [BS] the allocated resources for a flow are dynamically modified as a function of the

current delay and loss performance achieved.

Table 2.3: Dynamic Management Schemes

32

The major deficiency in most dynamic QoS management schemes is their

inability to renegotiate the level of service provided to existing flows during the time of

admission of a new flow. In other words, attempts to downgrade services provided to

other flows, within the negotiated boundaries, during the consideration process of

admitting a new flow, are currently not being performed. Rather, a new flow, which can

not be accommodated based on current resource utilization, is immediately rejected.

Research has been done on dynamically updating the conservativeness of the

admission decision as a function of the system's present ability to provide the desirable

QoS specifications in the network [BS]. Inaccuracies in the methods of estimation

however, may exclude flows that could otherwise be admitted if existing flows were to

relax their given QoS. Additionally, such schemes cannot fully utilize bandwidth if flows

may be rejected even though resources are available.

33

34

CHAPTER 3

PROBLEM

3.1 Problem Statement

The provisioning of quality of service to multimedia applications is a complex

problem due to many factors related to the applications themselves and the networks they

operate in. Their stringent requirements in terms of bandwidth, delay, jitter and

reliability coupled with the lack of effective QoS systems in public networks results in

often unpredictable service quality. The added effects of mobile environments require a

more robust and complex QoS system to handle such applications.

With this research, we attempt to provide recommendations towards a QoS

system for the mobile Bluetooth piconet. Deficiencies exist in the proposed Bluetooth

standard because only SCO links can efficiently handle Class I traffic. With the

restriction of only 3 SCO links on a piconet, an ad hoc LAN will not be able to efficiently

support multimedia traffic for all users on the piconet. If one were to transmit Class I

traffic on an ACL link, then it is very difficult to guarantee an efficient QoS because all

data is treated equally.

Another problem that arises and must be resolved to provide QoS is the response

mechanism in Bluetooth. Currently, a master is not required to respond to a slave request

in the next available time slot. The master can service other slaves first before

responding. This becomes a problem when dealing with Class I services because there is

no guaranteed consistency in delivery delay.

35

QoS maintenance gets increasingly difficult when the Bluetooth device is placed

in a mobile environment. For example, if the device moves from one piconet to another

piconet and wants to maintain its Class I connection, the new piconet will have to

remodify all client QoS guarantees in order to accommodate this new member.

i-,LtoUnLU1a1Ly, Lh UIU pic;UIIU Will haVe ALSS eSUMUCes that shuuiu be reUisLnDUtLeU.

We see deficiencies in applying existing QoS management systems to such a

mobile environment because current dynamic QoS management schemes lack the ability

to renegotiate the level of service provided to existing flows at the point of admission

decision of a new flow. The demands of mobility imply a strong effort by the QoS

management system to accommodate as many users as possible in a changing

environment. We feel that current systems do not attempt to downgrade or even evaluate

the services realized by other flows so that a new flow can be accommodated. Thus new

flows, for which resources can not be readily found, will be immediately rejected rather

than further examined.

We also see the need for a robust notification mechanism that can provide for

QoS management in both upstream and downstream directions. The notification system

is necessary for a dynamic QoS scheme where changes in guarantees are continuously

occurring. Clients can notify the master of their minimum acceptable bandwidth (or

other QoS parameters) and the master can then take control by negotiating a realizable

QoS with that client. All clients of the same master can be notified of changes in their

realizable QoS. These changes can occur frequently as clients move between transferring

different types of traffic. Additionally, when multiple clients are in a network, arbitration

of QoS allocation must occur by negotiating with the master. For example, when one

36

client (Cl) has an outgoing buffer full of pre-formatted data and a new client (C2) joins

the network and requires an unrealizable QoS, then the master must be able to renegotiate

with C2 or delay C2's acceptance into the network.

Because many modem multimedia applications are showing a general trend

towards having adaptive rate mechanisms, we focus our work on the class of available-

bit-rate applications that can dynamically adjust coding schemes in response to changing

network conditions. Such applications can most benefit from a dynamic QoS system in

an environment where allocation of resources may be ever-changing.

Therefore, our goal is to propose a new Bluetooth QoS architecture. For this

system, we will make recommendations or contributions towards:

. Recommendations towards the underlying QoS signaling system

. QoS parameter selection

. User utility model

. Recommendations towards dynamic scheduling techniques

. Dynamic admission control algorithms

" Recommendations towards interval maintenance techniques

3.2 Solution Overview

To facilitate the new method of dynamic resource allocation, we begin with the

need to introduce a modified set of QoS parameters. Upon request for admission, a client

must present to the admitting node more descriptive information regarding the type of

flow they request. Using these new parameters, we should be able to create an "image"

of near-term traffic conditions that can help determine if and how to admit a new client.

37

With these parameters in consideration, we now present our system objective:

To allow maximum utilization of the network by admitting the maximum number

of users and maximum, fair bandwidth to each user.

The consequences of this objective imply that our system will treat all flows

equally, so that dynamic adjustments on QoS will be done in a fair manner. Our

approach towards the admission decision is to develop an algorithm that ensures fairness

in dynamically redistributing resources upon admission and during execution of network

traffic. This algorithm will make tradeoffs amongst clients so that the most number of

users can enter the system. The algorithm developed will maximize a utility function of

the given parameters so that degradations still attempt to maximize user utility. The issue

we face in the design of this algorithm is achieving optimal utilization for given network

conditions.

For example, if a user requests entry into the system with a bandwidth

requirement of 200 kbps, however the available bandwidth in the network is only 150

kbps, then the admitting node will attempt to renegotiate with the existing flows. Using

the description of the flows presented at admission, the master will attempt to fairly re-

distribute other flows so that they can still operate in an agreeable region.

The concept of user utility we will develop will have the potential to be used for

other purposes as well. Upgrading realized QoS can occur fairly using this utility

function. If a flow leaves the network, then the remaining resources can be redistributed

among the existing flows by using the same utility function to compare flows.

38

In addition to the development of the algorithms for optimal admission control,

we also present surveys of existing dynamic scheduling techniques and make

recommendations towards an effective interval maintenance system. Finally, we test the

admission algorithms in a MATLAB simulation environment to see expected results in

mobile networks.

Our goal in this work is to provide a robust mechanism for QoS management in

Bluetooth systems. However, we feel our work can be extrapolated in to most mobile

architectures because of its general nature and the similarity of Bluetooth to other mobile

environments. Our work in QoS parameter selection and utility are particularly relevant

in mobile systems and with the advent of available-bit-rate applications, our algorithms

for admission control will be very valuable as well.

39

40

CHAPTER 4

DESIGN

4.1 QoS Framework

A quality of service framework forms a modular system of individual components

that work together to provide QoS in a network. Developing a QoS framework allows for

the integration of QoS methods at various network layers and the separation of tasks

within them. This additionally provides an integrated system for end-to-end quality of

service that is essential in any distributed network.

For our purposes, we design our QoS framework to include two primary

divisions: QoS specifications and QoS mechanisms. QoS specification at the higher

layers allows applications to indicate user requirements or flow characteristics in the form

of higher-layer resources. Integrated into our definition of QoS specifications is also the

QoS mapping phase, where these high level resources are translated into QoS parameters

(such as bandwidth and delay) that can be regulated and monitored by the QoS system.

QoS mechanisms are responsible for using the QoS specifications to provide a

realized service quality to a given user. The mechanisms needed can be broadly

categorized as:

. QoS Provisioning

The provisioning task in QoS mechanisms is responsible for establishing a

flow properly. It will perform admission testing to determine if the

available resources can provide the requested QoS by a flow and resource

41

reservation to designate the end-to-end ownership of requested and

deliverable resources.

. QoS Control

QoS control techniques provide real-time traffic administration at traffic

time-scales. For example, flow control is a passive technique that uses

either deterministic agreements with the flow or a feedback system (like

ABR applications) to control the flow of data leaving a source. Flow

shaping is the enforcement of a specific data injection pattern of a source.

Using flow shaping in conjunction with flow scheduling, the process of

ordering the forwarding of packets, performance guarantees can be made.

. QoS Management

The goal of QoS management is to insure the agreed upon service levels

with a flow are being met. These key tasks include QoS monitoring and

QoS maintenance. Monitoring on either an end-to-end or individual node

basis is the process of assessing the level of service quality received by a

flow at that location. QoS maintenance is the process of fine tuning the

monitored parameters versus the requested ones.

. QoS Signaling

QoS signaling is an essential task because it is the underlying mechanism

to a QoS framework that provides a communication system between nodes

and layers for building, demolishing and renegotiating links. Such a

system is invaluable in a mobile environment where links are frequently

being created, destroyed and modified.

42

Our simplified QoS framework is depicted in figure 4.1.

Admission Scheduling Maintenance

Signaling

Figure 4.1: QoS Framework

The signaling mechanism used in our QoS framework must be comprehensive

and robust enough to address the issues of mobility within a Bluetooth piconet. We seek

for a signaling system that can accommodate available bit rate applications with a

protocol for adaptive service. Thus the protocol must provide a communication

mechanism so that applications can adapt to time-varying network resources.

Additionally, it should offer signaling capabilities so that monitored conditions can be

reported through various nodes in the system. Finally, it should offer mechanisms for

fast reservations and recovery from broken links, as these occur frequently in mobile

systems.

Although many signaling systems exist, we highlight one that we feel would be

very applicable for the mobile Bluetooth environment. The INSIGNIA project [LZCOO]

is a QoS framework for adaptive services in mobile ad hoc networks. Within the

framework is a very powerful and robust signaling system that would be a good choice

for the highly dynamic Bluetooth piconet. Its key features include:

. In-band signaling - piggy-backed notification and reservation mechanism

43

. Adaptive services with max/min bandwidth designation and scaling

commands

. Soft-state resource management - maintains flexible, temporary end-to-end

connections

. VOS reporting

Using a signaling protocol such as that which underlies INSIGNIA, we can

overlay admission control, scheduling routines and maintenance algorithms. In our

framework, we create a conservative admission algorithm for paid resource reservation.

Users request a specified level of service as described by the QoS parameters presented in

the next section. These requests are measured against available resources by the

admission algorithm. If admitted, scheduling routines provide QoS control for the

sharing of a single channel by multiple flows. Finally the maintenance schemes will

offer fine tuning to ensure realized and requested QoS levels agree. We do not concern

ourselves with the payment schemes or cost structure.

4.2 QoS Parameter Selection

QoS parameters vary at different layers of the protocol stack. As noted

previously, QoS mapping procedures are responsible for translating higher level requests

in to the pertinent parameters at each layer. In a broad sense, all parameters can be

characterized in to 5 categories. Performance parameters quantify received resources

such as bandwidth, delay, etc. Format parameters specify rates, data formats and

compression techniques. Synchronization parameters describe coupling between various

flows. Cost descriptors specify network utilization prices for given resources or service

44

levels. User preference parameters may be particular opinion-based descriptors of

received service, such as image or sound quality.

To facilitate a robust method of dynamic resource allocation targeted for available

bit rate applications, we introduce a modified set of QoS parameters. Upon request for

admission, we propose that a client present to the master the following information for

the requested flow:

* Maximum and minimum bandwidth (B)

These parameters reflect the highest level of bandwidth the application

could use while still increasing its utility and the lowest level of bandwidth

the application can tolerate to still function properly.

. Acceptable bit error rate (E)

This parameter defines the application's flexibility in terms of bit errors in

the data. A highly tolerant application such as voice would have a very

different BER requirement than would a data application.

. Transfer size (T)

This parameter may be used by data or multimedia applications that can

accurately estimate transmitted file size before connecting.

. Maximum and minimum tolerable delay (D)

This parameter is essential for interactive applications where a long delay

between sending a request and receiving a response is not acceptable. An

average delay window allows clients to specify acceptable delay levels.

Therefore, each requesting flow submits the following set {B, E, T, D} and for each

admitted flow the master maintains this set for the given flow until the flow halts. In

45

addition to these parameters, the master also keeps track of total bandwidth usage (at

current time), the current bandwidth usage of each flow in the piconet, and the length of

time each flow has been active.

"4.3 Utility Model

In this section we introduce a concept of user utility. When multiple QoS

resources are available to users, comparison of these resources amongst multiple users

becomes challenging. Alternatives such as higher bandwidth and high error rate may be

better than low bandwidth and low error rate. These distinctions are dependent on

application type or user preferences. Therefore we must define user utility, a systematic

method of measuring the relative quality of service a user is receiving versus what he or

she requested. Summing the user utility for all users gives an approximation to total

satisfaction in the network, a value which should be optimized for best system

performance.

To understand utility on a per resource basis, we look first at bandwidth as an

example. Holding other resources constant, a user's utility (satisfaction) as a function of

increasing bandwidth may look like figure 4.2.

Figure 4.2: Utility Functions

46

Bit Error Rate

......

..

.....

Bandwidth

This is derived from an application which performs better as bandwidth increases,

however as received bandwidth becomes very high, performance is only marginally

improved (such as in video applications). Other applications may receive no

performance benefit unless a given bandwidth is achieved and beyond that bandwidth,

there is no added utility benefit. This situation is true for some real-time applications that

can not adapt to changing network conditions.

Error rate on the other hand has the inverse effect on user utility as is seen in

figure 4.2. At a high error rate, the utility is zero because the application cannot operate

over such a high BER channel. As the error rate lowers however, utility increases until a

point where lowering the error rate further has no effect on the application. For example,

voice and video applications can tolerate reasonable error rates because humans cannot

notice the improvement after a certain BER is achieved.

Our linear utility model is presented below:

* Assume all users receiving minimum QoS requested

* Userj is receiving QoS = {Dje, Ej, Bj, Tj1 }

* Userj requested QoS = {Djq, Ejq, Bjq, Tjq}

47

Djqmin Dj, Djq,max

D-DP], min
EUi= Ej-c

L-util = - m ____

q, max-Dii/q, mn Ejq

% Delay Performance Beyond % Bit Error Performance Beyond
Minimum Requested Quantity Requested

Sjq,max TjTk T

B, Bjc-Bgn Tclock- Tic
Btti Bg, max-Bg, win Tiui- Tq

% Bandwidth Allocation Beyond % Requested Size
Minimum Requested Transferred

We further define a total user utility that is based on the weighted sum of delay, error and

bandwidth utilities. The transfer size parameter is not included because we view it as a

supplementary parameter that will be useful towards fair resource distribution techniques.

Assigning weights allows users to differentiate their own emphasis on a given QoS

parameter. For example a user who values bandwidth more than delay (such as in a data

application) would have a relatively higher bandwidth weight versus delay weight. We

feel the value of these weights can either be assigned directly by the user at call-request

or assigned from a lookup table, by the process of declaring an application type. Thus we

have:

48

aELAY % weight of delay utility

C/ERROR 00 weight of error utility

= % weight of bandwidth utility

DELAY + cERROR + cW = 1

Uj = [(aDELAyxDjUt1) + (a ERROR x Eiuti) (aBW xBjuti;

Having defined user utility and total system utility, we now present its uses in the

process of admission decision and interval QoS updating or monitoring. In the admission

process, when a user can not be clearly admitted (i.e. Bjq,min < Bavail) an admission

decision must be made. We can use the user utility function to determine how well

existing clients are being treated in comparison to their requested QoS and one another.

From this evaluation, we can further detennine which clients should be downgraded and

by how much in order to admit new members. In the process of interval QoS updating,

upgrades and downgrades may be necessary to ensure clients are realizing their QoS

requests. The individual user utility quantities for each QoS variable, in conjunction with

the weightings, can be used to determine how tradeoffs should be made internal to a

client's QoS levels. The total user utility quantities can be used to determine which

clients should be modified if the system is overloaded.

4.4 Literature Survey of Dynamic Schedulers

We present a survey of existing QoS based scheduling mechanisms with an

emphasis on dynamic schedulers. Most scheduling techniques can be categorized into

the following groups:

. Priority-based

. Latency-based

. Rate-based

49

. Dynamic Resource Allocation

Priority-based schedulers order packets based on pre-assigned, relative priorities.

Latency-based algorithms transmit packets based on their delay requirements. Rate-

I-- -A -1- - 41- - - - _ - , -11- 4 -- 4-1-- _*__- 4-1- - - _uaseU agihMsIiiin give miu11niUm dLUL1c11 L users shindlilg the SaMC rCSOUiUCs.

Dynamic resource allocation schemes use changing network conditions as feedback for

dynamically adjusting resource sharing.

4.4.1 Priority-based Scheduling

Priority-based scheduling approaches use relative priorities to give preferences to

different flows. Traditional priority scheduling at a buffer, involves transmitting highest

priority packets first before lower priority packets are serviced. If a flow is given highest

priority, then all of its packets currently at a switch are transmitted in a FIFO ordering

before the next priority flow is allowed to transmit. Some schemes offer preemption as

well, which will interrupt a lower priority flow's transmission if a higher priority packet

arrives and is ready to be sent. Priority scheduling has been shown to have significantly

better delay performance for higher priority flows, however it performs poorly for lower

priority transmissions because they can be indefinitely set-aside for higher priority

packets.

A solution to the previous problem is priority jumping [PTW88]. If each priority

is viewed as a separate queue, then each queue can be associated with a given set of delay

bounds. Then as packets in lower priority queues have experienced a certain amount of

delay, they are moved to the next higher priority queue until they are finally transmitted.

50

This provides a delay bound for lower priority packets as well as higher priority ones.

This method can not only guarantee average delay bounds, but it can also serve statistical

loss ratios for different priorities.

4.4.2 Latency-based Scheduling

Many real-time applications have stringent delay requirement for individual

packets. If these requirements are not met, then some packets may be deemed useless by

them. Therefore, latency-based schedulers order packets based on the delay they are

experiencing or requesting. A simple mechanism for ordering packets is Minimum

Laxity Threshold (MLT) [CKT89]. For each packet, this system computes the amount of

time the server can spend serving other packets before this one must be served to meet its

delay requirements. Then all packets are ordered based on this calculation as they enter

the switch. MLT has been proven to provide highest utilization for flows with strict

delay requirements. A variation of MLT is Shortest-Time-To-Extinction. This

mechanism drops over-delayed packets in such a way as it minimizes the number of total

packets that do not meet their delay specifications. FIFO+ is a scheduling algorithm that

offers predicted delay by ordering packets based on their expected arrival times. It

compares the average delay along each link of the traversed path to the experienced delay

to set an ordering such that packets receive closer to the average delay.

Latency-based algorithms experience problems similar to prioritization schemes.

When packets of high MLT times are in the presence of many low-MLT packets, they

may never achieve their desired QoS requests because they will be rarely served. This

becomes a problem when flows have diverse QoS requests such that some have firm

51

requirements and some have looser requirements. The firm requirements will be met

well, but the less stringent requirements may not be met at all.

4.4.3 Rate-based Scheduling

Rate-based algorithms use resource reservation to guarantee a minimum

bandwidth to sources that behave well. Flows use descriptors to characterize their traffic.

These parameters are often peak rate and burstiness. The General Processor Sharing

(GPS) scheme divides network capacity amongst flows in a weighted manner. It has

been shown that in conjunction with leaky bucket flow shaping, GPS can guarantee an

upper bound to packet delay. At a packet level, Weighted Fair Queuing (WFQ) and

VirtualClock are well known GPS approximations. They isolate flows to guarantee a

delay bound on individual packets as well as provide an average throughput for each

flow. Rate-based schemes have been shown to utilize resources poorly for very bursty

traffic.

4.4.4 Dynamic Resource Allocation

Dynamic Resource allocation attempts to efficiently match the changing QoS

needs to the time-varying network conditions. In chapter 2 we presented dynamic QoS

management techniques and here we will further detail mechanisms focused specifically

on resource allocation. Dynamic resource allocation schemes are generally responsive to

either QoS feedback or changes in presented traffic. One method that responds to QoS

feedback is found in [BOL93]. This scheme categorizes flows by their QoS requests into

separate classes. An allocation controller dynamically redistributes resources by

52

computing a cost function of the number of refused connections and total cell loss. This

allows admission decisions to be made by delay and loss estimations. In the Dynamic

Search Algorithm (DSA+) method presented in [FR97], resource allocations are

dynamically adjusted based on measured QoS. The method attempts to achieve a

requested loss ratio by adapting bandwidth so that the actual loss ratio approaches the

desired one. It uses a stable heuristic that is a function of number of arrivals, losses and

requested loss ratios.

Dynamic methods that rely on traffic change as opposed to QoS measurements

are more appropriate for variable bit rate applications that have continuously changing

needs and cannot tolerate the slow process of renegotiation based on QoS measurements.

Instead, such methods try to evaluate the variability of traffic. One proposed scheme

[ZK95] uses time segments with exact traffic quantity bounds to guarantee delay for short

periods. Thus, sources can renegotiate allocations over certain time periods as needed to

account for highly bursty periods of traffic. Other methods [ADA96] use dynamic linear

error predictors to estimate future bandwidth requirements of a traffic source.

4.4.5 Conclusion

In our opinion, the combination of a rate-based scheduler and a dynamic

allocation scheme provide the most benefit to handling paid-for resource reservations in

broadband communication solutions using multiple frequencies or multiple time slots.

The rate-based scheduler will guarantee the minimum throughput request in the

parameter specification. The dynamic allocation scheme can allow for over-committal of

resources (admitting additional users) by adjusting the minimum throughput value when

53

resources are not being efficiently utilized. Thus, the rate-based scheduler can have the

minimum throughput dynamically adjusted as needed.

4.5 Dynamic Admission Control Algorithm

A mobi ad hoc network's admission Vn't-roJL systcm must be able to quiLMy

redistribute and re-negotiate resources amongst its members if it wishes to admit a new

client under scarce resource conditions. Such a system is superior to a static one in which

no attempt at reallocation is made because in mobile environments, changes in network

conditions occur frequently as users move in and out of piconets rapidly. Modem

multimedia applications have tolerable bandwidth windows which can be used to re-

negotiate received bandwidth so that new clients may be admitted even if their demands

are not immediately available under current network conditions. By reallocating the

bandwidth being used, additional resources may be freed for use by the new client.

To address the issue of fair redistribution of resources in a mobile environment,

we have developed admission algorithms that optimize resource distribution under

various constraints. We define the admission problem as:

. N clients in piconet at time to: (ci, c2 , ... , cN)

. Each client ci has:

1. A tolerable bandwidth window BWi = [Bi,min ... Bi,max]

2. A client or system defined Ui,BW which, as defined previously, is a constant

associated with either the weight of the bandwidth resource of that user or

the weight of that link

54

3. A received bandwidth Bi

. Client CN+1 arrives at time t1 with requests of BWN+1 and GN+1,BW

* C = Total network capacity (kbps)

Our objective, based on this problem statement, is to find the fair redistribution of

bandwidth on each user after time t1 so that the following conditions are met:

1. User cN+1 can be successfully admitted in to the network after a possible redistribution

of resources

2. Redistributions (if necessary) occur such that we maximize the total utility of the

network

3. All users are receiving at least their minimum requested allocation

4. Network capacity C is not exceeded

To achieve a measure of fairness so that we can compare different users, we have

developed a concept of utility for each resource parameter in our system. Because our

admission algorithms are concerned with bandwidth redistribution, we concern ourselves

only with the bandwidth utility at this time. We define a user utility uj as a representation

of the excess bandwidth userj is receiving beyond his or her minimum request. This can

be realized as the following:

U.=- B -Bj,min

Bj,max -Bj,min

55

Additionally, we define total utility as the sum of all weighted user utilities for

clients currently maintaining flows: U =Z aj,BWX U
N

In the following we present two algorithms, each which looks to optimize total

utility but under different constraints. The first aims to optimize total utility without

regard for equitable treatment amongst users. The second tries to make fair reductions to

create bandwidth for new users while considering their relative weights in the

redistribution scheme. In both, the equivalent situation is the following: a user cN+1

arrives with a request such that the minimum required bandwidth is beyond the unused

bandwidth in the system and the additional amount needed to accommodate that user can

be created by redistribution of resources. This is also stated as: BN+1,min >C - jB.
N

Algorithm 1:

Using this user utility, the proposed algorithm operates as follows. We would like

to create the necessary bandwidth to accommodate the newest user while maximizing

total utility of the existing users (at a normalized position in his bandwidth window that is

fair relative to the existing users in the system). Because we are trying to optimize total

utility we want to take as much bandwidth as possible from users who make little

contributions to total utility. This is called a greedy algorithm because it takes as much

as it can for the lowest cost (the greedy choice). It finds a globally optimal solution by

making locally-optimal choices. We will prove formally that total utility achieves the

optimal value in following sections.

56

A user's contribution to total utility U1 can be found on a per kbps basis. A user

contributes Xi,BW x Ui to total system utility. Over the interval [Bi,min, Bi,max] a user's

utility varies linearly from 0 to Cai,BW. Therefore for every 1 kbps, a user contributes Mi

= cLi,BW / BWj. Using this value, we rank users [1.. .N] by increasing Mi:

Mi

[MI, M 2, ... ,MN]

Mr

Mrl < Mr2 <...<MrN

Define bwCreated as the present amount of bandwidth created through the current

iteration and bwNeeded as the amount of bandwidth we are attempting to create:

rj = 1; bwCreated = 0;

While (bwCreated < bwNeeded)

For user rj with marginal utility Mrj:

X= min ([Brj - Brj,min], bwNeeded - bwFound)

bwCreated = bwCreated + Xj

Brj = Brj - Xrj

increment (rj)

end

In other words, from the user with the lowest value of M, we take as much bandwidth as

we can, then from the user with the next lowest, we take as much as we can... and so forth

until bwNeeded has been created. This guarantees the total utility is optimal and will give

the same solution as the SIMPLEX optimization algorithm.

57

00

00.

EXAMPLE:

N = 4 users

* User 1, 2 and 3 have bandwidth windows of [10, 20] and cl,2,3,BW 0.1

. User 4 has bandwidth window of [100, 140] and U4,BW -9

- Assume C = 200 kbps, and all of it is being used (i.e. UI, 2 ,3,4 = 100%)

Assume a new user requests entrance and needs 35 kbps created for him. Then the

algorithm ranks users by their M values.

M1,2,3 = .1 / 10 = .01

M 4 = .9 / 40 =.0225

Since .01 <.0225 we will begin our reductions from M1 to M4 (in order).

User 1: min (10, 35) = 10 (new U1 = 0)

User 2: min (10, 25) = 10 (new U2 = 0)

User 3: min (10, 15) = 10 (new U3 = 0)

User 4: min (40, 5) = 5 (new U4 = .875)

The sum of created bandwidths is 35 and UT = .1 x 0 + .1 x 0 + .1 x 0 + .9 x .875 = .7875

58

As an example that other solutions are not optimal, assume we take all 35 kbps from user

4 instead of the way we did above. So:

UT=.1 x I +.1 x 1 +.1 x 1 +.9x .125 =.4125

Thus there is a significant difference between the optimal and a sub-optimal solution.

The greedy method will always result in the optimal total utility.

Proof of optimality:

Proving a greedy algorithm's optimality generally involves showing optimal

substructure and proving that the problem exhibits the greedy-choice property. Optimal

substructure is the claim that the optimal solution consists of optimal solutions to its sub-

problems. The greedy-choice states that the globally optimal solution can be found by

making locally optimal choices. We will first show that this problem exhibits the optimal

substructure property:

Consider the optimal (least expensive in terms of utility) formation of bwNeeded.

If we remove user i's contribution of bi then the remaining (bwNeeded - bi) kbps must

also be an optimal formation of what remains. If however, we can make a re-

arrangement of what was available to get a lower cost solution to this sub-problem, then

when bi is added back in, the total solution is "more optimal." Therefore there is a

contradiction and the sub-solution must also be optimal.

We now prove that the problem also exhibits the greedy-choice property. To

show this, we first prove that the greedy choice is necessarily part of the optimal solution.

Then we show that the greedy choice can be made first. And finally, using induction, it

can be shown that the greedy choice is best at each iteration.

59

Once again, consider the least expensive distribution that creates W = bwNeeded.

If we define a weight, Wi as the available bandwidth of user i then, the total value

(towards utility) of the available bandwidth of user i is simply

a.
V, =W, x .

B,

P(i) is the amount of bandwidth we take from user i, therefore the total value of

bwNeeded will be:

n V.
P(i) x V

i1Wi

We further define VL, WL as the value and bandwidth available respectively for the user

with the lowest value / weight ratio. So we must show that as much as possible of the

lowest value/pound item (L) must be included in the final solution: if some of item L is

left and Pj) s 0 for some j #L, then replacing some of j with some of L will yield a lower

total value because:

V. V
P(j) x I > P(j)x L

Wj WL

w. V
since we know by definition that J > L

W, WL

We have shown that as much of the greedy choice as possible is part of an optimal

solution. Next, we show that the initial greedy choice of item L leads to the optimal

solution. There are two cases. If W WL then we simply set P(L) = W and for all j # L,

Pj) = 0. If however W > WL then room still remains after a greedy choice is made. Let

P(i), PO) > 0 for some i # j. Assume item i was the first choice and j = L was a

subsequent choice. To show that j could have been chosen first instead of later, consider
60

V. V
that V = P(i) x + P(L) x L Had we chosen item P(L) of item j first then V would

W WL

V V
be V = P(L) x L + P(i) x . These are of course equivalent, therefore the greedy

WL W

choice could have been made first.

With the optimal substructure property, we showed that the total solution consists

of optimal solutions to sub-problems. We also showed that the initial greedy choice is

part of the optimal solution and the first selection reduces the problem to an equivalent,

but smaller optimization problem. Thus, by induction on the number of choices made, an

optimal solution can be reached by making the greedy selection at each iteration.

Therefore, our algorithm for bandwidth reductions is optimal.

Algorithm 2:

The second algorithm addresses the problem of maximizing total utility with the

additional constraint of using a fair reduction scheme. When a new user requests

admission, we attempt to reduce existing users in such a manner that their relative

weights are considered so that relative equal reductions can occur. Using the same user

utility and the link weights, we can solve this problem. Once again, the user is entering at

a normalized position in his bandwidth window that is also fair relative to the existing

users in the system. We approach this problem mathematically:

Define Bi as the new bandwidth user i is allocated after reductions take place and

AB = Bi - Bi. Because we create only exactly what is needed: bwNeeded = AB . We
N

61

begin with the assumption that equal reductions of utility are made across all users.

Thus:

(1,BW x AUI =a2,BW x AU 2 =...= aNBW x AUN

This translates into the following set of equations:

aiBW x = a2,BW X

a2,BW (a3,BW -
BW2 BW3

BN- - B'I, B, - B'
aN-1,BW x Jr 7 > N =N,BW N

(BWN-1 \BWN

If we define Mi = ai,BW / BWj and solve the above equations for ABj as a function of AB 1

we find the following result:

Vie[1...N]: AB 1 = ABI

Now we must simply find AB 1. Substituting this previous result into bwNeeded =

b__ede 1 1
I AB. we see that AB, = bwNeeded where J = Mi x (- +-
N 'M M2

reach the final result:

M 1 bwNeeded
Vi e [I... N]: Bi = Bx

Mi

62

1
+...+-)

MN
Thus we

This example will work in a large majority of cases where the values of a do not

have a very large distribution. When that occurs, users with small values of X may not

have enough bandwidth that can be taken from them to make equal relative reductions

across all users. Thus the optimal solution is to take as much from those users as

possible. This will result in a distribution that is optimal under the given constraints. If

all users weigh bandwidth equally then the relative weights will drop out of the equations

and we are left with a solution that works under all conditions.

EXAMPLE:

. N=2users

. User 1 has bandwidth window of [100, 375] and CI,BW = 0.4

* User 2 has bandwidth window of [100, 375] and C2,BW= 0.8

. Assume C = 750 kbps, and all of it is being used (i.e. U 1,2 = 100%)

Assume a new user requests entrance and needs 100 kbps created for him. Execution

results in bwNeeded / J = 66.67. Thus ABI = 66.67 and B1 375 - 66.67 = 308.33 kbps

and B2 = 375 - 33.33 = 341.67 kbps. The total utility UT = 0.4 x .757 + 0.8 x .879 = 1.01.

4.6 Interval Maintenance System Overview

We propose recommendations for an interval maintenance system that would

work well in conjunction with an end-to-end maintenance mechanism for broadband

frequency hopping systems. With a robust underlying signaling system, many essential

63

functions such as link recovery or re-routing are well accommodated for already. Thus,

the responsibilities of ensuring realized QoS is the same as requested QoS are left to the

maintenance algorithms. We are of course working under the assumption that the

wireless solution offers facilities for the measurement of QoS resources received by

SF dIvICeS i In tLhe v n1Ks aI eL1.1 %JI a Ial-tLime or inte val basis. If suchi iditiLies

are available, then further improvements can be made with the addition of utility

balancing, network assistance, control-knob adjustments and variable forward error

checking.

Utility Balancing

For long-term steady state equality in a network, we introduce utility

balancing - a mechanism for gradually bringing all existing members of a

network to equal levels of utility. If the flows in the network can tolerate

more frequent adjustments to their available bandwidth, then upon some

regular interval or when a new client is admitted, the bandwidth allocated

to each flow can be incrementally adjusted toward the mean bandwidth

utility in the network. If larger variations in utility occur across a network

(i.e. users are very diversely receiving the excess resources available) then

incrementally balancing utility will provide for equal treatment amongst

users for longer-term connections.

. Network Assistance

Existing maintenance systems provide for fine-tuning adjustments when

specific flows are not receiving their requested QoS specifications. When

a well-behaved flow is experiencing an undesired service level, minor

64

modifications can be made to help achieve the requested levels. In general

these modifications are based on stochastic estimations and are beyond the

scope of this thesis. However, in a paid for reservation scheme, additional

resources may not be available because they are already being utilized.

Therefore, in a window-specified bandwidth system, we propose network

assistance that uses user utility to compare the excess resources received

by clients in the network. If a user is not receiving his minimum

bandwidth request, then a fair redistribution algorithm (such as Algorithm

2 proposed previously) can help to create new bandwidth from those users

that are receiving beyond their minimums. Thus, we are essentially taking

bandwidth from those that have more than necessary and give to those that

do not have enough to work within their operating region.

Control-knob Adjustments

In previous sections, we have introduced utility concepts for individual

resources, in addition to weights associated with these resources. Using

the utility weights, we can now differentiate resources within individual

users. We view each resource and it's associated weight as being

controlled by an adjustable "knob." Fine tuning adjustments can be made

as tradeoffs amongst resources.

* Variable Forward Error Checking

We recommend the implementation of a variable forward error check such that

applications that can tolerate slightly errored packets, may use a lower quality

forward error checking algorithm. Thus they will not have to suffer through re-

65

transmissions and ultimately reserve less bandwidth. Variable FEC schemes can

be found for audio and video in [BT98, BFT99].

Departure Induced Bandwidth Recovery

Finally, on the interval maintenance schedule, we leave open the possibility of re-

allocation of recovered bandwidth when a departure occurs. Re-distributing the

newly available bandwidth by essentially running the inverse of algorithms 1 or 2,

can give a new fair allocation. It may additionally be beneficial to allocate more

bandwidth to those users that are close to completion because that bandwidth will

soon be free again for new clients.

66

CHAPTER 5

SIMULATION AND RESULTS

5.1 Simulation Environment

For visualization and evaluation of our admission algorithms, we have developed

a simulation environment in MATLAB. The simulator allows for the substitution of any

admission decision algorithm into an ad hoc local area network. The network begins

with zero users and grows with a Poisson arrival schedule. The arbitrary inter-arrival

exponential has mean of one clock tick (or any unit of time). Each arrival presents its

QoS requirements to the network in the form:

1. A tolerable bandwidth window BWi = [Bi,min ... Bi,max]

2. A client or system defined ai,BW which, as defined previously, is a constant

associated with either the weight of the bandwidth resource of that user or

the weight of that link

Next, given the current load on the network, the admission decision algorithm evaluates

whether or not the client can be successfully admitted into the network. Ultimately, the

new client is either rejected or admitted into the system. Each user remains in the

network for a randomized time interval and there is a cap on the maximum number of

users in a network. Please see figure 5.1 for the simulator state machine.

The simulator was designed such that we could make network snapshots at any

given time. We can view how utility changes for any admission decision in the history of

67

the network, as well as see what parameters were presented to the admission algorithm

that lead to the admit or deny decision. The simulator code is supplied in Appendix A.

Departure

YES

NO NO

Update Network Arrival
State ?

YES

ADMISSION
DECISION

ALGORITHM

NO Deny
YES

FAdmit

Figure 5.1: Simulator State Machine

68

5.2 Results

We substituted Algorithms 1 and 2 from Chapter 4 into our simulation

environment and benchmarked them against a best-effort algorithm that gave each

incoming user the highest available bandwidth in its negotiable range on a first come,

first serve basis. The organization of the testing strategy was as follows:

. Demonstrate correct operation of Algorithms 1 and 2 in simulated

environment

. Compare each algorithms efforts to admit as many users as possible into

the piconet, and the average number of users per unit time

* Measure system bandwidth utilization under each admission algorithm

Beginning with Algorithm 1, we see an existing piconet from t = 1 with the following

properties:

Min BW request Max BW request BW weight Received

User 1 277.79 kbps 346.37 kbps .666 277.79 kbps

User 2 172.95 kbps 222.97 kbps .333 222.97 kbps

User 3 137.52 kbps 160.09 kbps .666 160.09 kbps

At t = 6 a new user requests admittance and execution of Algorithm 1 results in the

reductions of users 2 and 3 in order to accommodate the minimum bandwidth request of

the new user at 160.03 kbps. These reductions can be seen in figure 5.2 (a).

Correspondingly, the excess utilities of users 2 and 3 change from 100% to 0% and 7.6%

respectively. The utility variations can be seen in figure 5.2 (b).

69

Bandwidth Variations by Resource Re-distribution: Algorithm 1
300 I

250 -

200 -

150 -

cca
a 100 -

ZD

50

0'
2 3 4 5 6 7

Clock

Utility Variations by Resource Re-distribution: Algorithm 1

0.9 -

0.8 -

0.7 -

0.4 -

0.3 -

~0.3

0.2 -

0.1 -

0 ' ' ' '
1 2 3 4 5 6 7

Clock

Figure 5.2 (a) and (b): Algorithm 1 Results
70

Bandwidth Variations by Resource Re-distribution: Algorithm 2

150

100

50

0

2 3

Figure 5.3 (a) and (b):
71

4 5
Clock

Algorithm 2 Results

400

350 -

300 -

250 -

200 -

C

0

C5

L)

Utility Variations by Resource Re-distribution: Algorithm 2

4 -

1

0.9

0.8

0.7

. 0.6

0.6

CU

0.3

0.2

0.1

0
1 6 7

We now present the results of Algorithm 2 simulations. The existing piconet at t = 1 is

described in the following table:

Min BW request Max BW request BW weight Received

User 1 342.69 kbps 421.64 kbps .666 383.94 kbps

User 2 59.11 kbps 65.34 kbps .333 65.34 kbps

User 3 76.80 kbps 86.14 kbps .666 86.14 kbps

To accommodate the introduction of a new user at 235.16 kbps, Algorithm 2 re-

distributed bandwidth for the existing users as can be seen in figure 5.3 (a). As a result,

user utility was also modified as demonstrated in figure 5.3 (b).

Having confirmed proper execution of the algorithms, we performed benchmark

simulations to compare each algorithm's ability to accommodate as many users in the

network as possible. We created 10 sample arrival schedules for 1000 time units, using

the Poisson process with one time unit as the mean inter-arrival time. Next all 10 inputs

were presented to:

. Network 1, which ran Admission Algorithm 1 (the greedy algorithm)

. Network 2, which ran Admission Algorithm 2

. Network 3, which ran the best effort, benchmark algorithm

For each network, we computed the average (over all 10 arrival schedules) number of

acceptances and rejections and the average number of users per unit time. The results are

as follows:

Acceptances Rejections Average # of Users

Network 1 135.9 491.7 3.855

Network 2 123.5 504.1 3.714

Network 3 115.8 511.8 2.784

This divergence in acceptances can be seen for the average of 100 test runs in figure 5.4.

Admission of Arrivals for Three Algorithms
140

120 -

100 -

80 -

a)

S60

40 -

20 - Best-Effort
Algorithm 2
Algorithm 1

0 1

0 100 200 300 400 600 600 700 000 900 1000
Clock

Figure 5.4: Acceptances Over 100 Test Runs

Finally, we performed simulations with a new set of 10 arrival schedules for 1000 time

units to measure total system bandwidth utilization on a per time unit basis:

73

Bandwidth Utilization

Network 1 77.43%

Network 2 77.01%

Network 3 72.96%

5.3 Analysis and Discussion

We see from our analysis in Chapter 4 and the results presented in the previous

section that the admission algorithms we have designed operate as expected. However

each algorithm has its advantages and disadvantages depending on expected use. As

1Oted earier, A%.1 U11L11111 a tempts u optimize tutai utiity and therefore does not view

degradation of a single user as a bad property. Algorithm 2, on the other hand, attempts

to make equitable re-distributions across all users, and therefore prevents a single or a

few users from realizing drastic changes in their utility. Algorithm 1 has the advantage of

performing re-distributions on only a few users, or as many are needed to create the

required bandwidth. Algorithm 2 however, performs re-distributions on all users.

As an alternative to reducing all users simultaneously, we introduce two methods

of reducing the re-distributable user space (i.e. the set of users that are available for re-

distribution). Specifically, we first remove all users from the space who are approaching

the close of their connection. If users were able to specify a transmit size with their flow

specification, then when users are close (by some network specified percentage) to the

end of their connection, they are no longer available for reductions. This is done because

these users will soon have to re-negotiate their connections, and as such, it is unfair for

them to be reduced just as they are about to finish. Additionally, the re-distributable

space can be further reduced by removing users from it who have been recently reduced.

By tagging each user with a last reduced time-stamp, the network can specify the

minimum number of cycles a reduced user can wait before it is available for reduction

again. The network creates a subset of users that are least recently reduced. Thus, no

users are consistently reduced upon each execution of the algorithms.

74

We now consider the results of the acceptances and rejections simulations.

Between the best effort algorithm and Network 2, we saw a 6.6% increase in the number

of acceptances. This is an expected result because Algorithm 2 attempts to make re-

distributions so users that the best effort algorithm would immediately reject, can

potentially be accommodated. The increase in acceptances is not overwhelmingly large

because opportunities for re-distributions to occur (i.e. the requesting client can join the

network if re-distributions occur) is not a frequent event. Between the best effort

algorithm and Network 1, we saw a 17.4% increase in the number of acceptances, which

consequently lead to a 38.4% increase in the average number of clients in the network,

per unit time. This is a significant increase over the best effort algorithm because

Algorithm 1 uses a simple technique to accommodate more users. While Algorithm 2

will only make re-distributions if they can be done fairly, Algorithm 1 will make them as

long as the bandwidth can be created from the existing network. As such, Algorithm 1

will run successfully every time a potential user can join if re-distributions occur.

Finally, as expected, there were not significant increases in system utilization

using the new algorithms. Both offered approximately a 4% increase in average network

bandwidth utilization. All three networks attempt to give each user as much bandwidth

as reasonably possible, thus utilization is hardly effected with the introduction of re-

distributions. The primary goal of our re-distribution algorithms is to accommodate as

many new users as possible. The increase in utilization can be attributed to the higher

number of acceptances, and thus more users existing in the system at any given time.

75

76

CHAPTER 6

CONCLUSION

Our goal with this research was to address the issue of resource allocation in the

bandwidth-constrained environment. We focus on the provisioning of resources to

adaptive multimedia applications that can change coding schemes based on available

resources. We explore the issues behind designing a general call-level QoS system that

reserves paid-for resources for these applications. Our primary contribution is in the

algorithms for network admission control. Here we introduce a dynamic resource

negotiation scheme that not only allows for adaptive flows during traffic execution, but

also for QoS renegotiations with existing flows at the point of admission decision for a

new flow. These algorithms have been tested and shown to produce increases in call

accept / reject ratios as well as system utilization. They are based on a linear utilization

model, however we feel they can be easily modified for non-linear utility models.

Additionally we have contributed recommendations towards a QoS architecture using the

resource parameters we specified.

For future work we see the need for proper integration of negotiating schemes

such as ours into an underlying QoS and signaling system. Additionally, a measurement

based renegotiation algorithm based on dynamic tradeoffs between bandwidth, error rates

and delay could allow for increased system utilization. Such tradeoffs, in conjunction

with the methods of fair re-distribution presented in this thesis, may help maximize the

number of users in a network.

77

78

BIBLIOGRAPHY

[ACH98] C. Aurrecoechea, A.T. Campbell, and L. Hauw. A Survey of QoS

Architectures. ACM/Springer Verlag Multimedia Systems Journal,

Special Issue on QoS Architecture, Vol. 6 No. 3, May 1998.

[ADA96] A. Adas. Supporting Real Time VBR Using Dynamic Reservation Based

on Linear Prediction. Proceedings of IEEE INFOCOM '96, Vol. 3, San

Francisco, CA, March 1996.

[BDDM93] R. Bolla, F. Danovaro, F. Davoli, and M. Marchese. An Integrated

Dynamic Resource Allocation Scheme for ATM Networks. Proceedings

of IEEE INFOCOM '93, San Francisco, CA, 1993.

[BFT99] J. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptive FEC-Based Error

Control for Interactive Audio in the Internet. Proceedings of IEEE

INFOCOM, March 1999.

[BLU99] Bluetooth SIG. Specification of the Bluetooth System - Core. VL.OB

December 1999.

[BS] Y. Bao and A. Sethi. Predictive Control of Delay and Packet Loss

Network QoS for Multimedia Applications. Department of Computer and

Information Sciences, University of Delaware, Newark, DE.

[BT98] J. Bolot and T. Turletti. Experience With Rate Control Mechanisms for

Packet Video in the Internet. Computer Communications Review, Vol.

29, No. 1, 1998.

79

[CKT89] C. Casetti, J. Kurose, and D. Towsley. A New Algorithm for

Measurement-Based Admission Control in Integrated Services Packet

Networks. Proceedings of Protocols for High Speed Networks '96, Sophia

Antipolis, France, October 1996.

[FH98] P. Ferguson and G. Huston. Quality of Service: Delivering QoS on the

Internet and in Corporate Networks. John Wiley & Sons, January 1998.

[FR97] E. Fulp and D. Reeves. Dynamic Bandwidth Allocation Techniques.

Technical Report Center for Advanced Computing and Communication,

1997.

[GVSS96] P.Goyal, H. Vin, C. Shen, and P. Shenoy. A Reliable, Adaptive Network

Protocol for Video Transport. Proceedings of INFOCOM '96, San

Francisco, CA, March 1996.

[LB99] Y. Lu and R. Brodersen. Integrating Power Control, Error Correction

Coding, and Scheduling for a CDMA Downlink System. IEEE Journal on

Selected Areas in Communications, Vol. 17, No. 5, June 1999.

[LZCOO] S. Lee, G. Ahn, X. Zhang, and A. Campbell. INSIGNIA: An IP-Based

Quality of Service Framework for Mobile ad Hoc Networks. Journal of

Parallel and Distributed Computing, 60, 2000.

[PTW88] S.S. Panwar, D. Towsley, and J.K. Wolf. Optimal Scheduling Policies for

a Class of Queues with Customer Deadlines to the Beginning of Services.

Journal of the ACM, Vol. 35, No. 4, 1988.

[ROMW] D. Reininger, M. Ott, G. Michelitsch, and G. Welling. Dynamic

Bandwidth Allocation for Distributed Multimedia with Adaptive QoS.

ftp://lrcftp.epfl.ch/pub/people/ferrari/djr.ps.gz.
80

[SET98] P. Setthawong. A Fair Control Mechanism with QoS Guarantee Support

for Dual Ring LANs/MANs. Master Thesis, University of Tokyo,

February 1998.

[VANOG] B. Vandalore. Traffic Management to Enhance Quality of Service of

Multimedia over Available Bit Rate Service in Asynchronous Transfer

Mode Networks. PhD Thesis, Ohio State University, 2000.

[YANO0] Yankee Group. Fighting for Air: The Wireless Home Network

Technology Wars. Yankee Group Report, Consumer Market

Convergence, Vol 17, No. 2, February 2000.

[ZK95] H. Zhang and E. Knightly. A New Approach to Support Delay-Sensitive

VBR Video in Packet-Switched Networks. Proceedings of 5th

International Workshop on Network and Operating System Support for

Digital Audio and Video. Durham, NH, April 1995.

81

82

APPENDIX A
SIMULATION CODE

A.1 Best Effort Network
% Bluetooth Client Utility Simulation
% Gaurav Tuli (gtuli@mit.edu)
% Massachusetts Institute of Technology
% Semiconductor Products Sector, Motorola

%clear

fprintf('Bluetooth Client Utility Simulation\n\n');

fprintf('Gaurav Tuli (gtuli@mit.edu)\n');

fprintf('Massachusetts Institute of Technology\n');
fprintf('Semiconductor Products Sector, Motorola\n');

% initialize state variables
maxmembers = 8;
clock = 1;
n_users = 0;

runtime = input('Run simulation for t = ? ticks ->');
taket = input('Use t ? ->');

% these represent values at end of last clock tick

bwutility = zeros(max members, runtime);
bwallocated = zeros(max members, run-time);
admitted = zeros(max members, 6, run-time); % min,maxb_wt,t in,t,uid
bwutilization sum = 0;

bwtotal= 750.0;
bw avail 750.0;
maxbwavail = 750.0;
time-cutoff = 2/3;

accepts = 0;
rejects = 0;
arrivals = 0;

departure = 0;
arrival = 0;
nextarrivaltime = 1;
uid = 0; % user ID for tracking

fprintf('-> max members = %d\n', max members);
fprintf('-> n users = %d\n', n-users);
fprintf('-> total bw = %4.3f kbps\n', bw-total);

83

fprintf('-> BT clock = %d * 625 * 10^-6 s\n\n\n', clock);
fprintf('-> BEGIN\n');

%%%
%%%%%%

%%%
%%
% CREATE ARRIVAL
ARRAY%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%

arrival-schedule = zeros(run time, 4);

while (nextarrivaltime < runtime)

rbw_mm = (rand * 700) + 15;
r_maxpercent = (rand * 20) + 10; % 10 - 30% window
r_bwmax = rbw_min * (1 + .01 * rmaxpercent);
r_time = round((rand * 45) + 5); % 5s - 50s connection
r_bwwt = rand;

if r_bwwt <.5
r_bw wt= .333;

else
r_bwwt =.666;

end % if r bw

arrivalschedule(next arrival time, :)=[rbwmm, r bwmax, r bw wt, r time];

next _arrival time = nextarrival time + round(-log(rand));
end % while (next-arrival...

if (taket == 1) arrival-schedule = t;
end %if (ta

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for clock = 2 : runtime

%%% fprintf('\n-> clock = %d', clock)

% copy over previous admitted clock tick

admitted(:, :, clock) = admitted(:, :, clock - 1);
bwallocated(:, clock) = bw allocated(:, clock - 1);

% recompute available resources - maxbwavail, bw avail, etc.

bwavail = bwtotal - sum(bw allocated(:, clock));
maxbw avail = bwtotal - sum(admitted(:, 1, clock));

84

%%%%%% add to average system utility
bwutilizationsum= bwutilization sum + (sum(bw allocated(:, clock)) / bw total);

% compute bw utility
for user = 1:maxmembers

if (admitted(user, 6, clock) ~ 0)

bwutility(user, clock) = bwallocated(user, clock) - admitted(user, 1, clock);
bw utility(user, clock) = bwutility(user, clock) ./ (admitted(user, 2, clock) -

admitted(user, 1, clock));

end % end if (admit...)

end % end for user...

% reset arrival / departure state

departure = 0;
arrival = 0;

%%%
%%%%%%%

% IS there a departure on this clock tick?

%%%
%%%%%%%

% for simplicity, if there is a departure, you can have no arrivals
% on that clock tick

for counter = 1 : maxmembers

t out = admitted(counter, 4, clock) + admitted(counter, 5, clock);

if (t-out == clock)
%%% fprintf('\n\t-> uid = %d departed', admitted(counter, 6, clock))

% REMOVE USER

% set global variables for departed member
departure = 1;
n_users = n users - 1;

% zero out admitted, utility, allocated vectors
admitted(counter, 1:6, clock) = 0;
bwallocated(counter, clock) = 0;
bwutility(counter, clock) = 0;

end % (t out == clock)

85

end % end counter for loop

% recompute available resources - maxbw avail, bw avail, etc.

bwavail = bwtotal - sum(bw allocated(:, clock));
maxbw avail = bw total - sum(admitted(:, 1, clock));

%%%
%%%%%%%

% IS there an arrival on this clock tick
% (enforcing no departure)

%%%
%%%%%%%

% if (departure == 0) % then no departures occured

if (arrivalschedule(clock, 1) ~ 0) %arrival occured within this next clock tick

%%% fprintf('\n\t-> We have an arrival')
arrival = 1;

arrivals=arrivals+1;
% compute resource requests

r_bwmin = arrivalschedule(clock, 1);
r_bw max = arrival schedule(clock, 2);
r_bw wt = arrivalschedule(clock, 3);
r_time = arrivalschedule(clock, 4);

%%% fprintf('\n\t Arrival req: %f %f, weight: %f, r bw min, rbwmax, r bwwt);
%%% fprintf('\n\t Avail: min - %f max - %f, bwavail, maxbw-avail);

% compute next arrival time
next arrival time = round(-log(rand));

end % if (arrival-schedule...

% end % end (departure == 0)

%%%
%%%%%%%

% If there was an arrival, can we admit it?

%%%
%%%%%%%

if (arrival == 1)

if (n users == max-members)

%%% fprintf('\n\t-> ** User rejected, max-members reached **);
rejects = rejects + 1;

86

elseif (bwavail > rbw-min)
% automatically can admit user at max available for him

n_users = n users + 1;
uid = uid + 1;

% find first empty slot in storage

counter = 1;
while (bwallocated(counter, clock) > 0)

counter = counter + 1;
end % while(bw_...)

% set bw to either his max request, or as much as is avail
% which is neccessarily greater than his min

bw_ allocated(counter, clock) = min(r bw max, bwavail);
admitted(counter, 1, clock) = rbwmin;
admitted(counter, 2, clock) = r_bwmax;
admitted(counter, 3, clock) = r bwwt;
admitted(counter, 4, clock) = clock;
admitted(counter, 5, clock) = r time;
admitted(counter, 6, clock) = uid;

%%% fprintf('\n\t-> ** User admitted with %f **', bwallocated(counter, clock));

accepts = accepts + 1;
else

%%% fprintf('\n\t-> ** Preferences of user can not be realized **);
rejects = rejects + 1;

end

end % end (arrival == 1)

end % end clock for loop

fprintf('\n\n-> * accepts: %d, rejects %d\n', accepts, rejects);

t = arrival-schedule;

A.2 Algorithm 2 Network

% Bluetooth Client Utility Simulation
% Gaurav Tuli (gtuli@mit.edu)
% Massachusetts Institute of Technology
% Semiconductor Products Sector, Motorola

fprintf('Bluetooth Client Utility Simulation\n\n');

87

fprintf('Gaurav Tuli (gtuli@mit.edu)\n');
fprintf('Massachusetts Institute of Technology\n');
fprintf('Semiconductor Products Sector, Motorola\n');

% initialize state variables
maxmembers = 8;
clock = 1;
n users = 0;

%run-time = input('Run simulation for t = ? ticks ->');
%taket = input('Use t ? ->');

% these represent values at end of last clock tick

bw utility = zeros(max members, run-time);
bwallocated = zeros(maxmembers, run-time);
admitted = zeros(max members, 6, run-time); % min,max,bwt,t in,t,uid
bwutilizationsum = 0;

bw total= 750.0;
bw avail 750.0;
max bwavail = 750.0;
timecutoff = 2/3;

accepts = 0;
rejects = 0;

departure = 0;
arrival = 0;
arrivals 0;
nextarrivaltime = 1;
uid = 0; % user ID for tracking

fprintf('-> maxmembers = %d\n', maxmembers);
fprintf('-> n users = %d\n', nusers);
fprintf('-> totalbw = %4.3f kbps\n', bw total);
fprintf('-> BT clock = %d * 625 * 10A6 s\n\n\n', clock);
fprintf('-> BEGIN\n');

%%%
%%%%%%

%%%
%%%
% CREATE ARRIVAL
ARRAY%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%

arrivalschedule = zeros(run time, 4);

while (next arrival time < runtime)

88

rbw_min = (rand * 700) + 15;
r maxpercent = (rand * 20) + 10; % 10 - 30% window
r bwmax = r bw_min * (1 + .01 * r-max percent);
r_time = round((rand * 45) + 5); % 5s - 50s connection
r_bwwt = rand;

if rbwwt <.5
r_bwwt =.333;

else
r_bwwt = .666;

end % if r_bw

arrivalschedule(next arrivaltime, :) = [rbwmin, rbwmax, rbwwt, r time];

nextarrivaltime = nextarrivaltime + round(-log(rand));
end % while (nextarrival...

if (taket == 1) arrival-schedule = t;
end % if (tak

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for clock = 2 : runtime

%%% fprintf('\n-> clock = %d', clock)

% copy over previous admitted clock tick

admitted(:, :, clock) = admitted(:, :, clock - 1);
bwallocated(:, clock) = bw allocated(:, clock - 1);

% recompute available resources - maxbwavail, bw avail, etc.

bwavail = bwtotal - sum(bw allocated(:, clock));
maxbwavail = bwtotal - sum(admitted(:, 1, clock));

%%%%%% add to average system utility
bwutilizationsum = bwutilizationsum + (sum(bwallocated(:, clock)) / bw-total);

% compute bw utility
for user = 1:max members

if (admitted(user, 6, clock) ~ 0)

bwutility(user, clock) = bw allocated(user, clock) - admitted(user, 1, clock);
bw utility(user, clock) = bw utility(user, clock) ./ (admitted(user, 2, clock) -

admitted(user, 1, clock));

end % end if (admit...)

end % end for user...

89

% reset arrival / departure state

departure = 0;
arrival = 0;

%%%
%%%%%%%

% IS there a departure on this clock tick?

%%%
%%%%%%%

% for simplicity, if there is a departure, you can have no arrivals
% on that clock tick

for counter = 1 : maxmembers

t_out = admitted(counter, 4, clock) + admitted(counter, 5, clock);

if (tout == clock)
%%% fprintf('\n\t-> uid = %d departed', admitted(counter, 6, clock))

% REMOVE USER

% set global variables for departed member
departure = 1;
n users = n users - 1;

% zero out admitted, utility, allocated vectors
admitted(counter, 1:6, clock) 0;
bwallocated(counter, clock) 0;
bw-utility(counter, clock) = 0;

end % (tout == clock)

end % end counter for loop

% recompute available resources - maxbw avail, bw_avail, etc.

bwavail = bw-total - sum(bw allocated(:, clock));
maxbwavail = bwtotal - sum(admitted(:, 1, clock));

%%%
%%%%%%%

% IS there an arrival on this clock tick
% (enforcing no departure)

%%%
%%%%%%%

90

% if (departure == 0) % then no departures occured

if (arrival schedule(clock, 1) ~ 0) %arrival occured within this next clock tick

%%% fprintf('\n\t-> We have an arrival')
arrival = 1;

arrivals = arrivals + 1;
% compute resource requests

r_bwmin = arrival schedule(clock, 1);
r bwmax arrivalschedule(clock, 2);
r_bwwt = arrival schedule(clock, 3);
r time = arrival_schedule(clock, 4);

%%% fprintf('\n\t Arrival req: %f %f, weight: %f, rbw min, rbw_max, rbwwt);
%%% fprintf('\n\t Avail: min - %f max - %f, bwavail, maxbwavail);

% compute next arrival time
nextarrivaltime = round(-log(rand));

end % if (arrivalschedule...

% end % end (departure == 0)

%%%
%%%%%%%

% If there was an arrival, can we admit it?

%%%
%%%%%%%

if (arrival == 1)

if (n users == max-members)

%%% fprintf('\n\t-> ** User rejected, max_members reached **');

rejects = rejects + 1;

elseif (bwavail > rbw min)
% automatically can admit user at max available for him

n_users = n users + 1;
uid = uid + 1;

% find first empty slot in storage

counter = 1;
while (bwallocated(counter, clock) > 0)

counter = counter + 1;
end % while(bw_...)

% set bw to either his max request, or as much as is avail
% which is neccessarily greater than his min

91

bw-allocated(counter, clock) = min(rbwmax, bw-avail);
admitted(counter, 1, clock) = rbw min;
admitted(counter, 2, clock) = r-bw-max;
admitted(counter, 3, clock) = rbwwt;
admitted(counter, 4, clock) = clock;
admitted(counter, 5, clock) = r-time;
admitted(counter, 6, clock) = uid;

%%% fprintf('\n\t-> ** User admitted with %f **, bwallocated(counter, clock));

accepts = accepts + 1;
elseif (max-bwavail > r-bw min)

% must reduce other clients bandwidths to accomodate user

bwNeeded = rbw min - bw-avail;
bwFound = 0;
bwUtilitySum = sum(bw-utility(:,clock));

flag = 0;

%%% fprintf('\n\t-> bwFound = %f ; bwNeeded = %f, bwFound, bwNeeded);

% determine what Ml should be
counter = 1;
while (bw allocated(counter, clock) == 0)

counter = counter + 1;
end % while(bw_...)

M1 = admitted(counter, 3, clock) / (admitted(counter, 2, clock) -
admitted(counter, 1, clock));

J 1 /Mi;

counter = counter + 1;
while (counter < maxmembers)

if (bwallocated(counter, clock) > 0)
Mk = admitted(counter, 3, clock) / (admitted(counter, 2, clock) - admitted(counter, 1, clock));
J = J + 1/Mk;

end % if(bw al...
counter = counter + 1
end % while (counter...

J= J* Ml;

reduce(1:counter) = 0;
counter = 1;
while (counter < maxmembers)

if (bw_allocated(counter, clock) > 0)
Mk = admitted(counter, 3, clock) / (admitted(counter, 2, clock) - admitted(counter, 1, clock));
reduce(counter) = M1 * bwNeeded / (Mk * J);
if (reduce(counter) > (bw allocated(counter, clock) - admitted(counter, 1, clock)))

flag = 1;
end % if (redu...
bwFound = bwFound + reduce(counter);
bwallocated(counter, clock) = bw allocated(counter, clock) - reduce(counter);

end % if (bw-allo

92

counter = counter + 1;
end % while (counter <...

if (flag) %then undo
%%% fprintf('\n\t-------User could not be accomodated fairly by redistribution-------'

counter = 1;
while (counter < maxmembers)

bwallocated(counter, clock) = bw allocated(counter, clock) + reduce(counter);
counter = counter + 1;

end % while (cou
rejects = rejects + 1;

else
%%%%%%% we able to do it

n users = n users + 1;
uid = uid + 1;

% find first empty slot in storage

counter = 1;
while (bw_allocated(counter, clock) > 0)

counter = counter + 1;
end % while(bw ...)

% set bw to his min request

bw__allocated(counter, clock) = rbw_min;
admitted(counter, 1, clock) = rbw_min;
admitted(counter, 2, clock) = r bwmax;
admitted(counter, 3, clock) = rbwwt;
admitted(counter, 4, clock) = clock;
admitted(counter, 5, clock) = r time;
admitted(counter, 6, clock) = uid;

%%% fprintf('\n\t-> ------- User admitted with redistribution with %f ------- ',
bwallocated(counter, clock));

accepts = accepts + 1;
end % else

else
%%% fprintf('\n\t-> ** Preferences of user can not be realized **');

rejects = rejects + 1;
end

end % end (arrival == 1)

end % end clock for loop

fprintf('\n\n-> * accepts: %d, rejects %d\n', accepts, rejects);

A.3 Algorithm 1 Network

% Bluetooth Client Utility Simulation

93

% Gaurav Tuli (gtuli@mit.edu)
% Massachusetts Institute of Technology
% Semiconductor Products Sector, Motorola

%clear

fprintf('Bluetooth Client Utility Simulation\n\n');
fprintf('Gaurav Tuli (gtuli@mit.edu)\n');
fprintf('Massachusetts Institute of Technology\n');
fprintf('Semiconductor Products Sector, Motorola\n');

% initialize state variables
maxmembers = 8;
clock = 1;
n_users = 0;

%runtime = input('Run simulation for t = ? ticks ->
%taket = input('Use t ? ->');

% these represent values at end of last clock tick

bw utility = zeros(maxmembers, run-time);
bwallocated = zeros(maxmembers, run-time);
admitted = zeros(maxmembers, 6, run-time); % min,max,bwt,t in,t,uid
bwutilizationsum = 0;

bw total= 750.0;
bw avail= 750.0;
maxbw avail = 750.0;
timecutoff = 2/3;

accepts = 0;
rejects = 0;

departure = 0;
arrival = 0;
nextarrivaltime = 1;
uid = 0; % user ID for tracking

fprintf('-> maxmembers = %d\n', maxmembers);
fprintf('-> nusers = %d\n', nusers);
fprintf('-> total bw = %4.3f kbps\n', bw total);
fprintf('-> BT clock = %d * 625 * 10^-6 s\n\n\n', clock);
fprintf('-> BEGIN\n');

%%%
%%%%%%

%%%
%%%

94

% CREATE ARRIVAL
ARRAY%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%

arrivalschedule = zeros(run time, 4);

while (next arrivaltime < run-time)

r bw_mmi = (rand * 700) + 15;
r-max percent = (rand * 20) + 10; % 10 - 30% window
r_bwmax = rbw_min * (1 .01 * r-max-percent);
r-time = round((rand * 45) + 5); % 5s - 50s connection
r_bwwt = rand;

if r bwwt <.5
r bw wt =.333;

else
r_bwwt = .666;

end % if r bw

arrivalschedule(nextarrival time, :) = [rbw mm rbw_max, rbw_wt, rtime];

nextarrivaltime = nextarrivaltime + round(-log(rand));
end % while (nextarrival...

if (take t == 1) arrival-schedule = t;
end % if

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for clock = 2 : run-time

%%% fprintf('\n-> clock = %d', clock)

% copy over previous admitted clock tick

admitted(:, :, clock) = admitted(:, :, clock - 1);
bwallocated(:, clock) = bw_allocated(:, clock - 1);

% recompute available resources - maxbwavail, bwavail, etc.

bwavail = bwtotal - sum(bw allocated(:, clock));
maxbwavail = bwtotal - sum(admitted(:, 1, clock));

%%%%%% add to average system utility
bwutilizationsum= bwutilizationsum + (sum(bw allocated(:, clock)) / bw-total);

% compute bw utility
for user = 1:max members

95

if (admitted(user, 6, clock)~= 0)

bw utility(user, clock) = bwallocated(user, clock) - admitted(user, 1, clock);
bw-utility(user, clock) = bw utility(user, clock) ./ (admitted(user, 2, clock) -

admitted(user, 1, clock));

end % end if (admit...)

end % end for user...

% reset arrival / departure state

departure = 0;
arrival = 0;

%%%
%%%%%%%

% IS there a departure on this clock tick?

%%%
%%%%%%%

% for simplicity, if there is a departure, you can have no arrivals
% on that clock tick

for counter = 1 : maxmembers

t out = admitted(counter, 4, clock) + admitted(counter, 5, clock);

if (t-out == clock)
%%% fprintf(\n\t-> uid = %d departed', admitted(counter, 6, clock))

% REMOVE USER

% set global variables for departed member
departure = 1;
n users = n users - 1;

% zero out admitted, utility, allocated vectors
admitted(counter, 1:6, clock) = 0;
bwallocated(counter, clock) = 0;
bwutility(counter, clock) = 0;

end % (tout == clock)

end % end counter for loop

% recompute available resources - maxbw_avail, bw_avail, etc.

bwavail = bwtotal - sum(bwallocated(:, clock));
max_bwavail = bwtotal - sum(admitted(:, 1, clock));

96

%%%
%%%%%%%

% IS there an arrival on this clock tick
% (enforcing no departure)

%%%
%%%%%%%

% if (departure == 0) % then no departures occured

if (arrival schedule(clock, 1) ~ 0) %arrival occured within this next clock tick

%%% fprintf('\n\t-> We have an arrival')
arrival = 1;

% compute resource requests

r bw_min = arrival schedule(clock, 1);
r_bwmax = arrival schedule(clock, 2);
r_bwwt = arrival schedule(clock, 3);
r time = arrivalschedule(clock, 4);

%%% fprintf('\n\t Arrival req: %f %f, weight: %f, rbw mi, rbwmax, rbwwt);
%%% fprintf('\n\t Avail: min - %f max - %f, bwavail, maxbwavail);

% compute next arrival time
nextarrival time = round(-log(rand));

end % if (arrivalschedule...

% end % end (departure == 0)

%%%
%%%%%%%

% If there was an arrival, can we admit it?

%%%
%%%%%%%

if (arrival == 1)

if (n users == max-members)

%%% fprintf('\n\t-> ** User rejected, max-members reached **);

rejects = rejects + 1;

elseif (bw avail > r bw min)
% automatically can admit user at max available for him

n_users = n users + 1;
uid = uid + 1;

% find first empty slot in storage

97

counter = 1;
while (bw allocated(counter, clock)> 0)

counter = counter + 1;
end % while(bw_...)

% set bw to either his max request, or as much as is avail
% which is neccessarily greater than his min

bw allocated(counter, clock) = min(rbwmax, bw-avail);
admitted(counter, 1, clock) = r-bw min;
admitted(counter, 2, clock) = rbw-max;
admitted(counter, 3, clock) = rbwwt;
admitted(counter, 4, clock) = clock;
admitted(counter, 5, clock) = rtime;
admitted(counter, 6, clock) = uid;

%%% fprintf('\n\t-> ** User admitted with %f * bwallocated(counter, clock));
accepts = accepts + 1;

elseif (max bwavail > r bw min)
% must reduce other clients bandwidths to accomodate user

bwNeeded = r_bw_min - bw-avail;
bwFound =0;
bwUtilitySum = sum(bw-utility(:,clock));

%%% fprintf('\n\t-> bwFound = %f ; bwNeeded = %f, bwFound, bwNeeded);

while (bwFound < bwNeeded)

% find lowest marginal utility

counter = 1; min marg util = inf; usernum = 0;
while (counter <= max-members)

window = admitted(counter, 2, clock) - admitted(counter, 1, clock);
if (bw allocated(counter, clock) > admitted(counter, 1, clock))

if ((admitted(counter, 3, clock) / window) < min-margutil)
minmargutil = admitted(counter, 3, clock) / window;
usernum = counter;

end % if ((admi
end % if (window ~

counter = counter + 1;
end % while (counter

% we have user with minimum marginal utility, so take as much as possible
% from that user

reduce = min(bwallocated(user num, clock) - admitted(usernum, 1, clock), bwNeeded -
bwFound);

bw-allocated(user-num, clock) = bwallocated(usernum, clock) - reduce;
bwFound = bwFound + reduce;

fprintf('\n\t-> usernum %d is being reduced by %f, usernum, reduce);

98

% disp(bwFound); disp (bwNeeded);

end % end while (bwFound...)

n_users = n users + 1;
uid = uid + 1;

% find first empty slot in storage

counter = 1;
while (bwallocated(counter, clock) > 0)

counter = counter + 1;
end % while(bw_...)

% set bw to his min request

bwallocated(counter, clock) = r bw min;
admitted(counter, 1, clock) = rbw_min;
admitted(counter, 2, clock) = r bwmax;
admitted(counter, 3, clock) = r_bw wt;
admitted(counter, 4, clock) = clock;
admitted(counter, 5, clock) = r time;
admitted(counter, 6, clock) = uid;

fprintf('\n\t-> !!!!!!! User admitted with redistribution with %f ', bw allocated(counter,
clock));

accepts = accepts + 1;
else

%%% fprintf('\n\t-> ** Preferences of user can not be realized **);
rejects = rejects + 1;

end

end % end (arrival == 1)

end % end clock for loop

fprintf('\n\n-> * accepts: %d, rejects %d\n', accepts, rejects);

99

