
A Remotely Automated Microscope for Characterizing

Micro Electromechanical Systems (MEMS)

by

Danny Seth

B.S., Electrical Engineering
Northeastern University, June 1999

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

June 2001

© MMI Massachvsetts Institvte of Technology BARKER

All rights reserved. MASSACHUSETTS INSTITUTE
OFTECHNOLOGY

JUL 11 2001

LIBRA
Author

Department of Electrical Engineering and Computer Science
May 1, 2001

Certified by.......... Donad . Troxe..

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

A Remotely Automated Microscope for Characterizing

Micro Electromechanical Systems (MEMS)

by

Danny Seth

Submitted to the
Department of Electrical Engineering and Computer Science

on
May 1, 2001,

in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Designers of Micro Electromechanical Systems need tools to test the electrical as
well as mechanical properties of the devices they fabricate. Computer microvision
acts as a good analysis tool during the testing and development stages of the design
process. Computer microvision involves the use of light microscopy and video imaging
to acquire 3-dimensional images at multiple phases of motion. In this research, a
computer microvision system is defined and implemented. The computer microvision
system includes a PC, an automated X-Y-Z stage, a camera, and a piezo electric
device. Custom hardware includes the design of a module for a PCI interface that
acts as a central controller for stimulus and stroboscopic illumination.

There are benefits in being able to run the system remotely and support a multi-
client environment. The computer microvision system uses an Apache web server to
provide remote access and all communication is done via "messages". Java servlets
form an integral part of the server side software in overcoming HTTP's inability to
handle state. A client connects to the server's URL via a webbrowser and is presented
with a Graphical User Interface (GUI) that acts as medium to access all aspects of
the computer microvision system. The GUI, written in Java, also supports remote
focusing which can be done either manually or automatically. The various hardware
settings can be configured, an experiment or analysis can be launched, and the results
can then be viewed.

Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering and Computer Science

Electronic Source

An electronic copy of this thesis can be obtained from http://www-mtl.mit.edu/~dseth.

This web site also contains documents that have not been included in this thesis.

They include the VHDL source code and associated block diagrams, the Java source

code for the client and the server, the drivers that operate the hardware, and rel-

evant data sheets. Further information can be obtained by sending an email to

dseth @alum. mit. edu.

Acknowledgments

I would like to acknowledge the support of many people that have made this research

possible and my MIT experience to be an enjoyable one.

First, I would like to thank Professor Donald Troxel for being the best advisor I

could have asked for. I can never forget that Professor Troxel gave me his trust by

allowing me to be part of his research group while I was still a special student at

MIT. I would like to thank him for his support and advice that made this research

my greatest learning experience. His insightful questions always adressed the heart

of the matter and made me see things from presepectives I had overlooked. His

understanding of the time commitment imposed by graduate H-level courses made

this research experience a pleasurable one and allowed the best to come out of me.

Over the past years, as a RA and then a TA, I have found Professor Troxel to be

a great person who is caring and fun to talk to. I firmly believe that without his

support I would not have been able to come this far, and I will be forever grateful to

him.

I would like to thank Professor Denny Freeman and the members of his research

group for providing guidance and support throughout this research. I would like to

thank Mike McIlrath for helping out with several system integration issues and for

asking tough questions that allowed me to gain better insight of the problem. Over the

years, Francis Doughty has helped me get around MIT and has provided extensive

support in the so many things such as Latex commands and 3-hole punchers that

made life so much easier. Thanks for everything Fran.

Upon first joining the group, Erik Pedersen was instrumental in bringing me up

to speed with the ongoing research. He took the time to make sure I understood

everything and his positive attitude and laughter simplified everything. Xudong Tang

and I worked closely for the longest time. The discussions on research and "life" were

intriguing and a lot of fun. Xudong and I started with a dream to have a building

named after us at MIT. Towards the end, we realized a conference room named after

us would be sufficient.

I must also not forget to give thanks to my officemate, William Moyne, for his

good humor, and giving me a lot of space when I moved in. I eventually became the

heir to his office. Syed Alam was a constant companion in classes and constant source

of laughter and great conversation. His being around made the office experience an

enjoyable one. Tom Lohman and Myron Feeman (Fletch) were always there to help

out with computer issues and share a few good laughs.

At Northeastern University, I would like to thank Professor Martin Schetzen and

Professor Phillip Serafim who encouraged me to pursue graduate studies at MIT. They

were always available whenever I needed their support and for that I'm grateful. In

the Course VI graduate office, I would like to recognize Marilyn Pierce, who has

helped me out so many times. She is committed to students and her dedication and

skill is appreciated by every graduate student in the department.

MIT is a challenging place, and there were many times when I just felt over-

whelmed. However, it was the support of friends that brightened my days. Fatih

Yanik, now at Stanford, was my 6.111 final project partner, who convinced me that I

could also succeed at MIT. The conversations I have with Fatih are enriching as well

as inspiring and I cherish the friendship I share with him. Aatif Abbasi at Northeast-

ern University was always there to point out that I had to cross the Charles River into

the non-nerdy side to truly enjoy life. Thanks to him, the weekends at Avalon were

a lot of fun. Raj Midha and Gary Hall have been excellent friends. Their laughter,

positive attitude, and unique perspective has been a constant encouragement to me.

The time I spent with them during both Spring breaks is quite memorable and hope-

fully we will continue this into an annual tradition. I would also like to acknowledge

the friendship of Manish Bhardwaj, Hans Calebaut, Eric Caulfield, Yu Chen, Albert

Chow, Karen Gonzalez, Linda Lin, Raj Rao, Sunil Rao, Oguz Silahtar and many

others. The time spent with them made MIT a fun place for me.

I have to thank my friends and all the people that supported me back home in

India. Thanks to Amit for being a friend I can always count on even though I haven't

done a good job in staying in touch.

I'm grateful to MIT and everything that this place represents. Although, it has

been a lot of hard work and several all nighters, I have enjoyed every moment at

MIT. My experiences here have been pleasurable as well as satisfying. The people

here are the best and the brightest and their commitment to success (in research, life,

or entrepreneurship) motivates me. MIT has had a strong impact on me that will

shape my life in the years to come. I only hope I make the best of this opportunity

that very few people are entitled to. While I don't want to leave, I believe the time

is right for me to take a break and evaluate what I really want to do. I can always

come back for my Ph.D.

I would like to express my gratitude to my grandparents, parents, and brother

who believed in me and supported my struggle to get in and then get out of MIT.

The blessings of my grandparents have enlightened me and made everything in my

life possible. I have no words to express my thankfulness to my parents who worked

very hard to fulfill their dream of getting their children an education in the U.S.

Deepak has always been there for me and made sure I was eating okay (among the

many other things). Thank you Deepak, I'm very lucky to have you as a brother.

Pitaji, Chiji, Papa, Mommy, and Deepak, this one is for you - I love you all.

10

Contents

1 Introduction 21

1.1 Computer Microvision . 21

1.2 Components of a Microvision System 22

1.2.1 Computer System . 22

1.2.2 Microscope . 23

1.3 Remote Access . 23

1.4 Relevant Work . 24

1.4.1 Remote Microscope . 24

1.4.2 Present System Tools . 25

1.4.3 Present Remote Interface . 25

1.5 Thesis Statement . 26

1.6 Thesis Work Involved . 27

1.7 Organization of the Thesis . 27

2 Principles of Microvision 29

2.1 Computer Microvision Method . 29

2.2 Computer Microvision Hardware . 29

2.2.1 Camera . 31

2.2.2 PIFOC . 32

2.2.3 Light Source . 33

2.2.4 SPG Module . 33

2.2.5 X-Y-Z Control . 35

2.3 Measuring In Plane Motion . 36

11

2.4 Measuring Out of Plane Motion . 37

2.4.1 Computer Microvision Software 37

2.5 Ending Remarks . 38

3 SPG Module 39

3.1 Objective . 39

3.2 Architecture Overview . 40

3.3 Prototype Implementation . 40

3.4 Serial Unit . 41

3.5 Singen Unit . 43

3.5.1 Singen CPLD . 43

3.5.2 Static RAM . 44

3.5.3 D/A Converter . 46

3.5.4 DDS Chip . 46

3.5.5 Clocking Strategy . 48

3.6 VCO Unit . 50

3.6.1 Phase and Phase-Divisions . 51

3.6.2 Phase Counter . 52

3.6.3 Strobe Counter . 53

3.6.4 Image Acquisition . 53

3.6.5 Camera Support . 54

3.6.6 Capacitor Selection . 56

3.7 Printed Circuit Board . 57

4 System Architecture for Remote Access 59

4.1 Server Overview . 60

4.2 Client Overview . 61

4.3 Messaging Protocol . 61

4.4 M anaging Sessions . 62

4.5 Software Development Environment 63

4.6 Polling . 64

12

4.7 Chapter Summary .

5 Hardware Control Handlers

5.1 D escription

5.1.1 X-Y-Z Stage Handler

5.1.2 Piezo Handler

5.1.3 Stroboscopic Settings Handler

5.1.4 Image Settings Handler

5.1.5 Obtain Sample Image Handler

5.2 Single Message Approach

5.3 Chapter Summary

6 Command Module and Associated Handlers

6.1 Command Module

6.1.1 Selecting a Region of Interest

6.1.2 Get Data Messaging Format.....

6.1.3 Data Module

6.2 Slow Motion Handlers

6.2.1 Playback of Images

6.3 Chapter Summary

7 Remote Focusing

7.1 The Need for Remote Focusing

7.2 Server Support for Broadcasting Live video

7.2.1 Shortcomings and Other Techniques

7.2.2 Remote Focusing Message Format

7.2.3 Throughput Bottlenecks

7.3 Auto Focusing Handlers

7.4 Chapter Summary

8 Client Interface

8.1 W hy Java .

13

64

65

. 65

. 66

. 68

. 68

. 69

. 70

. 71

. 72

73

. 73

. 75

. 75

. 77

. 78

. 79

. 79

81

. 81

. 81

. 82

. 82

. 84

. 84

. 85

87

87

8.2 Components of Executed Code

8.3 The Need for a New Visual Unit . 89

8.4 Interface D etails . 89

8.5 L ogin . 89

8.6 Main Window . 91

8.6.1 C ontrol . 92

8.6.2 Current Settings Window . 92

8.6.3 Strobe Settings . 93

8.6.4 Obtaining a Sample Image . 94

8.6.5 Stage and Piezo Settings . 95

8.6.6 Live V ideo . 96

8.6.7 Remote Focusing . 97

8.6.8 A uto Focus . 98

8.6.9 Slow Motion Analysis. 99

8.6.10 Obtaining a Data Set . 100

8.7 Multi Client Analysis . 102

9 Conclusion 103

9.1 System Overview . 103

9.2 System Operation . 104

9.3 Future work . 105

9.4 Final Thoughts . 106

A Character Interface to the Led Flasher and Sine Wave Generator 107

B Techniques Investigated for Broadcasting Live Video 113
B.0.1 Launching a Background Process on the Server 114

C SPG Module Schematics 117

D Serial Unit VHDL Code 129

E Singen CPLD VHDL Code 131

14

88

F VCO CPLD VHDL Code 133

G Command Module Compilation 135

G.1 Makefile 136

15

16

List of Figures

2-1 Computer Microvision for MEMS [5] 30

2-2 Side View of Microscope . 31

2-3 Front View of Microscope . 32

3-1 SPG Module Top-level Architecture 41

3-2 Singen Unit Architecture . 44

3-3 D/A Timing Diagram . 46

3-4 Clock Multiplexing Circuitry to generate Singen Clock 48

3-5 FSM used to Multiplex the Singen Unit Clock 49

3-6 FSM Timing Simulation . 50

3-7 VCO Unit Architecture . 51

3-8 Illustration of Phase Correspondence to Stimulus 51

3-9 PLL Configuration for Frequency Multiplication 52

3-10 Stimulus Waveform versus PLL Output 53

3-11 Stimulus Waveform versus PLL Output 56

3-12 Image of SPG Module Prototype . 58

4-1 System Architecture for the Server 60

8-1 Login Interface - Step 1 . 90

8-2 Interface After a Successful Login - Step 2 91

8-3 Main Window . 91

8-4 Control Error Message . 92

8-5 Status Window . 93

17

Strobe Settings Interface

Sample Image of a MEMS device

Stage and Focus Settings Interface

Focus Control Interface

Specifying the Region of Interest on a Sample Image

8-11 Focus Image Viewer.

Slow Motion Setup

Slow Motion Viewer

Setup for Gathering a Data Set

Interface for Browsing an Acquired Data Set

Page 1 of the SPG Module Schematics

Page 2 of the SPG Module Schematics

Page 3 of the SPG Module Schematics

Page 4 of the SPG Module Schematics

Page 5 of the SPG Module Schematics

Page 6 of the SPG Module Schematics

Page 7 of the SPG Module Schematics

Page 8 of the SPG Module Schematics

Page 9 of the SPG Module Schematics

100

100

101

102

. 1 1 8

. 119

. 120

. 12 1

. 12 2

. 123

. 124

. 12 5

. 126

C-10 Last Page (10) of the SPG Module Schematics 127

18

8-6

8-7

8-8

8-9

8-10

. 93

. 94

. 95

. 96

. 98

. 99

8-12

8-13

8-14

8-15

C-1

C-2

C-3

C-4

C-5

C-6

C-7

C-8

C-9

List of Tables

2.1 Arguments for the Piezo Driver

2.2 Arguments for the SPG Module Driver

2.3 Arguments for the Stage Driver

3.1 Commands Processed by Serial Unit

3.2 Singen Unit Commands

3.3 VCO Unit Commands

3.4 PLL Capacitor Selection

5.1 Structure of the SET-STAGE-FOCUS Message

5.2 Structure of the SET-PIEZO Message

5.3 Structure of the SET-STROBE Message

5.4 Structure of the UPDATE-IMAGE-SETTINGS Message

5.5 Structure of the OBTAIN-SAMPLE-IMAGE Message . .

6.1 Arguments for the Command Module Interface

6.2 Structure of the GET-DATA Message

6.3 Structure of the CREATE-GIF Message

6.4 Structure of the RUN-SLOMO Message

7.1 Structure of the FOCUS-IMAGE Message

7.2 Structure of the AUTO-FOCUS Message

19

33

34

36

43

45

54

57

66

68

69

69

70

. 75

. 76

. 77

. 78

82

84

20

Chapter 1

Introduction

Micro Electromechanical Systems (MEMS) are devices that react mechanically to

electrical stimuli. They can be used to create complex machines with micron feature

sizes. MEMS is an enabling technology where current applications include accelerom-

eters, pressure, chemical and flow sensors, micro-optics, optical scanners, and fluid

pumps.

MEMS are fabricated using batch-processing techniques similar to those utilized

in the design of digital/analog integrated circuits (IC's). Unlike electronics, however,

simple methods for testing MEMS devices do not exist. This imposes limitations on

their design and manufacture. Since designers cannot visualize the actual motion of

the structures that they build, mechanical problems can go undiscovered. Further-

more, manufacturing costs can be high since mechanical testing may not be practical

until late in the manufacturing process. This is where computer microvision acts as

a good analysis tool to analyze the X,Y, and Z motion of a MEMS device during the

development and testing stages of the design process.

1.1 Computer Microvision

Computer microvision is an evolving field where common machine vision algorithms

are used to analyze microscopic devices. In computer microvision, a computer system

works with a microscope and external hardware for data acquisition. It then processes

21

the results either locally or remotely. Previous applications of computer microvision

include the study of the tectoral membrane of the inner ear [6].

The underlying principle of a computer microvision system is light microscopy and

video imaging. External hardware stimulates the device to be tested and generates

pulses that control the stroboscopic illumination. Images acquired from a camera at

multiple phases of motion can then be inspected and also processed by software.

1.2 Components of a Microvision System

The components of computer microvision consist of a device that magnifies the ap-

pearance of an object under study (microscope), a computer to implement control and

data processing, a device that can collect and transmit visual data, and a component

that can initiate an excitation upon the MEMS device.

1.2.1 Computer System

The computer system must have the ability to interface with the visual data collector

in order to understand what the device may be doing. The visual data collector

must be able to sense the object or some aspect of it with some minimal amount of

accuracy. There has been research done to determine a fast and reliable algorithm to

accomplish precisely this sort of detection at the sub-pixel level [3, 4, 2].

The visual data collector consists of a camera having a limited pixel resolution

and an interface to the computer system. Often, the interface will come in the form

of a card that plugs into a slot in the computer system. The card allows the computer

to capture images taken by the camera as well as control when the camera is to take

a picture. Other parameters such as exposure time and camera gain (used to control

dark current) can also be set via the computer.

In addition, the computer must interface with an apparatus to cause an excitation

upon the object under study. In the field of MEMS, this is usually an excitation volt-

age. When a defined voltage is applied properly to the device, it should react/move

in a certain manner. The way that the device reacts to the excitation is therefore the

22

most important aspect under study. This apparatus is part of the SPG (Strobe Pulse

Generator) Module. The SPG Module is also used to illuminate the moving device by

turning on the LED (Light Emitting Diode) during periods of time that correspond

to a certain phase in motion. Furthermore, the strobe pulses must be synchronized

with both the camera trigger and the excitation signal going to the device.

1.2.2 Microscope

The microscope consists of a computer controlled X,Y stage upon which the MEMS

device is mounted. The computer system also has control over the focus knob of

the microscope which allows large-scale, but crude motion (1 pm to 15 cm), in the

Z-Axis. The microscope objective is mounted on a piezo-electric device that is also

controlled by the computer. The piezo-electric device is used for sub-micron motion

(1 nm to 80 pm) in the Z-axis. Unlike the microscope's focus knob, the piezo-electric

device uses a closed loop DC-Servo motor to provide a very accurate displacement in

the Z-axis. The microscope has an LED that illuminates the moving MEMS device.

The LED is operated by the SPG Module and hence the computer can control it.

In essence, the computer system has full control over the microscope. As a result,

the computer has enough information to aid in the test process. It has information

about the signal used to excite the device since it is interfaced with the excitation

device. In addition, the computer can determine to some degree of accuracy how the

object behaves as a result of the specified input since it has an interface to the camera.

Furthermore, this behavior can be compared to a desired response of a specific input.

1.3 Remote Access

There are benefits to being able to run the system remotely. First of all, in an ideal

system, there should be no contact between the device under test and unfiltered air.

In particular, the part of the system that houses the device under test should be in a

clean room. The reason for this is that in the development stages of a MEMS device,

there may not be a package for the device under test. In addition, once a device has

23

been packaged, there is no possible way to visualize its motion. Thus, in order to

test and observe the device, it must be in a controlled environment. In order to avoid

having to work inside of a clean room or a controlled environment, the system should

be designed to handle remote access.

Also, in the process of designing and manufacturing devices such as MEMS, there

are many fields of study and expertise involved. In order to allow collaboration of

these fields into a group that can work on the design of the same MEMS device,

remote access would be a much better alternative than having to gather all of the

engineers in the same place.

The system architecture will have much to do with how they system should be

accessed. Since there will be one computer acting as the controller, this system can

easily be thought of as the server for all of the data and for all of the parameters of

the present system.

1.4 Relevant Work

This section describes the relevant work that has been done by researchers in a similar

area. It also explains the work that has been done for the current project by other

graduate students. It is important to understand the relevant work so that the results

from prior work can aid in the present work as well as avoid the overlap of ideas among

the research.

1.4.1 Remote Microscope

At present there is a remote microscope in operation at MIT. The interface and the

overall architecture has been refined by several graduate students at MIT [9, 13, 10]

The primary differences between that system and the present microvision system

have to do with the fact that with the remote microscope project, the devices under

test are not in motion. Thus, the tools used to analyze the devices will be different.

Also, MEMS devices require an excitation input. Thus, the tools must interact with

the data and the input to the device. However, there are some similarities between

24

the systems. Most importantly, both involve the use of a microscope/camera system

connected to a controlling computer.

1.4.2 Present System Tools

There has been work done on the present MEMS System to develop a way to examine

and analyze MEMS devices. Two tools that have been used extensively for this work

include one that can detect subpixel movement of a 3D object [3, 4] and one that can

analyze the motion in a certain Region of Interest (ROI) on a set of images. With

these two tools working together, a set of data taken from a MEMS device can be

analyzed for various ROI's. Information that can be gathered includes the motion of

the device under test in the X, Y and Z directions. Graphs can then be produced to

show the phase and magnitude response in the region under study [2].

1.4.3 Present Remote Interface

The existing system architecture designed by Jared Cottrell [1] is based upon the

server/client relationship. The server is the means through which somebody using

the web can have access to hardware connected to the system or the analysis tools

residing on the system. A computer system is currently in place that has a web server

running on top of the operating system. The web server allows clients to interact

with the system using the standard HTTP protocol. The server software that is

currently running is the Apache Web Server as it supports the use of Java Programs

called servlets. It is these servlets that overcome the inability of the standard HTTP

interactions to deal with state. The computer supports a dual boot to the Linux and

Windows NT system. Since the servlets compiled code is OS independent, it can be

used for both operating systems.

At present, a Java module resides on the server that appropriately handles mes-

sages sent from the client. There are also Java modules that take care of inter-client

communication as well as control and access of information for each client connected

to the server.

25

Erik Pedersen [12] implemented a customizable Java based Graphical User Inter-

face (GUI) to send and receive messages from the server, i.e. interact with the module

described in the above paragraph. In this implementation, a client connects to the

server via a web-browser, and obtains a GUI. Messages can be sent to the server to

execute C-programs that control the hardware or query the state of the system.

1.5 Thesis Statement

Designers of Micro Electromechanical Systems need tools to test the electrical as

well as mechanical properties of the devices they fabricate. Computer microvision

acts as a good analysis tool during the testing and development stages of the design

process. Computer microvision involves the use of light microscopy and video imaging

to acquire 3-dimensional images at multiple phases of motion. In this research, a

computer microvision system is defined and implemented. The computer microvision

system includes a PC, an automated X-Y-Z stage, a camera, and a piezo electric

device. Custom hardware includes the design of a module for a PCI interface that

acts as a central controller for stimulus and stroboscopic illumination.

There are benefits in being able to run the system remotely and support a multi-

client environment. The computer microvision system uses an Apache web server to

provide remote access and all communication is done via "messages". Java servlets

form an integral part of the server side software in overcoming HTTP's inability to

handle state. A client connects to the server's URL via a webbrowser and is presented

with a Graphical User Interface (GUI) that acts as medium to access all aspects of

the computer microvision system. The GUI, written in Java, also supports remote

focusing which can be done either manually or automatically. The various hardware

settings can be configured, an experiment or analysis can be launched, and the results

can then be viewed.

26

1.6 Thesis Work Involved

The research presented in this thesis defines, implements and presents a remotely

operated MEMS Characterization System. The ultimate goal was to present a working

system. Several graduate students and four theses over a span of two years have

already contributed to this project [1, 12, 14, 16]. The work involved in this thesis

required mastering their individual work and making it work together as a system.

Jared Cottrell presented the architecture for the servlets while Erik Pedersen pre-

sented a basic GUI that could remotely connect and excite these servlets. However,

at the time of their thesis completion, there was no hardware connected to the server

and only the Windows NT system was supported. All the software had to ported to

Linux and an upgrade to latest version of Java and Swing was required. The camera

and the corresponding driver was different and presented a new approach to image

acquisition. The SPG Module was designed and implemented which could excite the

MEMS device and we could now get real data.

As the hardware evolved and drivers were written, the messaging format was

refined along with the addition of new messages. In addition, several modifications

were made to the underlying architecture of the servlets to support multitasking

and provide feedback on an executable's status. Erik's GUI was virtually rewritten

to support multitasking and support new features while providing a user friendly

operating environment.

All this involved being responsible for the entire hardware and filling several soft-

ware gaps. Upon attaining an acceptable system, support was then added to the

client and the server for essential features such as remote focusing, auto focusing,

selecting a ROI, launching and viewing experimental results, etc.

1.7 Organization of the Thesis

Chapter 2 highlights the basic principles of computer microvision and the equipment

that was assembled to accomplish the task. It will show how the hardware was

27

integrated and the various software drivers that were written to allow the computer

to control the microscope.

Chapter 3 covers the design and architecture of the SPG Module. The SPG

Module is the main controller for stroboscopic illumination. It interfaces with the

camera and the light source while providing an excitation voltage to the MEMS

device.

Beyond Chapter 3, the focus is on remote access. Chapter 4 highlights the archi-

tecture used for remote access where the notion of "messages" and "handlers" will be

introduced. The emphasis will be on how the messaging protocol links the client and

server which have different software development environments.

Chapter 5 discusses the basic hardware handlers needed to operate the microscope

equipment, i.e call upon the executables established in Chapter 2. Chapter 6 will

introduce the command module interface and its associated handlers.

Chapter 7 highlights the need for remote focusing and the various architectural

issues that were considered in implementing it. The handlers used for auto focusing

will also be discussed.

Building upon the foundation of the handlers, Chapter 8 provides an introduction

of the client interface. Section 8.3 shows why we need a new user interface and

provides and pictorial view of the user interface that was created.

A conclusion at the end provides a discussion on the accomplishments and possible

future work.

28

Chapter 2

Principles of Microvision

The purpose of this chapter is to establish the fundamental principles of computer

microvision and show how multidimensional motion analysis can be performed on a

MEMS device.

2.1 Computer Microvision Method

Figure 2-1 [5] shows a test structure placed on the stage of a light microscope and

driven with a periodic stimulus. The motion of the device in response to the stimulus

is captured via stroboscopic illumination. The 3-D behavior of the device can be

monitored by taking images at multiple focal planes [2, 6]. Motion estimates for

X,Y, and Z can then be extracted from a set of images by using computer vision

algorithms [3, 4].

2.2 Computer Microvision Hardware

Commercial microscopes from Olympus, Zeiss, Lica, and other vendors are expensive

($50,000 plus). These microscopes often provide nice but costly features which are

not a necessity for the system we are trying to build. They may include complicated

light interferometrics, multiple high-powered objectives, etc.

An underlying advantage of the computer microvision method of analysis is the

29

Figure 2-1: Computer Microvision for MEMS [5]

low cost of the computer system involved. In fact, the cost of a computer system is

negligible ($ 2,000) compared to the cost of a microscope. A goal of this research

is therefore to present the essential components required by a MEMS characteriza-

tion system. This can only be possible if we create a generic microscope. Another

advantage of the generic approach is that it doesn't restrict the microscope to any

particular brand or type. Instead, it presents the basic building blocks that can be

integrated or added on to an existing microscope.

Figure 2-2 and Figure 2-3 show the front and side views of the of the generic

microscope that has been put together. A vertical rod is tightly screwed to a heavy

base plate. To this rod is attached a Z-Axis stage, also known as the Modular Focus

Unit (MFU). The MFU is provided by Nikon and allows manual focusing at 1 Am

resolution while supporting a scanning range of 15 cm.

30

Figure 2-2: Side View of Microscope

2.2.1 Camera

A gray-scale CCD camera mounts on the MFU. The camera interfaces to the computer

system via a frame grabber that occupies a PCI slot of the computer. A turret'

provides the interface between the camera and the objective.

It is desirable that our microvision system support the Windows NT as well as the

Linux platform. However, we were not able to find a camera that would work under

both operating systems. We therefore used an 8-bit Depict type CCD camera from

Opteon to be used for the Windows operating environment, and a 12-bit CCD camera

from Pulnix to be used for the Linux OS. Both of these cameras were installed on

the computer system which supports a dual-operating-system boot. The appropriate

camera is selected by software depending on the OS in use. However, the appropriate

camera has to be mounted onto the MFU by the system designer.

A driver for the camera was not written as it is part of the command module

'A rotating device holding various lenses.

31

Figure 2-3: Front View of Microscope

interface. Chapter 6 will provide an introduction to the command module interface

and show the subroutines used to acquire images from the camera.

2.2.2 PIFOC

A Piezoelectric Microscope Objective Nanopositioner (PIFOC), attaches between the

turret/objective interface. The pifoc is used to focus images up to 80 Am along the

Z-axis with a 10 nm resolution. Since the pifoc is made up of piezoelectric material,

its length can be controlled by applying a voltage. A Position Servo Controller, which

interfaces to the computer system via an RS-232 interface, is used to generate the

voltage needed by the pifoc. The pifoc and the controller are both supplied by Physik

32

Instruments.

A C-program was written to control the pifoc. The arguments to the program are

as follows

piezo argument xyz

where argument can be any one of the following shown in Table 2.1 and xyz is

an integer that can be positive or negative with the units of Am.

Table 2.1: Arguments for the Piezo Driver
init Initializes the controller.

Must be done every time the computer is restarted.
goto-position Puts the piezo at the displacement specified by xyz.
goto_ origin Takes the piezo to location 0.

step Sets the step size of the controller to xyz.
Can be a positive or negative number.

move Adds the value of "step" to current position.
The piezo will clamp to it maximum or minimum
value if asked to exceed its range of motion.

report-step Returns the current step size.
report Returns the current piezo position.

2.2.3 Light Source

The turret described in the camera subsection allows the insertion of a light source

in its middle. The light source for the microscope is green light (500 nm) from an

LED. Green light is used because Silicon is opaque to green light and this allows the

camera to only view the top structure. Nevertheless, a sequence of images obtained

from multiple planes contains information about out-of-plane motions.

2.2.4 SPG Module

The SPG Module is used to illuminate the moving device by turning on an LED

during periods of time that correspond to a certain phase in motion. Since a MEMS

device can move faster than the camera can respond, the SPG Module is needed

to synchronize the phase of the motion with the LED strobes. The SPG module is

33

also capable of opening/closing the camera shutter at the right intervals. The SPG

Module was custom designed to support various requirements which include arbitrary

frequency and waveform generation, the ability to select the number of strobes per

phase, etc. The details of the hardware can be found in Chapter 3. The executable

"strobe" was written to operate this hardware. The arguments to the executable are

as follows :

strobe argument xyz xyz2

where argument, xyz, and xyz2 are described in Table 2.2.

Table 2.2: Arguments for the SPG Module Driver
led-on Force the LED to be on.
led-off Turn the LED off. However, the LED can turn on while

acquiring an image.
integrate-on Set the integration line of the camera low (Linux Only).
integrate-off Set the integration line of the camera high (Linux Only).

frequency Set the frequency of the output waveform to xyz Hz.
The capacitor selection must also be updated.

divisions Set the desired phase divisions of the sinusoid to xyz.
The capacitor selection must also be updated.

phase Select the phase at which we want to sample the motion.
Must be less that the number of phase divisions specified.

flash Programs the flash count register.
delay The time delay after asserting pixstart to starting strobe pulses.
start Initiate the process to take an image. Upon receiving this signal,

pixstart is asserted for 1 Clock Cycle and the flashing starts
after waiting for the specified delay count. A "Stop" character
is sent to the computer system upon the completion of the
process. The image can then be copied from the camera's CCD
buffer. The flash count depends on the programmed value.

cap Select the appropriate capacitor for the VCO circuitry. Refer
to Table 3.4 for the appropriate selection.

wfon Enable the output waveform.
wfoff Turn off the output waveform. Output voltage is not necessarily

at 0 Volts.
init Resets the SPG Module. Sets the frequency to xyz and divisions

to xyz2. Since this argument takes in the frequency and the
division, it knows what capacitor selection to choose and does
so accordingly.

image Sets the phase to xyz and the flash to xyz2.

34

2.2.5 X-Y-Z Control

An automated X-Y stage provided by Prior Scientific is mounted to the base plate

directly underneath the objective as shown in Figure 2-3. It is on this X-Y stage that

we mount the device to be tested as seen in Figure 2-3. Unlike the pifoc, the X-Y

stage uses stepper motors and allows a 0.1 pm resolution in either direction. The

X-Y stage motion is limited to 4.5 x 11 inches respectively.

The stepper motors of the X-Y stage receive their control signals from Prior's

Proscan H128 series motor controller. This family of motor controllers can be pro-

grammed via an RS-232 interface. In addition, it provides a cup-shaped stepper motor

module with a 0.1 pm resolution that can mount on the focus knob of the MFU as

seen in Figure 2-3. In this way, the MFU can be controlled via the computer system.

The MFU is used to provided crude large scale motion (15 cm scanning range with

1 pm resolution) in the Z-axis, while the pifoc is used to provide a limited range (80

pm) motion with a very accurate resolution (10 nm).

The executable "stage" was written to operate this hardware. The arguments to

the executable are as follows :

stage argument arg2 arg3 arg4

where argument can be any one of the following shown in Table 2.3. This table

also highlights the significance of arg2, arg3, and arg4 which have units of pm and

can be either positive or negative integers.

It is important to talk about the resolution of the MFU. While the motor that

interfaces to the Z-axis of the MFU has a resolution of 0.1 pm, Nikon's MFU only

supports a resolution of 1 pm. Hence the large scale motion in the Z-Axis is limited

to a resolution of 1 pm. The large scale motion in the Z-Axis is primarily needed to

put the objective into focus and therefore resolution is not an issue. In fact, this is

mandatory if the system is to be operated remotely.

35

Table 2.3: Arguments for the Stage Driver
set-origin Set the internal X-Y-Z reference counter to (0,0,0).

This defines the location of the origin.
goto-origin Take the stage to (0,0,0), i.e the defined origin.

delta-x Increment the X-axis by the number specified in arg2 (pm).
arg2 can be a negative number.

delta-y Increment the Y-axis by the number specified in arg2 (pm).
arg2 can be a negative number.

delta-z Increment the Z-axis by the number specified in arg2 (Am).
arg2 can be a negative number.

deltaxyz Increment the X,Y and Z position as specified by arg2, arg3,
and arg4 (pm) respectively. The increment variables can be negative.

gotoxy Move the stage to the X,Y coordinates specified by arg2
and arg3 (pm) respectively.

goto-xyz Move the stage to the X,Y,Z coordinates as specified by arg2, arg3,
and arg4 (pm) respectively.

report Report the current X,Y,Z position.

2.3 Measuring In Plane Motion

Motion estimation can be done by taking a sequence of images at evenly spaced phases

(typically 8) of the sinusoidal stimulus. The images are acquired by the camera while

the sinusoidal stimulus and camera trigger are generated by the SPG Module. The

X-Y stage is used to find the device to be tested and is focused by the MFU and

pifoc. The following lines represents an example on how the various drivers described

in this chapter can be called upon to setup the hardware prior to acquiring an image.

stage init % initialize the stage

stage goto-origin % Find a device

piezo goto 25 % Focus the image

strobe -init 2500 7 % Initialize SPG Mod. and set Freq. and Div.

strobe -flash 20 % Set the number of flashes

strobe -phase 5 % Select the phase at which to take the image

strobe -delay 2 % Delay to flashing upon receipt of start.

strobe start % Obtain the sample image

copy-image 0 % Transfer the image from the camera to the hard-disk

36

The steps show that once the stage has been initialized and an appropriate ROI

has been found, it can be brought into focus by adjusting the height of the pifoc. The

SPG Module is programmed with the desired frequency and phase-divisions, and in

this case it is 2500 Hz and 8 phase-divisions respectively. The flash count is chosen

to limit the exposure of light and the phase at which the LED is to flash is selected.

In this case, we selected 20 flash counts and the 6th phase 2 . The delay counter is set

to some non-zero value and the start command is sent to the SPG Module to initiate

the LED flashing.

The next image will most likely be at a different phase or plane, and not all of the

above steps need to be repeated. The displacement between two images for a specified

ROI can then be estimated directly from the images by analyzing the changes in pixel

brightness. The image resolution is limited by the optics [2] to distances on the order

of 550 nm. However, the displacement between two such images can be measured in

the order of a few nanometers [2].

Furthermore, the sequence of images that represent the motion at various phases

can be used to create a movie that shows a time displacement waveform.

2.4 Measuring Out of Plane Motion

3-D motion estimation can be done by taking pictures in various planes. All images,

besides the one at the best focal plane, will have a certain degree of blurriness. In-

plane motion estimation algorithms can be used to extract 3-D motion estimates from

such images. More information on this can be found on page 17 in [14].

2.4.1 Computer Microvision Software

The computer and its operating system must be capable of controlling all the hardware

involved, namely the pifoc's position servo controller, X-Y-Z stage motor controller,

the SPG Module, and the frame grabber. With the exception of the camera, all the

2Refer to Table 3.3 for all such offset issues with the SPG Module.

37

hardware is controlled via an RS-232 interface. This is in fact quite desirable since

it makes the computer microvision system OS independent. The computer used is a

Pentium Pro 200 with 128 Megs of RAM. A Cyclades expansion card is installed to

provide 8 extra RS-232 serial lines as dictated by the hardware requirements.

2.5 Ending Remarks

This chapter highlighted the various hardware components of a MEMS characteriza-

tion system. Software was developed that allows the computer to change the state of

the hardware. In essence, the computer has full control over the microscope. It can

excite the device and measure the behavior of any region of interest. Furthermore,

with the appropriate software, these measurements can even be done remotely.

Before proceeding on to the remote access architecture, it is appropriate at this

time to present the fundamental details of the SPG Module. That will be the focus

of the next chapter. The reader can choose to skip the next chapter without loss of

continuity.

38

Chapter 3

SPG Module

The goal of this chapter is to present the underlying hardware details of the Strobe

Pulse Generator (SPG) Module. This module serves as the main controller for strobo-

scopic illumination. Since a high level description of the SPG Module was presented

in Section 2.2.4, this chapter can be skipped without loss in continuity.

3.1 Objective

The SPG Module has several objectives. First, it must allow the user to specify an

arbitrary waveform shape to excite the MEMS device and not restrict the user to

known forms such as sinusoid, triangular, etc. It must also not quantize the output

frequency and allow the user to specify as precise a frequency as possible. Second,

the SPG Module must be able to section this waveform, i.e. divide this waveform

into phases. The number of sections, i.e phase-divisions, must depend upon the user

specification. Third, the SPG Module must be able to turn on the LED at a user-

specified phase for a number of user-specified cycles. Fourth, it must provide control

signals to operate the camera. Fifth, it must be a "user friendly" module that provides

acknowledge signals, status, etc.

All this will be clear once we define the architecture and establish the means to

communicate to the SPG Module.

39

3.2 Architecture Overview

The architecture of the SPG Module comprises of three main units : Serial Unit,

Singen Unit, and the VCO Unit. The Serial Unit acts as the interface for data

communication between the computer system and the other units of the SPG Module,

i.e. the Singen Unit and the VCO unit. It converts serial data from the computer

system into parallel data and facilitates the communication protocol.

The Singen Unit is responsible for generating the stimulus that excites the MEMS

device. The Singen Unit contains a specialized device that can be programmed to

generate a very precise square wave, i.e. "clock". The Singen Unit allows the gener-

ation of waveforms with arbitrary shape and frequency by allowing a user to load a

waveform into the RAM and to vary the rate at which the data points in the RAM

are accessed. The "clock" generated from the specialized device determines the speed

at which the data points in the RAM are cycled.

The VCO Unit is responsible for frequency multiplication of the arbitrary wave-

form (typically sinusoid) being generated by the Singen Unit. The multiplication

factor depends upon the phase-division's requested by the user. The VCO Unit uses

a Phase Lock Loop (PLL) based circuitry to generate the multiplied output which

is in phase with the input. The VCO Unit uses logic that works with the reference

input signal and the multiplied signal to turn the LED on, i.e. illuminate the moving

MEMS device at the right phases.

3.3 Prototype Implementation

The SPG Module was implemented on a nerd kit'. The nerd kit was used because it

provides a convenient development environment and has provision to access 4 Cypress

CY7C374i CPLD's and a serial interface via the CPLD-Module2 [15]. The Serial Unit

and the Singen Unit each occupy one CPLD of the CPLD-Module. The VCO Unit

'A nerd kit is a sophisticated protoboard that supports a NUbus interface and is used by students
at MIT that take course 6.111 which is an introductory course in digital design.

2 The CPLD-Module plugs into the NUbus interface of the nerd kit and was designed by the
author.

40

was put on the external proto strips due to clock and pin limitations of the CPLD-

Module. The external components are wired on the space available on the protoboard.

The limitation of the prototyping environment, such as availability of pins and clocks,

affected the architecture of the design. This will be explained when necessary.

Figure 3-1 illustrates the interconnection among the various units. The signifi-

cance of each unit will be discussed next.

integrate
se'nalin pixdone

serialout led-ack

led

command[3..0]
Serial Unit

data[15..

newdata

newcomand
IUART 01k sine ack

4

16/
T

--

ii*

pixdone vco cik 4

ledack vco sample -- 10

led

command[3..0] sel

VCO UNIT
data[15..O] strobe --

pixstart - 0

newdata SingenClk

newcommand
UART CIk DDS Clk

DDSClk SingenC1k

command[3..O] waveform

To Camera

From PLL CKT

To PLL CKT

To LED

To Camera

To PLL CKT
and DUT

Figure 3-1: SPG Module Top-level Architecture

3.4 Serial Unit

The Serial Unit comprises of a Universal Asynchronous Receiver Transmitter (UART)

that facilitates the serial transfer of data between the computer system and the SPG

Module. It is desired that the SPG Module be operating system independent which is

why a serial interface was chosen. The ultimate goal is that the SPG Module would

41

Serial - -

Interface _

UARTClk

data[10..0]

Singen UNIT
newdata

newcommand

sine ack

i i i i e

occupy a PCI3 slot of the computer system from which it will only obtain power

and ground. The functionality of the SPG Module can then be accessed via a serial

interface.

The goal of the Serial Unit is to support and facilitate the established commu-

nication protocol. The communication protocol can be found in Appendix A and

the reader is strongly encouraged to read it before proceeding. The protocol outlines

how someone can go about accessing the various features of the SPG Module and

program it. It shows the format in which data must be sent and the impact of the

serial characters sent to the SPG Module.

The Serial Unit emulates a UART to convert the 7-bit serial data to a byte. This

byte is then checked to see if the byte is of the "Data" category or "Command"

category4 . "Data" have to be grouped to form 16-bit "Words" and "newdata" flag is

raised upon formation. If the incoming byte is of a "Command" type and is meant

for the other units (Singen or VCO), then a flag "newcommand" must be raised and

the appropriate value for a "Command" must be sent to the other units. The Serial

Unit must wait for the corresponding unit to acknowledge the command (sine-ack or

led-ack) before the UART transmits a character to inform the computer system that

the "Command" was processed successfully.

The Serial Unit also asserts signals needed by the camera and the VCO Unit.

These are the "led" and "integrate" outputs. The "strobe" output of the VCO unit

which drives the LED can be forced high if the Serial Unit asserts the "led" signal. In

this way, the Serial unit can force the LED to turn on irrespective of the VCO Unit

settings. The "integrate" output is part of the control signals needed to operate the

camera and is explained in Section 3.6.5.

Table 3.1 highlights the commands processed by the Serial Unit. The Serial Unit

shown in Figure 3-1 is implemented in VHDL and occupies a single CPLD. The

interconnections to the serial interface shown in the figure represent the interface to

3We selected PCI because ISA is gradually being faded away and it is very likely that newer
computers will not have an ISA slot.

4 Data is transmitted by nibbles represented by 0 - 9 and a - f or 0 - 9 and A - F. That is, case is
not distinguished for hex characters. All other 7 bit characters are special command characters.

42

the RS-232 transceiver which converts the 12 Volt signals to TTL levels. The VHDL

code can be found in Appendix D. In essence, the VHDL code can be separated

into two broad categories - "Serial" and "Echo". The Echo block uses the "Serial"

interface to implement the communication protocol.

Table 3.1: Commands Processed by Serial Unit
Command Serial Char Significance
Echo "C" A Null command which does nothing except the

required echo of A. Used to test the RS-232
connection.

TurnLEDOn "o" Turn the LED on.
TurnLED-Off "o" Turn the LED off (Default). The VCO unit can

still turn on the LED.
Integrate-high "i" Set the integrate line of the camera high.
Integrate-low "I" Set the integrate line of the camera low.

3.5 Singen Unit

The Singen Unit uses a CPLD, RAM, DDS chip, and a D/A converter to generate

a waveform with an arbitrary shape and precision frequency. It uses the CPLD,

referred to as the Singen CPLD, to address and load data onto the RAM in addition

to programming the DDS chip that generates a precise "clock". This clock is then

used to loop through the various points of the RAM which interfaces to the D/A

converter. The system architecture of the Singen Unit is shown in Figure 3-2.

3.5.1 Singen CPLD

The role of the Singen CPLD is to interface with the Serial Unit and listen to the

"newdata" and "newcommand" signals and then act according to the values presented

on the the 4 bit "command" bus and the 16 bit "data" bus. The architecture of the

Singen CPLD is based on an FSM that polls these signals coming from the Serial

Unit and asserts signals for the RAM, D/A and the DDS chip accordingly. Table 3.2

highlights the commands recognized by the Singen CPLD.

43

SingenClk
from VCO Un

From
Serial Unit

it

p

Data[15..o Data[10-0]

Daal l DatallO 01

Data[10]

Fi

3.5.2 Static RAM

The RAM used by the Singen Unit is an IDT71256SA manufactured by Integrated

Device Technology, Inc. which is a 256 K (32K x 8) CMOS Static RAM [8]. It is the

fastest SRAM available in the DIP package with access times in the order of 15ns.

Due to the pin limitations of the prototyping environment, only 11 bits of the

Singen CPLD are used to the address the RAM5 . Furthermore, the data bits coming

from the Serial Unit are 16 bits wide, while the RAM only looks at the first 8 bits.

This is because 8 bits are sufficient to produce a high quality waveform from the D/A

converter. If a higher resolution D/A is needed, then the RAM can be replaced with

one that is wider, or another one can be added for the higher order bits. Increasing the

address and data bus width is a simple modification which requires re-compilation

of the VHDL code for the Singen CPLD. This flexibility offered by programmable

devices is the primary reason for their popularity in modern digital designs.

5The SRAM supports up to 15 bits of address lines.

44

Ram RW /WE
Ram~OE jo/OE

command[3..O] d [A r 4

nwoadAddress[1O 0] drs[4]
newcomand

newdata RamData[7..0] 10[7..0]

Data[10..0] DDSRW SRAM

DDSLoad-

Singen CPLD 8

Data[7..0]

/CS

Load /RW I Analog Out

Data[7 .0]

TC[3] Sinusoid Comparator D/A

ur -TC[2..] DDS Clock

ure 3-2: Singen Unit Architecture

To PLL CKT
and DUT

jo To VCO Unit

Table 3.2: Singen Unit Commands

Command Serial Char Significance

Load-StopRegister "n" This command is used to specify the value for the
11 bit "Stop Register" internal to the Singen CPLD.
The "Stop Register" contains the final address of
the waveform stored in the RAM.

Once this command is detected via the newcommand
assertion, the data is loaded from the Serial Unit
data bus upon the receipt of a newdata signal.

ResetAddress-Loop "r" Set the RAM Address to 0.

LoadRAMBlock "L" This command is used to load a block of data into
the RAM. The size of the block is specified by the
value of the Stop Register and it is assumed that
the user will first reset the RAM address before
issuing this command.

Upon the receipt of this command, the CPLD module
will write data into the RAM each time the newdata
signal is received from the Serial Unit. The address
is also incremented after writing to the RAM.
This process of writing and incrementing continues
until the RAM has been written to the address
specified by the value of the Stop Register.

StartAddressLoop "G" The RAM data outputs are enabled and the RAM
Address increments by one on each clock edge. The
Address roles-over to zero after the value of
"Stop Register" has been reached.

LoadDDSCmd "1" This command is used to program the DDS chip that
generates a precise clock. Once this command is
received, the action depends on the receipt of
the newdata signal from the Serial Unit and the
value of Data(8). If the 9th bit, i.e. Data(8), is
Logic '1', then DDSWR is asserted for 1 clock cycle,
else DDSLoad is asserted for one clock cycle.
The significance of these signals are explained
in Section 3.5.4.

45

3.5.3 D/A Converter

The SPG Module uses the Analog Devices, Inc. AD558 Digital to Analog Converter

which supports a microprocessor interface. The D/A converter is operated in a mode

where it is always enabled and listens to data on the RAM data bus. Since it takes

time for the RAM data to become valid after an address change, this can result in

the D/A converter giving out inconsistent data for a short period after every address

change. This problem is solved by taking advantage of the latch based architecture

of the AD558. When /CE or /CS goes to Logic '1', the input data is latched into the

registers and held until both /CE and /CS return to zero. Therefore, we tie clock to

/CE and wire /CS to ground6 . The timing diagram shown in Figure 3-3 assists in

explaining this behavior.

Clk

Address
to RAM xxx 000 01 010 Oi1 100 101

D~ti

Latched
by D/A (xxx) (000) (001) (010) (011) (100) (101)

Figure 3-3: D/A Timing Diagram

3.5.4 DDS Chip

In order to generate a very precise clock, we use an AD7008 from Analog Devices,

Inc. The AD7008 Direct Digital Synthesis (DDS) chip is a numerically controlled

oscillator employing a 32-bit phase accumulator, sine and cosine look-up tables and

a 10-bit D/A converter integrated on single CMOS chip. The DDS accepts an input

clock of up to 50 MHz and generates a sinusoidal output with a frequency that can

be controlled to one part in 4 billion. A comparator is used to convert the sinusoidal

output into a square wave. The fidelity of the output sinusoid decreases at higher

6Reversing the role of /CE and /CS makes no difference.

46

frequencies due to the phase-accumulator architecture. Experimental results show

that a decent looking sinusoid is attained when the requested output frequency is less

than 1/10 the clock frequency of the DDS chip.

The DDS chip can be programmed either through an 8-bit or 16-bit parallel inter-

face or via a serial interface. Although, the Serial Unit supplies a 16 bit data bus, we

use the 8-bit parallel interface to program the DDS chip as the upper pins of the data

bus work in conjunction with the Singen CPLD to assert control signals required by

the DDS chip. The DDS chip supports a wide variety of functions including phase

modulation. However, for our application, we only need to generate a fixed frequency

which makes programming relatively trivial. Basically, we have to load data into a

COMMAND register which specifies the mode of operation and the FREQ-0 register

which specifies the output frequency.

The DDS chip has a 32 bit temporary register to which we write data, 8 bits at a

time, by asserting the /RW line. Upon each assertion of /RW, the data is shifted left

by 8 bits. Hence, 4 /RW are needed to fill up this temporary register. The next step

is to assert LOAD while specifying the destination register via TC(3). This transfers

data from the temporary register to the COMMAND register if TC(3) is Logic 0, else

to the FREQ_0 register.

Figure 3-2 shows that TC(3) is connected to the 10th bit of the data coming from

the Serial Unit while the first 8 bits serve as the parallel data to be loaded into the

temporary register. The DDS-RW and DDSLoad are generated from the Singen Unit

based on the value of the 9th bit as explained in Table 3.2.

Therefore, the process of programming the DDS chip first involves having the

computer system send a LoadDDS-Cmd to the Singen Unit. This is followed by the

computer then sending data 4 times. Recall that each data is 16 bits wide but the

DDS only looks at the first 8 bits. In all 4 instances, the 9th bit should be '1' so the

Singen Unit asserts a DDSWrite each time a newdata signal is received. Now that

the temporary register has been filled, the next step involves transferring the data

either to the COMMAND register or to the FREQ-0 register. The computer system

now sends the LoadDDS-Cmd again followed by 16 bits of data. The 10-bit is tied

47

to TC3 so if it is Logic '0' the COMMAND register gets selected, else the FREQ_0

register is selected. This time the 9th bit is a Logic '0' so the Singen Unit asserts a

DDSLoad and the data gets transferred to the selected register. Note that this time

the lower order 8 bits were ignored. It is important to realize that the COMMAND

register must be loaded before the FREQ_0 register. The details on this process from

a software point of view can be found in the Set_DDSFrequency() function of the

driver strobe.cpp. From a users perspective, the driver takes care of the underlying

details and the ordering in which the signals must be sent.

The Singen CPLD is implemented with a Finite State Machine (FSM) architecture

and fitting constraints impacted the style of code. The VHDL code for the Singen

CPLD can be found Appendix E.

3.5.5 Clocking Strategy

The Singen CPLD uses a fairly complex clocking strategy. It involves the multiplexing

of two clock sources, namely the UARTClk and the DDS_Clk. The UART-Clk runs

the Serial Unit and VCO Unit. Hence, all signal communication among all units

must be synchronized to the UARTClk. Furthermore, this also implies that the

Singen CPLD program the DDS chip using the UARTClk. However, when the time

comes to do the address looping, i.e. play out the waveform, we would like to use the

DDSClk.

The switching of clocks is tricky and requires absolute precision to avoid any

glitches on the clock line. Figure 3-4 shows the multiplexor design where signal

'A' is synchronized with the UARTClk and 'B' is synchronized with the DDS-Clk.

Furthermore, we must ensure that 'A' and 'B' are never asserted at the same time.

A

UARTClk -- C

COkout

B

DDSClk

Figure 3-4: Clock Multiplexing Circuitry to generate Singen Clock

48

An FSM, shown in Figure 3-5, is devised to ensure that 'A' and 'B' are never

asserted simultaneously and to provide a smooth transition whenever it is time to

switch. Since the FSM requires 2 clock sources, the prototype limitations force us

to implement this module on the VCO CPLD. This is because the VCO CPLD is

external and doesn't have all 4 of its clocks tied together.

UARTClk Based FSM DDS_Clk Based FSM

State_A_One State B Zero

MakeB_.One = 0

MakeBOneSync_DDS

newcommand & Command = StartAddressLoop

State B One
State A Zero BOne

A=O
Make_B_One = 1

/ MakeBOneSyncedDDS

newcommand & command = ResetAddressLoop

1) Make B_One from UART_Clk based FSM is
synchronized with DDS Clk to give
Make_B One Sync DDS.

2) Output B from DDS_Clk Based FSM is

StateAHalf synchronized with UART Clk to give
BsyncUart.

A= 0 1 3) Command = '1' means Command[3..O]
Make_B_One = 0 I is "StartAddressLoop".

4) 'A' which is synchronized to UART_Clk
and 'B' which is synchronized to DDS_Clk
are sent to the clock multiplexing circuit.

_(tBsyncUart I

Figure 3-5: FSM used to Multiplex the Singen Unit Clock

Figure 3-6 shows a timing diagram of a simulation to show the process in which the

FSM transitions the clocks. As a simulation simplification, the command signal when

high means that the command is StartAddressLoop else it is ResetLAddressLoop.

It is important not to forget the assertion of the SineAck signal by the Singen CPLD

upon the receipt of newcommand. Once this signal is asserted by the Singen CPLD,

the Serial Unit will de-assert newcommand. We must ensure that in such a situation

there will be no timing problems. Recall that the assertion and de-assertion of the

49

UI!UFF 1i1U -- -~ - - -

newcommand signal from the Serial Unit are done on the UART-Clk. The FSM also

checks for the newcommand on the UART.Clk, so it is bound to catch it. If the Singen

CPLD is running on DDS-Clk and asserts Sine-Ack, newcommand will not be de-

asserted till the next UARTClk event. Furthermore, the Singen Unit keeps asserting

the Sine-Ack signal till newcommand returns to Logic '0'. Hence, the assertion of

SineAck signal to the Serial Unit is compatible with this clock multiplexing scheme.

Figure 3-6: FSM Timing Simulation

3.6 VCO Unit

The previous section described the Singen Unit which provided the stimulus to the

MEMS device. The MEMS device responds to this electrical stimulus with mechanical

motion. This motion, which can be non-linear, is however periodic in nature. That is,

a periodic input waveform will result in a periodic response/motion from the MEMS

device. The goal of the VCO Unit is to use stroboscopic illumination to take advantage

of this periodicity and capture this motion through the camera. The architecture of

the VCO unit is shown in Figure 3-7. In this section, the functionality of the CPLD

and the external components will be explained. However, the reader is encouraged to

reference Appendix F for the VHDL implementation of the VCO CPLD.

50

UARTClk

DDS_Clk

VCO_Clk

Data[15..0]

From
Serial Unit

From
Singen Unit

> Clk
St

01C~k Pix
> Clk PixD

Led
command[3..0] Singe

newdata CA
newcomand

led VCO CPLD
Data[15..0] VCOSa

3.6.1 Phase and Phase-Divisions

The response of a MEMS device is generally characterized with respect to the phase of

the applied stimulus. A periodic waveform can be partitioned into multiple sections,

where each section of time is considered a phase. The total number of sections in

one cycle, i.e the number of possible phases, is defined as phase-divisions. Figure

3-8 shows a sinusoid with 4 phase-divisions. The region corresponding to the third

phase-division has been highlighted.

Phase 0 04Phase 1 Phase 3

Figure 3-8: Illustration of Phase Correspondence to Stimulus

The partitioning of the stimulus waveform into phases is accomplished using a

Phase Lock Loop (PLL) based circuitry that does frequency multiplication. The

51

robe - p To LED
Rtart l o To Camera
one o To Serial Unit
Ack loo To Serial Unit
nCIk 10 To Singen Unit

Psel Sel[2..0]
3 C 04

C1 4051 C5
mplE 2 Mux C

C3 Out C7

Pin Pin 6

Pin 7
L Pin 11

20 K

in 13 Pin
-0 50 K 33 pF

5 K 2.2 uF

Architecture

igU SIGin
4046 P

Comparator VCOClk P

Figure 3-7: VCO Unit

objective is to produce a digital waveform that is in phase with the sinusoid exciting

the MEMS device, but has a frequency that is multiplied by the number of phase-

divisions. A PLL chip serves as an excellent means to accomplish such a task. There

have been several books written on this subject and the reader can refer to any one

them for details [7]. A PLL can be wired as shown in Figure 3-9 to do frequency

multiplication. In essence, a frequency divider is placed in the feedback loop of the

PLL. The PLL chip ensures that the two input signals will be in phase which requires

the PLL chip to produce an output that is "n" times the input frequency. Here, "n"

is the frequency division ratio which is achieved using a digital counter.

m.VCO VCO Clkm'n (4046) mx n' Hz

SCOMPin

Modulo 'n'
Counter

Qn Q5 Q 4 Q 3 Q2 Q 1 QO

Figure 3-9: PLL Configuration for Frequency Multiplication

Figure 3-7 show that the stimulus from the Singen Unit is converted into a square

wave which serves as the first input to the PLL chip. The output of the PLL chip,

VCOClk, is sent to the VCO CPLD for frequency division to produce the second

input to the PLL chip. Figure 3-10 illustrates the output for 4 phase-divisions, i.e. a

frequency multiplication ratio of 4.

3.6.2 Phase Counter

Since the VCO CPLD has knowledge of VCO-Clk and controls the frequency division

counter, it knows the correspondence of every rising-edge of VCOClk to the phase

number7 . This is labeled in Figure 3-10. Hence, a user can specify a phase number

'See the VHDL code and block diagrams in Appendix F for the implementation.

52

Stimulus
Waveform -- --- ~

Phase 0 Phase 0 1

VCO Output
4 phase-divisons

Figure 3-10: Stimulus Waveform versus PLL Output

and the VCO CPLD will be able to identify that in a stream of VCOClk's.

This knowledge is essential because when we analyze motion, i.e take an image,

we do so one phase at a time. Thus, we must be able to select the phase of the

stimulus at which we want the LED to illuminate. The details of LED illumination

will be postponed till Section 3.6.4.

3.6.3 Strobe Counter

When the time comes to acquire an image, the VCO CPLD can turn on the LED

corresponding to a particular phase of interest. However, the principles of imaging

are based on the amount of light that gets exposed onto the CCD of the camera.

The VCO CPLD provides a user programmable solution to the problem by making

provision for a Strobe Counter. Upon a request for a picture, the LED turns on for a

full VCOClk cycle and it does this for the number of times specified by the Strobe

Counter.

This is the essence of stroboscopic illumination. We are taking advantage of the

periodicity of the response and stimulus, to acquire the same image and multiple

instances of time.

3.6.4 Image Acquisition

Table 3.3 highlights the serial commands of the SPG Module that are processed by the

VCO Unit. Once the stimulus waveform is established, and the phase-divisions and

53

strobe counter values specified, it is time to acquire an image. The 'S' character when

sent to the VCO unit will flash the LED at the desired phase for a number of times

specified by the Strobe Counter. Upon completion, "pixdone" signal is asserted by the

VCO CPLD which is processed by the Serial Unit. The Serial Unit, upon detecting

the "pixdone" signal, transmits a special character to the computer system to notify

completion of the image acquisition. This is important from a timing standpoint, as

the computer system can now fetch the image from the camera buffer and write it to

disk.

The "strobe" output of the VCO CPLD is sent to the LED via an open collector

buffer (74S38 chip). When "strobe" is Logic 1, then the LED in on, else it is off.

The "led" signal from the Serial Unit can be used to force the "strobe" output high

irrespective of the VCO CPLD settings. This is needed for applications that control

exposure via software.

Table 3.3: VCO Unit Commands
Serial Char Significance

"M" The number of phase-divisions.
"N" The number of strobe pulses starting from 0 required to produce

the desired exposure.
"P"l This is used to specify the phase of the strobe pulse.This number

must be offset by -1. Suppose, there is an 8 phased-divisons system,
'M' should be 7. To select the 2nd phase, 'P' should be '0' and
to select the first phase, 'P' must specify 7.

"S" Start taking a picture.
"V" The capacitor value selection which specifies the range of the VCO.
"W"7 The time delay before starting strobe pulses. Cannot be zero.

3.6.5 Camera Support

It is important to realize that the primary role of the VCO Unit is to flash the LED.

However, it is important to have the camera in the expose8 mode before the LED

begins to flash. To minimize the amount of dark current, it is important to minimize

8 The word expose has been used in a very general sense. In analog camera cameras, this may
correspond to opening the shutter, or in a digital camera flushing the CCD, and so on.

54

unnecessary exposure. Furthermore, to simplify timing and maximize throughput, it

is desirable to take care of all timing sensitive issues in hardware. The "pixdone"

signal described in the previous section can notify the completion of the imaging

process. However, the issue of exposing the camera before the LED begins to flash

needs to be addressed.

Chapter 2 showed that the MEMS characterization system requires a proper cam-

era be mounted based on the operating system in use. Since the cameras are supplied

by different vendors, they have different techniques of controlling the exposure pro-

cess. The Linux camera supports a level-sensitive trigger via by the assertion of the

"integrate" line. As long as the line is pulled low, the camera CCD is exposed to the

incoming light. Once the "integrate" line is pulled high, the exposure process is over.

Hence, for the Linux camera, the integrate line is pulled low prior to sending the 'S'

character to the SPG Module. Once a "pixdone" is received from the SPG Module,

the integrate line can then be pulled high.

However, the NT camera requires an edged pulse to specify the start of the ex-

posing event. The amount of exposure time is programmed in software prior to the

start of the event. In order to support camera types that require an edge triggered

event, the VCO CPLD provides a "pixstart" signal. The pixstart signal is raised for

1 UARTClk cycle upon the receipt of the 'S' char from the computer system. This

triggers the camera and the VCO unit then starts the process of illuminating the

LED.

It is very likely that once a camera receives the edge-triggered event, a certain

processing delay occurs before the camera really starts to capture the image. This

delay time is specified in the camera data sheet and it is very important to take this

into account. To overcome problems that may arise due to such a delay, the VCO

CPLD makes provisions for a delayed image acquisition. This is done by allowing

a programmable delay from the time the pixstart is sent to the camera to the first

flash. A user can specify the value for an 8 bit Delay Counter which runs at the

UARTClk via the "W" character 9. The Delay Counter does not have to be updated

9The UART-Clk is used because its value is fixed compared to the variable VCO-Clk.

55

by the computer system for each image acquisition process. In fact, the VCO CPLD

remembers the last programmed value and reloads the counter each time an image

acquisition is requested. The Delay Counter then counts down and upon reaching

zero the LED illumination sequence begins.

3.6.6 Capacitor Selection

The brief introduction to the PLL circuit in Section 3.6.1 did not highlight the main

components of the PLL circuitry. That is not the intention of the thesis, however we

have to understand one very important component of the PLL chip for it to operate

properly. A PLL contains a phase detector, low-pass filter, amplifier and a voltage

controlled oscillator (VCO) that represents a blend of digital and analog techniques

all in one package. Figure 3-11 (below) shows the three important components that

make up the PLL.

Control
Voltage

fi Phe tr Low Pass AV VCO -

fvcu"

Figure 3-11: Stimulus Waveform versus PLL Output

The R and C values show in Figure 3-7 are used to specify the value for the loop

filter, which directly influences the tradeoff between settling time and locking range.

The locking range signifies the maximum output frequency that the VCO can generate

in a closed loop application and settling time refers to the time it takes to lock after

a perturbation, i.e. change in phase-divisions, etc. In typical VCO applications, the

output is generally fixed or there are slight perturbations around this fixed value.

Designers then work to minimize settling time and maximizing locking range.

Unlike Gigahertz applications, settling time is not a critical issue as given enough

time the VCO will eventually settle. However, in our case, since the VCOClk is

used to loop RAM addresses from the Singen CPLD, it can go all the way from less

56

than a Hertz to a couple of Megahertz. With such a large locking range, there is no

one value of R and C that can meet the range we would like the PLL to support.

We solve this problem by using an analog multiplexor (4051 chip) that can alter the

filter settings. The VCO CPLD makes provision by allowing the user to select an

appropriate capacitor as shown in Figure 3-7.

Since the VCO-Clk frequency is a product of the frequency of the stimulus and the

desired phase-divisions, the multiplexor selection must be updated each time there

is a change to one of these parameters. The various R and C values were found

experimentally and are labeled in Figure 3-7. The analog multiplexor values can be

selected based on Table 3.4 shown below. While the multiplexor supports up to 8

values, only 5 were needed for the range of interest.

Table 3.4: PLL Capacitor Selection
(Stimulus Freq x Phase-divisions) Binary Selection Capacitance

< 8000 000 0.5 nF
8000-72000 001 1 nF

72000 - 176000 010 5 nF
176000 - 720000 011 10 nF

720000 - 1200000 100 100 nF

3.7 Printed Circuit Board

Figure 3-12 shows the prototype implementation of the SPG Module on the nerd kit.

The card plugged in the back of the kit is the CPLD-Module which houses the Serial

and Singen CPLD's and provides an RS-232 interface. The schematics of the SPG

Module were drawn with DesignWorks and are shown in Appendix C. The next step

is to transfer the SPG Module implementation on a nerd kit to a card that occupies

a PCI interface. The serial programming interface remains intact as the the SPG

module only takes power, ground, and reset from the PCI interface. The extracted

netlist can be sent to a facility for PCB layout and fabrication.

57

Figure 3-12: Image of SPG Module Prototype

58

Chapter 4

System Architecture for Remote

Access

The previous chapters highlighted the various hardware components of the microvi-

sion system. It also showed the various software drivers that can be used to control

the hardware and obtain an image of a moving device. Obtaining an image of a mov-

ing MEMS device at a particular focal plane, frequency, phase, and light intensity is

the most basic building block of a microvision system. This basic building block can

be extended into a script that can take a sequence of images and then run the motion

estimation algorithm on a specified region of interest.

It is very desirable to raise the level of abstraction above the level of a command

line interface. This calls for a user interface that shields the underlying details of the

software and hardware involved. There are also benefits in desiring to use the system

remotely as supposed to the user operating this interface locally. These benefits were

discussed in Section 1.3.

The system architecture is based upon a server/client relationship. The server is

the means through which somebody using the system can have access to the hardware

and software installed on the system. This method of interaction allows the server to

control access levels as well as abstract away from the user those details of the system

that the user does not need to know about.

59

4.1 Server Overview

The design of the computer microvision system lends itself to being a remotely acces-

sible system. This is because the computer, acting as the controller, can be thought

of as the server for all of the data and for all of the parameters of the system. Figure

4-1 below shows the system architecture for the server.

Hardware
A*o Control

Network Subsystem

WWW Server Data
Processing

Engine

Figure 4-1: System Architecture for the Server

There are two main modules of software that enable the computer to act as a server

for the MEMS Characterization System. First of all, there is a web server running

on top of the operating system. This server acts as the network server for the clients.

It allows the client to interact with the server using the standard HTTP protocol.

The server software that has been used is Apache's web server. The reason for using

Apache's web server is because it the most popular web server1 and supports both

the NT and Linux operating systems. Another reason for using Apache is because it

supports the use of Java programs called servlets. It is these servlets that overcome

the inability of the standard HTTP interactions to deal with state. Servlets are Java

classes that run on the server side instead of being downloaded over a network the

way a standard applet is downloaded and run locally. Thus, they extend the server's

ability to accomplish tasks which can be initiated remotely.

'Apache has been the most popular webserver on the Internet since the April of 1996 according
to the Netcraft Web Server Survey which can be found at http://www.netcraft.com/survey.

60

The second software module is the sum of Java classes that make up the func-

tionality of the MEMS characterization system. They handle the remote login of a

client and the subsequent interaction between client and server. For details on how

these modules are set up, see Jared Cottrell's thesis entitled "Server Architecture

for MEMS Characterization System" [1]. There are also modules that take care of

interclient communication as well as control and access of information for each client

connected to the server.

4.2 Client Overview

The client software consists of multiple modules written in Java and is intended to

be run remotely through a web browser. For more details on the various modules,

refer to Erik Pedersen's thesis, "User Interface for MEMS Characterization System"

[12]. These modules were used to create a Graphical User Interface (GUI) which is

described in Chapter 8. With this interface, the user is able to remotely operate

the computer microvision system. The link between the client and the server is a

messaging protocol which is described in the next section.

4.3 Messaging Protocol

The means through which the server and client interact is fundamentally based on

the HTTP protocol used extensively in the World Wide Web. An advantage of this is

that we can use an off-the-shelf web server to implement our messaging protocol. For

a more detailed description of this protocol, see the HTTP protocol specification [11].

There are certain types of requests that a client is allowed to make using the HTTP

protocol. The most often used requests are those made by web browsers when they

request web pages. This request is called GET where there are parameters outlined

in the header of the request. There is also a request called POST which is similar

to a GET request except that there is more flexibility in the length of information

attached to it. It is through a POST that a client is expected to send information to

61

the server.

The idea used in communicating between the client and a server is a communica-

tion protocol which spells out the rules for the format and transmission of data. The

messaging protocol is the glue that binds the entire MEMS characterization system

together. Again, it is the only interface through which the various clients and the

server in the system can "talk".

The messaging protocol can be understood in terms of how the server and client

determine how to handle the messages. The actual content of the messages sent

between client and server is plain text with well defined formatting. When the text

is sent by the either the client or the server, it is actually URL encoded to preserve

all formatting. This also allows the corresponding agents to send data of any format.

Specifically, it allows the transfer of any data including graphical data. Each message

sent must contain a line of text consisting of the term "COMMAND = (command)".

This command line is how the server and the client decide how to handle the messages.

The messaging protocol also includes the transmission of session ID's and several other

parameters. The details of the messaging protocol can be found in Chapter 3 of [1].

Figure 4-1, shows that the messaging subsystem sits directly behind the web-

server and implements the messaging protocol. On both the client and the server,

there are "handlers" that act upon the received message. As seen, there are two

main categories of handlers. They are the hardware control handlers and the data

processing engine. For example, a message requesting to move the stage would be

processed by the SET-STAGE-HANDLER.

4.4 Managing Sessions

A client connects to the server by pointing a web browser2 to the server's URL,

i.e http://stage.mit.edu/UI/index-new.html. Upon connecting to the server, Java

applets are automatically downloaded to the client's machine and get executed locally

on the client's machine. The downloaded applet is the GUI to remotely operate the

2 Our system works with either Netscape or Internet Explorer.

62

microvision system. The GUI operator is shielded from the underlying details of

the messages that are exchanged back and forth between the client and server. The

details of the GUI are presented in Chapter 8.

For various reasons, the server needs to keep track of the clients that are currently

connected to it. It must also be able to differentiate between clients since there may

be multiple users logged in at the same time. Furthermore, while all clients can query

the state of the system (stage settings, etc.), only one user can have control over the

hardware at any given time. Since HTTP is a stateless protocol, the server forces each

client to log in before they can send any other messages. When a new client logs in,

the server assigns it a unique session identification number. All subsequent messages

between the client and server include this session ID in a field called SESSION-ID

as specified in the messaging protocol. Once a client has logged in, the server keeps

a reference to its session ID until either the client explicitly logs out or the servlet

restarts.

It is important to emphasize, and it will be clear in the upcoming chapters, that

the GUI operator has no idea what his/her session ID is. The applet keeps track of

all the underlying details when communicating with the server.

4.5 Software Development Environment

It is important to note that there are two different sets of Java software. One that

runs on the server i.e servlets, and the other that gets executed on the client, i.e.

applets. They do not depend on each other and have no shared libraries. They only

communicate via the specification set forth in the communication protocol. Further-

more, the first time a client connects to the server, the client is presented with a list

of messages supported by the server. From time to time, it is required to expand the

protocol. For example, send 3 arguments with the command rather than 2. Since

this is a change it protocol, both the server software and client software must be

recompiled to conform to the new specifications.

63

4.6 Polling

Sometimes the server needs to send a message to the client even though the client has

not made a direct request for information. Because we use HTTP as a basis for the

messaging protocol and HTTP requires that the client initiate all communications, the

client is required to poll the server every several seconds and check for messages. In

this case, the message from the client is CHECK-MESSAGE [1] while the handler at

the servlet end is CHECK-MESSAGE-HANDLER. If there are any messages waiting

for the client, the server will send them back in response to the poll.

Polling is also used to implement session timeouts. If the server sees that the

client has not polled for a while, it will assume that the client is no longer active. It is

also desirable for one client to send a message to another client in order to facilitate

a collaborative session. Using the polling mechanism, a "chat" like program can be

launched for clients to communicate among each other.

4.7 Chapter Summary

This chapter showed that there are two different sets of software that rely on the

communication protocol. The communication is done via messages which adheres to a

protocol understood by both sets of software. This also means that the client software

can only be developed after the server protocol has been established. Similarly, it can

be argued that the server protocol will depend on the messages that the client wants

to send. This is a chicken and egg problem and I'll break the loop.

The strategy will be to first lay out the foundation of messages and the arguments

encoded in them. With this information, the client messaging system can then call

up the executables in whatever way it feels appropriate. The next two chapters

will therefore describe the messaging handlers that were developed as part of this

research, i.e. those that have anything to do with hardware. As we will see, this

strategy simplifies the explanation of the client interface.

64

Chapter 5

Hardware Control Handlers

A majority of the work carried out in this research on the server side software involved

the creation of messages that affect the status of the hardware. These messages and

their corresponding handlers are part of the Hardware Control Module and serve two

related functions. First, the Hardware Control Module can call up upon an executable

program to change the state of the hardware. Second, the Hardware Control Module

keeps track of the hardware status and updates the poll messages for other clients to

inform them of any changes.

This chapter describes the hardware messaging format currently being used. Un-

derstanding these messages is essential to understanding how the client is able to

remotely operate the computer microvision system.

5.1 Description

A handler and a message are closely related. According to the established protocol,

every message must include in its header, arguments for COMMAND and SESSION-

ID. Once a message has been received by the messaging subsystem, the COMMAND

is decoded and the appropriate handler is executed. A handler is thus Java code which

may include a call to a C-program to change the hardware state. The handlers also

update the global variables with the latest hardware settings, and queue messages for

other clients with updated hardware settings which they will pickup upon polling.

65

In the above description, certain details of the messaging subsystem were glossed

over to maintain simplicity. For instance, while there may be many users logged

onto the system, only one client may have control at any given time. A client re-

quests controls with the GET-CONTROL message and cedes control with the CEDE-

CONTROL message [1]. The messaging subsystem checks if the client requesting a

change of hardware state has control before forwarding the request to the appropri-

ate hardware handler. If a client does not have control, the server will return the

CONTROL-ERROR message instead of the normal response. The messaging sub-

system, among other things, also checks for valid SESSION-ID's and any formatting

errors.

Since the handlers may include calls to C-programs to change the state of the

hardware, it is almost a necessity to send some arguments along with the executable

call. This can be accomplished by adding fields in the header which can be decoded

by the handler. The following sections will describe the various hardware handlers

and the corresponding messaging format that allows the client to remotely change

the state of the hardware.

5.1.1 X-Y-Z Stage Handler

The following is the format of the SET-STAGE-FOCUS Message.

Table 5.1: Structure of the SET-STAGE-FOCUS Message
Client Request COMMAND = SET-STAGE-FOCUS

SESSION-ID = sessionlD
STAGECOMMAND = stagecommand
XPOS = xpos
YPOS ypos
ZPOS = zpos

Server Response COMMAND = ACK
SESSION-ID = sessionlD
MESSAGE = SET-STAGE-FOCUS
X-TRANSLATION = xpos
Y-TRANSLATION = ypos
Z-TRANSLATION = zpos

When sent by a client, the SET-STAGE-FOCUS message tells the server to update

66

the position of the X-Y-Z stage. The message contains values for STAGECOMMAND,

XPOS, YPOS, and ZPOS that will be used by the handler as arguments to a C-

program. The following is the driver call with the appropriate arguments to the

binary executable, "stage". It shows how the arguments can be passed from the

client interface to be executed by the server.

if (stagecommand.equals(''goto-xyz'')) then

execute (stage stagecommand xpos ypos zpos)

else

execute (stage stagecommand)

end if

The significance of the arguments to this executable program can be found in

Table 2.3 in Section 2.2.5. The if portion of the code is used to create motion after

decoding the variables sent with the message. The else part is used to execute other

commands such as "GOTOORIGIN" and "SETORIGIN". It is easy to realize that

the else portion of the code is much more generic and can also accommodate what

is being executed by the if part, and hence the if part can be eliminated. This is

because the "stagecommand" argument can be a series of chars including "space".

For example, "DELTA-XYZ 1 3 5", and even "GOTO_XYZ 1 3 5". Hence, we can

incorporate knowledge of the executable arguments into the clients message rather

than having the server decode the variables sent with the message. The later, generic

approach, simplifies the design of the message handlers, but has some disadvantages.

It is required for the server to be up-to-date with the current state of the hardware.

If the message is a direct call to an executable, with no encoded variables, then the

server does not know the position it just put the stage in. To solve this problem, the

server will have to execute the "REPORT" command after every stage event to ask

the stage for the latest position. This is a a slow process and not advised when the

user wants to move the stage instantaneously, which is almost always the case. It is

important to realize that the stage is a mechanical device which takes time to move

as well as respond to commands.

67

The server response which includes the current X, Y, and Z settings is also sent to

other clients to inform them of the latest stage position. They receive this information

upon polling which was explained in Section 4.6.

5.1.2 Piezo Handler

When sent by a client, the SET-PIEZO messages tells the server to communicate

with the pifoc controller and update the piezo position.

The following is the format of the SET-PIEZO Message.

Table 5.2: Structure of the SET-PIEZO Message
Client Request COMMAND = SET-PIEZO

SESSION-ID = sessionlD
PIEZOCOMMAND = piezocommand
POS = pos

Server Response COMMAND = ACK
SESSION-ID = sessionlD
MESSAGE = SET-PIEZO
POS = pos

The parameters from the message are extracted and executed by the server as

follows :

execute (piezo piezocommand pos)

The significance of these arguments was explained earlier and can be found in

Table 2.1 in Section 2.2.2. The most widely used piezocommand is "goto-position"

which can be used to put the piezo in the position specified by pos. Anytime this

message is received, the latest piezo position is also sent to the other clients.

5.1.3 Stroboscopic Settings Handler

The SET-STROBE message is used to establish the fundamental settings of the SPG

Module. It sets the frequency of the output waveform, and the number of phase

divisions needed in the analysis. The format of the message is shown in Table 5.3.

From the received parameters, the following is executed :

68

Table 5.3: Structure of the SET-STROBE Message
Client Request COMMAND = SET-STROBE

SESSION-ID = sessionrTD
FREQUENCY = frequency
DIVISONS = divisions

Server Response COMMAND = ACK
SESSION-ID = sessionlD
MESSAGE = SET-STROBE
FREQUENCY = frequency
DIVISONS = divisions

execute (strobe init frequency divisions)

The significance of the arguments to this executable program can be found in

Table 2.2 in Section 2.2.4.

5.1.4 Image Settings Handler

The UPDATE-IMAGE-SETTINGS message is used to establish the image settings

of the SPG Module. The format of the message is as follows :

Table 5.4: Structure of the UPDATE-IMAGE-SETTINGS Message
Client Request COMMAND = UPDATE-IMAGE-SETTINGS

SESSION-ID = sessionlD
PHASE = phase
LEDONTIME = ledontime

Server Response COMMAND = ACK
SESSION-ID = sessionID
MESSAGE = UPDATE-IMAGE-SETTINGS
PHASE = phase
LEDONTIME = ledontime

The PHASE parameter specifies the phase at which the picture should be taken.

The ledontime is used to determine the exposure time of the camera. Basically, the

camera's shutter is opened, and during a time interval that corresponds to a selected

phase, we turn on the light source, i.e the LED. Hence, one flash of light per waveform

cycle is sent to the camera. The amount of light per waveform cycle depends on the

frequency of the sinusoid and the number of divisions. It is very likely that more than

69

one waveform cycle is needed to allow adequate light to be exposed onto the CCD

of the camera. The ledontime parameter is thus used to specify the time that light

should be shined on the CCD and by knowing the frequency and phase divisions,

we can extract the flash count. The following C-code shows how the flash count is

extracted and how the executable is called :

flashcount = ledontime * divisions * frequency;

execute (strobe -image phase flashcount)

Note that the ledontime, which is supplied by the client, is expected to have units

of seconds. This is then converted to an integer called flashcount which represents

the number of strobe flashes as required by the executable syntax. The parameters

required for calculating flashcount, i.e. divisions and frequency, are extracted from

the last known values of the server state. The details of this executable were explained

in Table 2.2 in Section 2.2.4.

5.1.5 Obtain Sample Image Handler

The purpose of the OBTAIN-SAMPLE-IMAGE message is to expose the camera and

trigger the SPG Module to obtain a sample image. The format of the message is as

follows

Table 5.5: Structure of the OBTAIN-SAMPLE-IMAGE Message
Client Request COMMAND = OBTAIN-SAMPLE-IMAGE

SESSION-ID = sessionlD
Server Response COMMAND = ACK

SESSION-ID = sessionID
MESSAGE = OBTAIN-SAMPLE-IMAGE

As seen from the server response, the server only returns an acknowledge signal.

It does not return any image data with the reply. This is because it is more efficient

for the server to simply return the URL of the image and have the client obtain it

via the GET method. This procedure also simplifies the processing of the data at the

client end.

70

It is interesting to observe that in this case we don't even return a URL. This

is because we have fixed the URL to http://stage.mit.edu/sampleimage.gif. The

executable used to obtain the image simply overwrites this files and the clients re-

reads the URL once an ACK is received from the server. Since Java has the tendency

to cache images, certain programming hurdles had to be overcome.

The executable used to obtain the image is as follows.

execute (/usr/local/cm/bin/jpixstart)

"j-pixstart" is a program used to send a "start" signal to the SPG Module de-

scribed in Table 2.2 after activating the camera. It then copies the image from the

camera buffer to the hard-disk once a "Stop" is received from the SPG Module. The

image is then converted to GIF format. The details of this program can only be under-

stood after we have studied the command module. We will return to this executable

in Section 6.1.3.

It is also worth noticing that no ROI coordinates were supplied to the camera.

The camera has a display size of about 1200 X 1600 pixels, and hence a full size image

was taken. The resulting image size is about 1 Megabytes.

5.2 Single Message Approach

It is logical to ask why not have one message to accommodate SET-STROBE, UPDATE-

IMAGE-SETTINGS, and OBTAIN-SAMPLE-IMAGE. After all, we can first set the

SPG Module's parameters and then trigger the camera. This proposal is certainly

viable, but there are advantages to doing this with multiple messages. First off, SET-

STROBE message has an affect on the VCO circuitry described in Chapter 3, which

requires updating the capacitor selection and has a certain settling time associated

with it. In addition, these parameters are not changed very often, and it is intuitive

for the user to set them and not have to worry about changing them very often. The

next frequent occurrence is the change in phase and ledontime time. This only affects

the hardware registers and thus happens instantaneously from a circuit point of view.

The final trigger is the event when the user specifies he/she wants to obtain a sample

71

picture.

Having multiple messages also makes the system more manageable and expand-

able. After all, there are alternatives to using the SPG Module. Lastly, the transfer

of messages between client and server is not a serious bottleneck in the operation of

the MEMS characterization system. Hence, there is no benefit in designing a system

with minimal message communication.

5.3 Chapter Summary

This chapter highlighted the basic handlers that can be used to update the hardware

settings. It showed the message protocol through which the client can move the stage

and set the piezo position. After setting the various parameters of the SPG Module,

the client can then obtain a full-size image of the moving device. As mentioned

earlier, the ability to obtain a sample image is the most fundamental building block

of the MEMS characterization system. The next chapter will highlight some advanced

handlers that extend the usability of the computer microvision system.

72

Chapter 6

Command Module and Associated

Handlers

The previous chapter explained the concept of a handler and presented some basic

handlers needed to obtain a sample image. In this chapter, the command module

interface will be discussed along with the architecture used for data set gathering and

slow motion analysis. An understanding of these handlers is essential to understand-

ing the advanced features of the client's user interface and being able to launch an

experiment to characterize the motion of a MEMS device.

6.1 Command Module

The handlers discussed in this chapter call upon executables that utilize the command

module interface. The command module is a fairly-complicated set of C software

written by Michael McIlrath that only works for the Linux OS. It serves as a script

that can launch an experiment, i.e take a series of pictures, and organize all the data.

So far in our understanding, we mentioned that the ability to take a single picture is

the fundamental building block of the MEMS characterization system. The command

module interface serves as an extension to that by acting as a script that can take a

sequence of images.

The command module takes in as arguments frequency(s), piezo position(s), etc.

73

and simply loops through all combinations of possible images. The command module

works at much higher level of abstraction then a simple script by allowing the dynamic

loading of software modules. This implies that changing the hardware, for example

the camera type, does not require any software compilation. A simple change in

a text-based configuration file is sufficient. The command module interface thus

requires that a generic function call be made to a camera driver, piezo driver, and

strobe module driver when sequencing through the set of images it is asked to take. A

software wrapper is thus written around the driver provided by the vendor to confirm

to this generic function names. A wrapper, spg.c, was thus written for the SPG

Module driver, strobe.exe, described in Section 2.2.4.

An advantage of the command module is the directory structure it creates when

it takes a sequence of images. The vision algorithms were designed for such a di-

rectory structure. The command module also provides a mechanism to operate the

Linux camera which significantly reduced the driver development time. The command

module was not designed with the SPG Module in mind. This required changing the

architecture and flow of the code, as the SPG Module provides a "picture done" sig-

nal and has the ability to control the "Integrate" line. It is essential to keep track of

these signals to keep the timing in check.

The compilation of the command module, cm-getdata. c, results in the executable

which can accept a whole range of arguments. The following is an example call to the

executable:

cm-getdata -picname /user/danny/test -frequency 1000,2000

-phasedivisions 7 -phase 0,5 -objpos 0,50 -ledontime 0.05

-roi 1,87,518,579

where objpos refers to the piezo position. The above call highlights only a few

switches. Table 6.1 shows a list of all possible arguments.

74

Table 6.1: Arguments for the Command Module Interface
-help Displays all the switches.
-debug Enables debugging mode (specified by level).
-exposuretime Specifies the exposure time of the camera in seconds.
-gain Specifies the gain of the camera, in dB.
-ledontime Specifies the amount of time that the led should be on

in seconds.
-roifile Specifies a file containing the region of interest.
-roi Specifies four coordinates defining the region of interest.
-roimax Specifies the maximum region of interest provided by the

camera.
-commentfile Specifies a file containing the comment text.
-comment Specifies the comment text.
-picname Specifies a string that each pictures generated name will

automatically be appended to.
-phase Specifies the phase(s) to take data on.
-frequency Specifies the frequency(s) to take data on, in Hertz.
-amplitude Specifies the amplitude(s) to take data on, in volts.
-objpos Specifies z position(s) of the piezo to take data on

in microns.
-waveform Specifies waveform type (sinusoid, square, triangle).
-offset Specifies the DC offset, in volts.
-waveformcenter Specifies the waveform center in volts.
-samplesperperiod Specifies the number of samples per period in certain types

of stimulus generators.
-phasedivisions Specifies the number of divisions per phase.

6.1.1 Selecting a Region of Interest

The cm-getdata executable uses a -roi argument to specify a region of interest. This

is very important because transporting a full size picture (1200 x 1600 pixels) is not

bandwidth efficient. We will see in the next chapter that the client interface takes

advantage of this in bandwidth critical applications such as "Live Video" used for

remote focusing.

6.1.2 Get Data Messaging Format

The GET-DATA message shown Table 6.2 is used to call upon the cm-getdata exe-

cutable and obtain a data set. The executable is called after decoding the GETDAT-

75

ACOMMAND variable which includes the specifications for frequencies, phase, etc.

The pathname argument tells the executable where to store the files and create the

directory if necessary. Since the pathname has to be unique, the handler generates a

pathname by determining the current date and time. An example pathname would

be 2001_1_13_14-51_12 which comprises of the year, month, day, hour, minute, and

second of the handler call. This path name is then sent back to the client by encoding

the information in the DATASETPATH variable.

Table 6.2: Structure of the GET-DATA Message
Client Request COMMAND = GET-DATA

SESSION-ID = sessionID
GETDATACOMMAND = getdatacommand
GIFCONVERSION = gifconversion

Server Response COMMAND = ACK
SESSION-ID = sessionID
DATASETPATH = datasetpath

Web browsers and stand alone Java only support images that are WWW compati-

ble. That is, they must be in the gif or jpeg format. The output of the camera is in nd

format which is raw binary. Since a custom program was not written, 3 Unix scripts

were used to attain the desired format. The process involved going from nd-to-pgm,

pgm-to-ppm, and finally ppm-to-gif. These scripts are pretty CPU intensive and take

a significant amount of time to accomplish their task.

The time spent in the format conversion routine is so much that it calls for having

the user's consent before running them. Often times, the user may simply want to

proceed with the direct processing of the vision algorithms which use the nd format.

In such a circumstance, there is no need to perform the format conversion routines

on the gathered data set. The GIFCONVERSION variable in the message header

accommodates this feature. If is is equal to "YES" then the all the images in the

data set are converted to the gif format.

It is very likely that a user may simple want to view one particular image in the

whole data set. The CREATE-GIF message can be used for such a purpose. The

format of the CREATE-GIF image is shown in Table 6.3.

76

Table 6.3: Structure of the CREATE-GIF Message
Client Request COMMAND = GET-DATA

SESSION-ID = sessionlD
IMAGEPATH = imagepath

Server Response COMMAND = ACK
SESSION-ID = sessionID

The client, in its message header, supplies the name of the image (only one) via

the IMAGEPATH variable. The handler than converts the specified image which has

an nd suffix to GIF format. The client display can then access the image with gif as

the suffix.

6.1.3 Data Module

Careful analysis of the command module source code will show a call to a subroutine,

data.c, that is responsible for sequentially firing commands to acquire and then store

the images. The handlers to be discussed in this and the following chapter use cus-

tomized versions of the cm-getdata executable. These executables differentiate by the

module they load, i.e instead of the "data" module. The following fragment of code

extracted from cm-getdata.c shows that only one module is loaded at compile time

instead of the "data" module and this differentiates the type of executable created.

#ifdef JAVAREMOTEFOCUS

load-module("javaremotefocus");

#elif JAVAPIXSTART

load-module("javapixstart");

#elif JAVASLOMO

load-module ("javaslomo");

#elif XDT-AUTOFOCUS

load-module ("xdt-autof ocus");

#else

load-module ("data");

#endif

77

The makefile used to compile the code is included in Appendix G. It compiles the

same code, cm-getdata.c, to create multiple executables that serve a slightly different

purpose. The j-pixstart command used by the OBTAIN-SAMPLE-IMAGE message

described in Section 5.1.5 was compiled in this way and used the javapixstart module.

6.2 Slow Motion Handlers

Slow motion analysis of a moving MEMS device serves as an excellent visual anal-

ysis tools. The basic idea is to capture images at all phases and then play them

sequentially. The result is a time-video of a moving device which proves to be an

excellent analysis tool in addition to providing a visually satisfying experience. The

RUN-SLOMO message was used and its format is as follows :

Table 6.4: Structure of the RUN-SLOMO Message
Client Request COMMAND = RUN-SLOMO

SESSION-ID = sessionlD
SLOMOCOMMAND = slomocommand

Server Response COMMAND = ACK
SESSION-ID = sessionlD
MESSAGE = AUTO-FOCUS
SLOMOPATH = slomopath

The handler expects the SLOMOCOMMAND variable to specify the frequency,

phase divisions, region of interest, and ledontime. The handler generates a unique

file name based on the day and time stamp as discussed earlier. These arguments

are sent to an executable that was obtained by compiling the command module with

the javaslomo module, i.e. javaslomo.c. The following segment of code highlights an

example of the executable call after decoding the value of SLOMOCOMMAND.

execute (jslomo -frequency 1000 -roi XXXX -picname current-day-time)

The executable places all the images in a directory that can be accessed by a

client, and returns this directory name to the client by encoding the SLOMOPATH

variable.

78

6.2.1 Playback of Images

Once the client has been informed of the location of the images, the user interface

can then GET the images and display then sequentially. After the first loop, the

images are cached and the playback should be smooth. An alternate technique of

creating an animated gif was considered using a share-ware program called gifmerge.

This program, in essence, creates a movie out of a sequence of gif images. While some

reduction in total image size takes place, the program at compression time requires

a "playback" speed. It is quite desirable for a user to be able to vary this and this

approach was therefore not used. Hence, it is up to the client interface to determine

the rate at which the images should be sequenced.

6.3 Chapter Summary

This chapter provided insight into the command module software and the various

executables that were derived from it. Carrying on in the same line of thinking,

the next chapter will highlight the architecture used for remote focusing and the

executables that were derived from the command module interface.

79

80

Chapter 7

Remote Focusing

Earlier chapters showed how a client can use the SET-STAGE message to align a

MEMS device under the camera and then control the Z-axis of the MFU to put the

device into the focusing range of the pifoc. The OBTAIN-SAMPLE-IMAGE message

can be used to acquire a sample image, while the SET-PIEZO message can be used

as a knob for fine-focusing.

7.1 The Need for Remote Focusing

Based on the capabilities of the system described so far, a technique for fine focusing

would involve continuous repetitions of taking a sample image, adjusting the piezo

position, and then taking the image again. This process of manually refreshing the

image is tedious and most importantly, it is slow. We solve this problem by allowing

the server to broadcast a stream of "Live Video" and then the user only has to tweak

the piezo and see the effect.

7.2 Server Support for Broadcasting Live video

The server provides support for remote focusing by allowing a background process

to continuously take images and overwrite a known filename, LiveImage.gif, with the

latest image. The client at its own pace and processing power would then GET this

81

image. The original server architecture was not based on a multi-tasking architecture

and the handler would not return till the executable had returned. To overcome this

problem, the executable was changed so it would fork out a process. That is, once

the executable was called, it would return after launching a background process that

continuously acquired images.

Provisions were made to stop this process when needed. When the forked process

is first launched it creates a dummy file. The forked process remains active as long

as the dummy file exists. Hence, some external program can delete this file to stop

the forked process.

7.2.1 Shortcomings and Other Techniques

The drawback of the implemented technique is predictable. Random flickering occurs

on the clients screen if the server and client attempt to access the image at the same

time. However the performance is better compared to all other techniques that were

investigated. Appendix B provides a discussion on the various techniques that were

investigated.

7.2.2 Remote Focusing Message Format

The FOCUS-IMAGE message was used to launch the background process on the

server that would continuously acquire images. The message format used is

Table 7.1: Structure of the FOCUS-IMAGE Message
Client Request COMMAND = FOCUS-IMAGE

SESSION-ID = sessionID
ACTION = action

Server Response COMMAND = ACK
SESSION-ID = sessionlD
MESSAGE = FOCUS-IMAGE

After decoding the value of ACTION, the handler executes the following code

82

rm -rf /tmp/javaremotefocus.looping

if (! ACTION.equals(''STOP''))

execute (/usr/local/cm/bin/jrfgetpic action)

If the argument STOP is sent by the client, then the remote focusing would halt as

the temporary file would be deleted. Any other argument would call the executable.

If an on-going process is told to start, then the process would restart.

The jrflgetpic executable was obtained by compiling the command module with

the javaremotefocus.c module. Several comments about this module are essential at

this point. First, this module is unique because it does not excite the SPG Module as

there is no need for an output waveform. In fact, in this mode, the SPG Module keeps

the LED on at all times. Second, the amount of light is controlled by programming the

camera with an exposure time. This software programmability feature of the camera

allows the user to determine the right value for ledontime. Recall from Section 5.1.5

that ledontime determines the number of strobe flashes which must be programmed

into the SPG Module. Hence, the decoding of the ACTION parameter sent by the

the client would reveal something like :

ACTION = CC-exposuretime 0.05 -roi xl,x2,yl,y2''

It is important to realize that in this case the camera controls the amount of light

being exposed onto the CCD. This is different from a true experimental setup where

the SPG Module controls the light source. In the later case, the SPG Module opens

the shutter and on the right phases turns on the LED. After the elapsed flash count,

the shutter is closed and the image is copied from the CCD buffer to the hard disk.

Nevertheless, this technique is useful for focusing and determining an appropriate

value for ledontime.

The performance depends on the dimensions of the region of interest. On average

3-4 frames per second are achieved for a 250 x 250 size image.

83

7.2.3 Throughput Bottlenecks

A bottleneck that has been ignored so far has been the image format conversion that

has to take place on the server. The three conversion scripts, nd-to-pgm, pgm-to-

ppm, and finally ppm-to-gif, are a serious bottleneck to the overall throughput of the

stream.

Furthermore, our approach of broadcasting high-resolution images is not feasible

in bandwidth critical situations. Modern video stream broadcasting architectures and

formats, such as Real Video need to be investigated.

7.3 Auto Focusing Handlers

To accompany the remote focusing ability of our system, Xudong Tang, developed an

auto focusing mechanism as part of his Master's thesis [16]. His subroutine was inte-

grated into the command module code with the ability to take a ROI argument. This

algorithm sweeps through the entire piezo range and uses convolution to determine

the piezo position with the maximum sharpness.

The AUTO-FOCUS message was used for this purpose. The idea being that a

user would send a message to start the auto focus and the handler would return the

optimum piezo position. The messaging format used is as follows :

Table 7.2: Structure of the AUTO-FOCUS Message
Client Request COMMAND = AUTO-FOCUS

SESSION-ID = sessionIfD
AUTOFOCUSCOMMAND = autofocuscommand

Server Response COMMAND = ACK
SESSION-ID = sessionlD
MESSAGE = AUTO-FOCUS
AUTOFOCUS = plane

Upon decoding the AUTOFOCUSCOMMAND argument, something similar to

the following gets executed on the server.

xdt-autofocus -roi -exposuretime

84

It is important to realize that the client is able to send the ROI he/she wants to

focus upon. In fact, this is a requirement as a single image may have devices located

at varying heights. The executable upon completion sets the pifoc to the optimum

position and writes this position to a file. The handler reads this file and sends it to

all clients by encoding it in the plane variable.

7.4 Chapter Summary

This chapter discussed the architecture used for remote focusing. The handler used

to evoke the auto focusing mechanism was also introduced. The next chapter will

highlight the client interface that will call upon all the handlers discussed so far to

operate the MEMS characterization system.

85

86

Chapter 8

Client Interface

Prior chapters outlined the server architecture and established the messages a client

can send to remotely operate the MEMS characterization system. The next challenge

was the design of a client interface that fulfills several objectives. First and foremost,

the client must be capable of connecting to the server. Second, the client must be

able to send messages to the server as well as decode messages from the server. Third,

the client must be able to to access and operate all aspects of the system without

worrying about the underlying details of the back-and-forth communication.

The messaging protocol is the glue that binds the client and the server. This means

that there is no requirement on the software used to develop the client interface. The

client interface can be written in C or Java as longs it communicates with the server

using the specifications set forth via the messaging protocol. Section 4.5 highlighted

the difference between the client and the server software development environments.

8.1 Why Java

The language chosen to develop the client interface was Java. Java simplifies the

creation of a GUI by having the Advanced Working Toolkit (AWT) class as part of

it core classes. AWT provides a mechanism for creating windows, frames, buttons,

menus, etc. Furthermore, by extending the AWT class with Swing components, extra

gadgets such as a slide-rulers and split panes can be realized.

87

There is a special class in Java that is the applet class. It defines an object that

allows Java code to be downloaded over a network and run within a Java Virtual

Machine (JVM). A JVM can be thought of a program that simply executes compiled

Java code. Nowadays, the JVM is part of all web browsers.

The applet environment thus provides a medium to download Java code over the

Internet and execute it locally. This mechanism makes it possible for the client to

simply point the browser to the server's URL and obtain the Java code to be executed

by the browsers JVM.

8.2 Components of Executed Code

The Java code to be executed by the client can be divided in two main components

- Core Unit and Visual Unit. Although they are closely bound to one another, it is

important to study them individually.

The first part is responsible for the underlying details of the messaging protocol.

It handles the details of putting the message in the right format, decoding information

from the server, sending a poll message periodically, etc.

The second part of the Java code that gets executed by the client's JVM is the

Visual Unit and is responsible for generating the GUI. This code draws the user

interface on the clients screen and is capable of deciphering signals from the Core

Unit. For example, the Core Unit after a poll may update a variable that contains

the piezo position. The Visual unit picks up this information and updates the client

interface to show the current piezo position.

The Visual Unit also generates function calls to the Core Unit to make a certain

thing happen. For example, a user may type in the frequency and then click "update".

The Visual Unit is only responsible for forwarding this request to the Core Unit. The

Core Unit then massages this request into the format of the SET-STROBE message

and sends it off to the server to make it happen.

88

8.3 The Need for a New Visual Unit

Erik Pedersen for his Masters thesis [12] laid out the foundation of the Core Unit

and developed a Visual Unit to interface with it. However, at the time of his thesis

completion, there was no hardware connected to the server. As the hardware evolved

and drivers were written, the messaging format was refined and modifications were

made to the Core Unit.

Erik's Visual Unit was based on a "Settings File Parser" approach. The idea

involved having the user upload a settings file to provide a custom look and feel.

Since this approach was based on a script - it had had limited abilities, i.e support

for basic menu, frames, buttons, etc.

The evolving nature of this research project required the use of more components

from the AWT toolkit and a different way to launch and interpret experimental

results. This could only be accomplished by generating a custom GUI and not having

to worry about the limitations of the settings parser script.

8.4 Interface Details

From now on, this chapter will provide a pictorial view of the GUI created to remotely

operate the MEMS characterization system. The details of the several thousand lines

of Java source code that make all this possible are irrelevant and will not be explained.

8.5 Login

The first step in connecting to the system is pointing the browser to the MEMS server

URL. After the client has fetched the web page, a login/logout applet appears in the

browsers window as shown in Figure 8-1.

The client logs-in by clicking on the "Login" button which initiates a contact with

the server. The client then starts to download several Java classes to be executed

within the browsers JVM. After a few seconds, two additional windows have appeared

on the clients screen as shown in Figure 8-2.

89

.~..EL ~uj= - __________ -- =="~.=----=-~---

stage.mit.edu

Figure 8-1: Login Interface - Step 1

The first window that has appeared is the Message Activity window which is an

excellent development and diagnostic tool. It monitors and logs all activity1 , with

the exception of polling, between the client and the server. To the user, it acts as the

"What Just Happened" screen.

The second window that appears is actually waiting for the users feedback. The

"Settings File Chooser" window provides the user with a list of setting files that exist

on the server. The user may select anyone of the settings file and click "Load Settings

File". This will launch the settings parser algorithms and create a GUI based upon

the users request. Alternately, the user may click on the "Load Default" button and

bypass the settings parser routine. The later option is the focus of this research and

the user thus clicks this button to proceed.

'Here, the term activity refers to the bi-directional exchange of message between the client and

the server

90

.............

Figure 8-2: Interface After a Successful Login - Step 2

8.6 Main Window

Upon clicking the "Load Default" button, the "Main Window" pops up on the screen.

This window, shown in Figure 8-3, acts as the central controller of the user interface

by providing buttons and menus that fan-off different control interfaces. Lets look at

the them in detail :

/

Figure 8-3: Main Window

91

8.6.1 Control

As seen in Figure 8-3, the control menu provides the user with three options. The

user can either take control of the system, cede control of the system, or check for

the control status. The SET-CONTROL message is used for this purpose [1].

The first logical step in operating the system is to take control. If the user fails to

do this and continues on, then an error message will be generated as shown in Figure

8-4.

You do not hmm control of erver

VannApltWindow

Figure 8-4: Control Error Message

8.6.2 Current Settings Window

The "Current Settings" window appears upon clicking the appropriate button on the

Main Window shown in Figure 8-3. This window monitors the hardware settings and

updates the screen upon receiving a poll message from the server. It therefore allows

the user to monitor the system even in the absence of control.

The Strobe Settings box shows the frequency and phase division of the waveform

driven on the MEMS device. The Stage Settings box shows the current stage position

where (0,0,0) corresponds to the origin. The Focus Settings box shows the current

piezo position and the results of the auto focus algorithm (if any). The Image Settings

box shows the selected phase, ledontime, camera gain, and the corresponding flash

count.

The Magnification and Wafer Settings hardware are not used and have been in-

cluded for historical reasons. The Series Parameter box provides the latest path

names for the slomo-motion and data-set images (if any). The control state, in this

case, shows that the user has control over the system.

92

Figure 8-5: Status Window

8.6.3 Strobe Settings

The Strobe Settings interface launched from the Main Window shown in Figure 8-3

allows the user to specify the frequency, phase divisions, and waveform type. It also

allows the user to specify the parameters which the user is most likely to vary from

image to image, i.e phase, ledontime and camera gain.

The user updates the text-boxes with desired values and presses "return". An ap-

propriate message is sent to the server depending upon the section that was modified.

An update in the Stimulus portion of the GUI is transmitted to the server via the

SET-STROBE message described in Section 5.1.3. Similarly, the server is notified of

the new Image Settings via the UPDATE-IMAGE-SETTINGS message described in

Section 5.1.4

Figure 8-6: Strobe Settings Interface

93

8.6.4 Obtaining a Sample Image

The prior section showed how the SPG Module can be initialized with the desired

stimulus and image settings. It is thus appropriate to capture an image from the

camera to see "what we got". Figure 8-7 shows a sample image obtained upon

clicking the corresponding button of the Main Window shown in Figure 8-3.

Figure 8-7: Sample Image of a MEMS device

The underlying process sends out an OBTAIN-SAMPLE-IMAGE message de-

scribed in Section 5.1.5. Note that this interface did not ask for a ROI arguments

and returned a full size image.

It is very likely that a user may not obtain a high fidelity image due to the

image settings and after tweaking some parameters the user can try again. But most

important of all, we have assumed that there is a device directly underneath the

camera and in focus. Most likely, this will not be the case, and we will have to

modify the stage and pifoc settings before attempting another image.

94

8.6.5 Stage and Piezo Settings

The stage and focus interface is also launched from the Main Window shown in Figure

8-3. Figure 8-8 reveals that it is a busy interface that provides slider and text-boxes

to specify relative and absolute motion of the stage and piezo.

Figure 8-8: Stage and Focus Settings Interface

The X-slider, Y-slider, and Z-slider present in the Relative Stage Motion accom-

modate the differential motion of the axis. The 'Z' motion here refers to the action

upon the MFU which we have considered to be the large scale focus. Alternatively,

the user can specify the precise location in the Absolute Stage Motion section. The

Stage Setup buttons allow the user to set any position to be the origin and then return

to this position after wandering around. All these tasks are accommodated via the

SET-STAGE-FOCUS message described in Section 5.1.1.

The Goto-Min and Goto-Max buttons in the Pifoc Settings do as their name

suggests, while the Goto button puts the pifoc in the position specified by the text-

box. Alternatively, the user may simply move the slider to specify the absolute

95

position. The auto focus buttons available in this interface will be discussed later on

in the chapter.

With the limited introduction so far, the user has the ability to move the stage

and obtain sample images. However, if the user is looking for a specific region on the

device being viewed, then "Live Video" can be enabled to ease the process. The user

will only have to modify the stage/pifoc settings and see the "Live" effect.

8.6.6 Live Video

The user can launch the "Focus Setup" window shown in Figure 8-9 by clicking the

"Focus Analysis" button on the Main Window shown in Figure 8-3. The name of

the button may seem odd versus "Live Video", however, we shall soon see that its

primary purpose is to aid in remote focusing. Finding a particular location on a

MEMS device is an added benefit that we have discussed so far in this chapter.

----- 1 4 L ----- -. --- -......W- Focus Setup Window 90E

Figure 8-:oocstotrlontrfc

Upon clcng theStartan Stop utton, te FGPHing Delay (ins)

catnera Settings n Ro Settings
Exposufr e Time (sec) X1 Y1 X2 Y2

0.05 1 0 300 300

/~arning: Applet Window

Figure 8-9: Focus Control Interface

Upon clicking the Start and Stop buttons, the FOCUS-IMAGE message described

in Section 7.2.2 is sent to the server. The message includes in its arguments the

parameters for the ROI and exposure-time. The architecture behind this feature was

the basis of Chapter 7 which mentioned that flickering would occur if the client and the

server accessed the file at the same time. The "Polling Delay" variable adds a delay

before the client attempts to fetch the next image. A higher "Polling Delay" therefore

result in a low refresh rate, but makes the user-interface faster as less processing-time

is spent fetching images. Note that the "Polling Delay" term used here has no relation

96

with the client polling the server for messages described in Section 4.6.

Varying the exposure-time would vary the brightness of the image. This gives

the user a sense of how much ledontime is appropriate for the strobe settings. The

interface by default has a ROI which specifies the upper left quadrant. The user can

manually update the ROI coordinates for a different quadrant.

Figure 8-11 is an example Live-Video screen. The user at this point can move the

stage and pifoc and see the real-time affect of his/her actions.

The Live-Video application discussed so far involved having the user manually

type in the ROI coordinates. More than often, the user would like to specify the

region of interest by identifying a section of the image.

8.6.7 Remote Focusing

There are several reasons why a user may want to specify the ROI. Bandwidth con-

straints among other things restrict the size of the image that can be shown in the

video screen. The prior section showed how a user would fix the quadrant and only

look at that portion of the image. Suppose a user locates a region on the full-size

image that is of interest. How would the user then go about specifying the exact

ROI coordinates ? Do we expect him to move the stage ? Furthermore, specifying

a section of a full-size image is a requirement for vision algorithms as an image may

contain devices at multiple focal planes.

The MEMS user interface accommodates this by having the user click on the

"Select ROI" button of the Main Window shown in Figure 8-3, after obtaining a

new sample image. An image canvas pops up that shows the recent full-size image

obtained in the background and the user specifies the ROI portion with a mouse.

The mouse is used to superimpose a green rectangle, which the user draws, on top

of the image. The underlying Java code then extracts the coordinates appropriately.

Figure 8-10 shows a selected region of interest. The title of the image in the upper

left-hand corner shows the selected ROI coordinates (431,384,638,606). To confirm

the new ROI, the user closes the window and the client interface now remembers it

for all future processes that require this information.

97

Figure 8-10: Specifying the Region of Interest on a Sample Image

With a ROI now specified, the user can now follow the steps described earlier to

re-start the Live-Video application. Note that this time the ROI coordinates on the

interface will not be the default values, i.e (0,0,300,300), but the ones we just specified.

Figure 8-11 shows an example Live-Video window obtained after specifying the ROI.

The user can now vary the pifoc settings, MFU settings of the stage, exposure-time

of the camera to find the sharpest image.

8.6.8 Auto Focus

An alternate to remote focusing is auto focusing which was discussed in Section 7.3.

Here, the AUTO-FOCUS message sent by the client includes the recently selected

ROI coordinates which specifies the region to focus upon. The buttons to execute this

command are part of the AutoFocus section shown in Figure 8-8. Since the autofocus

command has to use the camera, an ongoing "Live-Video" process is temporarily

98

Ii -~ -

Figure 8-11: Focus Image Viewer

frozen. Furthermore, the AutoFocus command puts the pifoc into the "best" position

upon completion. As a result, when "Live Video" continues, the video screen portrays

a "before and after" effect which can be remarkable at times.

8.6.9 Slow Motion Analysis

Once the client has specified the ROI, focussed on the ROI, and has a feel for the

exposure time needed to properly image the device, it is time to perform a slow

motion analysis. The interface to launch such an activity is shown in Figure 8-12.

This interface can be obtained from the Main Window shown in Figure 8-3.

Observe how the ROI and exposure time have already been filled in, but the

provisions to change them for this particular experiment exist. The user specifies the

frequency and phase-divisions and upon hitting the "Start Motion Analysis" button,

the RUN-SLOMO message described in Section 6.2 is sent to the server. The message

returns with the location where the images are stored and a viewer is launched that

sequences through the images.

The viewer shown in 8-13 is silent for the first-loop as it caches the images. After

that, a smooth playback is obtained and the speed can be varied via the slider. The

playback can be stopped at anytime by closing the window or hitting the "Stop

99

Figure 8-12: Slow Motion Setup

Motion Analysis" button in Figure 8-12.

Figure 8-13: Slow Motion Viewer

8.6.10 Obtaining a Data Set

Once the user is comfortable with the MEMS device, the next step is to obtain a

series of images. To do so, the user launches the "Obtain A Data Set" window shown

in Figure 8-14 from the Main Window shown in Figure 8-3.

This window serves as a means to configure an experiment by allowing the user

100

Figure 8-14: Setup for Gathering a Data Set

to specify the frequencies, phases, and planes at which images should be taken. The

user can either type in these number manually, or use the Function Generator to

make a logarithmic or linear series. The choice of linear or logarithmic depends upon

the analysis and type of plot the user expects from the vision algorithms.

Ledontime and phase-divisions are parameters the users modifies if needed. The

GIF conversion option requests that all images be converted from "nd" format to GIF

and as Section 6.1.2 highlighted, this is a time-consuming operation.

Once the user has configured the experiment, the "Obtain Data Set" button is

to be pressed. The OBTAIN-DATA-SET message described in Section 6.1.2 is sent

to the server which returns with the pathname where the images are stored. A Data

Browser Window, as shown in Figure 8-15, is then automatically launched so the user

can view the images.

The user can navigate the browser and select the image he/she would like to see,

and then click "View". If the GIF version of the image does not exist, then the

interface automatically sends out the CREATE-GIF message described in Section

101

Lj 2UU1_1 1 f_U_40_2U

9 Frequency=1 000
0- Frequency=1 000,Phase=0
0l Frequency=1 000,Phase=1

F1 Frequency-2000
F equenc y=0000,hsehP1 0

Frequency=2000,Phase=0,Plane=1
) Frequency=2000,Phase=0,Plane=20

D Frequency=2000,Phase=0,Plane=40
) Frequency=2000,Phase=0,Plane=60

0 Frequency=2000,Phase=,Plane=80
Frequency=2000,Phase=1

Figure 8-15: Interface for Browsing an Acquired Data Set

6.1.2 for that particular image. An image-canvas, similar to Figure 8-7, then pops up

to display the image.

At this point, the obtained data set can be downloaded by the client for local

analysis and/or transported to another host capable of performing the motion anal-

ysis.

8.7 Multi Client Analysis

It is often desirable that a user be able to share the data among other users. This was

discussed in Section 1.3. The Multi-Client Analysis menu options shown in Figure 8-3

allows all clients connected to the system to view the latest image taken and see an

ongoing "Live Video" session. In addition, all logged in clients can watch the latest

motion video and browse the latest data set.

102

Chapter 9

Conclusion

Computer microvision acts as a good analysis tool during the testing and development

stages of the design process. The computer microvision method involves driving the

MEMS device with a periodic stimulus and capturing the motion via stroboscopic

illumination. The 3-D behavior of the motion can be monitored by taking images at

multiple focal lengths. Motion estimates for X,Y and Z can then be extracted from

a set of images by using computer vision algorithms.

9.1 System Overview

In this research, a low cost computer microvision system is defined and implemented

to characterize and test MEMS. The system includes a PC which has full control

over a camera, a piezo electric device, a generic microscope with an X-Y-Z stage,

and an LED to illuminate the moving MEMS device. Custom hardware includes the

design of the Strobe Pulse Generator (SPG) Module for a PCI interface that acts as

a central controller for stimulus and stroboscopic illumination. Obtaining an image

of a moving MEMS device at a particular focal length, stimulus shape, frequency,

phase, and light intensity is the most basic building block of the microvision system.

There are benefits in being able to operate the system remotely and support a

multi-client environment. The design of the microvision system lends itself to being

a remotely accessible system. This is because the computer, acting as the controller,

103

can be thought of as the server for all of the data and for all of the parameters of the

system. There are two main modules of software that enables the computer to act

as the server for the MEMS characterization system. First, there is the web server

which includes servlets that overcomes the inability of the standard HTTP to deal

with state. The second software module is the sum of Java classes that handle all the

interaction between the client and the server. The client software consists of multiple

modules written in Java and is intended to run remotely through a web browser.

The link between the client and the server is a messaging protocol and all com-

munication is done via "messages". The messaging protocol is the glue that binds

the entire system together which spells out the rules for the format and transmission

of data between the client and the server. Each message has a handler, which is ex-

ecuted by the server upon the receipt of the corresponding message. These handlers

are used to change the state of the hardware by calling executables, monitor the latest

hardware settings, send messages to other clients, etc.

9.2 System Operation

A client connects to the server's URL via a web browser and is provided with a

Graphical User Interface (GUI). This interface provides the client with full access to

the system. The user can "login" and can then request control for the system. After

setting the various strobe settings, the user can request a sample image. The user can

move the X-Y-Z stage to find a Region of Interest (ROI) and alter the piezo settings

to fine focus. To assist in this process, the user is provided with an option of "Live

Video", which once enabled, allows the user to instantly see the effect of moving the

stage or changing the focal length. Provisions are also made to focus on the ROI

which the user can identify by simply drawing a rectangle on a previously acquired

image. The user can also choose to auto focus on the selected ROI.

The system also supports slow motion analysis by showing a time waveform of

the moving MEMS device for the requested number of phase divisions. The user can

also configure an experiment and retrieve the data upon completion.

104

The computer microvision system can support multiple clients simultaneously and

allows the sharing of data. However, at any given time, only one user can have control

of the system, while the rest can only monitor the latest system settings. The multi-

client analysis tools include shared live video, latest image acquisition, slow motion

analysis, as well as viewing acquired data sets.

9.3 Future work

The current system architecture for remote access has some shortcomings. The prob-

lem is that HTTP, upon which the messaging protocol is layered, requires the client

to initiate all communication. While this works well for most situations, there may

be cases when this becomes a real issue. We try to get around this with a polling

mechanism. But polling is far less efficient and scalable than a truly bidirectional

protocol. Future work may try to develop a modified protocol that is a hybrid HTTP

and some other protocol that is truly bidirectional.

An area of the user interface that could use much enhancements is the graphic

manipulation abilities of the interface. More specifically, images cannot be cropped,

filtered, marked, or saved back to the server in any modified format.

Remote focusing is essential for any remote microscopic application. The solution

utilized in this research works only for high bandwidth networks. Even so, bottlenecks

exist due to the image conversion subroutines and the lack of compression. Modern

video stream broadcasting architectures and formats, such as Real Video, should be

investigated and implemented.

The system presented in this thesis is truly one of a kind. Unfortunately, it has

always stayed in the research lab. An effort can be made to house this in a real

fabrication facility and feedback from real users can go a long way in improving and

redefining the system architecture.

Before transporting our system to the real world, the issue of security needs to be

addressed. Every effort must be made to ensure that a users data is not compromised.

105

9.4 Final Thoughts

This thesis started off in the mid stage of the research project and took it to comple-

tion. While a lot of the milestones were accomplished, there were some that weren't.

Nevertheless, the ultimate goal, dictated by the project completion deadline, was to

do everything, hardware or software, and demo a working system. With that accom-

plished, this research presented a first generation of remotely automated microscope

to characterize and test MEMS.

106

Appendix A

Character Interface to the Led

Flasher and Sine Wave Generator

21 Apr 1999 D. E. Troxel

31 May 1999 Rev.

21 Mar 2000 8 pm Rev.

01 Apr 2001 Last Rev. by D. Seth

All communication is at 9600 baud.

All transmissions to the board require only 7 bit characters, the eighth bit is

ignored. Thus, odd, even, or no parity is accepted. Only one stop bit is required,

although two or more are acceptable. In short, any transmission at 9600 baud is

acceptable.

All transmissions from the board are 8 bit characters, the eighth bit is zero and

one stop bit is transmitted. Receivers that require two stop bits will work if characters

are not received back to back (as is the normal case).

Data is transmitted by nibbles represented by 0 - 9 and a - f or 0 - 9 and A - F.

That is, case is not distinguished for hex characters. All other 7 bit characters are

special command characters.

Those characters which are not listed below are no-ops. They may be assigned a

107

meaning at a later time, so their use may result in unpredictable results.

All characters are echoed as received except for S (the pixstart character). When

an S is received, there is no echo and a D is sent back when all the strobe (LED)

pulses are finished for that picture.

Data characters that follow a special command character cause the data register

to be shifted right by 4 and then the data character is used to represent the low four

bits of the register. There are always either zero or four data characters except for the

command character, L, which has 4 times the number of samples which is specified

by the 16 bit value following the n command which must precede the L command.

E.g., the following sequence of characters would load the hex number 012f in the data

register.

< reg-load special character > 0 1 2 F

If the destination register has less than 16 bits then the high order bits of the data

register are ignored.

In the table that follows the left column is the special command character which

is also a printing character. Special command characters should always be a printing

character. Remember, the characters 0 - 9, A - F, and a - f are not special command

characters as they are hex data characters. The ASCII code in hex is given just

to the right of each special command character. The next column is the length of

the register in bits which is to be loaded after the special command character. The

third column is the number of hex characters which are to follow the special character.

The table entries are ordered by ascending values of the ASCII code for the command

characters.

Char Numbits Numchars

A 40 0 0 A Null command which does nothing except the

required echo of L.

G 47 0 0 Start the function generator.

108

I 49 0 0 Set the integrate line of the camera high.

L 4C 11 4*<n> Load the ram with the number of samples loaded in

the n register. Remember that four hex data characters

are required for each sample.

M 4D 5 4 The Maximum number of strobe pulses.

N 4E 16 4 The number of strobe pulses required to produce the

desired exposure.

0 4F 0 0 Turn the LED on.

P 50 5 4 The (phase - 1) of the strobe pulse. This must never

be more than the maximum number of strobe pulses. '0'

refers to the 2nd phase while the value used for 'M"

selects the first phase.

R 52 0 0 All operations are stopped and the LED flasher and the

function generator are Reset. All registers are set to all

ones except for the ram and frequency generator chip

which are unchanged. The LED is turned off.

S 53 0 0 Start taking a picture. There is no echo of S when this

special character is received, a D (for Done) will be sent

when the number of LED strobe pulse specified have

occurred.

V 56 3 4 The Capacitor value selection which specifies the range

of the VCO.

W 57 ? 4 The time delay before starting strobe pulses. Cannot be

zero.

g 67 0 0 Stop the function generator.

i 69 0 0 Set the integrate line of the camera low.

1 6C 8 4 Load the clock generator with a byte of data. The

early bytes loaded into the clock generator determine

whether the number of bytes loaded is five or eight.

Remember that two hex data characters are required

109

for each byte.

n 6E 11 4 Specifies the number of samples to be loaded in the

ram starting with address zero of the ram.

o 6F 0 0 Turn the LED off (default).

r 72 0 0 The address lines of the ram and clock chip are reset

to zero.

This character interface module will incorporate the receiver and transmitter mod-

ules and provide an interface to the led flasher module and the sine wave generator

module. The following data comprise the interface between the character interface

module and the led flasher and sine wave generator modules.

cmd A four bit command code as specified by the following table. This is

not changed until a new command is received. Note that command

characters are not listed in the same sequence as in the previous

table. Note that three command codes are unassigned and reserved

for possible future use.

Code Char Data Chars
0 V 4
1 W 4
2 M 4
3 P 4
4 N 4
5 n 4
6 1 4
7 L 4*<n>
8 unassigned
9 S 0
A R 0
B G 0
C g 0
D r 0
E unassigned
F unassigned

data A 16 bit data value.

110

The next two signals are control signals which may be generated by clocks different

from the led flasher and sine wave generator modules. Therefore, they should be

synchronized by the receiving module.

newdat This is asserted high whenever new data is stable. It remains high until

led-ack or sine-ack is asserted high.

newcmd This is asserted high whenever a new command is stable. It remains high

until led-ack or sine-ack is asserted high.

The next two signals are control signals which may be generated by clocks dif-

ferent from the character interface module. Therefore, they are synchronized by the

character interface module.

led-ack This is asserted high whenever the led flasher module or the sine wave

generator module has recognized the newdat or newcommand signal

assertion. It is de-asserted when both newdat and newcommand are

low.

sine-ack This is asserted high whenever the led flasher module or the sine wave

generator module has recognized the newdat or newcommand signal

assertion. It is de-asserted when both newdat and newcommand are

low.

111

112

Appendix B

Techniques Investigated for

Broadcasting Live Video

Chapter 7 described the method used for remote focusing. However, it is important

to discuss the other methods that were investigated and why they were not used.

Several approaches were investigated to accomplish the task. The first technique

involved the client user interface running through a continuous loop of OBTAIN-

SAMPLE-IMAGE messages in the background. In this way, the user would only

have to worry about sending messages to modify the piezo position while the display

of the current image would update automatically. A very important hurdle pertain-

ing to multitasking of the user interface had to be overcome in order to accomplish

this. Specifically, the existing user interface architecture was not designed to support

multitasking and therefore did not allow "threads" [12]. After all the necessary mod-

ifications to the user interface architecture, this scheme was implemented and the

shortcomings surfaced. First, the client interface would become very slow and just

hang at times, thereby affecting the reliability of the user interface. Second, a strain

was added on the server that had to process this flood of messages. All this led to a

horrible refresh rate of about 1 frame every 3-4 seconds.

The next approach aimed at minimizing the transfer of messages between the

113

client and server to improve performance. The idea was that the client would send

a message once to start the video, and during its poll interval it would pick up the

path to the latest image. A reasonable refresh rate would be at least 2-3 frames a

second, which meant that the poll timer would have to be reduced from the original

5 second to 0.33 seconds. This however led to different problems. First, the client

GUI would became very slow as it would spend most of the time and processing

power taking care of the poll messages, even when the poll process was launched as

a separate thread. However, the main problem would develop when another client

would connect to the server. Multiple clients polling at such high rate would reduce

the overall system performance. This approach, at best, would yield a refresh rate of

1 frame every 2-3 seconds and a very slow client and server.

Clearly, an alternate technique that minimized the load on the client would be

preferred. This concept involved launching a process on the server that would contin-

uously overwrite a known file name, Livelmage.gif, with the latest image. The client

at its own pace and processing power would then GET this image. The drawback of

such a technique was predictable. Random flickering would occur if the server and

client would attempt to access the file at the same time.

B.O.1 Launching a Background Process on the Server

With this latest approach in mind, the question involved how to remotely keep a

process running. The trouble this time involved the server architecture [1]. Upon

receiving a message, the Hardware Control Module would not return until the ex-

ecutable had exited. This was overcome by modifying the server architecture to

support threads. In this way, the server in its background would regularly call on

an executable to take a sample image. While this worked well, one aspect of system

timing was overlooked. This involved the time it took to launch an executable; after

all, the command module has to dynamically load all the software modules, but most

importantly initialize the camera.

A much simpler alternative was soon realized. This involved having the executable

114

return but not stop what its doing, i.e have the executable fork out a process. That

is, once the executable was called, it would start taking picture and create a dummy

file. The forked process would keep acquiring images until some external program

deleted the dummy file. This seemed to work very well.

115

116

Appendix C

SPG Module Schematics

23 Apr 2001 Last Rev. by D. Seth

The following pages illustrate the schematics of the SPG Module.

117

4JP
'm

$49
w

U
tomm

U

O

H
I

N
M

-W

U)

ID

C
)

H

H

H

H

H

H
I

I
I

I
I

I
I

I
00000000
H

H

H

H

H

H

H

H

C
)U

N
r-

k,
U)

(U
H

I

|'
'|

|
'-0000

CN'
H

H

H

H

7-U

0H

I
I

00

0HCIND
6E

-Q
I

8E
-0I

LE-O
I

S£ -0
1

1£ -01

6 E
-0I

8
E

-0
I

9
E

-0
I

-I

H
 ID

 ['-0

0
H

C
N

CG
C.

H

H

H

H

H

H

H

H

(G

~~6ZIOI

"I
CN

N
 C N

 N
 NC(

Ti
'

.
w

M

C
IN

M

in

'D

0

OHNm

'Y
M0 M 0d

0
0 0

0
1

ST
?
4
2
9
/

9v'
ZT

L24UCI

017
6E

f
8E-

-

P'C
6

lea(
EE

8
le4

eI:4

4N

4

4

~
N

NN

C)
C

)

F
igure C

-1:
Page 1 of the SP

G
 M

odule Schem
atics

118

H

(N

H
I

6"M
N

C

')
c,

M
~

w
)

'
J:

U
L

*
I

U
)

U
)

U
)

q
'

W

I
2

U
I

Z
U

U

IN
 II

IN

4
4C
U

)

N
C

N

H
O

E 5
0 E

~i
~

pIn

T
ZrZ

,rZ

78T
6

T
O

T8-
78'T9L86
77
7

0
0

H

H

9
9

-0
1

L S
-0

1
8
q

-0
1

6
9
-0

1
0
9
-0

1
1
9
-0

1
Z

9
-0

I
E

9
-a

l
G-I
O

DA

O
DA

0
-0

i
1
-0

1
Z -0

1

V
'-01

9
-0

1
9
-0

1
L
-0

I

UI
1 I

I
 C

C
O

N

6
0Y

')
C')

C
:

I

(U
)

10U
)

7
1
104

N

(Y)

................

(N

I

DDS Clock,Uart Clock were added in case
there s a design upgrade. -

16

NewDta 1- 5-A3

New"comm-and 5-A3 1

;-E2, 10-AM, 3-A42
SingenClock 2

uartClk23
(Not Needed) Data 0 24
10-Al, 5-A4, 1-A2, 8-D3 Data 1 25

Data 2 26
Data 3 27
Data 4 28
Data 5 9
Data 6
Data 7 31

1-1-

DATABUS
COMMANDrz

5-Al, 4-44, 1-A4

Singen Uni t I

N
(is

4~J
a
0
6
a

la//lal l
lalalal Hal

1001100

/H jo

aao

0- N 0 OW M~ (N,-4 0 00 LM N' C'r-4 0 M~ M r, W
10-8 60,0,0, 10,0I I0,U C. I t W 0 O 0 0 GND
10-9 H iHOH0 O 0 0 10-55

10-10H H H H H H H 105
I0-10 I0-54

10-11 CPLD 10-53
10-12 10-52
10-13 10-51

10-14 10-50
10-15 10-49

CLK-0/I-0 10-48
VCC CLK-3/I-4

GND GND

CLK-1/I-1 VCC

10-16 CLK-2/I-3
10-17 10-47
10-18 10-46
10-19 10-45
10-20 10-44
10-21 10-43
10-22 10-42
I0-23 IO-41 q qMM MMM
GNDI I I I I I I N I I I I I I I I 10-40GD 00000000 1 U U000 00000Z

HHHHHHH H > 6 > H H H H H H H H (

0

O
M

0

C.

C4-

0

-~5-Al, i-A4

M o Nf4' M

$4 $4 4 $4 $

(CPLD)

-'

%D I-- On -
r l n' 1W I
H HW LO

4-4JJ4 -

3-A2

RAMR
3 -A4

3-2 -= RAMDATA
-- =M= RAM ADR

C2

74
73 Ram Adr 13
72 Ram Adr 12
71 Ram Adr 11

70 Ram Adr 2

69 Ram Adr 1

68 Ram Adr 0

67 Ram Adr 14

(Not Ne

U md7

Cmd 3
Cmd 2

Cmd 1

Cmd 0N
-N

runt-

8-E2, 10-Al, 1-A4, 5-A3,

DDS Clock
(Not Needed)

10-Al, 5-A4, 8-0A

Note : Ram Adr 11,12,
13 and 14 were not
implemented on the
prototype due to
pin constraints. The
CPLD can ground these
pins if needed.

eded)

4-A4 DDS LOAD
4-A3 :G DD S~W614

0-A3, 1-A4 s sine-ack

Power=2,2l, 42,44,63,84

Ground=l, 11, 22, 32, 43, 53, 64, 74

C

aAa!i I

4J 4-) 0 4K00 00

1

2

3

4

1

2

3

4

AC B C D

n I b

OF

a

Singen Unit II (RAM, D/A)

4

-12V

OTj

'-1

0

2

RAMOE

RAMRW 2-El

Skam Adr_ 4
RamAdr_12 3
RamAdr_ 4
RamAdr 6 5
Ram Adr5 6
RamAdr_4 7
,KamAdr_3 8
kam Adr_2 Da

am_Adr_0 Ram Data 0 11
Ram Data 1 12
V Data 2 13
VU

RAMDATTA

U2

A14 SRAM vcc
A12 WE
A7 A13
A6 A8
A5 A9
A4 All
A3 OE
A2 A10
Al CS
A0 10-7
10-0 10-6
10-1 10-5
10-2 10-4
GND 10-3

Ground=14

Power=23

21
127

m r
26
25 Ra :_dr1

am_ r_
24 Ram Adrt 7

322 Ram ar_t

C,0 RamAdr_1l

Ram Data 7

18 Ram Data 6N

17 Ram Data 5NN

16 Ram Data 4N

15 Ram Data 3N

Ram Data 0 1
Ram Data 1 2
Ram Data 2 3
Ram Data 3 4
Ram Data 4 5
Ram Data 5 6
Ram Data 6 7
Ram Data 7 8

5-E2, 1 -A', 2-A2

Buffer the output
of the D/A so it
has enough juice
to drive the coax.

7 7- 2 9 -DA

&0 Cyl

+12V

14 ''LO
13

11
-'10

AGND

The Jumpers can
be used to alter
the full scale
voltage of the
D/A - 2.5 or 10 V.

A ii C U

+12V

U6

AD558 DAC
DBO VOUT
DB1 SEN
DB2 SEL
DB3 GND
DB4 GND
DB5 VCC
DB6 /CS
DB7 /CE

1

2

3

4

RAMADR

.- L V+

V- LM6152

1

2

3

4

Singen_Clock

V
A R

A 13 I C i D I

"+5 Analog" and "AGND" correspond to the analog power supplies.
DGND and Power correspong to the digital supplies. All chips with
internal attributes of Power and GND refer to the digital supplies.

+SvAnalog

AGND

-P wer

DG~ND

Bypass Caps

50 Ohms R3

50 Ohmns 4

390 0hms R2

AGND

O.

0

M

0

0

90

M1

LO
U-

+5V Analog

:- -
0%

Z i -

A
-- 3

10

12
13

14

15

Data 0
Data 1
Data 2

DGND Data 3

DATABUS

DDS LOAD

2\'set jj.

5-Al, 2-A4, I-A4

U3

AD7008 DDS
/IOUT AGND
IOUT DGND
VAA SDATA
FSADJ SCLK
COMP TEST
VREF VDD
DGND RESET
D8 SLEEP
D9 LOAD
D10 TC3
D1l TC2
D12 TC1
D13 TCO
D14 FSEL
D15 CLOCK
/WR DGND
VDD VDD
DGND /CS
DO D7
Dl D6
D2 D5
D3 D4

2-E3

1

Singen Unit III (DDS)

DDSsine

Power

DDSRW 2-"3

43
44
41

'A Q

3

37 4

35 D ita 9

328

I
AGND

DGND

1

2

3

4
4

.- _

D
D

D

D

,ta
Lta
ta
ta

7
6\
5\4\

8-E2, 10-Al, 1-A4, 5-A3,

S -D3A

i -e

7

A

f

z

A A U

VCO UNIT I (CPLD)

DATA BUS OF

2-A4, 4-A4, 1-A4

Data 8 13
Data 9 13
Data 10 14
Data 11 15
Data 12 1
Data 13 7
Data 14 18
Data 15 20

C0MMAND 2-A4, l-A4

~23
Cmd 0 24
Cmd 1 25
Cmd 26
Cmd 3 7

8-E2, 10-Al, 1-A4, 4-A4

eset
NewDat 1-El, 2-A2

N-E1m 2-A2NewCc'nrand -l 'A

rint12 RCO
(Not Ne-eded

led

DDSClock 10-Al, 2-A4,

10-A1, 6-El.

Uart Clock 10-A1, 1-A2

(Not Needed

1 HM D -, HIM

1

c+cO'

0

I-L
CD'

0

1-E4

8-

i ,

-D4

1 0
-A2, A4 Pixstart:

10-A2, 6-A2

10-A3, '-A4

-401 0~ ca r-I Al LAIcai cal - N c-Ic-li--I

-d I I d I i I ALr)I

C3 MaxCar and Phcar

Z- are debug signals.

73 10-A2

72

7

72
§7
Ik

62

61
E1

LU

p

VCOSamnle

pixdone

MaxCar
PhCar
Strobe

10-8 W 0 O L L LO GND
10-9 I 0 000000' 10-55
10-10 10-54
10-11 CPLD 10-53
10-12 10-52
I0-13 10-51
10-14 10-50
10-15 10-49
CLK-/I-0 10-48
VCC CLK-3/I-4
GND GND
CLK-1/I-1 VCC
10-16 CLK-2/I-3
10-17 10-47
10-18 10-46
10-19 10-45
10-20 10-44
10-21 10-43
10-22 10-42
10-23 IOr- 00-c 10-41
GND I I I I I I I I I'O L 0 U I I I I I I I 1 0 10-4000000000 lUZU00000000!Z

H H- H H H H H H H > aD > H H H H H H H H CD

I)

1

2

1

m W n w1mn m m m-

Ci) III) lID4

-Al, 3-A4, 2-A2 Sircie"§lock

10-A3, 1-A4
L= led-ac~k

6-A4
Se 1

Power=2,21,42,44,63,84

Grourd=!, 11, 22, 32, 4 3, 53, 64, 74

2

4

4-I 4

3

4

.

i5 i I Ij

A I ts n)C :

VCO UNIT II (PLL)

~-D4 j U7

VCOSample 10-A2, 5-El

AGND

The 3 MSB caps
are not selected
by the driver as
5 caps are
sufficent.

7--8

10-Al, 5-A4 VCOClock

+sV Analog

16

20K

Rr

+sv Anxwog

09

5=

Oq

CIO

0

cD

C Cf3

2]

4

~---

LA 4N z

* U~H ~T AG-ND

U1

MC74HC4051
X4 VCC
X6 X2
x Xl
X7 X0
X5 X3
ENB A
VEE B
GND C

15
14
*17

12
12 Sel 0

10 Sell1

9 Sel 2

-4

I

31 F

33 oF

R6 019

2.2uF A

LI) -n-
U) K -~

A' B ' D

1
F'

MC74HC4046A
PCPout VCC
PClout PC3out
COMPin SIGin
VCOout PC2out
INH R2
C1A Ri
ClB DEMout
GND VCOin2

3

1

'H
U
iIC

2

3

Se
5-E3

+5V Analog

AGND

I F
A CID

4

-L.
f;

3.

Sig~in

El!

RiP

3.9K +12V

AGND 21V+

3

D2A ~ ~~ ut -D3, 3-E2 _DAJOu j - +

O> 4 V- LM6152

R.19 -12V

IF J.1

AGND

ExternalInput >
9-E2

Cyj

C+

CD

50
90

C+

I-
AGND

The 2M Resistor
at the negative
inputs is used
to DC bias the
internal BJT's. -12V

Comparators
Buffered outputs of the
DDS and A/D are ac-coupled
and then sent to the comparator.

ADS_Amplified

(To Schmitt Trigger)5x Non-Inverting amplifer

7

_L

L0-A2 D2A Amplified

10
to
of0

4

-, - 4

AGND

99

V+

x Non-Inverting amplifer
minimize Hystersis effects
the Comparator.

+12V

+5V Aniaog

7
D2A_FromCm-p

(To Schmitt Trigger)

c

Feedback Rli
to add
Hysterisis

AN

AGND

1

2

3

4

DDS-sineZ
4-El

1

2

his switch can be
onfigured to realize
he source of the
xitation voltage,
hich can be from the
D/A or from an
xternal source.
Jseful in accounting
for phase shift.

R9

2 Meg

GND

GND

LM319

A
A I U

I r,1. A

R16R17

t

6 _

RS-232 Interface
DB9

DB9
1 Pi

P2
DTR P3

4 P4
P5

RTS 71P

P8

Power=r

Px _1 4 RXD TTLTlIN 2

-- TXD TTLR10UT3
TXD

Signal Buffering

Cq
0

OO

00

00
0

CD

+ W

0

Reset Scheme

Power

P
e

nExte

Power

ull up resistor for
xternal reset

rnal Reset 9-El
= Re set

nReset PCI 9-2 2

Power=14 74ALS38AN 10-A1, I-A4, 5-A3,
G-rouirnd=7 2-A4

+5V Analog

0

04

4-A4,

CPLD logic and comparators should
take the buffering inversion
into account.

9-D3
-- ~ StrobeBuffered

SN38 Open collector buffer
to drive the LED.

U 8

74Ls

Dl
D2
D3
D4
D5

14
Q] 2

Q3 6
Q4 8

Q5c10
06E12

Power=14
Ground=7

imitt Trigger

4A4
1 .0-Al, 5-A4, 1-A2 2-A2

U U-- , -A,

9-D2
9-D2

£10

OG-ND

Uart -Clo
50 MHz lk
DDS Clock.

PixstartBuffed
IntegrateBuffed

Termination Resistor at Load
(if needed)

2

3

4

10-A2, 5-E2
Str-obe

Powe.
Power='4 I , o u

ronod= Si 20/50 Mhz sc
CLK8

Powerx=14 Ic OSC2
7OSC CK81.84 M.,Iz ,E cCLK i

3

:DS Amplified 5

2 fOm mo 10-A2, 7-E4 9

start 10-A2, 5-El 11

Integrate
:-E3

Sc

TTLR1OUT

TTLT1 IN

I

2

3

4

i

2 3

r=1 4 74ALS-38AN

nd--='7

1:

PCI Interface

Power

PCI SIDE B
Minus_12V 1

Ground
5_Volts

DGND -12V

+12V +5V^"''o

PCI SIDE A Z
Plus_12V2 t t5 volts 5

Reset 15et
Ground A

AGND

I-L

ND

Cn
n)

Coax Connectors
8-C2 = nExternalReset

-A3 - ExternalInpu't

AGND

PixstartB,:fed

Integ rateBuffed

b-D4

8-L4

D2A(Out

8 -E3 '
Strobe Buffered

+12V AGND +5V Analog

2.2 uF 2.2 F 22 F 12.2 uF

DG~ND AGND 12V AGND

z1

AGND

A B D

1

2

The pins choosen are compataible with
all types of PCI interface - 3.3V and 5V.

Details can be found at

http://www.techfest.com/hardware/bus/pci.htm

3

1

2

3

44

A i V

9-.A

7-A2, 3-E

A

1
40,

2

2 I

z A B D I

-
I

(N

1
(1)

11q,

0
4J0 0)d

C ,Q
q

0 0)

-40
,4

41'0
0

4-1
>

C

CO
r U

)
0 -4 0
04 p

C
4 0Q

t~

U)

e0,I)
o'D

0
)

o
o

0

(C
-

0)t-0

.C
1

c O
[-i

-IN

'C

I

I

I

I
I
I

I
I

I
I
I
I

I

I

I

I

I
 1

1
1

II 1 1
I

I
I

I

1
I

I

1
I
 I

1
1
I

1
1
I

1
1
I
I

1
!
!

11I 1

1 W C1 ~ 1 r- 0 ,1 r- n 0 1-A-d-A-d
d-

<I

IN

112
k

0
0-.

IT

-4-
(N

3

-C)
'1

--
I

I
N

IT

.,H

r-I

C
)0)

I'
4

)

0

0
3

p-
tT,

t
U,

U
>

 0
[i

0o

-
1 1

E.,
H

q

(1
Q

)
Ida e C

 e
fY

al
x

.
n

a
o

o
O

.

(X
 ~

U

U
U

o
a

O
M

D
u

o
G

u
|

as
.

r)

F
igure C

-10:
L

ast Page (10)
of the SP

G
 M

odule S
chem

atics

127

D
3

I

C
)C

,
C

4-)
014-$

(0
C

) 4-
(4

.4

r.
420 -

0
pH

U

E
 .0

0

(12

>1(1
C

) C
(a

S
H

0
>

)
-U o

o~
'oA

C
J

2

C
U)

-
C

0

>

Q

(n

(4
J

C

>
0
)

x

X
-4

CIq
i

128

Appendix D

Serial Unit VHDL Code

The block diagram and VHDL code of the Serial Unit can be obtained from

http://www-mtl.mit.edu/~dseth or by sending an email to dsethQalum.mit.edu. The

following is the port description of the Serial Unit.

port (reset
clk
si
so
pixdone
ledack
sine-ack
newdata
led
Integrate
newcommand
data
command
cntl2carout

in std-logic;
in stdjlogic;
in std-logic;
buffer std-logic;
in std-logic;
in std-logic;
in stdjlogic;
buffer std-logic;
out std-logic;
out std-logic;
buffer std-logic;
buffer stdilogic-vector(15 downto 0);
buffer stdlogic-vector(3 downto 0);
out std-logic

129

130

Appendix E

Singen CPLD VHDL Code

The VHDL code of the Singen Unit can be obtained from http://www-mtl.mit.edu/~dseth

or by sending an email to dsethQalum.mit.edu. The following is the port description

of the Singen Unit.

(clk
Reset
Data
Command
newdata
newcommand
Ack
RamRW
RamOE
DDSRW
DDSLoad
RamAddress
RamDataOut

);

in stdlogic; -- Global System Clock
in Stdlogic; -- Asychronous
in Stdlogic-vector(15 downto 0); -- Data
in Stdlogic-vector(3 downto 0); -- commmand
in stdlogic; -- Valid Data
in stdlogic; -- Valid Command
out stdlogic; -- Acknowledge valid data/command
buffer std.logic; -- Ram Read/Write
buffer std-logic; -- Ram Output Enable
buffer stdilogic; -- DDS Read/Write
buffer stdjlogic; -- DDS Load
buffer std-logic-vector(10 downto 0);
buffer std-logic-vector(7 downto 0)

131

port

132

Appendix F

VCO CPLD VHDL Code

The block diagram and VHDL code of the VCO Unit can be obtained from

http://www-mtl.mit.edu/~dseth or by sending an email to dsethOalum.mit.edu. The

following is the port description of the VCO Unit.

port (led
reset
clk
DDS_clk
vco_clk
newdata
newcommand
command
data
sel
ledack
pixstart
strobe
n_vco.sample
pixdone
phcar-out
maxcarout
A
B
clock-out

in stdlogic;
in stdlogic;
in stdlogic;
in stdlogic;
in stdlogic;
in stdlogic;
in stdlogic;
in stdlogic-vector(3 downto 0);
in stdlogic-vector(15 downto 0);
buffer std-logic-vector(2 downto 0);
buffer std-logic;
buffer std-logic;
buffer stdilogic;
buffer std-logic;
buffer std-logic;
buffer std-logic;
buffer std-logic;
buffer std.logic;
buffer std.logic;
out std-logic

133

134

Appendix G

Command Module Compilation

The original Command Module loaded a module called data.c that was responsible for

the image acquisition process. It established all the SPG Module settings and issued

commands to acquire images. However, for the MEMS Characterization System, we

need several variations of the cm-getdata executable. For instance, in the case of

remote focus, we want the LED to be always on and control exposure via software

while having the camera ignore the integrate settings. This case is very different from

the slow-motion analysis case, and all cases differ significantly from one another. To

make provisions for all these customized executables, the following lines was added

to the original cm.getdata.c. Hence, only one module is loaded instead of the "data"

module and this differentiates the type of executable created.

#ifdef JAVAREMOTEFOCUS
load-module("javaremotefocus");

#elif JAVAPIXSTART
load-module ("javapixstart");

#elif JAVASLOMO
loadmodule("javaslomo");

#elif XDTAUTOFOCUS
load-module ("xdt-autofocus");

#else
load-module("data");

#endif

The makefile shown on the next page is included to clarify the process of exectuable

creation.

135

G.1 Makefile

ND=. ./nd
CFLAGS= -rdynamic -m486 -Wall -g -02 -DGNUSOURCE -I../nd
#DEBUGLIB=/usr/lib/libefence.a
#DEBUGLIB=
BINDIR=/usr/local/cm/bin

#ALL=cm-getpos cm-setpos cm-getdata cmfocus
ALL= cm-getdata cmfocus cm-getpic cm-slomo

ALL: $(ALL)

cm-getpos: cm-getpos.c lib.c
cc -o cm-getpos -rdynamic cm-getpos.c lib.c -L/usr/X1iR6/lib -lX11 -ldl

cm-setpos: cm-setpos.c lib.c
cc -o cm.setpos -rdynamic cm.setpos.c lib.c -L/usr/X1iR6/lib -iX11 -ldl

cm-getdata: cmgetdata.c lib.c
cc -o cm-getdata $(CFLAGS) cm-getdata.c lib.c -L$(ND) -lnd

-L/usr/X11R6/lib -lX11 -ldl -lm $(DEBUGLIB)

cm-getpic: cm-getdata.c lib.c
cc -o cm-getpic $(CFLAGS) -DGETPIC cm.getdata.c lib.c

-L$(ND) -lnd -L/usr/XiiR6/lib -lX11 -ldl -lm $(DEBUGLIB)

jrf-getpic: cmgetdata.c lib.c
cc -o jrf-getpic $(CFLAGS) -DGETPIC -DJAVAREMOTEFOCUS cm-getdata.c lib.c

-L$(ND) -lnd -L/usr/XiiR6/lib -lX11 -ldl -lm $(DEBUGLIB)

j-pixstart: cmgetdata.c lib.c
cc -o jpixstart $(CFLAGS) -DGETPIC -DJAVAPIXSTART cm-getdata.c lib.c

-L$(ND) -lnd -L/usr/XiiR6/lib -lX11 -ldl -lm $(DEBUGLIB)

j-slomo: cmgetdata.c lib.c
cc -o jslomo $(CFLAGS) -DGETPIC -DJAVASLOMO cmgetdata.c lib.c

-L$(ND) -lnd -L/usr/XiiR6/lib -lX11 -ldl -lm $(DEBUGLIB)

cmfocus: cmfocus.c lib.c
cc -o cmfocus $(CFLAGS) 'gtk-config --cflags' cmfocus.c lib.c

-L$(ND) -lnd -L/usr/XiiR6/lib -lXext -lX11 -ldl
-lm $(DEBUGLIB) 'gtk-config --libs'

cmslomo: cmfocus.c lib.c
cc -o cmslomo $(CFLAGS) 'gtk-config --cflags' -DSLOMO cmfocus.c lib.c

-L$(ND) -lnd -L/usr/XliR6/lib -lXext -lX11 -ldl
-lm $(DEBUGLIB) 'gtk-config --libs'

ndtest: ndtest.c
cc -o -g ndtest -I$(ND) ndtest.c -L$(ND) -lnd -lm

i: i.c lib.c
cc -o i -rdynamic i.c lib.c -L/usr/XiiR6/lib -lX11 -ldl

clean:
-rm $(ALL) *.o

install: $(ALL)
-mkdir $(BINDIR)
cp $(ALL) $(BINDIR)

136

Bibliography

[1] Jared Cottrell. Server architecture for mems characterization. Master of engi-

neering thesis, Massachusetts Institute of Technololgy, Department of Electrical

Engineering and Computer Science, September 1998.

[2] D. M. Freeman, A. J. Aranyosi, M. J. Gordon and S. S. Hong. Multidimensional

motion analysis of MEMS using computer microvision. In Technical Digest of

Solid-State Sensor and Actuator Workshop, pages 150-155, Hilton Head Island,

SC, June 1998.

[3] C. Quentin Davis and Dennis M. Freeman. Using a light microscope to measure

motions with nanometer accuracy. Optical Engineering, pages 1299-1304, 1998.

[4] C. Quentin Davis, Zohar Z. Karu, and Dennis M. Freeman. Equivalence of block

matching and optical flow based methods of estimating sub-pixel displacements.

IEEE International Symposium for Computer Vision, pages 7-12, 1995.

[5] Dennis M. Freeman. Computer microvision for mems. MIT Micromechanics

Group, http://umech.mit.edu/MEMS.html.

[6] Dennis M. Freeman and C. Quentin Davis. Using video microscopy to charac-

terize micromechanics of biological and man-made micromachines (invited). In

Technical Digest of the Solid-State Sensor and Actuator Workshop, pages 161-

167, Hilton Head Island, SC, June 1996.

137

[7] Paul Horwitz and Winfield Hill. The Art of Electronics, introduction to phase-

locked loops, Chapter 9, pages 641-655. Cambridge University Press, New York,

NY, second edition, 1998.

[8] Integrated Device Technology. IDT71256SA Datasheet.

http://www.idt.com/docs/71256LDS-17524.pdf, 2001.

[9] James Kao, Donald E. Troxel, and Somsak Kittipiyakul. Internet remote mi-

croscope. Telemanipulator and Telepresence Technologies III, SPIE Proceedings,

November 1996.

[10] Somsak Kittipiyakul. Automated remote microscope for inspection of integrated

circuits. MIT, CAPAM Memo No. 96-9, September 1996.

[11] Tim Berners Lee. Basic HTTP as Defined in 1992.

http://www.w3.org/Protocols/HTTP/HTTP2.html, 1996.

[12] Erik J. Pedersen. User interface for mems characterization system. Master of

science thesis, Massachusetts Institute of Technololgy, Department of Electrical

Engineering and Computer Science, January 1999.

[13] Manuel Perez. Java remote microscope for collaborative inspection of integrated

circuits. MIT, CAPAM Memo No. 97-5, May 1997.

[14] Ram6n L. Rodriguez. Performance measurements of mems analysis system. Mas-

ter of engineering thesis, Massachusetts Institute of Technololgy, Department of

Electrical Engineering and Computer Science, June 1999.

[15] Danny Seth and Donald E. Troxel. CPLD Module.

http://sunpal2.mit.edu/6.111/s2001/cpld-module/cpld-module.html, 2001.

[16] Xudong Tang. A complete mems analysis system and implementation. Master of

science thesis, Massachusetts Institute of Technololgy, Department of Electrical

Engineering and Computer Science, May 2000.

138I;,/,)

