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Abstract

Energy efficient system design is becoming increasingly important with the proliferation

of portable, battery-operated appliances such as laptops, Personal Digital Assistants
(PDAs) and cellular phones. Numerous dedicated hardware approaches for energy mini-
mization have been proposed while software energy efficiency has been relatively unex-

plored. Since it is the software that drives the hardware, decisions taken during software
design can have a significant impact on system energy consumption. This thesis explores
avenues for improving system energy efficiency from application level to the operating
system level. The embedded operating system can have a significant impact on system
energy by performing dynamic power management both in the active and passive states of
the device. Software controlled active power management techniques using dynamic volt-
age and frequency scaling have been explored. Efficient workload prediction strategies
have been developed that enable just-in-time computation. An algorithm for efficient real-
time operating system task scheduling has also been developed that minimizes energy
consumption. Portable systems spend a lot of time in sleep mode. Idle power management
strategies have been developed that consider the effect of leakage and duty-cycle on sys-
tem lifetime. A hierarchical shutdown approach for systems characterized multiple sleep

states has been proposed. Although the proposed techniques are quite general, their appli-
cability and utility have been demonstrated using the MIT pAMPS wireless sensor node
an example system wherever possible. To quantify software energy consumption, an esti-
mation framework has been developed based on experiments on the StrongARM and Hita-
chi processors. The software energy profiling tool is available on-line. Finally, in energy
constrained systems, we would like to have the ability to trade-off quality of service for

extended battery life. A scalable approach to application development has been demon-
strated that allows energy quality trade-offs.

Thesis Supervisor: Anantha Chandrakasan
Title: Associate Professor
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Chapter 1

Introduction

Energy efficient system design is becoming increasingly important with the prolifera-

tion of portable, battery-operated appliances such as laptops, Personal Digital Assistants

(PDAs), cellular phones, MP3 players, etc. Saving energy is becoming equally important

in servers and networking equipment as their perennially increasing numbers are resulting

in increasing electricity and cooling costs.

1.1 Energy Efficient System Design

1.1.1 Portable Systems

6

50-

-40 -

a

S30-

220-

10-

0
Year

Figure 1-1: The portable electronic products market [4]

Figure 1-1 shows the trends in the portable electronic products market over the past

few years. While traditional forms of mobile computing will continue to rise, analysts

project that the evolution of wireless Personal Area Networks (PANs), with enabling tech-

nologies such as Bluetooth [1] becoming standardized, and third generation cellular ser-

vices [2] that will enable wireless internet access and multimedia content delivery over

cellular phones, there will be an exponential increase in the portable electronics market.
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Another embedded application domain that is emerging is wireless networking of sensors

for distributed data gathering [3].

1.1.2 Processor versus Battery Technology

One of the most important design metrics in all portable systems is low energy con-

sumption. Energy consumption dictates the battery lifetime of a portable system. People

dislike replacing or re-charging their batteries frequently. They also do not wish to carry

heavy batteries with their sleek gadgets. As such, the energy constraints on portable

devices are becoming increasingly tight as complexity and performance requirements con-

tinue to be pushed by user demand. Incredible computational power is being packed into

mobile devices these days. Processor speeds have doubled approximately every 18 months

as predicted by Moore's law [6]. There has also been a corresponding increase in power

consumption in processors. In fact, microprocessor power consumption has gone up from

under 1 Watt to over 50 Watts over the last 20 years.

300

. 0

0
.~200

Cu

.100-

c 0

Ni-Cd Ni-MH L-lon Fuel Cell

Figure 1-2: Battery technologies

While processor speed and power consumption have increased rapidly, the corre-

sponding improvement in battery technology has been slow. In fact, battery capacity has

increased by a factor of less than four in the last three decades [7]. Figure 1-2 shows the

current state-of-art in battery technology. In [4] it has been speculated that battery technol-

ogy is fast approaching the limits set by chemistry. Although newer technologies promise

higher battery capacities, all of them have their share of problems. Nickel-Metal Hydride
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(Ni-MH) although lighter than Ni-Cd, have increased recharge time. Lithium-Ion batteries

promise high energy density, higher number of recharge cycles, little memory effect and

low self-discharge rate (longer shelf life between recharging). However, they are higher

priced, require protective circuitry to assure safe use and offer limited discharge rates.

Other technologies such as Lithium Polymer and Methanol Fuel Cells are still in their

experimental stages. For a detailed analysis of battery technology, the reader is referred to

[4]. The bottom line is that we can expect only incremental improvements in battery tech-

nology while power consumption will rise much faster. Under these circumstances, energy

efficient system design is becoming indispensable.

1.1.3 Power Efficiency in Desktops and Servers

While the number of portable gadgets has increased significantly, the corresponding

increase in desktop and office equipment too has been very steady, albeit less dramatic.

While energy consumption is the important design metric in portable systems, power con-

sumption is the appropriate design metric for desktops and servers'. An increased aware-

ness towards low power consumption translates to a significant reduction of electricity

costs as well as cost reduction in cooling and packaging power hungry processors.

A recent government survey showed that the cumulative electricity consumption of all

office and network equipment is the US was almost 100 TWHr/year [5]! (For comparison,

the total residential electricity consumption in the US was about 1100 TWHr/year in the

year 2000). Many organizations have expressed concern over the rising electricity con-

sumption attributed to the internet and to commercial desktop computation. In the same

report [5], it has been estimated that Power Management (PM) by saturated use of the lim-

ited energy saving mechanisms available in today's office equipment can result in about

35% reduction in power consumption as shown in Figure 1-3. Figure 1-4 shows the dra-

1. There is a significant difference between energy and power. Energy is the product of average power
consumed and the time over which it occurred. For portable systems, energy efficiency is more
important. Power, for example, can be reduced by simply slowing down the processor but that will
not improve energy efficiency of the task since the execution time will increase proportionately. In
this thesis, power and energy have been used interchangeably. However, our ultimate goal is energy
efficiency.
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matic increase in general-purpose processor (which go into servers and desktops) power

consumption over the last few years.

100 -Annual Energy Use (TWh/year)

90

80-

70

60
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4 Display

N Terminal
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30 0 Inkjet Printer

* Copier
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10 0 Mini Computer
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Network Equipment

0% Saturati-n Curre C-s 100% 100%
.fPM (1999) S a ti. n f S.-.at.r af

IP. PM & Night-Off

Figure 1-3: Nationwide electricity consumption attributed to office and network

equipment showing possible power savings using current technology [5]
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Figure 1-4: Microprocessor power consumption trends
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1.1.4 Reliability and Environmental Cost

While electricity is the most tangible power cost in servers and network equipment,

power consumption in these processors also affects cost in other ways.

- Heat Dissipation - Power in digital circuits is dissipated in the form of heat. The gen-

erated heat has to be dissipated for the device to continue to function. If the tempera-

ture of the integrated circuit rises beyond the specified rating, the operating behavior

of circuits could change. In addition, the likelihood of catastrophic failure (through

mechanisms such as electromigration, junction fatigue, gate oxide breakdown, ther-

mal runaway, package meltdown, etc.) also increases exponentially. It has been

shown that component failure rate doubles for every 10 0 C rise in operating tempera-

ture. Today, die surface temperatures are already well over 1004C and sophisticated

packaging and cooling mechanisms have been deployed [8]. This increases system

cost substantially. For example, a processor with less than 1 W power consumption

requires a plastic package costing about 1 cent per pin. If the power consumption is

over 2 W, ceramic packages costing about 5 cents per pin would be required. There-

fore, low power design translates to lower system cost and increased reliability.

Lower power consumption also means reduced air-conditioning costs which is also

significant.

- Environmental Factors - A typical university like MIT might have about 10,000

computers. An average computer dissipates about 150 W of power. This translates to

3 million KWh per annum (costing $240,000) of electricity consumption assuming

only business hours of operation. The equivalent greenhouse gas emission is about

2250 tons of carbon dioxide and 208,000 trees1 are required to offset this! With the

proliferation of digital systems, their environmental impact will only aggravate if

low power design methodologies are not incorporated. The use of smart operating

systems that shut off idle portions of a system can have a dramatic impact on average

power consumption. Similarly, smart software can reduce system energy consump-

tion by utilizing resources optimally.

1. An average tree absorbs about 22 lbs of carbon dioxide a year
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1.1.5 Thesis Scope

This dissertation is an exploration of software techniques for energy efficient computa-

tion. We have proposed and demonstrated software strategies that significantly improve

the energy efficiency of digital systems by exploiting software controlled active and idle

power management. Algorithmic techniques for energy efficient computation have also

been demonstrated.

1.2 Avenues for Energy Efficiency

1.2.1 Sources of Power Consumption

Power dissipation in digital circuits can be classified into two broad categories. The

most prominent source of power dissipation is capacitive switching which results from the

charging and discharging of the output of a CMOS gate. The switching power consump-

tion of a CMOS circuit can be represented as [9]

Pswitch = cLCLVdf(

where CL is the average switched capacitance per clock cycle, Vdd is the power supply

voltage,f is the operating frequency and cc is the activity factor of the circuit.

The other source of power consumption that is becoming significant is leakage. Leak-

age is a static power consumption mechanism and primarily results from sub-threshold

transistor current [9]. The sub-threshold leakage current in a transistor depends exponen-

tially on how close the gate voltage is to the transistor threshold. For example, reducing

the threshold voltage from 0.5 V to 0.35 V can result in sub-threshold leakage increasing

by a factor of over 20. The closer the gate voltage to the threshold, the higher the leakage,

since the device gets partially on and starts operating in a bipolar mode. As operating volt-

ages and thresholds are reduced, leakage power consumption is becoming increasingly

important. Leakage currents were approximately 10-20 pA/pm with threshold voltages of

0.7 V, whereas today, with threshold voltages of 0.2-0.3 V they can be as much as 10-20

nA/pm.
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1.2.2 Low Power Circuit Design

There is a wealth of research done on low power circuit design methodologies at all

levels of the system abstraction. The primary focus has been on reducing the switched

capacitance and lowering the supply voltage. Lowering switched capacitance results in

linear reduction in power consumption. An example of a technique that is used commonly

to reduce switched capacitance in microprocessors is clock gating. Clock gating shuts off

the clock to portions of the processor that are not currently in use. This avoids unnecessary

transition activity and reduces switched capacitance [10]. A more aggressive technique is

to power down unused portions of the circuit.

Power can be traded off for operating speed. Simply reducing the operating frequency

can result in linear reduction in power consumption at the cost of performance. Substan-

tially higher savings can result from reducing the operating voltage as well1 . Reduced

operating voltage is probably the most effective technique for low power. For example,

driving long on-chip interconnects on integrated circuits dissipates a lot of power.

Reduced voltage swing bus driver circuits are employed to reduce power on long intercon-

nects [11]. Silicon area can also be traded off for power. A classic example of this tech-

nique is parallelism. By duplicating hardware and reducing the operating frequency and

voltage, throughput can be kept constant at a lower power dissipation [10]. Another inter-

esting technique involves energy-recovery CMOS circuits using adiabatic logic. The basic

idea here is that by controlling the length and shape of signal transitions between logic

levels, the expended energy can be asymptotically reduced to an arbitrary small degree

[12]. However, such a scheme has practically limitations.

With leakage currents becoming a substantial portion of the power budget in contem-

porary microprocessors, several leakage reduction mechanisms have been proposed. The

use of multiple-threshold CMOS (MT-CMOS) where low threshold (i.e., fast) devices are

placed in the critical path and high threshold (i.e., slower) devices are placed in non-criti-

cal paths has been used effectively to counter leakage [13][14]. Substrate biasing can also

1. There exists an almost linear relationship between minimum operating voltage required and corre-
sponding operating frequency. Obviously, from a low power standpoint it pays off to work at the
lowest possible operating voltage.
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be used to actively vary device threshold. For a detailed overview of various low power

circuit techniques the reader is referred to [15].

1.3 Software versus Hardware Optimizations

It has been shown in separate applications that dedicated hardware implementations

can out perform general purpose microprocessors/DSPs by several orders of magnitude in

terms of energy consumption [23][24]. However, dedicated implementations are not

always feasible. Application Specific Integrated Circuits (ASICs) are getting increasingly

expensive to design and manufacture and are a solution only when speed constraints dic-

tate otherwise. Furthermore, introducing revisions and changes into hardwired solutions is

expensive and time-consuming. The breaking of the $5 threshold for 32-bit processors has

resulted in an explosion in the use of general purpose microprocessors and DSPs in high-

volume embedded applications [25]. In addition, the power efficiency gap between dedi-

cated ASICs and their programmable counterparts is reducing with the introduction of

various low power processors some of which are described in the next section.

1.3.1 Low Power Microprocessors

As the demand for portable electronics has increased, several low power processors

have entered the market. These processors consume one to two orders of magnitude lower

power than some of the contemporary microprocessors listed in Figure 1-4. Most of the

power savings in these processors comes from three sources - (i) Smart circuit design,

using techniques mentioned in [15], (ii) Throwing away lesser used functionality, i.e.,

architectural trimming, and, (iii) Voltage scaling and clock gating. Some of the more

prominent processors are as follows:

StrongARM - Built on the ARM architecture, the Intel StrongARM family [16] of

processors delivers a combination of high performance and low power consumption

with features that can handle applications such as handheld PCs, smart phones, web

phones, etc. The StrongARM SA-1100 processor, for example, has a peak perfor-

mance of 206 MHz while consuming only 350 mW of power! Most of the power

reduction over a high-performance processor like a Pentium is obtained by throwing

away power hungry functional blocks like floating point units, reducing cache sizes
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and simplifying the unnecessarily complex x86 ISA [17]. Floating point computation

is emulated in software. Aggressive clock gating along with an efficient clock distri-

bution strategy is employed for further power reduction.

- Crusoe - Transmeta's Crusoe family of processors has specifically been designed for

low power applications [18]. The processor features the LongRun technology which

allows the processor to run at a lower frequency and operating voltage (and therefore

reduced power consumption) during periods of reduced processor load. The

TM5400, for example, can scale from 500 MHz at 1.2 V to 700 MHz at 1.6 V. The

Crusoe architecture is a flexible and efficient hardware-software hybrid that replaces

millions of power-hungry transistors with software, while maintaining full x86 com-

patibility. At the heart of Crusoe lies an effective code morphing technique [19] that

dynamically translates complex x86 instructions into the internal VLIW instructions

of Crusoe while fully exploiting run-time statistics to improve performance and

reduce power consumption.

- SuperH - The Hitachi SuperH (SH) family of processors is another alternative avail-

able as a low power platform [20]. Hitachi designed these families in low-power sub-

micron CMOS processes with low-voltage capabilities. Low static operating current

is stressed in all circuit designs and low dynamic (peak) currents are guaranteed by

logic and circuit design. All implementations include a variety of software-controlled

power reduction mechanisms. Each family embodies a selection from a palette

including standby and sleep modes, clock speed control and selective module shut-

down. For example, the SH-3 permits the clocks for the CPU, the on-chip peripherals

and the external bus to be separately optimized. This flexibility permits the system

designer to choose the optimum combination of low power and system responsive-

ness for each application.

- DSPs - Digital Signal Processors can deliver a better performance to power ratio for

computationally intensive operations. DSPs differ from general purpose micropro-

cessors in that they have narrow data widths, high speed multiply-accumulate, multi-

1. Very Large Instruction Word - An architecture where several RISC instructions, which can be exe-
cuted in parallel, are packed into one long instruction (usually by the compiler). VLIW CPUs have
more functional units and registers than CISC or RISC CPU but do not need instruction reordering
and branch prediction units.
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ple memory ports with specialized memory addressing, zero overhead loops and

repeat instructions. Among DSPs themselves several lower power versions exist.

Prominent among them are the TMS320C5xx family of DSPs from Texas Instru-

ments [21] and the StarCore family [22].

1.3.2 Advantages of a Software Approach

While it is true that maximum power savings are possible through hardware optimiza-

tions, the introduction of low power processors as discussed in the previous section cou-

pled with the following benefits, makes a software solution the preferred approach:

- Flexibility - One of the most important considerations that has encouraged software

solutions is flexibility. Protocols and standards are constantly evolving and new stan-

dards are being incorporated every day. For example, the MPEG video standard

started off with MPEG-I and MPEG-2 and the MPEG committee is now working on

MPEG-7 [26]. New radio standards such as Bluetooth have evolved along with pro-

tocols such as the Wireless Application Protocol (WAP) [27], and while they are far

from being fully implemented, revisions are already in progress. While most stan-

dards and protocols support backward compatibility, market and customer pressures

make upgrades a necessity. A software solution allows the flexibility of a field

upgrade. Users can download the modified patches from the internet while preserv-

ing their investment and getting better services. Software also offers fast prototyping

solutions for evolving technologies on a mature time-tested hardware platform.

" Time-to-Market - With technology evolving at such a rapid pace, time-to-market for

a product is everything. The design and testing time required for a moderately com-

plex ASIC can run well over a year with today's Computer Aided Design (CAD)

environments. Although such a product might be an order of magnitude more effi-

cient than a software solution on a standard platform, the design latency involved can

render the product obsolete by the time it hits the market. On the other hand, the

presence of powerful and mature software development environments along with an

abundance of skilled manpower gives software shorter and more flexible design

cycles. This coupled with economics involved in having programmable solutions on

general purpose processors rather than hardwired ones, have engendered a shift
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towards programmable solutions.

1.4 Thesis Overview

Digital System

Hardware Software

Low power circuits
Voltage scaling
ASICs

Figure 1-5: Energy efficient system design and scope of the thesis

Designing a complex digital system is non-trivial, often involving an intricate inter-

dependent development of hardware and software. Figure 1-5 shows the various aspects of

a digital system that can be optimized for energy efficiency. As discussed in the previous

section, dedicated hardware implementations can yield substantial improvements in power

consumption but their cost and development time might be prohibitive. Instead, most

energy conscious commercial digital systems utilize some standardized low power hard-

ware platform and custom software for implementation.

Several researchers have investigated techniques for low power implementation of

microprocessors and DSPs and a good summary of these techniques can be found in [15].

Most of this research has focussed on circuit and hardware techniques. This work investi-

gates avenues open in softwarefor energy efficient system design. The contributions made

in this thesis can be broadly characterized into two categories:

- Control Software: We refer to the control software as the Operating System (OS).

The primary function of the OS is control, e.g., allocation of resources such as mem-

ory, servicing interrupts, scheduling applications/tasks, etc. The following OS tech-

niques for system energy efficiency have been developed and implemented in this
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thesis: (i) Active Power Management, where the OS provides just the right amount of

power required to run the system at the desired performance level by adaptive control

of voltage and frequency. Optimum scheduling algorithms for energy efficient real-

time computing have also been proposed. (ii) Idle Power Management, where the OS

puts portions of the system into multiple low power sleep states and wakes them up

based on processing requirement. Smart shutdown algorithms have been proposed

and demonstrated in the thesis. It has been shown that utilizing the proposed tech-

niques can result in 1-2 orders of magnitude reduction in energy consumption for

typical operating scenarios.

Application Software: Even if the hardware and OS are designed to be efficient, a bad

piece of application code can reduce any energy benefits that would have been

obtained. In general, performance optimized software is also energy efficient since

the execution time is reduced. In this thesis, other avenues for improved application

software energy efficiency have been explored. Techniques to improve the Energy-

Quality scalability of software wherein the application can trade-off quality of ser-

vice for lower energy consumption have been proposed and demonstrated for a vari-

ety of applications. Fast software energy estimation tools have been developed to

quantify the energy consumption of a piece of application code.

1.4.1 Related Work

Software energy efficiency is a relatively unexplored area of research. The idea of

workload dependent processing for energy efficiency in an ASIC was demonstrated in

[31]. Implementing such techniques in general purpose processors poses both circuit and

software challenges. The operating system has been traditionally used for resource man-

agement but not necessarily for energy management. We have demonstrated a perfor-

mance on demand approach for computation using operating system scheduling and smart

workload prediction on general purpose processors. In addition, we have proved the opti-

mality of our scheduling algorithm. Event driven computation has been used for a long

time. The idea of turning off devices when not it use is a well-known strategy for saving

energy. Predictive system shutdown techniques have been explored in [57]. Dynamic

power management strategies have been proposed in [58] and related works by the same

28



author. In this thesis we have proposed the use of multiple shutdown states. We have

shown that such granularity gives significantly better energy scalability in the system. The

proposed scheme accounts for transition latencies and event statistics in a formal way. Our

results indicate that an order of magnitude energy savings can be expected from using our

techniques.

Instruction level power analysis of software was first proposed in [75]. This methodol-

ogy is cumbersome and error prone. We have demonstrated a software energy estimation

methodology which is an order of magnitude faster with lower estimation error than that

proposed in [75]. Our estimation tool is available online [73]. We have also outlined a

technique to estimate the leakage energy consumption at the software level.

Incremental refinement in algorithms has been studied in [82]. We have demonstrated

algorithmic transformations that improve the energy scalability of an algorithm by

improving the incremental refinement property in the context of energy consumption.

1.4.2 The MIT gAMPS Project: An Application Driver

Over the past few years, the design of micropower wireless sensor systems has gained

increasing importance for a variety of commercial and military applications ranging from

security devices and medical monitoring to machine diagnosis and chemical/biological

detection. Networks of microsensors (vs. a limited number of macrosensors) can greatly

improve environment monitoring and provide significant fault tolerance. Significant

research has been done on the development of low-power Micro Electro Mechanical Sys-

tem (MEMS) [29] sensors that could be embedded onto the substrate. We assume that the

basic sensing technology is available. The goal of the pAMPS Project [28] is to develop a

framework for implementing adaptive energy-aware distributed microsensors. As such,

programmability is a key requirement and energy efficient protocols, algorithms and soft-

ware implementation strategies are crucial.

The gAMPS system has all the attributes of an energy constrained system and will be

used as an application driver, wherever possible, to demonstrate the feasibility of a pro-

posed energy efficient solution in this thesis. The sensor nodes are expected to have bat-

tery lifetimes of approximately a year. With the current battery capacity we can only

expect them to last a few weeks at most. A smart operating system on the sensor node can
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substantially improve the energy efficiency using active and idle power management and

such savings are quantified in the thesis. Sensing and data processing algorithms running

on these sensor nodes have been designed to demonstrate the concept of Energy-Quality

scalability.

1.4.3 Thesis Organization

This thesis is organized as follows. Chapters 2 and 3 describe our proposed operating

system directed active power management methodology. A rigorous analytical framework

for real-time and non real-time operating systems has been developed. In Chapter 4, the

multiple sleep state based shutdown scheme is described. The use of multiple sleep states

has been shown to improve the energy scaling granularity and simulation results are

included to support our claim. Chapter 5 describes the system level energy savings that

were obtained on the pAMPS sensor node by exploiting the active and idle power man-

agement techniques that have been proposed. It discusses the sensor hardware as well as

the operating system that was developed to enable power management on the node. The

overhead of the operating system itself is also quantified along with the expected battery

life improvement. Chapter 6 outlines the software energy estimation methodology that we

have developed. Our leakage estimation technique is also described here. The architecture

of the web-based software energy estimation tool is also outlined. Chapter 7 describes our

proposed algorithmic approach for energy scalable software using algorithmic transforma-

tions and parallelism hooks available in processors. Finally, the contributions and conclu-

sions drawn from this thesis are summarized in Chapter 8.
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Chapter 2

Active Power Management

A system can be in an active or idle mode. The operating system can be used to man-

age active power consumption in an energy constrained system. For example, when a user

is running a spreadsheet application on his laptop, the processor utilization profile in the

laptop is characterized by intermittent peaks when the user saves/updates the spreadsheet.

The operating system can intelligently reduce the performance of the processor (by reduc-

ing the operating frequency and voltage) to the level required by the application(s) such

that there is no visible loss in observed performance while the energy consumption is

reduced in accordance with Equation 1-1. At present only a very few processors have

dynamic frequency control. Some of these processors were discussed in Section 1.3.1

(StrongARM SA-1100 [16] and Transmeta's Crusoe Processor [18]). The Intel Pentium III

features a very primitive frequency control technology called SpeedStep which allows a

laptop to run at a lower frequency when running off a battery supply. However, no fre-

quency change is allowed at runtime (e.g., if the user plugs in the power supply, perfor-

mance cannot be boosted without re-booting). The StrongARM-2 processor, with built in

frequency and voltage control, it at present the most promising dynamic voltage and fre-

quency processor.

As dynamic voltage and frequency processors become increasingly available, operat-

ing systems will have to be designed to exploit this feature to maximize energy efficiency.

In this chapter, operating system directed power management using an adaptive perfor-

mance scheme is explored. Adaptive performance is enabled by a dynamic variation of

operating voltage and frequency of the processor. To make the performance loss invisible

to the user, the scheduling of operating voltage and frequency has to be done based on the

workload profile of the processor. In order to effectively speculate on the workload of the

system a prediction strategy is presented that employs an adaptive workload filtering

scheme [30]. The effects of update frequency and filtering strategy on the energy savings

is analyzed. A performance hit metric is defined and techniques to minimize energy under
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a given performance requirement are outlined. Our results demonstrate that energy savings

by afactor of two to three is possible with dynamic voltage and frequency scaling depend-

ing on workload statistics. Of course, if the workload is high all the time the energy sav-

ings will be lower. However, our measured data indicates that most processors in

workstations and servers have low average utilization.

2.1 Variable Voltage Processing

2.1.1 Previous Work

Dynamic Voltage Scheduling (DVS) is a very effective technique for reducing CPU

energy. Most systems are characterized by a time varying computational load. Simply

reducing the operating frequency during periods of reduced activity results in linear

decrease in power consumption but does not affect the total energy consumed per task as

shown in Figure 2-1(a) (the shaded area represents energy). Reduced operating frequency

implies that the operating voltage can also be reduced which results in quadratic energy

reduction as shown in Figure 2-1(b). Significant energy benefits can be achieved by recog-

nizing that peak performance is not always required and therefore the operating voltage

and frequency of the processor can be dynamically adapted based on instantaneous pro-

cessing requirement.

/ Max voltage/
and frequency

Only frequency
reduced Voltage and

Sny e frequency reduced

Time Time

(a) (b)

Figure 2-1: Dynamic voltage and frequency scaling

In [31] a low power DSP was designed with a variable power supply and it was shown

that using adaptive dynamic voltage and frequency control substantial energy savings is
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possible. The authors of [32] implemented a dynamic voltage and frequency microproces-

sor. Both these works have concentrated on circuit aspects of a variable voltage and fre-

quency processor. In [33] various speed setting algorithms for variable frequency

processors is analyzed, and it is shown that simple smoothing algorithms have a better per-

formance than sophisticated prediction schemes. Our adaptive filter based prediction strat-

egy is simple and effective. We have introduced the notion of a performance hit function

and used it to optimize update rate and filter taps.

2.1.2 Workload Prediction

Figure 2-2 shows a 1 minute snapshot of the workload trace of three processors being

used for three different types of applications: (i) a dialup server (characterized by numer-

ous users logging in and out independently), (ii) a workstation (characterized by an single

interactive user) and (iii) a UNIX file server (characterized by intermittent requests from

the network). The varying workload requirements are at once apparent. We have used pro-

cessor workload traces from these machines since such exhaustive data was not available

from other embedded systems (e.g., sensors and laptops). The UNIX operating system

provides a powerful API and tools to monitor and log various aspects of the processor. We

were able to collect hours of data from these processors with minimal observational inter-

ference at different times of the day in an automated fashion. The data available from

these processors has been used to test the efficacy of our proposed methodology.

The goal of DVS is to adapt the power supply and operating frequency to match the

workload such that the visible performance loss is negligible. The crux of the problem lies

in the fact that future workloads are often hard to predict. The rate at which DVS is done

also has a significant bearing on performance and energy. A low update rate implies

greater workload averaging which results in lower energy. The update energy and perfor-

mance cost is also amortized over a larger time frame. On the other hand a low update rate

also implies a greater performance hit since the system will not respond to a sudden

increase in workload. While prior work has mostly focussed on circuit issues in dynamic

voltage and frequency processors, we have proposed a workload prediction strategy based

on adaptive filtering of the past workload profile. Several prediction schemes are ana-
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lyzed. We also define a performance hit metric which is used to estimate the visible loss in

performance and set update rate to keep the performance loss bounded.
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Figure 2-2: 60 second workload trace for three processors

2.1.3 Energy Workload Model

Using simple first order CMOS delay models it has been shown in [31] that the energy

consumption per cycle is given by

E(r) = CV6 TjfrefrL + + + +j2- (2-1)

where C is the average switched capacitance per cycle, T is the period,,fref is the operating

frequency at Vref, r is the normalized processing rate, i.e., r =f /fref and Vo = (Vref Vt)

Vref with Vt being the threshold voltage. The normalized workload in a system is equiva-

lent to the processor utilization. The operating system scheduler allocates a time-slice and

resources to various processes based on their priorities and state. Often no process is ready

to run and the processor simply idles. The normalized workload, w, over an interval is sim-

ply the ratio of the non-idle cycles to the total cycles, i.e., w = (total cycles - idle cycles)

/ totalcycles. The normalized processing rate is always in reference to the maximum pro-
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cessing rate. In an ideal DVS system the processing rate is matched to the workload so that

there are no idle cycles and utilization is maximum. Figure 2-3(a) shows the plot of nor-

malized energy versus workload as described by Equation 2-1, for an ideal DVS system.

Some important conclusions from the graph were derived in [31], (i) Averaging the work-

load and processing at the mean workload is more energy efficient because of the convex-

ity of the E(r) graph and Jensen's inequality [34]: E(r) > E(r). (ii) A small number of

discrete processing rate levels (i.e., supply voltage, Vdd, and operating frequency,]) can

give energy savings very close to the savings obtained from arbitrary precision DVS. This

is because a few piecewise linear chords on the E(r) graph can very closely approximate

the continuous curve.

2.1.4 Variable Power Supply

A variable power supply can be generated using a DC/DC converter which takes a

fixed supply and can generate a variable voltage output based on a pulse-width modulated

signal1 . It essentially consists of a power switch and a second order LC filter and is char-

acterized by an efficiency that drops off as the load decreases, approximately as shown in

Figure 2-3(b) [35]. At a lower current load, most of the power drawn from the supply gets

dissipated in the switch and therefore the energy gains from DVS are proportionately

reduced. Using a technique similar to the one used in the derivation of Equation 2-1, a first

order current consumption equation can be expressed as

V0  V V r2]
I(r) = Iref v + rV + (2-2)

where Ief is the current drawn at Vref. Using the DC/DC converter efficiency graph and the

relative load current I(r), we can predict the efficiency, 71(r). Figure 2-3(a) also shows the

E(r) curve after incorporating the efficiency of the DC/DC converter as shown in

Figure 2-3(b) while Figure 2-3(c) shows the relative current consumption as a function of

the workload (again assuming an ideal DVS system with w = r) as predicted by Equation

2-2. Efficient converter design strategies have been explored in [36].

1. For a circuit schematic please refer to Figure 5-2.
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Figure 2-3: (a) Energy vs. workload, (b) Typical DC/DC converter efficiency profile,
and, (c) Current vs. workload

2.2 Workload Prediction

2.2.1 System Model

Figure 2-4 shows a generic block diagram of the variable frequency and variable volt-

age processing system. The 'Task Queue' models the various event sources for the proces-

sor, e.g., I/O, disk drives, network links, internal interrupts, etc. Each of the n sources

produces events at an average rate of Xk, (k = 1, 2, .. , n). Typically a Poisson process is
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assumed for such systems. However, our prediction strategy does not assume any particu-

lar event model. An operating system scheduler manages all these tasks and decides which

task gets to run on the processor. The average rate at which events arrive at the processor

is X = Xk. The processor in turn offers a time varying processing rate, g(r). The operat-

ing system kernel measures the idle cycles and computes the normalized workload, w,

over some observation frame. The workload monitor sets the processing rate, r, based on

the current workload, w, and a history of workloads from previous observation frames.

This rate, r, in turn decides the operating frequency, fir), which in turn determines the

operating voltage, V(r), for the next observation slot.

Vfixed r

U 00

Task Queue
V(r) w f(r)

--12J X Variable Voltage
Processor g(r)

-+ Xn

Figure 2-4: Block diagram of a DVS processor system

The problems that we address in this chapter are: (i) What kind of future workload pre-

diction strategy should be used? (ii) What is the duration of the observation slot, i.e., how

frequently should the processing rate be updated? The overall objective being to minimize

energy consumption under a given performance requirement constraint.

2.2.2 Frequency and Minimum Operating Voltage

The gate delay of a simple CMOS inverter is given by

Ip ~_ LG + TI)(2-3)
P Vdd k, k

where k and kn are the gain factors of the PMOS and NMOS devices [9]. Therefore, gate

delays in general scale inversely with the operating voltage. The worst case delay in a pro-

cessor is simply the addition of similar delays terms from various circuit blocks in the crit-
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ical path. This worst case delay determines the maximum operating frequency of the

processor, foc 1/td max. As such, the measured relation between minimum operating

voltage and frequency is almost linear. The minimum measured operating voltage and cor-

responding frequency points have been plotted on a normalized scale for the StrongARM

SA- I100 and the Pentium III processors in Figure 2-5. Most processor systems will have a

discrete set of operating frequencies which implies that the processing rate levels are

quantized. The StrongARM SA- 1100 microprocessor, for instance, can run at 10 discrete

frequencies in the range of 59 MHz to 206 MHz [16]. As we shall show later, discretiza-

tion of the processing rate does not significantly degrade the energy savings from DVS.
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Figure 2-5: Frequency and minimum operating voltage (normalized plot)

2.2.3 Markov Processes

A stochastic process is called a Markov process if its past has no influence on its future

once the present is specified [37]. Consider the sequence X[k] = aX[k-1] + n[k], where n[k]

is a white noise process. Clearly, at instance k, the process X[k], does not depend on any

information prior to instance k-1. The precise definition of this limited form of historical

dependency is as follows: X is an Nth order Markov process if its probability distribution

function PX[k] satisfies
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Px[ k](y|X[k- 1],X[k-2],...,XO]) = Px[k](yX[k- l],X[k-2],...,X[k-N]) (2-4)

i.e., the most recent N values contain all the information about the past evolution of the

process that is needed to determine the future distribution of the process.

Markov processes have been used in the context of Dynamic Power Management

(DPM). In [38] a continuous-time, controllable Markov process model for a power man-

aged system is introduced and DPM is formulated as a policy optimization problem. We

propose to use Markov processes in the context of workload prediction, i.e., we propose to

predict the workload for the next observation interval based on workload statistics of the

previous N intervals.

2.2.4 Prediction Algorithm

Let the observation period be T Let w[n] denote the average normalized workload in

the interval (n - 1 )T t < n T. At time t = nT, we must decide what processing rate to set

for the next slot, i.e., r[n+l], based on the workload profile. Our workload prediction for

the (n+ I)th interval is given by

N-1

w [n+ 1] = E h,[k]w[n -k] (2-5)

k=O

where hn[k] is an N-tap, adaptable FIR filter whose coefficients are updated in every

observation interval based on the error between the processing rate (which is set using the

workload prediction) and the actual value of the workload.

Let us assume that there are L discrete processing levels available such that

r L L = [12 .. (2-6)rERL L I

where we have assumed a uniform quantization interval, A = 1/L. We have also assumed

that the minimum processing rate is l/L since r = 0 corresponds to the complete off state.

Based on the workload prediction, wp[n+1], the processing rate, r[n+l], is set such that

r[n + 1] = w[n + ]A (2-7)

i.e., the processing rate is set to a level just above the predicted workload.
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2.2.5 Type of Filter

We explored a variety of possible filters for our prediction scheme and compared their

performance. In this section we outline the basic motivation behind the top four filters and

later present results showing the prediction performance of each of them.

- Moving Average Workload (MAW) - The simplest filter is a time-invariant moving

average filter, h[k] = 1/N for all n and k. This filter predicts the workload in the next

slot as the average of the workload in the previous N slots. The basic motivation is

that if the workload is truly an Nth order Markov process, averaging will result in

workload noise being removed by low pass filtering. However, this scheme is too

simplistic and may not work with time varying workload statistics. Also, averaging

results in high-frequency workload changes being removed and, as a result, instanta-

neous performance hits are high.

- Exponential Weighted Averaging (EWA) - This filter is based on the idea that

effect of the workload k-slots before the current slot lessens as k increases, i.e., it

gives maximum weight to the previous slot, lesser weight to the one before, and so

on. The filter coefficients are hn[k] = a-k, for all n, with a chosen such that

Zh [k] = 1 and a is positive. The idea of exponential weighted averaging has been

used in the prediction of idle times for dynamic power management using shutdown

techniques in event driven computation [39]. There too the idea is to assign progres-

sively decreasing importance to historical data.

- Least Mean Square (LMS) - It makes more sense to have an adaptive filter whose

coefficients are modified based on the prediction error. Two popular adaptive filter-

ing algorithms are the Least-Mean-Square (LMS) and the Recursive-Least-Squares

(RLS) algorithms [41]. The LMS adaptive filter is based on a stochastic gradient

algorithm. Let the prediction error be we[n] = w[n] - wp[n], where we[n] denotes the

error and w[n] denotes the actual workload as opposed to the predicted workload

wp[n] from the previous slot. The filter coefficients are updated according to the fol-

lowing rule

hn+ 1 [k] = hn[k]+gwe[n]w[n-k] (2-8)
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where g is the step size. Use of adaptive filters has its advantages and disadvantages.

On one hand, since they are self-designing, we do not have to worry about individual

traces. The filters can 'learn' from the workload history. The obvious problems

involve convergence and stability. Choosing the wrong number of coefficients or an

inappropriate step size may have very undesirable consequences. RLS adaptive fil-

ters differ from LMS adaptive filters in that they do not employ gradient descent.

Instead they employ a clever result from linear algebra. In practice they tend to con-

verge much faster but they have higher computational complexity.

Expected Workload State (EWS) - The last technique is based on a pure probabilis-

tic formulation and does not involve any filtering. Let the workload be discrete and

quantized like the processing rate as shown in Equation 2-6 with the state 0 also

included. The error can be made arbitrarily small by increasing the number of levels,

L. Let P = [ply], 0 i L, 0 j L ,denote a square matrix with elementspg; such that

p1 1 = Prob{ w[r+1] = wj I w[r] = wg } where wk represents the kh workload level out

of the L+1 discrete levels. Therefore P is the state transition matrix with the property

that 1pi = 1 . The workload is then predicted as

L

w P[n + I] = E {w[n + 1]} = 1 wjpij (2-9)

j= 0

where w[n] = wi and E{.} denotes the expected value. The probability matrix is

updated in every slot by incorporating the actual state transition. In general the

(r+ I)th state can depend on the previous N states (as in an Mh order Markov process)

and the probabilistic formulation is more elaborate.

Figure 2-6 shows the prediction performance using Root-Mean-Square error as an

evaluation metric for the four different schemes. If the number of taps is small the predic-

tion is too noisy and if it is too large there is excessive low pass filtering. Both result in

poor prediction. In general we found that the LMS adaptive filter outperforms the other

techniques and produces best results with N = 3 taps. The adaptive prediction of the filter

is shown for a workload snapshot in Figure 2-7.
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Figure 2-6: Prediction performance of the different filters
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Figure 2-7: Workload tracking by the LMS filter
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2.3 Energy Performance Trade-offs

2.3.1 Performance Hit Function

Definition: The performance hit, $(At), over a time frame At, is defined as the extra

time (expressed as a fraction of At) required to process the workload over time At at the

processing rate available in that time frame.

Let we and rAt respectively denote the average workload and processing rates over the

time frame of interest, At. The extra number of cycles required, assuming WAt> rAt, to pro-

cess the entire workload is ( wA1fmaxAt - rtfmaxAt ) wherefmax is the maximum operating

frequency. Therefore the extra amount of time required is simply ( WAtfmaxAt - rAfmaxAt)

/ rAfmax. Therefore,

$(At) = (At - At) (2-10)
rAt

If w~t <rt then the performance penalty is negative. The way to interpret this is that it is a

slack or idle time. Using this basic definition of performance penalty we define two differ-

ent metrics: $T ,(At) and $aT (At) which are respectively the maximum and average

performance hits measured over At time slots spread over an observation period T as

shown in Figure 2-8.

Ts

rJr

0

Time

At

Figure 2-8: Performance hit, settling time notions

Figure 2-9 shows the average and maximum performance hit as a function of the

update time T, for prediction using N = 2, 6 and 10 taps. The time slots used were At = Is
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and the workload trace was that of the dialup server. The results have been averaged over

1 hour. While the maximum performance hit increases as T increases, the average perfor-

mance hit decreases. This is because as T increases the excess cycles from one time slot

spill over to the next one and if the slot has a negative performance penalty (i.e., slack /

idle cycles) then the average performance hit over the two slots decreases and so on. On

the other hand, as T increases, the chances of an increased disparity between the workload

and processing rate in a time slot is more and the maximum performance hit increases.

This leads to a fundamental energy-performance trade-off in DVS. Because of the con-

vexity of the E(r) relationship and Jensen's inequality, we would always like to work at the

overall average workload. Therefore, over a 1 hour period for example, the most energy

efficient DVS solution is one where we set the processing rate equal to the overall average

workload over the 1 hour period. In other words, increasing T leads to increased energy

efficiency (assuming perfect prediction). On the other hand, increasing T, also increases

the maximum performance hit. In other words, the system might be sluggish in moments

of high workload. Maximum energy savings for a given performance hit involves choos-

ing the maximum update time, T, such that the maximum performance hit is within bounds

as shown in Figure 2-91.

In most DVS processors, there is a latency overhead involved in processing rate

update. This is because there is a finite feedback bandwidth associated with the DC/DC

converter. Normally a good voltage regulator can switch between voltage output levels in

a few tens of microseconds [35]. Changing the processor clock frequency also involves a

latency overhead during which the PLL circuits lock. In general, to be on the safe side,

voltage and clock frequency changes should not be done in parallel. While switching to a

lower processing rate, the frequency should first be decreased and subsequently the volt-

age should be lowered to the appropriate value. On the contrary, switching to a higher pro-

cessing rate requires the voltage to be increased first followed by the frequency update.

This ensures that the voltage supply to the processor is never lower than the minimum

required for the current operating frequency and avoids data corruption due to circuit fail-

1. Although we have used the maximum performance hit function for choosing the optimum update
time T this might be very pessimistic. It may be a more energy efficient to relax the update time T
such that even if we do not meet the worst case performance requirement, we are still able to do it
in most cases.
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ure. However, in [42] the update is done in parallel because the converter and the clock

update latency are comparable (approximately 100ps) and it still works.

0.6-

0.5 N=2

0.4=

Maximum allowed performance hit
E 03

0.2-

0.1 - avg

0 T 5 10 15 20 25 30 35 40 45 50

Update Time (s)

Figure 2-9: Average and maximum performance hits

We denote the processing rate update latency by T, (for settling time). It is possible to

incorporate this overhead in the performance hit function. Over the update time T, the

extra number of cycles is now equal to ( WAtfmaT - rAtfmax( T - T)) and the correspond-

ing performance hit function becomes

$T =(2-11)
rAt

In our experiments, the time resolution for workload measurement was 1 second. Since we

want to work at averaged workload this is not a problem unless there are very stringent

real-time requirements. The other advantage of using a lower time resolution is that the

workload measurement subroutine does not itself add substantial overhead to the work-

load if the measurement duty-cycle is small. The update latency is of the order of 100 js

and since this is insignificant compared to our minimum update time we have used Equa-

tion 2-10 instead of Equation 2-11.
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2.3.2 Optimizing Update Time and Taps

The conclusion that increasing the update time, T, results in the most energy savings is

not completely true. This would be the case with a perfect prediction strategy. In reality if

the update time is large, the cost of an overestimated rate is more substantial and the

energy savings decrease. Since we are using discrete processing rates (in all our simula-

tions the number of processing rate levels is set to 10 unless otherwise stated), and we

round off the rate to the next higher quanta, using a larger update time results in higher

overestimate cost. A similar argument holds for the number of taps, N. A very small N

implies that the workload prediction is very noisy and the energy cost is high because of

widely fluctuating processing rates. A very large N on the other hand implies that the pre-

diction is heavily low-pass filtered and therefore sluggish to rapid workload changes. This

leads to higher performance penalty. Figure 2-10 shows the relative energy plot (normal-

ized to the no DVS case) for the dialup server trace. The period of observation was 1 hour.

The energy savings showed a 13% variation based on what N and T were chosen for the

adaptive filter. The implications of the above discussion is at once apparent.

0.52

0.51

C0.49-

>. 0.48

0.47 - 1

0.46

0 0

Update time (T) (s) Filter taps (N)

Figure 2-10: Energy consumption (normalized to the no DVS case) as a function of
update time and prediction filter taps
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2.4 Results

Table 2-1: DVS energy savings ratio (ElO-dvs/Edvs) [N = 3, T = 5 s]

Trace Filter ESR $avg Omax

Perfect!/ (%) (%)
Perfect Actual Actual

Actual

MAW 1.3 1.1 10.6 34.8
Dialup EWS 1.4 1.2 1.1 10.8 36.3
Server

EWA 1.3 1.1 10.6 35.4

LMS 1.4 1.0 14.7 43.1

MAW 1.9 1.4 12.6 42.8
Fil EWS 1.8 1.5 7.4 33.8

Server

EWA 1.9 1.4 9.2 37.4

LMS 2.2 1.2 14.1 47.7

MAW 2.5 1.4 3.6 35.3
User 3.6 2.8 1.3 3.8 35.1
Work EWS 3.8

Station EWA 2.5 1.5 3.7 35.6

LMS 2.5 1.4 3.9 36.0

Table 2-1 summarizes our key results. We used 1 hour workload traces from three dif-

ferent types of machines over different times of the day. Their typical workload profiles

are shown in Figure 2-2. The Energy Savings Ratio (ESR) is defined as the ratio of the

energy consumption with no DVS (simple frequency scaling) to the energy consumption

with DVS. Maximum savings occur when we set the processing rate equal to the average

workload over the entire period. Maximum savings is not usually achievable because of

two reasons: (i) The maximum performance hit increases as the averaging duration is

increased, and (ii) It is impossible to know the average workload over the stipulated period

a priori. The filters have N = 3 taps and an update time T = 5 s, based on our previous dis-

cussion and experiments performed. The 'Perfect' column shows the ESR for the case

where we had a perfect predictor for the next observation slot. The 'Actual' column shows

the ESR obtained by the various filters. In almost all our experiments the LMS filter gave
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the best energy savings. The last two columns are the average and maximum performance

hits. The average performance hit is around 10% while the maximum performance hit is

about 40%.

Finally, the effect of processing level quantization is shown in Figure 2-11. As the

number of discrete levels, L, is increased, the ESR gets closer to the perfect prediction

case. For L = 10 (as available in the StrongARM SA-1 100) the ESR degradation due to

quantization noise is less than 10%

1.7

T = 3T=5
1.6- LMS filter

1.5-

1.4-
a)

S1.3-

1.2-

1.1 --

1 2 3 4 5 6 7 8 9 10 11

Number of Levels (L)

Figure 2-11: Effect of number of discrete processing levels, L

2.5 Summary of Contributions

Dynamic voltage and frequency scaling an effective technique to reduce processor

energy consumption without causing significant performance degradation. In the coming

years, most energy conscious processors will allow dynamic voltage and frequency

change at runtime. We demonstrated, using trace data from three different processors run-

ning different kinds of tasks, that energy savings by a factor of two to three is possible on

low workload processors (compared to the case where only frequency is adapted). We also

showed that maximum energy savings occur if the processing rate is set to the overall

average workload. This, however, is generally infeasible a priori and even if possible

leads to high performance penalties. Frequent processing rate updates ensure that the per-
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formance penalty is limited. The faster the update rate, the lower the energy savings and

the lesser the performance penalty. Workload prediction is required to set the processing

rate for the next update slot. We developed an adaptive filtering based workload prediction

scheme that is able to track workload changes and speculate future variations. Such strate-

gies will have to be incorporated into the dynamic voltage and frequency setting module

of the operating system. The loss in energy savings due to quantization of the available

operating frequencies in the processor was analyzed and it has been shown that the ineffi-

ciency introduced is quite nominal.
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Chapter 3

Power Management in Real-Time
Systems

Real-time systems are defined as systems where both computational correctness and

time of completion are critical. A simple real-time system might be a video decoder where

30 frames must be decoded every second for uninterrupted viewing. Real-time systems are

of two types - hard real-time and soft real-time systems. A hard real-time system is one

where catastrophic failure can result if a computation is not completed before its deadline.

A soft real-time system, on the other hand, will have degradation in quality of service if

deadlines are not met. In the last chapter, operating system directed power management

was discussed for non real-time systems. It was shown that dynamic voltage and fre-

quency control along with a workload prediction scheme can be effective employed to

reduce energy consumption with little visible performance loss. The proposed technique is

good for systems where no real-time constraints exist since it does not consider any dead-

lines that particular tasks might have.

The job of a Real-Time Operating System (RTOS) is to schedule tasks to ensure that

all tasks meet their respective deadlines. Real-time scheduling can be broadly classified

into static and dynamic algorithms. Static algorithms are applicable to task sets where

complete information (e.g., arrival times, computation time, deadlines, precedence, depen-

dencies, etc.) is available a priori. The Rate Monotonic (RM) algorithm one such algo-

rithm and is optimal among all fixed priority assignments in the sense that no other fixed

priority algorithm can schedule a task set that cannot be scheduled by RM [43]. Dynamic

scheduling is characterized by inherent uncertainty and lack of knowledge about the task

set and its timing constraints. The Earliest Deadline First (EDF) algorithm has been shown

to be an optimal dynamic scheduling algorithm [44]. However, EDF assumes resource

sufficiency (i.e., even though tasks arrive unpredictably, the system resources have a suffi-

cient a priori guarantee such that at any given time all tasks are schedulable) and in the

absence of such a guarantee the EDF performance degrades rapidly in the presence of
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overload. The Spring algorithm has been proposed for such dynamic resource insufficient

environments and uses techniques such as admission control and planning-based algo-

rithms [45].

In [46] optimal off-line scheduling techniques for variable voltage/frequency proces-

sors is analyzed for independent tasks with arbitrary arrivals. The authors of [47] have

proposed a set of heuristic algorithms to schedule a mixed workload of periodic and spo-

radic tasks. In this chapter, we discuss energy efficient real-time scheduling algorithms

that can exploit the variable voltage and frequency hooks available on processors for

improving energy efficiency and therefore battery life of embedded systems. We propose

the Slacked Earliest Deadline First (SEDF) algorithm and prove that it is optimal in mini-

mizing processor energy consumption and maximum lateness for an independent arbitrary

task set [49]. We also derive an upper bound on energy savings through dynamic voltage

and frequency scaling for all possible algorithms and arrival statistics. The SEDF algo-

rithm is dynamic and approaches the EDF algorithm as processor utilization increases. We

use the EDF algorithm as a baseline to compare the scheduling performance of SEDF.

Optimal processor voltage and frequency assignments for periodic tasks is also discussed

with the EDF and RM algorithms used as a baseline.

3.1 Aperiodic Task Scheduling

3.1.1 Performance Evaluation Metrics in Real-Time Systems

The performance of a real-time scheduling algorithm is evaluated with respect to a

cost function defined over the task set. A typical task set consists of N tasks where the ith

task is characterized by an arrival time, a;, a computation time, ci, and a deadline, di. The

time of completion of the task is denoted byfi. The metric adopted in a scheduling algo-

rithm can have strong implications on the performance of a real-time system and must be

carefully chosen according to the specific requirements of the application [48]. Table 3-1

lists some common cost function metrics. The average response time is not generally of

interest in real-time systems since it does not account for deadlines. The same is true for

total completion time. The weighted sum of completion times is relevant when tasks have

different priorities and the effect of completion of a particular task is attributed a measure

of significance. Minimizing maximum lateness can be useful at design time when
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resources can be added until the maximum lateness achieved on a task set is less than or

equal to zero. In that case, no task misses its deadline. In general, however, minimizing

maximum lateness does not minimize the number of tasks that miss their deadlines. In soft

real-time systems, it is usually better to minimize the number of late tasks. For example, in

video decoding the visual quality depends on the number of frames that do not get

decoded within the deadline more significantly than the maximum time by which a frame

decoding misses its deadline. If a deadline is missed, it is better to throw the frame out

anyway. On the other hand, maximum lateness, Lmx, is a good criteria for hard real-time

algorithms as it upper bounds the time by which any task misses its deadline. It is a worst

case performance metric. We will use Lmx as a metric to evaluate our scheduling algo-

rithm.

Table 3-1: Real-time performance metrics

Metric Cost Function

- I N
Average response time tr = - I (fi - a,)

ni=,

Total completion time tc = max,(fJ) - mini(a,)

Weighted sum of N

completion times =
i = I

Maximum lateness Lmax = max.(fi - di)

Maximum number N 0,,fi d.
of late tasks late - Z miss(f/) miss(f) =

i= 1 11, otherwise

3.1.2 The Earliest Deadline First Algorithm

Let the task set to be scheduled be denoted by

* = {t,(a, c,, di),O < i N} (3-1)

We assume that the tasks are independent, i.e., they do not have any dependence con-

straints, the system consists on one processor and preemption is allowed. Under these con-

ditions, the following theorem holds.
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Theorem I: Given a set of N independent tasks with arbitrary arrival times, any algo-

rithm that at any instant executes the task with the earliest absolute dead-

line among all the ready tasks is optimal with respect to minimizing the

maximum lateness [44].

This theorem, known as the Earliest Deadline First (EDF) algorithm, was first posed by

Horn [44], and was proved to be optimal by Dertouzos [50].

3.1.3 Real-Time Systems with Variable Processing Rate

With variable voltage/frequency systems two things need to be determined at every

scheduling interval - (i) The task to be scheduled, and (ii) The relative processing rate. A

simple greedy algorithm that sets the processing rate such that the scheduled task just

meets its deadline will not work. This can be illustrated by a simple example shown in

Figure 3-1.

EDF Schedule

T2

IF
a, d

a 2  d2

Greedy Schedule
tic 1 /

a r=0.5 d

T2

a 2  d2

Figure 3-1: Greedy scheduling of processing rate

The two tasks have the same deadline and one comes in after the other one. EDF is

able to schedule the two tasks such that both of them meet their respective deadlines. A

greedy algorithm that sets the processing rate, r, based on information about the current

task's deadline is not able to schedule the tasks. At time t = a,, the greedy scheduler sees

only task T1 with deadline dl and sets the processing rate to r = cI/(d1 -a1), such that the

task occupies the complete time available. At time t = a2 < dl, t 2 arrives with the same
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deadline d, = d2, and even though the rate is set back to r = 1 and t 2 meets its deadline, 1 I

fails to complete before its deadline dj. Therefore any algorithm that modifies processing

rate must do so in an intelligent way.

3.1.4 The Slacked Earliest Deadline First (SEDF) Algorithm

In this section we propose the SEDF algorithm and show that it is optimal is minimiz-

ing processor energy and maximum lateness. In fact, the SEDF algorithm approaches the

EDF algorithm in an asymptotic way as the processor is fully utilized.

Theorem II: Given a set of independent tasks with arbitrary arrival times, computation

times and deadlines, any algorithm that at every scheduling instant t exe-

cutes the task with the earliest absolute deadline among all the ready tasks

and sets the instantaneous processing rate to ri(S, Ut), where U is the

processor utilization up to time tg and Si is the available slack for the sched-

uled task, is optimal with respect to minimizing the maximum lateness and

processor energy. This optimum processing rate is approximated by

Si+ (1 - Si) Uj', 0< I
r,(S,, U,) = ~S+i-, ~OS (3-2)

ri U1, otherwise

Proof: Let the scheduling intervals be At, such that a decision as to which task will be allo-

cated to the processor during the interval (ti, ti+,1 ) is made at discrete time instant ti = iAt.

The problem we want to solve is: Which task should be allocated to the processor during

the interval (tg, ti+ 1) and what should the relative processing rate, 0 r,i 1, be? We

assume that the scheduling decision takes negligible time compared to the scheduling

interval At and that the computation times are integral multiples of the scheduling interval.

Let tg be the task with the earliest deadline at time instant t, and let cg denote the resid-

ual computation time (cg = ci if the task i was never scheduled before). The computation

time is always with reference to the maximum processing rate, i.e., r = 1. Let Ug denote the

processor utilization up to time ti. Ug is simply the ratio of the number of idle frames

(where no tasks were ready for scheduling) to the total number of scheduling frames, i. Let

di = di - ti, be the maximum number of scheduling slots available to task ri to complete

before its deadline. If di < 0, the task has missed its deadline and there is no positive slack

55



available. The available slack for task t is the ratio of cg to di and is denoted by Si. All

these variables are shown in Figure 3-2. If Sg > 1, the task will miss its deadline no matter

what. If Si < 0, the task has already missed its deadline. Under both these circumstances,

minimizing maximum lateness requires that the task be finished as soon as possible and so

the processing rate r, is set to 1. Note that Si = 0 is not possible since that would mean that

the task has zero residual computation time, i.e., it is already completed.

C.-

d d

ti_1  t ti ti+1

it frame ; scheduled

Figure 3-2: Illustrating the parameters involved in SEDF

For the case where 0 < S 1 , the analysis is as follows. Assuming that the processor

utilization is stationary over the next di slots, the probability that the task will finish before

its deadline at the maximum processing rate is given by

di 
k

Prob[t1 finishes] = P(r = 1) = U C(l - Ug) U (3-3)

k =c

which follows from the fact at the maximum processing rate there are c1 slots required to

complete the task out of a maximum of di slots and the probability of any particular slot

being occupied is U. The probability of completion (before the deadline), at any process-

ing rate, r, is therefore given by

di

P(r) = d Ck l _ Ui)kUi (3-4)

k =
r

where the number of required slots simply scales with the reduced processing rate. The

energy savings at any processing rate, r, for a given task is given by

Esave(r) = 1 - r2 (3-5)
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based on a simplified version of the energy workload model proposed in Section 2.1. Let

us define

(r) = P(r) -Esave(r) (3-6)

t(r) can be interpreted as the expected energy savings given the task completed before its

deadline. To maximize (r) we set the partial derivative with respect to r equal to zero,

0 2r P'(r) (3-7)
1- r P(r)

The optimum r cannot be obtained analytically since P(r) is not differentiable in the entire

range 0 r 1 . Figure 3-3 shows the completion probability, the weighted energy savings

as a function of the processing rate, r, and the optimum processing rate as a function of the

processor utilization (for a slack Si = 0.1). As r increases, the computation slots required

decreases and the probability, P(r), of completion increases. The increase is faster with

lower processor utilization. The energy savings, on the other hand, decreases with

increased processing rate. The weighted energy savings therefore has an optimum pro-

cessing rate where it is maximized. Figure 3-4 shows the optimized processing rate, r, as a

function of the processor utilization, U, and the available slack, S. This is an exact numer-

ical solution for Equation 3-7. Also shown in Figure 3-4 is the optimum processing rate as

a linear function of U and S as represented by Equation 3-2. A closed form expression for

optimum r can be obtained if we let At -+ 0 and in the limit, the function P(r) becomes

continuous. Using Stirling's approximation,

n! /2Tnnne " (3-8)

in Equation 3-4, the limit of the sum becomes an integral and for U around 0.5, the proba-

bility of completion is given by the Gaussian integral (the error function).

2 S. -
_( - - U)d

P(r) e 2 dx a r (3-9)

, di(U(1 - U))

for values of U close to 0, the function tends to a Poisson integral. Although these equa-

tions can be solved exactly, the simple linear function shown in Equation 3-2 is quite ade-

quate as we have shown in Figure 3-4 and will show in our results.
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Figure 3-3: Completion probability, weighted energy and optimum processing rate
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Figure 3-4: Optimum processing rate as a function of processor utilization and slack

3.1.5 Results

Figure 3-5 shows a simulated example of EDF and SEDF scheduling on a set of 10

tasks characterized by a uniform random process. While EDF meets all deadlines (the pre-

emptive nature is obvious from tasks 3 and 7) SEDF is not able to meet all deadlines, the

Lme being equal to 3 time units. The energy savings is 53%. The changing height of the

computation time bars indicates reduced processing rate which is shown along with the
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evolving processor utilization at the bottom of the graph in Figure 3-5(b). Since SEDF is

stochastically optimal, the maximal lateness and energy savings improve as the learning

time and task set increases.
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Figure 3-6: Comparing the performance of EDF and SEDF
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Figure 3-7: Energy ratio as a function of processor utilization

We have compared the SEDF algorithm to the EDF algorithm based on random task

sets where the arrival times, computation times and deadlines are characterized by uni-

form, Gaussian and Poisson processes. In each case, the maximum lateness and the energy

E6

consumption were compared. The energy savings averaged over 3x106 experiments was

about 60% while the degradation in maximal lateness was less that 10%. The results of all

the experiments have been summarized in Figure 3-6 where each bar represents the aver-

age of 1 F experiments. The increased energy savings from Gaussian characterized task
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sets can be attributed to the fact that arrivals and computations are more clustered (i.e.,

within ±2y mostly) and so the predicted slack is better. Finally, Figure 3-7 shows the ratio

of the energy consumption of the SEDF to the EDF case as a function of processor utiliza-

tion. As the utilization increases, slacking is reduced and the SEDF schedule tends to the

EDF schedule with processing rate increasingly being set to 1.

3.1.6 Upper Bound on Energy Savings

Theorem III: Given a set of independent tasks with arbitrary arrival times, computation

times and deadlines, the maximum energy savings possible using any

dynamic voltage and frequency setting algorithm which produces a sched-

ule that meets all deadlines is bounded by Esave(rmin), where the processing

rate

rmin = ' (3-10)
max(di)

Proof: The denominator term of rmin is simply the maximum possible total time, T,

allowed to finish all the tasks before their respective deadlines, i.e., rmin = (Zci)/T. It is

obvious that minimum energy results when tasks are slacked such that the entire time

frame T is used up (i.e., processor utilization is 1). Assume that there exists an algorithm

A, which is able to meet all deadlines and it schedules processing rates and tasks in each

scheduling interval. A particular task tk, might get scheduled in different slots with differ-

ent processing rates. Let the average processing rate seen by tk be rk. The actual computa-

tion time of tk is therefore ck/rk, and therefore the absolute best case occurs when

T = Eck/rk. We will now show that minimum energy consumption occurs when all the

processing rates are equal. We begin with the following inequality (which can be readily

verified using the Cauchy-Schwarz inequality)

Rea- (Ckk th ( erm (3-11)
k k k

Rearranging the terms we get
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ck (ck)! = c krmin (3-12)
k k k

The total normalized energy consumption is

Et = -E(r) = Eckrk (3-13)
k rk k

where we have substituted the quadratic energy consumption model of Figure 2-3. The

left-hand side of Equation 3-12 is the energy consumption for the schedule produced by A,

while the right-hand side is the energy consumption of a schedule where all tasks have the

same processing rate, rmin. Therefore, it can be concluded that minimum energy consump-

tion (or maximum energy savings) occurs when all tasks have the same averaged process-

ing rate. Using a similar argument, it can be shown that within a task, minimum energy

consumption occurs when each of the different scheduled processing rates are equal to the

average processing rate, rk-

The maximum savings, for example, with the task set shown in Figure 3-5 is 74.5%

(with rmin = 0.5). The savings by the SEDF algorithm was 53%. However, the comparison

is not completely fair since the SEDF algorithm did not meet all the deadlines.

3.2 Periodic Task Scheduling

In this case our task set to be scheduled is denoted by

0 = {Jti($i, Ti, ci),0 < i ! N} (3-14)

where $i is the phase, Ti is the time period and ci is the computation time of the ith task

from a set of N periodic tasks. We assume that the tasks are independent, the system con-

sists on one processor and preemption is allowed. Every task has to be executed once in

each of its periods with the relative deadline being equal to the time period.

3.2.1 Dynamic Priority Assignments

Once again EDF is an optimal dynamic scheduling policy, reason being that EDF did

not make any assumptions about tasks being periodic or aperiodic. EDF being intrinsically
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preemptive, the currently executing task is preempted whenever another periodic instance

with an earlier relative deadline becomes active. Since the task set, 1, is completely deter-

mined a priori, the processing rate can also be determined completely and does not have

to be adaptive. In fact the following theorem holds.

Theorem IV: A set of periodic tasks is guaranteed to be schedulable with maximum

energy savings iff the processing rate is

rmin = - (3-15)
iT

Proof: It has been shown in [43] that a periodic task set is guaranteed to be schedulable by

EDF iff E, ci/ T1 i 1 . Let T= TIT 2 ... TN, be an observation time frame. Using a line of rea-

soning exactly similar to the proof of Theorem III, it can be shown that minimum proces-

sor energy consumption occurs when all tasks are slacked by the same amount, to the

maximum allowable limit such that

(c,/r) 1 r= c. (-6
< I => rmin = i (3-16)

Ti i

3.2.2 Static Priority Assignments

It has been also shown in [43] that the Rate-Monotonic algorithm is an optimal fixed

priority algorithm. RM schedules tasks based on their periods, with priorities statically

assigned to be inversely proportional to the task periods (i.e., the highest priority being

assigned to task having the smallest period and so on). Since priorities are statically

assigned, a ready task with a lower period will preempt another task with a higher period

despite the fact that its relative deadline is earlier. With such a fixed priority assignment,

the following theorem holds.

Theorem V: A set of N periodic tasks is guaranteed to be schedulable using fixed prior-

ity assignments with maximum energy savings if the processing rate is

rmin i/N (3-17)
N(2 -1)
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Proof: It has been shown in [43] that RM guarantees that an arbitrary set of N periodic

tasks is schedulable if the total processor utilization, U = Y ci/ T ; N(21/ - 1). The

processing rate in Equation 3-17 can be derived exactly as shown in the proof of Theorem

IV.

3.3 Summary of Contributions

We analyzed energy efficient scheduling algorithms for arbitrary independent periodic

and aperiodic task sets characterized by real-time deadlines using variable voltage and fre-

quency assignments on a single processor. The Slacked Earliest Deadline First (SEDF)

algorithm is proposed, and it is shown that SEDF is optimal in minimizing maximum late-

ness and processor energy consumption. A bound on the maximum energy savings possi-

ble with any algorithm, for a given task set, is also derived. Energy efficient scheduling for

periodic task sets is also considered (both static and dynamic priority assignments) and

optimal processing rate assignments were derived under a guaranteed schedulability crite-

na.
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Chapter 4

Idle Power Management

A portable system spends a significant amount of time in a standby mode. For exam-

ple, a cellular phone typically spends over 95% in the idle state (waiting for a call). A

wireless sensor node can spend a lot of time waiting for a significant event to happen.

Within a given system itself, different resources and blocks might be waiting for interrupts

and service requests from other blocks. A common example is a hard disk drive waiting

for read/write requests from the corresponding driver. From an energy savings perspec-

tive, it makes sense to shutdown a resource that is not being used. However, once the

resource is shutdown, significant time and energy overheads might be required to wake it

up and start using it again. If the overheads associated with turning a resource off/on were

negligible, a simple greedy algorithm that shuts off the resource as soon as it is not

required would be optimal. However, switching a resource off/on incurs an overhead and

smarter algorithms that observe the usage profile of a resource to make shutdown/wakeup

decisions are needed.

4.1 Previous Work

Researchers have tried to model the interarrival process of events in reactive systems.

In [57] the distribution of idle and busy periods is represented by a time series and approx-

imated by a least square regression model. In [39] the idleness prediction is based on a

weighted sum of past periods where the weights decay geometrically. In [40] power opti-

mization in several common hard real-time disk-based design systems is proposed. The

authors of [58] use a stochastic optimization technique based on the theory of Markov pro-

cesses to solve for an optimum power management policy.

While previous work has concentrated on prediction strategies for idle times, the gran-

ularity and overheads associated with shutdown has not been addressed. In this chapter,

we propose and analyze a fine-grained shutdown scheme in the context of a sensor node

[51]. The technique outlined is fairly general and can be used with little or no modification
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in other systems characterized by event driven computation. We introduce the idea of a

''power-aware" system description that describes various stages of shutdown in a device

and captures the corresponding power and latency overheads associated with those shut-

down modes. This models the system as a set of finite, power differentiated, multiple shut-

down states, rather than just one on/off state.

4.2 Multiple Shutdown States

It is not uncommon for a device to have multiple power modes. For example, the

StrongARM SA-1100 processor has three power modes - 'run', 'idle' and 'sleep' [52].

Each of these modes is associated with a progressively lower level of power consumption.

The 'run' mode is the normal operating mode of the processor, all power supplies are

enabled, all clocks are running and every on-chip resource is functional. The idle mode

allows the software to halt the CPU when not in use while continuing to monitor interrupt

service requests. The CPU clock is stopped and the entire processor context is preserved.

When a interrupt occurs the processor switches back to 'run' mode and continues operat-

ing exactly where it left. The 'sleep' mode offers greatest power savings and minimum

functionality. Power supply is cut off to a majority of circuits and the sleep state machine

watches for a pre-programmed wakeup event. Similarly, a Bluetooth radio has four differ-

ent power consumption modes - 'active', 'hold', 'sniff' and 'park' modes1 .

It is clear from the above discussion that most devices support multiple power down

modes offering different levels of power consumption and functionality. An embedded

system with multiple such devices can have a set of power states based on various combi-

nations of device power states. In this chapter we outline a shutdown scheme that charac-

terizes a system into a set of power states. The corresponding shutdown algorithm results

in better power savings and enables fine grained energy-quality trade-offs.

1. In 'active' mode, the Bluetooth device actively participates on the wireless channel. The 'hold' mode
supports synchronous packets but not asynchronous packets. This mode enables the unit to free
time in order to accomplish other tasks involving page or inquiry scans. The next reduced power
mode is 'sniff' mode, which basically reduces the duty cycle of the slave's listening activity. The
last mode is 'park' mode, which allows a unit to not actively participate in the channel but to
remain synchronized to the channel and to listen for broadcast messages. For more details on vari-
ous bluetooth modes the reader is referred to [53].
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4.2.1 Advanced Configuration and Power Management Interface

There exists an open interface specification called the Advanced Configuration and

Power Management Interface (ACPI), jointly promoted by Intel, Microsoft and Toshiba

[54] which standardizes how the operating system can interface with devices character-

ized by multiple power states to provide dynamic power management. ACPI supports a

finite state model for system resources and specifies the hardware/software interface that

should be used to control them. ACPI controls the power consumption of the whole sys-

tem as well as the power state of each device. An ACPI compliant system has five global

states. SystemStateSo (working state), and SystemStateSl to SystemStateS4

corresponding to four different levels of sleep states. Similarly, an ACPI compliant device

has four states, PowerDeviceDO (the working state) and PowerDeviceDi to

PowerDeviceD3. The sleep states are differentiated by the power consumed, the over-

head required in going to sleep and the wakeup time. In general, the deeper the sleep state,

the lesser the power consumption, and the longer the wakeup time. Figure 4-1 shows the

interface specification for ACPI. The Power Manager, which is a part of the OS, uses the

ACPI drivers to perform intelligent shutdown.

Application
Os

Kernel Power Manager

Device Driver ACPI Driver

L _ - -_ _ _ _ _ _ _ _ - - -_ _ _ -_ ACPI

ACPI Tables ACPI BIOS ACPI Registers

Hardware Platform BIOS

Peripherals Chipsets CPU

Figure 4-1: ACPI interface specification on the PC
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ACPI provides low-level interfaces that allow the Operating System Power Manager

(OSPM) to manage the device and system power modes. It is an enabling interface stan-

dard with the management policy is implemented in the OS itself (Power Manager block

in Figure 4-1). ACPI is a PC standard and such an elaborate interface is not needed for

simpler systems. A sufficient "power-aware" system model should differentiate meaning-

ful power modes for the system and define a shutdown strategy that maximizes energy

savings. The rest of this chapter describes the power manager policy for a sensor node.

First, a "power-aware" sensor node model is introduced which enables the embedded

operating system to make transitions to different sleep states based on observed event sta-

tistics. The adaptive shutdown algorithm is based on a stochastic analysis and renders

desired energy-quality scalability at the cost of latency and missed events. Although the

shutdown scheme is not ACPI compatible, the multiple sleep state formulation is along the

lines of what the industry is proposing for advanced power management in PCs.

4.3 Sensor System Models

4.3.1 Sensor Network and Node Model

The fundamental idea in distributed sensor applications is to incorporate sufficient

processing power in each node such that they are self-configuring and adaptive. Figure 4-

2 illustrates the basic sensor node architecture. Each node consists of the embedded sen-

sor, A/D converter, a processor with memory (which in our case will be the StrongARM

SA-1 100 processor) and the RF circuits. Each of these components are controlled by the

micro Operating System (g-OS) through micro device drivers. An important function of

the p-OS is to enable Power Management (PM). Based on event statistics, the ji-OS

decides which devices to turn off/on.

Our network essentially consists of fl homogeneous sensor nodes distributed over a

rectangular region R with dimensions WxL with each node having a visibility radius of p.

Three different communication models can be used for such a network. (i) Direct trans-

mission (every node directly transmits to a basestation), (ii) Multi-hop (data is routed

through the individual nodes towards a basestation) and (iii) Clustering. It is likely that

sensors in local clusters share highly correlated data. If the distance between the neighbor-

ing sensors is less than the average distance between the sensors and the user or the bases-
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tation, transmission power can be saved if the sensors collaborate locally1 . Some of the

nodes elect themselves as 'cluster heads' (as depicted by nodes in black) and the remain-

ing nodes join one of the clusters based on a minimum transmit power criteria. The cluster

head then aggregates and transmits the data from the other nodes in the cluster. Such appli-

cation specific network protocols for wireless microsensor networks have been developed

in [55]. It has been demonstrated that a such a clustering scheme, under certain circum-

stances, is an order of magnitude more energy efficient than a simple direct transmission

scheme.

-4 w Bob

o 0) 0 0 00 0

L 0
L O node 0 0 0

0 k /0 R

-os
StrongARM o

Memory

Battery and DC/DC converter

Figure 4-2: Sensor network and node architecture

4.3.2 Power Aware Sensor Node Model

A power aware sensor node model essentially describes the power consumption in dif-

ferent levels of node-sleep state. Every component in the node can have different power

modes, e.g., the StrongARM can be in active, idle or sleep mode; the radio can be in trans-

mit, receive, standby or off mode. Each node-sleep state corresponds to a particular com-

bination of component power modes. In general, if there are N components labelled (1, 2,

... N), each with kg number of sleep states, the total number of node-sleep states are H[ ki.

1. Under good conditions, radio transmission power increases quadratically with transmission distance.

69



Every component power mode is associated with a latency and energy overhead for transi-

tioning to that mode. Therefore each node sleep mode is characterized by an energy con-

sumption and a latency overhead. However, from a practical point of view not all the sleep

states are useful.

Table 4-1 enumerates the component power modes corresponding to 5 different useful

sleep states for the sensor node. Each of these node-sleep modes correspond to an increas-

ingly deeper sleep state and is therefore characterized by an increasing latency and

decreasing power consumption. These sleep states are chosen based on working condi-

tions of the sensor node, e.g., it does not make sense to have the memory in the active state

and everything else completely off. State s, is the completely "active" state of the node

where it can sense, process, transmit and receive data. In state sl, the node is in a "sense &

receive" mode while the processor is on standby. State s2 is similar to state s, except that

the processor is powered down and is woken up when the sensor or the radio receives data.

State s3 is the "sense only" mode where everything except the sensing front-end is off.

Finally, state s4 represents the completely off state of the device. The design problem is to

formulate a policy of transitioning between states based on observed events so as to maxi-

mize energy efficiency. It can be seen that the power aware sensor model is similar to the

system power model in the ACPI standard. The sleep states are differentiated by the power

consumed, the overhead required in going to sleep and the wakeup time. In general, the

deeper the sleep state, the lesser the power consumption, and the longer the wakeup time.

Table 4-1: Useful sleep states for the sensor node

State StrongARM Memory Sensor, A/D Radio

SO active active on tx, rx

s1 idle sleep on rx

S2 sleep sleep on rx

s3 sleep sleep on off

s4 sleep sleep off off
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4.3.3 Event Generation Model

An event is said to occur when a sensor node picks up a signal with power above a pre-

defined threshold. For analytical tractability we assume that every node has a uniform

radius of visibility, p. In real applications the terrain might influence the visibility radius.

An event can be static (e.g., a localized change in temperature/pressure in an environment

monitoring application) or can propagate (e.g., signals generated by a moving object in a

tracking application). In general, events have a characterizable (possibly non-stationary)

distribution in space and time. We will assume that the temporal behavior of events over

the entire sensing region, R, is a Poisson process with an average rate of events given by

Xtot [56]. In addition, we assume that the spatial distribution of events is characterized by

an independent probability distribution given by pxy(xy). Let pek denote the probability

that an event is detected by nodek, given the fact that it occurred in R.

f pxy(x, y)dxdy

Pek = Ck (4-1)

JPxy(x, y)dxdy
R

Let pk(t, n) denote the probability that n events occur in time t at nodek. Therefore, the

probability of no events occurring in the region Ck (the visibile area of nodek), over a

threshold interval Tth, is given by

00 eXtOt 
otth) 

i
Pk(Tth, 0) = I _0 _ Pek)-

i = 0

_Pek X1o ,Th

Let Pth,k(t) be the probability that at least one event occurs in time t at nodek-

Pth, k(Tth) = 1 Pk(Tth, 0) = Iledt"tTth (43)

i.e., the probability of at least one event occurring is an exponential distribution character-

ized by a spatially weighted event arrival rate Xk = tot Pek-

In addition, to capture the possibility that an event might propagate in space we

describe each event by a position vector, p = Po + fi-(t)dt. Where po is the coordinates of
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the point of origin of the event and v(t) characterizes the propagation velocity of the event.

The point of origin has a spatial and temporal distribution described by Equation 4-1 to

Equation 4-3. We have analyzed three distinct classes of events: (i) v(t) = 0, the events

occur as stationary points, (ii) v(t) = const, the event propagates with fixed velocity (e.g., a

moving vehicle), and, (iii) v(t)I= const, the event propagates with fixed speed but ran-

dom direction (i.e., a random walk).

4.4 Shutdown Policy

4.4.1 Sleep State Transition Policy

Assume an event is detected by nodek at some time and it finishes processing it at t1

and the next event occurs at time t2 = tj + t,. At time ti, nodek decides to transition to a

sleep state sk from the active state so as shown in Figure 4-3. Each state sk has a power

consumption Pk, and the transition time to it from the active state and back is given by td,k

and tu,k respectively. By our definition of node-sleep states, P > Py, di > td'j and u,, > cu

for any i >j. The power consumption between the sleep modes is modeled as a linear ramp

between the states. When the node transitions from state s1 , to say, state sk, individual

components such as the radio, memory, and processor are progressively powered down.

This results in a stepped variation in power consumption between the states. The linear

ramp is analytically simpler to handle and approximates the process reasonably well.

We will now derive a set of sleep time thresholds { Tth,k } corresponding to the states {

sk }, 0 5 k N (for N sleep states) such that transitioning to a sleep state sk from state so

will result in a net energy loss if the idle time ti < Tthk because of the transition energy

overhead. This assumes that no productive work can be done in the transition period [39],

which is usually true, e.g., when a processor wakes up the transition time is the time

required for the PLLs to lock, the clock to stabilize and the processor context to be

restored. The energy savings because of state transition is given by the difference in the

area under the graphs shown in Figure 4-3.

Ea t k)P+P P (44)Esave, k POti 02 )(d,k + Tu, k~ k(ti -Td,k 0~

(P P PO - k d k PO+ k I= P O-kti 2 ( 'k 2 ) ", k
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and such a transition is only justified when Esave,k > 0. This leads us to the threshold

1- P+P rk(45
Tth,k 2 [Td,k(+Uk] (4-5)

which implies that the longer the delay overhead of the transition so --> Sk, the higher the

energy gain threshold, and the more the difference between PO and Pk, the smaller the

threshold.

t.

Active Idle Active

so

PO

~Sk

~k+1 ---------K--a

tl dk t2 Iiuk

rd,k+1 Tu,k+1

Figure 4-3: State transition latency and power

Table 4-2 lists the power consumption of a sensor-node described in Figure 4-2 in the

different power modes and the corresponding energy gain thresholds. Since the node con-

sists of off the shelf components, it is not optimized for power consumption. However, we

will use the threshold and power consumption numbers detailed in Table 4-2 to illustrate

our basic idea. The steady state shutdown algorithm is as follows

if( eventOccurred() == true ) {
processEvent () ;
++eventCount;

lambdak = eventCount/getTimeElapsed);
for( k=4; k>0; k-- )

if( computePth( Tth(k) ) < pth0
sleepState (k);

}
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Table 4-2: Sleep state power, latency and threshold

State Pk (mW) Tk (ms) Tth,k

SO 1040 - -

sl 400 5 8

S2 270 15 20

s3 200 20 25

S4 10 50 50

When an event is detected at nodek, it wakes up and processes the event. It then

updates a global event Count counter that stores the total number of events registered

by nodek. The average arrival rate, Xk, for nodek is then updated. This requires use of an p-

OS timer based system function call getTimeElapsed () which returns the time

elapsed since the node was turned on. The g-OS then tries to put the node into sleep state

sk (starting from the deepest state s4 through sj) by testing the probability of an event

occurring in the corresponding sleep time threshold Tthk against a system defined con-

stant, PthO-

4.4.2 Missed Events

All the sleep states, except state s4 have the sensor and A/D circuit on. Therefore if an

event is detected (i.e., the signal power is above a threshold level) the node transitions to

state so and processes the event. The only overhead involved is latency (worst case being

about 25 ms). However, in state s4 , the node is almost completely off and it must decide on

its own when to wake up. In sparse event sensing systems (e.g., vehicle tracking, seismic

detection, etc.) the inter-arrival time for events is much greater than the sleep time thresh-

olds, Tthk. Therefore, the sensor node will invariably go into the deepest sleep state, s4 .

The processor must watch for pre-programed wake-up signals. These signal conditions are

programmed by the CPU prior to entering the sleep state. To be able to wake up on its own

the node must be able to predict the arrival of the next event. An optimistic prediction
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might result in the node waking up unnecessarily while a pessimistic strategy will result in

some events being missed.

Being in state s 4 results in missed events as the node has no way of knowing if any-

thing significant occurred. What strategy gets used is a pure design concern based on how

critical the sensing task is. We discuss two possible approaches.

- Completely disallow s 4 - If the sensing task is critical and there exists an event that

cannot be missed, this state must be disabled.

- Selectively disallow s4 - This technique can be used if events are spatially distributed

and not totally critical. Both random and deterministic approaches can be used. In the

protocol described in [55] the 'cluster heads' can have a disallowed S4 state while the

normal nodes can transition to S4. Alternatively, the scheme that we propose is more

homogeneous. Every nodek that satisfies the sleep threshold condition for s 4 goes to

sleep with a system defined probability Ps4 for a time duration given by

1
ts4,k - -ln(p, 4) (4-6)

Xk

Equation 4-6 describes the steady state behavior of the node and the sleep time is com-

puted such that the probability that no events occur in ts4, k, i.e., Pk(ts4, k, 0) = Ps4. How-

ever, when the sensor network is switched on and no events have occurred for a while, ?k

is zero. To account for this we disallow transition to state s4 until at least one event is

detected. We can also have an adaptive transition probability, Ps4, that is almost zero ini-

tially and increases as events are detected later on. The probabilistic state transition is

described in Figure 4-4.

The advantage of the algorithm is that efficient energy trade-offs can be made with

event detection probability. By increasing Ps4, the system energy consumption can be

reduced while the probability of missed events will increase and vice versa. Our overall

shutdown policy is governed by two implementation specific probability parameters, (i)

Pth and (ii) Ps4-
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Figure 4-4: Transition algorithm to 'almost off' s4 state

4.5 Java Based Event Driven Shutdown Simulator

The shutdown algorithm along with a behavioral model of the sensor node, sensor net-

work and event generator was implemented in Java to simulate the energy efficiency of

the system. The sensor node object captures the "power-aware" description of the sensor

node. Parameters such as state descriptions ({sk, Pk, tk}) are provided in a separate file

(simProperties .dat) that can be modified and loaded at run-time. This file also

defines the threshold parameters (Tth,k, PthO) that the Power Manager in the sensor node

object uses to make shutdown policy decision as discussed in the previous sections of this

chapter. In addition, network parameters such as distribution area ( W, L ) and visibility

radius (pk) are also incorporated into the file.

The simulator defines an event generator object which can be used to fire events at the

network. The statistical properties of the event generator can be altered using the simula-

tion parameters file (e.g., Gaussian and Poisson parameters, etc.). The simulation method-

ology is discrete. A timestep parameter determines the simulation granularity. For sparse

events, a larger timestep can be used for faster simulation (e.g., an earthquake sensor
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might register events in months!). The energy consumption output is a normalized estima-

tion comparing the energy availability among different nodes after the simulation. Actual

energy estimation can easily be estimated by scaling with data from one real node. The

overall broad simulation framework is captured in Figure 4-5.

Simulation
Parameters

_____Timing &
Simulation Control

Simulation
output

Graphical Sensor Network Object / / Sensor Node Object
r a S o - Power modes

Uer - Dimensions / - Thresholds
- Visibility / - Event counters
- Sensor Node Objects<

Event Generator
- Statistics

- Thresholds

Figure 4-5: Java based event driven sensor network shutdown simulator

4.5.1 Results

An intermediate simulation snapshot of a i = 1000 node system distributed uniformly

and randomly over a 100 m x 100 m area is shown in Figure 4-6. Color codes are used to

show the state of a particular sensor. The events in this case are concentrated as shown. It

is interesting to note that although some nodes in the periphery of the event zone have

gone into the deepest sleep state s4 (after about 4 seconds), a substantial number of nodes

even further beyond are still not allowed to enter s4, since they are still waiting for the first

few events to get calibrated. The visibility radius of each sensor was assumed to be p = 10

m. The sleep state thresholds and power consumption are shown in Table 4-2.
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Figure 4-6: Java based event driven sensor network shutdown simulator

Figure 4-7 shows the overall spatial node energy consumption for events with a Gaus-

sian spatial distribution centered around (25, 75). The interarrival process is Poisson with

ktot = 500 s-1. It can be seen that the node energy consumption tracks the event probability.

In the non-power managed scenario, we would have a uniform energy consumption in all

the nodes.

One drawback of the whole scheme is that there is a finite and small window of inter-

arrival rates Xtot over which the fine grained sleep states can be utilized. In general, the

more differentiated the power states (i.e., the greater the difference in their energy and

latency overheads) the wider the range of interarrival times over which all sleep states can

be utilized. Figure 4-8 shows the range of event arrival rates at a node (xk) over which the

states s, - s3 are used significantly. If Xk < 13.9 s-1, transition to state s4 is always possible
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(i.e., at least the threshold condition is met, actual transition, of course, occurs with proba-

bility P4). Similarly, if Xk > 86.9 s-, the node must always be in the most active state.

These limits have been computed using the nominal pthO = 0.5. Using a higher value of

PthO would result in frequent transitions to the sleep states and if events occur fast enough

this would result in increased energy dissipation associated with the wake-up energy cost.

A smaller value ofptho would result in a pessimistic scheme for sleep state transition and

therefore lesser energy savings.
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Figure 4-7: (a) Spatial distribution of events (Gaussian) and (b) Spatial energy

consumption in the sensor nodes

Figure 4-9 illustrates the Energy-Quality trade-off of our shutdown algorithm. By

increasing the probability of transition to state s4 (i.e., increasing Ps4) energy can be saved

at the cost of increased possibility of missing an event. Such a graceful degradation of

quality with energy is highly desirable in energy constrained systems.
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4.6 Summary of Contributions

In this chapter, we proposed and simulated an operating system based shutdown

scheme for idle power management using a sensor node as an example. The scheme

explicitly characterizes the meaningful power states of a node and uses a probabilistic

technique to make transitions to the low power modes based on observed event statistics.

The scheme is simple to implement and has negligible memory overhead. The technique

we proposed is fairly general and can be used for power management in any system char-

acterized by different levels of power consumption in various stages of shutdown.
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The key contribution in this chapter is that we developed the shutdown algorithm by

explicitly accounting for multiple sleep states. We showed that simply transitioning to the

deepest state is not optimal because of the finite power and latency overheads associated

with a sleep state and the loss in quality. We derived time thresholds for each state, as a

function of the power and latency for those states, before which no energy saving can

result from transitioning to that state and getting active again. We also demonstrated the

feasibility of a graceful energy-quality trade-off using our shutdown scheme, which is

desirable in energy constrained systems. These ideas have been tested in an event driven

simulator written in Java.
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Chapter 5

System Implementation

In the previous chapters we described various operating system directed power man-

agement techniques and the theoretical/simulated energy savings possible from them.

While each scheme individually sounded quite promising, it's system level implication

was unclear. For example, although DVS might result in 50% processor energy savings,

the processor might account for only 30% of the power budget in a system. This chapter

attempts to quantify actual system level energy savings possible by exploiting some of the

active and idle power management mechanisms discussed before. We have used the

gAMPS sensor node as our target system. Although the actual energy numbers might vary

significantly from one system to another, the sensor node example will demonstrate the

overall efficacy of our proposed power management techniques and give the reader a fla-

vor of what type of energy savings to expect if similar techniques are used in other sys-

tems.

This chapter also provides a description of the operating system that has been devel-

oped for the JIAMPS sensor node incorporating some of the power management features

discussed in the previous chapters. Instead of building an entire OS from scratch we built

the gAMPS OS using an existing, real-time, embedded, open source OS available from

Redhat, Inc. [59]. In essence, we ported the operating system to our sensor hardware target

and added an entire power management layer and a corresponding Application Program-

ming Interface (API) on top of it. We begin this chapter with a discussion of some stan-

dard embedded operating systems and their features and the motivation for choosing

Redhat's eCos (Embedded Configurable Operating System). This is followed by a brief

discussion of the sensor node hardware and the various power management hooks that

have been incorporated into its design. We then describe the OS architecture and the

power management API. Finally system level energy savings derived from operating sys-

tem directed power management are quantified.
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5.1 Embedded Operating Systems Overview

A variety of embedded operating systems exist. In this section, we describe the two

most popular ones and also explain why eCos was chosen as our base operating system.

5.1.1 Windows CE

Microsoft Windows CE [60] is a scaled-down operating system designed specifically

for what Microsoft terms "information appliances". In Microsoft's vision, these appli-

ances range from handheld computing devices to mobile phones to automobiles to indus-

trial equipment. The primary feature that differentiates Windows CE from competitors

such as the Palm OS is that CE is a 32-bit, multi-threaded, multi-tasking operating system.

Again, the design philosophy differences show up here. Palm Computing designers opted

for a simpler, power-conserving operating system since they were assuming that the hand-

held user only wanted to retrieve simple information quickly and efficiently. CE designers,

on the other hand, opted for a more powerful solution that offers the potential of running

processor-intensive applications (such as MP3 and video playback, spreadsheet calcula-

tions, etc.). Benchmarks have shown the Windows CE operating system in combination

with MIPS and Hitachi's SH hardware to be far superior in performance to the Palm plat-

form based on the Motorola Dragonball processor (essentially an older 68000 variant).

Obviously, there are a lot of factors to consider when choosing an operating system. What

sort of operations will be performed on a routine basis? Also, what type of battery life is

expected? Batteries on Palm devices can last on the order of six weeks; CE color devices,

on the other hand, can drain batteries within a single day!

Power Management

Because Windows CE was designed to be portable to a wide range of processors,

power management details differ from one device to the next. However, the CE API does

support a set of power monitoring functions in order to allow applications to determine the

remaining life of the battery, whether batteries are currently being used, and whether the

batteries are currently being charged (i.e., is the device plugged into AC power). Well-

written CE applications will monitor power levels and will alert users and gracefully exit

as levels become critically low.
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Pros and Cons

Windows CE's greatest advantage is easily its similarity to the other members of the

Microsoft Windows family of operating systems. A vast majority of professional software

developers have experience developing applications using the Windows API with

Microsoft tools such as Visual C++ and Visual Basic. A number of factors can be attrib-

uted to CE's lack of widespread success: CE's extra memory requirements, user interface,

and battery usage requirements lead that list. The unavailability of the source code is

another reason for its lack of popularity with new experimental systems like gAMPS. In

addition, the stAMPS system has much simpler requirements compared to what CE can

provide and, therefore, the overheads cannot be justified.

5.1.2 Palm OS

As opposed to Windows CE, Palm OS [61] is not a multi-tasking operating system.

PalmOS and Windows CE machines are designed from two completely different

approaches, and the kernels of the two operating systems reflect this. Perhaps the main

outstanding difference is that the Palm OS (based on the AMX kernel from embedded sys-

tems vendor KADAK) supports and is optimized for a very specific hardware reference

platform designed entirely by Palm Computing. Because of this, there is little deviation

between the Palm OS platform vendors as far as hardware differences go. Microsoft Win-

dows CE is designed to support a much wider range of hardware. There are no fewer than

four different versions of the Windows CE kernel for different CPU's (NEC MIPS and its

variants, Intel/AMD X86, Hitachi SH-3 and SH-4, Intel StrongARM) along with other

vendor-specific versions of Windows CE to handle different kinds of screens, keyboards,

modems and peripheral devices. It is fair to say that there is only one version of Palm OS,

whereas Windows CE is compiled specifically for the machine that it is being designed to

run on. Nevertheless, the success of Palm OS is largely because of its simplicity.

Power Management

The Palm OS and its underlying hardware support three modes of operations: sleep

mode, doze mode, and running mode. In sleep mode, the device appears to be off although

the real-time clock and interrupt generation circuitry are still running. Sleep mode is
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entered when the device remains inactive for a pre-defined time or when the user presses

the 'Off' button. In doze mode, the system appears to be on (the display remains active

and the processor's clock is running), however no instructions are being processed. The

device is continually in this mode while it is on as long as it has no user input to process.

Run mode is entered when there is a user event to process. The device reenters doze mode

immediately after processing the final event. System API calls allow applications to enter

doze mode as well as determine current time-out values and battery levels.

Pros and Cons

Because the OS was built from the ground up to run on small, low powered devices, it

is optimized and has low memory requirements. The OS is based on an event driven pro-

gramming model and, as such, is very conducive for idle power management. Its primary

disadvantage is the lack of flexibility. Palm devices currently use the Motorola 68328

(Dragonball) processor which is limited in terms of speed and computation capabilities.

The addressable memory space is also limited (less than 12MB for PalmOS 3.x). The plat-

form restrictions of PalmOS, coupled with the fact that like CE it is designed for more user

interface driven applications, also made it unsuitable for the gAMPS node.

5.1.3 Redhat eCos

Redhat eCos is an open source, real-time operating system for deeply embedded appli-

cations. It meets the requirements of the embedded space that Linux cannot yet reach.

Linux currently scales from a minimal size of around 500 KB of kernel and 1.5 MB of

RAM, all before taking into consideration application and service requirements. eCos can

provides the basic runtime infrastructure necessary to support devices with memory foot-

prints in the tens to hundreds of KB, with real-time requirements. Some of the key features

that made eCos our base operating system are:

- Scalability - eCos has over 200 configuration options (which can be chosen using a

handy configuration tool) for fine grain scalability, and code size can be as small as a

few kilobytes.

- Compatibility - eCos has gITRON [62] compatibility and also supports EL/IX [63]

Level I, a Linux compatibility interface.
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- Multi-platform - eCos can be configured and built to target a variety of processors

and platforms (e.g., ARM, IA32, Matsushita AM3x, MIPS, NEC V8xx, PowerPC,

SPARC, SuperH etc.)

- Modularity - eCos is implemented with a Hardware Abstraction Layer (HAL) that

makes it easier to port to new platforms. It is also implemented in such a way that

makes it easy to plug in a custom scheduler, device driver, etc.

- Open Source - eCos source code can be freely downloaded from [64].

" Development and Support - eCos uses the standard GNU [65] toolchain. There is an

active mailing list (ecos-discuss) for free support.

Power Management

The original eCos source does not contain any specific power management techniques.

Later in this chapter, we will describe how eCos has been ported to incorporate sophisti-

cated active and idle power management schemes on the gAMPS sensor node.

5.2 Sensor Hardware

Figure 5-1 shows the current (version 1) processor board of the gAMPS sensor node.

It is based on the StrongARM SA-1 110 processor and has 1 MB of on board SRAM and

Flash memory. The board runs at a nominal battery (single lithium primary cell) power

supply of about 4.0 V. The on board power supply circuits generate a 3.3 V supply for all

digital circuits. A separate analog power supply is also generated to isolate the digital

power supply noise from the analog circuits. The 3.3 V digital power supply also powers

the 1/0 pads of the StrongARM SA- 1110 processor. The core power supply is generated

through a DVS circuit that can regulate the power supply from 0.925 V to a maximum of

2.0 V at a very good conversion efficiency of about 85%. The radio module (which is still

under development), is on a similar sized board and consists of a dual power 2.4 GHz

radio for 10 m and 100 m ranges. The 16 bit bus interface connector will allow the radio

module to be stacked onto the processor board. In addition, the connector allows a differ-

ent sensor board (e.g., a seismic sensor) to be stacked as well. The processor board also

has an RS-232 and a USB connector for remote debugging and connecting to a basesta-

tion. The board features a built in acoustic sensor (a microphone, some opamps and A/D

87



circuit) that talk to the StrongARM processor using the Synchronous Serial Port (SSP).

The opamp gains are programmable and processor controlled. An envelop detect mecha-

nism has also been incorporated into the sensor circuit which bypasses the A/D circuit and

wakes up the processor when the signal energy crosses a certain programmable threshold.

Using this feature can significantly reduce the power consumption in the sense mode and

allows for truly event driven computation.

55 mm

Figure 5-1: gAMPS processor board (designer: Nathan Ickes)

5.2.1 DVS Circuit

The basic variable core power supply schematic is shown in Figure 5-2. The

MAX1717 step-down controller is used to regulate the core supply voltage dynamically
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through the 5-bit digital-to-analog converter (DAC) inputs over a 0.925 V to 2 V range.

The converter works on the following principle. A variable duty cycle Pulse Width Modu-

lated (PWM) signal alternately turns on the power transistors MI and M2. This produces a

rectangular wave at the output of the transistors with duty cycle D. The LC low pass filter

passes a desired DC output equal to DVbattey while attenuating the AC component to an

acceptable ripple. The duty cycle D is controlled using the DAC pins (DO:D4) which

results in 30 voltage levels (two combinations are not allowed). A two wire remote sens-

ing scheme compensates for voltage drops in the ground bus and output voltage rail. The

StrongARM sets the DVS enable pin on the voltage regulator depending on whether DVS

capability is desired or not. A feedback signal from the regulator lets the processor know if

the output core voltage is stabilized. This is required for error free operation during volt-

age scaling.

Vbattery

Ml
L R

M2
COu!;

Vcore Stable

DO:D4 (30 levels)

DVS Enable

Figure 5-2: DVS circuit schematic
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The processor clock frequency change involves updating the contents of the core

Clock Configuration Register (CCF) of the SA-l 110 [66]. The core clock is derived by

multiplying the reference crystal oscillator clocks using a Phase Locked Loop (PLL).

based on CCF register settings as shown in Table 5-1. The core clock (DCLK) can be

driven using either the fast CCLK or the memory clock (MCLK) which runs at half the

frequency of CCLK. The core clock uses CCLK normally except when waiting for fills to

complete after a cache miss. Core clock switching between CCLK and MCLK can be dis-

abled by setting a control register appropriately.

Table 5-1: SA-1 110 core clock configurations and minimum core supply voltage

Core Clock Frequency (CCLK) in MHz Core Voltage (V)
CCF(4:0)

3.6864 MHz Oscillator 3.5795 MHz Oscillator [3.6864 MHz Osc]

00000 59.0 57.3 1.000

00001 73.7 71.6 1.050

00010 88.5 85.9 1.125

00011 103.2 100.2 1.150

00100 118.0 114.5 1.200

00101 132.7 128.9 1.225

00110 147.5 143.2 1.250

00111 162.2 157.5 1.350

01000 176.9 171.8 1.450

01001 191.7 186.1 1.550

01010 206.4 200.5 1.650

01011 221.2 214.8 1.750

01100-11111 - -

The sequence of operations during a voltage and frequency update depends on

whether we are increasing or decreasing the processor clock frequency as shown in Figure

5-3. When we are increasing the clock frequency we first need to increase the core supply

voltage to the minimum required for that particular frequency. The optimum voltage fre-

quency pairs are stored in a lookup table. Once the core voltage is stabilized we can pro-
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Yes Frequency No

Increase?

Disable Memory I
Increase Vcore I Clock Switching

No Set Core

Vcore Stable? Frequency

Yes
Enable Memory

Recalibrate Clock Switching

Memory Timing _ ___ _

Recalibrate

Disable Memory Memory Timing
Clock Switching

Set Core Decrease Vcore
Frequency

Enable Memory N V Stable?
Clock Switching I

- - - - - - - - Yes

Figure 5-3: Sequence of operations during a voltage and frequency switch

ceed with the frequency update. The first step involves recalibrating the memory timings.

This is done by setting an appropriate value in the MSC control register. Before we

increase the core clock (CCLK) frequency we disable clock switching between CCLK and

MCLK to avoid inadvertent switch of the core clock. CCLK frequency is changed by set-

ting the CCF register. Once this is done core clock switching between CCLK and MCLK

is enabled. The sequence of operations are somewhat reversed when reducing frequency.
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We first update the core clock frequency (following the same 3 basic steps mentioned

above). Before we can reduce the core voltage we must recalibrate the memory timing.

This is required because the once the core clock frequency is reduced, memory read-write

will result in errors unless the memory timing is adjusted (e.g., when reading the voltage-

frequency lookup table). Subsequently, the core voltage is reduced and normal operation is

started once the core voltage stabilizes. To ensure correct operation, the entire voltage fre-

quency update has to be done is an atomic fashion. For example, if an interrupt occurs

while frequency is updated and memory has not been recalibrated, execution errors might

occur.

5.2.2 Idle Power Management Hooks

The sensor node has been designed to specifically allow a set of sleep states similar to

the one described in the previous chapter. In addition, it has hardware support for event

driven computation. The overall schematics is shown in Figure 5-4. The General Purpose

I/O (GPIO) pins on the StrongARM are used to generate and receive various signals from

the peripherals. The SA-1 110 features 28 GPIO pins, each of which can be configured as

an input or an output pin using the GPIO Pin Direction Register (GPDR). When pro-

grammed as an output, the pins can be controlled by writing to the GPIO Pin Output Set

Register (GPSR) and the GPIO Pin Output Clear Register (GPCR). When configured as

an input, the current state of each pin can be read off the GPIO Pin Level Register

(GPLR). In addition, the GPIO pins can be configured to specifically detect a rising or

falling edge. In our implementation, four GPIO pins are dedicated to power supply control

in the system. The entire analog power supply can be switched off when no sensing is

required. Alternately, only the power supply to the Low Pass Filter (LPF) can be switched

off and the envelop energy sensing circuit could be used to trigger a signal to the proces-

sor. When this happens, the processor could enable the LPF and start reading data off the

A/D converter using the SSP (Synchronous Serial Port). The signal detection threshold is

also programmable using other GPIO pins. Similar power supply control is available for

the radio module. The processor can turn off the radio when it is not required.
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Figure 5-4: Idle power management hooks on the sensor processor board

5.2.3 Processor Power Modes

The SA- 1110 contains power management logic that controls the transition between

three different modes: run, idle and sleep. Each of these modes correspond to a reduced

level of power consumption.

- Run Mode - This is the normal mode of operation for the SA-l 110. All on-chip power

supplies are on, all clocks are on and every on-chip resource is available. Under

usual conditions the processor starts up in the run mode after a power-up or reset.

- Idle Mode - This mode allows an application to stop the CPU when not in use while

continuing to monitor interrupt requests. The CPU clock is stopped and since the SA-

93

3.3 V Analog
Power Supply

I



I110 is a fully static design, all state information in saved. When normal operation is

resumed execution is started exactly where it was left. During idle mode all on-chip

resources (real-time clock, OS timer, interrupt controller, GPIO, power manager,

DMA and LCD controllers, etc.) are on. The PLL also remains in lock so that the

processor can be brought in and out of the idle mode quickly.

Sleep Mode - Sleep mode offers greatest power savings for the processor and conse-

quently lowest functionality. When transitioning from run/idle to sleep mode the SA-

1110 performs an orderly shutdown of on-chip activity, applies an internal reset to

the processor, negates the power enable (PWREN) pin indicating to the external

system that the power supply can be turned off. Running off the 32.768 KHz crystal

oscillator, the sleep state machine watches for a pre-programmed wakeup event to

occur. Sleep mode is entered in one of two ways - through software control or

through a power supply fault. Entry into sleep mode is accomplished by setting the

force sleep bit in the Power Manager Control Register (PMCR). This bit is set by

software and cleared by hardware during sleep such that when the processor wakes

up it finds the bit cleared. The entire sleep shutdown sequence takes about 90 gs.

Table 5-2 shows the power consumption in various modes of the SA-1 110 processor at

two different frequencies and the corresponding voltage specification as mentioned in

[66]. Note that the minimum operating voltage required (as shown in Table 5-1) at the two

frequencies is slightly lower than what is shown in Table 5-2. Idle mode results in about

75% power reduction while the sleep mode saves almost all the power.

Table 5-2: Power consumption in various modes of the SA- 1110

Supply Power Consumption Modes
Frequency Voltage

(V) Normal (mW) Idle (mW) Sleep (pA)

133 1.55 < 240 < 75 < 50

206 1.75 < 400 < 100 < 50
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5.3 OS Architecture

The original eCos OS is designed to be completely scalable across platforms as well as

within a given platform. Figure 5-5 shows the component architecture of eCos. Essen-

tially, source level configuration allows the user to add or remove packages from a source

repository based on system requirements. For example, the user might choose to remove

math libraries and the resulting kernel will be leaner. The core eCos system consists of a

number of different components such as the kernel, the C library, an infrastructure pack-

age, etc. Each of these provide a large number of configuration options, allowing applica-

tion developers to build a system that matches the requirements of their particular

application. To manage the potential complexity of multiple components and lots of con-

figuration options, eCos has a component framework: a collection of tools specifically

designed to support configuring multiple components. Furthermore, this component

framework is extensible, allowing additional components to be added to the system at any

time. The eCos Component Description Language (CDL) lets the configuration tools

check for consistency in a given configuration and point out any dependencies that have

not been satisfied.

Embedded Application

Libraries Native Kernel API

Internal Kernel API

Kernel

schedulers, memory alloc, timers, interrupts,

HAL Multithread Support
- acitecture/cpu/platform GDB stub ROM, Monitor,

CLI

Hardware

Figure 5-5: eCos architecture showing the power management layer that was added
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5.3.1 Kernel Overview

At the core of the kernel is the scheduler. This defines the way in which threads are

run, and provides the mechanisms by which they may synchronize. It also controls the

means by which interrupts affect thread execution. To allow threads to cooperate and com-

pete for resources, it is necessary to provide mechanisms for synchronization and commu-

nication. The classic synchronization mechanisms are mutexes/condition variables and

semaphores [68]. These are provided in the eCos kernel, together with other synchroniza-

tion/communication mechanisms that are common in real-time systems, such as event

flags and message queues.

One of the problems that must be dealt with in any real-time systems is priority inver-

sion. This occurs when a high priority thread is wrongly prevented from continuing by one

at a lower priority. The normal example is of a high priority thread waiting at a mutex

already held by a low priority thread. If the low priority thread is preempted by a medium

priority thread then priority inversion has occurred since the high priority thread is pre-

vented from continuing by an unrelated thread of lower priority. This problem got much

attention recently when the Mars Pathfinder mission had to reset the computers on the

ground exploration robot repeatedly because a priority inversion problem would cause it

to hang. The eCos scheduler fixes this problem using a priority inheritance protocol. Here,

the priority of the thread that owns the mutex is boosted to equal that of the highest prior-

ity thread that is waiting for it. This technique does not require prior knowledge of the pri-

orities of the threads that are going to use the mutex, and the priority of the owning thread

is only boosted when a higher priority thread is waiting. This reduces the effect on the

scheduling of other threads, and is more optimistic than a priority ceiling protocol (where

all threads that acquire the mutex have their priority boosted to some predetermined

value). A disadvantage of this mechanism is that the cost of each synchronization call is

increased since the inheritance protocol must be obeyed each time.

The kernel also provides exception handling. An exception is a synchronous event

caused by the execution of a thread. These include both the machine exceptions raised by

hardware (such as divide-by-zero, memory fault and illegal instruction) and machine

exceptions raised by software (such as deadline overrun). The simplest, and most flexible,
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mechanism for exception handling is to call a function. This function needs context in

which to work, so access to some working data is required. The function may also need to

be handed some data about the exception raised: at least the exception number and some

optional parameters. As opposed to exceptions, which are synchronous in nature, inter-

rupts are asynchronous events caused by external devices. They may occur at any time and

are not associated in any way with the thread that is currently running and are harder to

deal with. The ways in which interrupt vectors are named, how interrupts are delivered to

the software and how interrupts are masked are all highly hardware specific. On the SA-

1110, two kinds of interrupts are supported - FIQ (fast interrupts) and IRQ (regular inter-

rupts). Both these interrupts can be masked.

Finally the kernel also provides a rich set of timing utilities such as counter, clocks,

alarms and timers. The counter objects provided by the kernel provide an abstraction of

the clock facility that is generally provided. Application code can associate alarms with

counters, where an alarm is identified by the number of ticks until it triggers, the action to

be taken on triggering, and whether or not the alarm should be repeated. Clocks are

counters which are associated with a stream of ticks that represent time periods. Clocks

have a resolution associated with them, whereas counters do not.

5.3.2 Application Programming Interface

Programs written for the sensor node do not have to satisfy any unusual requirements,

but there are always some differences between a program written for a real-time operating

system as opposed to one written for a time sharing, virtual memory system like UNIX or

Windows NT. Any program which uses eCos system calls and JIAMPS specific functions

must include the following C header file:

#include <cyg/kernel/kapi.h> //Kernel APIs
#include <cyg/hal/uamps.h> // uAMPS API

and the programmer must make sure that the headers are available in the compiler's

include path. The entry point for eCos user programs is usually cyg user start ()

instead of main (), although main () can be used if the ISO C library package is

included. A summary of the native kernel functions available through the C language API
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is shown in Table 5-3. Details about semantics and datatypes used in the functions are

available in [69].

Table 5-3: Native kernel C language API

Function Functions Available
Type

cygschedulerstart(), cyg_schedulerlock(,
cygschedulerunlock(, cyg_threadcreate),

cygthreadexit(), cyg thread suspend(), cygthreadresume(),
cygthreadyield(, cyg_threadkill(), cyg_threaddelete(),
cygthreadselfo, cygthreadrelease(,

Thread cyg-threadnewdataindex(), cygthread_freedataindex(),
cygthreadget data (), cyg_threadgetdataptr(,
cygthreadsetdata(), cyg_thread_setpriority(,
cygthreadgetpriority(), cyg thread delay()

Exceptions cygexception set handler() , cygexception callhandler()

cyginterruptcreate(), cygexcepticyginterrupt attach(),

cyginterruptdetacho, cyginterrupt get vsro),

cyginterruptset vsr(, cyginterrupt_disable(),
cyginterrupt enable(), cyginterruptmask(),

cyginterruptunmaskO, cyginterruptacknowledge(),

cyginterruptconfigure()

cygcountercreate(, cygcounterdeleteo),

cygcountercurrentvalue(), cygcountersetvalue(,

Counter cygcountertick(), cygclockcreate(), cygclockdelete),

Clocks cyg clock tocounter(), cyg_clocksetresolution()
cygclockgetresolutiono), cygrealtimeclocko,

Alarms cygcurrenttime), cyg_alarm create(), cygalarmdelete),

cygalarm initialize), cyg_alarmenable),

cygalarm disable()

cygsemaphore_init(), cygsemaphore destroy(),

Semaphores cygsemaphore wait(), cyg_semaphoretrywait(),
cygsemaphore timedwait(), cygsemaphorepost(),

cygsemaphore-peek()

Mutex cygmutexinit(), cyg-mutex-destroy(), cyg mutex lock(,
cyg-mutexunlock(), cygmutexrelease ()

cyg-mempool_varcreate(0, cygmempoolvar_delete(0,

cyg-mempoolvaralloco, cyg-mempoolvartryalloc(,

MiemRory cygmempool_varfree(), cygmempool-varwaitingo,

Meory cyg mempool var getinfo), cyg mempoolfix create((),
cygmempool_fixdelete), cygmempool_fixalloco,

cygmempool_fixtimedalloco, cyg_mempool fix tryalloco,

cygmempool_fixfree(), cyg mempoolfix waiting(),

cyg mempoolfixgetinfo()
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Table 5-3: Native kernel C language API

Function Functions Available
Type

cygmbox create (, cygmbox delete (), cygmboxget (,

Message cygmbox_ timed_get ( , cygmbox_tryget ( , cyg mbox-peek-item),
cygmbox put (, cygmbox_timedput (), cygmboxtryput (,Boxes cyg mbox peek (, cygmbox_waiting_t o_get (,
cygmboxwaitingtoput ()

cyg_flag_ initO, cyg_flagdestroyO) , cyg_flag_ setbits(,

Flags cyg_flagmaskbits ), cygflagwait (, cygflag_ timed wait (,

cyg_flag_ pol), cyg_flagpeek(, cyg_flagwaiting()

Table 5-4 shows most of the functions in the power management API. The functions

are available to the application developer to enhance the power efficiency of his code.

Syntax details and examples of benchmarks using the native kernel and power manage-

ment API calls are available at [72].

Table 5-4: Primitive power management functions

Function Functions Available
Type

UAMPSENABLEDVS (, UAMPSSETVOLTAGE (,

DVS UAMPS-SETPROCCLOCK ), UAMPSCHECKVCORESTABLE (,
UAMPSSETPROCCLOCKo, uamps_setprocrate),
uampsdvsscheduler()

UAMPSPERIPHERALPOWERONo, UAMPSPERIPHERALPOWEROFFo,

Shutdown UAMPS_V3_STANDBY_ONO, UAMPS_V3_STANDBY_OFFO,
SA11X_PWR_MGR_WAKEUP_ENABLE, SA11XO_PWR_MGR_GENERAL_CONFIG,
SA11X_PWR_MGR_CONTROL, uamps_setprocidle),
uampssetprocsleep () , uamps_gotosleepstate ()

5.3.3 Web Based Application Development Tool

The application development toolchain is shown in Figure 5-6. The eCos source tree

along with the pAMPS platform specific code is parsed using the ecosconf ig tool to

generate a build tree. Any package customizations are made at this configuration step.

Details of the configuration tool and various available options can be obtained in [70]. The

build tree is then compiled using the arm-elf -gcc cross compiler. If no conflicts exist

in the configuration, the build process generates the 1 ibtarget . a library with the

selected components. This library does not contain any user libraries (they must be linked

separately). The same arm-elf -gcc cross compiler generates the object code for the
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user application. During the final link step, the OS library is linked with the application

object to produce an executable image that runs on the sensor node.

eCos Source Tree

Application C/C++
ecosconfig Source Code

Compiler Compiler
arm-elf-gcc arm-elf-gcc

Other GNU Other GNU
Tools Tools

eCos Target Application
Library Object File

(libtarget.a) Linker

arm-elf-gcc

pAMPS Executable Image Web
Interface

Debugger
arm-elf-gdb

To Hardware

>(
Toolchain
- GNU Tools
- Binary Utilities
- GCC Cross Compiler
- eCos Configuration Tool

Figure 5-6: Application development toolchain for the gAMPS sensor node

To insulate the application developer from the having to install and maintain the con-

figuration and compilation tools, and having to update the OS library with the latest ver-

sion, as it evolves, we built a web interface to the entire tool chain. This interface allows a

remote user to upload his application source code, and it produces the executable image

linked with the OS and all appropriate libraries, which the user can easily download. In

addition, the user can customize the OS based on the requirements of the application and

optimize the memory requirement. A screenshot from the web based front end of the tool

is shown in Appendix C.
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5.4 System Level Power Management Results

5.4.1 Active Mode Power Savings

Figure 5-7 shows the power consumption of the sensor node in the fully active state

(all modules on) as a function of the operating frequency of the SA-l 110. The figure

shows the power consumption using both DVS and just frequency scaling (which is done

at a fixed core voltage of 1.65 V). The system power supply was 4.0 V. In the active mode,

DVS is the primary source of power management. When running at the maximum operat-

ing voltage and operating frequency, the power consumption of the system is almost 1 W.

Active power management using DVS results in about 53% maximum system wide power

savings. The actual savings depends on the workload requirement.
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Figure 5-7: System level power savings from active power management using DVS

In Section 2.3 we introduced an important energy performance trade-off that was

based on the fact that minimum energy consumption results when the processing rate vari-

ation is minimum. Minimum processing rate variation in turn implies a larger maximum

performance hit. Figure 5-8 plots the relative battery life improvement as a function of the

variance in workload. Each workload profile is Gaussian with a fixed average workload.

The implications of our discussion in Section 2.3 is at once apparent. Although the aver-
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age workload might be constant, the battery life improvement from DVS will degrade as

the fluctuations in workload increase.
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5.4.2 Idle Mode Power Savings

Table 5-5: Measured power consumption in various modes of the sensor

System Component Modes Power
Mode Processor Radio Analog (mW)

Active Max Freq on on 975.6

Statves Low Active Min Freq on on 457.2

Idle idle on on 443.0

Sleep Receive idle on off 403.0

States Sense idle off off 103.0

Sleep sleep off off 28.0

Table 5-5 shows the measured power consumption for the sensor node in various

modes of operation. The sensor node can be classified as a processor power dominated

architecture. The radio module follows the processor in power requirement (estimated at
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about 70 mA at 3.3V). DVS can reduce system power consumption by 53%. Shutting

down each of the components (analog power supply, radio module and the processor

itself) results in another 44% power savings, i.e., idle power management accounts for

about 97% ofsystem wide power savings. The overall power savings attributed to various

power management hooks have been shown in Figure 5-9.

Residual 3%
Processor Off 9%

DVS 53% Radio Off 31%

Analog Off 4%

Figure 5-9: System level power savings distribution

The actual energy savings in the field depends significantly on processing rate require-

ments and event statistics. To estimate the energy savings from active mode power con-

sumption, we would need an estimate of the workload variation on the system. (At present

we do not have the required data from field trials). If we assume that the average workload

requirement was 50%, with slow variations, the estimated energy savings is about 30%.

Idle mode energy savings, on the other hand, can be significant. If we assume that the

operational duty cycle is 1% the estimated energy savings is about

1 - (0.01 x 0.7 + 0.99 x 0.03) = 0.9633 = 96%. This implies that sensor node battery

life can be improved by a factor of over 27 (i.e., a node that lasts for a day with no power

management will now last for almost a month)! With a 10% duty cycle, the battery life

improvement is by a factor of about 10. The important point to observe is that the system

is energy scalable, i.e., it has the right hooks to tune energy consumption based on compu-
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tational load and sensing requirements. Figure 5-10 shows the factor by which battery life

of the sensor node can be enhanced by using power management techniques as a function

of the workload and duty cycle requirement.
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Figure 5-10: Battery life improvement in the sensor node compared to a node with no
power management as a funtion of duty cycle and active workload

5.4.3 Energy Cost of Operating System Kernel Functions

The OS provides a rich API to the application for various tasks such as thread creation

and manipulation, scheduling functions, mutex, mailbox and semaphore primitives and

other functions to create and manipulate timers and alarms. A brief overview of these

functions was presented in Section 5.3. We have estimated the energy cost of these kernel

function calls. The average energy of each kernel function gives an estimate of the energy

cost to the application developer. A detailed energy characterization of the kernel func-

tions is included in Appendix A. Figure 5-11 shows the average, maximum and minimum

system energy cost of various kernel functions grouped by category. The measurements

have been made on a nominal system running at 59 MHz. The system power supply was

the usual 4.0 V. Every function category consists of 10-20 different individual functions

detailed in Appendix A. Each function was tested a number of times under different condi-

tions. Although it is impossible to completely characterize a real-time operating system
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(since latencies and therefore energy consumption depends heavily on interrupts, work-

loads, etc.), Figure 5-11 and Appendix A do give an estimate of the energy cost of various

kernel API calls under nominal conditions. It can be seen that all kernel functions cost

only a few gJoules of energy (corresponding to a few tens of gseconds execution time).

Scheduling operations are the most efficient while thread manipulation and alarm func-

tions are more expensive in comparison.
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Figure 5-11: Average, maximum and minimum energy consumption of kernel function
calls (grouped by category)

The energy cost of various OS calls can be used to estimate the overhead of the operat-

ing system. Consider a simple application with two threads. The first thread, TA, imple-

ments radio and communication functions and executes every 100 ms. The second thread,

TB, implements the some signal processing algorithm on the sensor data and is invoked

randomly with an average period of 5 ms. When no threads are runnable the processor

executes a system idle thread. Therefore, over a one second interval, on an average, about
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210 thread switches occur. The average energy overhead of thread scheduling can then be

estimated as

Overhead = 210 x 1.79 = 0.039% (5-1)
975.6 x 1000

As can be seen, the overhead of OS calls is negligible. This is because most of these func-

tion take a few cycles to execute. On the other hand, having the OS greatly simplifies

application development and the programmer does not have to worry about resource man-

agement issues.

5.5 Summary of Contributions

In this chapter we demonstrated the overall efficacy of system level software con-

trolled power management using the gAMPS sensor node as an example. Although

embedded systems differ significantly in their overall power consumption and power bud-

gets allocated to various components, the sensor node is a generic example of an energy

constrained embedded system with computation/communication capabilities. As such, the

power management schemes proposed for the sensor node can be incorporated into other

embedded systems to enable an 'energy-on-demand' approach to computation. We dem-

onstrated that 50% system wide active mode energy savings is possible using DVS and

another 40% energy savings results from shutting down components that are not required.

Careful system design, with the right hardware hooks, can easily result in system energy

scaling down by an order of magnitude in the idle mode. Given a low duty cycle of opera-

tion, this can significantly enhance the battery lifetime of an embedded system.

In terms of implementation, we demonstrated operating system controlled DVS on the

StrongARM SA- 1110 processor. The processor, as such, is not designed for run-time scal-

ing of core voltage and clock frequency (usually the frequency is fixed at startup time).

The Intel XScale [71] processors will perhaps support this feature. System level energy

measurements in various modes were obtained to get an estimate of idle power savings.

Energy characterization of kernel function calls was performed to quantify the cost of var-

ious real-time operating system tasks. A web based infrastructure has also been designed

to enable users to develop applications using the power management features and pre-built

scalable operating system kernels [72].
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Chapter 6

Software Energy Measurement

In the previous chapters, we concentrated on the software control aspects of an energy

constrained system. We developed techniques that the operating system could use to

improve the energy efficiency of a system both in its active and idle states. In the next few

chapters, we concentrate on the application software that runs on a system. We start out

with a software energy estimation methodology that can be used to quantify the energy

consumption of a piece of application code. Later we develop techniques to improve the

energy efficiency of the application code.

In this chapter, we propose a software energy estimation framework based on actual

energy measurements on the StrongARM SA-1 100 and SH-4 processor boards. Software

energy estimation is an integral component in any energy constrained embedded system

and can be used to estimate the battery lifetime of the system. The estimation framework

has been incorporated into a web-based tool, JouleTrack, that allows a user to upload a

piece of C code and outputs energy measurements on the remote browser [73][74].

6.1 Factors Affecting Software Energy

Software energy estimation is the first step in the exploration of the design space in

software energy optimization. Robust models that predict the energy cost of software are

non-trivial to determine because of the dependence of energy consumption on the follow-

ing parameters.

Target processor and Instruction Set Architecture (ISA) - Software energy is an obvi-

ous function of the processor, data path and instruction set used. For example, the

StrongARM microprocessor does not have a dedicated floating point unit. The

energy required by a floating point operation on the StrongARM will be more than

that on an equivalent processor with a well designed floating point unit. This is

because a floating point operation on the StrongARM uses a software emulation to

implement it and requires two orders of magnitude more time to execute than an
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equivalent integer operation. Other architectural parameters which strongly affect the

energy consumption of a processor are cache size, datapath width, number of func-

tional units (multipliers, shifters), register file size, legacy support hardware, multi-

media extension support, etc. In general, it is practically impossible to predict how

much energy a piece of software will consume on another processor given the energy

consumption profile on one processor, without some prior calibration and measure-

ment on the other one.

- Operating voltage andfrequency - As we have seen in previous chapters, the switch-

ing energy consumed depends linearly on the operating frequency and quadratically

on supply voltage.

- Leakage issues and duty cycle - As the threshold voltages scale, leakage energy will

become more dominant. Already, leakage accounts for 10% of energy dissipation on

the StrongARM at 100% duty cycle. At 10% duty cycle the switching and leakage

energy components become comparable (as we will show). Effective macro leakage

models (module wise, if possible) would have to be developed that can isolate

switching and leakage energy components before techniques can devised to mini-

mize their effect without significant loss in performance.

6.2 Previous Work

Software energy estimation through exhaustive instruction energy profiling was first

proposed in [75]. The basic experimental setup used in [75] is shown in Figure 6-1. The

instantaneous current drawn by a CPU varies rapidly with time showing sharp spikes

around clock edges. This is because at clock edges the processor's circuits switch (i.e., get

charged or discharged) resulting is switching current consumption. Expensive hardware

with a lots of measurement bandwidth and low noise is required to accurately track the

CPU instantaneous current consumption. From a energy measurement perspective, how-

ever, we are interested in average current consumption. To a first order, battery lifetime

depends on the average current and the amount of stored energy in the cell. Measuring

average current is simpler and can be done using a current meter. The current meter aver-

ages the instantaneous current over an averaging window and the corresponding readings
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are stable average values. The average current itself varies as the program executes. The

basic approach proposed in [75] can be summarized as follows:

- Measure the current drawn by the processor as it repeatedly executes a certain

instruction or sequences of instructions. This is done by putting the sequence in a

loop and measuring current values. The measured values are the instruction base cur-

rent cost.

" The program is broken up into basic blocks and the base cost of each instance of a

block is obtained by adding the base cost of instructions in the block. These costs are

provided in a base cost table. Obtain a run-time execution profile (instruction trace)

for the program. Using this information the number of times the basic block is exe-

cuted is determined and overall base cost is computed.

- The effect of circuit state (inter-instruction effects) is incorporated by analyzing pairs

of instructions. A cache simulation is also performed to determine stalls and a cache

penalty is also added to the final estimate.

Power Supply

4 .. .... .

....... ..... .. .......

Figure 6-1: Experimental setup for instruction/program current measurement

The principal disadvantage of this approach is that it involves elaborate instruction

trace analysis. Assuming an Instruction Set Architecture (ISA) with N instructions, N2

instruction energy profiles have to be obtained to accurately determine base and inter-

instruction costs. Moreover, most instructions have a lot of variations (e.g., based on
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addressing modes, immediate operands, etc.) and exhaustive characterization is very time-

consuming.

6.3 Proposed Methodology

6.3.1 Experimental Setup

Our basic experimental setup for estimation and verification purposes is similar to Fig-

ure 6-1. The StrongARM setup consists of the Brutus SA- 1100 Design Verification Plat-

form which is essentially the StrongARM SA-1100 microprocessor connected to a PC

using a serial link. The SA- 1100 consists of a 32-bit RISC processor core, with a 16 KB

instruction cache and an 8 KB write-back data cache, a minicache, a write buffer, and a

Memory Management Unit (MMU) combined in a single chip. It can operate from 59

MHz to 206 MHz, with a corresponding core supply voltage of 0.8 V to 1.5 V. Power sup-

ply to the StrongARM core was provided externally through a variable voltage sourceme-

ter. The I/O pads run at a fixed supply voltage. The ARM Project Manager (APM) is used

to debug, compile and execute software on the StrongARM. Current measurements are

performed using the sourcemeter built into the variable power supply. The instruction and

data caches are enabled before the programs are executed. To measure the current that is

drawn by a subroutine, the subroutine is placed inside a loop with multiple iterations till a

stable value of current is measured. The execution time for multiple iterations is obtained

accurately using the time () utility in C and the execution time per iteration and charge

consumption are subsequently computed. The core supply voltage is altered directly from

the external supply while the internal clock frequency of the processor is changed via soft-

ware control. Details of the StrongARM setup can be found in [52][76][77]. Figure 6-2

shows the experimental setup for the StrongARM SA- 1100 processor.

A similar board was setup for the Hitachi SH-4 processor using the SH7750 Solution

Engine [78]. The SH7750 series (SH7750, SH7750S) is a 32-bit RISC microprocessor. It

includes an 8 KB instruction cache, a 16 KB operand cache with a choice of copy-back or

write-through mode, and an MMU with a 64-entry fully-associative unified Translation

Lookaside Buffer (TLB). The SH7750 series has an on-chip bus state controller (BSC)

that allows connection to DRAM and synchronous DRAM. Its 16-bit fixed-length instruc-

tion set enables program code size to be reduced by almost 50% compared with 32-bit
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instructions. The SH-4 runs at 200 MHz fixed clock frequency at a core voltage of 1.95 V

with 3.3 V for I/O pads. It is a 2-way superscalar CPU, i.e., it can execute 2 instructions

per cycle. Unlike the SA- 1100, the SH-4 features a fully integrated floating point unit with

a separate bank of 16 single precision floating point registers. All this added performance

comes at an increased energy cost. While the SA-1100 operates at 1 nJ/Instruction, the

SH-4 requires 4.2 nJ/Instruction cycle.

P~ bp

Figure 6-2: StrongARM SA-1 100 experimental setup

6.3.2 Instruction Current Profiles

Our experiments on the StrongARM SA-1100 and Hitachi SH-4 microprocessors

show that the variation in the current consumption across instructions is quite small. A lot

of overheads are common across instructions and, as a result, the overall current consump-

tion of a program is a weak function of the actual instruction stream and to a first order

depends only on the operating frequency and voltage. Second order variations do exist but

were measured to be less than 7% for a set of benchmark programs. Therefore, a complete

instruction level trace analysis is unnecessary and a simple cycle accurate timing simula-

tion can be used along with a simplified instruction/program current model to estimate

overall energy consumption.
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Figure 6-3: (a) Strong SA- 1100 average instruction set current consumption
(b) Instruction set current distribution

Figure 6-3(a) shows the current consumption of all the instructions of the ARM

instruction set on SA- 1100. Each of the 33 current values are themselves the averages of

the various addressing modes and inputs in which the instruction can be executed,

accounting for a total of about 280 data points (the overall distribution is shown in Figure

6-3(b)). The important point to observe is that the current consumptions are pretty uni-

form. On an average, arithmetic and logical instructions consume 0.178 A, multiplies

0.196 A, loads 0.196 A, stores 0.229 A, while the other instructions consume about 0.170

A. The total variation in current consumption is 0.072 A, which is 38% of the overall aver-
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age current consumption. Figure 6-3(b) shows the distribution of current consumption

based on the 280 data points. All current measurements were done at 1.5 V core supply

and 206 MHz clock frequency.
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Figure 6-4: Distribution of power consumption in the ARM core [79]
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Figure 6-5: Hitachi SH-4 average instruction set current consumption

Although the small variation in instruction currents might appear surprising at first, a

deeper analysis reveals that this ought to be expected. Figure 6-4 shows the distribution of

power consumption across various blocks in the ARM core [79]. Between the cache, con-

trol, global clock (GCLK) and I/O circuits, almost 95% power is consumed. Since these
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overheads are common to all instructions, the variation of current consumption between

instructions is small. The execution box (EBOX) is where the instruction is implemented.

Figure 6-5 shows the core current consumption measured for the Hitachi SH-4 proces-

sor running at 2.0 V core power supply and 200 MHz clock frequency. The average

instruction current is 0.29 A, with a variation of 0.11 A, which, once again, is 38% of the

average. The small variation in instruction current can again be explained using a similar

argument.
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Figure 6-6: Current variations within instructions on the StrongARM

The current variation within an instruction (as a function of addressing modes and

data) is even smaller. Figure 6-6 shows the current consumption of 3 different instructions

as a function of various addressing modes and data on the SA-1100. In general, we

observed that to a first order the instruction current consumptions are independent of the

addressing modes or operands. We now propose a simple and fast technique to estimate

software energy. Our experiments indicate an accuracy within 3% of actual measurements.

6.3.3 First Order Model

While the instruction level current consumption has a variation of about 38%, the vari-

ation of the current consumption between programs is much less. Figure 6-7 shows the

current consumption of six different benchmark programs at different supply voltage and

frequency levels on the StrongARM. The maximum current variation is about 8%. This
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implies that, to a first order, current consumption of a piece of code is independent of the

code and depends only on the operating voltage and frequency of the processor. The first

order software energy estimation model is then simply

Eo = VddIo(Vdd,f)At (6-1)

where Vdd is the supply voltage and At is the program execution time.
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Figure 6-7: Program current consumption as afunction of operating point

6.3.4 Second Order Model

While the current variation across programs is quite small in the StrongARM, it might

be significant in datapath dominated processors. For example, the current consumption of

the multiply instruction in DSPs will be far greater than the current consumption of other

instructions. In such cases a simple model like Equation 6-1 will have significant error.

The following second order model is proposed.

Let Ck (k e [0, K- 1]) denote K energy differentiated instruction classes in a proces-

sor. Energy differentiated instruction classes are partitions of the instruction set such that

the average current consumption of any a class is significantly different from that of

another class and the current variation within a class is small. Class partitions can also be

done on the basis of different cycles (e.g., instruction, data access, etc.). Let ck denote the

fraction of total cycles in a given program that can be attribute to instructions/cycles in the

class Ck, i.e., Eck = 1 . The second order current consumption is estimated as
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K-1

I(Vdd,) = Io(Vdd,J) Z WkCk (6-2)
k==O

where wk are a set of weights. Let W represent the vector [wo, wl, .., wK-1]. Let Pn

(n e [0, N - 1]) represent a set of N benchmark programs, Cn denote the cycle fractions

vector for program Pn, i.e., [cn , c ... , c I ] and In denote its average current con-

sumption. Based on Equation 6-2, we can express the current vector I in the following

form.

I = IO(Vdd,J)CW (6-3)

where I is the average current [Io, I1, ..., IN-I] for the N programs, C is an N x K matrix

with C as the nth row. The weights can be solved for in a least mean square sense using

the pseudo-inverse

1 -T
W (C) C I (6-4)

I0 ( VddP

If the instruction classes are a valid energy differentiated partition, the weighting vector W

will reflect the energy differentiation. The maximum current prediction error will also go

down considerably.

On the StrongARM SA- 1100, we partitioned the cycles into 4 classes - (i) Instruction,

(ii) Sequential memory access (accesses which are related to previous ones) (iii) Non

sequential accesses, and, (iv) Internal cycles. Current measurements were done for six

benchmark programs running at all possible frequency and voltage combinations. The

weighting vector is shown in Table 6-1. The average current drawn at each operating fre-

quency of the StrongARM is shown in Figure 6-8. The StrongARM operates at 11 discrete

frequency levels. The minimum operating voltage required is also shown and is almost

linear with frequency. In fact, the normalized operating voltage and frequency are related

as

Vdd = 0.66f+ 0.33 (6-5)

where Vdd andfare the normalized to their respective maximum values.
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Figure 6-8: Average current and supply voltage at each operating frequency of the
StrongARM SA- 1100

The weighting factors can be interpreted as follows. For programs where instruction

cycles and non-sequential memory accesses dominate, the current consumption is higher

than the average current at that operating point. Internal cycles and sequential memory

access dominated programs will have a lower than average current consumption. The cur-

rent prediction error with a second order model can be reduced to less than 2%. The

advantage is that this accuracy comes for free. No elaborate instruction level profiling is

required. Such cycle counts as the ones shown in Table 6-1 are easily obtained using sim-

ulators/debuggers available with standard processors. Figure 6-9 shows the overall

improvement of current prediction accuracy on 66 test points. It can be seen that the cur-

rent prediction is better in every case (the maximum error of 4.7% using a first order

model is reduced to 2.3%). The effectiveness of the current weighting scheme will become

more pronounced in processors having a wider variation in average current consumption.
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Table 6-1: Weighting factors for K= 4 on the StrongARM

Class Weight Value

Instruction w1  2.1739

Sequential memory access w2  0.0311

Non-sequential memory access w3  1.2366

Internal cycles w4 0.8289
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Figure 6-9: First and second order model prediction errors

6.4 Leakage Energy Measurement

6.4.1 Principle

The power consumption of a subroutine executing on a microprocessor can be macro-

scopically represented as

Pto =Pddyn stat CLVdd f+ Vddleak (6-6)

where Ptot is the total power, which is the sum of the static and dynamic components, CL is

the total average capacitance being switched by the executing program per clock cycle,

and f is the operating frequency (assuming that there are no static bias currents in the
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microprocessor core) [9]. Let us assume that a subroutine takes At time to execute. This

implies that the energy consumed by a single execution of the subroutine is

E = P At = CV 2  (6-7)tot tot tot dd + VddleakAt(6)

where Cot, is the total capacitance switched by executing subroutine. Clearly, if the execu-

tion time of the subroutine is changed (by changing the clock frequency), the total

switched capacitance, Ctot, remains the same. Essentially, the integrated circuit goes

through the same set of transitions except that they occur at a slower rate. Therefore, if we

execute the same subroutine at different frequencies, but at the same voltage, and measure

the energy consumption we should observe a linear increase as the execution time

increased, with the slope being proportional to the amount of leakage.

6.4.2 Observations

The subroutine chosen for execution was the decimation-in-time Fast Fourier Trans-

form (FFT) algorithm because it is a standard, computationally intensive, DSP operation.

The microprocessor, therefore, runs at maximum 'horsepower'. The execution time for a

N = 1024 point FFT on the StrongARM is a few tenths of a second and scales as

O(NlogN). To obtain accurate execution time and stable current readings, the FFT rou-

tine was run a few hundred times for each observation. A total of eighty different data

points corresponding to different supply voltages between 0.8 V and 1.5 V and operating

frequencies between 59 MHz and 206 MHz were compiled.

Figure 6-10 illustrates the implications of Equation 6-7. When the operating frequency

is fixed and the supply voltage is scaled, the energy scales almost quadratically. On the

other hand, when the supply voltage is fixed and the frequency is varied the energy con-

sumption decreases linearly with frequency (i.e., increases linearly with the execution

time) as predicted by Equation 6-7. Not all frequency and voltage combinations are possi-

ble. For example the maximum frequency of the StrongARM is 206 MHz and it requires a

minimum operating voltage of 1.5 V. The line across the surface plot demarcates the pos-

sible operating regions from the extrapolated ones (i.e., the minimum operating voltage

for a given frequency).
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Figure 6-10: FFT energy consumption

We can measure the leakage current from the slope of the energy characteristics, for

constant voltage operation. One way to look at the energy consumption is to measure the

amount of charge that flows across a given potential. The charge attributed to the switched

capacitance should be independent of the execution time, for a given operating voltage,

while the leakage charge should increase linearly with the execution time. Figure 6-11

shows the measured charge flow as a function of the execution time for a 1024 point FFT.

The amount of charge flow is simply the product of the execution time and current drawn.

As expected, the total charge consumption increases almost linearly with execution time

and the slope of the curve, at a given voltage, directly gives the leakage current at that

voltage.

The dotted lines are the linear fits to the experimental data in the minimum mean-

square error sense. At this point it is worthwhile to mention that the term "leakage current"

has been used in an approximate sense. Truly speaking, what we are measuring is the total

static current in the processor, which is the sum of leakage and bias currents. However, in

the SA-l 100 core, the bias currents are small and most of the static currents can be attrib-

uted to leakage. This assertion is further supported by the fact that the static current we

measure has an exponential behavior as shown in the next section.
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From the BSIM2 MOS transistor model [80], the sub-threshold current in a MOSFET

is given by

(VG- VS- VTHO-YVS+TVDS) D

'sub = Ae n'VT I _ e ? (6-8)

where

A = go Co - V2 e (6-9)
eff

and VT is the thermal voltage, VTHO is the zero bias threshold voltage, y' is the linearized

body effect coefficient, '1 is the Drain Induced Barrier Lowering (DIBL) coefficient and

VO VS and VDS are the usual gate, source and drain-source voltages respectively. The

important point to observe is that the subthreshold leakage current scales exponentially

with the drain-source voltage.
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Figure 6-11: FFT charge consumption

The leakage current at different operating voltages was measured as described earlier,

and is plotted in Figure 6-12. The overall microprocessor leakage current scales exponen-

tially with the supply voltage. Based on these measurements the following model for the

overall leakage current is proposed for the microprocessor core,

121



Vdd

'leak = JOen VT (6-10)

where 10 = 1.196 mA and n = 21.26 for the StrongARM SA-1100.
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6.4.3 Explanation of Exponential Behavior

The exponential dependence of the leakage current on the supply voltage can be attrib-

uted to the DIBL effect. Consider the stack of NMOS devices shown in Figure 6-13. Equa-

tion 6-8 suggests that for a single transistor, the leakage current should scale exponentially

with VDS = VDD because of the DIBL effect. However since the ratio VDS / VT is larger

than 2, the term inside the brackets of Equation 6-8 is almost 1. It has been shown in [81]

that this approximation is also true for a stack of two transistors. With three or more tran-

sistors, the ratio VDS / VT for at least the lowest transistor becomes comparable to or even

less than 1. Therefore, the term inside the bracket of Equation 6-8 cannot be neglected for

such cases. The leakage current progressively decreases as the number of transistors in the

stack increases and for a stack of more than three transistors the leakage current is small

and can be neglected. It has further been shown in [81] that the ratio of the leakage cur-

rents for the three cases shown in Figure 6-13 can be written as
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I I VDD

Il ':12:113 = 1.8e nT: 1.8 :1I (6-11)
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Figure 6-13: Effect of transistor stacking
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Figure 6-14: Static, dynamic and total current

Therefore, the leakage current of a MOS network can be expressed as a function a sin-

gle MOS transistor (by accounting for the signal probabilities at various nodes and using

the result of Equation 6-11). If the number of stacked devices is more than three, the leak-

age current contribution from that portion of the circuit is negligible. If there are three

transistors stacked such that two of them are 'OFF' and one is 'ON' then the leakage anal-
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ysis is the same as the stack of two 'OFF' transistors. For parallel transistors, the leakage

current is simply the sum of individual transistor leakages. A similar argument holds for

PMOS devices. Since, the leakage current of a single MOS transistor scales exponentially

with VDD, using the above arguments, we can conclude that the total microprocessor leak-

age current also scales exponentially with the supply voltage.

6.4.4 Separation of Current Components

Table 6-2: Leakage current measurements

VDD Ileak (mA) Error

(V) Measured Model (%)

1.50 20.41 20.10 1.50

1.40 16.35 16.65 -1.84

1.30 13.26 13.80 -4.04

1.20 12.07 11.43 5.27

1.10 9.39 9.47 -0.87

1.00 7.96 7.85 1.40

0.90 6.39 6.53 -1.70

Table 6-2 compares the measured leakage current with the values predicted by Equa-

tion 6-10. The maximum percentage error measured was less than 6% over the entire oper-

ating voltage range of the StrongARM, which suggests a fairly robust model. Based on the

leakage model described by Equation 6-10, the static and dynamic components of the

microprocessor current consumption can be separated as shown in Figure 6-14. The

standby current of the StrongARM in the "idle" mode at 1.5 V is about 40 mA. This is not

just the leakage current but also has the switching current due to the circuits that are still

being clocked. On the other hand, this technique neatly separates the pure leakage compo-

nent (assuming negligible static currents) from all other switching currents.For low thresh-

old microprocessors like the StrongARM, it can seen that the leakage current is quite

substantial (about 10% in this case). The leakage current, as a fraction of the total current,

can be expressed as
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Vdd

n VT

Pleak 1 0 e (6-12)
Vdd

Ie + kVd

where k Vaa models the switching current, has a very interesting profile. The leakage

component, as a fraction of the total current, can be shown to have a minima at

Vdd = nc VT, if we differentiate Equation 6-12 and solve for extrema. For the Stron-

gARM, this is about 1.2 V as shown in Figure 6-15. The fact that such a minima occurs in

measured current profiles further validates our model.
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Figure 6-15: Leakage current fraction

6.4.5 Energy Trade-Offs

As the supply voltages and thresholds are reduced, system designers have to pay

increasing attention to leakage currents. For the StrongARM, at maximum duty cycle and

minimum voltage (for a given frequency), the leakage energy is about 10%. However, the

leakage energy rises exponentially with supply voltage and decreases linearly with fre-

quency as shown in Figure 6-16. Therefore, operating at a voltage, above the minimum

possible, for a given frequency, is not advisable. In fact, if the operating voltage is suffi-
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ciently high for the particular operating frequency, leakage energy can start to dominate

switching energy as shown in Figure 6-16!
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Figure 6-16: FFT energy components

For low duty-cycle systems, the overall energy consumption becomes increasingly

dominated by leakage effects. The fixed task consumes a certain amount of switching

energy per execution while the system leaks during the idle mode between tasks. Exten-

sive clock gating techniques, such as those present in the StrongARM, reduce the unneces-

sary switching energy in the "idle" mode. The StrongARM also has a "sleep" mode where

the supply voltage is reduced to zero for most circuits, and the processor state is stored.

This significantly reduces the leakage problem. However, reverting to sleep mode

between duty cycles may incur a lot of overhead (in terms of cycles and energy) or may

not be supported by the target processor. Figure 6-17 illustrates the effect of duty cycle on

the energy consumption of a system.
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Figure 6-17: Low duty cycle effects

Suppose the system has to do an FFT every T seconds such that the execution time for

the FFT is Ti T. After computing the FFT, the processor enters "idle" mode and switch-

ing activity is reduced by clock gating techniques. Leakage on the other hand is unaf-

fected. Figure 6-17 (b) plots the ratio of total energy consumption to the switching energy,

as a function of duty cycle. For a low duty cycle of 10% the ratio is about two for our FFT

program, i.e., almost twice the amount of energy is used up for the same task compared to

the 100% duty cycle case.
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6.5 JouleTrack
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The estimation techniques described in the previous sections were implemented in a

web-based tool called JouleTrack. The tool is available at http://dry-martini.mit.edu/Joule-

Track. The broad approach in the tool is summarized in Figure 6-18. The user uploads his

C source code. The webserver uses Common Gateway Interface (CGI) scripts to create a

temporary workarea for the user. His programs are compiled and linked with any standard

C libraries. The user also specifies any command line arguments that the program might

need along with a target operating frequency. Compiler optimization options are also

available. The user can choose the current prediction model. Compile/link time errors are

reported back by the CGI to the user. If no errors exist the program is executed on an ARM

simulator which produces the program outputs (which the user can view), assembly listing

(which can also be viewed) as well as run-time statistics like execution time, cycle counts,

etc. These statistics are fed into an estimation engine which computes the energy profile

and charts the various energy components. Important browser screenshots for the overall

process are depicted in Appendix D.

Figure 6-19 shows the timing estimation engine used within Jouletrack. Energy is esti-

mated as the product of execution time, average current and power supply voltage. The
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average current is estimated using the methodology described in the previous sections. To

measure the execution time, a cycle-accurate simulator for the processor core is used. A

memory map specifies the memory latency and the addressable memory space of the sys-

tem. If no memory map is specified, a default memory map (with 32 bit addressable mem-

ory space and uniform access time is used). The timing engine also requires the operating

frequency for the processor. The functionality of the simulator core can be enhanced by

adding various modules (e.g., profilers, tracers, co-processor and OS models) using a

Remote Debug Interface (RDI).

Executable Image
mory Map Clock Speed

nory Timing

1/1 1/1 Cycle Accurate RDI
100/100 100/100 Simulation Core --

150/100 150/100

Simulation
Output

Figure 6-19: Timing estimation engine within Jo
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6.6 Summary of Contributions

Based on experiments done on the StrongARM and Hitachi processors we conclude

that the common overheads present across instructions result in the variation in current

consumption of different instructions being small. The variation in current consumption of

programs is even smaller (less than 8% for the benchmark programs that we tried). There-

fore, to a first order, we can assume that current consumption depends only on operating

frequency and supply voltage and is independent of the executing program. A second

order model that uses energy differentiated instruction classes/cycles is also proposed and

it was shown that the resulting current prediction error was reduced to less than 2%. A
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methodology for separating the leakage and switching energy components is also dis-

cussed. The proposed leakage current model has less than 6% error. Based on our experi-

ments we conclude that as supply voltages and thresholds scale, leakage (static)

components will become increasingly dominant. For the StrongARM, at 100% duty cycle,

the leakage energy is about 10% and increases exponentially with supply voltage and

decreases linearly with operating frequency. The proposed techniques were implemented

in a web-based software energy estimation tool called JouleTrack.
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Chapter 7

Energy Scalable Software

So far we have proposed operating system techniques to improve system energy effi-

ciency and a methodology to quantify software energy consumption. From the discussion

in Chapter 6, it is clear that since to a first order program current consumption is indepen-

dent of what instructions are executing, traditional compiler optimizations cannot signifi-

cantly improve the energy efficiency other than by reducing the execution time. Reducing

execution time (i.e., improving performance) is what compiler optimizations do. It is fair

to conclude that energy scaling is similar to time scaling in software. Therefore, rather

than concentrating on compiler optimizations, we discuss algorithmic techniques and

architectural hooks that can be exploited to enhance the energy efficiency of software.

It is highly desirable that we structure our algorithms and systems in such a fashion

that computational accuracy can be traded off with energy requirement. At the heart of

such transformations lies the concept of incremental refinement [82]. Consider the sce-

nario where an individual is using his laptop for a full-motion video telephone application.

Based on the current battery state, overall power consumption model and estimated dura-

tion of the call, the system should be able to predict its uptime [83]. If the battery life is

insufficient, the user might choose to trade-off some quality/performance and extend the

battery life of his laptop.

Similarly in the distributed sensor network scenario being used to monitor seismic

activity from a remote basestation, it would be highly desirable to have energy scalable

algorithms and protocols running on the sensor network. The remote basestation should

have the capability to dynamically reduce energy consumption (to prolong mission life-

time if uninteresting events have occurred) by altering the throughput and computation

accuracy. This type of behavior necessitates algorithmic restructuring so that every com-

putational step leads us incrementally closer to the output.

In this chapter, we explore algorithmic techniques for efficient energy scalable compu-

tation [84]. A large class of algorithms, as they stand, do not render themselves to such
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Energy-Quality (E-Q) scaling. Using simple modifications, the E-Q behavior of the algo-

rithm can be modified such that if the available computational energy is reduced, the pro-

portional hit in quality is minimal'. However, one must ensure that the energy overhead

attributed to the transform is insignificant compared to the total energy consumption. It

may be possible to do a significant amount of preprocessing such that the E-Q behavior is

close to perfect, but we might end up with a situation where the overall energy consump-

tion is higher compared to the unscalable system. This defeats the basic idea behind hav-

ing a scalable system, viz., overall energy efficiency. We also briefly explore the power

savings possible from exploiting parallelism in processors.

7.1 Energy Scalability Example

Consider the simple power series shown in Equation 7-1. Such power series are fre-

quently encountered in Taylor expansions used to evaluate transcendental functions.

y = f(x) = l+kx+k2x 2 +...+k (7-1)

A standard implementation of the algorithm would have an N-step loop that would

multiply the current value of the computed power of x with x and accumulate the result in

y. Let us assume we have to computef(2) for N= 100. If the kg's are similar, even after N-

1 steps in the loop, the value accumulated in y would be approximately 50% off from the

final value since 2 N/f(2) 1 1/2. In terms of E-Q performance, the algorithm does not do

well. Assuming that the amount of energy required to evaluatej(2) on a processor is Ema,

and that each step dissipates the same amount of energy (ignoring inter-instruction effects,

etc.), we have about 50% computational accuracy after dissipating (l-1/N).Ema energy.

However, if we had to evaluate f(0.5), the most significant terms would occur in the first

few steps in the loop and the E-Q behavior would be better. Based on the above analysis,

we can conclude that transforming the algorithm, as shown in Table 7-1, will result in the

most significant computations occurring early in the loop, as a result of which the compu-

tational energy could be reduced, without taking a significant hit in accuracy.

1. Since energy and time scaling are very similar, one could use similar arguments and transformations
for Time-Quality scaling.
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Figure 7-1 shows the E-Q graphs for the original and modified power series algorithm.

It captures the all the basic ideas.
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Figure 7-1: E-Q performance of power series algorithm

Table 7-1: Power series computation

Original Algorithm Transformed Algorithm

xpowi = 1.0; y = 1.0; if( x>1.0 ) {
for( i=1; i<N; i++ ) { xpowi = pow(x,N);
xpowi *= x; y = k[N]*xpowi+l;
y += xpowi*k[i]; for( i=N-1; i>0; i-- ) {

xpoWi /= X;
y += xpowi*k[i];

I
else { // original algo

- Data Dependence - E-Q behavior is, in general, data dependent. It is possible to

come up with pathological cases where the transformed algorithm would have a E-Q

behavior very close to the original. However, from an energy efficiency perspective,

its the average E-Q performance that matters.

- Concavity - It is desirable to have an E-Q graph above the baseline (E = Q on a nor-

malized scale). This would imply that marginal returns in accuracy from successive

units of computational energy is diminishing. Therefore, if the available energy is
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reduced by 10%, the quality degradation is less that 10%, the lesser, the better.

- Transformation Overhead - There is an energy overhead associated with the trans-

form which should be insignificant compared to the total energy

7.2 Formal Notions for Scalability

We now formalize the notion of a desirable E-Q behavior of a system. The E-Q graph

of an algorithm is the function, Q(E), representing some quality metric (e.g., mean-square

error, peak signal-to-noise ratio, etc.) as a function of the computational energy

0 E! Emax. There may exist situations where the notion of a quality metric is unclear.

However, in this paper, we are dealing with signal processing algorithms where the notion

of a quality metric is usually unambiguous. Consider two algorithms (I and II) that per-

form the same function. Ideally, from an energy perspective, II would be a more efficient

scalable algorithm compared to I if

Q1 (E) > Q1 (E) VE (7-2)

In most practical cases, Equation 7-2 will not hold over all energy values. As shown in

Table 7-1, there might be a preprocessing overhead as a result of which the maximum

energy consumptions might be different for the two cases (i.e., Emax, Ii> Emax, I). Never-

theless, as long as the Equation 7-2 holds over a significant range of computational ener-

gies, overall efficiency is assured.

Let us assume that there exists a quality distribution, pg(x), i.e., from system statistics

we are able to conclude that the probability that we would want a quality x is pQ(x). A typ-

ical quality distribution is shown in Figure 7-2. The average energy consumption per out-

put sample can then be expressed as

E = JpQ(x)E(x)dx (7-3)

where E(Q) is the inverse of Q(E). When the quality distribution is unknown, we would

like the E-Q behavior to be maximally concave downwards (with respect to the energy

axis), i.e.,

2

aE2 0 (7-4)
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The E-Q behavior suggested by Equation 7-4 is not always attainable globally, i.e., across

0 E Emax, as we will see subsequently. However, on an average case, for a given

energy availability, E, we would like the obtainable quality Q(E) to be as high as possible.

100%

yQI Algorithm II
Quality'
Distribution

- - - - - Algorithm I

E Energy (E) Em 1 Eli

Figure 7-2: E-Q formal notions

7.3 Energy Scalable Transformations

We now demonstrate simple transformations that can significantly improve the E-Q

behavior of an algorithm using three popular classes of signal processing applications - fil-

tering, image decoding and beamforming.

7.3.1 Filtering Application

Finite Impulse Response (FIR) filtering is one of the most commonly used DSP opera-

tions. FIR filtering involves the inner product of two vectors one of which is fixed and

known as the impulse response, h[n], of the filter [85]. An N-tap FIR filter is defined by

Equation 7-5.

N-1

y[n] = Zx[n-k]h[k] (7-5)

k=0

Various low power and energy efficient implementations of the FIR filter have been

proposed and implemented [86]. The approximate processing techniques proposed in [82]
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reduce the total switched capacitance by dynamically varying the filter order based on sig-

nal statistics.

x[n+1] x[n+1]

Reorder Sorted
Index Coeffs

x[n] * h[O] x[n] h[p]

x[n-1] , h[1] x[n-1] h[q]

x[n-2] * h[2] x[n-2] _J h[r]

* h[-1]x~n--1]h[s]

y[n] y[n]

Original I Transformed

Figure 7-3: FIR filtering with coefficient reordering

When we analyze the FIR filtering operation from a pure inner product perspective, it

simply involves N multiply and accumulate (MAC) cycles. For desired E-Q behavior, the

MAC cycles that contribute most significantly to the output y[n] should be done first. Each

of the partial sums, x[k] h [ n - k], depends on the data sample and therefore its not appar-

ent which ones should be accumulated first. Intuitively, the partial sums that are maximum

in magnitude (and can therefore affect the final result significantly) should be accumulated

first. Most FIR filter coefficients have a few coefficients that are large in magnitude and

progressively reduce in amplitude. Therefore, a simple but effective most-significant-first

transform involves sorting the impulse response in decreasing order of magnitude and

reordering the MACs such that the partial sum corresponding to the largest coefficient is

accumulated first as shown in Figure 7-3. Undoubtedly, the data sample multiplied to the

coefficient might be so small as to mitigate the effect of the partial sum. Nevertheless, on

an average, the coefficient reordering by magnitude yields a better E-Q performance than

the original scheme.
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Figure 7-4: E-Q graph for original and transformed FIR filtering

Figure 7-4 illustrates the scalability results for a low pass filtering of speech data sam-

pled at 10 KHz using a 128-tap FIR filter whose impulse response (magnitude) is also out-

lined. The average energy consumption per output sample (measured on the StrongARM

SA- I100 operating at 1.5 V power supply and 206 MHz frequency) in the original scheme

is 5.12 gJ. Since the initial coefficients are not the ones with most significant magnitudes

the E-Q behavior is poor. Sorting the coefficients and using a level of indirection (in soft-

ware that amounts to having an index array of the same size as the coefficient array), the

E-Q behavior can be substantially improved. It can be seen that fluctuations in data can

lead to deviations from the ideal behavior suggested by Equation 7-4, nonetheless overall

concavity is still apparent. The energy overhead associated with using a level of indirec-

tion on the SA-I100 was only 0.21 pJ which is about 4% of the total energy consumption.

Figure 7-5 shows the ratio of the energy consumed in the unsorted system to the sorted

system for a given quality.

In FIR filtering, the input data samples are unknown a priori. The partial sum which is

most significant is not completely deterministic until all of them have been computed.

More sophisticated schemes could involve sorting both the data samples and the coeffi-

cients and using two levels of indirection to perform the correct inner product first by

picking up the partial sum corresponding to the largest coefficient, then the one corre-
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sponding to the largest data sample and so on. The overhead associated with such a

scheme involves real time sorting of incoming samples. Assuming that we have a pre-

sorted data array at time n, the next data sample x[n +1] can be inserted into the right posi-

tion using a binary search type technique which can be done in O(logN). The scalability

gains might not be substantial compared to the simpler scheme discussed before. How-

ever, in applications such as autocorrelation which involves an inner product of a data

stream with a shifted version of itself, sorting both the vectors in the inner product would

yield significant improvements in E-Q behavior.
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Figure 7-5: Energy inefficiency of unsorted system compared to the sorted case

7.3.2 Image Decoding Application

The Discrete Cosine Transform (DCT), which involves decomposing a set of image

samples into a scaled set of discrete cosine basis functions, and the Inverse Discrete

Cosine Transform (IDCT), which involves reconstructing the samples from the basis func-

tions, are crucial steps in digital video [87]. The 64-point, 2-D DCT and IDCT (used on

8x8 pixel blocks in of an image) are defined respectively as

7 7

X[U' u~~ V]-(UIII(2i + I)un ((2j+ I)vn
X[u,v] = ] x[i,I]cos( 16U cos( 16 (7-6)

i= 0j= 0
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((2i + [)u XVC(2j+ 1)v) (
x[i,j] = 1 C[u]C[v]X[uv]COS 16 Cos 16

u = Ov = 0

DCT is able to capture the spatial redundancy present in an image and the coefficients

obtained are quantized and compressed. Most existing algorithms attempt to minimize the

number of arithmetic operations (multiplications and additions) usually relying on the

symmetry properties of the cosine basis functions (similar to the FFT algorithm) and on

matrix factorizations [88]. The E-Q behavior of these algorithms are not good as they have

been designed such that computation takes a minimal yet constant number of operations.

The Forward Mapping-IDCT (FM-IDCT) algorithm, proposed in [89], can be shown to

have an E-Q performance that is much better than other algorithms. The algorithm is for-

mulated as follows

xoo Co Co Co
0,0 0,1 8,8

01 - 0 1 + + X8, 8 co (7-8)

_C 64  C64  C64

where xi, are the reconstructed pels, Xe j are the input DCT coefficients, and [c4] is the

64x64 constant reconstruction kernel. The improved E-Q behavior of the FM-IDCT algo-

rithm can be attributed to the fact that most of the signal energy is concentrated in the DC

coefficient (XO, o) and, in general, in the low-frequency coefficients as shown in Figure 7-

6. Instead of reconstructing each pixel by summing up all its frequency contributions, the

algorithm incrementally accumulates the entire image based on spectral contributions

from the low to high frequencies.

Figure 7-7 and Figure 7-8 illustrate the behavior of FM-IDCT algorithm. It is obvious

from Figure 7-7 that almost 90% image quality can be obtained with as little as 25% of the

total energy consumption. In terms of the overhead requirement, the only change that is

required is that we now need to store the IDCT coefficients in a transposed fashion (i.e.,

all the low frequency components first, and so on).
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7.3.3 Classification using Beamforming

Beamforming algorithms can be used to aggregate highly correlated data from multi-

ple sensors into one representative signal. The advantages of beamforming is twofold.

First, beamforming is used to enhance the desired signal while interference or uncorre-

lated sensor noise is reduced. This leads to an improvement in detection and classification

of the target. Second, beamforming reduces redundant data through compression of multi-

ple sensor data into one signal. Figure 7-9 shows a block diagram of a wireless network of

M sensors utilizing beamforming for local data aggregation.

s [n]
wi[n]

s2[n]
\ s2[n]\w 2 [n] y[n]

To
Basestation

sM[n]
wM[n]

Data received from neighbouring sensors

Figure 7-9: Beamforming for data aggregation

We have studied various beamforming algorithms that fall under the category of "blind

beamforming" [90]. These beamformers provide suitable weighting functions, wi(n), to

satisfy a given optimality criterion, without knowledge of the sensor locations. In this sec-

tion we will show energy scalability for one particular blind beamforming algorithm, the

Least Mean Squares (LMS) beamforming algorithm. The LMS algorithm uses a minimum

mean squared error criterion to determine the appropriate array weighting filters. This

algorithm is considered an optimum algorithm, and is highly suitable for power aware

wireless sensor networks [91].

We will now show how algorithmic transformations can be used to improve the E-Q

model for LMS beamforming1 . Figure 7-10 shows our testbed of sensors for this example.

We have an array of 6 sensors spaced at approximately 10 meters, a source at a distance of

1. The author would like to acknowledge Alice Wang of MIT for the beamforming experiment.
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10 meters from the sensor cluster, and interference at a distance of 50 meters. We want to

perform beamforming on the sensor data, measure the energy dissipated on the Stron-

gARM SA-1100, calculate the matched filter output (quality), and provide a reliable

model of the E-Q relationship as we vary the number of sensors in beamforming.

B 01

Interference 2
U2

Source 03
Trajectory Sensor

A 0 Cluster

* 5

50m

Figure 7-10: Sensor testbed

In Scenario 1, we will perform beamforming without any knowledge of the source

location in relation to the sensors. Beamforming will be done in a pre-set order

<1,2,3,4,5,6>. The parameter we will use to scale energy is n, the number of sensors in

beamforming. As n is increased from 1 to 6, there is a proportional increase in energy. As

the sensor moves from location A to B we take snapshots of the E-Q curve, shown in Fig-

ure 7-11. This curve shows that with a preset beamforming order, there can be vastly dif-

ferent E-Q curves, which leads to a poor Energy-Quality scalability. When the source is at

location A, the beamforming quality is only at maximum when sensors 5 and 6 are beam-

formed. Conversely, when the source is at location B, the beamforming quality is close to

maximum after beamforming two sensors. Therefore, for this setup, since the E-Q curve is

highly data dependent, an accurate E-Q model for LMS beamforming is not possible.
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Figure 7-11: E-Q snapshot for Scenario 1

12

An intelligent alternative is to perform some initial pre-processing of the sensor data to

determine the desired beamforming order for a given set of sensor data. Intuitively, we

want to beamform the data from sensors which have higher signal energy to interference

energy. Using the most-significant-first transform, which was proposed earlier, the E-Q

scalability of the system can be improved. To find the desired beamforming order, first the

sensor data energy is estimated. Then the sensor energies are sorted using a quicksort

method. The quicksort output determines the desired beamforming order. Figure 7-12

shows a block diagram of the transformed system.

M Sens(
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)r Data Energy
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Figure 7-12: "Sort by significance" preprocessing

mforming
er
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Figure 7-13: E-Q snapshot for Scenario 2

In Scenario 2, we apply the most-significant-first transform to improve the E-Q curves

for LMS beamforming. Figure 7-13 shows the E-Q relationship as the source moves from

location A to B. In this scenario, we can ensure that the E-Q graphs are always concave,

thus improving E-Q scalability. However, there is a price to pay in computation energy. If

the energy cost required to compute the correlation and quicksort was large compared to

LMS beamforming, then the extra scalability is not worth the effort. However, in this case,

the extra computational cost was 8.8 mJ of energy and this overhead is only 0.44% of the

total energy for LMS beamforming (for the 2 sensor case).

7.4 Energy Scalability with Parallelism - Pentium Example

Parallelism results in lower power consumption due to the classic area power trade-off

[10]. Doing operations in parallel implies more operations can be done in the same avail-

able time. If throughput is kept constant, each of the parallel processing blocks can be exe-

cuted at a reduced frequency and voltage and the overall power is saved. In practice,

having parallel datapaths increases the effective switched capacitance and interconnect

overheads. In an actual adder implementation in [10], it was shown that while the

switched capacitance increased by a factor of 2.15, the frequency was halved, and the volt-

age could be reduced by a factor of 1.7, resulting in an actual power savings of 64% from

duplicating hardware.

144



SSE Registers

xmmO

xmml

xn-zm2

xmm3

xmm4

xmm5

xmm6

xmm7

128 bits

New SSE data type

a3  a2 a a0

Op Op OP op

b,3 f 2 Ib, b0o

4.4.
a30Pb 31a2opb 21alopbl a0opb

128 bits

Figure 7-14: Pentium III SIMD registers and data type

The Pentium III SSE (Streaming SIMD Extensions) instructions allow for SIMD1

operations on four single-precision floating-point numbers in one instruction as shown in

Figure 7-14 [100]. We implemented some DSP library programs [101] using non-SIMD as

well as the SIMD instructions. Table 7-2 shows that the average power savings possible

with a combination of DVS and SIMD strategies can be almost 73%. These routines fre-

quently appear in signal processing and multimedia applications. Based on the reduction

in execution time, the clock frequency is reduced such that the latency constraints are met

(i.e., throughput is still the same). The voltage reduction has been predicted using Equa-

tion 6-5. Based on the modified voltage and frequency, power savings have been esti-

mated. It is worthwhile to note that the theoretical maximum power reduction is (1 - 1/43)

= 98.4%. However, unaligned accesses, and data rearrangements along with certain inher-

ently non-parallelizable operations result in the obtainable power savings being 73% on an

average for these programs. In practice, not all frequency levels are available and there-

1. To address the relentless demand for more computational power, microprocessor vendors have added
Single Instruction Multiple Data (SIMD) capabilities and instructions to their microprocessor
architectures. Most of these extensions use packed data types (such as bytes, word, quadword) and
do not add new registers to the processor state. Examples include the Matrix Math Extensions
(MMX) for the Intel Pentium processors [92], Multimedia Acceleration eXtensions (MAX-2) for
the HP PA-RISC 2.0 [93], 3DNow! extensions to AMD K6 [94], Visual Instruction Set (VIS) for
the UltraSparc [95], MIPS Digital Media Extensions and PowerPC's AltiVec technology. Although
the available instructions vary, the basic idea of exploiting micro-SIMD level parallelism is com-
mon to all [96].
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fore frequency quantization would lead to operating points above the optimum resulting in

some reduction in power savings. Voltage conversion inefficiencies and the fact that oper-

ating voltage is not scaled in the entire processor but just the core will also reduce the

power savings further.

Table 7-2: Power savings from parallel computation

Time (ms) Normalized (Vdd,f) Power Savings
Program

Normal SIMD f Vdd M)

dot 0.0022 0.0009 0.41 0.60 85.3

fir 0.3700 0.1700 0.46 0.63 81.6

exp 0.0480 0.0260 0.54 0.69 74.4

lms 1.2800 1.0900 0.85 0.89 32.2

fft 5.8000 1.7000 0.29 0.52 92.0

Average Power Reduction (%) 73.1

7.5 Summary of Contributions

We introduced the notion of energy scalable computation in the context of signal pro-

cessing algorithms on general purpose processors. Algorithms that render incremental

refinement of a certain quality metric such that the marginal returns from every additional

unit of energy is diminishing are highly desirable in embedded applications. Using three

broad classes of signal processing algorithms we demonstrated that using simple transfor-

mations (with insignificant overhead) the Energy-Quality (E-Q) behavior of the algorithm

can be significantly improved. In general, we concluded that doing the most significant

computations first enables computational energy reduction without significant hit in out-

put quality. Finally, an energy scalable approach to computation using a combination of

dynamic voltage scaling and SIMD style parallel processing was demonstrated on the

Pentium III processor. Average power savings of about 73% were obtained on DSP library

functions.
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Chapter 8

Conclusions

This thesis is an exploration of software techniques to enhance the energy efficiency

and therefore lifetime of energy constrained (mostly battery operated) systems. Such digi-

tal systems have proliferated into every aspect of our lives in the form of cellular phones,

PDAs, laptops, MP3 players, cameras, wireless sensors, etc. Form factor, weight and bat-

tery life of these systems are often as important as the functionality offered by them.

While significant research has been done on circuit design techniques for low power con-

sumption, software optimizations have been relatively unexplored. This can partly be

attributed to the fact that dedicated circuits are orders of magnitude more energy efficient

that general purpose programmable solutions. Therefore, if energy efficiency was crucial,

system designer opted for an Application Specific Integrated Circuit (ASIC). As such the

only software power management issues that have been considered are compiler optimiza-

tions. The power benefits from pure compiler optimizations fade in contrast to the ones

obtained from dedicated hardware implementations. Further, most of these optimizations

are essentially performance optimizations as well.

So why should we bother with software energy efficiency? The reason is two fold

- Technology Availability: Of late, a variety of low power general purpose processors

have entered the market and they offer sophisticated software controlled power man-

agement features such as dynamic voltage and frequency control, and a variety of

sleep slates. Operating systems, therefore, have a whole new optimization space

which they can exploit to improve the energy efficiency of the system.

- Flexibility Requirement: With constantly evolving standards and time-to-market

pressure, there is a definite bias in the industry towards programmable solutions.

Energy aware software techniques (beyond just compiler optimizations) are becom-

ing as crucial as energy efficient circuit design techniques.
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8.1 Contributions of this Thesis

We began our exploration with experiments involving dynamic voltage and frequency

control available on the StrongARM SA-1100 processor to quantify the expected energy

savings that can be obtained by exploiting the fact that power consumption depends qua-

dratically on supply voltage and linearly on operating frequency. We obtained workload

traces from different machines involved in a variety of tasks at different times of the day.

From these workload traces it was apparent that the processor utilization is in fact quite

low (on some machines the average was less than 10%). Therefore, substantial energy

benefits could be obtained by reducing operating voltage and frequency depending on

instantaneous processor utilization. However, this would involve a prior knowledge of the

processor utilization profile if we were to have no visible performance loss (by slowing

down the processor). We developed a simple adaptive workload filtering strategy to pre-

dict future workloads and showed that this scheme can perform really well as compared to

an oracle prediction. We demonstrated that energy savings by a factor of two to three can

be obtained by using our workload prediction scheme in conjunction with dynamic volt-

age and frequency scaling, with little performance degradation. We also defined a perfor-

mance hit metric to measure the instantaneous and average performance penalty from

misprediction and analyzed the effect of voltage and frequency update rates. Efficiency

losses attributed to discrete voltage and frequency steps were also quantified and were

shown to be within 10%.

Our workload prediction strategy can be characterized as a "best-effort" algorithm.

The logical next step was to analyze dynamic voltage and frequency scaling in the context

of real-time systems. We proposed the Slacked Earliest Deadling First (SEDF) scheduling

algorithm and showed that it is optimal in minimizing processor energy (using DVS) and

maximal lateness of a given real-time task set. Bounds on the possible energy savings,

from any real-time scheduling algorithm, using dynamic voltage and frequency control

were also derived. Similar results were also derived for static scheduling of periodic real-

time tasks using rate monotonic theory.

Most embedded systems spend a lot of time waiting for events to process. Idle power

management is in fact more important that active power management in such low duty
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cycle systems. Simple idle power management techniques already exist in most battery

operated systems that we use currently. Examples include simple time-out idle/sleep

mechanisms present in laptop screens, palmpilots, disk drives, etc. New processors and

electronic components support multiple sleep states. Standardization initiatives are on in

the form of the Advanced Configuration and Power Interface (ACPI) Specification. We

have demonstrated a shutdown scheme (using the tAMPS sensor node as an example)

using multiple meaningful sleep states in the system. The concept of energy gain idle time

threshold is introduced. A statistical shutdown scheme is developed that controls transi-

tions to a set of sleep states using these idle time thresholds. Simulations and actual hard-

ware implementations have demonstrated the efficacy of our schemes.

To quantify the efficacy of the active and idle power management schemes proposed,

we implemented some of them on the gAMPS sensor node. This involved porting a popu-

lar embedded operating system (eCos) to the node and adding a power management layer

to it. We demonstrated that over 50% active mode power reduction is possible for the

entire node using just DVS. Using a multiple shutdown scheme idle power savings were

shown to be as much as 97%. These savings could easily translate to an order of magni-

tude in battery life improvement depending on operational duty cycle and workload. We

also quantified the energy cost of various OS kernel functions. We demonstrated that most

function calls consume less than a few tens of gJoules of energy and therefore do not add

a substantial overhead while providing a lot of application support.

The other focus of this thesis was energy efficiency in the application layer. The first

step we took was to develop a framework for software energy estimation. Instruction cur-

rent profiling techniques already exist in literature but we found that in most processors

the current variation across instructions was not much. The variation in current consump-

tion of different programs was even smaller. Therefore, we proposed a macro energy esti-

mation technique and developed JouleTrack - a web based tool for software energy

estimation. The tool predicts software current consumption within 5% of actual measure-

ments and is an order of magnitude faster than elaborate instruction level analysis. Recog-

nizing that leakage energy is becoming a significant factor in processors today, we also

developed an elegant technique to separate leakage and switching energy components.

Our microprocessor leakage model can be explained from transistor subthreshold models.
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In an interesting study we demonstrated that it is possible for the leakage and switching

energy components of software to become comparable in high operating voltage or low

duty cycle scenarios.

An energy aware application can yield additional energy benefits and offer important

trade-offs between computational quality and energy. We proposed the notion of energy-

quality scalability in software. We demonstrated that using simple algorithmic transforms

it is possible to restructure computations in such a way so as to reduce the loss in compu-

tational quality given a reduction in energy availability. We observed that SIMD instruc-

tion capabilities could be exploited along with dynamic voltage and frequency control for

cubic reductions in power consumption (theoretically) with fixed latency requirements.

We demonstrated about 70% power reduction on the Pentium III.

8.2 Future Work

Energy efficiency of software systems is a rich research space. Novel features are con-

stantly being added to processors. In our work we could not consolidate all our ideas into

one overall system and demonstrate the energy efficiency attributed to each idea. For

example, while the StrongARM had dynamic voltage and frequency, it did not support

SIMD arithmetic. It will be interesting to have a complete system with dynamic voltage

and frequency control built into the operating system and scalable applications that exploit

algorithmic transformations and SIMD features of a given target platform for scalable

computation. Of particular interest would be the interplay of various energy saving tech-

niques with each other and the overall energy savings obtained.

The standby power management scheme that we have developed uses various sleep

states of the device. However, even if the device is in a given sleep state, leakage energy is

getting dissipated, unless the power supply is completely turned off. Processors such as

the Hitachi SH-4 increase the threshold voltage in the idle mode by biasing the substrate.

This results in exponential leakage reduction. Software control of substrate biasing and

power supply can hugely impact the leakage energy. Setting the inputs at various gates

within the circuit to particular values can also impact the overall leakage current while the

power supply is on. Software techniques to minimizing leakage energy would be another

important vector to explore.
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For software energy estimation it would be interesting to apply our macro estimation

methodology to datapath dominant systems such as DSPs and microcontrol units which

would possibly have a wider variation in instruction and program current consumption.

An automated approach to estimating the model parameter would be ideal. For instance, it

would be interesting to see if a set of 'training' programs could be run on a given target

platform, and based on current measurements, our second order model parameters could

be generated automatically.
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Appendix A

Operating System Energy
Characterization

Table A. 1 describes the timing overhead and average energy cost for various operating

system kernel calls on the [tAMPS sensor node. Key operations in the kernel were mea-

sured by using a simple test program which exercises the various kernel primitive opera-

tions. A hardware timer which drives the real-time clock, was used for these

measurements. This timer can be read with quite high resolution. For each measurement,

the operation was repeated a number of times. Time stamps were obtained directly before

and after the operation was performed. The data gathered for the entire set of operations

was then analyzed, generating average, maximum and minimum values. The sample vari-

ance (a measure of how close most samples are to the mean) was also calculated. The cost

of obtaining the real-time clock timer values was also measured, and was subtracted from

all measured times. The average energy cost was computed by multiplying the average

current consumption with the average estimated execution time. Most kernel functions can

be measured separately. In each case, a reasonable number of iterations are performed.

Where the test case involves a kernel object, for example creating a task, each iteration is

performed on a different object. There is also a set of tests which measures the interactions

between multiple tasks and certain kernel primitives. Most functions are tested in such a

way as to determine the variations introduced by varying numbers of objects in the sys-

tem. For example, the mailbox tests measure the cost of a peek operation when the mail-

box is empty, has a single item, and has multiple items present. In this way, any effects of

the state of the object or how many items it contains can be determined. There are a few

things to consider about these measurements. Firstly, they are quite micro in scale and

only measure the operation in question. These measurements do not adequately describe
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how the timings would be perturbed in a real system with multiple interrupting sources.

Secondly, the possible aberration incurred by the real-time clock is explicitly avoided. Vir-

tually all kernel functions have been designed to be interruptible. Thus the times presented

are typical, but best case, since any particular function may be interrupted by the clock

tick processing. This number is explicitly calculated so that the value may be included in

any deadline calculations required by the end user. Lastly, the reported measurements

were obtained from a kernel and sensor node with all options at their default values.

Table A.1: Energy characterization of various OS function calls

Time (ps) Avg
Kernel Function Energy

Avg Min Max Var (gJ)

THREADS

Create thread 10.02 8.14 23.60 1.13 5.61

Yield thread [all suspended] 1.46 1.09 11.39 0.40 0.82

Suspend [suspended] thread 2.08 1.63 7.87 0.39 1.16

Resume thread 1.13 0.81 5.15 0.16 0.63

Set priority 1.57 1.36 2.98 0.13 0.88

Get priority 0.42 0.00 1.36 0.31 0.24

Kill [suspended] thread 4.81 3.80 23.60 0.82 2.69

Yield [no other] thread 1.35 1.09 7.60 0.26 0.76

Resume [suspended low prio] thread 3.01 2.44 7.87 0.61 1.69

Resume [runnable low prio] thread 1.07 0.81 2.44 0.07 0.60

Suspend [runnable] thread 2.16 1.63 3.80 0.39 1.21

Yield [only low prio] thread 1.30 1.09 3.53 0.16 0.73

Suspend [runnable->not runnable] 1.09 0.81 1.90 0.03 0.61

Kill [runnable] thread 3.99 3.80 7.32 0.28 2.23

Destroy [dead] thread 5.30 3.26 20.35 0.96 2.97

Destroy [runnable] thread 6.43 5.70 11.94 0.58 3.60

Resume [high priority] thread 15.24 12.21 32.28 1.82 8.53

Thread switch 3.20 2.98 12.75 0.21 1.79
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Table A.1: Energy characterization of various OS function calls

Time (gs) Avg
Kernel Function Energy

Avg Min Max Var (J)

SCHEDULER

Scheduler lock 0.23 0.00 3.26 0.11 0.13

Scheduler unlock [0 threads] 0.75 0.54 1.36 0.10 0.42

Scheduler unlock [1 suspended] 0.75 0.54 0.81 0.10 0.42

Scheduler unlock [many suspended] 0.75 0.54 1.63 0.10 0.42

Scheduler unlock [many low prio] 0.75 0.54 1.36 0.10 0.42

MUTEX

Init mutex 0.49 0.27 4.34 0.28 0.27

Lock [unlocked] mutex 1.99 1.09 11.66 0.64 1.11

Unlock [locked] mutex 1.95 1.36 14.38 0.81 1.09

Trylock [unlocked] mutex 1.24 1.09 4.88 0.26 0.69

Trylock [locked] mutex 0.81 0.81 0.81 0.00 0.45

Destroy mutex 0.49 0.27 2.98 0.21 0.27

Unlock/Lock mutex 7.45 7.32 11.12 0.24 4.17

MAILBOX

Create mbox 0.77 0.54 5.15 0.30 0.43

Peek [empty] mbox 1.14 0.81 1.90 0.19 0.64

Put [first] mbox 1.94 1.36 12.21 0.83 1.09

Peek [I msg] mbox 0.19 0.00 0.27 0.11 0.11

Put [second] mbox 1.40 1.36 2.17 0.08 0.78

Peek [2 msgs] mbox 0.21 0.00 1.09 0.13 0.12

Get [first] mbox 1.86 1.36 11.94 0.76 1.04

Get [second] mbox 1.40 1.36 2.17 0.08 0.78

Tryput [first] mbox 1.54 1.36 7.32 0.36 0.86

Peek item [non-empty] mbox 1.54 1.09 6.51 0.49 0.86

Tryget [non-empty] mbox 1.56 1.36 7.87 0.39 0.87
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Table A.1: Energy characterization of various OS function calls

Time (gs) Avg
Kernel Function Energy

Avg Min Max Var (J)

Peek item [empty] mbox 1.16 1.09 1.90 0.12 0.65

Tryget [empty] mbox 1.23 1.09 1.90 0.15 0.69

Waiting to get mbox 0.32 0.27 1.90 0.10 0.18

Waiting to put mbox 0.30 0.27 1.09 0.05 0.17

Delete mbox 1.75 1.36 9.77 0.50 0.98

Put/Get mbox 4.33 4.07 10.85 0.49 2.42

SEMAPHORES

Init semaphore 0.47 0.27 2.71 0.20 0.26

Post [0] semaphore 1.31 0.81 4.61 0.42 0.73

Wait [1] semaphore 1.24 1.09 3.53 0.21 0.69

Trywait [0] semaphore 1.08 0.81 4.07 0.20 0.60

Trywait [1] semaphore 1.08 0.81 1.09 0.02 0.60

Peek semaphore 0.40 0.27 1.90 0.17 0.22

Destroy semaphore 0.51 0.27 2.71 0.18 0.29

Post/Wait semaphore 4.63 4.34 13.56 0.56 2.59

COUNTERS

Create counter 0.69 0.27 6.24 0.35 0.39

Get counter value 0.84 0.00 3.53 0.62 0.47

Set counter value 0.26 0.00 1.63 0.10 0.15

Tick counter 1.38 1.36 2.17 0.05 0.77

Delete counter 0.42 0.27 1.90 0.18 0.24

ALARMS

Create alarm 0.91 0.54 4.34 0.21 0.51

Initialize alarm 3.60 2.44 18.45 1.37 2.02

Disable alarm 0.29 0.00 2.44 0.13 0.16

Enable alarm 2.00 1.90 5.15 0.20 1.12
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Table A.1: Energy characterization of various OS function calls

Time (ps) Avg
Kernel Function Energy

Avg Min Max Var (GJ)

Delete alarm 0.61 0.54 2.71 0.13 0.34

Tick counter [1 alarm] 1.94 1.63 6.24 0.27 1.09

Tick counter [many alarms] 15.99 15.73 17.63 0.13 8.95

Tick & fire counter [1 alarm] 2.64 2.44 4.34 0.18 1.48

Tick & fire counters [>1 together] 42.34 42.32 43.13 0.05 23.71

Tick & fire counters [>1 separately] 16.83 16.55 17.63 0.05 9.42

Alarm latency [0 threads] 3.90 3.80 12.48 0.19 2.18

Alarm latency [2 threads] 4.51 3.80 11.12 0.53 2.53

Alarm latency [many threads] 26.88 23.06 34.99 2.57 15.05

Alarm -> thread resume latency 9.18 8.68 64.83 0.96 5.14
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Appendix B

Current Measurements

B.1 StrongARM SA-1100 Instruction Current Consumption

The following table lists the instruction current consumption for the SA-1 100 mea-

sured on the Brutus Evaluation platform at an operating voltage of 206MHz and core sup-

ply voltage of 1.5 V. Each instruction current profile is averaged over its various

addressing modes and variations.

Table B.1: SA-1100 Instruction Current Consumption

Instruction Average Curent (A)

ADC 0.174

ADD 0.178

AND 0.174

BIC 0.174

CMN 0.180

CMP 0.180

EOR 0.179

MOV 0.176

MVN 0.176

ORR 0.179

RSB 0.181

RSC 0.181

SBC 0.180

SUB 0.179

TEQ 0.179

TST 0.206
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Table B.1: SA-1100 Instruction Current Consumption

Instruction Average Curent (A)

MLA 0.206

MUL 0.185

LDR 0.208

LDRB 0.208

LDRBT 0.185

LDRT 0.185

STR 0.230

STRB 0.228

STRBT 0.229

STRT 0.230

LDM 0.237

STM 0.228

MRS 0.174

MSR 0.169

SWP 0.165

B 0.169

NOP 0.172

B.2 Hitachi SH7750 Instruction Current Consumption

The following table shows the average core current consumption for the Hitachi

SH7750 processor (SH-4) measured using the SolutionEngine development board. The

core supply voltage was 1.95 V and the processor was running at 200 MHz. This list is not

exhaustive and excludes the floating point instructions.

Table B.2: SH7750 Instruction Current Consumption

Instruction Average Current (A)

MOV 0.2388

SWAP 0.2676

ADD 0.2827
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Table B.2: SH7750 Instruction Current Consumption

Instruction Average Current (A)

CMP 0.3034

DIV 0.3057

MAC 0.3486

SUB 0.2861

AND 0.2762

OR 0.2766

XOR 0.2819

TST 0.3014

ROT 0.2819

SHA 0.2798

SHL 0.2751

B 0.3339

BRA 0.3261

JMP 0.2610

CLRMAC 0.2805

SETT/CLRT 0.3019

NOP 0.2968

B.3 Program Current Consumption

The following table lists the program current consumption measured for a set of DSP

routines at optimal voltage frequency points on the SA- 1100 processor.

Table B.3: Program Currents on SA-1100

Frequency Programs

(MHz) dct dhry sort log fir fft

206 0.2335 0.2474 0.2309 0.2345 0.2443 0.2338

192 0.2013 0.2134 0.1984 0.2025 0.2106 0.2019

177 0.1713 0.1817 0.1681 0.1725 0.1795 0.1719
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Table B.3: Program Currents on SA-1100

Frequency Programs

(MHz) dct dhry sort log fir fft

162 0.1441 0.1529 0.1430 0.1451 0.1510 0.1441

148 0.1256 0.1335 0.1236 0.1266 0.1318 0.1261

133 0.1085 0.1153 0.1073 0.1094 0.1138 0.1089

118 0.0923 0.0981 0.0910 0.0931 0.0969 0.0927

103 0.0731 0.0777 0.0715 0.0736 0.0767 0.0734

89 0.0598 0.0636 0.0596 0.0603 0.0627 0.0600

74 0.0475 0.0505 0.0473 0.0479 0.0498 0.0477

59 0.0378 0.0402 0.0373 0.0381 0.0396 0.0379
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Appendix C

LAMPS Webtool

MP

Application Development

You can either build your own applications or download pre-built applications from the benchmarks section.

The web based development area insulates you from the the complex and evolving tools and operating

system for the pAMPS sensor node. Building an application consists of 3 simple steps:

STEP 1: Customizing the Operating System

Choose Customize OS Packages Size

C Include All 100%

C Remove Math Library 89/0

C Remove Math Library, C Library (stdio, stdhb, time, string, signals, etc.) 46%

Remove Math Library, C Library, Serial 10 44%

STEP 2: Upload pAMIPS application source code

Language C C C C++

C/C++ Source File B'owse...

Additional Compiler Flags List
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STEP 3: Building and DownMPoad Executable soage

Figure C-1: piAMPS operating system and software webtool
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Appendix D

JouleTrack Screenshots

StrongARM SA-1100 profiling Help

C Source File E ih .... ..

Optimize For C Memory Size r- Performance

Command Line Arguments

StrongARM Operating Frequency 206MHz

Simulation Complexity

Simutate
MERI

ol Em IWCome m l. 'N 8

Figure D-1: JouleTrack remote file upload and operating point selection
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Source file E:\sinha\TEMP\dct. c

Operating frequency 206MHz

Operating voltage 1.5 Volts

Simulation level 2

Execution time 44344 psecs

Cyclewise Breakdown

* Instruction
E Seq Mem Access
* Non-Seq Mem Access
OInternal

Switching vs Leakage

O Switching
U Leakage

Switching current 0.2048 Amps

Leakage current 0.0330 Amps

Total current 0.2378 Amps

Total energy 15815.4 pJoules

Figure D-2: JouleTrack energy profiling output

174



Appendix E

Scalable Image Decoding

Table E.1 compares the energy scalability of image decoding using Chen's algorithm

and the FM-IDCT algorithm. It can be easily seen that the FM-IDCT is highly energy scal-

able.

Table E.1: Scalability in Image Decoding

EnerF y Chen's Algorithm FM-IDCT
Fraction

12.5%

25%

37.5%
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Table E.1: Scalability in Image Decoding

Energy Chen's Algorithm FM-IDCT
Fraction

50%

62.5%

75%

4- t

87.5%

___________ J. _____________________________ A
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Table E.1: Scalability in Image Decoding

Energy Chen's Algorithm FM-IDCT
Fraction

100%
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