
Pointer Analysis and its Applications

for Java Programs

by

Alexandru D. Salcianu

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2001

@ 2001 Massachusetts Institute of Technology. All rights reserved.

Author
Department of Electrical Engineering

and Computer Science
August 31, 2001

C ertified by ,..........
Martin C. Rinard

Associate Professor
Thesis Supervisor

A ccepted by

Arthur C. Smith
Chairman, Department Committee on Graduat-egt4gg4g

BFTECHNA

BARKER NO V 0 1

LIBRARIES

INSTITUTE
-OGY

2001

Pointer Analysis and its Applications
for Java Programs

by
Alexandru D. Salcianu

Submitted to the Department of Electrical Engineering
and Computer Science

on August 31, 2001, in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract

This thesis investigates the design and the correctness of a pointer analysis for the
Java programming language. Although the analysis is based on a previous analysis,
we made several important modifications that make it distinct from the original one.
The major part of this thesis is dedicated to the correctness proof for the analysis.

The analysis is a flow-sensitive, compositional, inter-procedural pointer analysis.
It is based on the abstraction of points-to graphs, which characterize how local vari-
ables and fields in objects point to other objects. Each points-to graph also contains
escape information that characterizes how objects allocated in the analyzed part of
the program can be accessed by other parts. The analysis computes a single, pa-
rameterized points-to graph for the exit point of each method, and instantiates the
graph for each call site that might invoke that method. This points-to graph uses
placeholders to abstract over the calling context.

We present three applications of the analysis: stack allocation, allocation in the
thread-local heap, and synchronization removal. The analysis is able to detect that
some objects are not used outside the method or the thread that allocates them. A
compiler that uses the analysis can generate code that allocate these objects on the
stack, respectively in a heap that is local to the current thread. These optimizations
have the potential of reducing the garbage collection overhead. The compiler can
also generate code that reduces, or even eliminates the cost of the synchronization
operations executed on the objects that do not escape the thread that allocates them.

In a modern language like Java, code safety is very important. The main advantage
of our analysis is that is comes with a correctness proof. The proof handles all
the relevant features of the analysis. To the best of our knowledge, this is the first
correctness proof for a flow-sensitive, compositional, inter-procedural pointer analysis.

Thesis Supervisor: Martin C. Rinard
Title: Associate Professor

To all those people who showed me
that human analysis is much more
complicated, and rewarding!, than

pointer analysis

Acknowledgments

Pointer analysis is a difficult topic, and without the help that I received from many
people around me, I wouldn't be writing these lines now.

First of all, I would like to thank my family - my mother Maria, and my late
father Eugen - for the education they gave me, and for the support they provided
me throughout my life. Their help was enormous, and I can never repay it.

I would like to thank my advisor Martin Rinard, who believed in me and insisted
that I come to MIT. Martin encouraged me to work in the pointer analysis research
area, and provided me with many valuable research and life-experience lessons. His
enthusiasm for research and publications helped me organize my ideas, learn many
things, and finish tasks quickly. Finishing my SM thesis after the rather long period
of two years is entirely due to my (exaggerated?) ambition to investigate new things,
e.g., the correctness of the analysis.

I would like to thank the students from Martin's group: Darko Marinov, Maria-
Cristina Marinescu, Viktor Kuncak, Wes Beebee, Brian Demsky, C. Scott Ananian,
Radu Rugina, Chandrasekhar Boyapati, Karen Zee, Felix S. Klock, and Patrick Lam.
They provided me with a friendly working environment. Darko was my usual partner
for endless discussions on various topics: research, life, MIT, etc. I truly learned a lot
from him. In addition, he took the painstaking task of reviewing drafts of my the-
sis. Maria-Cristina and Radu frequently joined my conversations with Darko. Brian,
Scott, and Darko helped me adapt to the FLEX compiler infrastructure. Also, Brian
and Scott helped me test various applications of the analysis. Viktor and Chandra
exchanged many interesting research ideas with me. Viktor also provided me with a
motivating example of what full commitment to research is! Wes implemented the
Real Time Specification for Java in the FLEX compiler infrastructure. His implemen-
tation was very helpful for evaluating the benefits of pointer analysis for real time
applications.

On the human life scale, two years is a long period. Two years at MIT is an even
longer period, and I am deeply grateful to all those people who made this period a
happy part of my life. In addition to the already mentioned people, I would like to
thank the enthusiastic members of the two MIT clubs that I regularly frequented:
International Film Club, and Romanian Student Association.

8

Contents

1 Introduction

2 Analysis Presentation
2.1 Analysis Features
2.2 General Mathematical Notations . .
2.3 Program Representation
2.4 Sets and Notations
2.5 Formal Presentation of the Analysis .

2.5.1 Transfer Functions
2.5.2 Inter-procedural Analysis . . .

2.6 Analysis Algorithm

3 Analysis Applications
3.1 Stack Allocation
3.2 Allocation in the Thread-Local Heap
3.3 Synchronization Removal

13

17
. 1 7
. 1 8
. 1 8
. 2 3
. 3 0
. 3 1
. 3 7
. 4 9

51
51
53
54

4 Correctness Proof 55
4.1 Concrete Semantics . 57

4.1.1 Sets and Notations . 57
4.1.2 Concrete Semantics Transitions 60
4.1.3 Object Lifetim e . 63

4.2 Abstract Semantics . 64
4.2.1 Method Activation and Interesting Dates 64
4.2.2 Concrete Escape Predicate . 66
4.2.3 Sets and Notations . 68
4.2.4 Abstract Execution of A(m) 72

4.3 Abstract Semantics Invariants . 81
4.4 Analysis vs. Abstract Semantics . 90

4.4.1 Auxiliary Notions . 91
4.4.2 Proof of Theorem 13 . 93
4.4.3 Proof of Equation 4.17 . 96
4.4.4 Properties of the Node Mappings 103
4.4.5 Proof of Equation 4.21 . 108

4.5 Correctness of the Optimizations . 117

9

4.6 Analysis Precision . 118
4.7 Final Look Over the Proof . 119

5 Related Work 123
5.1 Pointer Analyses . 123

5.1.1 Heap Modeling . 123
5.1.2 Flow Sensitivity . 124
5.1.3 Compositionality . 125

5.2 Correctness Proofs for Pointer Analyses 126

6 Conclusions and Future Work 129

A Proof of Equation 4.23 131

Bibliography 134

10

List of Figures

2-1 Sets and notations for the program representation
2-2 Instructions in the analyzed program
2-3 Sets and notations used by the analysis
2-4 Definition of the analysis transfer functions
2-5 Definition of auxiliary function process _load
2-6 Points-to Graphs for Example 1
2-7 Definition of function interproc
2-8 Definition of function mapping
2-9 Graphic representation of Constraint 2.7 and Constraint 2.8
2-10 Points-to graphs and node mapping for Example 2
2-11 Definition of function combine
2-12 Combined points-to graph for Example 3
2-13 Definition of function simplify
2-14 Simplified points-to graph for Example 4

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18

SmallJava instructions

Sets and notations for the concrete semantics
Transition relation = for the concrete semantics . . .
Sets and notations for the abstract semantics
Definition of abstract semantics transfer function []#
Definition of conversion oa(d), d E Date
Definition of [.,.
Definition of update_p
Abstract execution of A(a) from Example 5
Definition of function interproc#
Definition of function mapping#
Definition of function combine
Definition of function simplify#
Definition of function interproc#.............
Definition of function combine#.............
Graphic representation of Case 1.1.2 for a LOAD
Graphic representation of Case 1.2 for a LOAD . . .
Abstract states for Example 6

11

19
20
24
32
34
36
38
39
41
43
45
47
47
48

. 58
59

. 61

. 69

. 73

. 74

. 76

. 77

. 80

. 96

. 98

. 99

. 99

. 100

. 101

. 114

. 115

. 121

12

Chapter 1

Introduction

The presence of pointers in a programming language significantly complicates the
analysis, optimization, and verification of programs that are written in that language,
because the analysis system cannot determine the locations pointed to by a pointer
variable by a simple inspection of the program statements.

In the absence of detailed knowledge about the memory locations manipulated
by the program, compilers have to make very conservative assumptions about the
instructions that use pointers. This limits the impact of program understanding and
testing tools, and that of standard compiler optimizations such as constant propa-
gation, common subexpression elimination, loop-invariant code motion, strength re-
duction, dead code removal, etc. For instance, without knowledge about the memory
locations modified by a specific memory write instruction, no constants can be prop-
agated accross that instruction. In the early decades of computing this was not a big
problem, because pointers were rarely used. As modern object-oriented languages,
such as Java 13], use pointers as their main datatype, the analysis of pointers becomes
really important for an optimizing compiler.

In high-level languages, in addition to increasing the impact of standard compiler
optimizations, precise knowledge about pointers enables new optimizations, such as
removing unnecessary synchronizations, and optimizing memory allocation to reduce
or even eliminate the garbage collection overhead.

In its most general definition, the pointer analysis field contains all the analyses
that try to detect useful properties about pointers. As most of these properties are
undecidable, each pointer analysis produces a conservative approximation of the pre-
cise result. There are at least four types of analyses that fall into this category:
points-to analyses, alias analyses, escape analyses, and shape analyses. A points-to
analysis, e.g., [6], identifies the memory locations which are pointed to by a specific
pointer variable. An alias analysis, e.g., 1101, determines the pairs of pointer expres-
sions which are aliased, i.e., point to the same memory location. An escape analysis,
e.g., [41, detects the memory locations that escape a given scope; the scope of such an
analysis is usually a method, but other alternatives are possible: the current iteration
of a loop, a group of methods, etc. Finally, a shape analysis, e.g., 1191, detects the
shape of the data structures manipulated by the program. Such an analysis checks

13

properties such as "if this method receives an acyclic list, it returns an acyclic list".
In practice, all these analyses are closely related, and usually it is very difficult to
decide whether a specific analysis is in one category or another.

Pointer analysis is a very active research area. In an invited talk at PASTE'01 [13],
Michael Hind counted no fewer than seventy-five papers and nine PhD theses pub-
lished on pointer analysis in the last twenty-one years1 . This abundence is explained
by the fact that pointer analysis is very useful but also very difficult. Being very
useful, there is a lot of research interest on this problem and many researchers try
to design analyses that solve it. On the other side, as the problem itself is very dif-
ficult, it is unlikely that any of these many analyses will solve it completely; instead,
we have many algorithms solving various approximations of it. Another important
observation is that only a tiny fraction of the published analyses have been proved to
be correct.

In spite of its benefits and the impressive resources invested along more than
two decades of research, pointer analysis remains in the stage of "exciting research
problem". To the best of our knowledge, no industrial compiler uses a reasonably
precise pointer analysis. Many reasons contributes to this situation: the difficulty
of the problem itself, opportunities of big improvements using far simpler analyses,
steady increases in hardware that made work on optimizing compiler look unnecessary,
etc.

We believe that the ubiquitous use of modern programming languages will make
pointer analysis critical for modern program understanding and verifying tools, as
well as for optimizing compilers. As computers start to control critical aspects of hu-
man life, verification becomes increasingly important. Software companies will afford
the high computation resources required by the pointer analysis if this can help them
debug their products. Also, although big increases in hardware speed might make
the necessity of compiler optimizations questionable for most applications, there will
always be applications which require the additional speed provided by the optimiza-
tions that are enabled by pointer analysis. In our opinion, hardware improvements
do not make pointer analysis, and program analysis in general, unnecessary; instead,
they shift the focus of program analysis from optimization to verification.

Using pointer analysis in program verification tools implies the use of provably
correct analyses. As most of the current pointer analyses do not have a correctness
proof, a lot of work is necessary in this area.

This thesis investigates the design and the correctness of a pointer analysis for the
Java programming language. Although the analysis was originally based on ideas
from a previous analysis, published by Whaley and Rinard [25], we made several
important modifications that make it distinct from the original analysis. The major
part of this thesis is dedicated to the correctness proof for the analysis.

'Unfortunately, there is no available estimate of the number of SM theses. Whatever that number
was, we incremented it!

14

The analysis is a flow-sensitive, compositional, inter-procedural pointer analy-
sis. It is based on the abstraction of points-to graphs, which characterize how local
variables and fields in objects point to other objects. The analysis uses the object
allocation site model: all objects created by the same allocation instruction in the
program are modeled by the same node. Each points-to graph also contains escape
information that characterizes how objects allocated in the analyzed part of the pro-
gram can be accessed by other parts. The analysis examines each method once2 and
generates a single, parameterized points-to graph for the end of the method. This
points-to graph uses placeholders to abstract over the calling context. The analysis
instantiates the points-to graph computed for the exit point of a method for each call
site which may call that method.

We prove the correctness of the analysis with respect to three optimizations: stack
allocation, allocation in the thread-local heap, and synchronization removal. We also
obtain results that characterize the modeling relation between the points-to graphs
and the heaps created by the execution of the analyzed program.

Initially, we worked on the correctness proof for the analysis of Whaley and Ri-
nard [25]. However, to prove the correctness of that analysis, we had to reformalize
it from scratch, obtaining a new analysis. Much of our new analysis was motivated
by the need to make the formal specification of the analysis clearer and easier to
reason about. The final design of the analysis was also motivated, in part, by correct-
ness considerations. During the process of developing the proof for our analysis, we
discovered several corner cases and found it necessary to augment the rules for the
inter-procedural analysis to cover these corner cases and make our analysis correct.

The proof has a multi-layer structure. At the bottom level we have the concrete
semantics of Java. The pointer analysis is the top layer. Due to the big difference
in the complexity of these two layers, it was difficult to relate them directly. Our
proof idea is to introduce an intermediate layer, the abstract semantics, between the
two. For each relevant point from the execution of a program, the abstract semantics
computes an abstract state that models the heap, and an explicit abstraction relation
that records how nodes model objects. We prove that in this hierarchy, each layer is
a conservative approximation of the layer beneath it. We split the proof in two parts:
one set of invariants that relate the abstract semantics to the concrete semantics and
another set of results that relate the pointer analysis to the abstract semantics.

Our proof has many things in common with the abstract semantics framework [8].
The main similarity is our view of the analysis, at least in an intermediate form of it,
as an abstract execution of the program over a finite lattice. However, our proof is
not based on the techniques specific to the abstract semantics framework. Instead, it
uses simulation invariants, which is a popular methodology for the correctness proofs
of distributed systems [15]: the abstract semantics simulates the concrete semantics
with respect to a set of invariants.

This thesis makes the following contributions:

2However, each set of mutually recursive methods requires a fixed point algorithm.

15

new pointer analysis We give a complete, formal presentation of the modified anal-
ysis. The modified analysis is quite far from the initial one, although they are
based on the same intuitive ideas. Therefore, it can be considered a new anal-
ysis.

correctness proof We present a formal correctness proof for the new pointer anal-
ysis. To the best of our knowledge, this is the first correctness proof for a
flow-sensitive, compositional, inter-procedural pointer analysis.

The rest of this thesis is organized as follows. In Chapter 2, we present our new
pointer analysis. Next, in Chapter 3, we describe a few applications of our pointer
analysis. Chapter 4 is the core of the thesis: it presents a correctness proof for our
analysis. We discuss related work in Chapter 5 and conclude in Chapter 6.

16

Chapter 2

Analysis Presentation

This chapter gives a formal presentation of our pointer analysis. We start by present-
ing the main design features of the analysis in Section 2.1. In Section 2.2, we describe
the general mathematical notations that we use in this thesis. Next, we present the
representation of the analyzed program in Section 2.3. Section 2.4 introduces the sets
and the notations that are used in the main section of this chapter, Section 2.5, to
formally present our analysis. Finally, Section 2.6 gives a high-level description of an
algorithm for computing the analysis.

2.1 Analysis Features

Our pointer analysis is a flow-sensitive, forward dataflow may-analysis. The analysis
is compositional and can analyze incomplete programs. The heap is represented by
using the object allocation site model. These are all classic terms from the program
analysis theory [16]. Here is a brief explanation of them:

flow-sensitivity The analysis attaches to each program point a points-to graph that
models the heaps created by the execution paths that end in that point. We
contrast this with a flow insensitive analysis, which would compute a single
points-to graph for the entire program.

object allocation site model All objects created by executions of a given object
allocation instruction from the source program are modeled by the same node.

forward dataflow analysis The analysis uses the control flow of a method to prop-
agate information from the entry point of the method to its exit point. In con-
trast, a reverse dataflow analysis would use the reverse flow of the method to
propagate information from the exit point of the method to its entry point.

may-analysis The points-to graph that our analysis computes for a given program
point models the union of the heaps created by all the execution paths that end
in that point. For example, if some path creates a heap reference, the analysis
will report it, even if some other paths do not create it. A must-analysis would
model the intersection of those heaps; in the previous example, it would report

17

only the references which are created along all the execution paths which end
in that point.

compositionality The analysis analyzes each method once1 , without knowing its
calling context. The analysis of a method produces a parameterized result that
is later instantiated for each call site where that method might be called.

analysis of incomplete programs The analysis is able to analyze parts of the pro-
gram that call methods whose code is unavailable, e.g., native methods, or for
which we do not know the calling context.

Analysis Scope

As we mentioned previously, for each program point, the analysis computes a points-
to graph that models the heap at that point. The points-to graph computed by the
analysis for a program point will also give information about which objects escape,
i.e., are reachable from outside the analysis scope. In the case of the pure intra-
procedural analysis, which do not analyze any call site, the scope of the analysis
is the method m that contains that program point, up to the program point. The
inter-procedural analysis extends this scope from method m to m plus the methods
it transitively calls.

2.2 General Mathematical Notations

In the presentation of the analysis and in the rest of this thesis, we use the following
mathematical notations: "{ao, 1 ,... , ak}" represents the set that contains the dis-
tinct elements aoa 1,... , a. "[ao, a1 ,... , ak] is a list whose elements are, in order,
ao, a 1 ,. . . , ak. In a list, the order is important, and the same element can appear
multiple times. "list of A" is the set of all the lists of elements from the set A.

"{ai -+ bi}iE' denotes a partial function f such that f (ai) = bi, Vi E I, and f is
undefined in the other points. If f : A - B is a function from A to B, a E A, and
b E B, the notation "f [a - b]" denotes a function that has the value b in the point
a, and behaves exactly like f in the other points of the domain A.

If p C A x B is a relation from A to B, then, if a E A, p(a) {b I (a, b) E p}.
Furthermore, if S C A, p(S) = UaES p(a).

2.3 Program Representation

Although the analysis handles the full Java language [31, for simplicity, we use just a
subset of it. We indicate the missing parts and how the analysis handles them.

Figure 2-1 presents the notations used in the representation of the analyzed pro-
gram. The analyzed program is composed of a set of classes, Class, which define a

1Recursive methods still require a fixed-point algorithm.

18

set of methods, Method. Among these methods, there is a distinguished one, denoted
mmain, which is the root of the program: the execution of the program starts with
the first instruction from this method. Each method has a list of parameters, a set of
local variables, and a body consisting of a list of instructions. We make the follow-
ing simplifiying convention: if a method m has k = arity(m) parameters, then these
parameters are, in order, PO, Pi, . . . , Pk-1. For non-static methods, po, i.e., the first
parameter, is the "this" parameter. In Java, parameters are just a special case of
local variables, i.e., pi E V.

The body of the method m is a list of instructions from the set Statement. Each
instruction has a unique label lb E Label obtained by pairing m with the address
a of the instruction, which is simply the index of the instruction into m's list of
instructions. The indexing starts from zero; the first instruction of method m has the
label (m, 0). Given a label lb = (m, a), the auxiliary function next computes the label
immediately succeeding lb, next(lb) = (m, a + 1). The statement associated with the
label lb is obtained with the help of the auxiliary function P : Label -± Statement.

Also, each class C E Class has a set of fields fields(C) = {fo,f,... ,f-1}. Some
of the fields are static: a static field is attached to the class C, not to a specific
instance of C. We can view the static fields as some sort of global variables. In our
notation, we do not make the distinction between static and non-static fields, but
we have distinct instructions for manipulating them. We ignore all access modifiers:
public, private, etc.

The field [] is an artificial field; it cannot appear in a normal program, but the
analysis uses it internally to model array cells. We discuss more on this issue in
Section 2.4.

C E Class={Co, C1,...}

m E Method={mo,m1 ...}

s E MethodName ={"foo", "bar'

lb E Label = Method x Address

a E Address = N

P : Label - Statement

f E Field ={fofi, ... } U {[}
fields : Class - P(Field)

v, p E V = {vo,vi, ...} U {po, pi,...}
stat C Statement (see Figure 2-2)

next : Label - Label = A(m, a).(m, a + 1)

arity : Method -> N

Figure 2-1: Sets and notations for the program representation

19

We suppose that prior to the analysis, the program is parsed and converted into
an intermediate representation containing only the instructions from Figure 2-2.

A Java program manipulates data of primitive types - integers, booleans, float-
ing point types - and non-primitive (or pointer) types: simple objects and arrays.
To simplify the presentation, we consider only the instructions that might manipu-
late pointers; all the other instructions are assimilated with NOP (and their transfer
functions will be the identity function). For example, we ignore all the instructions
for integer arithmetic, and the instructions that copy an integer value from one lo-
cal variable to another. We also suppose that procedures have only pointer-type
parameters and return values. Extending the analysis to handle primitive types is
straightforward.

COPY VI =____ ___ _ V2

NEW v-new C
NEW ARRAY v = new C[k]
NULLIFY v = null
STORE VI1.f = V2

STATIC STORE C.f = v
ARRAY STORE v1[i] = v2

LOAD v2 v1 .f
STATIC LOAD v C.f
ARRAY LOAD v2 vi[i]
IF if (...)goto at
CALL VR vO.s(v 1 , ... , v,)
RETURN return v
THREAD START start v
NOP nop, other irrelevant instructions

Figure 2-2: Instructions in the analyzed program

We give a formal semantics of the instructions at the beginning of the correctness
proof in Chapter 4. At this point, we give just the informal semantics. A COPY
instruction "vi = v2" copies the value of the local variable v2 into v1. A NEW
instruction "v = new C' creates a new object of class C; all the non-static fields of
non-primitive type from the newly-created object are initialized to null. Similarly,
the NEW ARRAY instruction creates a new array object. If the cells of the newly
created array are of a non-primitive type, they are all initialized to null. A NULLIFY
instruction simply sets a variable to null.

The STORE instructions store values into memory. There are three types of
STORE instructions: the first two assign a value to a non-static, respectively static
field; the third one, ARRAY STORE, stores a value in a specific array cell. The LOAD
instructions read values from memory. There are three types of LOAD instructions:
the first two read a non-static, respectively static field; the third one reads the value

20

stored in a specific array cell.

Normally, the intra-procedural control flow goes from label lb = (m, a) to label

next(lb) = (m, a + 1). This normal flow of control can be altered with the help of

an IF instruction. An IF instruction is basically a conditional jump to a specific

address in the same method; the specific condition tested by an IF instruction is not
important for the analysis and we intentionally left it unspecified.

The inter-procedural flow of control is handled by CALL and RETURN. CALL
calls a virtual method: it calls the method named s, defined for the class C of the

receiver object, i.e., the object pointed to by vo. There are two steps: the first step,
called dynamic dispatch, determines the specific method that has to be called (the

callee); the second step does the actual call. The parameter passing semantics is

call-by-value; however, keep in mind that each parameter has pointer type, i.e., it is

the address of an object. RETURN returns the control from the callee back into the

caller. Also, a RETURN instruction "return v" copies the value of the local variable

v from the callee into the variable VR from the caller, where VR is the variable that

receives the result of the corresponding CALL instruction "VR v 0-s(v 1 ,... , v j)
To simplify the presentation, we did not give a specific instruction for calls to static

methods; these calls are simpler because they skip the dynamic dispatch phase. As the

analysis is not concerned with the dynamic dispatch (we suppose a conservative call

graph is constructed before the analysis), the calls to static methods will be treated

similarly to the virtual calls. We also did not give any mechanism for calls to native

methods. However, the analysis will deal with the more general case of unanalyzable

calls, calls that we cannot or do not want to analyze2 . Once we give the analysis for

the virtual calls, it is easy to extend it to cover the calls to static and native methods.

It is also trivial to extend it for methods that do not return any result, i.e., methods

whose result has type void.

Unlike Java, where a thread is started by calling a special native method -
public native java.lang.Thread.start ()- we start a thread by executing the

THREAD START instruction "start v". This, too, does not reduce the generality

of our analysis: each call site which may call that native method can be considered a

potential thread start instruction and treated as such.

In a Java program, no local variable can be used before being initialized. We

suppose this is already checked by an earlier stage in the compiler.

In Figure 2-2, we did not present any I/0 instructions. These instructions are

supposed to be implemented as calls to specific native methods.

Termination and Result In our model, a Java program terminates when all its
threads of execution terminate. It is possible to have infinite executions. In this
thesis, we are not directly interested in the result of a program but rather in the heap
structures manipulated by the program during its execution. As we prove later, after

we do the optimizations enabled by the pointer analysis, the program manipulates

2 For example, because the code of the callees is not available or their analysis would be too
expensive.

21

the same heap structures, and so, it will ultimately obtain the same result. This
guarantees that our optimizations preserve the semantics.

We assume that we have a control flow graph for each method appearing in the
program and a call graph for the entire program. These structures are frequently used
by any realistic compiler, and it is reasonable to suppose that they are constructed by
a phase that precedes the analysis. For the sake of completeness, we briefly describe
both of them below.

Control Flow Graph The control flow graph of a method m conservatively ap-
proximates all the possible execution paths inside m. Given a method m, the control
flow graph of m, denoted CFGm, is a directed graph CFGm = (A, E), where

" the set of vertices, A, is the set of labels appearing in the body of m plus one
special label entrym for m's starting point and one special label exitm for m's
exit point, i.e., A = labels(m) U { entry,, exitm};

* the set of arcs E C A x A contains:

- an arc from entry, to (M, 0) (the label of the first instruction from m);

- an arc from lb to next(lb), for every label lb such that the instruction at
label lb is not a RETURN;

- an arc from lb to (i, at) for every label lb such that the instruction at
label lb is "if (. . .) goto at";

- an arc from lb to exitm, for every label lb such that the instruction at label
lb is a RETURN.

The two special labels entrym and exitm guarantee that m contains an isolated
entry point (no arc points to it) and a single exit point. The control flow graph has
the property that for every two labels lb1 and lb 2 that might be consecutive on an
execution path inside method m, there is an arc from lb1 to lb2 . We suppose that the
intermediate representation handles exceptions explicitly. Such a representation adds
an explicit test in front of each instructions which might throw an exception (e.g.
a pointer dereferencing), and after each call which might propagate an exception.
So, every dynamic execution path translates into a path in the statically constructed
control flow graph.

In a control flow graph CFGm, we define the functions pred, succ : A --+ P(A)
that return the predecessors, respectively successors of a given label lb, as follows:

pred(lb) {lb' | (lb', lb) G E}
succ(lb) = {lb' I (lb, lb') G E}

22

Call Graph A call graph is a function CG : Label -+ P(Method) that, for each
CALL instruction, gives the set of methods that that CALL instruction might call in
a concrete execution. The call graph is conservative: for a given CALL at label lb,
CG(lb) contains all the methods that might be called by that CALL in any given
concrete execution, As in general, a call graph construction algorithm is imprecise,
the set CG(lb) might contain some other methods, too. The smaller this set is, the
more precise the call graph algorithm is said to be.

There are many algorithms for computing the call graph of a program [1, 9J. The
correctness of the analysis is not affected by the precision of the call graph used in a
particular implementation of the analysis. However, for achieving good precision, a
good call graph is recommended. It is also possible to combine the pointer analysis
and the call graph construction; we have not investigated this issue yet.

2.4 Sets and Notations

Figure 2-3 presents the sets and the notations used by the analysis. In the following
paragraphs, we give an intuitive explanation of our abstractions.

Nodes

We introduce the node abstraction to model objects created during the concrete
execution of the program. A node from the abstract semantics models one or more
objects from the concrete execution. There are several disjoint kinds of nodes: inside
nodes, placeholder nodes, result nodes, static nodes, and the special node noul for
modeling the special pointer value null.

Inside nodes model objects created by the analyzed method m or by one of the
methods transitively called by it. We introduce one inside node nfb for each label that
corresponds to a NEW or an ARRAY NEW instruction. nfb models all the objects
created by executions of the instruction from label lb. Note that as lb can be in a

loop, nf1 might represent more than one object.
Suppose we analyze a method m. Method m is not restricted to manipulate only

objects created by itself. For compositionality reasons, the analysis of one method
cannot look "outside" it. Hence, we need some placeholder nodes to model those
objects that are manipulated by m, but which might be created outside it. Later, in
the inter-procedural analysis we try to find the actual nodes that each placeholder
node stands for. There are two disjoint kinds of placeholder nodes: the parameter
nodes and the load nodes.

The parameter nodes are used to model the objects that are passed as parameters
to a given activation (i.e., invocation) of a method m. To obtain a compositional
analysis, we assume that the parameters are maximally unaliased by introducing one
parameter node nn2 for each formal parameter pi of the analyzed method m. If
later in the inter-procedural analysis we discover that two parameters are aliased, we
merge the aliased placeholder nodes by mapping them to the same nodes. Intuitively,
it is always easier to treat the more general case of maximally unaliased parameters

23

n E Node = INode U NodePlaceholder H
SNode H {rOnunl}

nib E INode = {INSIDE} x Label

def
nib (INSIDE, lb)

NodePlaceholder = LNode H PNode

nL LNode = { LOAD} x Label
def

(LOAD, lb)

E PNode ={PARAM} x Method x N
def

(PARAM, m, i)

l E RNode {RETURN} x Label

nib (RETURN, lb)

nc E SNode = {STATIC} x Class

s def
ni. (STATIC, C)

ja G InsideEdgesa =p((Node \{n,,un1}) x Field x Node)
0a E OutsideEdgesa = P((Node \{niun}) x Field x LNode)
La E LocVara = V -+ P(Node)

G C PTGraph" = InsideEdgesa x OutsideEdgesa x Loc Vara X
P(Node) x P(Node)

Figure 2-3: Sets and notations used by the analysis

24

RNode W

L
nib

n ,

n ,

and to merge nodes later, than to work with fewer nodes and to split later! For a
given activation of a method, a parameter node models a single object: the object
sent as actual argument. We use the notation ParamNodes(m) to indicate the set of
parameter nodes of method m E Method:

ParamNodes(m) = {ni 10 < i < arity (m) - 1}

Another reason for introducing placeholders is the need to cope with the LOAD
instructions that read references from escaping nodes. Escaping nodes are those nodes
that might be accessed from outside the current activation of m. As the analysis does
not know what the other parts of the program might write in that object, it does not
know what is actually read in the concrete execution. In this case we use the second
kind of placeholders, the load nodes. We introduce at most one load node nr for
each label lb that corresponds to a LOAD instruction, i.e., P(lb) = "vi = v2.f'. nL
models the objects read by that instruction from objects that might be accessed from
outside the current activation of method m. As a LOAD instruction might be in a
loop, a load node might model multiple objects.

Some methods cannot be analyzed, because their code is not available, as is the
case of the native methods, or because their analysis would take too long. However,
when m calls such a method, we need to model somehow the object that is returned
from it. We use a special kind of nodes, the result nodes, exactly for this purpose. If
the instruction at label lb corresponds to an unanalyzable CALL3 , the result node n'l
models the object that might be returned by the called method. Due to the loops, a
result node might model multiple objects.

To model static fields, we create a static node n' for each class C that has static
fields. This static node acts as a "wrapper" for the static fields of the associated
class C. For example, if a class C has several static fields, they will be modeled as
normal fields of the node ns. The existence of a single static node for a class is the
consequence of the fact that the static fields are associated with the class. Other ideas
are possible for modeling the static fields, e.g., introducing a special mathematical
structure for each static field, but we prefer the static nodes because they make the
static fields look similar to the normal, non-static fields, and lead to a more uniform
formalism.

Nodes and threads In Java, with the exception of the main thread, each thread of
execution corresponds to a "thread object", i.e., a normal object that implements the
Runnable interface. As objects are modeled by nodes, the threads that are different
from the main thread are modeled by nodes, too.

3We do not give any formal definition of an unanalyzable CALL. We simply suppose that, due
to various reasons, some CALLs are unanalyzable.

25

Edges

Suppose that in the heap created by the execution of the program, the field f
of object o has as value the address of object 02. In this case we say that oi
points to 02 through the field f, or, in other words, we have the heap reference
(oi, f, 02). Heap references are modeled in the analysis by edges: triples from the
set (Node \ {n,,u1}) x Field x Node. In the previous example, the heap reference
(oi,f, 02) will be modeled by the heap edge (ni, f, n 2), where ni is a node that models
o1 and n 2 is a node that models 02. There are two kinds of edges: inside edges, which
model the heap references created by the analyzed scope, and outside edges, which
model the heap references read by the the analyzed scope from objects that might be
accessed from outside it. An outside edge always ends in a load node. As a program
cannot write to nor read from a null pointer, an edge cannot start from nnu.

Modeling of array cells In Java, arrays are just a special kind of objects. By
consequence, they are modeled by nodes. If an array has cells of non-primitive type,
the values stored in these cells are addresses of heap objects. To model these ref-
erences, we use the artificial field [] that represents all the cells of an array. We do
not distinguish between the different cells of an array. For example, if object ol is an
array modeled by node ni such that oi[O] is a reference to the object 02, and oi[1] is
a reference to the object 03, then the field [] of node ni points to nodes n 2 and n 3 ,
where node n2 models 02 and node n3 models 03.

If we extend the analysis to include some form of integer analysis and treat the
array cells in a more precise way, we have to use more than one field for representing
the array cells. However, we should be aware that this is not a trivial thing to do:
there is currently only one pointer analysis which distinguishes the array fields [18].

State of the Local Variables

The state of the local variables of the analyzed method m is modeled as a function
La : V -+ P(Node) that assigns to each local variable v the set of nodes that v might
point to. Note that although at any given moment in the program execution, v has
only one value, La(v) might have more than one element. This is both due to the
analysis imprecisions, and to the fact that the statically computed La(v) must model
the value of v on all possible dynamic execution paths that reach that program point.

We also use L a to keep track of the objects that might be returned from the
analyzed method m. For this purpose, we introduce a dummy variable vet that is
put to point to the objects that are returned from m4 . La(Vet) is the set of nodes
that might be returned from m. An alternative is to have a separate set of returned
nodes; for simplicity reasons, we decided to minimize the number of components of a
points-to graph.

4 This is equivalent to splitting a RETURN instruction return v in three phases: copy v into
vret, pop the stack frame of the callee, and copy Vret into VR, where yR is the variable from the caller
that has to receive the result of the corresponding CALL instruction: "vR vo.s(vi, ... , k-1)-

26

Points-to Graphs

The points-to graph that the analysis computes for a given program point conser-
vatively models the program state created by any execution path that reaches that
point. We are interested in the values of the local variables that have pointer types,
and in that part of the heap that the analyzed scope creates or accesses. For example,
we are not interested in the specific value of an integer variable. The points-to graph
models the heap and the state of the local variables and also offers information on
which nodes escape from the analyzed scope.

Formally, a points-to graph G E PTGrapha is a five-tuple

G = (ao, a L a, Sa, Ua)

consisting of the set of inside edges Ia, the set of outside edges 0a, the abstract state
of the local variables La, the set of the threads started by the analyzed scope Sa, and
the set of nodes that directly escaped into an unanalyzed method Ua.

We have already examined the first three components. We now explain the other
two. The objects created by the analyzed scope might escape it (i.e., be manipulated
from outside the analyzed scope), because they are reachable from one of the following
escapability sources:

" Static fields (which behave as global variables);

* Caller (i.e., they are reachable from the parameters or from the object that is
returned to the caller);

" Threads started by the analyzed scope;

* Methods called by unanalyzable CALL instructions from the analyzed scope;
as we do not know what these methods do, we have to be very cautious and
consider the object potentially accessible to the entire program (e.g., one of
these methods might store a reference to the object in a static field).

As an object might be manipulated from outside the analyzed scope only if it is
reachable from the outside, escapability is basically a reachability property and has to
be propagated along the heap references. The heap references already being modeled
by the sets of inside and outside edges, we just need to keep track of the nodes that
model the objects that directly escape (the sources of escapability).

The static fields are already modeled by the static nodes. The nodes directly
reachable from the caller are already modeled too: the objects received as parameters
are modeled by the parameter nodes and the objects that might be returned to the
caller are modeled by the nodes from La(Vret). The sets Sa and Ua have the purpose
of modeling the remaining two source of escape information. The set Sa models the
threads started by the analyzed scope. The set Ua models the set of objects that
are passed as arguments to the unanalyzed methods. The objects received as return
values from these unanalyzed methods are already modeled by nodes from RNode.

27

Escape Predicate

Having modeled both the sources of escape information and the heap edges, we can
propagate the escape information along the inside and the outside edges to see if a
particular node escapes from the analyzed scope of not. Given a points-to graph, we
can define an escape predicate that tells whether a node is reachable from one of the
sources of escape information. Before giving the definition of the escape predicate,
we give a formal definition of reachability from a set or roots over a set of edges.

Definition 1 (Reachability predicate). Let R C A be a set of root vertices from
the set A and E C A x Field x A be a set of arcs, labeled by fields. We define the
predicate

reachable(R, E) : A --+ {true, f alse}

as the least fixed point of the following constraints:

ac R (2.1)
reachable(R, E) (a)

(a1 , f, a2) C E, reachable(R, E)(a,) (2.2)
reachable (R, E) (a2)

The previous definition implicitly uses the usual ordering relation on boolean
predicates; if p1,p 2 : B -+ {true, f alse} are two boolean predicates over an arbitrary
set B, then:

PI E_ P2 iff Vb C B, p1 (b) -> P2(b)

Note that we did not specify the set A of vertices. In the next definition, it will
be Node but the definition of reachability is more general. Basically, a vertex a is
reachable from the set R of roots if it is one of the roots or if it is pointed to by an
arc which starts in an already reachable vertex.

Definition 2 (Escape predicate). Given a method m with the associated param-
eter nodes ParamNodes(m) = {nim, 0-.. n - , k-1}, and a points-to graph G =

(I 1 ", a La, sa, Ua) computed by the analysis for some program point inside m, we
define the escape predicate

ea(G) : Node --+ {true, f alse}

as follows:

e a(G)(n) = reachable(N, Ia U Oa)(n)

where N = ParamNodes(m) U SNode U La(vet) U sa u Ua U RNode.

28

Notation: We say that a node n escapes in the points-to graph G iff ea(G)(n) is
true. Otherwise, we say that n is captured in G. We omit the points-to graph G
when it is obvious from the context.

Ordering Relations

In the next section, we define our analysis in the Monotone Framework from 116]. In
that framework, an analysis attaches an element from a property space to each pro-
gram point from the program. In our case, the property space is the set PTGrapha.
To comply with the Monotone Framework, we need to define an ordering relation E
on it such that (PTGrapha, L) is a join semi-lattice. Furthermore, to ensure termina-
tion of the fixed-point algorithms used for implementing our analysis, (PTGrapha, E)
should respect the Ascending Chain Property: any ascending chain has to stabilize
at some point.

The ordering relation on points-to graphs is defined component-wise. We first
introduce ordering relations for the components of points-to graphs. A points-to
graph G = (J, 0a, La, Sa, U,) is composed of a few sets -- a 0a, Sa, and Ua -
and a function La : V -± P(Node). The ordering relation between sets is the set
inclusion relation and the associated join operation is the set union. For elements
from the set of functions LocVara = V -± P(Node), we use the classic ordering
between functions:

L : La iff Vv V, La(v) E La(v) i.e., Vv E V, La(v) C La(v)

The associated join operation is

L La = Av.(La(v) U La(v))

Definition 3 (Ordering relation on PTGrapha). Given two points-to graphs

G, = (Ii", 0a, La, Sa, U")
G2 = (12a, 27, L2, 2e U

G 1 is said to be smaller than G 2 , i.e. G 1 E: G 2 iff

I C I12, Oa COa, Li a La, Sj C Sa, and Ua C Ua

Lemma 1. (PTGrapha, E) is a join semi-lattice with the associated join operator U

defined as follows

I, 0I L a Sa, Uf') L (I, Oa, L a, Sj, U) =
1'1 1' 1'2

(I-J a I , Oa U Oa , av (iV) a L(V)) , ao U Sja , Ula U Up)

and the least element ILPTGrapha= (0, 0, Av.0, 0, 0

Proof: Trivial.

29

Lemma 2. For a given analyzed program, the join semi-lattice (PTGrapha, I) sat-
isfies the Ascending Chain Property, i.e., G1 E G 2 EI ... implies Ei such that
Gi = Gi+1=

Proof: For any given program, the number of nodes we can define is bounded: we
have one parameter node for each formal parameter, one inside node for each NEW
statement, at most one load node for each LOAD statement, one return node for
each unanalyzed CALL and one static node for each class that has static fields. By
consequence, PTGrapha is finite and (PTGrapha, E) trivially respects the Ascending
Chain Condition.

2.5 Formal Presentation of the Analysis

We define our pointer analysis in the context of the Monotone Framework for dataflow
analysis from [16, Chapter 21.

Given a method m, with k parameters, PO, Pi,... , Pk-1, the analysis instance for
method m computes a pair (oA, Ao) of two functions oA, Ao : Label -+ PTGrapha,
such that for each label lb from the body of m, oA(lb) is the points-to graph attached
to the program point right before lb and Ao(lb) is the points-to graph attached to
the program point right after lb.

Here are the elements that define our analysis:

" The analysis is a forward analysis that propagates information from the method
entry point along the edges of the control flow graph. The set E of extremal
labels contains just the entry label of m, entrym, and the flow used by the
analysis is the control flow graph for method m, CFGm.

" The extremal value for the extremal label, i.e., the points-to graph associated
with the beginning of m, is:

Ginit= (0, 0, Lini, 0, 0)

where

Lint(pi) = {nr}, Vi - {G , 1, ... , k - 1} and L'it (v) = 0 otherwise.

" The property lattice is (PTGrapha, a).

" The transfer functions associated with the labels are presented in Figure 2-4.

51n [16, Chapter 2], the authors use the notations A0 , A.. We replaced them with our own
notations - oA, respectively Ao - which make the position of the program point more explicit:
before, respectively after the label.

30

The analysis for method m can be expressed as a set of equations:

oA(lb) { Li{i b if lb = entry(2
|_{Ao(lb') | W' G pred(lb} otherwise (2.3)

Ao(lb) = [lb p(oA(lb))

We prove later in this section that the transfer functions are monotonic. Once we
know this, we can solve the analysis equations using any of the many standard meth-
ods for monotone dataflow analysis 116], ranging from Chaotic Iteration (the easiest
to implement) to Worklist Algorithms to Iterating Through Strong Components (the
most efficient). The solution we obtain is the least fixed point of the equations; for
historic reasons, it is called MFP, which stands for Maximal Fixed Point.

As the join operation on PTGraph' is essentially a component-wise set-union,
the analysis is a may-analysis: the points-to graph associated with a program point
inside m conservatively approximates the information that is propagated along any
execution path that reaches that point.

2.5.1 Transfer Functions

Figure 2-4 presents the transfer functions associated with the labels from the analyzed
program. The transfer function [lb1Ia takes as argument the points-to graph for the
program point just before label lb and returns the points-to graph for the program
point right after lb. We define the functions [lb p on a case by case basis, based on
the instruction from label lb. Figure 2-4 does not cover the case of an analyzable
CALL; we study this case later in Section 2.5.2, which we dedicate entirely to the
inter-procedural analysis. In the next paragraphs, we give an intuitive description of
the transfer functions associated with the labels/ instructions from the program.

As a general rule, assignments to variables are destructive, i.e., assigning something
to v "removes" all the previous values of La(v), while assignments to node fields are
non-destructive6: assigning something to ni.f does not remove the existing edges that
start from n1 . The reason is that nodes might represent multiple locations and so,
updating nl.f might not overwrite the edge (ni, f, n2) because the update instruction
and the edge concern different objects! For example, it is possible that the assignment
to nl.f models an assignment to oi.f, where object o is modeled by n1 , and the edge

(nii,f, n2) models an edge in the concrete heap that starts from the object 02 # 01,

where 02 too is modeled by n1 . This imprecision is due to the fact that the same node
models potentially many objects, and is unavoidable in a static analysis that needs
to represent a possibly infinite structure, the heap, in some finite way.

6An equivalent term is weak updates; the opposed term, strong updates, denotes the updates that
removes the previous edges.

31

a : Label -+ PTGrapha - PTGrapha

[entryj]a and [eXitm"a are the identity function;
the other cases are presented below:

P(lb) [lb p (G = (I a, La L, sa, Ua))

V1= V2 (Ia, Oa, La [vI La(v2)], Sa, Ua)

(Is', Oa, La [v {1hb}] , sa, Ua)= new C l

where 1a = Ia U {(4f, f nul)}fefields(c)

v = new C[k] (IT u {(n, [], nn.0)} , Qa, La [v 1 {b}] , S, Ua)

v null (Ia, 0 a, La [v - {nnul}] , Sa, Ua)

V1. = V2 (Ia U ((La (V,) \ { nu}) x {f} x La (V2)) ,a 0, La , Sa , Ua)

C.f = V (I u ({n1} x {f} x La(v)) , Qa, La, Sa, Ua)

V1 [t] = V2 (I[a U ((L a(VI) \ n.1 }) X {] x La (V2)) , 0O, L a, 5a, Ua)

V2 v1 .f process _ load (G , V2 , La(V 1) \ {nnun } , f , lb)

v = C.f process _load (G , v , { n} , f, 6lb)

v2 V[i] process _load(G ,V2 , L"(a 1)\{nUu} , [] , lb)

if (...) goto at (Ia, 0a, La, Sa, U") (unmodified)

Case 1: analyzable call
Studied later in Section 2.5.2

VR vo-s(vi,.. - v3) Case 2: unanalyzable call

(Ja, 0a, La [VR - Rng] , Sa, Ua U Uji La(V,))

(Ia 0a, La [Vret La(v) , Sa, Ua)
return v where vet is the dummy variable used to store

the return value of m.

start v (Ia, 0a, La, Sa U La(v), Ua)

nop (Is, Qa, La, Sa, Ua) (unmodified)

Figure 2-4: Definition of the family of analysis transfer functions [lb] [", lb E Label

32

The two special labels we introduced, entrym and exitm, do not correspond to any
concrete instruction and hence do not have any impact on the program execution. The
transfer function for them is naturally the identity function on the set PTGrapha. This
is also the case for the labels that correspond to IF, NOP, or some other instruction
that does not manipulate pointers.

The processing of a NULLIFY instruction "v = null" simply sets v to point to the
special node nu1. A COPY instruction "vi = v2" makes vi point to all the nodes
that v2 might point to. As previously mentioned, the analysis "forgets" the previous
value of La(vi).

The transfer function for a label lb that corresponds to a NEW instruction "v =

new C' makes v point to the inside node attached to the label 1b, nj4 , and records the
fact that all the fields of rb point to nu. Because assignments to node fields are
non-destructive, the analysis does not remove the previous inside edges corresponding
to those fields 7 .

The transfer functions associated with the three STORE instructions - STORE,
STATIC STORE, and ARRAY STORE - are similar. In all cases, the analysis
updates the set of inside edges by adding the edges A x {f} x B, where the specific
sets of nodes A and B depend on the STORE instruction from label lb. For a
normal STORE "vi.f = v2", A = La(vi) \ {n.} 11} and B = La(v 2); the analysis
creates inside edges labeled with the field f from any node vi might point to, except
nnull1, to any node v2 might point to. As the program cannot write at the address
null, the analysis does not create edges from null. The case of an ARRAY STORE
instruction "vif = v2" is similar, except that we use the special field [] which models
the references coming from all the cells of the array. For a STATIC STORE "C.f = v,"
A is the singleton containing the special static node nr, which serves as a wrapper
for all the static fields of class C, and B = La(v).

The case of the three LOAD instructions is more complicated than the cases we have
seen so far. When the program loads a reference from a node, if that node is reachable
from outside the analyzed scope, the analysis does not know all the references that
start from that node: some part of the program that is outside the analyzed scope
might create a new reference that the analysis is unaware of. In this situation, the
analysis introduces outside edges to model the references that the program reads, and
a load node that is a placeholders for the actually loaded nodes.

The processing of the three types of LOAD instruction is similar: in all three cases
the analysis loads a field from a set A of nodes and makes a certain target variable
point to the loaded nodes. For LOAD and STATIC LOAD, the analysis loads the
field f that is mentioned in the instruction. For an ARRAY LOAD, the analysis loads
the special field [] that models the references coming from all the cells of an array

TSuch edges might exist if the new instruction is in a loop; of course they refer to some other
object, created in a previous iteration of the loop, but ni models that object too.

33

processload: PTGrapha x V x P(Node) x Field x Label -+ PTGrapha

PARAMETERS:
Points-to graph G (=g aI , La, Sa, Ua) right before the LOAD;
Local variable v that is the target of the LOAD;
Set of nodes A that the program loads from;
Field f that the program loads;
Label lb of the LOAD instruction (used to generate a load node).

RESULT:
Points-to graph after the LOAD instruction.

Let B = {n E Node I 3ni E A, (ni, f, n) E Ia}
E = {E A I ea(G)(n))

Case 1: E = 0
process _load (G, v, A, f, lb) = (Ia, , La [v - B] , Sa, Ua)

Case 2: E7 0
process _ load (G, v, A, f, lb) = (Ia, Oa, Lo [v - (B U {L4 })] , Sa, Ua)

where Oa = Oa U (E x {f} x {n'})

Figure 2-5: Definition of auxiliary function processload

object. The set A is obviously La(vi) \ {nri,} in the case of LOAD and ARRAY
LOAD; for a STATIC LOAD "v = C.f," it is the singleton consisting of the static
node nm associated to the class C. Notice that as the program cannot read from the
address null, the analysis does not load anything from nnull.

Figure 2-5 presents the formal definition of the auxiliary function processload

that does the actual work for the three LOAD instructions. process_ load must receive
the following arguments: the points-to graph G right before the LOAD operation, the

set A of nodes that the program loads from, the loaded field f, the target variable v

to be set, and the label lb of the LOAD instruction. In the points-to graph returned
by processload, the target variable v points to all the nodes that are pointed to by
the field f of nodes from A. If A contains nodes that escape the analyzed scope (i.e.,
nodes n such that ea(G)(n)), the target variable also points to the load node n'
attached to the analyzed label/instruction. Also, in this case, the analysis introduces
an outside edge from every escaping node from A to n4; the label of each such outside
edge is the field loaded by the analyzed instruction, i.e., f.

The last three instructions that we have to discuss - unanalyzable CALL, START
THREAD, and RETURN - create potentially new sources of escapability. The
processing of these instructions updates one of the sets Ua, Sa, or La(vret). In the

34

case of an unanalyzable CALL "vR = vo.s(v 1, ... , vj)", the analysis adds all the nodes

pointed to by vo,... , vj to the set of nodes that are passed to unanalyzable CALLs.

Also, in the points-to graph after the unanalyzable CALL instruction, vR points to

the result node nR that models the object that is returned by the call at label lb. For

a START THREAD instruction "start v", the analysis adds all nodes pointed to by v
to the set of potentially started nodes. Finally, for a RETURN instruction "return v",
the dummy local variable vt is put to point to the nodes that are returned.

Example 1. Consider the following small method:

lb oA(lb) Ao(lb)
C2 m(C p0) { nrm 0 G

0: VO PO. fentrym Go Go0: vO = pO.f ; 0 Go G
1: if (v == null) goto 3; 1 Go G,

2: return vO; 2 G G,

3: v1 = new C2; 3 G, G2

4: pO.f = v1; 4 G, G4

5: return v1; 5 G 4 G4

exitm G 6 G6

For simplicity, we use integer labels. Method m checks whether the field f of its only

parameter is null or not. If it is, then it sets this field to point to a newly created
object. In both cases, it returns the (possibly new) non-null value of the field f.

The table on the right side of the code presents the result of the pointer analysis
for method m. Figure 2-6 presents the graphical representation of the points-to graphs

GO,... , G 6 that appear in the aforementioned table.

As the analyzed method does not contain any loop, the computation of the anal-

ysis is straighforward: it starts with the points-to graph for the beginning of the

method, and propagates the information down the flow by applying the analysis
transfer functions.

In the points-to graph Go for the beginning of the method (Figure 2-6.a), p0 points
to the parameter node no; all the other components of Go are empty. The transfer
function for the LOAD instruction from label 0 loads the field f of the escaped node

n'. The analysis uses the load node n' as a placeholder for the actual nodes that

the instruction might read. It puts vo to point to no, and creates the outside edge

(n , f, n4). The resulting points-to graph, which is valid for the program point right
after label 0, is G1 (Figure 2-6.b). As the transfer function associated with an IF is
the identity function, G1 is also the points-to graph for the program point right before
label 2 and for the program point right before label 3. The RETURN from label 2
records the fact that the method might return no by setting the dummy variable
Vret to point to this node (Figure 2-6.c). On the other branch of the IF instruction,
the NEW instruction from label 3 puts vi to point to the inside node associated
with this instruction, i.e., ni (Figure 2-6.d). We supposed that the class C2 does not
have any pointer-type fields; otherwise, we would have several inside edges from n to
nnull . The STORE from label 4 creates an inside edge from nP to n' (Figure 2-6.e).
The RETURN from label 5 sets vret to point to n, (Figure 2-6.f). The label exitm

35

vO

pO--Kno) p0 -- :P n- -

a. Go b. G1 = [0ja(Go)

vO

vO P0 O\,o "\ --

p 0 w- - --n j

eVret

c. G = 21 (GI) d. G3 = 53J (G4)

vO vO

-- YoIp0 -(n)- -v -- tsd edg

f P\ f

eVret

vi n3) d I

e. G. =4a (G 3) f. G5 [5La(G4)

vO f inside edge

as 0ad wit t x f outside edge
fO ON) node-1M-\

f ~Vret 0nd

vi 22 I- node placeholder

g. G6 = G 2 LiG 5 Legend

Figure 2-6: Points-to Graphs for Example 1

associated with the exit of the program has two predecessors: labels 2 and 5 that
correspond to the two RETURN instructions. Accordingly, the points-to graph for
the end of the method is G6 = G2 L G5 (Figure 2-6.g). A

To comply with the Monotone Framework, we need to verify that the transfer
functions are monotonic. Ignoring the case of an analyzable CALL, which has not
been covered yet, we obtain the following lemma:

Lemma 3 (Monotonicity of the transfer functions). For every
m, which does not correspond to an analyzable CALL, Ilb a

PTGrapha is monotonic, with respect to the ordering relation from
lattice (PTGrapha, F)

label lb inside
PTGrapha _
the join semi-

36

Proof hint: [entrymja and [exitm"a are clearly monotonic; for the other labels, we

do a case analysis on the type of the instruction at label 1b, and we use the appropriate

definition of [lb Ia from Figure 2-4. The only non-trivial cases are those of the LOAD
instructions. In these cases, note that if G1 [; G 2 , then ea(GI)(n) + ea(G2)(n). E

After we present the transfer function for an analyzable CALL, we extend Lemma 3
to cover that case too.

2.5.2 Inter-procedural Analysis

In Java, after every NEW instruction, the program calls a constructor that initializes

the newly created object. If we want to analyze real Java programs, our analysis has

to provide some degree of inter-procedurality; otherwise, all our nodes would escape

the analyzed scope and we wouldn't be able to obtain precise information about any

of them. This subsection presents the transfer function for the labels that correspond

to analyzable CALLs.

Suppose we have a CALL instruction at label 1b, having the form

VR =v0-(v1, ... , vj)

The transfer function [lb J1 for label lb receives as argument the points-to graph for

the program point right before the CALL, and returns the points-to graph for the

program point right after the CALL. It is defined as follows:

Slb Ja(G) = H interproc(G, oA(exit caiiee), ib, callee) (2.4)

calleeE CG(lb)

For each possibly called method callee - CG(lb), the analysis uses the auxiliary

function interproc to compute a points-to graph for the program point after the CALL,
valid in the case when callee is called. As the statically computed call graph cannot

guess which one of the possible callees is called in a specific execution of the CALL
instruction, the analysis has to conservatively join the points-to graphs computed for

all the possible callees.
Figure 2-7 presents the definition of the function interproc. It has four arguments:

" Points-to graph G for the program point right before the CALL;

" Points-to graph Gcaie oA(exitcaiee) for the exit point of method callee;

" Label lbc of the analyzed CALL instruction;

" Called method callee.

The analysis combines G and Gcaiee to compute the points-to graph valid for the
program point after the CALL, in the case when callee is called. This computation

has three steps:

37

interproc: PTGrapha x PTGraph' x Label x Method -± PTGrapha

interproc(G, Gcaiee, lbe, callee) =

let p' mapping (G, Gcaiee, lbe, callee) in
simplify (combine(G, Gcallee, 1', VR))

where P(lbc)= "VR vo.s(vi, ... ,V

Figure 2-7: Definition of function interproc

1. First, the analysis computes a mapping p' E Mapping = Node x Node that
maps the nodes from Gcaie to nodes that appear in the final graph. Note that
this mapping is not necessarily the identity function: some of the placeholders
from the callee (parameter and load nodes) might represent other nodes. The
construction of the mapping p' uses the points-to graph before the CALL to
disambiguate as many node placeholders as possible.

2. Next, the analysis uses the mapping p' to combine the two points-to graphs, G
and Gcalee.

3. Finally, the analysis simplifies the resulting points-to graph by removing super-
fluous load nodes and outside edges. It removes only those parts of the graph
that are not critical for the correctness, i.e., they are present there only as a
result of the analysis imprecisions.

Each step is implemented with the help of an auxiliary function. These functions
are, in order: mapping, combine, and simplify. We present them in detail in the next
paragraphs.

Construction of the Node Mapping

The function mapping constructs a mapping t' E Mapping that maps the nodes
from Gcaiee to nodes that appear in the final graph. Figure 2-8 presents its formal
definition.

In a first step, mapping constructs an intermediate mapping P E Mapping that
maps the node placeholders from the callee to nodes from the points-to graph for the
program point right before the CALL. This step is the core of our inter-procedural
analysis. We define At as the least fixed point of the constraints 2.5, 2.6, 2.7, and 2.8.

The first two constraints initialize the mapping, the other two extend it. In a real
implementation, the first two constraints will be applied to initialize the mapping and
only the next two constraints will be considered by the iterations of the fixed-point
algorithm.

Constraint 2.5 records the fact that the parameter node nePale, represents the
nodes actually pointed to by vi, the ith argument passed to callee. These nodes are

38

mapping: PTGrapha x PTGrapha x Label x Method -± Mapping

Mapping = Node x Node

PARAMETERS:
Points-to graph right before the CALL, G = (Ja, Qa, La, Sa, Ua);
Points-to graph from callee, Gcaie = (Ic aiie, Oaee,La11ee, a Scaee, U aiee);

Label lb, of the CALL instruction; P(lbc) "VR = vo.s(vi, ... , v
Called method callee.

RESULT:
Mapping p' E Mapping, computed as follows:

1. Let p E Mapping be the least fixed point of the following constraints:

La(Vi) C p(npee,), Vi E {O, 1,... j}

ncE P(ns), VC E Class

(ni, f, n 2) C Oaaii1ee, (n 3 , f,n 4) C ja, n 3 c p(nI)
n 4 E p(n 2)

(ni,f, n 2) E Oalee, (n 3 , f, n 4) E
((p(ni) U {n}) n (p(n3) U {n3})) \

(n, 5 n 3) V (ni E LNode)

Ilacallee,

{n~n} 0, (2.8)

p(n4) U ({n 4} \ ParamNodes(callee)) C p(n2)

2. Extend p to obtain p' as follows:

, { p(n)
(p(n) U {n}

if n E ParamNodes(callee)
otherwise

Figure 2-8: Definition of function mapping

39

(2.5)

(2.6)

(2.7)

the nodes from the set La(vi). Constraint 2.6 completes the initialization by mapping
each static node to itself8 : nr C [(ri), VC E Class.

The other two constraints extend the mapping by matching outside edges (i.e.,
LOAD instructions that read references) against inside edges (which model heap edges
created by STORE instructions). As more and more mappings are discovered, the
mapping function goes deeper and deeper into the points-to graphs, and more edge
matchings can be applied; accordingly, the fixed point algorithm repeatedly applies
the constraints 2.7 and 2.8 till no further progress is possible and it reaches the least
fixed point.

Constraint 2.7 matches the outside edge (ni, f, n 2) E Qa ," from the callee against
the inside edge (n3, f, n 4) E P from the caller, under the condition that n1 might
represent n 3 : n 3 E p(ni). Figure 2-9.a presents a graphic representation of this
situation. As n1 might be n3 , the outside edge read from ni might be the inside
edge (n3, f, n 4), and the load node n 2 might be the node n 4 . The analysis extends
the mapping to record this fact. This constraint deals with the cases when the callee
reads references from the heap structures created by the caller.

Constraint 2.8 matches an outside edge from the callee against an inside edge from
the callee. This constraint deals with the aliasing present in the calling context.
Suppose we have the outside edge (nif, n2) E Qaie, that corresponds to a LOAD
from the escaped node ni, and an inside edge from the caller (n 3 ,f,n 4) E 'callee-
If (u(ni) n p(n 3)) \ {nnull1 } 7 0, then n1 and n3 might represent the same node
n5 E p(ni) n p'(n 3), n,5 :yi nn. 1 i. The case n5 = n,,, is not interesting, because no
edge can start from nntul: the program cannot write to/read from the address null.
Figure 2-9.b presents a graphic representation of this situation. As the analysis for
the callee was not aware of the aliasing between n1 and n 3 , it could not detect the fact
that the LOAD operation that created the outside edge might have read the reference
modeled by the inside edge. Once we know that n1 and n 3 might be placeholders for
the same node, we are able to infer that n2 might be n 4 . We record this fact by
enforcing {n4} E p (n 2) (the set difference is a technical detail that we explain later).
Also, as n 4 is a node from the callee, it might be a node placeholder that represents
some other nodes (it might be in the domain of the 1- relation). Therefore, node
n2 might represent not only n 4 but also some nodes represented by this node. The
analysis updates the mapping to record this too, such that p(n 4) p(n2).

The same reasoning is valid in the case when n1 might be a placeholder for n 3 ,

i.e., n 3 E p(ni) (Figure 2-9.c), or n 3 might be a placeholder for n1 , i.e., n1 E pu(n 3)
(Figure 2-9.d). Instead of having three rules, we extended the condition (jt(n 1) n
1p(n 3)) \ Innul} 0 as follows:

((p(ni) U {ni}) n (JI(n3) U {n3})) \ { 1nun} #

'In a real implementation, only the static nodes that actually appear in Gcaliee need to be
considered.

40

f

----f ---

- n4n3

a. Constraint 2.7

ni ------- f--------n2

qif--
123

)12

n
c. Constraint 2.8 for

n3 E P(ni)

- ------ outside edg

f inside edge

123 (4

n5 n
b. Constraint 2.8 for

(1(ni) n p(n3)) \ {Innuii} 0

f
121-------- ------- 12

3
-

)2

n
d. Constraint 2.8 for

n, E 1-t(n3)

e -a- existing mapping

-" new mapping

Figure 2-9: Graphic representation of Constraint 2.7 and Constraint 2.8

41

To obtain a reasonable precision, we do not want to have too many fake mappings.
The set difference "\{nnu}" from the previous condition is a first attempt to reduce
the fake mappings, based on the observation that a program cannot write to/read
from a null pointer. The third part of the precondition reduces the applicability of
Constraint 2.8 even further:

(n, # n3) V (ni E LNode)

The correctness proof will show that this condition does not prevent the analysis
from detecting all the real mappings. Intuitively, if the condition is not satisfied, the
analysis of method callee would have already detected that the LOAD operation that
corresponds to the outside edge might load the node n4.

Once we have the mapping 1- that disambiguates the node placeholders from callee,
we extend it to obtain the final mapping p' by mapping each non-parameter node
to itself. Intuitively, the inside and the return nodes from the callee model objects
manipulated by the callee during its execution, and we want these nodes to be present
in the points-to graph after the CALL: n E p'(n). The mapping p already totally
disambiguates the parameter nodes, i.e., the analysis identified all the nodes they
might stand for. So, they are unnecessary in the resulting points-to graph. As a
consequence, we do not apply the previous map extension for the parameter nodes.
This is also the reason why in Constraint 2.8, instead of p(n 4)U{n 4} C p(n 2), we have
p(n4) U ({n4} \ ParamNodes(callee)) C p (n 2): as we do not want the callee parameter
nodes to appear in the resulting points-to graph, we avoid creating mappings to them.

However, we cannot say the same thing about the load nodes: some of these nodes
have to be present in the resulting points-to graph. Each load node is a placeholder
for the nodes that a specific LOAD instruction might have loaded from an escaped
node. But that escaped node might remain an escaped node even in the points-to
graph after the CALL. For example, consider the case of a node n that is reachable
from one of the parameter nodes of callee, niPee, and suppose that while constructing
the mapping p, we found out that that nipee stands for a node from the caller -
the method m - that is reachable from one of m's parameter nodes. In this case,
n escapes even in the resulting points-to graph. Therefore, we have to preserve the
load nodes in the resulting graph, in order to represent the nodes that might have
been loaded from the escaped nodes. In a first phase, we preserve all the load nodes.
We see later in this section how to remove some of them.

Example 2. Consider the following piece of code:

42

,7 f - f
('lb,01r n6- ~

f rnll~~
nnull

f
VO ni

90 $0 f

vi

a. Points-to graph before the call

\nb,1r8r - - - ,n 9-

f2

no
Vret

b. Points-to graph for the end of b

f

v f f bnnul
f 1 6 l

PO qO b,1r 8 r n9

vi

f2
S

y nc

c. Node mapping p

Figure 2-10: Points-to graphs and node mapping for Example 2

C a(C pO) {
vO = new C;
v1 = new C;
vO.f = v1;
p0.f = v1;

v2 = vO.b(p0);

}

C b(C p0, C p1) {
5: vO = pO.f ;
6: v1 = new C;

7: vO.f = v1;
8: v1 = pi.f;
9: v1 = v1.f;

10: C.f2 = v1;

11: return v1;

}

For simplicity, we use integer labels. Method a creates a new object at label 0, and
sets both the field f of its single parameter and the field f of the newly created object
to point to another new object, which it creates at label 1. Figure 2-10.a presents
the points-to graph computed by the analysis for the program point right before the
CALL instruction from label 4. As usual, we use solid arcs for inside edges and dashed
arcs for outside edges. We also use continuous circles for nodes and dashed circles for
node placeholders.

The CALL from label 4 invokes the method b with the arguments ni and n %. It

43

0:
1:
2:
3:

4:

is easy to understand what b does by studying the points-to graph computed by the
analysis for the exit point of b, which we present in Figure 2-10.b. We did not present
the values of the local variables of b, because the callee local variables are insignificant
for the mapping construction, and the inter-procedural analysis in general. In its first
three instructions, b reads the f field of its first parameter, which is modeled by n,
and creates a new reference from the loaded object, modeled by n5, to a newly created
object, modeled by n'. This creates the upper "chain" of nodes from Figure 2-10.b. In
the next three instructions, i.e., two LOADs and a STATIC STORE, method b sets
the static field C. f2 to point to the object pointed to by p1. f .f, which is modeled
by nr. This creates the bottom "chain" of nodes from Figure 2-10.b.

Notice that method b was analyzed under the assumption that its arguments are
maximally unaliased. In particular, the analysis of b did not know that for our CALL
p1. f and p2. f are aliased. As n' and nr might be the same node, the reference that
b reads at label 9 might be the reference that it created at label 7; therefore, the
placeholder n4 might be nI. The construction of the mapping relation [t identifies all
these cases.

Figure 2-10.c presents the mapping p. This mapping is constructed as follows.
Constraint 2.5 maps nbO to n' and nP to n4. Next, Constraint 2.7 matches the
outside edge (r 0 , f, 5) from the callee against the inside edge (nt, f, nr) from the
caller and maps niL to TJ. Similar applications of Constraint 2.7 map nL to nn and
nL to n.
f8 to 1

At this moment, the analysis is aware that the placeholders nL and n? might
represent the same node. By consequence, Constraint 2.8 matches the outside edge
(ni, f, ?4) against the inside edge (ni, f, n4), and maps ni to nI. Note that in this
last constraint application, both edges are from the callee points-to graph, i.e., they
are created for the same analysis scope.

At this point, the analysis cannot extend the mapping any longer, i.e., it reached
the least fixed point of the mapping constraints. The analysis extends P to obtain P'.
The following table presents the final values of y and p' for the relevant nodes, i.e.,
the nodes that appear in the points-to graph for the end of b:

n A p

nPrb, {n} {ni}
r4' {n o } { O }
nL 1mnull} ri n 4L
5 { nin, { ,nu, n}

8j {1j ni, 8g

f9 {6 {n6, 9}

ni 0 {nj}
nSnc {ng} {ig }

nenu 0 { nfnu}

A

44

combine: PTGrapha x PTGrapha x Mapping x V -+ PTGrapha

combine((Ia, Qa, La, Sa, Us), ('c'aiee, Oauee, Liauee, e Uciiee), ' VR) =

let Ia = a U Icalee[i'1

S'P(caiee)
L =La[VR c i allee (Vlet))]

Si = Sa U 11 g Sane

Ufafa Uap a a\Up = Un u '(Ucale) i

(I2a, a , L a, Sia, Uf)

where
ja l[']= U (p'(ni) \ {n..u1 }) x {f} x p'(n2)

(nijf,n2) callee

clene [P']= U (p'(n) \{n..}) x {f} x {nL}
(nLnf L)EOallee

Figure 2-11: Definition of function combine

Combining the Points-to Graphs

Once we have the mapping /', we combine the points-to graph for the program point
right before CALL, G, with the points-to graph from the end of callee, Gcaiee, to
obtain the points-to graph for the point right after the CALL. The combination is
done by the function combine, presented in Figure 2-11. combine has four arguments:

" points-to graph G = (Ia, 0a, La, Sa, U') for the program point right before the
CALL;

* points-to graph Gcaiiee (Icallee, Oacalee, Lcaliee, Scaiee, Ucoen) for the exit point
of callee;

* mapping p';

* variable VR to store the value returned by the callee.

Intuitively, combine returns the union between G and the projection of Gcaiiee through
the mapping ip'.

The equations from the definition of combine require some explanation. The heap
references that existed before the CALL might exist after the CALL too, and so, Ia
should be included in the set of inside edges in the points-to graph after the call, Ia.
If callee created the heap edge (ni, f, n 2), where n, may be any of the nodes from

p'(ni), and n2 may be any of the nodes from p'(n 2), then callee might have created
any of the edges from the set (p'(ni) \ {nnull}) x {f} x p'(n2) and all these edges
should appear in I. As usual, we do not introduce edges starting in nnau. We obtain

45

the following expression for Ia:

I=Ia u 'callee Ii01

Similary, for the set of outside edges 0a after the CALL, the analysis takes the
union of the set of outside edges right before the CALL, 0a, and the semi-projection9

through p' of the outside edges from the end of callee, Oalle. It is natural to ask
why the analysis does not do a full projection, as in the case of the inside edges,
i.e., why the analysis does not project the target of an outside edge. Here's why: an
outside edge (n , f, n') from the callee models the action of loading the field f from
the node n, action done by the LOAD instruction at label lb. Moreover, n escaped
from callee, and the placeholder nr was introduced to model the nodes that might
have been read in that instruction. As n may be any of the nodes from p'(n), the
read operation may take place from any of these nodes, hence the need for projecting
the node n. However, nr has the same meaning: it models the nodes read in the
instruction at label lb. As the analysis introduces at most one load node per LOAD
instruction, and not one load node per each possible source of the read, it has to keep
nr unchanged.

The abstract state of the local variables after the CALL, L , is pretty much like
the state before the CALL, L , except that now VR -- the local variable that receives
the value returned from the callee - must point to the nodes returned from callee.
In Geaiie, the dummy variables vet points to these nodes. Accordingly, the analysis
takes the set of nodes Lgcaee (Vret), projects it through p', and puts VR to point to the
resulting set:

La = La [VR - '(Laee(Vret

The projection operation is necessary because some of the returned nodes might be
placeholders from callee that p' disambiguates.

The set Sa of started threads is the union of the set of threads that were started
before the CALL, Sa, and the projection through p' of the set of threads started by
callee. Intuitively, if callee started a node n and n can be any of the nodes from the
set p'(n), then callee might have started any of those nodes, and we have to enforce
ii'(Scallee) C S2. The case of U2 is identical.

Example 3. (Example 2 continued) Figure 2-12 presents the result of the combine
function in the context of Example 2.

The construction of the combined points-to graph is straightforward. Notice that
in the resulting graph, the parameter nodes of the callee, i.e., the method b, disap-
peared. Notice also that in the resulting graph, there is no inside edge from nnull to
ni , although nnul C P'(nf), and (nt, f, nI) is an inside edge in the points-to graph
of the callee.

9The analysis projects just the start node of an outside edge, the target remains unmodified.

46

f 5 f

VO nn f2n

p0 600

n1 f2

- r--f -- n

Figure 2-12: Combined points-to graph for Example 3

simplify : PTGrapha n PTGraph"'

simplify (G = (Io, Qa, Lo, Sa, Us))=
let A = {n E LNode | ,ea(G)(ri)} in

let Ija I \ {(i, f, 2) |{ri, 2}r'A #0}
Qa =Q"\ {(n, f,nL) ({ L}fl A#f0)V eaG)T}

L) A. (La(V) \ A)

Na -a A

U|=U \ A in

(If, 4 L," LL o

Figure 2-13: Definition of function simplify

Points-to Graph Simplification

As we mentioned earlier, it is possible to simplify a bit the points-to graph obtained

by combining G and Gcaiiee. The analysis removes the superfluous load nodes and
outside edges. The simplification is done by the auxiliary function simplify from
Figure 2-13.

The simplification uses two ideas:

1. The analysis introduces a load node as a placeholder for the nodes that are read
from an escaped node. So, a load node inherently escapes somewhere. If in the
points-to graph returned by the combine function, we have a captured load
node nn, all the nodes that the program loaded i from, i.e., the nodes that
point to it through some outside edge from O , are captured too (remember
that escapability propagates along heap edges). So, the analysis had complete
information about those nodes and already identified the nodes loaded from

47

nnull

00 6on

fI f2

f N1

f L f2L

,n8 r -- -- ,n>

Figure 2-14: Simplified points-to graph for Example 4

them. The load node is superfluous; its presence is just the result of the analysis
imprecisions. Therefore, the analysis can safely remove all the captured load
nodes together with all the edges pointing to/from them. In Figure 2-13, we
colect these nodes in the set A.

2. An outside edge models a reference that was loaded from an escaped node. If
the source node of an outside edge is captured, the outside edge is superfluous
and the analysis can remove it.

Example 4. (Example 2 continued) Figure 2-14 presents the final points-to graph
for the program point right after the CALL at label 4 from Example 2. This graph
is the simplified version of the graph from Figure 2-12.

In the graph from Figure 2-12, the load node nL is captured. This happens
because the inside node nr, which is the only node that points to n4, is captured, too.
Therefore, the part of the program that is "outside" the analyzed scope cannot access
nr. Thus, the analysis has already identified all the nodes that the program might
load from this node and there is no need for the placeholder nL. The simplification
removes mi, together with all the surrounding edges. The other load nodes and
outside edges cannot be removed. For instance, as n escapes, the analysis cannot
be sure that when the program reads the field f of nP 0, it reads only nm: some other
thread running in parallel might write something else in that field. Therefore, the
simplification preserves the load node nr, and the outside edge (nr ,f, n4). A

Compatibility with the Monotone Framework

After we introduced the transfer function for analyzable CALL instructions, we need
to check that the transfer functions still satisfy the conditions of the Monotone Frame-
work. For this, we need to prove that the transfer function associated with a CALL
instruction is monotonic.

48

Lemma 4. Let lb be the label of an analyzable CALL instruction. Then, the
transfer function Ilb11 given by the Equation 2.4 is monotonic in its input G
(the points-to graph right before CALL) and also in its implicit input(s) Gcaie =
oA(exitcaiiee), callee E CG(lb) (the points-to graphs computed by the analysis for the
exit point of the possible callee(s)).

Proof: The transfer function for a CALL is the composition of a few functions. All
these functions turn out to be monotonic. mapping is clearly monotonic in G and
Gcaiiee, because its result is defined as the least fixed point of a group of monotonic set
constrains. It is also trivial to show that combine is monotonic in G, Gcaiee, and p'.
Proving the monotonicity of simplify is a bit more delicate due to the set differences
that appear in its definition. Consider two points-to graphs G, 1 G2. It is trivial to
see that any node that escapes in G, escapes in G2: all the escapability sources from
G, are present in G2 and all paths from G, still exist in G 2. As a consequence, all the
load nodes and outside edges that are preserved in the simplified G1, are preserved
in the simplified version of G2, too. So, simplify is monotonic, too. This finishes the
proof of Lemma 4.

The fact that [lb]l is monotonic in G, guarantees that the intra-procedural anal-
ysis of a method terminates. Additional monotonicity of [lb]" in its implicit in-
put(s) Gcallee = oA(exitcaiee), callee E CG(lb), guarantees the termination of the
inter-procedural analysis for the entire program.

2.6 Analysis Algorithm

The analysis that we presented as a set of dataflow equations can be computed by
using any of the standard algorithms for computing a dataflow analysis. [16, Chapters
2 and 6] presents a good survey of these algorithms. As these algorithms are well
studied, we do not enter into low-level technical details. Instead, we present a high-
level view of an algorithm that we recommend.

We recommend using a variant of the "Iterating Through Strong Components"
algorithm. The algorithm that we recommend contains an outer loop for computing
the inter-procedural analysis, and nested inside it, an inner loop for computing the
intra-procedural analysis.

The inter-procedural computation processes the strongly connected components
of the call graph, i.e., the groups of mutually recursive' 0 methods, in increasing topo-
logical order, i.e., from the leaf of the call graph to the main method. For each such
set of mutually recursive methods, the algorithm uses a worklist to iterate over the
set of methods till it reaches the least fixed point. At the beginning of the processing
of a strongly connected component, the worklist contains all the methods from that
component. In each iteration, the algorithm takes a method from the worklist and

10In practice, many of these groups will be singletons.

49

calls the inner computation, i.e., the intra-procedural computation, to analyze the
method. If the points-to graph for the end of the method changed, all the possible
callers of the method that are in the current strong component are added to the
worklist. The inter-procedural computation for a component terminates when the
worklist is empty.

The intra-procedural computation is very similar to the inter-procedural compu-
tation, except that it operates with instructions instead of methods: it processes the
strongly connected components of the control flow graph of the method in decreasing
topological order 1 , and iterates over each such component by using a worklist.

"The asymmetry between the outer computation that uses the increasing topological order, and
the inner computation that uses the decreasing topological order is due to the fact that although
the analysis propagates through the call graph in a bottom-up fashion, the inter-procedural analysis
is a forward analysis that propagates information down the flow.

50

Chapter 3

Analysis Applications

This chapter presents several applications of our pointer analysis: stack allocation,
allocation in the thread-local heap, and synchronization removal.

3.1 Stack Allocation

If an object is not reachable after the end of its allocating method, i.e., the method
instance that allocated it, it can be allocated in the stack frame of the allocating
method instead of in the garbage collected heap. As the compiler does a static
analyis of the program, it is not aware of the particular objects created during the
program execution. By consequence, instead of deciding whether to stack allocate an
individual objects, the compiler makes its decisions at the level of the object allocation
sites, i.e., the NEW instructions. If the compiler detects that all the objects allocated
by a specific NEW instruction can be stack-allocated, it replaces the NEW instruction
with a small sequence of instructions that allocates an object in the stack frame.

This transformation has the following benefits:

less garbage collection overhead The objects allocated in the stack frame will be
implicitly deallocated, without any execution time overhead, when the method
returns and the stack rolls back.

cheap memory allocation Allocating an object from the stack requires a simple
adjustment of the stack pointer - addition or subtraction, depending on the
processor type.

better memory locality A method is likely to use the objects allocated by it more
often than other objects. Allocating objects in the method stack frame will in-
crease the memory locality and will also take advantage of the memory hierarchy
because the stack frame will tend to be resident in the cache.

enabling more optimizations If the compiler can precisely compute the location
of an object on the stack, it can generate code to access its fields directly,
removing one level of memory indirection.

51

The largest potential drawback of stack allocation is that it may increase memory
consumption by extending the lifetime of the objects that are allocated on the stack.
This problem may be especially acute for the allocation sites that create a statically
unbounded number of objects, i.e., allocation sites inside statically unbounded loops,
and for those allocation sites that create large objects. As a consequence, the compiler
should avoid stack allocating these sites.

Simple Strategy for Stack Allocation

In the simplest case, if the inside node that models the objects created by a specific
NEW instruction from a method is captured in the points-to graph computed by
the analysis for the end of that method, then all these objects can be allocated in
the method stack frame. Formally, consider a NEW instruction at label lb inside
method m, and let G = oA(exitm). If ,iea(G)(n'), the compiler converts the NEW
instruction into a sequence of instructions that allocates space from the stack.

Use of Inlining to Enhance the Stack Allocation

The compiler can significantly improve the effectiveness of stack allocation by using
method inlining. Method inlining extends the lifetime of a method stack frame by
merging the method stack frame into the stack frame of the caller. Therefore, more
objects are likely to have their lifetime included in the lifetime of the stack frame.

For example, consider a method m, that calls method M2. Suppose that one object
o that is allocated in m 2 escapes from this method, because it is reachable from m 2 's
return value. If o is unreachable after the end of m1 , i.e., the caller of m 2 , its lifetime
is included into the lifetime of m1's stack frame. In this case, if the compiler inlines
M 2 into mi, o can be stack allocated.

Theoretically, we can extend this technique to arbitrarily long call chains. How-
ever, abusive method inlining can dramatically increase the code size. To avoid this,
we impose a limit on the length of the inlined call chains and inline only the call chains
that are beneficial for stack allocation, i.e., those call chains that cause a non-empty
set of inside nodes to become captured. To avoid increasing the memory consump-
tion, the compiler should avoid inlining the CALL instructions placed in statically
unbounded loops.

Additional Implementation Issues

As the stack allocation increases the stack size, programs that used to work with
a given maximal stack size might terminate with a stack overflow errors after they
are "enhanced" by the stack allocation optimization. A technique that eliminates
this problem is to allocate the stack allocatable objects in a separate stack. When a
method terminates, not only the normal stack, but also this additional stack will roll

52

back1 . To avoid overflowing the second stack, the sequence of instructions that does
the stack allocation should start by testing that the second stack is not full yet. If it
is, the object will be allocated from the heap.

For this transformation to interoperate correctly with the rest of the system, the
garbage collector must recognize stack-allocated objects. The recognition mechanism
is simple - it examines the address of the object to determine if it is allocated on
a stack or in the heap. During a collection, the collector still scans stack-allocated
objects normally, but it does not attempt to move or collect stack-allocated objects.

3.2 Allocation in the Thread-Local Heap

The allocation in the thread-local heap is a generalization of the stack allocation.
Suppose that, in addition to the global heap, we have a heap for each thread of
execution. Consider an object that cannot be stack allocated. If its lifetime is included
in the lifetime of the allocating thread, i.e., the thread that allocates it, the program
can allocate the object in the heap that corresponds to the allocating thread. When
that thread terminates its execution, its heap is atomically collected without any
additional overhead from the garbage collector. This optimization is particularly
effective for the applications that create many short-lived threads of execution.

To apply this optimization, the compiler needs to detect the object creation sites
that create only objects that are local to their allocating thread. For this task, we
apply the same idea as for detecting whether inlining a method can enhance the stack
allocation. More specifically, suppose we have a NEW instruction at label lb inside
method m. We consider the corresponding inside node nfb, and check that on any
reverse call path 2 that starts in m, nb becomes captured at some level. The only
difference between this case and the case of the stack allocation via method inlining
is that now, as we do not do any inlining, we can go back much deeper into the call
graph. To cope with cycles in the call graph, i.e., mutually recursive methods, we
still limit the length of the call chain, but this limit is much bigger than the limit
that we use for the stack allocation via method inlining. For each NEW instruction
that satisfies the condition, the compiler converts the NEW instruction into a code
sequence that allocates space from the thread-local heap. If the thread-local heap
does not have enough free space, allocation proceeds as in the case of a regular NEW.

In addition, the compiler needs to insert a code sequence before each thread start
instruction to create the heap attached to that thread. Also, the compiler needs to
add a code sequence to the thread exit code; this last code sequence will atomically
deallocate the thread-local heap when the thread terminates. As in the case of the
stack allocation, the garbage collector needs to be modified to identify the objects
that are allocated in the thread-local heaps. This can be accomplished by using some
address-based mechanism. The garbage collector scans the objects allocated in the

'The compiler needs to generate code for setting the pointer of the second stack to its previous
value only for those methods that might do some stack allocation.

2"Reverse" means going from the callee to the caller.

53

thread-local heaps but it does not attempt to move or collect them.
This optimization is very effective for programs that create many short-lived

threads of execution but may cause other programs to run out of memory. For
example, consider a program with a single thread where all the objects are obviously
thread-local. In this case, no deallocation or garbage collection will ever take place!
In order to apply this optimization in a safe and beneficial way, the compiler requires
user-provided design information about the application.

3.3 Synchronization Removal

The compiler can allocate an object in a thread-local heap only if the object is not
reachable from outside its allocating thread. As this object is manipulated by a single
thread, all the lock acquire/release operations executed on it will always succeed.

The compiler can use this observation to optimize the program as follows. For
each allocation site that can be modified to allocate objects in the thread-local heap,
the compiler adds a short sequence of instructions that sets a special flag in the newly
allocated object. Also, the compiler modifies each lock acquire/release to test whether
the object it is performed on has this flag set or not. If yes, then the operation succeeds
immediately; otherwise, it proceeds in its usual way. To preserve the semantics of the
Java memory model on machines that implement weak memory consistency models,
the compiler inserts a memory barrier before the test.

This optimization makes the synchronization operations cheaper when performed
on some objects but more expensive when performed on the rest of objects. If the
number of the objects that have the flag set is very small, or a synchronization
operation is very inexpensive, the "optimized" program might actually be slower than
the original one. However, there are cases when this optimization is very effective.
A distributed computing environment is a perfect example of such a case. In this
environment, synchronizations require network traffic; therefore, they are orders of
magnitude more expensive than a flag test.

54

Chapter 4

Correctness Proof

This chapter presents a correctness proof for the analysis and for the optimizations
that use the analysis results. The major part of the chapter deals with the correctness
of the stack allocation optimization. We also discuss the correctness of the other
two optimizations we presented in Chapter 3: allocation in the thread-local heap
and synchronization removal. Most of the chapter is dedicated to the proof of the
following theorem:

Theorem 5 (Correctness of the stack allocation hints). Consider a method m,
and let G = (a, Oa, La, Sa, Ua) be the points-to graph that the pointer analysis com-
putes for the exit point of m, i.e., G = oA(exitm). Let n'b be an inside node corre-
spoding to the NEW instruction at label lb from method m, or from one of its callees.
-If ,ea (G) (ng), then:

" Correctness of the basic stack allocation: If lb is a label from m, then
each time an instance of m executes the NEW instruction from label lb, it is
safe to allocate the newly created object in the stack frame of that instance of
m.

" Correctness of the stack allocation enhanced by method inlining: If
lb is a label from callee, one of the methods transitively called by m, then each
time an instance of m transitively calls callee, for each execution of the NEW
instruction from label lb, it is safe to allocate the newly created object in the
stack frame of that instance of m.

Note that the text of the theorem is not very formal. In particular, we do not say
what we mean by "it is safe". Intuitively, it is safe to allocate an object in a stack
frame iff the lifetime of the object is included into the lifetime of the stack frame. All
these notions will become more clear along the proof.

During the proof of this theorem we also prove results which describe how the
nodes and the edges from the points-to graphs model the objects and the heap refer-
ences from the concrete execution.

55

Proof outline

To study the correctness of the analysis, we first specify a precise semantics for the

analyzed language. This semantics allows us to replace the intuitive view we have
about the execution of a program with a precise, mathematical view. To separate this

semantics from some other, higher-level semantics, we call it the concrete semantics.

The concrete semantics precisely defines the possible executions of a program'. The
core of the concrete semantics is the transition relation between concrete states.

To simplify the proofs, we work with SmallJava, a subset of the instructions from
Figure 2-2. Although it is a simplified version of Java, SmallJava contains all the
features which are important for the analysis. We believe that extending the proof

to handle the rest of the instructions is just a matter of time and space, which does

not affect the proof ideas.

In order to prove the correctness of our pointer analysis, we need to investigate
the link between the points-to graphs produced by the analysis and the concrete
states constructed by the concrete semantics. Unfortunately, it seems that due to
the big difference between the concrete semantics and the pointer analysis, we cannot

investigate the link between them in a single step.

The analysis is different from the concrete semantics in three aspects:

1. The analysis uses the "object creation site" model to abstract the objects created

in the concrete execution of the program.

2. Unlike the concrete semantics, the analysis does not "step into" the methods
called by the analyzed method. Instead, it uses the points-to graphs computed

for the end of the callees to pass directly from the points-to graph for the

program point right before a CALL instruction to the points-to graph for the
program point right after it (by using the inter-procedural analysis).

3. The analysis is performed statically; its results should be valid for all the pos-

sible concrete executions.

We introduce an intermediate layer between the concrete semantics and the pointer

analysis, the abstract semantics. The abstract semantics takes one of the possible

concrete executions and constructs, for each interesting point2 of the execution, an

abstract state which models the concrete state in a way which is very similar to the

pointer analysis. A common property of the abstract semantics and the analysis is

that they both use the "object creation site" model. However, the abstract semantics

is close to the concrete semantics in the other two aspects: it "steps into" the callees
and is not computed statically, i.e., it refers to a specific execution. Intuitively, the
abstract semantics is a pointer analysis-like instrumentation of a concrete execution

trace.

'Due to the possibility of having multiple threads of execution, there might be many possible
executions for the same program.

2 The precise definition of these "interesting points" is not important now; we present it later.

56

This intermediate layer allows us to split the proof in two halfs: first, we study the
way the abstract semantics models the concrete semantics and prove some valuable
results about this modeling relation. As the abstract semantics turns out to be very
close to the pointer analysis for the methods which do not contain any analyzable
CALL instructions, we can interpret this first half as a correctness proof for the intra-
procedural analysis. Next, we show that the pointer analysis safely approximates the
abstract semantics of any possible concrete execution. We can view this second part
as a correctness proof for the inter-procedural analysis. By composing the two parts,
we finally characterize the relation between the analysis and the concrete semantics
of our analyzed language.

The rest of this chapter is structured as follows. In Section 4.1 we present the
concrete semantics of SmallJava. In Section 4.2, we present the second layer of our
proof, the abstract semantics. We investigate the relation between the concrete and
the abstract semantics in Section 4.3. That section ends with a first sufficient condi-
tion for safe stack allocation. Next, in Section 4.4 we prove that the pointer analysis
is a safe approximation of the abstract semantics. In Section 4.5 we combine the re-
sults of Section 4.3 and Section 4.4 to prove the correctness of the three optimizations
enabled by our analysis. In Section 4.6 we discuss the modeling relation between the
points-to graphs that the analysis computes and the possible heaps from a concrete
execution. We conclude this chapter in Section 4.7 with a discussion on several proof
details.

4.1 Concrete Semantics

To simplify the proofs, instead of analyzing the semantics of the full Java language,
we restrict ourselves to a subset of it, called SmallJava. SmallJava contains those
Java instructions that manipulate pointers. To make the language realistic, we also
consider the IF instruction that allows us to handle the intra-procedural control flow,
the two instructions for managing the inter-procedural control flow - CALL and
RETURN - and the THREAD START instruction that starts a new thread of
execution. Figure 4-1 presents the SmallJava instructions.

4.1.1 Sets and Notations

Figure 4-2 presents the sets and notations that we use in the definition of the concrete
semantics of SmallJava. These notations are an extension of those presented in
Figure 2-1, which we used in Section 2.3 to describe the program representation.

The state of the program at a given moment during its execution is a triple
containing a thread agenda A E ThreadAgenda, a heap H E Heap and a type function
TY E OTypes:

S(A, H, TY)

57

COPY V1 = V2

NEW v=new C
NULLIFY v = null
STORE v1.f = v 2

LOAD v2 =v1f
IF if (...) goto at
CALL VR v0 .s(v, ... , vgi)
RETURN return v
THREAD START start v

Figure 4-1: SmallJava instructions

The thread agenda A maintains the state of the different threads of execution of
the program. The heap H records the references between the objects created by the
program. Finally, the type function TY assigns to each object its type (i.e., class);
this function is introduced only for the purpose of dynamic dispatch.

During its execution, a program might create objects by executing NEW instruc-
tions. We emphasize the fact that each time the program executes such an instruction,
it creates a new, fresh object. Although in a Java Virtual Machine, the garbage col-
lector might free some heap space from time to time and two objects might share (at
different moments in time), the same memory space, the two objects are distinct, each
one having its own identity. In addition to this "normal" objects, the set Object con-
tains two special elements: Onull and Omain. We use onul to model the null pointers.
We explain the purpose of Omain later in this section.

The heap H is a curryfied function that attaches to a given object 01 and a given
field f, the object 02 = H(oi)(f) that the field f of ol points to. Considering the heap
to be a function has the advantage of emphasizing the fact that any field of any object
points to at most one object. A heap H is a partial function: we are not interested
by the value of H(oi)(f) for objects o that were not created yet, or for innexistent
fields f.

Notation: For convenience, we sometimes use the notation (oi,f, 02) E H instead of
H(oi)(f) = 02. However, keep in mind that for any heap H, object o and field f, there
is at most one object 02 such that (oi, f, 02) E H. We also write that (oi, f, 02) E H is
a "heap reference", a "heap edge", or a "concrete heap edge".

The thread agenda A maintains the local state of each thread of execution. A is a
function that attaches to a thread identifier t the stack that represents the local state
of the corresponding thread. To simplify the notation, the identifier of a thread is
the thread object itself. This is possible because in SmallJava, the program starts
a new thread of execution by executing start on an object that implements the

58

Figure 4-2: Sets and notations for the concrete semantics

interface Runnable, i.e., an object that has a method called "run"3 . Also, as the
program cannot execute start twice on the same object, the thread identifiers are
distinct. To handle the main thread, which is the only one that the Java Virtual
Machine starts without using the previously described mechanism, we introduce a
dummy object/thread identifier omain E Object = Threadld.

The stack of a thread t is a list of stack frames, each stack frame corresponding
to a method from the current call chain in that thread. A stack frame is a pair
composed of the state of the local variables for the corresponding method and the
current address inside that method. The state of the local variables of a method is a
function L from local variables to objects from the heap. In this chapter, we ignore
any datatypes except pointers; it is straightforward to extend the concrete semantics
to handle the case when local variables can have primitive (i.e., integer, boolean etc.)
values. In our notation, we sometimes indicate the top stack frame, i.e., the frame of
the currently executed method of thread t by writing J = (L, lb) : Jtaii.

The last component of a state is a function that assigns to each heap object its
type, i.e., class. This function is used when the program calls a method named s on an
object o. In this case, the program needs to do a dynamic dispatch, i.e., to identify
the method to call. The dynamic dispatch has two steps: first, the TY function
returns the class of o, C = TY(o); next, the auxiliary function getMeth uses C to
provide the method m = getMeth(C, s).

3We have already commented in Section 2.3 on the equivalence between the instruction start
and the call to the special native method java. lang. Thread. start 0.

59

7 E State = ThreadAgenda x Heap x OTypes

o E Object = {o 2., Omain, 00, 01, - - -

A G ThreadAgenda = Threadld - JavaStack

t E Threadld = Object

J G JavaStack =list of (LocVar x Label)

L E LocVar = V -+ Object

lb E Label = Method x Address

H G Heap = Object -+ Field -+ Object

TY G OTypes = Object -+ Class

T G Trace = Date -± State

d E Date = N
getMeth : Class x MethodName -+ Method

4.1.2 Concrete Semantics Transitions

A concrete execution trace T of a program is a series of states, indexed by date. We
use a discreet model of time: a date is a natural number, Date = N. Throughout the
proof, we interchangeably use the terms "date", "time", and "moment".

Any trace T starts with the initial state T(O) = Eo that has a single thread - the
main thread - whose stack contains a single frame, which corresponds to the main
method mmain. To simplify the things, we suppose that mmain does not have any
parameter, i.e., all parameters are hard-coded into the program. Formally:

Bo =(A[t-4[({} , (mmain,))] {}, {}) (4.1)

where t = Omain is the dummy object for the main thread. No local variable of the
main method has been initialized yet. The current label inside the main method is
its first label, (mmain, 0). Finally, as no object has been created yet, the initial heap
and object type function are not defined for any object.

At each step, the concrete semantics selects a thread t from the thread agenda
agenda and executes its current instruction. Formally, if the stack of thread t is
J = (L, ib) : Jtai, then the concrete semantics executes the instruction P(lb) from
label lb. As the initial thread agenda contains only the main thread, the first executed
instruction is always the instruction found at label (mmain, 0). However, the thread
selection is non-deterministic and so, in general we cannot say anything about the
next instructions. A thread terminates when its root method (the runo method
of the thread object) returns. If no further transition is possible (because all the
threads terminated), the concrete execution stops. We allow the possibility of infinite
executions.

Throughout the proof, we adopt the following notation convention: the state Ed
represents the state at moment d, i.e., the state right after the dth instruction and
right before the (d + 1)th instruction. The execution of the (d + 1)th instruction is
responsible for the transition "Ed = d+1-

Figure 4-3 presents the transition relation =a for the concrete semantics. Due to the
selection of the thread t, the transition relation is inherently non-deterministic. The
transition relation is defined function of the instruction that the concrete semantics
executes. In the next paragraphs, we explain the processing done for each type of
instruction.

In the case of a COPY instruction "v = v2" the transition updates the local
state of the topmost method of the thread t such that the local variable v, points to
whatever v2 points to. Similarly, a NULL instruction v = null sets v to point to the
special object oul. In the case of NEW instruction "new C', the transition creates
a fresh object o, updates TY to reflect o's class, and extends H to put all the fields
of o to point to Onu. LOAD simply puts v2 to point to the object pointed to by the
field f of the object pointed to by vi; in the new state, v2 points to H(oi)(f). An IF
instruction breaks the normal flow of execution if its condition is satisfied: instead
of going from label lb to the consecutive label next(lb), as is normally the case, the

60

Instruction P(lb) Transition

COPY (A [t - (Llb) :J , H, TY) =
VI = V2 (A [t - (L [v1 - L(v2)] , next(lb)) :],H, TY)}

(A [t - (L, 1b) :J] , H, TY) } >

NEW (A [t - (L [v H-+ o] , next(lb)) : J1, H2 , TY 2)

v = new C where o is a fresh object,
H 2 = H [o " {f I-+ Onull}fEfields(c)] and

TY 2 = TY [o - C]

NULLIFY (A [t " (L, lb) J, H, TY) =

v = null (A [t -+ (L [v H-+ onunl] , next(lb)) :] , H, TY)

STORE (A [t F-(Llb) : J] , H, TY)
VIT-f = V2 (A [t F-+ (L,next(lb)) : J] , H2 , TY)
v1 .f V2 where H2 = H [L(vi) - H(L(vi)) [f H- L(v 2)]]

LOAD (A [t - {(L, b) : J] , H, TY)
v1.f (A [t H-> (L [v2 -4 H(L(vi))(f)] , next(lb)) J] , H, TY)

(A [t - (L, 1b) : J], H, T Y) =:

IF~ (A [t - (L, 1b2} : J] , H, TY}

if goto at where lb = (m, a) and
(m, at) if the condition is true

lb2 - next(lb) otherwise

(A [t F- (L, 1b) : J] , H, T Y)}

CALL (A [t H4 (Lcallee, (callee, 0)) : (L, next (lb)) J], H, TY)

VR = v-s(vI, -.. , vj) where callee = getMeth(s, TY(L(vo)))
Lcallee = {pi L(vi)}H-i>j

(A [t H> (Lcallee, lb) : (L, lbret) : J] , H, TY)

(A [t H (L [VR H-+ Lcallee(V)] , lbret) : J] , H, TY)

RETURN where VR is the variable in which to store the result of
return v the corresponding method call.

(A [t (fL, lb)]] , H, TY) #- (A, H, TY)

(A [t (L, 1b) : J] , H, TY) }*
THREAD START (A [t > (L, next(lb)) : J] [L(v) H- Jstartee], H, T Y)

start v where startee = getMeth("run", TY(L(v)))

Jstartee = f({P0 - L(v)},(startee,0))]

Figure 4-3: Transition relation =- for the concrete semantics

61

execution jumps to address at from the same method.
The transition for STORE is a bit difficult to understand at a first look. Intuitively,

it updates the heap to make H(oi)(f) = 02 where 01 = L(vi) and 02 = L(v 2). It does
not change the value of H for other combinations of locations and fields are unchanged.

As previously explained, the transition for a CALL instruction uses getMeth
and TY to call the method named s of the object L(vo), i.e., the method callee =
getMeth(s, TY(L(vo))). It creates a new stack frame for method callee, where the
callee's formal parameters point to the objects that are actually sent: pi F-+ L(vi), 0 <

i < j. When the concrete semantics selects the thread t again, it will execute the
first instruction of callee.

The transition rule for a THREAD START instruction start v adds a new thread
to the thread agenda. The thread identifier of the new thread is the "started" ob-
ject: t = L(v). The topmost, and only, method of this newly created thread is the
method startee, which is the method named runo of the object L(v): startee =
getMeth("run", TY(L(v))). The only formal parameter of this method, the this
parameter, points to the thread object L(v).

The transition for a RETURN instruction pops the topmost stack frame and passes
the returned value into the caller. There is a single exception from this rule: the case
of a RETURN from the root method of a thread. The instruction that started that
method was not a CALL but a THREAD START. Hence, there is no caller stack
frame to return the result to. Instead, such a RETURN instruction terminates the
execution of its thread t. In the concrete semantics transition, we remove the thread
t from the thread agenda. In this case, the returned value is not used. It is possible
to add a special RETURN without value; in this thesis, we preferred working with a
minimal instruction set.

Notation: If we work in the context of a trace T, we sometimes write == Tinstead

of simply =# to indicate that we refer to a transition that is actually done in the trace
T, not just a possible transition.

Observation: For the sake of simplicity, we did a number of additional simplifica-
tions:

* The concrete semantics that we presented does not handle the errors that might
appear during the execution. In particular, the concrete semantics does not pre-
vent the execution of instructions that read from/write to the object onull. We
work only with programs that avoid these situations, with the help of explicit
checks before each instruction that might commit these errors. As a conse-
quence, in the concrete heaps that we examine, Onul acts as a "sink" object:
there might be references toward it, but no references from it.

* We have no explicit instructions for synchronization between threads. However,
this is not a big issue: the possible schedulings we allow in the absence of
synchronizations are a superset of the schedulings that would be possible if we
had explicit thread synchronization instructions.

62

4.1.3 Object Lifetime

In the rest of this section, we introduce the concept of object lifetime. Intuitively,
we define the lifetime of an object to be the interval of time when that object is
reachable from the program variables. This is precisely the definition used by a
garbage collector: an object is considered dead (and the memory space occupied by
it is collected) when it is no longer reachable. A more precise definition would be to
consider an object dead if the program execution never uses it in the future (although
it might still be reachable), but this additional precision turns out not to be necessary
in our case.

Definition 4 (Reachability in a concrete state). Given a concrete state E E
State, we define the reachability predicate reachable(E) : Object -+ {true, false}
as the least fixed point of the following constraits:

S=(A [t - J1 : (L [v - o] , lb) : J2] , H, TY) (4.2)reachable(E) (o)

= (A, H, T Y), (o, f, 02) C H, reachable(E)(oi) (4.3)
reachable(BE) (02)

Intuitively, an object o is reachable in a given state E if it is pointed to by a
local variable from a stack frame of one of the threads (Constraint 4.2) or if the heap
contains an edge from an already reachable object to o (Constraint 4.3).

For the following three definitions, consider a possibly infinite concrete execution
trace T: B -- >T B1 -->T ... -> T Bd =T B+1 -> T ...

Definition 5 (Object creation date). Given an object o c Object, we define the
object creation date, denoted dc(o), to be the date d E Date such that the transi-
tion -1 --> created o, i.e., the dth instruction was the NEW that created o). By
convention, if such a date does not exist, e.g., for onunl, dc(o) = oc.

The following lemma tells that if at some point after its creation date, an object
becomes unreachable, it remains unreachable for ever.

Lemma 6. Vo E Object \ {o ,un}, if o is not reachable at date d > dc(o) then o is
not reachable at any other later date d' > d, i.e.,

--,reachable(=d) (o) -4 -ireachable(B dl) ()o

Proof: It is sufficient to prove the implication for d' = d + 1. Suppose for the
sake of contradiction that the implication does not hold, i.e., -reachable(Ed)(o) A
reachable(Bd+1)(o). So, the (d+)th instruction caused o to become reachable again.
By a case analysis of all types of instruction, we see that COPY, LOAD, START
THREAD, IF, CALL, NULLIFY and STORE can at most create new paths to objects
that were already reachable before the instructions. None of them can make o to

63

become reachable again. As d > dc (o), the case of NEW is also irrelevant and we
obtain a contradiction. E

Definition 6 (Object death date). Given an object o E Object, we define the ob-
ject death date, denoted dD(o), to be the date d, such that

reachable(Bd) (o) A -,reachable(Ed+1) (o)

If such a date does not exist, we put dD(o) - oc by default.

Lemma 6 makes sure the previous definition is well-formed, i.e., for any object o,
there is at most one d that satisfies the required implication.

Definition 7 (Lifetime of an object). The lifetime of the object o E Object is the
time interval [dc(o), dD(o)1-

4.2 Abstract Semantics

The abstract semantics we present for SmallJava is concerned with a specific acti-
vation, i.e., invocation, of a method m. Given a concrete execution trace T and an
activation A(m) of m, the abstract semantics computes an abstract state for each
"relevant" moment of the execution of A(m). We say that we work with the "abstract
semantics for/of activation A(m)". The abstract state attached to a specific date
models only the part of the concrete state at that date that is relevant for A(m).
E.g., we are not interested in the state of the local variables of some thread running
in parallel with A(m), nor in the heap references that such a thread creates, and A(m)
does not read. In general, the abstract semantics of A(m) does not look "outside"
A(m).

The rest of this section is organized as follows. First, in Section 4.2.1, we ex-
plain which are the interesting dates for the execution of an activation. Next, in
Section 4.2.2 we define the concrete escape predicates, an auxiliary notion that we
use in the definition of the abstract semantics. Section 4.2.3 presents the sets and
the notations used for the abstract semantics. Finally, in Section 4.2.4, we explain
how the abstract semantics computes the abstract states for the interesting dates of
an activation.

4.2.1 Method Activation and Interesting Dates

As other threads might interrupt the execution of A(m), not all the moments between
the CALL that started A(m) and the corresponding RETURN which ends A(m) are
worth looking at. In general, it is worth looking only at those dates when A(m)
executes an instruction. In the next paragraphs, we define the important dates for
the execution of a specific method activation. The abstract semantics computes an
abstract state only for these dates.

Suppose we have a concrete execution trace T, and we know that the first in-
struction from an invocation of method m occured in thread t, in the transition

64

Edo =-' Td+1. By looking into the trace T, we can easily identify all the dates when
the program executes instructions from that invocation of method m, or from meth-
ods it transitively calls. We simply look into the concrete trace T, starting with d0,
and select those transitions -d =>T d+1 where the concrete semantics selects thread
t for execution. We stop as soon as we find a RETURN instruction that returns the
control from the invocation of m that started at d0 , i.e., the first RETURN instruction
that the program executes in thread t, with the same stack depth as at date do. For
each such transition ,d =-T =d+1 that corresponds to an instruction from A(m), we
consider both d and d + 1 to be interesting dates.

Some CALLs might be unanalyzable. We do not want to include the instructions
of the methods invoked by these unanalyzable CALLs (and those of the methods
transitively called by them) into A(m). For each such CALL, we skip all the dates
d between the CALL and the corresponding RETURN4 . We do consider interesting
the date when the CALL instruction starts and the date when the corresponding
RETURN finishes.

All the interesting dates are introduced in pairs; we end up with a list which
is the concatenation of two-elements lists of the form [id 2i, id 2 i+1]. An interesting
date will be denoted idj, where j is the index into the list of interesting dates. In
general, id2i is the moment right before executing an instruction and id 2i+1 is the
moment right after. For each i such that P(lbid2 j,t), i.e., the current instruction at
date id 2 i of the thread t where A(m) takes place, is not an unanalyzable CALL, the
transition Eid2i ='T d 2i+1 corresponds to the execution of exactly one instruction
from A(m) and id2i+ 1 id 2 i + 1. If P(bid 2 i,t) is an unanalyzable CALL, the chain
of transitions contains all the instructions of the method invoked by

of trnsitons id2 i T Iid2i~ otisal h ntutin ftemthdivkdb
that CALL (and those of the methods that it transitively calls). It is important to
note that between id2i+1 and id 2 (i+1), the program executes only instructions from
threads other than t.

Definition 8 (Interesting Dates). The list

IDA(m) = [ido, ... , id 2i, id2i+ 1 ,... , id 2r+1]

which we construct as explained previously, is the list of interesting dates of the
activation A(m).

Note that as instructions from outside A(m) might separate two consecutive in-
structions from A(m), it is not generally the case that id2i+ 1 = id 2(i+1). All we can
say is that id 2,+ 1 < id2 (i+1).

The last two interesting dates - id2r and id2r+1 - correspond to the execution
of the RETURN instruction which terminates the activation A(m).

Observation: We study only method activations that are finite, i.e., we are not
concerned with activations that end up in an infinite loop. Hence, the last transition
from A(m), Eid2 r =T 'id 2r+ 1 , corresponds to a RETURN instruction. As the ultimate

4Determined by looking at the stack depth.

65

goal of our proof is to prove the correctness of the stack allocation hints produced by
the analysis, this does not introduce any limitation: an activation of infinite length
never returns, its stack frame is never removed and so, any stack allocation hints are
correct for it.

Notation: For convenience, we use the notation:

S= (Ad [t (Ld,t, lbd,t) : Jd,t] , Hd, TYd)

to indicate the concrete state at the interesting date d E IDA(m) - d is id 2i or id2i -
where the thread t has the local state (Ld,t, lbd,t) : Jd,t. The chain of transition(s)
1iz2 ; r =id 2 3.1 , which has more than one transition only for an unanalyzable CALL,
starts with the instruction P(lbid2 it).

4.2.2 Concrete Escape Predicate

When we study the execution of an activation A(m), it is useful to identify the
concrete locations that can be accessed from outside A(m). For this purpose, we
introduce one escape predicate in each interesting date. An escape predicate tells us
which objects might be reachable and thus, might be accessed from outside A(m).
We use the escape predicates later in the this section, when we define the abstract
semantics transfer function.

Being a reachability-like property, escapability propagates along the heap refer-
ences. However, it turns out to be more convenient for the later proofs if we propagate
it only along the heap references which are created by A(m). This is not a limitation:
if a part of the program outside A(m) creates a reference, then it was able to access
both ends of the newly created reference and so, they were already escaped. We start
by formally defining the set of concrete heap edges that the activation A(m) creates.

Definition 9 (Edges created by activation A(m)). We define the family of sets
of edges Hm C Object x Field x Object, d G IDA(m), in an inductive way, by the
following equations:

HA(m)
-0ido

H U {(LiAV1I f, LiJ(i,Hv2))} if P(lbid2 i,t) = "v1.f = V2
HA(m - HA m) U {(o, f, o. 11) | f E fields(C)}

2+1if P(lbi,t) "v = new C"; o is the newly created location

HAm) otherwise

H (m) Hi2+
id 2 (i+l)-

Intuitively, H(m) is the set of concrete heap edges that A(m) creates in its exe-
cution up to the date d c IDA(m). The sets Hfm are cummulative, H is empty,
and STORE and NEW are the only instructions that can add new edges. Now, we
are able to define the escape predicates:

66

Definition 10 (Concrete Escape Predicates). We define the family of concrete
escape predicates ed : Object -+ {true, false}, d E IDA(.), as the least fixed point
of the following constraints (the ordering relation E for boolean predicates is given in
the first constraint):

Vd < d', ed E ed', i.e., Vo, ed(o) -+ ed' (o) (4.4)

dc(o) < d, o was not created by A(m)
ed ()(4.5)

(oi, f, 02) H (m), e(o) (4.6)
ed(02)

P(lbid2r,t) ="return v", o Lid2 ,,t(V) (47)
eid2 ,+1(o)

P(lbid2i,t) ="start v", o = Lid2i,t(v) (4.8)
eid2 i±l (o)

P(lbid2 ,,) ="VR v0 -s v1 ,- , vj)" is unanalyzable, o = Lid2 i,t(v) (49)
eid2i+1 (0j)

Constraint 4.4 makes sure the escape predicates are cummulative: once an object
escapes, it escapes forever. Constraint 4.5 takes care of the locations created outside
A(m), which trivially escape. As escapability is a reachability property, it propagates
over the heap edges, as required by Constraint 4.6.

The last three constraints are relevant when d = id2i, i.e., right before the execu-
tion of an instruction from A(m). These constraints indicate how the instruction from
id 2 affects the escape information at date id2i+ 1 , immediately after the instruction.

There are three types of instructions which can "escape" locations outside A(m):
the final RETURN of A(m), THREAD START instructions, and unanalyzable CALLs.
We discuss here just the first one; the others are similar. Suppose the last RETURN
instruction from A(m), the one from the transition from date id2r to id2r+1, has the
form "return v". After the execution of this instruction, o = Lid2r (v) is reachable
from the caller; accordingly, Constraint 4.7 sets eid2,1(o) to true.

Before presenting a lemma that shows that the definition of the escape predicates
corresponds to our intuition, we introduce one more definition:

Definition 11. Consider a date d, the corresponding state B sfrom the trace T, and
an activation A(m) in thread t. We define the state outsideA() (Ed) to be the state
that has the same heap and type function as =d and where the thread agenda is as
follows:

67

" We modify the stack for the thread t by removing the stack frames corresponding
to methods in A(m). In other words, we keep only those stack frames below
the first stack frame of A(m) (the one generated by the CALL instruction that
started A(m)) and those stack frames above the first stack frame generated by
an unanalyzable CALL, if any (by looking at the return label for each frame, we
can find the CALL that generated it).

" The state of the other threads is unmodified.

Notice that the state outsideA(m) (-d) is not a result of a valid execution (the stack
of thread t has a "gap"). We defined it simply for the purpose of our proofs.

Now, the lemma that links the definition of the escape predicate to our intuition:

Lemma 7. Vo E Object,Vd G IDA(m) such that d > dc(o), if E' = outsideA(m)(Ed),
then

reachable(E')(o) - ed(o)

Proof: Induction on the list of interesting dates IDA(m) plus case analysis on the
type of the instruction executed in the current transition.

4.2.3 Sets and Notations

Figure 4-4 presents the sets and the notations for the abstract semantics. For each
interesting date d E IDA(m), the abstract semantics computes an abstract state 3# E
State# and an abstraction relation p E Abstr. It also maintains a calling context
c c Context. We describe all these mathematical objects in the next paragraphs.

Calling Context

Formally, a calling context is a list of dates. As this definition is too generic, we try
to give it a more intuitive shape. The calling context at date d E IDA(m) represents
the dates when we executed the CALLs which created the "relevant" part of the
current call stack of thread t, the thread where A(m) takes place. To understand
what "relevant" means, it is easier to understand what it does not refer to: there is
no need to consider the stack frames which existed when A(m) started nor the stack
frame of the root of A(m), because these stack frames are present in the stack during
the entire execution of A(m).

As a short example, suppose A(m) starts its execution and, at date dl, executes
its first CALL. Next, it executes instructions from the called method including, at
date d2, a new CALL. Let's consider the first instruction from the method called by
the last CALL. This instruction was reached due to the CALL at date d, and the
CALL at date d2. The calling context at the moment when the program executes
this instruction is c = [d 2 , di]. At that moment, the stack of the thread t where A(m)
takes place contains all the stack frames which were there when A(m) begun, the
stack frame of the instance of m which is the "root" of A(m), the stack frame of the

68

c c Context = list of Date

n E Node# = Node x Context

K = {nnun} x Context

INode# = INode x Context

LNode# = LNode x Context

PNode# = PNode x Context

RNode# = RNode x Context

nio d (nfb, c) G INode#

L def L Loenib,C (nib , c) E LNode#

n.,ic (nM,,, c) E PNode#

R def Rnib,C (nib, c) C RNode#
def

nnull,c -(nnull, c)E

I# IEdges# = P((Node#\K) x Field x Node#)

0# E OEdges# = P((Node#\K) x Field x LNode#)

L# E LocVar# = V --+ P(Node#)

J# G JavaStack# = list of LocVar#

p E Abstr = P(Object x Node#)

=# G State# = IEdges# x OEdges# x JavaStack# x
P(Node#) x P(Node#)

Figure 4-4: Sets and notations for the abstract semantics

69

method called at date dl, and, on the top, the stack frame of the method called at
date d2 .

The abstract semantics transfer function maintains the calling context as a stack:
it is empty at the beginning of A(m), each CALL instruction pushes the current date
on the top of the context and each RETURN instruction pops the topmost element
of the context.

Comment: At a first look, the concept of calling context seems strange. The
reason for its existence is difficult to explain before examining the proofs for the
inter-procedural analysis from Section 4.4. For the time being, let's say that the
calling context has the purpose of making the distinction between the current instance
of a method and its previous instances. This way, the nodes associated with the
objects manipulated by the current instance of a method will be distinct from all the
nodes previously created. A previous attempt to prove the analysis correctness failed
because the abstract semantics was not making this distinction. We discuss more on
this issue in Section 4.7.

Abstract State

The abstract states computed by the abstract semantics are very similar to the points-
to graphs computed by the pointer analysis with the modification that now, all nodes
are specialized function of the calling context in which they are created. Instead of
using nodes from the set Node, the abstract semantics uses "nodes with context":

n = (n', c) E Node# = Node x Context

We employ the term "node" for both simple nodes and nodes with context. The real
meaning of the term should be clear from the surrounding text.

In general, for each set of nodes X E {INode, LNode, PNode, RNode} from the
analysis, X# represents the equivalent set of nodes from the abstract semantics.
E.g., INode# = INode x Context. The set Af contains the null node with all the
possible contexts. Figure 4-4 also contains the notations that we use for the nodes
with context. E.g., nf1 E INode# is the inside node nf, paired with the context c.

A second modification is that instead of a single state for the local variables
La E LocVara, an abstract state has a stack J# E JavaStack#. The pointer analysis
does not "step into" a called method. As it remains inside the analyzed method m,
it needs to model just the state of the local variables of m. On the other side, the
abstract semantics sequentially processes the instructions of the transitively called
methods, one by one, and hence, it has to maintain the state of the local variables of
all the methods that are in the call chain between the root method of the activation
A(m), i.e., m, and the top-most method. Intuitively, the stack J# from an abstract
state models the upper part of the concrete stack associated with the thread t where
A(m) takes place.

All the other structures are similar to the corresponding ones from the pointer
analysis except that now, they are based on nodes with context, instead of simple

70

nodes. Similar to a points-to graph, an abstract state

--# = (I#, 0#, J#, S#,I U#)

contains a set I# of inside edges, a set Q# of outside nodes, a set S# of started
threads, and a set U# of nodes passed as arguments to unanalyzable CALLs.

As in the case of the points-to graphs, we can attach an escape predicate to each
abstract state computed by the abstract semantics. This predicate will tell us which
nodes might be reachable from outside the analyzed activation of method m.

Definition 12 (Escape predicate for the abstract semantics). Consider an
abstract state B# = (I#, Q#, L# : J#, S#, U#) computed by the abstract semantics
of some activation of a method m. We define the escape predicate

e#(=#) : Node# 9 {true, f alse}

as follows:

e#(7#)(n) = reachable(N, IP U O#)(n)

where the auxiliary predicate reachable is as described in Definition 1 and N, the set
of escapability sources, is

N = PNode# U L(vret) U S# U U# U RNode#

The parameter nodes (now with context) and the returned nodes (pointed to
by the dummy local variable vret) are trivially reachable from the caller of A(m).
Note that in an abstract state computed by the abstract semantics of an activation

A(m), the only parameter nodes which might occur are m's parameter nodes, n[.
The started thread nodes are reachable from the code of their execution threads,
while the nodes passed to unanalyzable methods and the nodes which model the
objects returned from these methods, escape into the unanalyzable methods. Like
reachability, escapability propagates along the inside and the outside edges.

The following easy lemma proves that the escape predicate for the abstract se-
mantics is monotonic:

Lemma 8. Consider two abstract states

7 = (I#O, L#:J#,S#, U#)
7# (1 #L T #T

2f = 2I , O -L 2 : J 2 , 1--, U/

If f# C I, O# C O#, L#(vret) C L#(vret), S# C S and U# C U#, then

Vn , e (#) (n) -+ e*#("E #)(n)

Proof: By the conditions of the lemma, each escapability source and each path that
exists in Eq exists in 7# too.

71

Note: The previous lemma states a property that is stronger than monotonicity:
we do not impose any condition on the stacks of the two abstract states. We use this
additional power very frequently in our proofs. In general, the abstract semantics
transfer functions augment the sets of the inside/outside edges, the set of started
threads and/or the set of nodes passed to unanalyzable CALL sites. Based on the
previous lemma, if a node escapes at a certain point, it will escape in the future too.

Abstraction Relation

For each interesting date d c IDA(m), the abstract semantics computes an abstraction
relation Pd E Abstr with the following meaning: o Pd n if at date d, location o is
modeled, i.e., abstracted, by node n. By defining Pd as an arbitrary relation instead
of a function, we allow the same node to model multiple locations, and multiple nodes
to model the same location. It is important to note that the abstraction relation is
not part of the pointer analysis: anyway, being attached to a specific execution trace,
it cannot even be computed by a static analysis. We introduced it just for the purpose
of the correctness proof.

4.2.4 Abstract Execution of A(m)

The abstract semantics starts with the initial abstract state zld, initial abstraction
relation Pido, and initial calling context Cido, defined by the following equations:

-# = (0, 0, [{p -+ ,n[}o k_11, 0, 0) (4.10)

Pido {Ko2, nm,(])osisk1 (4.11)

Cido = (empty context) (4.12)

where n 0 1 , a 11, ... TPmk-1[] are the k parameter nodes for method m (with empty
context) and , 01,... ok-1 are the k objects the method m receives as actual argu-
ments. In the initial abstract state, the sets of inside and outside edges are empty and
each formal parameter pi points to its corresponding parameter node nai[. A(m)
has not started any thread, nor lost any node through an unanalyzable CALL. In the
initial abstraction relation, we record the fact that the parameter node na models

the object oi that is the ith actual parameter in the call that generated activation

A(m).

The abstract semantics computes the rest of the tuples (d, Pd, Cd), d E IDA(m) as
follows:

, Pid2 i+1, Cid 2 i+) = [id2 j# ((id 2 , Pid2i, Cid2)) (4.13)

Asl e aPid 2 (re1 re Cid 2() rt 2ins f Pid2 , Cid2 e (4.14)

As we are concerned only with instructions from A(m), the abstract state, the

72

Date -+ State# x Abstr x Context -+ State# x Abstr x Context

P(lbd,t) Definition of d #

[d]# (((I#, 1#,1 L# : J#, S#, U#),I p, c))=

analyzable CALL ((I#, Q#, L Lee: : J#, S#,U#), p, d:c)

VR = VO-S(V1, ... , Vj) where
Lj'allee = {pi , L#(vi}}o-i+j

[d]#(((I#, O#, L#ae : L# : J#, S#, U#), p, dc :c))=
callee

RETURN inside A(m) where)

return vr
-7r = (I#, 0#, L# [VR 4 L#iiee(V) : J#, S#, U#) and

yR is the receiver variable for the corresponding CALL

[d]#((3#, P, c)) = 7#, P2, C)

otherwise where

27 = lbd,t, C](E#)
P2 update_p((d,lbd,E#,c))(p)

Figure 4-5: Definition of abstract semantics transfer function [#

abstraction relation, and the calling context do not change from date id 2 i+1 to date

id 2 (,+l). The interesting things happen when we pass from id 2i to id 2i+1 .

Transfer Function [.]#

Figure 4-5 presents the formal definition of the abstract semantics transfer function

.H#. Given a date d = id 2i when an instruction of A(m) starts its execution, the
function [d]# takes the current abstract state, abstraction relation and calling context

and returns their updated version for the date d2 i+ 1 . There are three cases in the

definition of [d1#.

When it processes an analyzable CALL, the abstract semantics "step into" the
called method. If the instruction was "VR vo.s(v 1 , . .. , vi)", the abstract semantics
initializes the state of the local variables of the called method to be Liee {Pi a

L#(vi)}o<isj where L# models the state of the local variables of the caller, and pushes

Liee on the abstract stack. Also, the abstract semantics pushes the date d on top

of the calling context.

73

a(d)(n) = (n', c) ifn = (n',d: c),n' E Node
n otherwise

a(d)((I# Q 0# , J# , S# , U#)) =
(z(d)(I[#) , oz(d)(O#) , a(d)(J#) , a(d)(S#) , a(d)(U#))

a (d)(1#)= {(a(d)(ni), f,a(d)(n2)) (ni, f,n2) E I}
a(d)(O#) = {(a(d)(ni), fa(d)(n2)) (nif, n2) E Q#}

a(d)(J# =[L,... ,L#]) - [a (d)(L#),... ,a(d)(L#)]

a(d)(L#) = Av.a(d)(L#(v))

a(d)(A) = {a(d)(n) I n E A},VA C Node#

a (d) (p) = (o, a(d) (n)) I (o, n) E p}

Figure 4-6: Definition of conversion a(d), d E Date

A RETURN inside A(m) (i.e., not the RETURN which terminates A(m)) is the
opposite of an analyzable CALL: it returns from the callee into the caller. Suppose the
RETURN instruction has the form "return v", and the abstract semantics executed
the corresponding CALL, which has the form "VR vo.s(v 1, ... , vj)", at date dc. Due
to the nesting of the CALL/RETURN instructions and to the way we maintain the
calling context, the top element of the calling context is exactly dc. In this case, the
abstract semantics operates in two steps:

1. It constructs a new abstract state 7-. In -z, the state of the local variables
of the callee, L# is no longer on the abstract stack. Also, in E#, the local
variable VR from the caller points to the nodes that the callee's local variable v
points to.

2. The abstract semantics removes d, from the top of the calling context. In
addition, the conversion a(de) removes it from the top of the context of any
node appearing in the abstraction relation p or in the abstract state --. Those
nodes which do not contain dc at the top of their context are unaffected by the
conversion. We describe the conversion a(dc) later in this section.

Finally, for the other instructions, the calling context remains the same, but the
abstract semantics computes a new abstract state and a new abstraction relation by
using the auxiliary functions [., .] (Figure 4-7) and update _p (Figure 4-8).

74

Node Conversion a(d)

Figure 4-6 presents the definition of the conversion a(d), d E Date. When given a
node n, a(d) behaves as follows:

" If the context of n starts with d, i.e. n = (n', d : c), a(d) returns a "new" nodes
which is similar to n, but has a context without the date d at its top, i.e., (n', c).

" Otherwise, a(d) behaves like the identity function.

When it receives a more complicated structure - an abstract state, a set of
inside/outside edges, a set of nodes, an abstraction relation, etc. - a(d) propagates
deep into it and replaces every node n with a (d)(n).

Auxiliary Function [., .]

For each label lb and context c, flb, c] is a function which takes the current abstract
state, and returns the abstract state after the execution of the instruction from label
lb, in the calling context c. Figure 4-7 presents the definition og [lb, c] depending on
the instruction from the label lb. flb, cl is almost identical to the analysis transfer
function [lb]# (Figure 2-4), except that the newly created node, if any, has the context
c. E.g., if the instruction at label lb is a NEW, flb, c] uses the inside node with context
nfC= (Is, c) instead of the "simple" node n, . In the case of a LOAD instruction,
we have simply "inlined" the definition of the function process _load (Figure 2-5), and
adjusted it to work with nodes with context.

Similar to the pointer analysis, the abstract semantics does not create edges start-
ing from nn,c, Vc E Context, and does not load references from these nodes. This
is due to the fact that a program cannot read from/write to a null address.

Auxiliary Function update_p

Figure 4-8 presents the definition of the function updatep. If, at date d = id 2i, the
program is about to execute the instruction from label lb, the current abstract state
is 7# and the current calling context is c, then, the function updatep((d, ib, E, c))
takes the current abstraction relation p, and returns the abstraction relation for the
date id 2 i±1 .

The definition of update _p is closely related to that of [.,]. While it is possible
to define them as a single function, we preferred to separate the part which is "inher-
ited" from the pointer analysis, i.e., the function [., .], from the abstraction relation
maintenance part which is specific to the abstract semantics.

Most of the instructions do not modify p. There are four exceptions: NEW,
NULLIFY, LOAD (in a special case), and unanalyzable CALL. In the case of a NEW
instruction which creates the new object o, the abstract semantics extends p to record
the fact that the node nfb,c models the object o. For both NEW and NULLIFY, the
abstract semantics extends p to record the fact that the node nu,c models the special
Onull, which represents the null pointers. The processing for a LOAD instruction

75

, . : Label x Context -± State# -+ State#

[entrym, c] and [exitm, c] are the identity function;
the other cases are presented below:

P(lb) [lb, c](E# = (I#, Q#, L# : J#, S#, U#))

VI = V2 (I#, 0#, L# [Vi L#(v2)] : J#, S#, U#)

(I2, 0#, L# [v {nc}] : J#, S#, U#)v =new CI1b
where I2 = 1# U I (nn, , nul,c)}IfEfields(c)

v = null (I#, Q#, L# [v - {nnul,c}] : J#, S#, U#)

Vf V2 (12#, Q#, L# : J#, S#, U#)
where I = I# U ((L#(vi) \ N) x {f} x L#(v 2))

Let B {n I 3n, L#(vi) \ , (ni,fn) E I#}
E = {n E L#(vi) \K I e#(E#)(n)}

Case 1: E = 0

= v1 .f (I#, O#, L# [v a B] : J#, S#, U#)

Case 2: E$ 0
(1#, 0#, L# : J#, S#, U#)

where L = L# [v -* (B U { nj})]

= O# U (E x {f} x {ni})

if (...) goto at E# (unmodified)

Case 1: analyzable call
[.,] will never be called in such a case

VR vO.s(vi, ... , vp-1) Case 2: unanalyzable call
(I#, 0#, L# :PJ, S#, f

where L# - L# [VR '-+ nc
U U#U j ')L#(vi)

(I#, 0#, L# [vet - L#(v)] , S#, U#)
return v where vret is the dummy variable that stores

the return value of m.

start v (I#, O#, L# : J#, S# U L#(v), U#)

Figure 4-7: Definition of [., .1

76

updatep Date x Label x State# x Context - Abstr -+ Abstr

P(lb) update _p((d, lb, =# = (J#, Q#, L#, S#, U#), c))(p)

VI =V2 p (unmodified)

p U {(o, n, c)} U {(onul, nanuc)}
v new C where o is the object created in the concrete

execution at date d

v = null p U {(onun, nul,c)}

vi.f V2 p (unmodified)

Let E {n E L#(v 1)\ e# (n)

(oi,f, 02) be the heap edge read by the concrete
execution at date d

V2 vi.f Case 1: E 0 p (unmodified)

Case 2: E 0 P2 where
p U {(02 , nfLc)} if ed(o1) 0

p2 = }p (unmodified) otherwise

if (...) goto at p (unmodified)

Case 1: analyzable call
updatep will never be called in such a case

VR v0-s(v1 , ... , vj Case 2: unanalyzable call

p U {(o, n R,)}

where o is the object returned by the call
in the concrete execution.

return v p (unmodified)

start v p (unmodified)

Figure 4-8: Definition of update_p

77

might introduce a load node n 4 (see definition of [.,] in Figure 4-7). In this case, if
the LOAD instruction read the heap reference (oi,f, 02) and oi was an escaped node,
i.e., ed(01) was true, then, the abstract semantics extends p to record the fact that
nlc models 02. Finally, in the case of an unanalyzable CALL, the abstract semantics
extends the abstraction p to record the fact that the return node n" models the
returned object o.

Example 5. Consider the following piece of code:

Cell a(Cell pO) { Cell b(Cell pO) {
0: vO = p0; 5: vO = new Info;
1: if(vO == null) goto 4; 6: pO.f = vO;
2: vO = v0.bo; 7: v1 = pO.n;
3: if(true) goto 1; 8: return v1;
4: return p0; }

}

Cell { EX
Info i; i Onu

Cell n;

Initial concrete heap at the
beginning of a

For simplicity, we use integer labels. Method a uses method b to scan a null
terminated linked list, and to update the information of all the list cells. The field n
of a list cell (class Cell) points to the next cell from the list. Method b, which is a
method of class Cell, does all the processing for a list cell: it sets the field i of the
the cell to point to a newly created object, and returns a pointer to the next cell. For
simplicity, we suppose that the class Inf o does not have any pointer field.

Table 4.1 presents a possible concrete execution that contains an activation of a,
A(a). We suppose that the argument sent by the CALL that starts A(a) is a pointer
to the first cell of a list of two elements, oo and oi, as presented in the figure right
under the code. The field i of oo points to the object 03, while the field i of 01 is
null. Table 4.1 presents only the dates when A(a) starts to execute an instruction.

The list of interesting dates of A(a) is:

IDA(a) = [10, 11, 11,12, 20,21, 21, 22, ... , 43,44]

We look closer at several of these dates. Each row of Figure 4-9 presents the concrete
heap (the left side), the abstract state (the right side) and the abstract relation that
the abstract semantics computes for a specific date. For simplicity, Figure 4-9 ignores
the value of the local variables. We use continuous circles for objects and nodes, and
dashed circles for node placeholders. Similarly, we use solid arcs for heap references
and inside edges, and dashed arcs for outside edges.

78

other instructions
10 0: vO = p0; []
11 1: if(vO == null) goto 4; []

other threads
20 2: vO = vO.bo; [1
21 5: vO = new Info; [20]
22 6: pO.f = vO; [20]
23 7: v1 = pO.n; [20]
24 8: return v1; [20]
25 3: if(true) goto 1; []
30 1: if(vO == null) goto 4; []
31 2: vO = vO.bo; []
32 5: vO = new Info; [31]
33 6: pO.f = vO; [31]
34 7: v1 = pO.n; [31]

other threads
40 8: return v1; [31]
41 3: if(true) goto 1; []
42 1: if(vO == null) goto 4; []
43 4: return p0; [1

Table 4.1: Execution of A(a) from Example 5. For each interesting date d listed in
the first column, the second column presents the instruction about to be executed by
A(a) at date d, and its label; the third column presents the calling context at date d.

At the beginning of A(a) (first row of Figure 4-9), the abstract state contains
only the parameter node n [that models the object oo, and the calling context
is []. At date 21, the abstract semantics "steps into" the method b that is called
with the parameter oo in the concrete semantics, respectively n [in the abstract

semantics. At this point, the calling context becomes [20]. We briefly treat the next
instructions. The object 03 created by b is modeled by the inside node ni In
the concrete semantics, b reads the field n of oo, i.e., o. The abstract semantics
introduces the load node nL to model the loaded object o0 (Figure 4-9.b).

The next instruction is a RETURN that terminates this first invocation of b. The
node conversion a(20) transforms nL into n[, and nip0 into ni[] (Figure 4-9.c).

Skipping several instructions, Figure 4-9.d presents the concrete state, abstract
state and the abstraction relation at the end of the second invocation of b, right before
returning to a. Notice that the load node n7[1, and the inside node nI that the
abstract semantics uses inside this second invocation of b are distinct from all the
nodes used before, including the nodes from the first invocation of b. The RETURN
instruction that follows applies the conversion a(31). As a result, nL[1 is merged

79

date label: instruction context

10

00 n

Onull na,0,[]

02

a.d = 10

P24 |2

00 LP
O null n naO4a,0,[]20 7,[20]

b.d = 24

25 25

na n00 3w-0- -

5,[],[

c.d = 25

0 null

h n n,4

00 01 - -- -- -
n nP L nL

Onull a,0,[] 7,[] E7,[31]

03 045,[31]

P40 P40

d.d = 40

n

00 : 01- -
Onull a,(),[] [j]

(D 03 U4P41 ni

e.d=41

Figure 4-9: Abstract execution of A(a) from Example 5

80

with n1 L and ni1 is merged with nI (Figure 4-9.e). So, once the current instance7,1, 5,[31] imegdwtn5 (igr

of b finishes, its nodes are merged with the nodes from the previous instances.
Several interesting facts are emphasized by this simple example:

" Objects that are not manipulated by A(a), e.g., 02, are ignored by the abstrac-
tion relation.

" The nodes introduced by the abstract semantics while processing an instance
of a method are different from the nodes introduced for the previous instances.

* A node can model several objects. E.g., at date 41, ni models both 03 and 04.

" At the dates that correspond to executions of instructions from the "root level"
of A(a), i.e., not from a callee, the current calling context, and the contexts of
all the nodes that appear in the abstract state are empty.

A

4.3 Abstract Semantics Invariants

In this section, we prove a few invariants that describe the connection between the
concrete and the abstract sematics. The section concludes with a sufficient condition
for stack allocation.

The invariants are valid in any interesting date d C IDA(m) of the execution of
the studied activation of method m. For the rest of the section, we use the following
notations for the concrete and the abstract state at date d:

SZd (Ad [t 4 KLd,t, lbd,t) : Jd,t] , Hd, TYd)
= (I#, Q#, L# : J# S, U)dd' d' d d'1 d 1 -dl

In the concrete state "d, we emphasize the local state of thread t, the thread of
A(m); Ld,t is the state of the local variables of top-most method from A(m). In the
abstract state :-, we emphasize the structure L# which describes the state of the

local variables of the topmost method in the call stack at date d; L# models Ldt.
Also, we use the notation Pd for the abstraction relation at date d.

We start with two easy invariants which will be used in later proofs:

Invariant 1. Vd c IDA(m), Vo C Object, Vn = nnull,c C .N, 0 P n -- + 0 Onu.n.

Proof: Induction on the list of interesting dates plus inspection of the definition of
update _p (Figure 4-8). E

Intuitively, this invariant tells that a null node, i.e., nul paired with some context,
models only the null object onu11.

Invariant 2. Vd C IDA(m), (nfnL) c # -+ e#(=)(n) A e#=)nL)

81

Proof: As escapability propagates along the outside edge (n, f, nL), it is enough
to prove e#(-*)(n). We do so by induction on the list of interesting dates. The
invariant is trivially satisfied at the beginning of A(m), and each transition preserves
the invariant as follows. The transfer function for a LOAD instruction adds only
outside edges starting from nodes which escape. A RETURN inside A(m) projects
the abstract state through a(d); a(d) converts each path from the abstract state
before the RETURN into a path in the abstract state after the RETURN. So, every
node that escapes in the state before the RETURN escapes in the state after it too and
our invariant is preserved. The other instructions are irrelevant because they do not
add outside edges and preserve existing paths, and, by consequence, the escapability
status of the nodes. E

Invariant 3. Vd E IDA(m), Vo E Object \ {onuu}, if dc(o) < d and -led(o) then
{n | 0 Pd n} = {n,} where lb is the label of the instruction that created o (the
instruction executed in the transition zcd(o)_1 -->T Edc(o)) and c is some calling con-
text.

Proof: As ,led(o), location o was created by A(m) (otherwise, Constraint 4.5 would
set ed(o) to be true). So, the NEW instruction from label lb that created o was
processed by the abstract semantics, and an inside node corresponding to lb was put
to model o. This means that {n 1o Pd n} n INode# = {nf,} where the calling
context c depends on the context at the date when the abstract semantics executed
the NEW instruction, and on the RETURN instructions which followed. However, for
the purpose of this proof we are not interested in the particular formula of c. Suppose
for the sake of contradiction that there are some other nodes that model o. There are
three types of instructions which might extend the set {n 1 0 Pd n}: NEW, LOAD,
and unanalyzed CALL. Some RETURN instructions might "adjust" the context of
some of the nodes from the set, but they do not add new nodes; NULLIFY is also
irrelevant because o onu.11 There is a single relevant NEW instruction, the one that
created o, and the node that it introduced is already in the set. We prove that the
other two cases cannot occur.

Suppose that A(m) executed at moment d' < d a LOAD instruction that intro-
duced a load node to model o. This means that A(m) read the heap edge (o',f, o),
where ed'(o') was true. If this edge was created by A(m), it is present in the set H ,
and by constraints 4.6 and 4.4, we immediately have that ed(o) is true; contradiction!
Otherwise, if the edge was created by a STORE from some other part of the program,
at the date of the execution of that STORE, o was reachable from "outside" A(m).
By Lemma 7, o escaped at that time and, as escapability is a cummulative property,
ed(o) is true; again, contradiction!

Finally, suppose that A(m) executed at moment d, < d an unanalyzable CALL
that returned o at moment d2 , d, < d2 < d. In the abstract semantics, the return
node n R models the object o. In the transition from date d2 - 1 to d2, the method
called by the unanalyzed CALL executed a RETURN instruction, "return v"; in the
stack frame corresponding to that method, at moment d2 - 1, v points to o. So, at
moment d2 - 1, o is reachable from outside A(m).

82

By the construction of A(m), dl, d2 E IDA(m); hence, ed, and ed2 are defined.
As ,ed(o) and escapability is a cummulative property (Invariant 4.4), we obtain

,ledI(o),Vd' < d. In particular, ,led1 (o) and ,led2 (o). As ,ed 2 (o), o is unreachable
from the parameters that are passed to the unanalyzable CALL (otherwise, con-

straints 4.6 and 4.9 would set ed2 (o) to true).
By Lemma 7, as 'ed, (o), o is unreachable from outside A(m) at di. By applying

the previous observation, we have that o is unreachable from outside A(m) even at

d, + 1. As from d, + 1 to d2 - 1, only instructions from outside A (m) are executed,
o remains unreachable from outside A(m) at d2 - 1 (we can prove this formally, by
induction, in the style of Lemma 6). Hence, o cannot be returned from the unanalyzed

CALL. Contradiction! This completes the proof of Invariant 3. E

The following three invariants are very closely related: the validity of one depends

on the validity of the others. For this reason, we prove them together, in a single

proof by induction.

Invariant 4. Vd E IDA(m), (olf, 02) E HdA(m) 3 n, n 2 E Node, (oi Pd ni) A

(02 Pd n 2) A ((ni,f,rn 2) E Id*).

Invariant 5. Vd c IDA(m), Vv E V, Ld,t(v) = o - En E Node, (o Pd n) A (n c

L*(v)).

Invariant 6. Vd E IDA(m), Vo E Object\ {oul1},Vn E Node#, ed(o) A (o Pd n) -

d(E#) (n).

Proof for Invariants 4, 5, 6: As d C IDA(m),]j, 0 j < 2r 11 such that d = idj.
We prove the three invariants by induction on j.

Initial state In the initial state d = id0, HAm) = 0 and Invariant 4 is trivially
satisfied. Lido,t is defined only for parameters: Lido,t(pi) = oi where oi's are the objects

actually sent as arguments in the call that started A(m). As Pido {(op,i])},
Invariant 5 is satisfied. Finally, as trivially e#(Ef 0 o)(n'i'), Invariant 6 is satisfied,

too.

Induction step Assume that the three invariants hold for d C {ido,... , id}. We
will prove that they hold for d = idj+ 1 too. If j = 2i+ 1, then

\ id2(i+1), Pid2 (i+l), Cid2(i+l) / \ id2i+1 , Pid2i+1 , Cid2 i+ 1 /

By the induction hypothesis, the three invariants are trivially satisfied for d = idj+1 =

id 2(i+l). In the rest of this proof, we work on the more interesting case of j 2i,
when passing from idj to idj+1 corresponds to a real transition:

d = d2i+1

Pd, Cd) (i2i±1, Pid2i+1, Cid2 i.1 = [lbid2i,t# ((2i Pid2i, Cid 2i))

83

The method for proving the three invariants at date id2i+1 is the same: case
analysis on the type of the instruction P(lbid2it). For all the instructions except
the unanalyzable CALL, this is the instruction from the transition E2i =T .2i+l
For the unanalyzable CALL, it is the first instruction from the chain of transitions
W# *Z ; the other instructions from that transition chain are from the method
transitively invoked by the unanalyzable CALL, and so, they cannot affect the state
of the local variables of A(m) nor the set of heap edges HA(m)

Before examining the invariants, we prove the following auxiliary lemma:

Lemma 9. Let id2i G IDA(,) be an even-indexed date that corresponds to the begin-
ning of the transition chain Ei # * E . If the instruction at label lbid2 i,t (the
instruction executed in that transition chain) is not a RETURN inside A(m), then

Proof of Lemma 9: Simple inspection of the definition of the transfer function [.]#
for the abstract semantics (Figure 4-5), and the definition of updatep (Figure 4-8).

We continue the proof of the three invariants.

Invariant 4 The transfer function for a RETURN inside A(m) modifies both the
set of inside nodes and the abstraction relation by adjusting the context of the nodes
appearing in those structures. As this adjustment is done in the same way in both
structures, the validity of Invariant 4 extends from id 2 i to id 2 i+ 1 -

From the remaining instructions, only NEW and STORE create new heap refer-
ences. All the other instructions leave the heap and the set of inside edges unchanged;
as Pid2i C Pid2i+1 (Lemma 9), they trivially preserve Invariant 4.

The NEW instruction "v = new C' creates the heap edges {(o,f, onull) If

fields(C)} in order to initialize all the fields of the newly created location o. From the
definition of the transfer function for updating the abstract states [.,.] (Figure 4-7),
we have:

2i1 =J U {(nff, nnu11,c) I f E fields(C)} and
Pid2i+1 = Pid2 i U {(o, nf)} U {(o..11, n..i,)I

and Invariant 4 is clearly valid at date id 2i+1 -

So, suppose that the last instruction was the STORE instruction "vi.f = v2" and
that Lid2 i(vI) 01 54 Onull (the program cannot write at null), Lid2 (v2) = 02. The
only new heap edge is (oi,f, 02). By our induction hypothesis, Invariant 5 is valid at
moment id 2i, which implies

3n1 such that (01 pid2 ni) A (ni 2 L# (vi)) and

]n 2 such that (02 Pid2 ; n2) A (n2 E (2

84

Also, as 01 # oull, by Invariant 1, n, IV. Due to the abstract semantics of the
STORE instruction, (ni, f, n 2) E . As Pid2i C Pid2 i+1 (Lemma 9), Invariant 4 is
valid at date id2 i+1 -

Invariant 5 The cases of STORE, IF, THREAD START, and the final RETURN
(the one that terminates A(m)) are easy to handle. By a quick inspection of the
transition relation for the concrete semantics (Figure 4-3), we notice that these in-
structions do not modify the state of the local variables: Lid2i+1 Lid2 i. Also, in
the case of the abstract semantics (Figure 4-7), L' 2 ± = L'd2 for all of these in-
structions except RETURN. The abstract semantics of the final RETURN affects
only the special dummy variable vet which we use to store the result of the method;
as this variable does not exist in the concrete semantics, it does not introduce any
complication. As Pid2, C pi±,, the validity of Invariant 5 propagates from id2i to
id2 i+-

In the case of a COPY instruction "v, = v2", we just have to look at the new value of
v1 : Lzd9ia 1 (vi) =o = Lid2 i (v 2). By our induction hypothesis, Invariant 5 holds at date

id 2 i, which proves that -rn such that (o Pi , r) A (n E L (v 2)). By our definition

of [. for a COPY instruction, we have n c Ldi 1 (vi), and hence, Invariant 5 is valid

at date id 2i+1 -

A NEW instruction "v = new C' modifies L by setting Lid2 +1 (v) = o, where o is

the new object created by this instruction. The abstract semantics sets Li 2 1 (v) =

{fnic}, where lb is the label of the NEW instruction and c is the current calling
context. It also extends the abstraction relation such that o Pid2i+1 i4~. The case

of a NULLIFY instruction is similar: Lid2 +1 (v) = Onull, L 2 +1 (v) -- nnul,c, and

Onull Pid2i+1 nnull,c. In both cases, Invariant 5 is valid at date id 2 i+1 .

The case of an unanalyzed CALL "VR = vo.s(v1 ,... , vi)" is a bit different from

the others, because id 2i+1 is not simply id2i + 1: although the abstract semantics

executes a single transition 5 , there are many transitions in the concrete semantics,
corresponding to the execution of the instructions of the methods transitively invoked

by the unanalyzable CALL and the instructions of threads other than t. However,
from all these many instructions, only the last one, the RETURN from the transi-
tion Eid2 i+ 1 -1 ==T Eid2 i+ 1 , modifies the state of the local variables of A(m). It sets
Lid2 i+ 1 (v) =o, where o is the location returned by the unanalyzed CALL. In the ab-

stract semantics, L#a (v) = {nR, }, where lb is the label of the CALL instruction,
and c is the current calling context. Since o Pid2i+1 ic, Invariant 5 holds at date

id 2 i+1-

5 Le., one application of the abstract transfer function [.

85

In the case of a RETURN instruction inside A(m), the transfer function [.J# (Fig-
ure 4-5) closely models the transition from the concrete semantics (Figure 4-3). Con-
sider a RETURN instruction "return v", and let VR be the variable that stores the
result of the corresponding CALL instruction. The abstract semantics pops from the
stack the state of the callee local variables, and in the state of the local variables for
the caler, puts vR to point to the nodes which were pointed to by v in the callee.
The validity of Invariant 5 at date d = id2 i+1 for variable VR follows from the validity
of Invariant 5 for variable v at date id2i. The meticulous reader might notice that
the transfer function also adjusts the context of the nodes. As this adjustment is
also done in the abstraction relation, it does not harm our proof. The other vari-
ables remained unmodified both in the concrete and the abstract semantics from the
date of the corresponding CALL and so, by the induction hypothesis, they preserve
Invariant 5 too.

If we look only at the state of the local variables, an analyzable CALL is very
similar to a series of COPY instructions: it copies local variables from the caller
into the parameters of the callee. By the same arguments as in the case of COPY,
Invariant 5 is valid at date id 2 i+.-

We left for the end the most difficult case: a LOAD instruction "v 2 v1.f'. Suppose
that right before its execution, Lid2i (vI) =o and (01, f, o2) E Hid2 i; by our hypothesis

that the analyzed program is correct, oi # ou. With these notations, the LOAD
instruction reads the heap edge (oi,f, 02) and sets Lid22+1 (v 2) = 02. By the induction
hypothesis, Invariant 5 is valid at date id 22 and so,

Eni such that (n, E L*(v)) A (o Pid2, ni)

There are two cases:

1. If eid 2 i(o(), then by Invariant 6 at date id 2i, e#(id2i)(ni) is true. In this case,
the abstract semantics puts nL, c L # (v2), where lb is the label of the
LOAD instruction, and c is the current calling context, and updates p such
that 02 Pid2i+1 lb c. This preserves Invariant 5.

2. If ,1eid 2 2(oi), by Invariant 3 at date id2i, {r 0 Pid2 n = {i4,c = {ni}; so,
the only node that abstracts location o at date id 2i is ni, nfc.

Also -eid 2 (01) implies that 01 cannot be accessed from outside A (m) (Lemma 7),
the heap edge (oif, 02) was created by A(m), i.e., (oi,f, 02) E Hid . By the
induction hypothesis, Invariant 4 is valid at date id2 i which, together with the
fact that {n 0 Pid2, n} = {tni}, gives us that:

12n2 such that (02 Pid2, n2) A ((ni,f, n2) E d)

By the definition of the abstract semantics, n2 E L* (v 2). As (02, n2) E
Pid2i C Pid2 i+1 , Invariant 4 is valid at date id2i+1 -

86

In all cases, Invariant 5 is valid at date id2i+1-

Invariant 6 Recall that the (abstract) escape predicate e#(EB) (Definition 12)

tells whether in the abstract state E7 for date d, a specific node is reachable from
a set of escapability sources (the set N from the definition) along a path of inside
and outside edges. Similary, in the concrete semantics, the concrete escape predicate

ed (Definition 10) tells whether an object is reachable in H) (the heap references
created by A(m)) from one of the objects directly escaped by one of the constraints
4.5, 4.7, 4.8, and 4.9.

COPY, NULLIFY, and IF preserve the invariant: in the concrete semantics, they do
not directly escape objects and do not add new heap references. Therefore, eid2i+1 (0)
iff eid2i(o). In the abstract semantics, they preserve the set of escapability sources
and all the paths consisting of inside/outside edges. As a result, all the nodes which
escaped at date id 2i still escape at date id 2 i+1 . As the abstraction relation is not
modified by these instructions - the extension done by NULLIFY is irrelevant, be-
cause o k onu - they preserve Invariant 6. We can apply the same reasoning for an
analyzable CALL and for a RETURN inside A(m) (i.e., not the last RETURN which
ends A(m)) 6 .

A NEW instruction updates the abstraction relation such that o Pid2 i+1 n1,, where
o is the newly created object. As o does not escape anywhere yet, i.e., ,eid2i41 (o),
the invariant is preserved. A LOAD instruction might introduce a load node nr4L

to model the loaded object 7. As e#(' 2 ,)(nc) from the very beginning 8 , this
instruction too preserves the invariant.

RETURN, THREAD START, and unanalyzable CALL escape nodes, due to one
of the constraints 4.7, 4.8, and 4.9 from Definition 10. This escape info propagates
along the heap edges by Constraint 4.6. We treat only the case of the unanalyzable
CALL; the other two cases are similar.

Suppose for the sake of contradiction that the invariant is not true at date id2i+,
i.e., there exist an object o and a node n such that eid2 i+l (o), o Pid2i+1 n, and

,# (=#) (n). n cannot be the return node n R which corresponds to the unana-
lyzable CALL because a return node trivially escapes. As a consequence, n models
o even at date id2i. Furthermore, n does not escape in the state HiE#; otherwise,

by Lemma 8, it would escape in d± too. By our induction hypothesis, Invari-
ant 6 is valid at date id2i; hence, -eid 2 (o). Also note that due to Definition 9,
H Hi(m) The only reason o escapes at date id2 i+1 is that it is reachable from

id~~i~l d2 i i1i hti srahbefo

'Again, the meticulous reader might notice that a RETURN inside A(m) adjusts the context
of some nodes. However, as this adjustement is done uniformly, into the abstract state and the
abstraction relation alike, it does not affect our proof.

7 c is the current calling context.
8 The load node is reachable via the newly introduced outside edges from one or more escaped

nodes.

87

one of the nodes that directly escaped into the unanalyzable CALL by Constraint 4.9,
by a path of edges from H A(m)id2i

Hence, there exists a path, possibly of length zero, oo, 01,... , o, = o,
Vj, (oj~fj, o±j+) E H (m) that reaches o from a location oo that is pointed to by oneid 2 i1

(oan saaiiysof the parameters passed to the unanalyzable CALL. As -eid 2 (o) and escapability is
propagated along the edges from Hi , ,eid (os) for any object oj from the path.
By Invariant 3, for each of the objects oj, there is a single node nr that models it, i.e.,
oj Pid2i nj, where np = n. Therefore, by Invariant 4, which is valid at moment id2i by
the induction hypothesis, we have a corresponding path along the inside edges from
the abstract state at moment id 2i: noi 1 , ... ,I, = , (njIf, nj+1) E I# - d .

Now, by Invariant 5 at moment id2i, as one of the parameters from the unana-
lyzable CALL, say v points to oo in the concrete semantics, in the abstract state at
date id 2i, v points to the unique node that models oo, no, i.e., no C L# (v). By the
definition of [.,.] in the case of an unanalyzable CALL, no E U 2# ; therefore, no

escapes in the state As the abstract escape information propagates along the

edges from i rn escapes in the abstract state . Contradiction.

The only remaining case is that of a STORE instruction "vi.f = v2". This instruc-
tion does not create new objects nor extend the abstraction relation. However, it
creates a new edge, which can generate new paths in H (m) Suppose for the sake of
contradiction that Invariant 6 is not valid at date id 2i+1 , i.e., there exist an object o
and a node ri such that eid2 1(0), 0 Pid2;+1 n, and -e#(=#)(n). We immediately

obtain that o rid2; n and -e#(BJ)(n) and as Invariant 6 is valid at date id 2 i (by
the induction hypothesis), we have that ,eid 2i (o). The reason o became escaped at
date id 2 i+ 1 is that the edge introduced by the STORE instruction made o reachable
from one of the objects which were already escaped at date id 22.

Let us consider one of the shortest paths in HAm) from an object 0 such that
eid 2 (00) is true, to o. Let the objects from this path be oo, o1,.. , o,= o. Due to the
way we selected this path, with the exception of oo, no other object from this path
escapes at date id2i. By applying the same idea as in the case of an unanalyzable
CALL, we obtain a corresponding path in I# from the unique node which models
oi, say ni , to the unique node which models o, the node n.

As o does not escape at date id2 2, the heap reference between oo and o is not
present in the set HAm . But it appears in the set Hm), which means that the
STORE instruction created it, i.e., Lid2 i,t(vl) = oo, and Lid2 i,t(v 2) =01. By Invariant 5
at date id2i, valid by our induction hypothesis, L#(v 1) contains one of the nodes
which models 00, call it ri, and Li (v 2) contains the unique node which models o,
the node ni1 . Thus, at date id 2,+1 , we have a path of inside edges from no to n.

As Invariant 6 is valid at date id2 i, e#(E 2)(no) is true. So, no escapes in state
As n is reachable from an already escaped node, it escapes too. But we

supposed that n is captured in ! Contradiction.

88

In all cases Invariant 6 is valid at date id2i+ 1 . This completes our proof by induction
for invariants 4, 5, and 6. El

Lemma 10. Consider an interesting date for A(m), d E IDA(m). Let E? and cd be
the abstract state, respectively the context constructed by the abstract semantics of
A(m) for date d. If n = (n', c) is a node appearing in B4, then its context c is a
suffix of cd.

Proof: Induction on the index inside the list of interesting dates of A(m). The
property is clearly true at the beginning of A (m). The execution of an instruction that
is not a RETURN inside A(m) preserves the property for the nodes which already
exist; such an instruction might also create new nodes, but these nodes have the
context cd which is clearly a suffix of itself. A RETURN inside A(m) uniformly
removes the date of the corresponding CALL from the head of the current context cd
and from the head of each node context; hence, it preserves the property too. El

It is easy to prove that due to the nesting of the CALL/RETURN instructions and
due to our way of maintaining the calling context, at the end of the activation A(m),
i.e. at date d = id2r+1, the context is empty: cid2 r,4 = []. So, by Lemma 10, in the

abstract state all the nodes have empty contexts. In particular, the inside
node which represents the objects allocated at label lb is nf 1 . Now, we are ready to
prove the following theorem.

Theorem 11. Consider a concrete execution trace T, an activation A(m) of method
m and suppose that, at some date in its execution, A(m) allocated an object o by ex-
ecuting the NEW instruction from label lb. Also, consider the list of interesting dates
for A(m), IDA(m) = [ido,... , id 2r+1] and suppose the abstract semantics obtained the
following abstract state for the final date id2r+1:

-= (f Q# L# J# S , U)-id 2 r+i id 2 r+i id 2 r+i id 2 r~i id 2 r+i id2 r+li d2 r +1

If ,Ie#(id 2r+1)(nfb[]), then the lifetime of object o is included into the execution time
interval for A(m), i.e. [dc (o), dD ()] C [ido, id 2r]-

Proof: As A(m) created o, dc(o) > ido. To complete the proof, we need to prove
that dD(o) < id2r. Let Eid2 ,+i be the concrete state at date zd2r+1. By Lemma 7, we
have that

reachable(B'id2,±1)(o) - eid2r+1 (o)

where B'id2,+ 1 = outsideA(m)(Eid2 +1). It is easy to note that outsideA(m)(2 r2i) =

=id2 ,+ 1 : the stack frame created by A(m) was removed by the RETURN from the
transition Eid2r = T Eid2r+i. Therefore,

reachable (Eid2,1) (o) -± eid2 r+1(o)

When the abstract semantics processes the NEW instruction at label lb that created
object o, it puts the inside node nfi to model o, where c is the current calling context

89

at that moment. At the end of A(m), all the nodes have an empty calling context;
hence, 0 P241 n4,[. By Invariant 6,

eid2,+1(o M " 2r+1)(1ba

Combining these two implications we have that

reachable(Bid2,+1) (o) -+ e (bd 2 r+)(n,])

and so, as ,e#(id2r+l)(nf,[]), o is no longer reachable at date d 2r+i. By the definition
of dD(o), this implies dD(o) < id2r+1 =d 2r + 1, which completes our proof. l

As the stack frame for the instance of method m which is the "root" of A(m) is
created at date ido and destroyed at date id2r, we have the following obvious corollary,
which represents a sufficient condition for stack allocation:

Corollary 12. In the conditions of Theorem 11, if ,ie#(id2r+1)(nIj), then all the
objects that A (m) creates by executing the NEW instruction from label lb can be safely
allocated in the stack frame of the instance of method m which is the "root" of A(m).

4.4 Analysis vs. Abstract Semantics

In the previous section, we proved that the abstract semantics conservatively models
the concrete semantics, with respect to a set of invariants. This enabled us to obtain
Corollary 12, which gives a sufficient condition for the stack allocation of the objects
allocated by the activation A(m). That condition is defined for the abstract state
computed for the end of A(m). However, we defined the abstract semantics just for
the purpose of the correctness proof; we cannot even compute it statically. What we
actually need is a condition defined on the points-to graphs computed by the pointer
analysis.

In this section, we prove that the pointer analysis is a conservative approximation
of the abstract semantics, and hence, of the concrete semantics, too. This will enable
us to extend the sufficient condition of Corollary 12 into a proof for Theorem 5.

Consider a method m and an activation A(m). As the condition from Corollary 12
was expressed on the abstract state for the end of A(m), 7* , we are particulary
interested in proving that the points-to graph G that the pointer analysis computes
for the exit point of method m, conservatively approximates id . At a first look, if
we ignore the inter-procedural aspects, the pointer analysis and the abstract semantics
look very similar, except that the first one works with nodes from the set Node, while
the other one operates with nodes with context from the set Node# = Node x Context.
However, we have already proved that in the abstract state for the end of A(m), all
nodes have the context []. Therefore, the isomorphism f(n) = (n, []) allows us to
compare analysis data structures against abstract semantics equivalent structures.

The major contribution of this section is the following theorem:

90

Theorem 13. Let 3# be the abstract state that the abstract semantics computes'id2r+1

for date id2 r+1 (the end of A(m)) and let G = oA(exitm) be the points-to graph that
the pointer analysis computes for the exit point of method m. Then,

id2rl ZE (G)

The rest of this section is organized as follows. First, in Section 4.4.1, we present
several auxiliary notions and results, and give the formal definition of the node con-
version /. Next, in Section 4.4.2, we prove Theorem 13. The proof is quite long and
difficult. In order to simplify it, we give a high level proof which uses an auxiliary re-
sult, Equation 4.17. We prove the correctness of this auxiliary result in Section 4.4.3.
As this proof is very long, too, once again, we give a high-level proof which uses two
auxiliary results: Equation 4.21 and Equation 4.23. Section 4.4.4 presents several
results about the node mappings. In Section 4.4.5, we use these results to prove the
correctness of Equation 4.21. This proof uses all the constraints from the definition of
the mapping function (Figure 2-8) which is the core of the inter-procedural analysis.
The proof for Equation 4.23 is rather technical and uninteresting; for completeness,
we present it in Appendix A.

4.4.1 Auxiliary Notions

Notations: Throughout this section, we suppose that we have a concrete execution
trace T and, in T, an activation A(m) of a method m which starts at date d. and
takes place in thread t. We also suppose that the list of interesting dates for A(m) is

IDAgm) = [ido, ... , ,d2 i, 2 + 1, . . , id2 r+1]

The activation A(m) is terminated by the RETURN instruction executed in the
transition from id 2, to id 2 r+1. We also use the following notation simplification: if
B# is an abstract state (where x is an arbitrary subscript), then we denote all the
components of E* by using the same subscript, i.e.,

- (I, O, L# : J#, S#, U#)

We emphasize Lf, the state of the local variables of the current method (the top-
most method from the call chain), by separating it from the rest of the stack, Jf
We formulate all the results from this section in the context of these notations. We
explicitly indicate any case where these conventions do not apply.

As the pointer analysis does not step into the callees (as the abstract semantics
does), not all the dates from IDA(m) are relevant for it: for the dates inside the
execution of a callee, the abstract semantics constructs an abstract state while no
corresponding points-to graph is created by the analysis of method m. For this
reason, we select from IDA(m) just the dates that correspond to the execution inside
the instanciation of m that is the root of A(m). Formally, we have the following
definition:

91

Definition 13 (Intra-procedural interesting dates). Consider an execution trace
T and an activation A(m) of method m, whose list of interesting dates are IDA(m) -
[ido, . . , id2r+1]. We construct the list of intra-procedural interesting dates, IPAT,,),
as follows:

1. We scan the dates id2, in increasing order: ido, id2... , id2r In each such date
A(m) starts the execution of an instruction.

2. For each examined date id2i, if the instruction executed by A(m) is not an
analyzable CALL, we add both id 2i and id2i+ 1 to IPA(m). If it's an analyzable
CALL, we add to IPA(m,) both the date id2 i when the CALL was executed and
the date id 2j+1 when the corresponding RETURN instruction terminates; in this
case, we also skip all the dates in between, i.e., we don't step into the callees.

The additions to IPA(m) are always done in pairs. Therefore,

IPA(m) [ip- 0 ,... , iP2, iP2i+ 1 , ... , P2q+l

The list IPA(m) is the concatenation of small lists of two dates [ip 22, ip2i+1] which
corresponds to the execution path of A(m) inside method: either a CALL instruction
from m starts at iP2j and the corresponding RETURN terminates at ip2ai~ or the
transition from iP2i to ip2 +1 executes an instruction other than an analyzable CALL.
Notice that we are not interested in the instructions executed by the callees of A(m).
The only difference between IDA(m) and IPA(m) is that the construction of IPA(m)
supposes that all the CALL instructions of m are unanalyzable. Finally, note that the
last two dates from IPA(m) and IDA(m) are the same: id2r and id2r+1; the transition
from d 2r to id2r+1 executes the RETURN which terminates A(m).

Lemma 14. For any intra-procedural interesting date, d E IPA(m), the context cd
computed by the abstract semantics of A(m) for d is empty: cd = []-
Proof sketch: An analyzable CALL adds the current date to the head of the
context; the corresponding RETURN removes this date. Hence, at any date, the
current context contains (in reverse order), the dates of the analyzable CALLs which
have not been matched by a corresponding RETURN yet. At each intra-procedural
date d c IPA(m), all the CALLs have returned. Therefore, cd = []. D

Now, we are ready to prove that not only at the end of A(m), but in any intra-
procedural interesting date d E JPA(m), the abstract state computed by the abstract
semantics contains only nodes with an empty context:

Corollary 15. Consider an intra-procedural interesting date for A(m), d E IPA(,)
and let =* be the abstract state that the abstract semantics of A(m) constructed for

date d. If n = (n', c) is a node appearing in E, then its context is empty, i.e., c = [].

Proof: By Lemma 10, the context of any node appearing in the abstract state E*
is a suffix of the calling context Cd. Combining this with Lemma 14, we obtain the
corollary. D

92

As a result of Corollary 15, it is possible to compare the abstract state from the
end of A(m) with the points-to graph that the pointer analysis computes for the end
of m. For this, we need the following node conversion:

Definition 14. Let /3 be the conversion /(n) = (n, []). This conversion takes a data
stucture specific to the pointer analysis and propagates deep inside it (in the same
style like a(d)), returning an equivalent abstract semantics data structure.

A first, easy result that we obtain is the following:

Lemma 16. If lb is the label of an instruction that is not an analyzable CALL or a
RETURN inside A(m), then

((lbja (G))= lb,[](pG)),7VG E P TGraph a

Proof: By a quick inspection of the definition of [., j (Figure 4-7) we note that [lb, []|
is exactly like [lb a, except that instead of manipulating node n, it manipulates node
/3(n). Hence the lemma. E

Definition 15 (Call depth of an activation). For each interesting date d E
IDA(m), let Z7 = (I, O, J#, S#, Uf) be the abstract state that the abstract se-
mantics of A(m) computes for date d. The call depth of the activation A(m) is the
maximal height of the stack J#, d G IDAgm).

Intuitively, the call depth of an activation is the length of the maximal call chain
from the activation. For example, an activation that does not call any method has
a call depth of zero; an activation which calls a method which itself calls another
method, has a call depth of at least two, etc.

4.4.2 Proof of Theorem 13

Proof of Theorem 13: Recall that we want to prove that 3(G) whereijd2 r+

1= is the abstract state for the end of A(m), and G is the points-to graph for
the end of m. We do a proof by induction on depth, the call depth of the activation
A(m).

Initial case: depth = 0 In this case, A(m) does not execute any analyzable CALL
(otherwise, its call depth would be at least one). Let IPA(m) = [ZPO, - - , p2q+1]
and let lbi be the current label inside m reached by the execution of A(m) at date
ip, 0 < j _ 2q+ 1. More formally, if in the concrete semantics, at date d, the topmost
frame of the stack of the thread t, i.e., the thread where activation A(m) takes place,
is KLd,t, lbd,t), then:

lbj = lbipj,t, Vj E {0, 1, ... , 2q}

By convention, lb2q+1 = eXitm

93

We prove by induction on j that 7 E/ (oA(1bj)), VJ {, 1, ,2q+ 1}. This
proof by induction on j is nested inside the big, outer proof by induction on the call
depth of A(m).

* Initial case j = 0. Trivial by the definition of the initial points-to graph and
the initial abstract state.

* Induction step j -+ j + 1. If j is odd, i.e., = 2i + 1, then
-'P2(i+l) - P2i+l

b2(i+l) = lb2i+1 (because the program does not execute any instruction of the
thread t is between 'p 2,+1 and Zp2(i+l)) and the property we want to prove is
trivially preserved. Now, suppose we have an even j, j = 2i. By Lemma 14, we
have that c []; hence,

- lb2i, [1] (4.15)

In the pointer analysis

oA(lb 2 i+ 1) = [j{Ao(lb) I lb E pred(lb2i+1)}
:3 Ao(lb2i) = Tlb2]a(oA (lb 2i)) (4.16)

Using the monotonicity of /, Equation 4.16 and Lemma 16, we obtain

(o A(lb2i+1))] ([lb2i a (oA (Ib2i))) = Tlb2i, []] (,3(oA (lb2i)))

By the induction hypothesis, #(oA(Ib 2i)) : Z . As [ib, []1 is a monotonic
function, just as the analysis transfer function [lbJ# was, we have that

[lb2i, []f(#(oA(lb2i))) I Tlb 2i, []1(BL)

Combining these last two relations, we obtain the desired result:

0(oA(lb 2i+ 1))] _#

We've just finished proving that 7# E 3 (oA (lbj)), Vj E {0,1,... , 2q + I1}. If we

put j =2q + 1, as 1d2r+- = P2q+l 9 w bti t E 0(oA(exitm)).

Induction step: Suppose that Theorem 13 is true for any activation having a call
depth strictly smaller than depth. We shall prove that Theorem 13 is true for an
activation of call depth depth.

As in the case of the initial case depth = 0, we do an inner proof by induction on
] to prove that E E #3(oA(1b3)), Vj c {0, 1,... , 2q + 1}. For simplicity, we keep the
same notations as in the previous case.

The only modification in the inner proof is that now, A(m) might execute an
analyzable CALL instruction. If we prove the induction step of the inner proof for

9Remember that IDA(m) and IPA(m) have the same last two elements.

94

the case when j = 2i and the instruction at label is an analyzable CALL, then we
finish the proof of Theorem 13.

Suppose that -#_ E #(oA(lb 2 i)). We shall prove that E 0(oA(lb2 i+1)). In
the same way as in the case of depth = 0, we have that

oA(lb 2 i+1) :_ Ao(lb2i) = lb2iJa(oA(lb2i))

Let callee be the method that is called at date ip 2i- callee E CG(lb2i), where CG
is the (correct) call graph of the program. By the definition of the transfer function
[lb]" for an analyzable CALL instruction

[lb2i a(o A(lb2 i)) = interproc(oA(lb2i), oA(exit M2), lb 2i, iM2)

m2ECG(lb2 i)

I interproc(oA(lb2i), oA(exit caitee , 1b22 , callee)

We combine the last two relations and the monotonicity of # to obtain

#(oA(lb 2i+1)) -1 /(interproc(oA(b 2i), oA(exitcailee), 1b 2i, callee))

The analyzable CALL that we deal with starts a new activation of method callee,
which we name A(callee). This activation has its own list of interesting dates, which is
of course a sublist of IDA(m) because each instruction of A(callee) is also an instruction

of A(m). Let

ID calee = [dc ce , . cdallee,2k, zd callee,2k+1, . .. , idca11ce,2u+1]

The abstract semantics of A(callee) attaches to each interesting date of idcallee,k E
IDcaiee, 0 < k < 2u + 1 an abstract state .-# We use the subscript 2 to make

the distinction between the abstract state 7# that the abstract semantics of2icallee~k

A(callee) computes for date idcallee,k and the the abstract state that thei~dcallee ,k

abstract semantics of A(m) computes for the same date.

Let's examine the abstract states , i.e., the abstract state right before the

CALL, and , i.e., the abstract state that the abstract semantics of A(callee)

computes for the end of A(callee). Both of them contains only nodes with empty con-

text. Suppose we have a function interproc# identical to interproc except that it works

with nodes with context. We'll give its precise definition later, for the moment let's

focus on our proof. As interproc# is exactly like interproc# except that it manipulates

nodes with context, it is easy to prove a result similar to Lemma 16:

/3(interproc(oA (lb 2i), oA (exit callee), lb 2i, callee)) =

interproc#(#(oA(lb2i)),3(oA(exitcallee)), lb 2 i, callee, [])

Similar to interproc, interproc# is monotonic in its first 2 inputs. By the induction

hypothesis of the inner proof, O(oA(1b2i))] . As the call depth of A(callee) is
st 2i

strictly smaller than that of A(m), by the induction hypothesis of the outer proof,

95

interproc#: State# x State# x Label x Method x Context -+ State#

interproc#(;#, E#allee, lbe, callee, c) =

let p' = mapping# (B#, callee, lbe, callee, c) in
simplify#(combine#(7#, alee ,u', VR))

where P(lbe) ="VR v0-sU(1 , -... , Vj)

Figure 4-10: Definition of function interproc#

#(oA(exitcaee)) 2 I,+ . Combining all these, we obtain

/(oA(lb 2 i+i)) : znterproc# (i, 2ia, , lb2 , allee, c)

Suppose we have a proof that

interproc#(= , 2$cus,+1 b2i, callee, c) ;;1 (4.17)

Then, we finally obtain

/3(oA(lb2,+1)) I
- '~P2i±1

and we finish the inner and the outer induction proofs, together with the proof of

Theorem 13 itself! E
The rest of this section provides the missing parts of the previous proof.

4.4.3 Proof of Equation 4.17

To prove Equation 4.17, we first have to give the promised definition of the auxiliary

function interproc#. We do so in Figure 4-10. The definition of interproc# uses the

auxiliary functions mapping#, combine# and simplify#. We define them in Figure 4-

11, Figure 4-12, respectively Figure 4-13.
As previously mentioned, interproc# and its auxiliary functions are identical to

their equivalents from the pointer analysis, with the exception of a few technical

details:

* They work with structures built up of nodes with context, instead of plain
nodes.

" interproc# and mapping# have an additional argument: c G Context. interproc#

just passes it down to mapping#, which uses it to identify the parameter nodes
of callee in Constraint 4.18: instead of nee,, it uses npeec. E.g., if '-,:le#
is the abstract state that the abstract semantics of A(callee) computes for the
end of A(callee), we use c = [].

96

* There is a "cosmetic" change inside combine#: instead of working with the
state of local variables L, it works with the single-element stack [L#] (similar
for Liiee).

Now, we are ready to attack the proof of Equation 4.17. Using the notations from
the proof of Theorem 13, we want to prove that

__ # 1L interproc#(-# , 1~dcaie,2 u+1, lb 2 , callee,])
Intuitively, we want to prove that the processing done by the inter-procedural analysis,
which in this case is more appropriate to call inter-procedural combination of abstract
states, is a conservative (i.e., safe) approximation of the abstract semantics which
steps into the code of the callee and individually processes its instructions.

Proof sketch: Most of the proofs that we have presented so far were based on the
same idea: induction on the list of interesting dates. In each case, we verified that
the desired property was true for the first interesting date and next, we proved that
each transition preserved the property. As the abstract semantics is a small step
semantics, each induction step worked with a single, simple transition10 . Therefore,
the complexity of the proofs was not very big. The case of Equation 4.17 is different,
at least at a first view. Now, we have to "jump" in a single step from ip 2i to p2i+1
without individually processing all the transitions that the astract semantics of A(m)
makes inside A(callee).

However, it is possible to go back to a small step semantics. The key idea is the
following: for each interesting date of A(callee), we can "freeze" the execution of the
callee at that moment and do the inter-procedural combination of abstract states by
using, instead of B2 iu ,the current abstract state as computed by the abstract

semantics for A(callee), as if A(callee) ended at that date. So, for each d E IDcaiee,

we compute a result of the inter-procedural combination of abstract states and prove
that it is more conservative than the abstract state that the abstract semantics for
A(m) computes for that date. This way, we process the instructions of the callee
one by one and we can apply our standard proof technique: induction on a small
step semantics. Hence, we can prove that near the end" of A(callee), the result of
the inter-procedure analysis combination of states conservatively approximates the
abstract state that abstract semantics of A(m) computes for that date. For technical
reasons, we process the last instruction of A(callee), i.e., the RETURN which finishes
it, in a different way.

Proof of Equation 4.17: As we explained before, we would like to prove that at
any interesting date d inside A(callee), the result of the inter-procedural combination
of abstract states is a conservative approximation of the abstract state 7#. However,
we have two technical problems:

10Even in the case of an unanalyzable CALL, when we can have many concrete instructions, we
still have a single transition in the abstract semantics.

"The meaning of this expression will become obvious in the next phrase.

97

mapping# : State# x State# x Label x Method x Context - Mapping#

Mapping# = Node# x Node#

PARAMETERS:
Points-to graph right before the CALL, -# = (I#, Q#, [L#], S#, U#);
Points-to graph from callee, 7-#ee= (I#Ziee, O*11ee, LIeee1, Seiiee, U0i#ee);

Label lb, of the CALL instruction:

P(Ibe) ="ccVR = VO-s(V1, . .. , vjf
Called method callee;

Context c E Context for the parameter nodes of callee.

RESULT:
Mapping p' c Mapping, computed as follows:

1. Let p E Mapping# be the least fixed point of the following constraints:

L#(vi) C p(neiiee,i,c), Vi E {0, 1,... j}

(ni,f, n 2) E 0#11ee, (n3 ,f, n4) E I#, n3 E p(ni)
n 4 E (n2)

(n, f, n 2) E Ocalle, (n3 , f, n 4) E Icallee'
((p(n1) U {ni}) n (p(n3) U {n3})) \ A # 0'

(ni $ n 3) V (n, E LNode#)
p(n 4) U ({n 4 } \ ParamNodes#(callee, c)) C p (n2)

where ParamNodes#(callee, c) = {neIleeOc, .. ncallp kc}

2. Extend p to obtain p' as follows:

p(n)
p(n) U {In}

if n E ParamNodes#(callee, c)
otherwise

Figure 4-11: Definition of function mapping#

98

(4.18)

(4.19)

(4.20)

p I(n) =

combine#: State# x State# x Mapping# x V -- State#

combine#*((I#, 0#, [L#],7 S#,I U#), (I# Ilee, 10# 1ee, [L a Ie c#ee UTT#) P', VR)

let 12 = I# U I#ae [[_]
0# = O#uO#

Lcallee [ee'e

S? = S#U P #' ,
- S#/(Scaiiee)

Uf = U# U PI(U clee) in
(1, 0#, [L#], S, UT#)

where

Icaiiee[I'] = U (p'((ni) \N) x {f} x P/(n2)
(ni,f,n2)EI#

Oallee[p ' = U (p'(n) \A) x {f} x { L}

(nf,nL)EO#1 1

Figure 4-12: Definition of function combine#

simplify# State# -± State#

simplify#(E# = (I#, O#, [L#,L,.. ,L ,S#, U#)) =
let A {n C LNode -ie#(7#)(n)} in

let I' = I#\{(nif, n 2) I {ni, n 2 }l n A# 0}
S # \{(n, fnL) ({n, nL} n A #0) Ve#(#)(n)}

i Av. (Li(v) \A), ViE{,1,... ,j-1}
Sf =S#\A
U! = U#\A in

(If, O , [L,, L', ... , L#.J, S , U)

Figure 4-13: Definition of function simplify#

99

interproc#: State# x State# x Label x Method x Context - State#

interproc#(-# ,auee, lbc, callee, c)
let p' = mappirng# (=# B iiee, lbe, callee, c) in

simplify# (combiner (=# -calee, '))

Figure 4-14: Definition of function interproc2

1. The abstract semantics of A(callee) starts with an empty context while the ab-

stract semantics of A(m) starts processing the instructions from A(callee) with

the context [ip 2J] (ip 22 is the date of the CALL which starts A(callee)). So, each

time the abstract semantics of A(callee) uses the context c, the abstract seman-

tics of A(m) uses the context c©[ip]. Consider the case of a NEW instruction

from label lb. The abstract semantics for A(callee) creates the inside node n4 ,

while the abstract semantics for A(m) creates the inside node n As

a result, some nodes appear in both "E# and 7- but they have the context c

in the first state and c©[ip2i] in the second one. Therefore, it is generally not

possible to compare the abstract state 7# and the result of the inter-procedural

combination of abstract states.

2. The function interproc# does not work for the abstract states 2# that corre-

spond to dates inside the execution of A(m) because these states might have

a stack with more than one frame (A(callee) might contain some analyzable

CALLs).

The first problem can be solved very easily by processing 2d to adjust the context
of the nodes appearing inside it: context c will be turned into c([ip2i]. To this

purpose, we define the conversion -y as follows:

- ((n, c)) = (n, c(-[zp2J])

Similar to a(d) and 3, y propagates deep into the structure it receives as argument.

If we use -y(2,d), instead of , into the inter-procedural combination of abstract

states, all nodes have the right context and we can do the desired comparison.

We solve the second problem by defining a version of interproc# , called interprocd,

which is very similar to interproc#, but does a more general processing for the stack.

Figure 4-14 presents the formal definition of interproc. It uses the same auxiliary
functions mapping and simplify which were present in the definition of interproc#.
However, instead of combine#, it uses the auxiliary function combine# from Figure 4-

15.
The function combine# is able to deal with abstract states whose stack

J#ale might have more than one frame. All the stack frames are projected through

100

combine#: State# x State# x Mapping# -+ State#

combine#((I#, o#, [L#], S#, U#), (Ic
let 1# =1# U I#~ue~'

#f =0# U 0#e['

L#: J#iee [1'

S#= S# U P'(Sciee)

U2 U# U P'(Uciae,) i

(I#2 , 0# [L#], S#, UT#)

Q 0# J# S U# 11), /') =allee~ callee I callee, 'calleec caL eeI~[

where

U
(n1,f,n2)EIcallee

(p'(ni) \ A) x {f} x '(n2)
c~allee [I0

L#])[p']
Lf [']

= U (,'(n) \A) x {f}
(nf,nL)EO~cle

= [Lii' ,L [']
= A v .'(L# (v)), Vk E {0, 1, ..

Figure 4-15: Definition of function combine#

As we did not encountered the final RETURN
variable VR that stores the result of the callee
frame(s) from the callee. Instead, we compute
state by adding L#, i.e., the abstract state of the
bottom) of Jeclle [P']: J2 - (4ialee[P']) ([L#].

of A(callee) yet, we do not set the
and do not throw away the stack
the stack of the resulting abstract
local variables of m, at the end (i.e.,

Suppose we have a proof that

#k (# (caeek , callee, [P 2),

dcalleek 22, k Vk C {0, ... , 2 } (4.21)

We introduce the following notations:

= interproc#(, - lb 2i, callee, kp 21)

To save some space, we also use the notation d' idcalee,2u. With this notations, if

101

x {nL}

. ,l}

=

(J#e*, = [L#,..

P'/:

(J#11e = [L#,. Lf])[p-'] =[L#[p'], .. L# [p']

we put k = 2u in Equation 4.21, we obtain E # , where
-I - U4dlWhr

Ei =(1#, 0# , [L#,,,, iSU
'dl, - 4%, 4 ,,% ,ca e, L , , IT# ,\ U~g

(/J# Q #,]L, Q# TT#\

The abstract semantics transfer function for the RETURN which finishes A(callee),
has two steps: it first alters the abstract state by appropriately setting vR and throw-
ing away the stack frame of the callee; next, it applies the function a(ip 2 i) to the
state produced by the first step. Suppose the RETURN instruction is "return v".
The first step constructs the following abstract states:

7 = (I#, f, [L# vR + Lee Sd#
a = ' (I d,, 4' ,% , v Acal t ee, d ,(V)]# , UggUi,

Obviously, Bd - B-d, implies Ea I Bf. As (ip 2) is clearly monotonic, we obtain
the following inequality:

p n (ip24)(3f) (4.22)

By the definition of , #(p2 2)(Bf) is simply : the conversion aoip 2i) is
the remaining part of the abstract semantics transfer function for a RETURN inside
A(m). The other term of the inequality is very familiar too: due to the way the
abstract semantics of A(callee) processes the final RETURN, and to the definitions
of interproc# and interproc, we have that:

7# = interproc#(, 13,dcaiic,2 u+i, lb2 i, callee)

= nterproc#(7# , #(Fjdctiee,2u+i), lb2i, callee)

Suppose we have a proof that

c(ip 2i)(interproc#((,, ' 'I e lb2 i, caee, [p 2) i 4.23)
interproc# 2 =# d 2+1, 2I, callee, [] (

Combining the last relations with Equation 4.22, we obtain the desired inequality

E: interproc#(- 2 , 1b2i, callee,[)'P2i±1 - -' 2 , 2idcaIee 2 u+I 'lb ,cae,[1

which finishes the proof of Equation 4.17, provided that we are able to prove Equa-
tion 4.21 and Equation 4.23. We prove Equation 4.21 in Subsection 4.4.5, and Equa-
tion 4.23 in Appendix A. l

102

4.4.4 Properties of the Node Mappings

In this subsection, we study the properties of the mappings internally used by the
functions interproc# and interproc#. The results we obtain are used in the proofs of
Equation 4.21 (Subsection 4.4.5) and Equation 4.23 (Appendix A).

Lemma 17. Consider a CALL instruction at label lbe, that might call the method
callee, a date d E Date, a context c E Context, and two abstract states -#, 3#ii 6
State#. Let p be the mapping obtained as the least fixed point of the three constraints
from Figure 4-11. Then,

Vn, p(n) # 0 - n C LNode# U PNode#

Proof: Although the proof is very easy, it illustrates a powerful technique that we
use in future proofs.

A possible algorithm for computing the least fixed point of a set of constraints is
Chaotic Iteration [16]. This algorithm works as follows:

1. Start with the smallest possible mapping, po = 0.

2. Iterate till no longer possible: pick one applicable instance of a constraint that
can extend the mapping, and apply it. The (k + 1)th iteration extends Pk into
a strictly bigger mapping pk+1, Pk+1 D plk-

3. When no constraint can extend the mapping, stop the algorithm. The mapping
at that moment is the result of the algorithm.

It is a classic result from the program analysis theory that if the constraints are
monotonic (as in our case), the Chaotic Iteration algorithm terminates and its result
is the least fixed point of the constraints. Therefore, p can be obtained by a finite
sequence of applications of the constraints. If we prove by induction on the iteration
index k that each mapping Pk satisfies the property from the text of the lemma, the
last mapping, i.e., p, satisfies them too.

The induction proof is trivial: the initial, empty mapping satisfies the desired
property and each application of a constraint creates new mappings from a param-
eter node with context, (Constraint 4.18), or from a load node with context (Con-
straint 4.19). E

Lemma 18. Consider a CALL instruction at label lb, that might call the method
callee, a date d E Date, and two abstract states =#, -#e G State# such that

" no node appears in both E# and # , andcallee

* the parameter nodes that appear in B-7#ee are only the nodes from the set
ParamNodes#(callee, c), where c E Context.

103

Let

1 = mapping# (, -callee ,lbc, callee, c)

P2 = mapping#(a(d)(c#), c(d)(B*iiee), lbc, callee, a(d)(c))

where afd)(c)= C2 if c = d : C2
c otherwise

Let , 1 and P2 be the mappings computed internally by the two applications of mapping#,
i.e., the results of the first step of the algorithm from Figure 4-11. These mappings are

defined as the least fixed point of the three constraints from Figure 4-11; P' is obtained

by enlarging p1 to contain the pairs (n, n) for any node n that is not a parameter node;

similarly for p'. With these notations a/(d)(p1 i) C P2 and a!(d)(p') C p' where

a(d)(p')= {(oz(d)(ni), a(d)(n 2)) I (n1, n2) E p'}

Note: The two conditions that we imposed on 3# and 'E*# are not hard to meet.

We'll use this lemma only with E# = ,# = 1(3) and c =[ip2]. These
abstract states clearly use disjoint nodes: ip 22 makes the difference. Also, all the
parameter nodes from 7(22,d) have the context [ip 2 d1.

Proof: All we have to prove is a(d)(pi) C P2; the second relation is an easy impli-
cation of the first one.

As we explained in the proof of Lemma 17, we can compute p, and P2 with the
help of the Chaotic Iteration algorithm that iteratively applies constraints till a fixed
point is reached. Consider the computation of p': we start with an empty mapping

y1,0 = 0 and apply a series of constraint instances till no further progress is possible.
Let P1,k, k E {0, 1, ... , z} be the successive mappings that the algorithm constructs.

We prove by induction on k that, if we start with P2,o = 0 and apply the same
constraint instances, one by one, in the same order, but this time projected through
a(d) (i.e., n becomes a(d)(n), I# becomes a(d)(I#), etc.), we obtain the mappings

P2,1,. . , P2,k,. . , P2,z that respect the condition a (d)(pi,k) C 12,k, 0 < k < z.
The initial step k = 0 is trivial because both mappings are empty. For the

induction step, we suppose a(d)(pi,k) C P2,k and we prove that the same relation
holds for k + 1. We do a case analysis on the type of the constraint that we applied
for extending P1,k into ltl,k+1-

The constraints 4.18 and 4.19 are easy to deal with: we simply apply the same
constraint instance, but this time everything is projected through a(d). For brevity,
we skip these two cases.

The most difficult case is that of Constraint 4.20. Consider the nodes n1 , n 2 , n3,
and n 4 , and the field f such that the precondition of Constraint 4.19 is satisfied. The
constraint extends P1,k by mapping n 2 to

M = p1,k(n4) U ({n 4 } \ ParamNodes#(callee, c))

If the constraint can be applied for P2,k, for the same nodes but projected through

104

a(d), then p2,k will be similarly extended by mapping oz(d)(n 2) to a(d)(M) and, with
the help of the induction hypothesis, we ultimately prove that a(d)(Pi,k+1) C kyk+1-

For convenience, we use the notation n' = a(d)(ni),i E {1,2,3,4}. To finish
the lemma, we have to prove that if the precondition of Constraint 4.20 is valid for

2 # # it is valid for n' n' n' n' a(d) (I#) a(d)(O,O#), too.fll, n2 n3 '4 callee'I callee' it1 1, 2' 3' 4 \/calleel' 7 caeI
As Constraint 4.20 was applicable, we have that

1. (n1, f, n2) C _,Uee and (n, f, 14) E ' 711ee;

2. ((il,k(ni) U {ni l (Pil,k(n3) U {n3)) \A f# 0;

3. The predicate P(ni, n3) ="(n $ n3) V (ni E LNode#)" is satisfied.

Projecting the first condition through a(d) is trivial: (ni,f, n2) E O#llee implies

(n', f, n') E a (d)(Ofiene), etc. We can combine the induction hypothesis and the
second condition to show that ((P 2,k(n1) U {'12 (P2,k(n') U rI'}))\K # 0. Showing
that the predicate P(n'i, n'), the last part of the precondition, is satisfied is more
delicate. We have two cases:

1. If ni C LNode#, then, as the a(d) conversion does not change the type of a
node, the same relation is true about n' and P(n', n') is trivially satisfied.

2. Otherwise, ni V LNode#; as P(ni, n3) is valid, ni # n3.

(a) If n3 E LNode#, as nodes n and n3 are from disjoint sets, n'1 and n'
are from disjoint sets too, and hence different. Once again, P(n', n') is
satisfied.

(b) If n3 E PNode#, suppose n'1 = n'. Thus, n E PNode# too. As all the
parameter nodes from L" ee have the same context c, n'/ n' implies

1 = 123. Contradiction! Therefore, n' # n', and the predicate P(n'1, n')
is satisfied.

(c) Otherwise, if n3 V LNode# U PNode#, by Lemma 17, P2,k(n3) = 0. There-
fore, Condition 2 becomes:

(Pi,k(ni) U {1i n (A1,k(n3) U {n3}) = /1,k(ni) n {n3}

As the previous intersection is non-empty, n3 E P1,k(n1). We already sup-
posed that in this case, n V LNode#. If n V PNode#, by Lemma 17,
12,k (ni) = 0, and the previous intersection is empty. Contradiction! There-
fore, n is a parameter node. Let's note that the only constraint that can
add mappings for a parameter node is Constraint 4.18. Furthermore, this
constraint adds only mappings from a parameter node from -# to a
node from 7#. As E# and Et do not have any common node, a pa-
rameter node from Eee, such as ni1, cannot map to nodes from =-e .

Contradiction with n3 E I,k(ni). Therefore, this case is impossible.

105

In conclusion, the third part of the precondition is valid too when projected
through a(d) and so, Constraint 4.20 can be applied for P2,k too. So, if z is the
iteration when the computation of pi finished

a(d)(pi) = a(d)(pi,z) C- P2,2 C- P2

and the proof of 18 is complete.

Notations: We introduce two new notations. If d c IDaiie is an interesting date
for A(callee), then let p' be

ma ==ppin,# (2E d lb~i callee, ['p2J)

The computation of mapping# (Figure 4-11) has in two steps: in the first step, we
compute the least fixed point of the three constraints from Figure 4-11. Next, we
extend the result of the first step to obtain p'. Let Pd be the result of the first step.
The relation between is [L' and Pld is:

P ' (n) if n = n P~l e~ ,i s(n d4(n if eei, P2 (4.24)d /(n) U {n} otherwise

Lemma 19. Consider the dates d, = idcallee,21 and d2 = idcallee,2l+1 (where 0 < 21 <
21 + 1 < 2u + 1). Using the convention of this section, let P d, and lid be the mappings
computed for date d1, respectively d2 :

' =.1 mapping#B(, =# 1 , lb2 i, callee, [ip2])

p'd2 = mapping ,d 2 lb2 i, callee, [ip2])

Using the previously introduced notations, p' and p' are the extended version of Pi
and pd2 -

1. If the instruction executed in the abstract semantics transition from d1 to d2 is
not a RETURN inside A(callee), then , C Pld2 and -d1 p'

2. In the case of a RETURN inside A(callee), we have a "cosmetized" version of
the previous relation: cY d)(l 1) G lid2 and a(d)(i',) C p',, where d is the date
when the corresponding CALL was executed.

Proof: The first case is very easy: as the abstract semantics maintains the sets of
inside/edges in a cummulative way (it just extend them with new elements), all the
applications of the Constraints 4.18, 4.19 and 4.20 at date idcaiee,2i, are still possible
at date idcallee,2l+1 and so, P21±1 contains all the mappings from l21: P21 C P21±1.
Obviously, t'l C ['2ii, too.

In the case of a RETURN inside A(callee), let's notice that the matching CALL
is inside A(callee) too and therefore d > ip 2i. We apply Lemma 18 and notice that:

106

" a(d)(*) = # because, as ip 2i < d, none of the nodes from contains d
in its context.

" As cz(d) works at the head of a context and y works at its tail, they commute
in a nice way: a(d)(7y(d2 = d, -(a(d)(2d,))n - -2, 1) -,2 '
the processing associated with a RETURN inside A(callee) also supposes some
modifications to the stack. However, as the mapping construction uses just the
sets of edges from the callee, in this case we can consider them to be equal.

" a (d)([ip1) = [ip2 j

This completes the proof of Lemma 19. E

Lemma 20. Consider an interesting date of A(callee), d c IDaiee, and, with the
previously introduced notations, the corresponding mapping Id If na is a node of the

form na = Y(nb) and 3n, G Node# such that na G p(nc) (i.e., (n, na) G p), then
e#(Ed)(na)-

Proof: Using the same idea as in the proof of Lemma 17, we have that the mapping

Yd is the limit of an increasing chain of mappings Pd,o C Pd,1 C ... Pd,z = Id that is

obatianed by applying a finite series of constraint instances. We prove by induction

on k that any Pd,k, including the final one, which is Pd, satisfies the property stated

in the lemma.

Initial case: k = 0. The empty mapping trivially satisfies the property.

Induction step: k - k + 1. We do a case analysis on the constraint applied in

iteration k. Constraints 4.18 and 4.19 are irrelevant because they create mappings

toward nodes from E that cannot have the date ip 2i in their context and hence,'P2i'
cannot be of the form -y(nb). The relevant case is that of Constraint 4.20

It is worth examining only the nodes that are now targeted 12 for the first time

by the mapping. For the other nodes, the property is true by the induction hypoth-

esis. Using the node notations from Figure 4-11, after we apply the constraint, n 2

is mapped, in addition to its previous mappings, to n 4 (if n 4 is not a parameter

node) and to the nodes that n 4 was previously mapped to, i.e., the nodes from the

set Pd,k(n4). The only node that might become targeted now is n 4 . We prove that

e#(E3d)(n 4). There are two cases:

1. If PId,(n3) $ 0, by Lemma 17, e#(7#d)(n3).

2. Otherwise, pd,k(n3) = 0, and we have two subcases:

(a) If n, $ n 3, then, as (Pd,k(n) U {n 1}) n (I'd,k(n3) U {n 3}) h 0, we have

that n 3 C pd,k(ni). As n 3 is a node from --# it is of the form -y(n) and,

by the induction hypothesis, e#(7#d)n3).

121.e., those nodes na such that exists a node nb that is mapped to n,.

107

(b) If ni = n 3 , then n3 trivially escapes because it is the source of an outside
edge (Invariant 2).

In all cases, e#3d)(n3). As escapability propagates over the inside edge from n3

to n 4, e#(3d)(n4) too. This terminates the proof of Lemma 20. El

Lemma 21. If n is not a parameter nodes, then n E p'd(n),Vd E IDcaiee.

Proof: Obvious by the construction of p' (Equation 4.24). El

Corollary 22. Vd c IDaiee,n LNode# U RNode# - p' (n) {n}.

Proof: Direct application of Lemma 21 and Lemma 17. 0

Corollary 23. Vd E IDcaiee, Vn that appear in k-,#3,dMk - 4(n) -- {n}-

Proof: As n appears in 3d, and is captured there, it cannot be a load or a parameter
node. We directly apply Corollary 22. 0

Corollary 24. For any interesting date of A(callee), d E IDcallee, if n' = y(n) and
n' does not escape in the state 3,d (ie., -1eBd)(n')), then no other node but itself
is mapped to n': {ni I n' E p'4(ni)} = {n'}.

Proof: Direct application of Lemma 21 and Lemma 20. El

4.4.5 Proof of Equation 4.21

As a quick reminder, we want to prove that

Vk E { , 2}, if d = idcallee,k then
7# E4,7 = interproc2(7(2) lb2i, callee, [ip 2d)

Proof: The final step in the definition of interproc# (Figure 4-14), is a call to
simplify#. However, remember that simplify# removes only those load nodes and
outside edges that cannot be produced by the abstract semantics. Therefore, if we
are able to prove Equation 4.21 in the case when interproc# does not call simplify#,
we also prove it for the "real" definition of interproc# because none of the load node
and the outside edges from =- are removed by the simplification. For the rest of
the proof of Equation 4.21, we ignore the existence of simplify#. Hence, using our
previous notations

-# W
3,d - 2,d)

(# # [L# U#
=P2i 'P2i ' "P2i 7J P2i ZP2A p2i

108

we have the following definitions for the components of zE4:

I* = I* U 1I '

S4d = S. u p'D(SId)
U4d = U42 ujp'(U)

Note that by the definition of J, its topmost element, L4# is always the projection

of the topmost element of J#a, L# = 7(L#

3,7 4,d- 2,)

We do a proof by induction on k.

Initial case: k = 0, d = idcaice,o. In this case, iP 22 , iP2i + 1 and d are consecutive

interesting dates for A(m): A(m) executes the CALL that starts A(callee) in the

transition from date iP2i to date ip 2 i + 1, and next, at date d = idcaiee,O, it starts the

execution of the first instruction of callee. By the definition of the transfer function

.# in the case of a CALL instruction (Figure 4-5), we obtain

= 7# = (I# , Q# [P -4 L# (v)}o<w<j , L# I S#, U#)

The abstract state at the beginning of A(callee) isThe bstrct sate2,d

12, = (0 , , [{P ' nca1lee,wJO}W J 1 , 0 0

As the set I1# is empty, 1#$ - 7(I#) is empty too, and 1#d = I. Similar relations

can be obtained for O# S and Ua. As L#(v) C /'(nP ,),0 W < J4,d) "4,d -4,d zp 2 (a) -0callee,w'

by Constraint 4.18 from the definition of mapping#, J# E J4 . As a consequence,
#l # 13

~d -~4,d

Induction step: k - k + 1. The case of an odd k, k 21 + is trivial because the
abstract states do not change when moving from date idcallee,2I+1 to date idcal1ee,2(1+1).
So, we focus on the case of an even k, k = 21. To save some space, we denote

dl = idcallee,2l, and d2 = idcalee,2l+1. The abstract states =# and 22d2 are obtained

from Eff, respectively 2# with the help of the transfer function [.#, which might
use the auxiliary function [.,.]. We do a case analysis on the type of the instruction

13As mapping# computes the least fixed point of three constraints out of which only Con-
straint 4.18 is applicable, we can even prove they are equal. However, this is not necessary for

our proof.

109

from the transition from date dl to date d2.

Lemma 19 simplifies a lot of our work: as p' P in each case, we need to
examine the things that actually change in the transition from dl to d2, i.e., the
new inside/outside edges, the new started thread nodes, the new nodes passed to
unanalyzable CALLs, and the variables whose value changes.

A COPY instruction "vi = v2" modifies just the value of the local variable vi from
the top-most stack frame, as follows: L*(v) = L# (v2) and L*d2 (vi) = L2i(v2)

(which immediately implies L*d2 (v1) = L di(v2)). By the induction hypothesis

L#(v2) C Lf4(2 '1 (2L~v 2CLd (V2)(V2)

Furthermore, as ' 11'2 and L#d2(vi) = L3dl(v2), we have that

P'1(L d1(v2)) C d'a2 (L d(v1) - L4# 2 (v1)

Therefore, L#(vi) L# (v 2) C L#d 2 (vi), and, by consequence, E -G4d2-

The case of a NULLIFY instruction "vi = null" is trivial: as L(vi) = n

L2d 2 (vI) = {nnu}, and rnull E P'd2(nnull) (Lemma 21), we obtain

L#d2(vI) = 'a2(L#3,2(v)) = p' 2 ({mnu 1 }) D fnu11 } = L2(vi)

By consequence, F# 4
~d2 - -4,d2*

A NEW instruction "v = new C' changes the value of the local variable v and adds
a few inside edges. The abstract semantics for A(callee) creates the inside node nic
while the abstract semantics for A(m) creates the inside node ni ,c© a. We study
first the value of the local variable v:

L4d 2(V) = 3'Ld2 (V)) = ' 2 (Q (d 2 (V))) = [62(fnc

As ni , E p'a2(nb, C(QP) (Lemma 21), we have that

L4d 2 (v) 2 { ,c , } = L# (v).

The abstract semantics of A(m) extends I2 with the following edges:

{n ~cey, } x fields(C) x {nun,c[ip}

110

The same edges appear in '1fd2 14 and, as n E pt'§ (n), Vn (Lemma 21), those edges

appear in I4 too. Overall d2
4,d2' Overall, -El -

In the case of a STORE instruction "v1 .f = v2", the abstract semantics of A(m)
extends I with the following edges:

E = (L#(vi) \A) x {f} x L#(v 2) C (p',1(L#1(vl \ x {f} x #'l(L3d1(v2)

The inclusion is due to the fact that L# L L3d1 [[1] by the induction
hypothesis. As pi (n) = {n},Vn E M (Corollary 22), we can prove that p'l(A) \A'=

[t (A \ K) \ K for any set of nodes A C Node#. Therefore,

E C (p'l(Ldl(vI) \AJ) \ A) x {f} x [t'(L dl(v2)

Furthermore, by the processing of the STORE instruction in the abstract semantics
of A(callee),

(Ldl (vI) \A() x {f} x L d(v2) '3,d2; hence,

,'d2 4(V1) \A) \A) XI {h X P'2 a(2 sa('2 s

As p' G ,', we have that E C I4 I3 C I4d2, and finally, # F d2-

In the abstract semantics of A(m), a THREAD START instruction "start v"
extends the set of started threads as follows: S = S# U L#(v). As always, it

is sufficient to study the newly started threads, the set Ld(v). By the induction
hypothesis, L#(v) C Ldlv ='l(Lgd(v)). On the other side, in the abstract

semantics of A(callee), L# (v) C Q2#d2 and so, L# (v) C S3#d2. Combining these
facts with -'§i d p'2 (Lemma 19), we obtain:

Li(v) d p'l(L dl(v)) C P'1l(S 3 d2) C p1' 2 (S33d 2) C S4#,2

This proves that S -* and finally, _ _ -
Cd S4A and fial -4_ d2*

An unanalyzable CALL "VR - v00 .s(v1 ,... , v-_)" modifies the set of nodes passed
as parameters in an unanalyzable CALL and sets the local variable vR to point to a
corresponding return node. Using the same ideas we used in the case of THREAD
START, COPY and NEW, we can easily prove that -# El 2-

An analyzable CALL is very similar to a series of COPY instructions: we copy
values from the variables that are passed as actual arguments to the corresponding

22 contains the edges from the set nc x fields(C) x {nnull,c} and the conversion y adds
the missing iP 2j at the end of the context c.

111

parameters. The only difference is that the destination of these transfers (the param-
eters of the called method) are now in a newly created stack frame). As the other
stack frames are unchanged, we can use the same ideas as in the case of COPY to
prove that =- - -L-z

d2- -4,d2~

Consider the case of a RETURN inside A(callee) "return v". We can split this
instruction in two parts:

1. Pop off the stack the state of the local variables of the called method and set
vR in the stack frame of the caller.

2. Eliminate dc from the head of the node contexts with the help of the a(dc)
conversion, where dc is the date of the corresponding CALL.

If we ignore the conversion a(dc), what remains from the RETURN instruction is
very similar to a COPY and we can use the same ideas to prove that =# E =#
As a(dc) is uniformly applied in the abstract semantics for both A(m) and A(callee),
and, by Lemma 19, a(dc)(p'i) C P'42, it doesn't harm our proof. We examine only
the sets of inside edges. The proofs for the other components of the abstract states
are similar.

In the abstract semantics for A(callee), I# = a (dc)(I#) and so, I =
2, d2 2,dl 3,d2

a(dc)(Igdi). As ce(dc)(p') C A'd2, we can write the following chain of relations:

4, d2U3,2[P'd2 U 0(3#, I))(I)it '2
SI #U e(dc) (I#a (d '1

Also, as no node from has d, in its context (because ip2 i < dc), a(dc)(I) =#
Using the definitions, we can prove that

a(dc)(I# j)[a(dc)(p_'ji] a(dc)(I# jgpil

We continue the previous chain of relations:

I#d2 1 U a (dc)(Idl[p'a1)
= a(dd)(I U 3,d1[I' 1]) a(dc) is irrelevant for I
= a(dc)(4 #d) Construction of d1

D a(dc)(Ig) = I# Induction hypothesis

We have proved that I# C 1# The case of the other components of an abstractd2 - 4, d2'

state is similar. We finally obtain -# 4L,2-

Finally, we arrive at the most difficult case: the case of a LOAD instruction "v2 -

v1 .f' having the label lb. The proof for this case directly uses the two yet unused
constraints from the definition of the function mapping#, i.e., Constraint 4.19, and
Constraint 4.20 (Figure 4-11). The processing for the LOAD instruction changes the

112

value of the local variable v2 and might add new outside edges. In a first phase, we
prove that L*(v 2) C L d 2 (v2); we examine the outside edges later. Let

B {n E Node# 3ni E L*(vi) \ A, (ni,f, n) c I}

L = L } if 3ni E L* (vi) \A such that e#(E#)(ni)
0 otherwise

With these notations, L*(v 2) = B U L. Consider n E L4 (v2). We want to prove
that n E L#d2 (v2) and hence L(v 2) C L4d 2 (v2). We have two disjoint cases: n E B
and n : B.

Case 1: n E B. By the definition of B, 3ni E L(vi)\K, such that (ni, f, n) E I.
By the induction hypothesis, L*(vi) C Ldl(vi) = p,(L# '(, (-y(L-d(v1),

which implies 3n3 E L2# 2 (vi) such that ni E p 1 (7(n3)). As pt'(n) = {n}, Vn c K,
and ni V K, n3 V K either. Therefore, ni3 E L#d 2 (vI) \ K.

As I 1JT I4 1 =I:* U I# 1[p,] (we used the induction hypothesis again), the

relation ('n, f, n) E i generates two subcases:

Case 1.1: (ri1 ,fTn) E '3dL = ('2 d1))[J41]. In this case, we have two nodes

714 ,n 5 , such that

(n4, f,ns) E 12 1 (equivalent to ('y(n 4), f, y(ns)) E 13#d)

(ni E p'1(-x(n4)) \) A (G E p('Y(n5)))

We have two sub-subcases:

Case 1.1.1: n3 = n4. In this case, in the abstract semantics for A(callee), n3 E
L2#l(v1) and (T#3,f, Tis) E '2d1. By the processing of LOAD, n 5 C L#d2(v2), which

implies i(is) E L3,d 2 (v2). We have:

Ti E p'g1 ('y(Tis)) p jai(Li 2 (v 2)) C p'/ 2 (L3d 2 (v = L

To prove the second inclusion, we have used Lemma 19: /', C p'2

Case 1.1.2: n 3 o n4 . To save some space, we denote n' =(T 3) and -'y = (n 4).
As n3 : n 4 , obviously n' = 7(n3) ' 7Y(n 4) = n'-

First, we prove that e#(E2dl#(T3). Suppose for the sake of contradiction that

,e#(F)n3). By Corollary 23, ' 1 (n') = {n'} and by consequence, ni = n'. So,
p'a contains a mapping from n' to ni = n'. As n' : n', n' C pd1 (n'). By Lemma 20,
e#(3,di)(Tn'). This contradicts our assumption that ,e#(2d1T3).

The abstract semantics for A(callee) introduces the outside edge (n3 ,f, nrl) c

0 #2 and puts v2 to point to the load node nf' (and possibly to some other nodes):

113

n3 y(n3) fnL C'1'2

V1

L13, d2
4n=Y(n4) f -y(n5)

(existent mapping

---------- ----- --------- new mapping

f
d2

V1 n

Figure 4-16: Graphic representation of Case 1.1.2 for a LOAD

n& E L# (v2). Accordingly, (n',fr4iC[]) G O3d2, and n, E L#d2 (v2).
Figure 4-16 presents a graphical representation of this case.

Both ' 1 (n') and p' I(n') contain the node ni g K. As ' I(n') C pdi(n') U {n' }
and a similar relation is true for n', we obtain

(Pd 1(n') U {n' 1) n (p'd1(n') U {n') \ A D {ni} # 0

As Pdl C /-Q2, the previous relation is also true for the mapping pUd2. Furthermore,
we already know that n' # n'. Hence, by Constraint 4.20, n E pLd2(h, Ca[iP2]) C

d'd2(n ,c2[iP2]) (note that as it appears in Ed#, n V ParamNodes#(callee, [ip2])). We
can extend this as follows:

n 4 (n p' d1,c'P2J]) C- pI2 2(2 - L#*2(2
lb , CL ,d2(V2 = 4,d2 (2

Observation: We cannot apply Constraint 4.19 because (ni,f, n) is not necessarily
an edge from I ; all we know is that it exists in I3d1 [i# -

Case 1.2: (ii, f,n) V I3d1[#'dl]. In this case, (n 1 ,f, n) E c To save some space,

we denote n' = 7(3). As -# contains only nodes that are created before ip2 i, the3 2P 2i
context of ni does not contain iPs. Hence, it is different from n'. As ni E '4i(')
and n i # n', ni E Pd1(n'). By Lemma 20, e#(- -#)(n'3), which is equivalent to

C# (-22,di) n3).
In these circumstances, the abstract semantics for A(callee) creates the outside

edge (n 3,f, r4c) and puts v2 to point to the load node nr4. As a consequence,

(',Lf,) E 0 2 and n [i, E L#d2 (v2). Figure 4-17 presents a graphical

representation of this case. By Constraint 4.19, n E Pd2(n4,c@[ip2]). We can develop
this as follows:

E [pd2(?2lb,C@ria 2 i]) C Pd2(n2bC©aiP2 J1) C P 2 (L$d2 (v2) - L4d2(V 2)

114

nl3 = y(ri3) f nLcqPi

V1 3, d2

f
3 -d2

V1 ni n

-~ existent mapping

new mapping

Figure 4-17: Graphic representation of Case 1.2 for a LOAD

Case 2: n V B. In this case, n E L. Therefore, n is the only element of the set L,
i.e., the load node n. As L $ 0, there is a node ni E L*(vi) \A(such that

e#(7#)(ni). As in Case 1, by the induction hypothesis, L*(vi) C L#dl(v1), and we

finally obtain ETn3 E L d(vi) \K, such that n E p' 1 (-y(n 3)). To save some space, we
use the notation n' = 7

For the time being, suppose we have a proof that e#(dl-#)(n3) is true; we give

the actual proof later. Then, the abstract semantics of A(callee) puts v2 to point to
the load node nL. As a consequence, n = n E L#d2 (v2).

(Lemma 21), we have that n E /4 2 (L#d2(v2) L4# 2 (v2).

As n E P'd2(n)

In all cases, n E La,d2 (v2). As n is an arbitrary element of L#jv 2), we have proved

that L 2 (v2) C L4,d2 (v2).

A LOAD instruction also modifies the set of outside edges. More precisely, for

every node ni E Ld1 (v 1) \.AV such that e#(7*)(ni), the abstract semantics of A(m)
introduces an outside edge (ni,f, n) from ni to the load node n =n.

As in Case 2 above, n3 E L dl(V1) \Af such that ni c pi'(n') where n' 7(n3)

and e#(22dl)(n3) is true. Due to the processing done by the abstract semantics of

A(callee) in the case of a LOAD, (n', f, n) E 0 3d2' As n3 ' C/ 2(r3), and
n K, we obtain

(nifn) E (n'(r\) \) x {f} x {n} O3d2[A'421 C 04d2

This shows that the new outside edges are present in 0 4,d2. As a consequence, O0 C

Q)# and finally, 24,d2 -d2 - -,2

In all cases __ E 72 This ends our proof by induction of Equation 4.21, pro-
vided that we are able to fill in the missing part from Case 2 of a LOAD instruction.

115

D-

Proof of the missing part: As a quick reminder, we have to prove that, in
the conditions of Case 2, e#(22dl)(n3) is true. This is equivalent to proving that

e#(3s dl)(r') is true, where 'y (n3). Suppose for the sake of contradiction that

In Case 2, e#(-=)(ni), is true. Therefore, there is a path of edges from i# U O#
that reaches ni from a node from the following set:

N = ParamNodes#(m, []) U S# U U# U L# (vret) U RNode# (4.25)

The meticulous reader might protest that the definition of abstract escape predi-
cate (Definition 12) uses all the parameter nodes with context. However, the nodes
ParamNodes#(m, []) are the only parameter nodes that might appear in '-. Suppose
the nodes from the path are nP,1, np,2, ... , np, = ni (the index p stands for path), and
the edges from the path are (nP, , fy, nps) E I# U Q0.

Idea: In this proof, we use a technique that we used in the proofs of the invariants
that described the relation between the concrete and the abstract semantics. In those
proofs, using some "good" properties of an abstraction relation, we translated a path
from an abstract state into a path through the concrete heap. In this case, we use the
properties of p', to show that the aforementioned path exists inside 7#1' too. This
allows us to obtain a contradiction and conclude the proof. Instead of using the fact
that there is a single node that models a captured object, we use similar properties
of the node mappings: Corollary 23 and Corollary 24.

We prove by reverse induction on j that

VJ, ,e#(E)(rnj) A n J such that nr,, = 'Y(n)

Intuitively, the relation we want to prove tells that all the edges from the path are in
fact captured nodes from 1 (and so, the path exists in ':--#

Initial case j = 1. In this case, np,, = ni E p' 1(n'). As ,e#(1)(n'), by Corol-

lary 23, n, = n' = 7(n 3) and we obtain ,le#()ip,,) and (= n2 .

Induction step j -+ j - 1. The edge (np,,-1, fy_, n,) is an edge from

I 1 u O C I I#[p'] U ,, u 0 3d1['dildl di - ip2i 3, dldl '~ ,d11-

By the induction hypothesis In(such that n,,y(nd); as a consequence,
np,, is a node with ip2 i in its context and it cannot appear in an edge from

I #u O . If (npj_1,f r1,n,) E 0 #'1], by the definition of 0 3#d1li'd1]15

1 5For the outside edges, we project just the starting node, the target load node remains unchanged.

116

nr,j is a load node, which contradicts the induction hypothesis ,-Ie#(-,dl))(p,j).

So, it remains that (n,,_ ,npi) E 1*d4 d1[]. This implies the existence of
the nodes na, nb such that

" (na,f, nb) E 1 3,dl

" np,y- C P'di(n) \N, and

" n, 3 E P'41 (nb)-

As ,1e#(,,dI)(rpj), by Corollary 24, we have that nb = n,,. This implies

,1e#(E1)(nb) and hence, ,1e#(Bdl)(na). By Corollary 23, ra =p,j-1; there-

fore, ,e#(3dI)(npj-1). Furthermore, as na = npj_1 appears in I#$d1 - 1)

it is of the type y(n2_J). This completes our induction proof.

Now, remember that np,1 is a node from the set N defined in Equation 4.25. As it is
captured in 1, it cannot be a return node. Also, as we have not encountered the

final RETURN of A(m), L#(vret) = 0. Furthermore, as n,1 = (n(2), the context of

n,, 1 contains ip2 i and thus, n,1 V ParamNodes#(m, []). It remains that

n,1 I S# U U4

Suppose n,l c S#; the other case is similar. By the induction hypothesis of the proof

of Equation 4.2116, S C S# U S-3d1#p'1]- n, 1 cannot be an element of Si because

its context contains ip2 i. It remains that n[,1 E S3d[l1, i.e., n E 3 31di such that

n, 1 E i41 (n,,). As ,1e#(=3di)(rip,1), by Corollary 24, n,1 = nr. Hence, n,1 E S #dl-
Contradiction with -,e#(1l(i,1)

Therefore, e#(Edl) (n3) is indeed true.

4.5 Correctness of the Optimizations

We can use Corollary 12 and Theorem 13 to obtain a proof for Theorem 5, which we
stated at the beginning of this chapter.

Proof of Theorem 5: Consider we have an execution trace T and, inside it, an
activation A(m) of method m. Let G = oA(exitm) be the points-to graph that the
pointer analysis computes for the exit point of m. Suppose that lb is the label of a
NEW instruction executed by A(m); lb is either a label from m or a label from one
of m's callees.

We will prove that if ,-ea(G)(nf), then all the objects which A(m) allocates by
executing the NEW instruction from label lb can be allocated in the stack frame of

1 6Remember that all this proof is done in the conditions of Case 2 for a LOAD instruction from
the proof of Equation 4.21.

117

the instance of method m which is the "root" of A(m). Let 3 , be the abstract
state computed by the abstract semantics of A(m) for the end of A(m). By The-
orem 13, # E 3(G). From this relation, e#(E-,)(n[) - e'(G)(nfe). As

lb0 is captured in G, we obtain ,ie#()(n4). By Corollary 12, we can stack
allocate all the objects created by the NEW instruction at label lb. As our trace T
was arbitrarily chosen, this completes the proof of Theorem 5. l

The theorem we have just proved states that the stack allocation optimization
(Section 3.1) is safe, both when it is applied in its simplest version and when it is
enhanced through method inlining.

For the second proposed optimizations, allocation in the thread-local heap (Sec-
tion 3.2), remember that the condition for it was that on any reverse call path, the
inside node coresponding to the optimized NEW instruction, becomes captured at
some level. So, any object allocated by an execution of that NEW instruction has
the property that its lifetime is included in the lifetime of a method which transi-
tively called the method which allocated the object. As the lifetime of that method
is clearly included in the lifetime of its thread - which is the same with the thread
which allocates the object because navigating on the reverse call path does not cross
any thread boundary - the second optimization is safe too.

The correctness of the third optmizations, the synchronization removal (Sec-
tion 3.3) infers from the correctness of the allocation in the thread-local heap.

4.6 Analysis Precision

Using the invariants from Section 4.3, and the fact that the pointer analysis is a
conservative approximation of the abstract semantics (Section 4.4), we can describe
how the points-to graphs that the analysis computes models the heaps from a concrete
execution. Intuitively, the analysis has precise information about the objects created
at object allocation sites whose corresponding inside nodes are captured in the points-
to graph.

More precisely, suppose we have a points-to graph G = oA(lb) for the program
point right before label lb from a method m. Consider a concrete execution trace
that contains an activation A(m) for m, and suppose that at date d, A(m) starts to
execute the instruction from label lb. Let o1 and 02 be two objects created by A(m)
before d, by the NEW instructions from 1bi, respectively lb 2-

If ni, and nfi 2 are captured in G, then for each heap reference (oi,f, 02) from ol
to 02, there is an equivalent inside edge (nfb ,f, nlb,) in G from the inside node that
models oi to the inside node that models 02.

The proof for this statement uses the invariants from Section 4.3. As o is clearly
modeled by nr , and this node is captured, by Invariant 6, we have that 01 is captured
in A(m). Therefore, by Invariant 3, 01 is modeled only by n-. Similarly, 02 is modeled
only by nr{, and we can apply Invariant 4 to obtain the previous statement.

Similarly, consider an object o created by A(m) by the NEW instruction from
label lb, and suppose such that n, is captured in G. Using the invariants from

118

Section 4.3, we can prove that if o is pointed to by the local variable v, then nf is
pointed to by v in G. This result implies that if o is a started thread object, the set
of started threads from G contains nrb.

As the analysis has precise information only about the captured nodes, it is im-
portant to minimize the number of escaped nodes. In particular, it is important to
have a small number of unanalyzable CALLs. In practice, most of the unanalyzable
CALLs correspond to native method invocations. We can alleviate the effect of these
native calls by providing the manually constructed points-to graphs that model the
effects of the most common native methods.

4.7 Final Look Over the Proof

In this chapter, we proved the correctness of the optimizations enabled by the pointer
analysis. Our proof idea was to introduce an additional layer, the abstract semantics,
between the concrete semantics and the pointer analysis. First, we proved a few
invariants which showed how the abstract semantics models the concrete semantics.
Next, we proved that the result of the analysis is more conservative than the result of
the abstract semantics. Proving this result implied proving that the analysis transfer
function for a CALL instruction is more conservative than "stepping into" the called
methods (as the abstract semantics does).

Now, after we completed the proof, it is worth looking at how we used each feature
of the analysis and the abstract semantics. We used the definition of the analysis
transfer function when we proved the invariants which enstablish the link between
the concrete and the abstract semantics in Section 4.3. We used the definition of
the transfer function for a CALL instruction In Section 4.4. In particular, we used
the rules for constructing the node mapping from the inter-procedural analysis in the
proof of Equation 4.21: Case 1.1.2 of a LOAD instruction relies on Constraint 2.7
while Case 1.2 relies on Constraint 2.8. The fact that we have actively used all these
analysis components is a good mark for the analysis design.

The only thing that remained unexplained yet is the reason for using nodes with
contexts in the abstract semantics instead of plain nodes. Now, we can finally explain
it. Our proof relied on the existence of three layers - concrete semantics, abstract
semantics and pointer analysis - where each layer is more conservative than the
previous one. One of the things we had to prove was that the inter-procedural analysis
is a safe approximation of the abstract semantics which steps into the called methods.
In the first proof attempt, we used plain nodes in the abstract semantics. However,
while trying to do the proof, it turned out that in some cases the result of the inter-
procedural analysis was not "bigger" than the result of the abstract semantics. In
fact, both results were safe models of the concrete state, but there was no hierarchical
relation between them. This prevented us from using the invariants proved for the
abstract semantics to prove the correctness of Theorem 5. The next example presents
such a "problematic" case:

119

Example 6. Consider the following piece of code, where, for simplicity, we use inte-
ger labels:

0: void main() { 6: static Object callee() {
1: vi = calleeo; 7: v4 = new C;
2: v2 = new C; 8: v5 = v4.f;
3: vl.f = v2; 9: return v4;
4: v3 = callee(; 10: }
5: }

As this program has a single thread of execution, the only possible trace is the fol-
lowing one:

date label instruction to be executed
0 1 v1 = calleeo;
1 7 v4 = new C;
2 8 v5 = v4.f;
3 9 return v4;
4 2 v2 = new C;
5 3 vl.f = v2;
6 4 v3 = calleeo;
7 7 v4 = new C;
8 8 v5 = v4.f;
9 9 return v4;

10 5 end of execution

In the previous table, the label attached to each date is the label of the instruction
that the program starts executing at that date.

The abstract semantics of the only activation of the main method starts with the
initial state E', and sequentially processes the instructions from the execution trace.
Figure 4-18 offers a graphic representation of the most interesting abstract states.
The first instruction is a CALL to callee; the abstract semantics creates a stack
frame for callee and steps into it. The NEW instruction from label 7 makes v4
point to the inside node n7; in addition, is sets the field f of n, to point to the node
n,,ul that models the null references (Figure 4-18.a). Next, we load the field f from
nr, which is currently pointing to nmul, into the local variable v3 (Figure 4-18.b).

In the next instructions, callee returns nf to main, which sets its f field to
point to the inside node nj which corresponds to the NEW instruction from label 2
(Figure 4-18.c). Notice that as we do not do destructive updates, nj points to both
nneu and n. Next, callee is called again and it creates a new object, represented
by the same node n that represents the object created by the previous execution of
the NEW instruction from label 7 (Figure 4-18.d).

We arrived at the interesting point: after the abstract semantics processes the
LOAD instruction from label 8, v5 points to both nnull and nK. (Figure 4-18.e). This
is correct, but imprecise, because obviously the only value which can be loaded by
the LOAD instruction is null. The imprecision is due to the fact that the same node

120

v5 nnull

v4

vi Ti7

v2

v3

Stack

a. Abstract state

nnuli

v1 n

v2 ni

v3

Stack

c. Abstract state

v5

v4

v1

v2

v3

inuli

iti
ni2

Stack
e. Abstract state =#

0
0

-5
0

.5
S

v5

v4

Vi

v2

v3

Stack
b. Abstract state 3

0
0

-5
0

v5

v4

v1

v2

v3

nnul'

niT2

Stack
d. Abstract state E#

0
0

-5
0

v5

v4

vT

v2

v3

nnul

nii
Ti 7

ni2

Stack
f. Abstract state 4,9

Figure 4-18: Abstract states for Example 6

121

0
0

-5
0

.5
S

nnu1

~7

0
0

-5
0

i

models the two objects that the NEW instruction from label 7 created in the two
invocations of callee.

Now let's compute the result of the inter-procedural combination for date 9, i.e.,
using the notations from Section 4.4:

9g = znterproc27#, -2#9, 4, callee)

where interproc# is as previously but this time it works with nodes without context
and -# is the state computed by the abstract semantics of the second activation of
callee for its end, i.e., the date 9. It can easily be checked that -# is like :- except
that its stack does not have the frame for main. As there are no placeholders, -# is
simply the merging of the two states. Figure 4-18.f presents a graphic representation
of '4-.# As in Egg, v5 does not point to to ni, it does not point to n, in 4# either.

But v5 points to n2 in -9 So, -9 Et9. A

The problem in the previous example is that when the abstract semantics steps
into the second invocation of callee, the inside node it creates to model the object
allocated in the NEW instruction from label 7, "collides" with the inside node which
was created during the first invocation. As a result, the LOAD instruction reads
edges which refer to a different object. In the state EZg, produced by running the
abstract semantics on the second activation of callee, this problem does not arise
because the abstract semantics is not interested in the objects which were created in
the previous activations of callee.

This problem would not occur if we separate the nodes introduced for the current
instance of a method from the nodes introduced for its previous activations. Pair-
ing a node with the calling context in which it is created is a natural solution for
accomplishing this.

122

Chapter 5

Related Work

This chapter is divided in two parts. First, we present several pointer analyses, and
compare them with our analysis. Next, we investigate the much fewer correctness
proofs for pointer analyses.

5.1 Pointer Analyses

In the presentation of the related pointer analyses, we focus on three orthogonal
design parameters: heap modeling, flow sensitivity, and compositionality.

5.1.1 Heap Modeling

Modeling the heap, a potentially infinite structure, in a static analysis is an interesting
problem. Some analyses, including ours, model the heap as a points-to graph of
bounded size [6, 11, 26, 17, 7]. Other analysis do not use any graph at all: they
either work with a set of pairs of aliased heap paths, i.e., paths that lead to the same
object, e.g., [10], or use some other idea, e.g., [4]. In general, storing a points-to graph
requires less memory space than storing the set of aliased paths from it: by standard
graph theory, the number of paths is asymptotically bigger than the number of edges.
Also, the points-to graphs have the advantage of offering an easy to understand view
of the memory data structures.

As the number of objects that are created in the concrete execution might be
unbounded, it is necessary to summarize many objects into a single node. Historically,
k-limiting [14] is the first class of summarizing techniques. k-limiting uses a bound,
k, on the maximum acyclic path length in the heap: objects that are reachable from
the program variables along paths of length at most k are individually modeled by
distinct nodes, while all the other objects are merged into a single summary node.
This technique has several disadvantages:

e The number of nodes contained by a heap structure of depth k is exponential
in k. For example, a complete binary tree of depth k contains 2k - 1 nodes.
To maintain an acceptable number of nodes, k is usually chosen to be very

123

small, but this choice significantly limits the amount of information that can be
retained.

* Summarizing all nodes deeper than k in a data structure ignores hints provided
by the program structure. Some researchers [6] believe that some of the infor-
mation provided by the data structure, which are lost in k-bound techniques,
are more relevant than the length of the accessibility path.

In [6], Chase, Wegman and Zadeck proposed the alternative object allocation site
model. This model is based on the assumption that objects allocated by the same
statement in the program are likely to be manipulated in a similar way. The authors
assume that this similarity is more important than the similarity that might exist
between objects that are below the k depth. Being directly related to the structure
of the program, it is expected that the results of the analysis using this model will
be easier to understand and use. Our analysis uses an extended form of the object
allocation site model, which contains, in addition to the standard nodes associated
with the object creation sites, special placeholder nodes that allow us to have a
compositional analysis.

Deutsch [10] proposed another model for going beyond the k-limiting techniques.
His model does not model the heap as a graph of nodes. Instead, he represents the
paths in the heap as regular expressions. In some cases, this model improves the
accuracy of the analysis of recursive data structures that are accessed in a regular
way.

5.1.2 Flow Sensitivity

Some pointer analyses [22, 2, 4] are flow insensitive: they do not consider the order
of the program statements and compute a single result that is valid for the entire
program, or one result for each method. By their nature, the flow insensitive analyses
are similar to the type systems: they both compute results that are valid throughout
an entire scope. Therefore, it is natural that they are often expressed as sets of typing
rules.

The advantage of these analyses is that, similar to the type systems, they have
small memory consumption, and are very fast in practice. They are the only pointer
analyses that are known to scale well. Steensgaard's analysis is almost linear in
practice [22]. Heitze and Tardieu [12] obtained a finely tuned implementation of a
version of Andersen's alias analysis [2] that is able to analyze programs of millions of
lines of code in seconds.

The disadvantage is the loss of precision. Unlike the type of a variable, which
does not change during the execution, the heap is likely to vary significantly as new
objects and references are created, and older references are deleted.

More sophisticated pointer analyses [6, 11, 26, 17, 7j, are flow sensitive: they
compute a result for each program point. At least theoretically, they are more precise
than the flow insensitive analyses, and are able, in some cases, to handle destructive
updates in order to increase their precision even more. This precision comes with a

124

cost: the flow sensitive analyses use more memory than the flow insensitive ones and
are known to have scalability problems. We believe that as machines become more
and more powerful, the flow sensitive analyses will be applicable for bigger classes
of programs, and the new high-level applications of pointer analysis, e.g., program
understanding and versification tools, will appreciate the additional precision of the
flow sensitive analyses.

5.1.3 Compositionality

It is possible to obtain an inter-procedural analysis by a simple extension of an intra-
procedural one: for each call instruction we introduce a control flow edge toward
the beginning of each possible callee and one control flow edge from the exit point
of each callee to the instruction immediately after the call instruction [16, Chapter
2]. As a result, the entire program is analyzed as a single big procedure. As this
technique does not preserve the matching of the call/return instructions, it creates
many false paths, i.e., paths in the control flow graph that do not correspond to any
real execution path; the propagation of information along these false paths reduces
the analysis precision. Also, analyzing the entire program requires the availability of
the entire program code. We consider that this simple technique is unsuited for real
programs, and focus instead on analyses that are able to analyze methods separately
and have some way of composing the separate results in order to model the effects of
the transitively called methods on the pointers.

One possible approach is to analyze the program in a top-down fashion starting
from the main procedure, reanalyzing each potentially invoked procedure in each new
calling context [11, 26, 171. As the number of possible calling context might be very
big, implementations of such analyses require some mechanism of limiting the memory
consumption, which might require merging some of the calling contexts.

The other approach, which is used in our analysis, is to analyze the program in a
bottom up fashion, starting with the leaves of the call graphs and advancing toward
the main procedure [7, 4]. For each method, the analysis computes a parameterized
result that is later instantiated for the different call sites that might call that method.

Choi, Gupta, Serrano, Sreedhar, and Midkiff present a compositional analysis that
uses this idea [7]. Like our analysis, it uses placeholders to abstract over the unknown
calling context. It uses a connection graph to model the heap. The connection graph
abstraction is similar in many aspects to our points-to graph. However, there are some
differences due to the fact that the their analysis is focused on computing escape in-
formation. For instance, their analysis classifies objects as globally escaping, escaping
via an argument, and not escaping. Because the primary goal was to compute escape
information, the analysis collapses globally escaping subgraphs into a single node in-
stead of maintaining the extracted points-to information. Our analysis retains this
information, in part because we anticipated further thread interaction analyses [23]
that use this information. To the best of our knowledge, no correctness proof has yet

125

been presented for the analysis of Choi et al.
Vivien and Rinard 124] extended the analysis of Whaley and Rinard 1251 to obtain

an incremental analysis. Based on profile data, their analysis starts by analyzing
only a small part of the program. It then applies a performance/cost strategy to
efficiently extend the scope of the analysis to capture more and more nodes, until
either the analysis budget was exhausted or the fate of all the interesting nodes' has
been decided. SAlcianu and Rinard [231 proposed another extension of Whaley and
Rinard analysis [251. The resulting analysis is compositional not only at the method
level but also at the thread level. Unfortunately, these last two analysis do not have
a correctness proof yet.

5.2 Correctness Proofs for Pointer Analyses

Very few of the published pointer analyses have a correctness proof. For many flow
insensitive analyses, this is not a big problem: they are basically type systems and
standard type theory can be used to prove their correctness. However, the correctness
of the other analyses, especially the flow sensitive ones, is a much more difficult issue.

Among the recently published analyses, only two have been proved correct: the
flow insensitive analysis of Blanchet [4, 51, and the flow sensitive analysis of Sagiv,
Reps and Wilhelm [21, 20]. The correctness proofs of both of them use the abstract
interpretation framework of Cousot and Cousot [8]. In this section, we briefly discuss
these two analyses and their correctness proofs.

The analysis proposed by Blanchet [4, 5J is a pure escape analysis aimed at discov-
ering stack allocation opportunities in Java programs. The analysis is flow insensitive;
it computes a result for each method. It does not use a graph representation of the
heap: instead, it uses integer levels in a type hierarchy to represent the escaping parts
of the objects. E.g., if an object o does not escape but the object pointed to by its
only field f escapes, then the escaping part of o is o.f; if the type of the field f is T, the
analysis represents this escaping part by the level of T in a type hierarchy based on the
type declarations. The type hierarchy satisfies the property that the level of a type is
at least as big as the level of any of its subtypes and "contained" types, i.e. types of
its fields. If the level associated with the escaping part of an object is strictly smaller
than the level of the type of the object, then the object does not escape the method,
and can be stack allocated. The analysis is inter-procedural and compositional: the
result it computes for a method is a function on the calling context. Each method is
analyzed once; the obtained function is applied for each calling context. The analysis
has polynomial complexity. As it computes additive functions of integers, it is very
fast in practice. The correctness proof for this analysis is a perfect application of the
abstract interpretation framework.

'The nodes that correspond to the allocation sites that allocate most of the objects, as indicated
by the profile data.

126

We consider that Blanchet's analysis and its proof are less complex than ours: his
analysis uses a big approximation - the type levels - and is flow insensitive. Due
to the heavy use of the type hierarchy, the analysis seems to give a huge importance
to the type declarations. For some simple type declarations, the analysis will not be
able to do any stack allocation, independent of the specific code of the program. E.g.,
consider a set of two types where each type has a field of the other type. In this case,
there is a single level in the type hierarchy and, no matter what the program code
looks like, no stack allocation is performed by the analysis.

The analysis of Sagiv, Reps and Wilhelm [21, 20] is a flow sensitive shape anal-
ysis for a toy language. It uses graphs to model the heap but it does not use the
object allocation site model. Instead, each object that is directly pointed to by a
local variable is modeled by a distinct node; all the other objects are modeled by a
summary node. When a node is no longer pointed to by a variable, it is merged with
the summary node. When a variable is set to point to the summary node, a node is
extracted from the summary node. To allow a significantly precise node extraction,
a boolean predicate - "is shared" - is maintained for the summary node. For each
program point, the analysis computes a possibly exponential number of graphs. This
makes possible a precise processing of destructive updates but results in an exponen-
tial complexity. As presented in [21, 20], the analysis is mainly intra-procedural. The
authors presents several ideas for extending it to the inter-procedural case but they
do not specify any clear inter-procedural analysis.

Unlike the proof for our analysis, the correctness proofs for the two analyses that
we presented in this section are both based on the abstract interpretation framework.
The abstract interpretation framework regards the analysis of a program as an ab-
stract interpretation of that program in an abstract space. It requires an abstraction
function from the concrete states to the abstract ones and a concretization function
in the opposite direction. The advantage of the abstract interpretation framework is
that it proposes a standard approach to correctness. We tried to apply this frame-
work for our analysis too, but it seems that due to the compexity of the analysis, the
abstraction and the concretization functions are difficult to find. We do not know yet
if this is the result of our inexperience with the abstract interpretation framework, or
is due to some feature of our analysis.

127

128

Chapter 6

Conclusions and Future Work

In this thesis we investigated the design and the correctness of a pointer analysis for
the Java programming language.

The analysis was presented in the context of the Java programming language [3].
It is a flow sensitive, compositional, inter-procedural pointer analysis. We obtained
the analysis by completely redesigning the pointer analysis published by Whaley and
Rinard 125]. The final analysis is quite different from the original one. Therefore, we
consider it to be a new analysis.

The analysis is based on the abstraction of points-to graphs, which characterize
how local variables and fields in objects point to other objects. We use the object
allocation site model: all objects that are allocated at the same allocation site are
modeled by the same node. Each points-to graph also contains escape information
that characterizes how objects allocated in the analyzed part of the program can
be accessed by other parts. The analysis computes a single parameterized points-to
graph for the exit point of each method. This points-to graph uses placeholders to
abstract over the calling context. The inter-procedural analysis instantiates such a
points-to graph for each calling context, by using a set of rules for disambiguating
the placeholders. The algorithm is able to analyze parts of the program, obtaining
precise information about the captured nodes, i.e., the nodes which are not reachable
from outside the analyzed part of the program.

We presented three of the many possible applications of the analysis: stack alloca-
tion, thread-local heap allocation and synchronization removal. However, a compiler
for a safe language like Java should not use an analysis that is not formally proved
to be correct, no matter how big improvements that analysis might produce. We
believe that the the steady advances in hardware speed will shift the focus of the
pointer analysis, and program analysis in general, from program optimization to pro-
gram verification. This will further increase the need of using only analyses that are
formally proved to be correct. To address this issue, we allocated the major part of
this thesis to the correctness proof of the analysis.

The proof has a multi-layer structure. At the bottom level we have the concrete
semantics of Java. The pointer analysis is the top layer. To cope with the big differ-
ence in the complexity of these two layers, we introduced a third, intermediate layer:

129

the abstract semantics. For each relevant point from the execution of a program, the
abstract semantics computes an abstract state that models the heap, and an explicit
abstraction relation that records how nodes model objects. We proved that in this
hierarchy, each layer is a conservative approximation of the layer beneath it. The
proof has two parts: the first part relates the abstract semantics to the concrete se-
mantics, while the second part relates the pointer analysis to the abstract semantics.
To the best of our knowledge, this is the first correctness proof for a flow sensitive,
compositional, inter-procedural analysis.

The correctness proof was long and difficult. To complete it, we had to introduce a
considerable amount of notations and auxiliary results. Designing the right formalism,
selecting notations, and choosing the right intermediate steps in the proof of the
analysis took much longer than the proof itself. Usually, once we decided on the
intermediate steps to be accomplished, each step was solved by an easy, but sometimes
long, proof by induction.

For this reason, we believe it is interesting to investigate the possibility of simplify-
ing the proof by using the abstract interpretation framework of Cousot and Cousot [8].
Expressing the analysis and the proof in such a standard framework will hopefully
allow the use of many existing results. It is possible that the analysis is inherently dif-
ficult, or even impossible to express in the abstract semantics framework. In this case,
it would be interesting to identify those features of the analysis that are responsible
for this situation.

The second observation is more positive than the first one: proofs, in spite of
their difficulty, are useful! Designing the analysis was a difficult task, marked by the
frustrating discoveries of corner cases that were not handled properly by the initial
versions of the analysis. Completing the proofs helped us to clarify our ideas, and
detect the missing part. It seems that while intuition remains fundamental for the
design of a new analysis, the problems introduced by the aliasing that might appear
in the context of pointers are very complex, and require more than just intuition.

A possible direction of future research concerns the various extensions that we
can add to the analysis in order to enhance its precision: context sensitivity, strong
updates, etc. The correctness proof will have to be modified to cover all of these
extensions. As the correctness proof is already very big, special care should be taken
to preserve its modularity.

A more immediate continuation of the work presented in this thesis is the comple-
tion of the analysis implemention, and the experimental evaluation of the analysis.
We are already working on such an implementation and plan to present it in a future
publication.

130

Appendix A

Proof of Equation 4.23

Recall that Equation 4.23 has the form

a(ip2 4)(interproc#(Ef2 ,7(2d), lb2 2, callee, [ip2])) z
interproc# (, lb2i, callee, [])

where d - idcallee,2u+1-

Notations: To increase the readability, we use the notation Ecllee =2. We also
rewrite Equation 4.23 as

a(ip2)(simplify#(w#)) L simplify#(E)

where

E = let p'i mapping#(2 7 aice), lb 2 i, callee, [ip 2]) in
combiine#(# (- iMe), 11', VR)

and (A.1)
let p' = mapping# (Ee lb,7, callee, []) in

combine#(7# pca-lee' 12, VR)

Proof outline: First, we formulate three auxiliary results. The first two state that
the conversion c(ip2 2) propagates deep into the definition of -#, commuting with
simplify# and combine#. The last result states an interesting relation between the
mappings /' and p'. Next, we use these results to prove Equation 4.23. We conclude
by proving the three auxiliary results.

Lemma 25 (a and simplify# commute). Vd C Date, V# E State#,

2 a (d) (simplify#(an#)) c simplify# (a(d) (so#)),

Lemma 26 (a(ipsi) and combine# commute). With the notations from Equa-

131

tion A.1,

o~ip2 3) (Be) = oi'p 2 i)(combine*(B: , '(jae e)' VR)

K combine*(E*, calee, a(ip2)(['), VR)

where

a(ip2i) (P') ={(a(ip2i)(ni), a(ip2i)(n 2)) I (nIi, n2) E ['}

Lemma 27. With the notations from Equation A.1, a(ip2i)('1) C P'2-

Proof of Equation 4.23: First, by a direct application of Lemma 25, we obtain:

z~P2)smly(E)) E siMPlify*(a(*p2M)(*1))(A2

Next, we combine Lemma 27, Lemma 26, and the obvious monotonicity of combine

in its mapping argument, and obtain:

e(ip2J#I) E combine#('E , E# 1 1 , oe(ip2)(p'), VR)

I combine#(7# , Ecaue, VR)

Furthermore, as simplify# is monotonic (for the same reasons simplify is monotonic),
we can extend Equation A.2 as follows:

(ip2 2) (simplify# (w#)) E simplify#(a(ip2)((B))
K simplify#(combine#(=# ,Ha11e, f'1, VR))

= interproc#(E 2 , =alee, 1b21, callee,])

As in our notations, a(ip2)(simplify#(E#)) is

Ce('P2i) (Znterproc# (' ,7(2 d) lb~i callee, [zp2i]))

where d = idcalee,2u+1, this completes the proof of Equation 4.23

Proof of Lemma 25: For any path along the inside and the outside edges of the
abstract state B# from node n, to node n2 , there is a path along the inside and the

outside edges of the abstract state a(d)(-#) from a(d)(ni) to a(d)(n 2). This im-
plies that if n escapes in 9#, then a(d)(n) escapes in a(d)(E#), too. An immediate
consequence of this observation is that for each node or edge which is preserved by
simplify#(3#), its projection through a(d) is preserved by simplify#(a(d)(B#)), too.
This ends our proof. E

132

Proof of Lemma 26: We introduce the following notations:

= 2

-f combirne#(Ef,., Ecaalee, a(ip2 2)(p'i), VR)

-'Y(callee)

With these notations, we need to prove that each component of =# is smaller than
the corresponding component from E. We present only the proof for S# C Sf; the
proofs for the other components are similar. Using the definition of combine# and
the fact that none of the nodes from S contains iP 2, in its context, we have:

-= Y(iP 2 i)(S 2 U S [14]) =S U atip2 i)(S#1])
'P~i P 2i

S#=S U s#[# 'U]
'P2i callee

where p4'= O(iP2)(p'). Consider n E S*. If n E S#., then clearly n E S# too. If

i E a(ip2 K)(S [p]) then, as S_ = y(S#l1), there exist nodes n 1 , n 2 such that

* n 1 c Sie (i.e. 7(ni1) E S#)

" (-y(ni), n 2) E ['L and

* n = a(iP2 M)(n 2)-

By the definition of A', (y(ni), n 2) E A' implies (ni, (ip2i)(r 2)) E p' (because

a(iP2)(y(ni)) = n 1). Hence, n = a(ip2i)(2) E Scjjee1p'3] C S. As n was arbitrarily
chosen, S# C Sf as desired. This completes the proof of Lemma 26. E

Proof of Lemma 27: Application of Lemma 18 for d = ip2i, followed by the
following observations:

1. Z(ip2i)(7#) = Bf,- because none of the nodes from E contains ip 2i in itsi2-Pi -P 2i -'P2i

context (they were all created by instructions executed before iP 2)-

2. (ip 2 i)(7 Ence)) = 7ie.* Trivial: y changes the context of each node that

appear in callee from [] to [ip 2i; next, a(ip2i) changes it back from [ip2] to [].

3. G(iP2)([iP2i]) =[. Trivial.

F-

133

134

Bibliography

[1] Ole Agesen. The cartesian product algorithm. In Proceedings of the 9th European
Conference on Object-Oriented Programming. Springer-Verlag LNCS, 1995.

[2] Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[3] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
Reading, Mass., 1996.

[4] B. Blanchet. Escape analysis for object oriented languages. Application to Java.
In Proceedings of the 14th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO, November 1999.

[5] Bruno Blanchet. Escape Analysis. Applications to ML and JavaTM. PhD thesis,
Ecole Polytechnique, December 2000.

[6] D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and structures. In
Proceedings of the SIGPLAN '90 Conference on Program Language Design and
Implementation, pages 296-310, White Plains, NY, June 1990. ACM, New York.

[7] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis
for Java. In Proceedings of the 14th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Denver, CO, November 1999.

[8] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th Annual ACM Symposium on the Principles of
Programming Languages, pages 238-252, 1977.

[9] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In Proceedings of the 9th European Confer-
ence on Object-Oriented Programming, Aarhus, Denmark, August 1995.

[10] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-
limiting. In Proceedings of the SIGPLAN '94 Conference on Programming Lan-
guage Design and Implementation, 1994.

135

[111 M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proceedings of the SIGPLAN
'94 Conference on Program Language Design and Implementation, pages 242-
256, Orlando, FL, June 1994. ACM, New York.

[121 Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A mil-
lion lines of C code in a second. In Proceedings of the SIGPLAN '01 Conference
on Programming Language Design and Implementation, 2001.

113] Michael Hind. Pointer analysis: Haven't we solved this problem yet? In Pro-
ceedings of the 2001 A CM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, 2001.

1141 Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of Lisp-
like structures. In Steven S. Muchnick and Neil D. Jones, editors, Program Flow
Analysis: Theory and Applications, pages 102-131. Prentice-Hall, 1981.

[15] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, Inc.,
1996.

[16] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[17] R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. In
Proceedings of the SIGPLAN '99 Conference on Program Language Design and
Implementation, Atlanta, GA, May 1999.

[18] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indexes,
and accessed memory regions. In Proceedings of the SIGPLAN '00 Conference on
Program Language Design and Implementation, Vancouver, Canada, June 2000.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In Proceedings of the 23rd Annual ACM Symposium
on the Principles of Programming Languages, pages 16-31, January 1996.

[20] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1-50, January 1998.

[21] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis prob-
lems in languages with destructive updating. In Proceedings of the 23rd Annual
ACM Symposium on the Principles of Programming Languages, St. Petersburg
Beach, FL, 1996.

[22] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of
the 23rd Annual ACM Symposium on the Principles of Programming Languages,
St. Petersburg Beach, FL, January 1996.

136

[23] Alexandru Salcianu and Martin C. Rinard. Pointer and escape analysis for mul-
tithreaded programs. In Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2001.

[24j Frederic Vivien and Martin C. Rinard. Incrementalized pointer and escape anal-
ysis. In Proceedings of the SIGPLAN '01 Conference on Programming Language
Design and Implementation, 2001.

[25] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Proceedings of the 14th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Denver, CO, November 1999.

1261 R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C pro-
grams. In Proceedings of the SIGPLAN '95 Conference on Program Language
Design and Implementation, La Jolla, CA, June 1995. ACM, New York.

137

