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Abstract

In this thesis, we develop a computational framework for image-based statistical anal-
ysis of anatomical shape in different populations. Applications of such analysis include
understanding developmental and anatomical aspects of disorders when comparing
patients vs. normal controls, studying morphological changes caused by aging, or
even differences in normal anatomy, for example, differences between genders.

Once a quantitative description of organ shape is extracted from input images, the
problem of identifying differences between the two groups can be reduced to one of
the classical questions in machine learning, namely constructing a classifier function
for assigning new examples to one of the two groups while making as few mistakes
as possible. In the traditional classification setting, the resulting classifier is rarely
analyzed in terms of the properties of the input data that are captured by the discrim-
inative model. In contrast, interpretation of the statistical model in the original image
domain is an important component of morphological analysis. We propose a novel
approach to such interpretation that allows medical researchers to argue about the
identified shape differences in anatomically meaningful terms of organ development
and deformation. For each example in the input space, we derive a discriminative di-
rection that corresponds to the differences between the classes implicitly represented
by the classifier function. For morphological studies, the discriminative direction
can be conveniently represented by a deformation of the original shape, yielding an
intuitive description of shape differences for visualization and further analysis.

Based on this approach, we present a system for statistical shape analysis using
distance transforms for shape representation and the Support Vector Machines learn-
ing algorithm for the optimal classifier estimation. We demonstrate it on artificially
generated data sets, as well as real medical studies.
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Chapter 1

Introduction

Anatomical shape, and its variation, has always been an important topic of medical

research, but only with the introduction of high resolution 3D imaging, such as MRI

and CT, has it become possible to study morphology in vivo. Understanding morpho-

logical changes caused by a particular disorder can help to identify the time of onset

of a disease, quantify its development and potentially lead to a better treatment.

Other examples of morphological studies include investigating anatomical changes

due to aging through a comparison of different age groups and identifying differences

in anatomy between genders.

Originally, image-based statistical studies of morphology were based on simple

measurements of size, area and volume. While these can provide some indication of

normal variation and anomaly, they are fairly crude and do not capture the entire

complexity of anatomical shape. If utilized properly, medical images can provide

highly detailed shape information for analysis of morphological variability within a

single population or among different groups of subjects. Such analysis is the main

focus of this thesis. We consider different ways of extracting information from the im-

ages, extend existing classification techniques to yield an explicit description of shape

differences between the classes and propose a visualization technique that depicts

shape differences between classes as deformations of the original input shapes.

We start the introduction to the problem of statistical shape analysis by presenting

example images and explaining the data acquisition procedures. We then discuss the
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general framework and the individual stages of the analysis, review related work and

outline our approach. This chapter concludes with a preview of the results and a

brief description of the original contributions in this thesis.

1.1 Data Example

Any statistical study of morphology starts with data collection. One or more volu-

metric scans are typically acquired for each subject in the study. Then the anatomical

structures of interest are segmented, either manually or using automatic algorithms

designed for this task [14, 16, 35, 36, 38, 50, 63, 64, 68]. All medical scans presented in

this work were processed at the Surgical Planning Laboratory, Brigham and Women's

Hospital, Harvard Medical School.

Figures 1-1 shows an example 3D MRI scan of a human head with a segmenta-

tion of the hippocampus-amygdala complex, as well as the surface model generated

from the segmentation. This scan was acquired as part of a study that investigated

morphological changes in the hippocampus-amygdala complex due to schizophrenia.

Figure 1-2 shows examples of the hippocampus-amygdala complex for 10 schizophre-

nia patients and 10 normal controls from this study. Although statistically significant

differences in the volume of the structure were previously reported in [59], the two

groups look very similar. Our goal is to attempt to localize morphological differences

using shape information. In other studies, we might be able to visually identify the

shape differences in the images, but would still want to quantify them for assessing

the severity of the disorder, effectiveness of the treatment, correlating with symptoms,

etc.

While hundreds, or even thousands, of examples are typical in some classification

problems, such as text classification or character recognition, data acquisition is an

expensive and labor-consuming task in the medical imaging field. In addition to

the cost and the time required to obtain the necessary scans, careful screening of

the volunteers is needed to control for the factors that might influence the study's

outcome, such as social status, education, age, gender, etc. This results in relatively

16



Figure 1-1: Input data example. The top picture shows a set of slices from a sagittal
MRI scan of a head arranged in the left-to-right order; every third slice is shown.
The bottom picture shows the highlighted grayscale slice (left), the segmentation of
the hippocampus-amygdala complex in the same slice (middle) and the 3D model
generated form the segmented scan (right).
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(a) Schizophrenia patients

~0

(b) Normal controls

Figure 1-2: Examples from the hippocampus-amygdala study in schizophrenia.

small training sets that represent a significant challenge for learning algorithms. All

studies reported in this thesis contained fewer than one hundred subjects. Several

projects have been started recently at medical centers and universities aiming to

create large datasets by combining available medical scans from different groups into

a single database (see, for example, [32]).

In the next section, we discuss how collections of input images like those pre-

sented in this section are used by statistical analysis techniques to learn about shape

variability in the population.
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1.2 The Problem of Statistical Shape Analysis

Image-based morphological analysis typically consists of three main steps. First,

quantitative measures of shape are extracted from each input image and combined

into a feature vector that describes the input shape. The set of feature vectors is then

used to construct either a generative model of shape variation within one population

or a discriminative model of shape differences between two populations, depending

on the problem at hand. This is followed by interpretation of the statistical model in

terms of the original shape and image properties. Such interpretation is necessary for

expressing the identified shape differences in anatomically meaningful terms of organ

development and deformation.

In this section, we describe each of the three stages of the analysis, provide a review

of related work and outline our approach. Although our primary interest lies in the

area of discriminative analysis, that is, analysis of differences among two or more

populations, a lot of work in shape description has been motivated by applications

of generative modeling, in which the statistical model of shape variability in a single

population is constructed from a set of segmented images and is used either to study

the details of shape distribution or to assist segmentation of new images [15, 36, 38,

64]. We include relevant work on generative analysis in our discussion, while pointing

out the similarities and the differences between the two modeling techniques and the

types of problems they are best suited to solve.

1.2.1 Feature Vector Extraction

Shape analysis starts with extraction of shape features from input images. A great

number of shape descriptors have been proposed over the years for use in med-

ical image analysis. They can be classified into several broad families, such as

landmarks [7, 15], dense surface meshes [10, 36, 63, 64], skeleton-based representa-

tions [23, 27, 50], deformation fields that define a warping of a standard template to a

particular input shape [13, 19, 44, 43] and the distance transforms that embed the out-

line of the object in a higher dimensional distance function over the image [29, 38].
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The choice of shape representation depends crucially on the application. For sta-

tistical modeling, the two most important properties of a shape descriptor are its

sensitivity to noise in the input images and the ease of establishing correspondences

between different examples. These determine the amount of noise in the training

data, and therefore the quality of the resulting statistical model.

In this work, we choose to use the distance transform for feature extraction, mainly

because of its simplicity and its smooth dependence on the noise in the object's

boundary and its pose.

1.2.2 Statistical Analysis

Once the feature vectors have been extracted from the images, they are used to

construct an appropriate statistical model for the application in question. In the gen-

erative case, this is typically done by applying Principal Component Analysis (PCA)

to the training data set. The mean feature vector is then considered a "typical

shape", and the principal components are assumed to capture the variation within

the class. This model has been demonstrated to work quite well for template based

segmentation, where the mean is used as a template whose modes of deformation are

determined by the principal components [15, 16, 36].

Earlier work on shape differences between populations extended this technique

to the discriminative case by using PCA for dimensionality reduction, followed by

training a simple (linear or quadratic) classifier in the reduced space [17, 44]. The

main concern with this approach is that while PCA might be sufficient to constrain the

template deformations in segmentation, the number of training examples is too small

to model the probability densities of both classes accurately enough for building an

effective maximum likelihood classifier. Furthermore, any PCA-based classification

method implicitly assumes that the data was generated by a Gaussian probability

distribution and is therefore suboptimal if this assumption is violated, even if the

amount of data increases dramatically.

The dimensionality reduction step is typically performed to decrease the number of

free parameters to be estimated from the data, based on the principle of choosing the

20



simplest model that explains the data. Traditionally, the number of free parameters

(e.g., the number of principal components used by the PCA-based model) has been

used as a measure of the model's complexity. The more recently introduced concepts

of a classifier capacity and its VC dimension led to a more precise estimation of the

model complexity and its generalization performance [65]. The Support Vector Ma-

chines (SVMs) algorithm [11, 66] estimates the optimal classifier in the original space

while controlling its complexity by using these tighter predictors of the generalization

power of the model. In addition to the theoretical reasons for its asymptotic opti-

mality, Support Vector learning has been empirically demonstrated to be robust to

overfitting and to generalize well even for small data sets. We use SVMs to estimate

the optimal classifier that discriminates between the two groups of input shapes. The

classifier function implicitly represents the morphological differences between the two

classes.

1.2.3 Model Interpretation In The Image Domain

The resulting statistical model has to be mapped back to the image domain, i.e.,

analyzed in terms of the input shape or image properties in order to provide the

medical researchers with a comprehensible description of the structure in the training

data that was captured by the model. In the generative case, this is often done

by sampling the implied Gaussian distribution with the mean and the covariance

estimated from the data. Alternatively, new examples can be created by varying one

principal component at a time. The principal components form a basis in the space

of shape deformations described by this linear model.

We previously used a similar approach for interpretation of a linear classifier by

noting that only the vector's projection onto the normal to the separating hyperplane

affects the value of the classification function. Thus, one can vary the projection of

the vector while keeping its perpendicular component constant and create a sequence

of shapes that look progressively more like the examples from the other class [27].

In some of the earlier work in discriminative modeling [17, 44], the resulting clas-

sifier was only used to establish statistical significance of morphological differences
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between the classes, and the generative models based on PCA were employed for

visualization of the shape variation within each group. In this framework, one can in-

vestigate details of shape variation within each population, but not directly compare

the populations.

In this work, we analyze the classifier in terms of the properties of the original

feature vectors and their influence on the output of the classification function. For

every input example, we solve for the direction in the feature space that maximizes

the change in the classifier's value while introducing as little irrelevant changes into

the input vector as possible. We use the intuition mentioned above that in order to

understand the differences between the classes captured by the classification function,

one should study the function's sensitivity to changes in the input along different

directions in the feature space. We derive the sensitivity analysis for a large family of

non-linear kernel-based classifiers. The results can be represented in the image domain

as deformations of the original input shape, yielding both a quantitative description

of the morphological differences between the classes and an intuitive visualization

mechanism.

1.3 Example Results

In this section, we provide a preview of the visualization technique used in this work.

Our approach yields a description of shape differences detected by the statistical

analysis in a form of deformations of the original input shapes. For any shape, the

resulting deformation indicates how this shape must be changed to make it more

similar to the examples in the opposite population without introducing any irrelevant

deformations. Figure 1-3 illustrates the results of the hippocampus-amygdala study

mentioned in Section 1.1 for two different subjects, a schizophrenia patient and a

normal control. The figure shows the right hippocampus with the estimated defor-

mation "painted" on its surface. The color coding is used to indicate the direction

and the magnitude of the deformation, changing from blue (inwards) to green (no

deformation) to red (outwards). We can see substantial deformation of the anterior

22



(a) Schizophrenia patient

(b) Normal control

0

Figure 1-3: Example of shape differences detected by the analysis in the right hip-
pocampus. For each input shape, the analysis produces a deformation required to
make the shape more similar to the examples in the opposite group. Four views of
each structure are shown. The color coding is used to indicate the direction and the
magnitude of the deformation, changing from blue (inwards) to green (no deforma-
tion) to red (outwards).

part of the structure, corresponding to "tucking-in" of the bulbous head (amygdala)

in the schizophrenia patient and a similar deformation in the opposite direction in

the normal control example.

We can also generate an animation of the deformation in order to help the medical

researches to interpret the results of the analysis. Such detailed descriptions of the

shape differences between two groups of subjects can help them understand the disease

by studying its effects on the organ of interest.

1.4 Contributions

In this work, we present a framework for image-based statistical analysis of morpho-

logical differences between two groups of subjects. In addition to demonstration of
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a fully three-dimensional, automatic framework for feature extraction and statistical

analysis, the contributions include

* explicit discriminative modeling of shape differences between two groups based

on the Support Vector Machines algorithm, bypassing the dimensionality reduc-

tion step typically invoked in the analysis of high dimensional shape descriptors;

e a novel technique for interpretation of the resulting classifier in terms of defor-

mation of the original input shapes;

e demonstration of the method on real morphological studies.

1.5 Outline

In the next chapter, we present a review of existing shape descriptors and their prop-

erties relevant to the problem of statistical shape modeling. The purpose of this

chapter is to provide a general overview of commonly used descriptors, as well as

guidelines for choosing a shape descriptor for a particular application. Chapter 3 ex-

plains our choice of the distance transform for extracting shape features and presents

a local parameterization of the distance transform space which allows us to represent

and visualize changes in the distance transform as deformations of the corresponding

boundary surface.

Chapter 4 provides the background on Support Vector learning. We present and

discuss the Support Vector Machines algorithm used in this work for construction of

a statistical model of differences between the two classes. In Chapter 5, we introduce

the discriminative direction as a representation for differences between two classes

captured by the classification function. This chapter contains the main technical

contribution of this thesis, namely, the analysis of the classifier in terms of changes

in the original feature vectors.

In Chapter 6, we explain how to combine shape description with the statistical

analysis, demonstrate the approach on artificial examples and report the experimental

findings for the real medical studies. The dissertation concludes with a discussion of
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the lessons learned from the presented experiments and future research directions

enabled by the results of this work.
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Chapter 2

Shape Description

Image-based morphological analysis starts with extraction of a quantitative descrip-

tion of example shapes from the input images. This chapter reviews existing shape

descriptors and their properties relevant to our application of statistical shape anal-

ysis. The three-dimensional nature of the images, the lack of occlusions and the high

complexity of anatomical shape are among the factors that render this application

specific enough that we limit our review to include only shape descriptors that have

been successfully used in medical image analysis, leaving out some shape represen-

tations used in computer vision and other applications. The purpose of this chapter

is to provide a brief overview of existing descriptors and a necessary background for

our discussion on distance transforms in the next chapter.

2.1 Existing Descriptors

The wealth of shape descriptors used in medical image analysis includes both paramet-

ric models, such as Fourier descriptors or spherical harmonic functions, and numer-

ous non-parametric models: landmark based descriptors, deformation fields, distance

transforms and medial axes. In this section, we briefly describe these descriptors and

explain how they are extracted from images.
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Parametric descriptors. The methods in this family fit a parametric model to a

boundary surface in a 3D image, or an outline curve in a 2D image, and use the model

parameters as feature vector components. The best known parametric shape descrip-

tors in medical imaging are based on decomposition of the object using a particular

functional basis, such the Fourier series [63, 64] or the harmonic functions [10, 36].

The model parameters are typically extracted from segmented images, with an excep-

tion of model-based segmentation. In model-based segmentation, a set of segmented

images is used to extract the shape parameters, forming a training set. Then a sta-

tistical model of the parameter distribution is constructed based on the training set

and is used to assist the segmentation of a new image. The result of this procedure

is a segmented scan and a set of shape parameters for the newly segmented shape.

Thus, the shape parameters are extracted from the grayscale images as a segmentation

by-product.

Landmarks. A landmark is a point on the object boundary - a surface in a 3D

image, a curve in a 2D image - that can be reliably estimated from an image. Land-

marks can be placed manually by the users who employ their knowledge of anatomy

to identify "special locations" [7, 15, 16], or detected automatically using geometric

properties of the outline surface, such as curvature [49]. Unfortunately, most anatom-

ical shapes have smooth outlines that lack prominent singularity points. This causes

an uncertainty in the position of manually placed landmarks and presents a challenge

for automatic methods. Algorithms based on manual landmarks are typically limited

to 2D images because it is difficult to visualize 3D images in a convenient way for the

user to identify the landmarks. Landmarks can be extracted either from grayscale

images, as a part of the segmentation process, or from previously segmented scans.

Deformation fields. Descriptors in this class are based on non-rigid matching of

a template to an input image. Additional constraints on the resulting deformation

field stabilize the inherently under-constrained matching problem. Examples of reg-

ularization models that ensure smoothness of the field include thin plate splines [7],

28



elasticity constraints [19, 43, 44] and viscous fluid models [13, 17]. The output of the

algorithm is a voxel-by-voxel field of displacements, which can be used as a feature

vector describing the input shape. Some techniques in this class match the template

to a previously segmented image [7, 43, 44], while others produce the deformation

field as a result of the template-based segmentation [13, 19].

Distance transforms. A distance transform, or distance map, is a function that

for each point in the image is equal to the distance from that point to the boundary

of the object. The boundary is modeled implicitly as a zero level-set of the distance

transform. A signed variant of the distance transform, which negates the values of the

distance transform outside the object, eliminates the singularity at the object outline,

changing linearly as we cross the boundary. Distance transforms have been used in

computer vision for medial axis extraction [28, 40], and more recently, in medical

image analysis for shape description [29, 38]. The distance transform is computed

from a binary segmentation of the object.

Medial axes. A medial axis, or skeleton, of a shape is defined as a set of singularity

points of the distance transform that lie inside the shape of interest. Any point in the

medial axis has at least two closest points on the outline. Skeletons have been used

extensively in computer vision since their introduction by Blum [5]. Shape modeling

typically requires using a robust variant of the traditional medial axis that constrains

changes in the topology of the skeleton induced by small changes in the boundary [23,

28, 50]. Most skeleton extraction algorithms require a segmented image as input [28,

37, 40, 41, 45]. One exception is the medial cores algorithm that simultaneously

estimates the boundary of the object and its medial axis based on the intensity

gradient in the original grayscale image [23, 50].

This concludes our brief review of shape representations used in medical image

analysis. As we can see, many different descriptors have been developed over the years

for use in various applications. The application often dictates a set of properties that

the shape representation must posses. Such properties are the topic of the next
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section.

2.2 Taxonomy of Shape Descriptors

In this section, we discuss several important properties of shape descriptors that have

to be considered when choosing shape representation for a particular application.

Automatic vs. Manual Feature Extraction. Using manually extracted features

is infeasible for large statistical studies, and therefore we would like to concentrate

on automatically extracted representations in this discussion. However, one has to be

careful in classifying shape descriptors as fully automatic if they require segmented

images as input. Since no universal segmentation algorithm has been demonstrated

yet, extracting an organ's binary mask from grayscale images could require user in-

volvement.

Raster vs. Vector Descriptors. Raster representations assign a value, or a set of

values, to every voxel in a volume and construct feature vectors by concatenating the

values into a single list. The simplest example of a volumetric descriptor is the binary

segmentation mask [14, 54], other examples include the distance transform and the

deformation fields. Vector descriptors are constructed by selecting a set of points to

represent an input shape and combining their properties into a feature vector. The

components can be point coordinates, intensity gradients, measurements of the shape

related to the point of interest, etc. Landmarks, surface meshes and skeletons are

examples of vector descriptors. Whether a descriptor is of a vector or a raster type

affects how the correspondences among input examples are established, as we explain

later in this section.

Coordinate-Based vs. Intensity-Based Descriptors. Intensity-based descrip-

tors are constructed from a certain image function, for example, the binary segmen-

tation mask or the distance transform. In contrast, coordinate-based descriptors

use image coordinates to construct a feature vector. Examples of coordinate-based
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representations include deformation fields, landmarks and medial axes. The spatial

structure of the feature space is significantly different for these two types of descrip-

tors. The constraints enforced on the coordinate-based descriptors, e.g., a deformation

field, are more directly related to the range of possible shape changes in the input,

whereas the intensity based descriptors encode shape implicitly, for example, as a

zero level set of the distance transform. A descriptor can be of a hybrid type, such as

an appearance model that includes both the coordinates and the intensity at a fixed

number of points along the boundary of the object [16, 36].

Closed Under Linear Operators. In many applications, we want to manipulate

the feature vectors as part of the analysis. It is therefore important to know whether

the feature vectors that describe possible input shapes populate the entire space,

and weather such manipulation will always yield a new acceptable shape. For some

shape representations, the resulting feature vectors form a linear vector space, i.e.,

any linear combination of feature vectors is also a valid feature vector that describes a

shape that could occur in the image. Landmarks, some versions of medial axes, most

parametric shape models and deformation fields belong to this category. Distance

transforms do not populate the entire space of real-valued volumes, but rather form

a manifold in that space. For some representations, for example, a set of nodes on

the object outline, the operation of linearly combining different feature vectors is not

even defined. In such cases, if a search in the feature space is required, it must be

parametrized using an intermediate representation. Coordinate-based representations

are typically closed under linear operations, while the intensity-based descriptors do

not necessarily form a linear vector space.

Sensitivity to Noise. Shape description is an inherently noisy process, consisting

of imaging, segmentation and feature extraction, with every step introducing errors.

Small changes in the input image, such as changes in the patient's pose and errors

in segmentation, cause the corresponding feature vector to change as well. Ideally,

the representation should be insensitive to "small" noise in the input images. But
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defining what constitutes small amounts of noise that can be ignored in contrast to

shape changes that must be modeled is difficult and often application dependent. For

statistical shape analysis, a smooth behavior of the representation in the presence of

noise can help us to bound the error in the constructed model. Such smooth behavior

is exhibited by most descriptors described in the previous section. The medial axis

in its original formulation is very sensitive to small changes in the outline of the

object, which was remedied in several robust variants [28, 41, 23]. Another example

of a highly sensitive descriptor is the segmentation mask: infinitesimal changes in the

object can cause some of the components to change from zero to one.

Some level of insensitivity is often achieved by imposing smoothness constraints

on the feature estimates, such as elasticity constraints for deformation fields. In

parametric descriptors, the model's sensitivity can often be controlled explicitly by

choosing the level of details to be represented, for example by limiting a number of

basis functions in the Fourier decomposition.

Alignment and Correspondences. For shape studies, one would like the descrip-

tors to be invariant under a family of rigid transformations, as the object's pose in

the scanner should not affect its shape properties. Many raster representations are

not invariant under rigid transformations, which is typically mitigated by aligning all

shapes, or bringing them into a "canonical" pose, before extracting the features. The

alignment also establishes implicit correspondences among features computed from

different input images. Most vector descriptors are insensitive to the object's pose,

but require establishing correspondences among "feature points" for different example

shapes. The correspondences are established either manually [7, 15] or automatically.

The automatic procedures for estimating correspondences typically set a reference

frame on the surface of an object (or its medial axis) for ordering the points into a

list, for example, using the principal axes of inertia [36]. This operation is similar

to alignment of raster descriptors, as it often relies on the canonical pose of the ob-

jects to match feature points in different examples. Descriptors that produce variable

length feature vectors, such as surface meshes that represent object boundaries, cause

32



further complications in the feature matching problem.

The problem of establishing correspondences, or alignment, has not been solved

satisfactory for raster or vector descriptors. One of the main obstacles is that it is

not clear what the "correct correspondence" between two examples of an anatomical

shape is. Most methods use rigid alignment, operating under the premise that the

non-rigid differences among the examples are exactly the shape differences we would

like to model and study. Since we cannot assume perfect alignment, it is important to

understand the descriptor's behavior under noise in the object's pose. Raster descrip-

tors, for which the changes in the feature values are determined by the transformation

matrix and the gradient of the volumetric image function, lend themselves to such

analysis easier than do vector descriptors, which give rise to a potentially exponen-

tial problem of matching among several discrete sets of points describing different

example shapes.

To summarize, there are several important, sometimes conflicting, properties of

shape descriptors that must be considered when choosing a suitable representation.

Unfortunately, the perfect shape descriptor that posses all of them is yet to be demon-

strated, and one has to carefully trade-off properties based on the application of inter-

est. The next chapter contains a discussion on our choice of the distance transform as

a shape representation and its properties relevant to the problem of statistical shape

analysis.
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Chapter 3

Distance Transforms as Shape

Descriptors

We use the distance transform for shape description in this work. Establishing corre-

spondences between features from different examples in a reliable and well understood

manner was important in our application, and therefore raster representations, such

as the deformation fields or the distance transform, were more appropriate. We chose

the distance transform mainly because of its relative simplicity: it uses only basic

geometric relationships to construct the feature vector and can be implemented in

a straightforward manner. The main drawback of the distance transform is that it

produces feature vectors that do not form a linear vector space. In this chapter,

we elaborate on the properties of the distance transform that make it attractive for

shape description in statistical analysis and demonstrate a local parameterization of

the distance transform space that eliminates the difficulty of manipulating feature

vectors that do not populate the entire space.

3.1 Basic Definitions

To remind the reader, the distance transform is a function that for every point in

the image is equal to the distance from that point to the object boundary. We use

the signed distance transform which eliminates the singularity at the boundary by
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(a) Midsagittal slice (b) Segmentation

Figure 3-1: Two-dimensional distance transform for the corpus callosum. The mod-
eling was performed entirely in 2D, as only a cross-section of the corpus callosum
was considered in this study. Brighter intensities in the distance transform image
correspond to higher values of the distance transform. The values outside the shape
were log-scaled for visualization purposes.

negating distance values outside the object. Note that the definition of the distance

transform can be applied both to 2D images, for which it was originally introduced,

and to 3D volumetric scans. Figure 3-1 shows an example of the two-dimensional

distance transform computed for a single slice of a volumetric scan of the corpus cal-

losum, while Figure 3-2 illustrates the three-dimensional distance transform computed

for the hippocampus-amygdala example from Figure 1-1. The distance transform and

its properties, as well as efficient algorithms for computing it, have been investigated

extensively in computer vision [8, 18, 39].

We will say that a point on the boundary influences a particular location in the

volume if it is the closest boundary point to that location. Obviously, the value of the

distance transform at any voxel is equal to the distance from the voxel to the point(s)

on the boundary that influence that voxel. The distance transform is a piece-wise

linear function. The singularity ridges of the distance transform form the object's

skeleton, which is defined as a set of locations inside the shape that have two or more

closest points on the boundary. Note that most voxels in the volume are influenced

by one boundary point each, with an exception of the skeleton voxels. As we will

see in the following sections, the influence relationship plays an important role in

understanding the behavior of the distance transform feature vectors in the presence
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(a) Surface model (b) Segmented slice (c) Distance transform slice

---- mm

(d) Volumetric distance transform of the left hippocampus-amygdala.

Figure 3-2: Volumetric distance transform of the left hippocampus-amygdala com-

plex. The distance transform was computed separately for the left and the right

hippocampus. Brighter intensities in the distance transform image correspond to

higher values of the distance transform. The values outside the shape were log-scaled

for visualization purposes.
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of noise or small changes in the original shape.

3.2 Sensitivity to Noise and Misalignment

Uncertainty in the feature vectors is caused by errors in the boundary location and

inaccuracy of the alignment process. Note that these two factors are not independent,

as the alignment procedure operates on the result of segmentation. In this section,

we show that the distance transform changes smoothly as errors of both types are

introduced into the process of feature vector extraction.

Small displacements of a boundary point cause changes of the distance transform

values only at the voxels influenced by that point. Using the triangle inequality, we

can show that the magnitude of the distance transform gradient is bounded by one.

Consequently, the change in the distance transform values at the influenced voxels is

bounded by the magnitude of the point's displacement. An alternative way to arrive

at this conclusion is to observe that as a boundary point moves, the change in the

distance between any voxel and this point cannot be greater than the magnitude of

the point's displacement.

A similar argument can be used to bound errors due to misalignment. Small

changes in the object's pose (translation, rotation) induce a rigid displacement field

in the volume. Since the magnitude of the distance transform gradient is bounded

by one, the change in the distance transform value at any voxel is bounded by the

magnitude of the displacement at that voxel. This again places a linear upper bound

on the uncertainty in the extracted feature vectors.

In order to reduce the sensitivity of the alignment process to the segmentation

errors, we use moments of the distance transform inside the shape to align the images

into a canonical representation. In contrast to the moments of shape that weigh all

points equally, the moments of the distance transform assign weights proportionally

to the distance from the boundary, reflecting our belief that the interior points of the

distance transform are estimated more reliably than the points close to the boundary

of the object.
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3.3 Local Parameterization Using Surface Meshes

The main drawback of using the distance transforms as shape descriptors is that they

do not form a linear vector space. Our analysis of shape differences in two populations

requires performing local search in the space of input shapes, i.e., investigating a small

neighborhood of shapes around a particular input example. Ideally, we would do it

by searching a neighborhood of the corresponding feature vector in the space of dis-

tance transforms that form a manifold in the higher dimensional space of real-valued

images. This manifold is fully determined by the local constraints on the distance

transform, but unfortunately, it does not have a global parametric description, which

makes local search on the manifold difficult. We solve this problem by using a local

parameterization of the manifold around any particular shape example that makes

use of the surface mesh of that shape.

A surface mesh is a graph that represents the object boundary. In a 3D image, a

mesh contains nodes, edges and faces. In a 2D image, a mesh simplifies to a simple

loop defined by its nodes and edges. The images in Figure 1-2 were rendered using

surface meshes. Given a segmented scan, one can construct the corresponding surface

mesh in two linear passes over the voxels of the scan (see, for example, the Marching

Cubes algorithm [42]).

For shape analysis, the mesh node locations are used as features. One can think of

a surface mesh as a dense version of a landmark based descriptor, where every bound-

ary point becomes a landmark. Ease of generative modeling using surface meshes

makes them an attractive choice for representing a family of possible deformations of

the original shape. Meshes created by perturbing the node locations in the original

mesh form a linear vector space, and are therefore perfect for exploring shapes close

to any particular input example. This raises a question on the necessity of using

other descriptors for shape analysis. Why not use surface meshes throughout? The

main challenge in using surface meshes for statistical analysis is establishing corre-

spondences. While it is trivial to generate new shapes of the same topology from a

single mesh, it is difficult to reconcile several different examples: the number of nodes
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Figure 3-3: Example shape, a simple ellipsoid.

and their connectivity can be arbitrarily different even for similar shapes.

Performing local search is fundamentally different from establishing a global cor-

respondence framework because we assume that all small (infinitesimal in the limit)

changes in the original shape can be generated by adjusting node positions, without

changing the topology of the mesh. This assumption eliminates some of the shapes

that are arguably close to the original one in the space of the distance transforms,

but it provides a reasonable approximation to the set of the shapes that are close to

the original input example in the image domain. We essentially use surface meshes

to locally parameterize the manifold of the distance transforms in a way that incor-

porates our knowledge of the domain. In the remainder of this section, we present

a formal analysis for such a parameterization, while demonstrating it on a simple

example shape shown in Figure 3-3 whose distance transform is shown in Figure 3-4.

Let x be a feature vector formed by concatenating the distance transform values

at all voxels in the image. Vector x can be thought of as a union of two sub-vectors:

vector x that contains the distance transform values at the non-skeleton voxels, and

vector k that contains the distance transform values at the skeleton voxels. Let s

be a vector of node displacements in the surface mesh of the same object: si is

the displacement of node i along the normal to the boundary at that node. Since
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Figure 3-4: The distance transform of the example shape in Figure 3-3. Every second
slice is shown.

moving nodes along the surface of the shape does not change the shape, we will

only consider changes in the node positions along the normal to the boundary. Zero

vector s corresponds to the original shape and its distance map x. We fix the positive

direction to correspond to the normal vector pointing outwards. And lastly, let S(i)

be a set of all mesh nodes that influence voxel i.

We start by considering the direct problem, i.e., given an infinitesimal displace-

ment vector ds that defines a deformation of the original shape, what is the corre-

sponding change dx in the distance transform feature vector? As shown in the previ-

ous section, the value of the distance transform in any non-skeleton voxel changes by

the amount equal to the displacement of the boundary point that influences it. This

implies a local linear parameterization of the distance transform manifold around the

original point k:

dk = Jxds, (3.1)

where J,. is the Jacobian of the distance transform values at the non-skeleton voxels

with respect to the node positions and contains exactly one non-zero element in every
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row:

ai 1, j C S(i)Jx(i, j) =_ E(3.2)
asi 0, otherwise

The change in the value of the distance transform in any skeleton voxel is equal to

the minimum of the (signed) displacements of all the nodes that influence that voxel:

dzi = min dsj, (3.3)
jeS(i)

exhibiting a non-linear behavior bounded by the linear model above1 .

Now we can solve the inverse problem, namely, estimating the deformation vec-

tor ds that best matches an arbitrary change in the distance transform vector dx.

As we change the original distance transform feature vector x by an infinitesimal

displacement vector dx, it will not necessarily stay on the manifold of valid distance

transforms. In other words, there might not exist a shape deformation that changes

the distance transform exactly as specified by the change vector dx. We can solve this

problem by projecting the result back onto the distance transform manifold. Using

the linear model of Equation (3.1), we can find the deformation of the surface mesh

that generates the closest point to the original discriminative change dx that still

belongs to the distance transform manifold:

ds ~%(JIJ[ Jj dic, (3.4)

where matrix (JJ,) 1Jf is the generalized inverse of the Jacobian Jx. It is easy

to see that JIJ, is a diagonal matrix whose (j, j) entry is equal to the number of

non-skeleton voxels influenced by node j.

The projection operation of Equation (3.4) is an approximation that ignores skele-

ton voxels. We argue that since the number of skeleton voxels is usually small com-

'Equation (3.1) defines an infinitesimal model of changes in the distance transform in non-skeleton
voxels as a function of small deformations of the surface mesh. The nodes of the mesh define a
Voronoi partition of the volume which determines the influence relationships between voxels and
nodes [9, 46]. As long as the node displacements do not change voxels' membership in the partition,
the linear model of change holds. Moreover, it provides an upper bound on the amount of change
in the distance transform if the influence relationship changes as a result of the deformation.
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Figure 3-5: Skeleton voxels for the example shape in Figure 3-3. The skeleton voxels
are shown in black, the non-skeleton voxels are shown in white. All slices are shown.

43



pared to the total number of voxels, they do not affect the results significantly. To

illustrate this, Figure 3-5 shows a skeleton that was computed for the discrete version

of the distance transform in Figure 3-4. Theoretically, a skeleton of an ellipsoid is a

plane that passes through its largest principal axis and is perpendicular to its smallest

principal axis. Additional single points, lines and gaps in the symmetry plane in Fig-

ure 3-5 are caused by the discretization errors in the distance estimates. The number

of skeleton voxels is relatively small in this figure. In all our experiments, the number

of skeleton voxels was 4-6% of the total number of voxels in the volume. In general, a

skeleton of a shape is a surface of one dimension lower than the dimensionality of the

image space (e.g., a skeleton of a 3D shape is a 2D surface) and therefore contains a

negligible number of voxels compared to the shape itself.

Deformation ds of the original shape leads to the change of the distance transform

that is linear for non-skeleton voxels:

6:0 = Jxds ~JX(JJX) JT di (3.5)

and can be extended to a full volume vector dxO by computing the change at the

skeleton voxels as a minimum of the displacements of the influencing nodes:

dx' = f.JES(i) S 1 1 (3.6)
di, ||S(i)| = 1

This operation projects the infinitesimal displacement vector dx onto the distance

transform manifold so that the resulting change in the distance transform dx" defines

a valid deformation of the shape while minimizing the distance between the two

vectors.

To illustrate our analysis on the shape in Figure 3-3, let's consider an example

displacement vector dx shown in Figure 3-6. This vector was generated as a part of a

simulated shape analysis study that we will describe later in this chapter. The color-

bar indicates the intensity coding of the values in the vector dx. Since we are using a

linear approximation, the absolute values of the vector components are unimportant:
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Figure 3-6: Example change vector dx for the distance transform x in Figure 3-4.
Positive values (bright intensities) in the image correspond to increasing the values
of the same voxels in the distance transform, negative values (dark intensities) cor-
respond to reducing the values of the distance transform. The absolute scaling is
omitted since we are interested only in the direction of the vector, not its magnitude.
The intensity that corresponds to zero change in the distance transform is shown on
the colorbar. Every second slice is shown.

scaling the vector by a constant factor will simply scale the resulting projection by

the same factor. Furthermore, the infinitesimal analysis in our work concentrates on

the direction of the change rather than its magnitude. We will come back to this

point in Chapter 5 when we present the discriminative direction.

Figure 3-6 shows a consistent, localized increase in the values of the distance

transform that corresponds to creating a protrusion on the surface of the original

ellipsoid in the area of bright intensities. However, if we change the original distance

transform x in Figure 3-4 by even an infinitesimal amount along the vector dx, the

result will not be a valid distance transform. To fix this problem, we can estimate the

change in the distance transform dx0 that best approximates dx. Figure 3-7 shows

both the partial estimate for the non-skeleton voxels dx and the final approxima-
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(a) Partial estimate dx. Skeleton voxels are marked in white.

(b) Completed estimate dx0 .

Figure 3-7:
imates the
Figure 3-6.

Optimal estimate of the changes in the distance transform that approx-
change vector dx in Figure 3-6. The color coding is identical to that in
Every second slice is shown. Compare to Figure 3-6.
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Figure 3-8: Two views of the example shape from Figure 3-3 with the deformation
painted on its surface. The color coding is used to indicate the direction and the mag-
nitude of the deformation, changing from blue (inwards) to green (no deformation)
to red (outwards).

tion dx0 of the original vector dx computed using Equations (3.4)-(3.6). The resulting

vector dx0 is close to the original vector dx, but has a structure similar to that of the

distance transform.

In the process of projecting the vector dx onto the distance transform manifold, we

also compute the mesh deformation vector ds. We can then "paint" it on the surface

of the shape by associating an appropriate color with each node in the mesh, as shown

in Figure 3-8. The color coding is used to indicate the direction and the magnitude

of the deformation, changing from blue (inwards) to green (no deformation) to red

(outwards). Similarly to the volumetric estimate dx0 , the shape changes defined by

the deformation ds are well localized and correspond to "growing a bump" on the

original shape.

To remind the reader, the analysis presented in this section was developed in

order to investigate the space of shapes in the infinitesimal neighborhood of the orig-

inal examples. The local parameterization of the space through the deformations of

the surface mesh enables such search. Moreover, Figure 3-8 demonstrates another
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Figure 3-9: Another example shape, an ellipsoid with a bump.

important reason for using deformations to describe changes in the shape. In our

experiments, we found that the surface-based representation was significantly more

informative and easier to interpret than the volumetric results similar to those in

Figure 3-6 and Figure 3-7. We will discuss the advantages of surface-based visualiza-

tion in more detail in Chapter 6 when we present the entire analysis framework and

explain how it generates a description of shape differences between the two example

groups.

The example shape in Figure 3-3 comes from a simulated shape study presented in

Chapter 6 in which the shapes in both classes were simple ellipsoids, but the examples

in one class had a bump approximately in the same place. The goal of the experiment

was to test if our technique could detect the bump as the main difference between

the classes. The change in the distance transform dx in Figure 3-6 was automatically

produced by the analysis to describe the necessary shape changes to cause the original

shape to look more similar to the examples in the other class. Figure 3-8 shows a

deformation that achieves this effect.

Before concluding this section, we demonstrate the projection operation for one

more example. Figure 3-9 shows an example shape from the second class in the

same study. The distance transform for this shape is displayed in Figure 3-10. Note

the differences due to the bump between the distance transforms in Figure 3-10 and
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Figure 3-10: Distance transform of the shape in Figure 3-9. Every second slice is
shown. Compare to Figure 3-4.

Figure 3-4. Figure 3-11 shows the estimated change in the distance transform of this

shape dx0 for the displacement vector dx in Figure 3-6. In spite of the differences

in the distance transforms themselves, the resulting change vector dx0 looks almost

identical to that in Figure 3-7. This indicates that the local geometry of the manifold,

captured by the Jacobian matrix J,, is similar at the two points. The discrepancies in

the manifold geometry between the two examples cause the slight differences between

the resulting vectors in Figure 3-7 and Figure 3-11.

The statistical analysis produced the change vector dx in Figure 3-6 for the first

example shape. It turns out that the resulting change vector for the second shape

is equal to -dx. As we saw earlier, dx represents expanding of the object bound-

ary outwards, and therefore -dx describes a change in the distance transform that

corresponds to moving the boundary surface inwards. This is to be expected, as the

deformations that bring the two shapes closer to each other must be of the opposite

effects. Since the projection is a linear operation, the resulting projection vector is of

the opposite sign to that shown in Figure 3-11. Figure 3-12 shows the corresponding

deformation of the surface mesh ds that indeed corresponds to reducing the bump.
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(a) Partial estimate dkc0 . Skeleton voxels are marked in white.

*EEE UWE

(b) Completed estimate dx0 .

0 MMMM

Figure 3-11: Optimal estimate of the changes in the distance transform that approx-
imates the change vector dx in Figure 3-6 for the shape in Figure 3-9. The color
coding is identical to that in Figure 3-6. Every second slice is shown. Compare to
Figure 3-6 and Figure 3-7.
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Figure 3-12: Two views of the example shape from Figure 3-9 with the deformation
painted on the surface. The color coding is used to indicate the direction and the mag-
nitude of the deformation, changing from blue (inwards) to green (no deformation)
to red (outwards).

3.4 Summary

We use the distance transform for shape description. In this chapter, we focused on

the properties of the distance transform relevant for our application, while deferring

the discussion on implementation details of the feature vectors extraction based on

the distance transform representation until Chapter 6.

The distance transform is a dense descriptor capable of capturing an arbitrary

shape whose bounded behavior in the presence of noise in the outline and in the ob-

ject position makes it an attractive choice for image based statistical analysis. The

main drawback of the distance transform is that it does not provide a way to search

the space of possible deformations of the original shapes. We overcome this difficulty

by using surface meshes for local parameterization of the distance transform mani-

fold. Such a parameterization is necessary for statistical analysis of shape differences

presented in the later chapters.
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Chapter 4

Statistical Modeling Using Support

Vector Machines

Once feature vectors have been extracted from the input images, the problem of shape

analysis can be formulated in the traditional machine learning framework, where a set

of training examples from two different classes is used to construct a classifier function

that assigns new examples to one of the two classes while making as few mistakes

as possible. In this work, we use the Support Vector Machines (SVMs) algorithm to

estimate the optimal classifier.

SVMs were introduced by Vapnik [65] and have been used successfully in many

classification and pattern recognition applications, such as digit recognition [66], text

classification [33, 34], face detection [48] and others. In addition to its superior em-

pirical performance, the algorithm can be proved to converge to the optimal solution

as the amount of training data increases, with a distribution-independent bound on

the rate of convergence [65]. Furthermore, the same theoretical framework provides

a principled way to explore a hierarchy of increasingly complex classifier families,

trading-off the training error and the complexity of the model.

The main practical limitation of the Support Vector Machines is that the algorithm

requires solving quadratic optimization, which can be costly for large data sets. It

is not a serious disadvantage for our application because we typically work with

small training sets. Estimating the rate of convergence of the algorithm is another
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problem. Ideally, one would like to predict the size of the training set necessary to

guarantee that with high probability the resulting classifier is close to the optimal one.

Unfortunately, the distribution-free bound on the rate of convergence is too loose to

be useful for this purpose, even in situations when empirical evidence suggests fast

convergence. Deriving tighter bounds based on prior knowledge and better measures

of the model complexity is an active research area in machine learning [31, 673.

The purpose of this chapter is to provide a brief overview of SVMs and the capacity

analysis based on the VC dimension. We describe the algorithm and state without

proof the main results from the statistical learning theory necessary for derivation

of the sensitivity analysis presented in the next chapter. In this work, we follow

closely the notation and the formalism introduced in [66]. Readers interested in more

details on support vector learning are referred to the tutorials [11, 61] for an extensive

introduction into kernel based classification and function regression, and to the work

by Vapnik [65, 66] for a formal discussion on theoretical foundations of support vector

methods.

4.1 Basic Definitions

Given a training set of 1 pairs {(Xk, Yk)k 1, where Xk E R" are observations and

Yk E {-1, 1} are corresponding labels, and a family of classifier functions {fe}

parametrized by w,

R {-1, 1}, (4.1)

the learning task is to select a member of the family that minimizes the expected

error,

R(w) = J y - fw(x)IP(x, y)dx, (4.2)

also called expected risk, when labeling new, unseen examples. P(x, y) is the probabil-

ity distribution that generates the observations. In practice, however, Equation (4.2)
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is difficult to evaluate, as P(x, y) is unknown. Instead, the training error,

Remp(W) = I -- fw(Xk) (4.3)
21

also called empirical risk, can be computed. It can be shown that the minimum of

the empirical risk over the family of classifiers {fo (x) } converges in probability to

the minimum of the expected risk as the number of training examples grows. Conse-

quently, one can perform well by collecting enough data to operate in the asymptotic

range and using the empirical risk as the objective criterion to be minimized. This

so-called Empirical Risk Minimization Principle underlies many learning algorithms

in machine learning, starting with the basic perceptron [20].

Most learning algorithms search over on a set of real-valued classification functions,

thresholding the function's value on a new example in order to assign it to one of the

two classes:

y(x) = sign(f (x)). (4.4)

One of the simplest examples is a linear classifier,

f (x) = (x -w) + b, (4.5)

where (-) denotes a dot product. The linear classifier uses the projection of input

vector x onto the vector w to assign x to one of the classes. The separating bound-

ary between the classes is a hyperplane whose normal is w and whose position is

determined by the threshold b.

4.2 Linear Support Vector Machines

To find the optimal projection vector w, most learning algorithms minimize a cost

function that measures how well the data can be separated once projected onto w.

Well separated classes yield low empirical risk, which will lead to low expected risk

as the number of examples grows. The difference between various methods is in
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how they evaluate the separability of the projected data. The resulting classifier's

performance depends crucially on the cost function used to estimate the separability

of the projected data. The Support Vector Machines learning algorithm maximizes

the margin between the classes with respect to the projection vector. As we will see

in Section 4.4.1, there is a fundamental relationship between generalization ability of

a classifier and its margin.

Let's first consider a situation when the training data set is linearly separable,

i.e., there exists a hyperplane defined by its normal vector w and constant b that

separates the two classes (Figure 4-1). Note that for any hyperplane, w and b are

unique up to a scale factor and can be normalized to satisfy

Vk : yk((xk - w) + b) > 1. (4.6)

In this representation, the minimal distance from any data vector to the separating

hyperplane is equal to 1/ 1wl, and the margin between the classes with respect to

the separating hyperplane,

p(w) = min - max 2 (4.7)
Yk=1 JWJJ Yk=-l JJWJ JJWJ

'For example, the Fisher Linear Discriminant [20] uses the distance between the projected means
normalized by the variance of the projected data.
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is maximized when the length of the projection vector w is minimized subject to the

constraints (4.6). Using Lagrange multipliers, we transform the original problem

minimize J(w) = flwjj2  (4.8)

s.t. Vk : Yk ((Xk - w) + b) > 1. (4.9)

into its dual:

maximize W(a) = >3ak - a amukm (Xk Xm) (4.10)
k k,m

s.t. Vk: ak > 0 (4.11)

Sakyk = 0, (4.12)
k

where the ak's are the multipliers for the inequalities (4.9). This is a well known

constrained quadratic optimization problem that can be solved using a variety of nu-

merical methods. Moreover, the optimal projection vector w* is a linear combination

of the training examples:

w* akykxk. (4.13)

k

The Kuhn-Tucker conditions imply that the non-zero ak'S in the solution corre-

spond to the training vectors that satisfy the inequalities (4.9) with equality. These

are called support vectors, as they "support" the separating boundary between the

classes (Figure 4-1).

To extend this approach to a non-separable case, we would ideally modify the cost

function J(w) to maximize the margin while minimizing the number of misclassified

training examples. Unfortunately, this leads to a discrete cost function, which in

turn renders the problem NP-hard, and we have to resort to a linear approximation

to the discrete penalty function by introducing non-negative slack variables Gk that
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measure by how much each training example violates the margin constraint (4.9)

(Figure 4-2). The optimization problem (4.8)-(4.9) changes to include a penalty term

for misclassified examples:

minimize J(w) = ||w2 + CZ (4.14)

s.t. Vk : yk((xk - w) + b) ; 1 - (4.15)

where the constant C determines the trade-off between maximizing the margin and

minimizing the number of errors. The resulting constrained quadratic optimization

problem is very similar to the separable case:

maximize W(a) = Zak - 1 alykym (Xk - Xm) (4.16)
k k,m

s.t. Vk: 0O-ak C (4.17)

ECkk= 0, (4.18)
k

and can be solved using the same optimization techniques. The optimal projection

vector w* is still a linear combination of the training vectors in this case. The resulting

classifier

f(x) = (x -w*) + b = akyk (x -xk) + b (4.19)
k
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is a linear function of dot products between the input vector x and the support vectors

and defines a hyperplane whose normal is w*.

In practice, the algorithm is employed assuming that the data are not separable

and adjusting the constant C until a desired (possibly full) level of separation is

achieved.

4.3 Non-linear Support Vector Machines

Support Vector Machines can be extended to non-linear classification by observing

that both the optimization problem (4.16)-(4.18) and the resulting classifier (4.19)

use the input vectors only through the dot product operator. If we map the training

points from the original space into a higher dimensional space in a non-linear fashion

and apply a linear method in the higher dimensional space, the resulting classifier

will be a non-linear function of the input examples. Kernel functions allow us to

compute the dot products in the higher dimensional case without ever computing the

mapping. Using kernel functions, we can explore complex non-linear classifier families

that lead to exponential growth in the dimensionality of the resulting feature space,

which would be computationally prohibitive if the mapping to that space had to be

computed explicitly.

Formally, a function of two variables

K: R' x R" - R, (4.20)

is called a kernel if for some function

<bK : Rn _ IF (4.21)

that maps the data into a higher (or equal) dimensional space F (for example, R'

for m > n), the values of dot products in the space F can be computed by applying

function K to vectors in Rn:
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Vu, v E R ': K(u, v) = ((K(U) K(V)) - (4.22)

Given vector u E RI and vector z E F such that

Z = (K(U), (4.23)

we will say that z is an image of u and u is a source of z.

According to Mercer's Theorem, a function is a kernel if and only is it is positive

semi-definite. Kernel functions have been used for decades in linear systems anal-

ysis [47] and have gained increased popularity in the machine learning community

as it became apparent that they allow the construction of non-linear algorithms by

implicitly mapping the data to a higher dimensional space [57].

Different kernel functions have been proposed for use in classification and function

regression [3, 12, 56]. The simplest example is the linear kernel

K(u, v) = (u . v) , (4.24)

for which there exists a mapping 1 K that is the identity, and the resulting classifier is

a linear function in the original space. This kernel is a special case of the polynomial
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family:

K(u, v) = (1 + (u -v))', (4.25)

where d is the degree of the kernel.

Another commonly used kernel is the Gaussian kernel:

- 1u-_vI2
K(u, v) = e ' (4.26)

where the parameter -y defines how the influence of points on one another decreases

with distance and is often called the width of the kernel. The range space of the

corresponding mapping function is truly infinite-dimensional in this case.

Using kernel functions, we can effectively train a linear classifier in the higher

dimensional space F without explicitly evaluating 41 K, but rather using kernel K

to compute the dot products in F. This classifier produces a non-linear decision

boundary back in the original space R':

fK(X) = aY, kyk ( K(X) - 4 )K(Xk)) + b akykK(x, Xk) + b. (4.27)
k k

The non-linearity arises from the kernel function K(x, Xk), which replaces the dot

product in the linear classifier in Equation (4.19). In the higher dimensional space F,

the separating boundary is a hyperplane whose normal is a linear combination of the

images of support vectors:

w = akYk4K(Xk), (4.28)
k

but it can be an arbitrarily complex surface in the original space (Figure 4-3). The

coefficients ak are computed by solving the constrained quadratic optimization prob-

lem (4.16)-(4.18), with the dot products evaluated in the space F:

maximize W(a) = 5 ck - aka1YkymK(Xk, Xm) (4.29)
k k,m

s.t. Vk : 0 < ak < C (4.30)

I:akYk = 0. (4.31)
k
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To summarize, the SVM learning algorithm searches over a family of classifier

functions and selects the one that maximizes the margin between the two classes

with respect to a separating boundary. In the linear case, the separating bound-

ary is a hyperplane, and finding the best classifier requires solving a constrained

quadratic optimization problem fully determined by the pairwise dot-products of the

training vectors. This formulation lends itself naturally to a non-linear classification

framework by using kernel functions to evaluate dot-products in the implied higher

dimensional target space. Thus, the same quadratic optimization yields a classifier

that is linear with respect to the image vectors in the higher dimensional space, and

therefore is a non-linear function of the original data. In the next section, we discuss

kernel selection that determines the complexity of the resulting model.

4.4 Model Selection

The Empirical Risk Minimization Principle states that the minimum of the empirical

risk converges in probability to the minimum of the expected risk as the number of

training examples approaches infinity. In practice, the rate of convergence can be

slow enough that for any reasonable size of the training set, minimizing the empirical

risk causes overfitting, i.e., creating a model that explains the training data, but

does not generalize well on the test data. This leads to a notion of classifier (model)

complexity: a simpler model can be trained reliably using less data, but is limited

in the number of hypotheses it can express, while a more complex model is capable

of explaining more hypotheses, but requires more data to train. This trade-off is the

basis for such methods as Minimal Description Length [51, 52], regularization [26],

and the more recently proposed Structural Risk Minimization Principle [65]. These

techniques define a measure of the model complexity and use it to predict the expected

generalization error of the classifier. Traditionally, the number of free parameters

has been used to bound function complexity. More recently, the VC dimension was

introduced as a better measure.

The VC dimension of a family of classifiers is an upper bound on the number of

62



hypotheses the family members can generate on any given training set. One can show

that the rate of convergence of the minimum of the empirical risk to the minimum

of the expected risk for any particular classifier family can be bounded using the VC

dimension. Formally, for any q (0 < i 1), with probability at least 1 - q, the

classifier f, (x) that minimizes the empirical risk Remp (w) on the given training set

satisfies

R(w*) < Remp(w*) + h (log 21 + I I log 7, (4.32)

where h is the VC dimension of the classifier family f, (x), and 1 is the number

of training examples. The right hand side of (4.32) is often referred to as the VC

bound and its second term is called VC confidence. The Structural Risk Minimization

Principle relies on the VC bound (4.32) to estimate the expected risk. Applying it to

kernel-based SVMs, we consider a hierarchy of classifier families (e.g., the polynomial

kernels of increasing degree or the Gaussian kernels or decreasing width), and for

each family train a classifier using SVMs (select the support vectors and estimate

their coefficients) and compute the upper bound on the expected risk. The optimal

classifier is the one with the smallest upper bound.

The bound on the expected risk has to be predictive in order to be useful for

model selection. Note however, that the VC bound is distribution-free, i.e., one does

not need to know the distribution of the input data to estimate the convergence rate

of the learning algorithm. This suggests that the bound is usually fairly loose for any

particular distribution, and tighter bounds could be derived if the data distribution

function were known. Investigating tighter bounds is an active area of research in the

machine learning community [31, 67], and will hopefully lead to better estimates on

the generalization ability of classifiers. There has also been some work relating the

more traditional notion of regularization and the VC dimension [22, 60].

For problems with a small number of training examples, when the VC bound is

too loose to be helpful for classifier selection, other methods, such as cross-validation,

are employed [21]. The relationship between VC dimension and cross-validation is

63



9 D

Figure 4-4: Bounding sphere.

discussed in [66]. The traditional approach to estimating the expected test error from

the cross-validation is based on the Law of Large Numbers and De Moivre - Laplace

approximation: with probability at least 1 -,r

(R(w*) - RI )D , (4.33)

where R is the error rate of the cross-validation and

_1 f*<bII -~ e-t2/2d'I K(X) =- Ie 2 /t (4.34)

is the standard error function.

4.4.1 VC dimension and Support Vector Machines

It can be shown that the VC dimension of a hyperplane that separates the data with

margin p is bounded by

h < min(D 2/P 2 , n) + 1, (4.35)

where D is the diameter of the smallest hyper sphere that contains all the training

examples, and n is the dimensionality of the space (Figure 4-4). This bound can also

be computed in the non-linear case, as the radius of the bounding sphere in the target

space can be estimated using the kernel function.

Support Vector Machines have been demonstrated experimentally to be very ro-
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Figure 4-5: Example training set and the maximum-likelihood separating boundary

(solid line) derived from the underlying probability distributions.

bust to overfitting, even in situations when the VC bound is too loose to be useful in

predicting the generalization error reliably. It is believed that the classifier's margin

is indicative of its capacity, and therefore its generalization power, much more so

than the VC bound implies. While several tighter bounds have been demonstrated

recently [31, 67], we do not have a formal explanation yet for SVMs' superior perfor-

mance.

Since the concept of the VC dimension and its dependence on the margin of

the support vector classifier was introduced by Vapnik, similar relationships have

been shown for other learning techniques. For example, Schapire et al. [55] explained

performance characteristics of the ADA Boosting algorithm in terms of VC dimension

and the margin of the resulting learner.

4.5 Simple Example

We demonstrate the concepts presented in this chapter on a simple example shown

in Figure 4-5. The training data were generated by sampling two different two-

dimensional Gaussian distributions. The figure also shows the analytically derived

maximum likelihood separating boundary.
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function. The separating boundary (solid line) is the zero level set of the classification
function, while the +1 level sets define the margin (dotted lines).
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We trained a linear, a quadratic and a Gaussian RBF classifiers on this data set.

The width of the kernel for the RBF classifier (-y = 6) was chosen based on the

VC-bound (4.32). Figure 4-6 shows the resulting classifiers. The background of each

image is painted with the continuous values of the classifier function whose zero level

set defines the separating boundary (solid line). We show the support vectors by

drawing them as filled markers. The support vectors define a margin corridor, i.e.,

the ±1 level sets of the classifier (dotted lines). Note that there are markers very

close to the margin corridor that are not filled. The value of the classifier at these

points was very close to ±1, but not within the precision of the algorithm.

We observe that the shape of the classifier function, the separating boundary and

the margin corridor depend on the kernel used by the algorithm. In places where the

data provide enough evidence (lower cluster of support vectors), all three classifiers

agree on the location of the separating boundary. However, in places where data are

sparse, the shape of the separating boundary and the resulting support vectors are

influenced heavily by the shape of the kernel function. This is especially prominent

for the Gaussian RBF kernel that produces a margin corridor that is significantly

different from the linear and the polynomial ones. However, as more training data

become available, the estimated boundary will eventually converge to the maximum

likelihood boundary if we allow kernels of arbitrary complexity.

4.6 Summary

We use the Support Vector Machines algorithm to train a classifier that captures

differences between the two example groups. In addition to its theoretical foundation,

the method has been demonstrated to be robust to overfitting in small data sets and

to perform well in many applications. The Structural Risk Minimization Principle

provides a framework for systematic exploration of increasingly complex classifier

families, while optimizing for generalization performance of the resulting classifier.

For any kernel function, the algorithm produces a classifier function that is a linear

combination of kernel instances located at the training examples. The coefficients in
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the linear combination are determined by solving a constrained quadratic optimization

problem. The training examples that participate in the linear combination with non-

zero coefficients are called support vectors, as they define, or support, the separating

boundary between the two classes.

In application to the shape analysis problem, the algorithm uses the distance

transform feature vectors extracted from the input images to estimate the best clas-

sifier for discriminating between the two groups of subjects based on the shape of

the organ. We can also estimate the expected performance of the resulting classi-

fier based on the statistical tests presented in this chapter. However, we are much

more interested in extracting and understanding shape differences captured by the

classifier function. The next chapter presents a novel analysis technique that yields

an explicit description of the differences between the classes represented implicitly by

the classification function.
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Chapter 5

Discriminative Direction for

Kernel Based Classifiers

The classifier function constructed during the training phase implicitly encodes the

differences in data between the two classes. The classifier can be used to label new

examples, and in many application domains, such as character recognition, text clas-

sification and others, this constitutes the final goal of the learning stage. In medical

image analysis, we are far more interested in understanding the nature of the differ-

ences captured by the classifier than in using it for labeling new examples. These

differences, expressed in terms of the original images or shapes, can provide an in-

sight into the anatomical implications of shape differences detected by the learning

algorithm. Furthermore, we would argue that studying the spatial structure of the

data captured by the classification function is important in any application, as it

illuminates the nature of the differences between the classes and can potentially help

in improving the technique.

The analysis presented in this chapter addresses exactly this problem. We intro-

duce and derive a discriminative direction at every point in the original feature space

with respect to a given classifier. Informally speaking, the discriminative direction

tells us how to change any input example to make it look more like an example from

another class without introducing any irrelevant changes that possibly make it more

similar to other examples from the same class. It allows us to characterize shape dif-
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ferences captured by the classifier and to express them as deformations of the original

shapes.

This chapter is organized as follows. We start with a formal definition of the

discriminative direction and explain how it can be estimated from the classification

function. We then present some special cases, in which the computation can be

simplified significantly due to a particular structure of the model. Summary and

discussion on related work in the field of kernel methods conclude this chapter.

5.1 Discriminative Direction

Equations (4.27) and (4.28) imply that the classification function fK(x) is directly

proportional to the signed distance from the input point to the separating boundary

computed in the higher dimensional space defined by the mapping 4K. In other

words, the function output depends only on the projection of vector <DK(X) Onto W

and completely ignores the component of (DK(X) that is perpendicular to w. This

suggests that in order to create a displacement of (bK(X) that corresponds to the

differences between the two classes, one should change the vector's projection onto

w while keeping its perpendicular component the same. In the linear case, we can

easily perform this operation, since we have access to the image vectors, JbK(X) = X.

This is similar to visualization techniques typically used in linear generative modeling,

where the data variation is captured using PCA, and new samples are generated by

changing a single principal component at a time. However, this approach is infeasible

in the non-linear case, because we do not have access to the image vectors <DK(X)'S.

Furthermore, the resulting vector might not even have a source in the original feature

space (i.e., there might be no vector in the original spaces that maps into the resulting

vector in the higher dimensional range space), as the image vectors <DK(x)'s do not

populate the entire space F, but rather form a manifold of lower dimensionality whose

geometry is fully defined by the kernel function K (Figure 5-1). We will refer to this

manifold as the target manifold in our discussion.

Our solution is to search for the direction around the feature vector x in the

70



manifold

w

dz F

(D

dX

Figure 5-1: Discriminative direction.

original space that minimizes the divergence of its image <bK(X) from the direction

of the projection vector w. We call it a discriminative direction, as it represents the

direction that affects the output of the classifier while introducing as little irrelevant

change as possible into the input vector.

Formally, as we move from x to x + dx in R" (Figure 5-1), the image vector in

space F changes by

dz = <)K(X+ dx) - (K(X). (5.1)

This displacement can be thought of as a vector sum of its projection onto w:

_ (dz -w) w (dz -w)

IIwI| ||wI| (W - W)
(5.2)

and its deviation from w:

e A p A (dz -w) We = dz - p = dz - w)
(w -w)W

(5.3)

The discriminative direction is the solution of the following optimization problem:

minimize
(dz -w)2

S(dx) = le112 = (dz -dz) - (w . W)
(W - W)

(5.4)

(5.5)s.t. IIdxII 2 = E.
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Since the cost function depends only on dot products of vectors in the space F, it can

be computed using the kernel function K:

K aCkYkK(Xk) z

= akamYkYrn (4K(Xk)

km

CmYm 4' K(Xm)

- K(Xm))

= S aYamYkymK(Xk, Xm),
km

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

= : akyk (( K(X + dx) - 4K(X)) ' 4K(Xk))
k

- 5kYk (K (x +dx,Xk) - K (x, Xk))

- 5 /c~l~ ~ K(u, v)
k i (u=x,v=xk)

= VfK(x)dx,

dxi

where VfK(x) is the gradient of the classifier function fK evaluated at x and repre-

sented by a row-vector, and

= ((<DK(X + dx) - (DK(X)) - K(X + dx) - 4K(x)))

= K(x + dx, x + dx) + K(x, x) - 2K(x + dx, x)

(5.13)

(5.14)

8 2 K(u, u)
(u=x)

02 K(u, v)

i~j O(u=x,v=x)

= dx THK(x)dx,

a2 K(u, v)

dxi dxj

dxi dxj (5.15)
(U=XV=X))

(5.16)

(5.17)

where matrix HK(x) is one of the (equivalent) off-diagonal quarters of the Hessian

of the kernel function K, evaluated at (x, x). Substituting into Equation (5.4), we
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obtain

minimize S(dx) = dxT (HK(x) - IW 2VfK(x)VfK(x)) dx (5.18)

s.t. JldxJ| 2 = E. (5.19)

The solution to this problem is the eigenvector of matrix

QK(x) = HK(X) - IW I 2 VfK(X)VfK(x) (5.20)

that corresponds to the smallest eigenvalue. Note that in general, the matrix QK(X)

and its smallest eigenvector are not the same for different points in the original space,

and need to be estimated for every input vector x. Furthermore, each solution defines

two opposite directions in the input space, corresponding to the positive and the

negative projections onto w. We want to deform the input example towards the

opposite class and therefore assign the direction of increasing function value to the

examples with label -1 and the direction of the decreasing function to the examples

with label 1.

Obtaining a closed-form solution of this minimization problem could be desired,

or even necessary, if the dimensionality of the feature space is high and computing

the smallest eigenvector is computationally expensive. Below, we demonstrate how

a particular form of the matrix HK(x) can lead to an analytical solution for a large

family of kernel functions. While a very specialized structure of HK(x) in the example

below is sufficient for simplifying the solution significantly, it is by no means necessary,

and other kernel families might exist for which the estimation of the discriminative

direction does not require solving the full eigenvector problem.

5.1.1 Special Cases. Analytical Solution

We first observe that the second component of the right hand side of Equation (5.20)

is a matrix of rank one (VfK(x) is a row-vector) whose only non-zero eigenvalue

is equal to IwI-2H fK(X) 2 with the corresponding eigenvector VfK(x). The rest
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of the eigenvectors have the eigenvalue zero and span the null-space of the matrix

VfK(x)VfK (x). Therefore, we might be able to infer some information about the

eigenvectors and eigenvalues of QK(x) if the matrix HK(x) is of special form.

Let's consider a case when HK(x) is a multiple of the identity matrix:

HK(x) = cI. (5.21)

Since any vector is an eigenvector of the identity matrix with the eigenvalue one,

adding cI to an arbitrary matrix does not change the eigenvectors of that matrix,

but increments all of its eigenvalues by c. Consequently, the smallest eigenvector of

matrix

QK(X) = cI -- IWj! 2 7fk(X)VfK(x) (5.22)

is equal to the largest eigenvector of the matrix VfK (x)VfK(x) in this case:

dx* = Vf (x) (5.23)

E(dx*) = c_- |w-2HVfK(X) 2  (5.24)

We will show in this section that both for the linear kernel and, more surprisingly,

for the Gaussian kernel, the matrix HK(x) is of the right form to yield an analytical

solution. Furthermore, this solution is equal to the gradient of the classification

function. It is well known that to achieve the fastest change in the value of a function,

one should move along its gradient, but in the case of the linear and the Gaussian

kernels, the gradient also corresponds to the direction that distinguishes between the

two classes while minimizing inter-class variability.

Dot product kernels. This is a family of kernels of the form

K(u, v) = k((u -v)), (5.25)
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where k is a function of one variable. For any dot product kernel,

2 K(u, v)
(u=x,v=x)

- k'(H|xl 2 )6ij + k"( Ix|I2)XiXj,

and therefore HK(x) = cI for all x if and only if k"(jx 2)= 0, i.e., when k is

a linear function. Thus the linear kernel is the only dot product kernel for which

this simplification is relevant. In the linear case, HK(x) = I, and the discriminative

direction is defined as

dx* = VfK(x) = W = aSkYkXk

S(dx*) = 0.

(5.27)

(5.28)

This is not entirely surprising, as the classifier is a linear function in the original space

and we can move precisely along w.

Polynomial kernels are a special case of dot product kernels. For polynomial

kernels of degree d > 2,

a 2 K(u, v)
(u=x,v=x)

= d(1 + IIxI12)d-ltij + d(d - 1)(1 + ||xH|2 )d-2xixj.

HK(x) is not necessarily diagonal for all x, and we have to solve the general eigen-

vector problem to identify the discriminative direction.

Distance kernels. This is a family of kernels of the form

K(u, v) = k(IHu - V112), (5.30)

where k is a function of one variable. The members of this family are often called

Radial Basis Functions (RBF) because of their radial symmetry. For a distance kernel,

i 2 K(u, v)

(u7xv=x)
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(5.29)

= -2k'(0)645,



and therefore the discriminative direction can be determined analytically:

dx* = Vfk(x) (5.32)

E(dx*) = -2k'(0) - w|-2HVfK(X) 2 . (5.33)

The Gaussian kernels are a special case of the distance kernel family, and yield a

closed form solution for the discriminative direction:

2 11 x-xk 1

dx* = akyke-kI (X - Xk) (5.34)

E(dx*) = 2 - W12 VfK(X)112 . (5.35)

Unlike the linear case, we cannot achieve zero error, and the discriminative direc-

tion is only an approximation. The exact solution is unattainable in this case, as it

has no corresponding direction in the original space.

To summarize, the discriminative direction for the linear and the distance kernels

is equal to the gradient of the classification function. It simultaneously maximizes the

displacement towards the opposite class and minimizes irrelevant intra-class deforma-

tion of the input data. For other kernels, we might have to compromise between how

fast we advance towards the opposite class and how much of irrelevant change we in-

troduce in the feature vector. The deviation from the optimal direction is minimized

by the smallest eigenvector of the matrix defined in Equation (5.20).

5.1.2 Geometric Interpretation

In this section, we provide a geometric intuition for the solution obtained in the

previous section. We first remind the reader that we cannot explicitly manipulate

elements of the space F, but can only explore the target manifold through search in

the original space. Ideally, if we could access vectors in F directly, we would move

the input vector <bK(X) along the projection vector w and study the change in x
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introduced by this process. Moving along the projection vector might force us out

of the target manifold, but we must stay on it to be able to perform this operation

through manipulation of vectors in the original space. Therefore, every move along w

has to be followed by a projection step that returns us back to the manifold. There

are various ways to perform this projection, and in this work we chose to minimize the

error between the approximation vector and the exact solution. We also note that

different measures (e.g., the length of the projection of the resulting displacement

vector onto w) might be more appropriate for other applications.

We perform the search in the original space by considering all points on an in-

finitesimally small sphere centered at the original input vector x. In the range space

of the mapping function 4 1K, the images of points x + dx form an ellipsoid defined by

the quadratic form

dzTdz = dxTHK(x)dx. (5.36)

For HK(x) - I, the ellipsoid becomes a sphere, all dz's are of the same length, and

the minimum of error in the displacement vector dz corresponds to the maximum

of the projection of dz onto w. Therefore, the discriminative direction is parallel to

the gradient of the classifier function. If HK(x) is of any other form, the length of

the displacement vector dz changes as we vary dx, and the minimum of the error

in the displacement is not necessarily aligned with the direction that maximizes the

projection.

5.2 Selecting Inputs

Given any input example, we can compute the discriminative direction that represents

the differences between the two classes captured by the classifier in the neighborhood

of the example. But how should we choose the input examples for which to com-

'One can show that our sufficient condition, HK(x) ~ I, implies that the target manifold is locally
flat, i.e., its Riemannian curvature is zero. This follows directly from the definition of curvature [62].
Curvature and other properties of target manifolds have been studied extensively for different kernel
functions [3, 12]. Understanding the geometry of the kernel spaces can provide a useful insight into
the problem of selecting an appropriate kernel for a specific application.
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pute the discriminative direction? We argue that in order to study the differences

between the classes, one has to examine the input vectors that are close to the sep-

arating boundary, namely, the support vectors. The SVMs algorithm identifies the

support vectors as training examples that are "the closest" to the separating bound-

ary in terms of the classification function value. This definition can be naturally

extended to other learning algorithms, for example, for the nearest neighbor classifier

one should examine the training examples whose cells in the Voronoi partition of the

space border with cells of examples from the opposite class. Note that this approach

is significantly different from generative modeling, where a "typical" representative,

often constructed by computing the mean of the training data, is used for analysis and

visualization (e.g., to compare two different classes, one would compare their typical

representatives [17, 43]). In the discriminative framework, we are more interested in

the examples that lie close to the opposite class, as they define the differences between

the two classes and the optimal separating boundary.

The separating boundary is implicitly estimated as a zero level set of the classi-

fication function. The structure of the resulting classifier depends on the classifier

family used by the training algorithm, e.g., polynomial or RBF kernels. The zero level

set of the function is the best approximation of the optimal separating boundary for

this particular family. If the complexity (VC dimension) of the classifier family is

sufficient to fully capture the properties of the data, the zero level set of the result-

ing classifier will converge to the optimal separating boundary as the number of the

training examples increases.

Support vectors define a margin corridor whose shape is determined by the kernel

type used for training (for example, see Figure 4-6). We can estimate the distance

from any support vector to the separating boundary by examining the gradient of the

classification function for that vector. A large gradient indicates that the support vec-

tor is close to the separating boundary and therefore can provide more information on

the spatial structure of the boundary. This provides a natural heuristic for assigning

importance weighting to different support vectors in the analysis of the discriminative

direction.
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5.3 Simple Example

In this section, we demonstrate the discriminative direction analysis on the simple

example introduced in Section 4.5. Figure 5-2 shows the discriminative direction

for the classifiers estimated for this example in the previous chapter. We display

the discriminative direction vectors not just for the support vectors, but also for the

training examples that are very close to the margin corridor. The length of the arrows

in the plots is proportional to the magnitude of the gradient at the corresponding

points.

Similarly to the training results discussed in Section 4.5, the estimates of the

discriminative direction for the three different kernels agree in the areas where the data

provide strong evidence for the separating boundary localization (the lower cluster

of arrows). As we inspect the areas where insufficient data caused the regularization

model supplied by the kernel function to drive the separating boundary estimation,

we find larger discrepancies among the discriminative direction estimates in the three

images.

The discriminative direction is equal to the gradient of the classifier function and

could be computed analytically for the linear and the RBF classifiers, but we had

to solve the eigenvector problem for the quadratic classifier. While the eigenvector

problem is relatively simple in this two-dimensional example, the numerical stability

of estimating the smallest eigenvector could be an obstacle for applying this analysis

to polynomial classifiers when working with high-dimensional data. To relate this to

the problem of shape analysis, the feature vectors based on the distance transforms

can contain hundreds, or even thousands, of components. The features are highly

redundant, with strong correlation among the values at neighboring voxels. As we

will see in the next chapter, we can easily train a classifier that reliably captures the

differences between the classes, even when the number of training examples is very

small. High dimensionality of the data does not present a challenge to the training

algorithm, but could render using polynomial kernels infeasible. This is one of the

reasons for our choice of the Gaussian RBF kernels for our application.
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Figure 5-2: Discriminative direction for different kernel classifiers. The discriminative
direction is shown for the vectors close to the boundary, including the support vectors.
The support vectors are shown as filled makers. The background is painted with the
values of the classification function. The separating boundary (solid line) is the
zero level set of the classification function, while the ±1 level sets define the margin
(dotted lines). The length of the vectors is proportional to the gradient of the classifier
function.
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5.4 Related Questions

Interpreting the results of kernel based learning in terms of the original features is

challenging because the mapping function I K implied by the kernel is not invertible,

and therefore we cannot manipulate the vectors in the range space F and guarantee

that there is always a vector in the original space that maps onto the newly generated

vector in F. Since only the points on the target manifold can be mapped back to the

original feature space, approximation algorithms have to be used that define a way to

project arbitrary vectors in the space F onto the target manifold. These algorithms

effectively define an appropriate measure of proximity to the exact solution for a

specific problem and then minimize it over the manifold.

A classification problem is the main focus of this work, but kernel methods have

also been applied to generative modeling. Kernel-based PCA [56, 58] is a non-linear

version of the Principal Component Analysis that uses kernels to implicitly map the

original vectors to a higher dimensional space and perform linear modeling in that

space. It turns out that computing principal components can be carried out entirely

in terms of dot products, and therefore, the "kernel trick" can be applied. The most

common use of PCA is for dimensionality reduction, when only first few principal

components are used by the model. In this application, once the few corresponding

coefficients are computed for a new input vector x, its image vector J K(X) is re-

placed by the linear combination of the first few principal components of the model.

This new image vector then must be projected back to the original feature space to

generate a new feature vector x' that represents an approximation of the original x

within the reduced model. But if the resulting linear combination does not lie on the

target manifold, the back-projection step cannot be performed exactly. Instead, an

optimization is carried out to find a point in the original space that maps as close

as possible to the newly computed result in the higher dimensional space. This tech-

nique was demonstrated in face tracking [53], successfully handling non-linear changes

(occlusions, different views) in the input.

One might be able to construct a global optimization problem for the discrim-
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inative case as well. For example, we could reflect the image vector around the

separating hyperplane and try to find the closest point on the target manifold to the

exact solution. The main problem we encountered with such approach is constructing

a good proximity measure for the search over the manifold. However, it is one of the

interesting extensions to be investigated in the future.

As we mentioned before, the geometry of kernel spaces is a topic of active research

in the machine learning community. Interestingly, it can be shown that the kernel

function effectively induces a Riemannian metric on the original feature space [12].

Function optimization in arbitrary metric spaces was studied by Amari [2] who intro-

duced a notion of natural gradient to adapt the traditional gradient descent algorithm

to spaces with non-Euclidean metric. Similarly to the discriminative direction analy-

sis presented in this chapter, the natural gradient is a direction estimated through an

infinitesimal analysis. However, the goal of the analysis is to maximize the change in

the function over an infinitesimal neighborhood whose geometry is determined by the

metric tensor. In our analysis, HK(x) plays the role of the metric tensor at point x.

5.5 Summary

We presented an approach to quantifying the classifier's behavior with respect to

small changes in the input vectors, trying to answer the following question: what

changes would make the original input look more like an example from the other

class without introducing irrelevant changes? We introduced the notion of the dis-

criminative direction, which corresponds to the maximum changes in the classifier's

response while minimizing irrelevant changes in the input. In our application, this

can be used to interpret the differences between the two classes as deformations of

the original input shapes, as explained in the next chapter.
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Chapter 6

Experimental Results

This chapter presents the results of applying our approach to several different shape

studies. We first explain how the components of the analysis described in the pre-

vious chapters are combined into a system and provide implementation details while

demonstrating the analysis on a simple artificial example. We then report experimen-

tal results for the medical studies on hippocampus and corpus callosum. We conclude

this chapter with a discussion of the lessons learned from the experimental data.

6.1 System Overview

As we describe the steps of the algorithm, we will illustrate them on a simulated shape

study that contains 30 volumetric images of ellipsoidal shapes of varying sizes. The

width, height and thickness of the shapes were sampled uniformly out of a ±10 voxel

range centered at 20, 30 and 40 voxels respectively. We randomly divided the data

set into two classes of 10 and 20 examples respectively and added a spherical bump

to the shapes in the first class. The bump location was sampled out of a ±3 voxel

range centered on the side of the main ellipsoid. Figure 6-1 illustrates both types of

shapes. The number of training shape examples corresponds to what we encounter

in real morphological studies. Knowledge of the shape differences between the groups

in this simulated experiment makes it is relatively easy to asses the effectiveness of

the analysis. Evaluation of the results is more difficult in the real medical studies,
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(a) Shape examples #1-5 from the first class.

(b) Shape examples #1-5 from the second class.

Figure 6-1: Artificial training set example. Five shapes are shown from each class.

where the true shape differences, if they exist, are unknown. We will come back to

this problem later in the chapter, when discussing medical data.

6.1.1 Shape Representation

For every input scan, we compute the distance transform and use its moments to

establish a new coordinate system in the volume, placing the origin at the center of

mass and aligning the coordinate frame with the principal axes of inertia. The values

of the distance transform are then sampled along the new axes at uniform intervals

and concatenated into a feature vector in a row-by-row, slice-by-slice fashion. The

result of this step is the training set {(Xk, Yk) 1 =, where Xk are the feature vectors

obtained by sampling the distance transforms, and Yk E {-1, 1} are the corresponding

labels defining the membership in one of the two populations.

Since we use the distance transform for feature extraction, the original scans must

be segmented prior to the analysis. In all examples presented in this chapter, the

computation was based only on the binary segmentation images (voxels inside the

shape were assigned value 1, and voxels outside the shape were assigned value 0). We

showed the original grayscale images in this dissertation only to illustrate the input
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data; they were not used by the algorithm.

6.1.2 Statistical Modeling

The training feature vectors and their labels are used by the Support Vector Machines

learning algorithm to construct a classifier for labeling new examples. In each experi-

ment we trained a linear and a non-linear classifier. We use the Gaussian RBF kernel

SVMs for non-linear classification, largely because of their local nature: changing one

of the support vectors by a small amount only affects the separating boundary in the

vicinity of that vector. This is an important advantage in the presence of noise in the

training examples. An additional, although not as important, reason for using RBF

kernels is the ease of computing the discriminative direction.

In each study reported in this work, we systematically explore the space of pa-

rameters (the kernel width y and the constant C) by sampling it on a logarithmic

scale. To guarantee that we examine kernels of the width comparable with the pair-

wise distances between the example feature vectors, we set the lower and the upper

ends of the range for -y to the one tenth of the smallest non-zero distance and the ten

times the largest distance respectively. The range for the soft margin constant C is

the same (10-3 - 103) in all our experiments. The training algorithm has been shown

empirically to be quite robust to the setting of the parameter C. We have observed

in our studies that in the optimal region for -/, the training results were very similar

for a wide range of values for C.

For each setting of the parameters, we train a classifier as described in Section 4.3,

compute an upper bound on its VC dimension and perform leave-one-out cross-

validation for estimation of the generalization performance. We used both bounds to

select the best classifier. The two bounds typically agree on the optimal parameter

settings in successful studies, which provides an additional indicator for the robustness

of the resulting classifier.

The shapes in our example were easily separable using a linear classification func-

tion, but we also trained a non-linear classifier for comparison. Both classifiers sepa-

rate the data perfectly. The cross-validation accuracy is 100% as well. The number
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of support vectors is significantly higher for the RBF classifier (13) than for the lin-

ear one (6), but its estimated VC dimension (11.87) is lower than that for the linear

classifier (31.16).

6.1.3 From The Classifier to Shape Differences

Once the optimal classifier has been constructed, we proceed to estimate the discrim-

inative direction, as described in Chapter 5. The discriminative direction is equal to

the gradient of the classification function for both the linear and the Gaussian kernels.

We compute the discriminative direction dx* at the support vectors identified in the

training phase and use the magnitude of the classifier gradient to rank the vectors'

importance in representing the shape differences captured by the classifier. For the

linear classifier, the direction and the magnitude of the gradient is the same for all

support vectors. For the non-linear classifier, we have to evaluate them separately for

each support vector.

Figure 6-2 shows the discriminative direction dx* estimated for the shapes in the

second class based on the linear classifier. The change in the distance transform for

the shapes in the first class can be obtained by changing the sign of all the components

of dx*. Since we are interested only in the direction of the change, the magnitude of

the discriminative direction vector dx* is irrelevant. We consider the changes in the

distance transform values at different voxels relative to each other, rather than on

the absolute scale. Consequently, we omit absolute values from the figures and use

colorbars to provide information on the relative values of the resulting feature vector

components. We have used the discriminative direction vector shown in Figure 6-2

in Chapter 3 to demonstrate the local parameterization of the distance transform

manifold based on the deformations of the surface meshes.

The volumetric image in Figure 6-2 is smooth1 , even though we did not augment

the learning algorithm with any explicit information on the type of dependencies or

'Here, we refer to the correlation of the voxel values in the volumetric discriminative direction for
one specific shape rather than the correlation of the discriminative direction vectors at close points
in the shape space.
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Figure 6-2: Volumetric discriminative direction dx* for the shapes in the second
class based on the linear classifier. Positive values (bright intensities) in the image
correspond to increasing the values of the same voxels in the distance transform,
negative values (dark intensities) correspond to reducing the values of the distance
transform. The absolute scaling is omitted since we are interested only in the direction
of the vector, not its magnitude. The intensity that corresponds to zero change in
the distance transform is shown on the colorbar. Every second slice is shown.

spatial variation in the feature vectors. The resulting hypothesis is consistent with

the smooth nature of the input distance transforms. Sharp discontinuities in the

gradient of the classification function that do not coincide with the edges (skeleton

branches) in the distance transform would indicate that the smooth nature of the

input data did not get captured by the classifier from the small number of examples

in the training set.

Most weight in the gradient image is concentrated in the area of the bump. Posi-

tive values of the discriminative direction indicate that the distance transform values

should decrease in the examples from the first class and increase in the examples from

the second class. Thus, the learning algorithm correctly identified the main difference

between the classes. A secondary effect found in Figure 6-2 is a slight difference in
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Figure 6-3: Deformation of the three support vectors from the first class computed
using the discriminative direction for the linear classifier. Two views of each shape
are shown. The color coding is used to indicate the direction and the magnitude
of the deformation, changing from blue (inwards) to green (no deformation) to red

(outwards).

the overall shape: a small enlargement in width and reduction in hight is required of

shapes in the first class (the shapes in the second class have to undergo a change of the

opposite sign). We believe this is an artifact caused by the small number of training

examples. The same global size differences are detected if the learning is performed on

the training data set without adding the bump to the shapes in the first class, but the

cross-validation results indicate that this specific difference cannot be used to classify

the shapes reliably. Furthermore, as we increased the number of training examples,

the size-related effects disappeared from the resulting discriminative direction.
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Figure 6-4: Deformation of the three support vectors from the second class computed
using the discriminative direction for the linear classifier. Two views of each shape
are shown. The color coding is used to indicate the direction and the magnitude
of the deformation, changing from blue (inwards) to green (no deformation) to red

(outwards).

6.1.4 Shape Differences As Deformations

The next step in the analysis is to compute the deformation of the support vectors ds

that approximates the discriminative direction dx*, as explained in Chapter 3. To

remind the reader, we project the vector dx* onto the space of infinitesimal changes of

the distance transform. The projection vector dx0 defines a deformation of the surface

mesh ds that changes the original shape according to the discriminative direction.

Figure 6-3 and Figure 6-4 show the estimated deformation ds for the 6 support

vectors of the linear classifier. The color coding is used to indicate the direction

and the magnitude of the deformation, changing from blue (inwards) to green (no
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Figure 6-5: Deformation of the first 5 support vectors from the first class computed
using the discriminative direction for the Gaussian RBF classifier. Two views of each
shape are shown. The color coding is used to indicate the direction and the magnitude
of the deformation, changing from blue (inwards) to green (no deformation) to red

(outwards).

deformation) to red (outwards). The shape differences defined by the deformation ds

are localized to the area of the bump, similarly to the volumetric discriminative

direction dx* in Figure 6-2. The support vectors are redundant, representing virtually

identical deformation. We encountered this phenomenon in all our experiments: some

support vectors are so close to each other in the feature space that they define very

similar deformations.

As we mentioned before, the surface-based representation of the shape differences

between the two classes is significantly easier to interpret than the volumetric results.

The advantages of surface-based visualization become even more apparent when we

work with real anatomical shapes and use non-linear classifiers that yield a different

volumetric discriminative direction for every support vector. In order to infer a top-

level description of shape differences from the changes in the distance transform, one

has to argue about shape differences in a way that effectively reduces the volumetric

representation to a surface-based deformation description. Our analysis presented in

Section 3.3 formalizes this line of argument. We relied on the volumetric display in our
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Figure 6-6: Deformation of the first 5 support vectors from the second class computed
using the discriminative direction for the Gaussian RBF classifier. Two views of each
shape are shown. The color coding is used to indicate the direction and the magnitude
of the deformation, changing from blue (inwards) to green (no deformation) to red

(outwards).

discussion in Chapter 3 and in this section to guide the reader through the analysis

steps, but will use surface-based representation in the remainder of this chapter.

Figure 6-5 and Figure 6-6 present the results of the non-linear classification using

Gaussian RBF kernels. The deformation was computed using the discriminative

direction for the first 5 support vectors in each class. This classifier has 13 support

vectors, 5 from the first class and 8 from the second class. We sorted the support

vectors using the magnitude of the classifier gradient as an importance criterion. The

magnitude of the gradient decreases by a factor of 7 from the first support vector to

the last one. We can see that the shape differences captured by the non-linear classifier

are very similar to the results of the linear classification, which is not surprising since

the margin between the classes is wide enough for the linear classifier to separate the

data perfectly. The non-linear classifier might be able to match the curvature of the

margin corridor better, but it should identify a similar structure in the data. In cases

of classes that are not linearly separable, we expect the differences between the linear

and the non-linear classifiers to be more substantial, as they trade-off the training
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error and the model complexity in a different manner.

To summarize the steps of the algorithm, we extract the distance transforms

from the segmented volumetric images in the training data set and pass them to

the SVMs learning algorithm that produces a classification function for labeling new

example images. We then compute the gradient of the classification function for the

support vectors of the classifier and use its direction as the discriminative direction

and its magnitude as the importance weighting for ranking the support vectors. The

discriminative direction for each support vector is then projected onto the manifold

of the valid distance transforms to produce a deformation that best approximates

the discriminative direction. The deformation is visualized for inspection and can be

analyzed further to identify the areas of differences between the classes.

6.2 Artificial Example 2

The simple example we used to illustrate the steps of the algorithm involved shape

differences in a single spot on the surface of the training objects. In this section, we

modify the shapes in the first class by adding an indentation in a different location

(Figure 6-7). Thus, the shape differences consist of two individual deformations that

have to be identified by the algorithm. The depth of the indentation was 4 pixels,

which is smaller than the global size variability. The shapes in the second class were

unchanged in this experiment.

Since the shapes in the two classes are even more distinct now, the training algo-

rithm faces an easier learning task. We show the results only for the linear classifier

in this section, as it was sufficient to capture the shape differences: both the training

and the cross-validation accuracy was 100%.

Figure 6-8 shows the volumetric discriminative direction for the linear classifier.

Note that in addition to the deformation in the area of the bump, a deformation of

the opposite sign appears in the place corresponding to the indentation in the shapes

from the first class. The intensity scaling in this figure is slightly different from that

in Figure 6-2, as it contains a strong negative component.
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Figure 6-7: Additional shape change in the first class. Five example shapes are shown
from the first class. The shapes in the second class were left unchanged. Compare to
Figure 6-1.

0

Figure 6-8: Volumetric discriminative direction for the shapes in the second class.

Positive values (bright intensities) in the image correspond to increasing the values

of the same voxels in the distance transform, negative values (dark intensities) cor-

respond to reducing the values of the distance transform. The absolute scaling is

omitted since we are interested only in the direction of the vector, not its magnitude.

The intensity that corresponds to zero change in the distance transform is shown on

the colorbar. Every second slice is shown. Compare to Figure 6-2, note that the

intensity scaling has changed.
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Figure 6-9: Deformation of the two support vectors from the first class. Two views of
each shape are shown. The color coding is used to indicate the direction and the mag-
nitude of the deformation, changing from blue (inwards) to green (no deformation)
to red (outwards). Compare to Figure 6-3.

Figure 6-9 and Figure 6-10 show the deformation of the 5 support vectors that

define the resulting classifier. These shapes were also identified as support vectors by

the previous examples, while one of the support vectors in the first group did not ap-

pear as such in this experiment2 . We can see that the technique identified both areas

of differences and assigned the appropriate deformations to those areas. Furthermore,

it could incorporate both deformations into a single resulting discriminative direction.

2 The value of the classifier for this vector was 1.14, as compared to the range [-1.7; 1.7] observed
for the training set. Thus, it is still very close to the margin corridor.
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Figure 6-10: Deformation of the three support vectors from the second class. Two
views of each shape are shown. The color coding is used to indicate the direction
and the magnitude of the deformation, changing from blue (inwards) to green (no
deformation) to red (outwards). Compare to Figure 6-4.

6.3 Scaling

Volume and area measurements are extensively used in statistical studies of anatomi-

cal organs. In morphological studies, volume differences might be indicative of shape

differences, and are therefore useful for fast pre-screening. However, using volume

measurements by themselves has been questioned repeatedly in the medical research

community because of wide variation in size among subjects. To alleviate this prob-

lem, volume-based statistical studies often use normalized volume measurements with

the normalization factor chosen to reflect the global scale, e.g., the size of the brain

can be used to normalize the hippocampus volume.
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Volume
Structure Right hippocampus Left hippocampus
Training accuracy (%) 60.0 63.3
Cross-validation accuracy (%) 60.0 ± 17.5 63.3 ± 17.2

Shape, Linear classification
Structure Right hippocampus Left hippocampus
Training accuracy (%) 100 100
Cross-validation accuracy (%) 53.3 ± 17.8 56.7 ± 17.6
VC dimension 277 405
VC bound 1.79 1.86

Shape, RBF classification
Structure Right hippocampus Left hippocampus
Training accuracy (%) 100 100
Cross-validation accuracy (%) 76.7 + 15.1 70.0 ± 16.3
VC dimension 28 29
VC bound 1.34 1.35

Table 6.1: Performance estimates for the hippocampus study. The cross-validation
confidence intervals and the VC bound were computed for 95% confidence level (r7 =

0.05). The training accuracy is reported for the parameter setting that yielded the
best cross-validation results.

Whether the scale is part of the object's shape is a controversy of its own. One

could argue that scaling the object uniformly does not change its shape. In this work,

we scale the shapes to the same volume. Such scaling can be easily incorporated into

the feature extraction step. In the following sections, unless specified otherwise, the

training shapes are normalized with respect to their volume. Later in this chapter,

we discuss possible ways to combine volume measurements with shape information

to improve separation between the classes.

6.4 Hippocampus in Schizophrenia

In this section, we report the results of the method applied to a data set that contains

MRI scans of 15 schizophrenia patients and 15 matched controls. In each scan, the

hippocampus-amygdala complex was manually segmented. The examples of scans and

segmentations from this study were shown in the previous chapters (see Figure 1-1,

Figure 1-2 and Figure 3-2). Details on the subject selection and data acquisition can
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be found in [59]. The same paper reports statistically significant reduction in the

relative volume of the left hippocampus (the volume of the structure was normalized

by the total volume of intracranial cavity). This indicated that shape differences

might also be present in this study.

In order to present and compare the results of different experiments in a uni-

form fashion, we first trained a classifier based on the volume measurements of the

structure. The statistical significance test can be used only if the feature space

is one-dimensional and is therefore not applicable to the case of multi-dimensional

shape descriptors. Treating the one-dimensional volume descriptor similarly to the

shape descriptors allows us to compare them directly. The probabilistic bounds, such

as cross-validation accuracy and VC bound, are estimated for 95% confidence level

(r/ = 0.05) for all the experiments in this work.

Table 6.1 contains the summary of performance estimates for this study. Note that

statistical significance does not necessarily mean perfect separation: the volume-based

leave-one-out cross-validation accuracy for the left hippocampus is 63.3% (±17.2%).

By visually inspecting the shapes in Figure 1-2, we conclude that there are no distinct

differences that would guarantee 100% classification accuracy. This is common in the

medical studies, where the global anatomical shape is similar in both groups, and the

small deformations due to a particular disorder, if such exist, are of interest.

Unlike the shape-based experiments, the cross-validation accuracy for volume-

based descriptors is close to the training accuracy. Removing a single training example

can only affect the training result if the example is close to the threshold, i.e., it's

a support vector, and there could be only few such vectors in the low-dimensional

space.

We conclude that the optimal non-linear classifier is likely to significantly out-

perform the linear classifier on this data, as indicated by the cross-validation results

and the VC dimension estimates in Table 6.1. In fact, the cross-validation accuracy

for the linear case is very close to the 50% baseline. In the remainder of this sec-

tion, we present the discriminative direction analysis for the optimal RBF classifier.

We present the results for the right and the left hippocampus next, followed by the
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Figure 6-11: Training results for the right hippocampus. The graphs demonstrate
the training error Remp, the upper bound on the VC dimension (4.35), the VC
bound (4.32) and the cross-validation error R.

discussion on both structures, on the significance of the findings and the issues this

experiment highlighted for the future extensions of the current analysis framework.

6.4.1 Right Hippocampus

Figure 6-11 shows detailed results of training and generalization performance estima-

tion for the right hippocampus. Although the VC bound does not provide a useful

estimate of the expected error, its spatial structure agrees with the cross-validation

results in identifying the optimal setting of the parameters ~y and C. Note that the
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performance estimates are very similar for a wide range of values of C (10 + 103)

for the same value of -y. It has been commonly observed that the SVMs algorithm

is fairly insensitive to changes in the parameter C, producing the same classifier for

values of C several orders of magnitude apart [11].

We demonstrate the discriminative direction as deformations of the support vec-

tors. Figure 6-12 and Figure 6-13 show three support vectors from the normal control

group and the schizophrenia group respectively. Four views (front, center-out, back,

outside-in) are shown for each shape. These shapes were chosen from the list of

the support vectors sorted in the descending order of the magnitude of the classifier

gradient. Similarly to the artificial example in the previous section, the algorithm

produces several support vectors for the same type of deformation. We omit support

vectors with very similar deformations to the ones shown in the figures. As a result,

the shapes displayed in Figure 6-12 are support vectors 1, 3, and 6 from the normal

control group, and the shapes in Figure 6-13 are support vectors 1, 3 and 5 from the

schizophrenia group.

We can see that the deformations identified by the analysis are smooth and local-

ized. Furthermore, the protrusions are separated from indentations by areas where

no deformation is required3 .

We also note that the support vectors from different classes define deformations

of very similar nature, but of opposite signs. We believe that such pairs of support

vectors "oppose each other" across the separating boundary, but a more precise def-

inition and analysis of this notion has to be developed before we can characterize it

quantitatively.

A significant amount of deformation is localized in the anterior region of the

structure, which indicates that the bulbous "head" of the amygdala is curved-in, or

tucked-in, relative to the main body in normal controls more than in schizophrenia

patients. This deformation is prominent in the first two support vectors from each

3 A series of small changes of opposite sign close to each other would raise a concern that the
structure captured by the classifier does not correspond to the sooth way the anatomical shapes
deform and is induced by noise and errors in the boundary.
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Figure 6-12: Discriminative direction for the right hippocampus shown as deforma-
tions of three support vectors from the normal control group. Four views of each
shape are shown. The color coding is used to indicate the direction and the magni-
tude of the deformation, changing from blue (inwards) to green (no deformation) to
red (outwards).
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Figure 6-13: Discriminative direction for the right hippocampus shown as deforma-
tions of three support vectors from the schizophrenia group. Four views of each shape
are shown. The color coding is used to indicate the direction and the magnitude of

the deformation, changing from blue (inwards) to green (no deformation) to red (out-
wards).
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Figure 6-14: Training results for the left hippocampus. The graphs demonstrate
the training error Remp, the upper bound on the VC dimension (4.35), the VC
bound (4.32) and the cross-validation error R.

group. In normal controls, there is a significant deformation inward in the inner part

of the amygdala and a corresponding expansion on the outside part of it. The second

interesting shape difference is located in the posterior part of the hippocampus and

is represented by the third support vector in the figures. It seems that the "tail" is

thinner and possibly shorter in schizophrenics in the region of the shape space close

to this support vector.
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6.4.2 Left Hippocampus

While the volume-based differences are more prominent in the left hippocampus in

this study, the shape-based performance estimates for the left hippocampus are lower

than those for its right counterpart (Table 6.1). But since we scaled the structures

to an identical volume, thus separating shape from size, we would not expect the

volume-based results and the shape-based finding to be perfectly correlated.

Figure 6-14 illustrates the training results for the left hippocampus in detail.

Similarly to the right hippocampus, the VC bound and the cross-validation estimates

agree on the optimal range of parameters -y and C.

Figure 6-15 and Figure 6-16 show the discriminative direction as a deformation

of the top support vectors from the normal control group and the schizophrenia

group respectively. The first two support vectors in each group indicate that the

posterior "tail" of the structure is folded-in, or curved, in normal controls more than

in schizophrenics. In addition, the last three support vectors contain a deformation

in the anterior part of the structure. The support vectors in the normal control group

contain a slight deformation inward and a protrusion of a higher magnitude in the

anterior part. This deformation is of a similar nature for the three support vectors, but

it is localized in different parts of the bulbous head. Besides the obvious explanation

that the location of this deformation is not fixed in the population, this could also

correspond to a general enlargement of the anterior part relative to the whole structure

in schizophrenics. Slight misalignments of the structures in the feature extraction step

can cause such size differences to be detected in different areas of the affected surface.

Since statistically significant volume reduction was detected in the left hippocampus,

this could mean that the posterior part of the structure is affected by the volume

reduction in a more significant way that the anterior part.

6.4.3 Discussion

The two previous sections demonstrate our technique on the real medical data. We

obtained a detailed description of the shape differences between the schizophrenia
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Figure 6-15: Discriminative direction for the left hippocampus shown as deformations
of four support vectors from the normal control group. Four views of each shape
are shown. The color coding is used to indicate the direction and the magnitude
of the deformation, changing from blue (inwards) to green (no deformation) to red
(outwards).
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Figure 6-16: Discriminative direction for the left hippocampus shown as deformations

of four support vectors from the schizophrenia group. Four views of each shape

are shown. The color coding is used to indicate the direction and the magnitude

of the deformation, changing from blue (inwards) to green (no deformation) to red

(outwards).
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group and the normal control group expressed as deformations of the example shapes

in the two groups. While the medical significance of these findings has to be fur-

ther investigated by the neuroscientists, such visualizations can clearly facilitate their

exploration of the shape differences in organs affected by the disease.

Note that the shape differences found in the two hippocampi are asymmetric. We

considered the two structures independently of each other, but studying the rela-

tionship between the two sides of the brain could help us understand the effects of

a disorder better. An even higher cross-validation accuracy (87%) was recently re-

ported on the same data set in [25] based on the average distance between the aligned

surfaces of the left hippocampus and a mirror image of the right hippocampus as an

asymmetry measure. Unfortunately, such global asymmetry measures are too specific

to be generally applicable, and furthermore, they do not provide information on the

details of the shape differences. In this work, we concentrated on a single structure at

a time and provided the analysis and the detailed interpretation of shape differences

based on general descriptors. The separation between the classes could be improved

by combining information from different structures (left and right) and different de-

scriptors (volume and shape). We will come back to this question in the next chapter

when we discuss possible future extensions of this work.

The results reported in this section indicate that the training data set is too small

to provide accurate estimates of the generalization performance of the classifier. The

gap between the training and the cross-validation errors, as well as wide confidence

intervals, indicates that we are far from the asymptotic region where either of the

estimated errors is a reliable predictor of the generalization performance. More data

is needed to guarantee that the resulting classifier and the detected shape variation

reflect the true differences in the population. Unfortunately, the ground truth, i.e.,

the true differences between the classes, or even whether such differences exist, is

not known for the medical studies we are working with. Anatomical shape analysis

is a relatively new field, and not much is known about the deformations caused by

the disorders of interest. We therefore believe that developing principled algorithms

for investigating morphology of the organs, along with thorough data collection and
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Table 6.2: Performance estimates for the corpus callosum in the affective disorder
study. The cross-validation confidence intervals and the VC bound were computed for
95% confidence level (rq = 0.05). The training accuracy is reported for the parameter
setting that yielded the best cross-validation results.

analysis, can have a significant impact on the field.

In the next two sections, we demonstrate our method on two studies of corpus

callosum for which our technique identified shape differences between the group of

patients and the normal controls. Our findings in both studies indicate differences

between the groups, with a similar concern about the size of the training data set as

for the hippocampus study.

6.5 Corpus Callosum in Affective Disorder

Corpus callosum is a bundle of white matter fibers connecting the two hemispheres of

the brain. The two-dimensional cross-section of the bundle is actually what studied

in the medical research. Example images of corpus callosum and its segmentation

were shown in Chapter 3. To ensure consistency, all the scans in the study have

been aligned manually by the trained physicians so that the cross-section is indeed

perpendicular to the bundle. Further details on the data collection and scan alignment

can be found in [24].

In this study, we compared 18 affective disorder patients with 20 normal controls.

Table 6.2 summarizes the performance estimates for the linear and the Gaussian RBF

classification on this data set. The gap between performance estimates for the linear
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Linear classification
Training accuracy (%) 100
Cross-validation accuracy (%) 65.8 ± 15.0
VC dimension 1766.35
VC bound 1.45

RBF classification
Training accuracy (%) 100
Cross-validation accuracy (%) 73.7 ± 13.9
VC dimension 39.24
VC bound 1.35
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Figure 6-17: Training results for corpus callosum in the affective disorder study. The

graphs demonstrate the training error Remp, the upper bound on the VC dimen-

sion (4.35), the VC bound (4.32) and the cross-validation error R.

and the non-linear classification is not as wide as in the hippocampus study, but it is

still substantial. The 95% confidence interval for the linear classification touches the

50% baseline, while the confidence interval for the best RBF classifier is well above it.

Figure 6-17 shows the details of the training results for the non-linear classification.

The cross-validation error graph is noisier for this case than the hippocampus study,

achieving its minimum at several places in the valley. We use the VC bound to choose

among the parameter settings that correspond to the minimum of the cross-validation

error.

Figure 6-18 shows the detected shape differences as deformations of the first 6

support vectors from each group. Similarly to the hippocampus study, there is a lot of

redundancy in deformation represented by the support vectors. The most prominent

difference captured by the classifier is the deformation in the anterior part of the
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(a) Normal controls

(b) Patients

Figure 6-18: Discriminative direction for corpus callosum in the affective disorder
study shown as deformations of 6 support vectors from each group. The color coding
is used to indicate the direction and the magnitude of the deformation, changing from
blue (inwards) to green (no deformation) to red (outwards).
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structure (the left end of corpus callosum in the images). We observe a significant

amount of horizontal expansion and vertical contraction in the anterior part in the

patient group and the deformation of the opposite sign in the normal control group.

The amount of deformation varies across the shapes, but it is present in almost all

of them. This deformation corresponds to the anterior of corpus callosum being

"squashed" horizontally and elongated vertically in the affective disorder patients

compared to the normal control group.

Vectors #2, #3 in the normal control group and vectors #5, #6 in the patient

group indicate that for some of the cases, the width of the middle part of the corpus

callosum is wider in the affective disorder patient: there is a consistent contraction

associated with the patient examples and expansion associated with the normal con-

trols.

Vectors #2 and #3 in the patient group indicate some amount of deformation in

the posterior part of the structure. Interestingly, this deformation is not represented

at all in the normal control group. We noted earlier that many support vectors have

a matching counterpart from the other class that represents a deformation of oppo-

site sign, but of very similar nature. This is an example when there seems to be a

"gap" in the boundary support on the normal control side. This is an interesting phe-

nomenon that needs further investigation. Potentially, one might be able to construct

"virtual" support vectors by artificially reflecting the existing support vectors across

the boundary. This is closely related to one of the open questions we mentioned in

the previous chapter, namely, a global search for a trajectory in the feature space for

deforming an example shape towards and across the separating boundary.

To summarize, there is a consistent deformation of the anterior part of the struc-

ture that corresponds to horizontal narrowing and vertical extension of the anterior

part of the corpus callosum in the affective disorder patients. In addition to that, the

middle part is widened in some of the patients compared to normal controls. Similarly

to the hippocampus study, more data will have to be collected for validation of these

results.
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Table 6.3: Performance estimates for the corpus callosum in the schizophrenia study.
The cross-validation confidence intervals and the VC bound were computed for 95%
confidence level (r7 = 0.05). The training accuracy is reported for the parameter
setting that yielded the best cross-validation results.

6.6 Corpus Callosum in Schizophrenia

Similarly to the hippocampus, corpus callosum is hypothesized to be affected by

schizophrenia. In this study, we compared 16 schizophrenia patients and 20 normal

controls. Table 6.3 and Figure 6-19 summarize the training results for this experi-

ment. The performance estimates for this study are lower than those for the affective

disorder study. Furthermore, the cross-validation estimates for different settings of

the Gaussian kernel parameters do not form a smooth surface with a distinctive min-

imum anymore. The cross-validation estimates also disagree with the VC bound on

the optimal settings of the parameters. Based on these indicators, we conclude that

the statistical results do not predict the performance of the resulting classifier reli-

ably. Therefore, without more data, we cannot conclusively state that the differences

in the training set captured by the classifier will also be found in a larger population.

However, we can still compute the deformation that represents the differences in

the training data set. Although we cannot generalize the results for the whole popu-

lation, they can help us understand certain properties of the technique. Interestingly,

we discover that all support vectors represent a very similar deformation in this ex-

periment (Figure 6-20). The middle "bridge" of the corpus callosum seems to be

more bent in the patient group than in the normal control group: the deformation
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Linear classification
Training accuracy (%) 100
Cross-validation accuracy (%) 63.8 ± 15.6
VC dimension 1540.33
VC bound 1.45

RBF classification
Training accuracy (%) 100
Cross-validation accuracy (%) 69.4 t 15.0
VC dimension 72.13
VC bound 1.45
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Figure 6-19: Training results for corpus callosum in the schizophrenia study. The
graphs demonstrate the training error Remp, the upper bound on the VC dimen-
sion (4.35), the VC bound (4.32) and the cross-validation error R.

identified by the classifier is almost symmetric around the middle of the structure

and corresponds to the normal control examples "bending" around the middle and

the patient examples "unbending" in a very similar fashion.

We found it fascinating that the deformation was so similar for all support vectors.

It suggests that the separating boundary between the classes, or more precisely, the

discriminative direction, varies very slowly as we move from one support vector to

another in the feature space. This is similar to the linear case, where the discrimina-

tive direction does not change spatially at all. We can confirm this fact by examining

the width of the Gaussian kernel used by the resulting classifier. The range of the

kernel width values for the RBF classifiers that achieve the highest cross-validation

accuracy is between 2-105 and 106. Figure 6-20 show the deformations computed for

the classifier with the kernel width 7 = 6 .10 5. Comparing this with the distances
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(a) Normal controls

(b) Patients

Figure 6-20: Discriminative direction for corpus callosum in the schizophrenia study
shown as deformations of 6 support vectors from each group. The color coding is
used to indicate the direction and the magnitude of the deformation, changing from
blue (inwards) to green (no deformation) to red (outwards).
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between the training examples in the feature space (the median squared distance is

2.5-105, the mean is 3.3-105, the maximal squared distance is 1.8.106), we conclude that

the Gaussian kernels placed at the support vectors will combine into a smooth, slowly

varying surface. For comparison, the width of the kernel for the best classifier in the

affective disorder case was 5-104, resulting in much more variation in the deformation

associated with different support vectors.

To conclude, we have identified shape differences in this training set, but the

statistical estimators cannot predict reliably the generalization of the findings for the

population. Collecting additional data for analysis will allow to demonstrate whether

the identified differences are specific to this data set or they can be found in the

general population with high probability.

6.7 Lessons Learned

In this section, we reflect on our experience with the technique, unexpected problems

that arose in the experiments and the insights they provided into the nature of the

statistical shape analysis.

Successful studies. As demonstrated in the previous sections, the visualized shape

differences contain detailed morphological information which can be correlated with

functional information on the organ of interest, hopefully leading to a better under-

standing of the disease and its development. The representation of morphological

differences as deformations of the original input shapes is significantly more detailed,

localized and informative than the volume and the area measurements traditionally

used in the medical research. In addition to establishing the fact of statistical differ-

ences between the two populations, we can employ the analysis techniques presented

in this work to start explaining the source of such differences.

The experiments highlighted the importance of statistical testing of the resulting

hypothesis. While the training algorithm will produce a classifier which can be ana-

lyzed for discriminative direction for any two sets of examples, the shape differences
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found in the training set are useful for understanding the phenomenon in question

only if they accurately reflect the morphological differences in the entire population.

Therefore, estimating the expected performance of the resulting classifier and the

statistical significance of the morphological variability it represents is a crucial com-

ponent of the analysis. It effectively estimates to what extent we should trust the

training data set to represent the population.

Failed studies. While our method identified statistically significant differences be-

tween the groups in the experiments reported in the previous sections, it failed to do so

in several other studies. However, the experiments that failed to produce statistically

significant differences between the two classes can still help us to better understand

the problem and potentially improve the technique. In such experiments, different

statistical indicators, such as the VC-bound and the cross-validation accuracy, dis-

agree significantly on the optimal settings of the training parameters, often predicting

close to 50% baseline classification accuracy on new examples. Furthermore, when

the predicted performance is higher than the baseline, the confidence intervals might

be too wide to allow us to make any claims on how well the differences detected in

the training set represent the situation in the whole population. We mentioned these

concerns when discussing the study of corpus callosum in schizophrenia in Section 6.6.

We observed all of the warning signs listed above in a study of gender-related dif-

ferences in the corpus callosum. Differences in the brain morphology between males

and females have been a topic of medical research for many years. In the corpus

callosum, the evidence is conflicting: several studies report size and shape differ-

ences [19, 43], while others claim to have not found statistically significant variability

when the data were normalized for social status, education level and other factors

that might affect the size of the brain [4]. To avoid the controversy associated with

gender differences in the corpus callosum, we used only male subjects in the studies

of affective disorder and schizophrenia reported in the previous sections. Separately

from these studies, we applied the algorithm to a set of corpus callosum images of 18
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male and 13 female subjects provided by Dr. G. Gerig, University of North Carolina 4 .

In this particular experiment, the cross-validation accuracy at the 95% confidence

level was 64 ± 17%, which includes the 50% baseline. While the discriminative direc-

tion could be extracted from the resulting classifier, the statistical indicators imply

that we cannot trust the results of the analysis to represent the differences in the

population.

Such failed experiments bring up an interesting general question of when one

should stop the search for shape differences. Any morphological study starts with a

hypothesis of shape differences which is to be confirmed by the empirical evidence from

the collected images. We could get statistically unsatisfactory results described above

either because our representation and analysis cannot capture the shape differences

present in the population, or because such differences do not exist. In the former

case, we can improve the technique for shape representation and statistical analysis

to include more complex models of morphology and its variability and collect more

data to reduce the confidence intervals. But the fundamental question remains, when

should we abandon the search for better analysis techniques and more training data

and declare that there are no differences between the two populations? This problem

is common in many fields of research, as the current theoretical framework provides

us only with tools for establishing the fact of existence of a particular phenomenon.

It is nearly impossible, at least with our current system of reasoning, to prove the

absence of the hypothesized effect.

Combining data sets. Obtaining segmented images for morphological studies is

a time- and effort-consuming process. Thus, one might consider combining data sets

collected by different research groups to combat the problems of insufficient training

data. Following this idea, we attempted to combine data from two similar studies

of corpus callosum in schizophrenia. The first data set was created at Brigham and

4 These images are a part of a corpus callosum study in schizophrenia patients. Segmentations
were done by Rebecca Crow, University of Oxford in collaboration with Guido Gerig, UNC Chapel
Hill, Tim Crow, University of Oxford, and the Image Analysis Group, ETH Zuerich. We will come
back to this study later in the section.
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Women's Hospital and is described in Section 6.6. Dr. G. Gerig provided us with

the second data set which was mentioned earlier in this section in connection to the

gender-related study of corpus callosum. We used male subjects from both studies

to create a new, combined collection which included 35 schizophrenia patients and

38 normal controls. Upon comparing the pairwise distances between the feature

vectors in the new data set, we discovered that the distances between cases from

two different imaging centers were substantially greater than the distances between

cases processed by the same research group. It turns out that the differences in the

segmentation methodology cause the shape of corpus callosum segmentations to vary

among research groups. And while these differences are small, they are consistent

enough that we could build a linear classifier for discriminating between the two

groups of the male normal controls from the different imaging centers with the cross-

validation accuracy of 92%±8%! In Chapter 2, we mentioned that image segmentation

must be considered as an integral part of the feature extraction algorithm, and this

example demonstrates how inconsistencies in segmentation can affect the analysis.

While creating pools of training data for statistical analysis is a promising idea,

a common segmentation methodology in the community must be devised in order to

avoid problems we observed in this study. Otherwise, the increased complexity of the

concept to be learned will undermine the benefits of the larger data set as the algo-

rithm is presented with not just the shape differences between the two classes, but also

the inter-class variability introduced by discrepancies in segmentation methodology.

6.8 Summary

This chapter reports the results of statistical shape studies for both artificial and

real medical examples. The technique identified the true differences between the two

groups in the artificial data sets. The validation of the method is more difficult in the

real medical studies, as the ground truth is unknown. Furthermore, since the field of

statistical shape analysis is relatively young, no extensive previous results are avail-

able for comparison. To the best of our knowledge, this is the first work in which the
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statistical differences between the groups have been obtained from the discriminative

model, i.e., a classifier function for labeling new examples. More work is needed to

understand the medical significance of the results presented here, and as more results

on similar data become available in the field, we will be able to compare the shape

differences detected by different techniques. The experiments raised several inter-

esting research questions to be explored in the future, such as collecting more data

to improve statistical confidence indicators, importance of consistency in segmenta-

tion protocols across the data sets, importance of statistical testing and performance

prediction, as well as fundamental questions of hypothesis rejection in application to

shape analysis.
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Chapter 7

Conclusions

In this thesis, we study the problem of image-based statistical analysis of morpho-

logical differences between populations. The analysis consists of three main steps:

feature extraction, training a classifier and the interpretation of the results in terms

of the shape differences detected by the model. These differences can then be visu-

alized for inspection and future analysis by medical researches. We discuss available

shape descriptors and statistical analysis tools and justify our choice of the distance

transforms for shape representation and the Support Vector Machines algorithm for

learning a classifier. The original contributions of this thesis involve the final step of

the analysis, namely, the interpretation of the resulting classifier in terms of the shape

changes that distinguish between the two example classes. We present a novel tech-

nique for classifier analysis in terms of the input features in the general context of the

statistical learning theory. Furthermore, we instantiate the technique for shape anal-

ysis by establishing a locally linear parameterization of the distance transform space

by the space of deformations of the corresponding boundary surface. Such parame-

terization yields a representation of the shape differences captured by the classifier as

deformations of the input shapes relative to the examples from the opposite class.

We demonstrate the method on both artificial examples that illustrate the ap-

proach and the real medical studies in which the resulting deformations describe

shape changes due to diseases and can be helpful in advancing the medical research

towards explaining the mechanisms by which the organs are affected. To the best of
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our knowledge, this is one of the first few attempts to automatically detect and inter-

pret shape differences between populations, and the first work that takes advantage

of the discriminative modeling. Since the discriminative models require significantly

fewer data than the generative models to reliably estimate the differences between the

classes, a discriminative approach has better chances of succeeding in small training

sets. Anatomical studies have always been challenging exactly because the images are

difficult to collect and process and therefore the available training sets are typically

very small. Thus, we believe that the proposed framework can allow the medical

researches to efficiently utilize the available data in order to study various diseases.

7.1 Future Directions of Research

Experimental studies suggested several directions of future work which we discussed

in the previous chapter, from refining the analysis technique for interpretation of

shape differences to collecting more data for strengthening the statistical confidence

indicators. In this section, we would like to mention two promising directions of

research in statistical shape analysis that are enabled by the approach presented in

this dissertation.

First, we note that the training algorithm and the discriminative direction analy-

sis can be used as a very effective tool for investigating the power of different shape

descriptors for representing morphological variability. In Chapter 2, we listed several

theoretical requirements that a shape descriptor must satisfy in order to be useful for

statistical analysis. Our approach to classification and further interpretation of the

results allows us to compare the descriptors empirically based on their performance

in shape-based statistical tests. More often than not, the shape analysis methodology

is presented in the literature as a monolithic structure where the shape description

and the statistical analysis are inseparable. In reality, these two components can be

improved independently of each other. Furthermore, we believe that shape represen-

tation does and should depend on the organ of interest (we would not expect the

same descriptor work equally well for the hippocampus and for the cortical folds),
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while the statistical analysis can be easily adapted to work with a large family of

descriptors. It can therefore be used as a test-bed for various shape representations.

The other interesting observation is concerned with the medical implications of the

experimental results produced by our method. Once we start working with non-linear

classifiers, we accept a possibility of the differences between the normal subjects and

the patients varying over the shape space. For example, we noticed that the support

vectors in the reported studies represented several different classes of deformations

and could be grouped according to the type of the corresponding deformation. Thus,

the results of the analysis could be used for partitioning the region of the feature space

occupied by the examples of pathology into sub-regions characterized by the nature of

the deformation that separates the pathology from the normal cases. This partition,

especially if supported by other evidence, such as symptoms, functional data, etc.,

can be used as an initial indication that the disease in question is really a collection of

several different disorders. As a specific example, schizophrenia is believed by many

researches to include mental conditions that the medical science cannot separate out

reliably using the current research techniques. Additional morphological information

provided by our analysis can assist in establishing the existence of such sub-disorders.

Naturally, the statistical shape comparison can be performed between the newly de-

fined sub-classes of patients. Such studies would require significantly more example

images than are currently available, and we hope that this work will enable detailed

anatomical shape analysis studies which in turn will lead to concentrated large-scale

data acquisition efforts.

To conclude, we proposed and demonstrated a principled framework for statistical

shape analysis based on the existing shape representation and statistical learning

methods and the novel analysis techniques for interpretation of the statistical model

as shape deformations between the two groups of interest. This approach provides

detailed information on shape differences between populations and facilitates the

studies of the disorders through understanding of the induced anatomical changes.
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