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Abstract

In this thesis, I suggest a model for motor command generation in the sensorimotor
cortex during unobstructed and unloaded horizontal point-to-point movements of
the arm through air. The first step towards modeling the motor cortex, the "chief
executive" of the brain, was to understand, by modeling the arm behavior during the
task under consideration, the nature of the commands that need to be generated by
the sensorimotor cortex and issued to the arm. The two versions of the equilibrium
point models of the arm, lambda and alpha, are explored; but eventually, a second
order model is adopted in the simulations with the proportional integrator command
generator (PICG) model of the sensorimotor cortex. The PICG model suggested
here is based on as parsimonious assumptions as possible, that remain true to the
anatomy of the brain and are neuro-biologically reasonable; still, simulations of the
PICG, together with the second order arm model, match the kinematic and the
neurophysiological data of humans and monkeys reasonably well. Furthermore, the
PICG model allows for adaption or learning via tunable gains.
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Chapter 1

Introduction

1.1 Literature Review

Though many have measured signals from the motor cortex, what variables these

signals encode is still a debatable issue. The topology of the brain, however, is well

known. The neural projections to and from the various areas have been studied in

some detail (and are summarized in figure 1-1) for knowing the connections between

areas helps understand the functional properties of the neurons. The understanding

of the anatomic connections of the sensorimotor cortex is the first step in attempting

to understand how the brain controls movements and postures and, in particular, how

the motor cortex generates and issues commands.

1.1.1 Anatomy of the Brain

Even the simplest of motor tasks, such as arm reaching that is unobstructed, and not

subject to any external loads, seems to involve a complex sequence of activations. At

the highest level of the functional motor hierarchy proposed by Brooks in [7], the as-

sociation cortex, which includes parietal cortex (areas 5 and 7), could be responsible

for formation of motor plans, strategies and intentions. In fact, neurophysiological

studies indicate that the parietal cortex may be involved in planning movement in

extrapersonal space and in the integration of sensory information with central com-
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mands to follow up on on-going movements as area 5 receives inputs from both the

thalamus and area 2 of the primary sensory cortex (see below) and projects its out-

puts to the premotor area (lateral area 6), supplementary motor area (medial area

6), and motor cortex (area 4) [9].

At the middle level, the sensorimotor cortex, cerebellum, putamen loop of the

basal ganglia, and brainstem are possibly involved in transforming the strategies of

the higher level to the needed movement parameters, like movement direction or

trajectory. Brooks suggests that this level may also be responsible for transforming

parameters expressed in external world coordinates to joint coordinates. The output

signals are then issued out from the motor cortex to the muscles via corticospinal

neurons that synapse on the motoneurons in the spinal cord, the lowest level of the

motor hierarchy. At the spinal cord, spinal circuitry maps the input corticospinal

signal to the appropriate muscle activations hence muscle stiffness (or invariant force-

length characteristic). The motoneurons innervate muscle units which send feedback

information back to the motor cortex through the thalamus which processes the af-

ferent information then sends one copy of the information to the motor cortex and

another to the sensory cortex for further processing and then projection to the motor

cortex. The afferent information is possibly used by lower motor loops, such as the

cerebellar loop, to regulate motion and by the motor cortex to update motor plans.

Some of the loops involved in the motor control are shown in the block diagram of

figure 1-2.

The sensorimotor areas include the primary motor cortex (area 4), the primary

sensory cortex (areas 3a, 3b, 1, and 2), and the premotor and supplementary motor

areas (area 6). Area 6 receives projections from areas 5 and 4 and makes projections

to the same areas. It is believed to take part in programming motor subroutines

and planning and executing well learned movements using sensory information that

it receives from parietal cortex. The parietal cortex receives processed sensory infor-

mation from both the thalamus and area 2 of the primary sensory area. The primary

sensory area consists of 4 areas that receive projections from the thalamus: area 3a,

which receives deep receptor inputs (that is from joints and Ia-afferents that con-
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Figure 1-2: Some of the feedback loops that are involved in motor control are shown
in this diagram. 6: premotor area, 5, 7: posterior parietal cortex, Mi: primary motor
area, Si: primary sensory area, T: thalamus, CBLLM: cerebellum, BG: basal ganglia,
SC: spinal cord. The Mi-SC-Arm-Si loop is the subject of investigation in this work.

vey information about the speed and magnitude of muscle stretch); area 3b, receiving

inputs from slow adapting superficial (cutaneous) mechanoreceptors that convey mag-

nitude of pressure information; area i, receiving inputs from fast adapting cutaneous

mechanoreceptors that convey rate of change of pressure information; and finally area

2, receiving joint receptor information about joint angles. Only area 2 makes output

connections from the primary sensory cortex to parietal areas 5 and 7, though each

of the primary sensory areas do send projections to the motor cortex [7] [33] [43].

In fact, the motor cortex neurons receive this somatosensory feedback from the

body regions that are closely affected by the muscles that the same motor cortex

neurons innervate. This correspondence between motor fields and afferent input zones

is known as tight input-output coupling [43]. Interestingly, the motor cortex also

receives its own copy of afferent information from the thalamus. The motor cortex

also receives transcortical projections from various parts of the cerebral cortex. The

output connections of the motor cortex include nonpyramidal targets (such as the

basal ganglia, thalamus, red nucleus, and reticular formation) and pyramidal neurons,

or corticospinal neurons that innervate motoneurons and spinal interneurons in the

spinal cord. These corticospinal neurons may either diverge from a single cortical

focus to different spinal motoneurons such that the same point in motor cortex can

16



activate several muscles, or converge from distinct cortical foci onto the same spinal

motoneurons such that the same muscles can be activated from cortical points that

may be located several millimeters apart [7].

1.1.2 Motor Cortex: Encoding Muscle and/or Movement

Parameters

The variables that the sensorimotor cortex encodes are not known. The input signals

to sensory cortex and output signals from the motor cortex and their correlations with

task variables such the position of a limb in space, speed of motion of the limb, or force

exerted on that limb have been measured by many (like [20], [19], [22], [44], and [9]).

But these correlations do not necessarily imply causal or controlling relationships.

There is debate about what variables the signals actually represent and how the

message is conveyed by motor cortex neurons to motor systems such as the muscles

in the arm performing the simplest of all tasks, reaching from point A to point B in

a straight line as quickly and as accurately as possible.

In general, it has been observed that the firing of cells, motor cells in studies of

vertebrate movements and sensory cells in studies of reflexes of invertebrates, is:

1. coarsely tuned with respect to the parameters of resulting movement, like force,

amplitude, or direction in the case of motor neurons, and with respect to the

features of the stimuli they encode as in the case of sensory neurons, and

2. widely distributed in that many sensory or motor cells that are located in widely

distributed areas of the nervous system are active simultaneously before and

during movement.

Yet this cell activity leads to accurate movements like arm reaching or saccadic eye

movement in monkeys and leech local bending or cockroach orientation escape. So

this rules out the possibility that individual highly specialized cells are responsible

for behaviors and suggests that aggregate groups of neurons, called populations, are

involved [47].

17



The vector averaging hypothesis was first suggested by Sparks and colleagues

(1974) when they observed that in the monkey superior colliculus, SC, which is re-

sponsible for orienting eye movements (saccades), each neuron fires before a broad

range of saccades and a large number of these neurons is active before each sac-

cade. Yet, the direction and amplitude of the saccades are precisely controlled. Their

claim was that the direction and amplitude of the resulting saccade would be de-

termined by the direction and magnitude of the sum of the vectors associated with

populations of active neurons; each vector has direction of the population's preferred

direction (described below) and amplitude proportional to the firing rate of that pop-

ulation. Predictions of the hypothesis were tested by activating and deactivating

specific groups of neurons with known functional properties and seeing whether the

observed behavior was consistent with the predicted behavior. The outcomes sup-

ported the vector averaging hypothesis for the SC. Population coding evidence was

also found in various other motor systems studied like turtle scratching and monkey

arm reaching [47].

Georgopoulos found that neuron populations in the motor cortex encode direction

of arm reaching movement [22] [21]. Each population has a preferred direction of

firing; neurons are said to be "directionally tuned". When the arm moves in the

preferred direction of some population of neurons, the firing rate of that population

is stronger than firing would be if the arm was moving in any other direction; in fact,

firing rate is broadly tuned around that preferred direction, Op. One possible tuning

function is a cosine, f (6) = a cos(0 - Op) + b, where f is the firing rate, a and b are

constants, and 0 is the direction of motion of the arm in the horizontal plane relative

to the sagittal plane. Thus, for any given direction, the population's firing rate is

modulated by a cosine centered on the preferred direction.

Now, for any given reaching movement, a number of populations with different

preferred directions will fire with rates of varying intensity. If each population's firing

is represented by a vector in the direction of that population's preferred direction

and of magnitude proportional to the firing rate at the direction of current movement

as determined by the tuning curve, then, Georgopoulos found, the sum of all the

18



population vectors, '(6) = Zan populations f) , will be a vector in the same

direction of the actual movement, Zi7 = 6. Furthermore, if the arm is perturbed on

its route to the destination, the sum of population vectors will be in the direction the

arm needs to move to overcome the perturbation and get back on track. Interestingly,

Prud'Homme and Kalaska have found that sensory cortex neurons exhibit roughly

the same type of population vector encoding in unloaded reaching movements [44].

Thus, Georgopoulos' results suggest that the motor cortex encodes direction of

arm movement for unloaded arm reaching movements. Yet, there is debate about

what variables the motor cortex signals actually represent; the variable encoded by the

brain in the vectoral manner does not necessarily need to be direction. Mussa-Ivaldi

shows that the brain could be encoding other muscle state variables, like desired rate

of muscle shortening for example [41]. Whatever the variable itself may be, question

arises as to how the brain performs such vectoral encoding when the only variable

of its outgoing signals that it really physically controls is the rate of the firing of its

output neurons. More importantly, question arises as to how the motor cortical signal

is used to control and execute movements and what its significance is in the context

of a certain model of the arm.

1.1.3 Movement Strategies and Motor Control Hypotheses

Since the task of having to calculate, possibly compensating for external and joint in-

teraction forces, muscle torques needed for the desired movement is computationally

complex, it is generally believed that the central nervous system simplifies the task of

controlling movement by using certain motor control strategies, set relationships be-

tween different movement parameters. These strategies result in the experimentally

observed movement stereotypes such as the relationship between movement dura-

tion, amplitude and accuracy, or the relationship between movement curvature and

velocity.

It is believed that the brain uses relatively simple strategies that translate into

the required signals to control muscles involved in arm movement. For example,

according to Gottlieb et al., reaching movements are either speed sensitive, for which

19



reaching the target within a certain time limit is paramount, or speed insensitive, for

which accuracy is paramount and speed is not an issue [27] [28]. For speed sensitive

movements the time, to.9 - to.1, it takes for the joint angle (which is assumed to follow

a smooth sigmoid, as experimentally observed) to rise from 10% to 90% of its final

value, Of, is held constant regardless of the movement amplitude. To achieve this, the

speed of the movement has to be increased as the movement amplitude is increased.

On the other hand, under the speed insensitive strategy, the duration of the movement

does not matter so the speed of the movement is chosen such that desired accuracy is

achieved. Thus, as the movement amplitude is varied, the speed is held constant; in

this case, the farther the final target (larger movement amplitude) the longer it will

take to reach that target.

These different strategies require different signals from the brain. Based on exper-

imental evidence they collect, Gottlieb et al. hypothesize that when the movement

is speed sensitive, the brain adjusts amplitude of the signal to the alpha motoneuron

pool (or more precisely rate of firing) to achieve different reaching speeds and am-

plitudes under the strategy; and when the movement is speed insensitive, the brain

adjusts the duration of the signal to the muscle motoneurons [27] [28]. Although

Gottlieb's strategies work out nicely for single joint movements, similar conclusions

are not as readily made for multiple joint movements [1].

A more widely accepted idea is the equilibrium point hypothesis, originally pro-

posed by Feldman [15]. According to this hypothesis, the central nervous system

(CNS) specifies to the muscles required equilibrium positions, usually assumed to be

in (virtual) joint angle coordinates; to produce motion, these equilibrium positions

are shifted. Two versions of the hypothesis have emerged. The alpha version, at-

tributed to Bizzi, suggests that the CNS regulates and controls the level of activity

to alpha motoneuron pools of muscles [35]; but this hypothesis has been criticized by

the Feldman camp and its supposed weaknesses that are discussed in detail in [15] are

discussed below. Feldman and colleagues suggest a lambda version of the equilibrium

hypothesis instead. This hypothesis claims that the nervous system regulates and

controls the threshold muscle length of the stretch reflex, that is, the muscle length
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at which the recruitment of alpha motoneurons begins. Movement occurs when the

CNS shifts the thresholds for agonists and antagonists in opposite directions and

co-contraction results when the thresholds are shifted in the same direction.

The Alpha Model

In [5], Bizzi describes his experiments on monkey head movements and arm reaching

movements. In the first group of experiments the monkey was trained to move its

head in response to a visual cue, which triggered the movement but did not remain to

guide the movement, so a certain final head position was not explicitly required. Head

trajectories and neck muscle EMGs were measured under the following conditions:

when there was no load added to the head; when a constant unexpected load was

applied after movement onset, then removed again before movement termination; and

when an inertial load was unexpectedly applied such that the movement trajectory

was perturbed, but the load was not a steady state disturbance. Similar experiments

were carried out on deafferented monkeys. The second group of experiments on

monkeys performing arm reaching was very similar. The monkeys were required to

point to a target light and hold the arm at that position. Visual feedback of the arm

was not allowed. Trials were carried out on both normal and deafferented monkeys

for unloaded movements and when unexpected positional disturbances were applied

at random times after movement onset.

For the head movement experiments, the added constant load caused an under-

shoot of the final head position that would have been reached in an unloaded move-

ment, even though EMG activity did increase when the load was added; however,

removing the load caused the head to reach the final head position. Application of

an inertial load, on the other hand, did not change the final head position that would

have been reached in an unloaded movement but did cause an overshoot of head

position before reaching the final position. EMG signals increased as the load was

added, but a silent period was observed during the overshoot period. Experiments

on deafferented monkeys gave similar results, and final head position was reached de-

spite the fact that there were no visual or vestibular feedback; but since the monkeys
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were deafferented, EMGs for unloaded and loaded movement were similar showing

the absence of the stretch reflex. The results of the monkey arm reaching experiments

were similar. The monkeys always reached the intended final position regardless of

whether or not they were deafferented.

These observations led Bizzi to hypothesize that final head position is prepro-

grammed and not dependent on proprioceptive information the CNS receives during

the movement. The CNS controls posture (movement) by setting (varying) the level

of activity of the alpha motoneurons of agonists and antagonists, which determines

the stiffness of these muscles. By setting the level of alpha activation, the CNS se-

lects a set of tension-length curves of the agonist and antagonist, which consequently

results, due to the interaction of the muscles, in the specification of the equilibrium

point that will yield the desired end position. Thus, motor programming is a result of

specification of equilibrium pints between agonists and antagonists rather than spec-

ification of amplitude or duration of movement; and the same mechanism of setting

equilibrium points is used to control both posture and movement because "according

to this hypothesis, movements are at the simplest level transitions in posture" [5].

The findings that final arm or head positions were reached regardless of applied

disturbances even in deafferented monkeys seem to support the equilibrium point

hypothesis but are not meant to undermine the importance of afferent feedback in

the control of movement. Bizzi finds that the deafferented monkeys have significantly

poorer pointing accuracy when the initial posture of the animal was changed. Thus

Bizzi suggests that the afferent information may play a role in selecting programmed

motor/neural patterns. Finally, a point is made that the suggested equilibrium point

hypothesis does not explain the mechanism whereby the CNS determines movement

velocity and thus there may coexist some other parallel mechanism.

The Lambda Model

The lambda hypothesis was born out of Feldman's unloading experiments in which

the arm of the subject started at a certain position under a load, which was then

gradually removed [11] [12] [13] [15]. The subject was given the instructions "not
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to intervene voluntarily to forearm deflections when the load is removed" and the

subject's elbow angle was recorded under the different load conditions. Feldman's

recordings yielded a family of curves that resembled static spring like relationships

between the exerted elbow muscle torque and the joint angle, each curve's zero torque

point located at a different point along the angle axis, shown in figure 1-3. In the rest

of the discussion, the curves are discussed in terms of force-muscle length instead of

torque-elbow angle as that transformation is definitely plausible.

Feldman termed each curve an "invariant characteristic" (IC) because for a given

lambda, the point at which torque departs from zero, a unique curve is specified.

When the subject made voluntary changes in the position of the elbow, a transfer from

one IC to another was observed. Thus lambda was assumed to be the independent

variable that was set by central control. It is generally agreed that static muscle

force depends on both muscle length and activation by the CNS; since lambda seems

to be a centrally controlled variable and neighboring ICs travel in parallel, Feldman

hypothesizes that muscle activation is actually proportional to the difference between

the muscle length and lambda, the muscle is active when the muscle length exceeds the

threshold length. This fact is observed experimentally as the EMG activity becomes

more intense for points on the IC that are farther away from the threshold, lambda.

The variable lambda has various interpretations. Since force starts to develop in

the muscle at muscle lengths that exceed lambda, it is a threshold length beyond

which motoneurons are recruited thereby activating more muscle fibers at faster rates

and increasing muscle force; it is the threshold of the stretch reflex. But there is also

a bioelectrical interpretation. When the muscle is relaxed, some motoneuron that

innervates it will have a certain sub-threshold membrane potential. As the muscle

is stretched, the membrane potential of the motoneuron increases due to the stretch

reflex. As the muscle keeps stretching, at some point the membrane potential will

reach its threshold value and the motoneuron will fire tonically and activate muscle

fibers that start to actively produce force. Lambda is the value of muscle length at

which the membrane potential of the motoneuron exceeds its threshold and starts

to fire. Here, one must note that muscles are innervated by several motoneurons,
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Figure 1-3: Feldman's recordings of arm position in his "do not intervene" unloading
experiments yielded this family of invariant characteristics (ICs). The upper curves
are the elbow flexor ICs and the lower curves correspond to elbow extensors. At
separate trials, the arm was started at the solid circles and settled at the open circles
as the load was gradually removed. The recorded EMG activity is shown for one IC:
the activity decreases from the starting position of the arm as the biceps shortens
until the IC merges with the passive elbow muscle characteristic (dashed line) [13].
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each having a different threshold membrane potential. According to the hypothesis,

lambda corresponds to the lowest threshold among the various motoneurons, but all

thresholds of motoneurons are interrelated in an unambiguous manner.

The CNS controls posture by setting the values of lambda for various muscles.

An equilibrium point, or stable muscle length, is determined by the interaction of

the load and muscle; in particular, the intersection of the load-length and the muscle

force-length curves. However, there are requirements for postural stability: first,

the slope or stiffness of the muscle IC at the equilibrium point needs to be larger

than the load gradient at the same point so that perturbations from the equilibrium

point will cause the system to return to the equilibrium; and secondly, there should

be sufficient damping or change in muscle force with change in velocity, which is

indeed a characteristic of muscles, so that the system does not oscillate around the

equilibrium point.

Under this hypothesis, posture and movement are controlled by a single mecha-

nism. To produce voluntary movement, the CNS varies the setting of lambda thereby

producing shifts in the equilibrium points. However, dynamic muscle force depends

on length, activation, and velocity of stretch (tension developed drops with speed

of shortening). Feldman introduces the dependence of muscle force on velocity by

introducing a dynamic speed-dependent threshold of activation, A*, that is related to

the static threshold, lambda.

Experimental data shows that a rapid extension of a muscle at rest produces a

phasic excitation in the muscle, that is, the EMG increases briefly then decreases

in a bell shaped manner. Thus, activation of the muscle is observed even though it

was initially at rest (that is, muscle length is less than static lambda) which means

that the dynamic threshold, A*, can be lower than the static lambda during muscle

lengthening, or positive velocities. On the other hand, when the muscle is tonically

active (meaning that its length is greater than the static threshold lambda hence

producing some constant level of excitation), sudden muscle unloading causes a silent

period in the EMG, which indicates that in dynamics, and during muscle shortening or

negative velocities, the activation threshold can be greater than the static threshold.
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Thus, based on the experimental data, the hypothesis put forward is that A* = A--uv,

where p is a parameter that is set by the CNS to control the amount of proprioceptive

velocity feedback information, and the assumption is that the relationship between

A* and the muscle stretch velocity, v, is linear. Applying this hypothesis to predict

the EMGs that would be observed during motor performance yields EMGs that are

similar to those experimentally observed.

Comparing the Models

Both lambda and alpha versions of the equilibrium point hypothesis claim that the

CNS varies the force-length (f-l) spring-like characteristic of muscle such that a de-

sired stable resting point is reached when the muscle interacts with the load. The

major point of contention between the models concerns the interpretation of the CNS

activation of muscles, or how the CNS varies the f-l characteristics. While the lambda

model asserts that the CNS varies the threshold of the stretch reflex, or the resting

length of the muscle at which motoneurons will begin to be recruited, the alpha ver-

sion claims that the CNS varies the alpha activation of motoneurons, which alters

muscle stiffness. In terms of the effect of activation on the "invariant characteristics",

in the lambda version, the f-l curves are shifted along the length axis almost in paral-

lel due to different specifications of lambda, whereas in the alpha version, the slope of

the f-l curve will change as alpha activation changes but the resting length of muscle

does not change.

A striking consequence of this difference in the definitions of activation is the cause

and effect relationships between the equilibrium position and the EMG or muscle

activation. In the lambda model, the CNS elicits voluntary movements when it sets

the desired threshold length by activating both alpha and gamma motoneurons. This

causes a shift in the invariant characteristic, or f-l curve, and an equilibrium point is

reached upon interaction with the load. Muscle activation, or EMG, is assumed to

be proportional to the muscle length minus the threshold length. In fact, different

points on the invariant characteristic are associated with different EMG levels. Thus,

EMG patterns are consequences of the shift in equilibrium points; this is the absolute
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reverse of the alpha model's claim that the EMG settings determine the equilibrium

points.

And it is precisely this claim that lends weakness to this model, that is, that

the alpha model is unable to balance isoelectric loads or loads with increasing EMG

gradient. For example, when the load is isoelectric the EP is either undefined or

not uniquely determined; the load and muscle curves will, at best, coincide. On the

other hand, for loads with positive EMG gradients, the system will be unstable at

the points of intersection with muscle characteristics if no matter what activation the

CNS provides, the load is such that the slope of the load curve is always greater than

the slope of the muscle curve at the point of intersection. This would happen for

example if the load curve intersects the length axis at a greater value of length than

the resting length of the muscle.

Furthermore, since the CNS set EMG level, which essentially means setting stiff-

ness of muscles, loads near zero "cannot be lifted at all despite intense variation of

muscle stiffness" [13]; but clearly, the real system handles light loads well and has trou-

ble with heavy loads. Finally, in the alpha model, the resting length of the muscle

is assumed constant regardless of muscle activation, but in reality, muscle resting-

lengths lie inside the range of lengths at which the muscle could be active. Since the

resting length in Bizzi's model is constant, the muscles are unable to generate force

at lengths below the resting length no matter what the CNS does.

But this is not to say that the lambda version of the hypothesis is unchallenged.

Though Gottlieb agrees that the core of modern theories of movement is the idea of

movable equilibrium positions, such that in the absence of external forces the system

will approach and rest at its equilibrium position, he claims that the lambda version

of the equilibrium hypothesis is inadequate [26]. Gottlieb points out three weaknesses

of this hypothesis. First of all, Gottlieb claims that a major assumption necessary to

translate the lambda commands of the various muscles into the R and C commands of

the joints (that supposedly set the joint equilibrium position and the joint stiffness) as

Feldman describes them is that agonist and antagonist muscles have identical force-

length and force-velocity characteristics, and this is simply not true except for few
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joints. Thus, the relationships between the joint R and C commands and the muscle

lambda commands need to be redefined.

Secondly, in order for movements to end smoothly at their targets, simulations

based on this hypothesis require joint viscosities that are much higher than experi-

mentally derived values. Finally, the equilibrium point hypothesis provides detailed

rules on how the nervous system may set the reciprocal command, R, that suppos-

edly sets the joint equilibrium position, but the other two variables, C, which sets the

level of agonist/antagonist cocontraction or equivalently joint stiffness, nd p, which

controls the feedback gain, are not described, even though, according to the model,

they are equally important in the control of movement but are neither obvious nor

simple, if not impossible, to determine when the dynamics of the moving system are

not to be explicitly considered (as a major claim of the equilibrium point hypothesis

is that movement control is done by shifting the "frames of reference").

Thus, while there is agreement on muscle contractile mechanisms and characteris-

tics such as the force-length and force-velocity relationships, there is much disagree-

ment about how the central nervous affect these muscle characteristics. While it is

clear that a muscle model should account for certain physiological aspects, such as

motoneuron recruitment, reflex delays, calcium kinetics, and nonlinear muscle stiff-

ness, it is not clear what rules the central nervous system uses to set muscle state

variables such that the specific movement features such as distance, speed, and load

are attained. But, the variable that is assumed to be the centrally controlled vari-

able is a crucial part of any motor control model. For example, it has been shown

that by controlling the threshold of stretch reflex, simple piecewise linear signals are

sufficient to yield arm reaching movements [29]. Gribble claims that conclusions that

the control signals need to be any more complex, like those drawn by Gomi and

Kawato [24] [25] or which is obvious in the case of the alpha-model where the EMGs

that are assumed to be the centrally controlled input usually have complex patterns,

are faulty as they use an overly simplified model of the arm. In fact, using an accurate

enough model that captures non-linearities has a significant effect on the shape of the

required control signal [29]. Moreover, the second order model (such as that used by
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Gomi and Kawato in [24] and [25]) is an approximation that merely captures some

aspects of the behavior of the arm such as joint stiffness during movement, but is

probably inadequate when it comes to modeling other variables [52]. Thus, one must

take care in drawing conclusions from such models since they may accurately model

some behaviors or quantities, but misrepresent others.

1.2 Problem Motivation and Formulation

The idea that population vectors encode task variables is a handy tool to predict

the arm's state variables given observations of neuronal firing. In fact, it has been

suggested in [16] and shown (in [41], [45], and [49]) that as long as there are enough

neurons with a certain distribution of the "preferred directions" between them, the

"direction" of the output population vector will always match the task variable under

study. Furthermore, this match will occur regardless of whether the neurons actually

have output effects on muscles or not; population vectors give no proof of neural

coding as the observed neural activity need not contribute to movement, hence task

parameters, in any way. So, unless the output connections of cells and their effects

on muscles is known, the consequence of their activity during task performance will

not be clear. Indeed, there is a need for "conceptual and computational work to

understand how the activity of neurons within a motor map is used to generate

temporal patterns of activity required by separate motoneuronal pools" [47]; and this

could shed light on how the population "vector" translated into movement.

The population vector hypothesis is supported by experimental evidence, not un-

derlying theory of how the CNS may generate command signals and represent state

variables. Furthermore, claims that the motor cortex encodes one variable or another

are based on observations that firing of neurons is correlated with some behavioral

task; but correlations indicate neither causal nor controlling relationships. In fact,

these claims are results of experiments that are subject to two different types of bias:

"task-induced" bias and "selection" bias. "Task-induced" bias refers to the fact that

the experimenters record neural activity as an animal performs a behavioral task that
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is designed to test a certain hypothesis and the activity of the cells is interpreted in

relation to that task. "Selection" bias refers to the fact that experimenters tend to

ignore cells that have firing patterns that are "paradoxical" or "un-interpretable"

given the investigated task, and cells that do not show any modulation with the

task. In fact, only cells that best illustrate the hypothesis are reported. Succinctly

said, "a rarely acknowledged fact of life in the neurophysiology laboratory is that

neurons in many regions, including the motor cortex, exhibit an enormous variety

of responses, a fact that provides an opportunity to find cells related to any given

functional hypothesis" [16].

Thus, question arises as to how the motor cortical signal is used to control and

execute movements and what its significance is in the context of a certain model of

the arm. What is needed is a physiologically accurate model (as opposed to artificial

neural network models which do not necessarily reflect the way the biological system

works) that will explain the command generating mechanism of the motor cortex in

relation to the output signals that are needed by specific motoneuron pools.

To begin to address the questions mentioned above, for the purposes of this work,

the motor control system for horizontal load-free arm reaching has been broken into

two parts, as shown in figure 1-4: the plant, or the arm and spinal cord, and the

command generator, the sensorimotor cortex. The problem was attacked backwards,

starting at the lowest level of the hierarchy as it is probably the most well-understood

part; thus, the more concrete platform that an arm model provides was chosen to be

the point of departure of the investigation to gain insight into the problems and issues

involved in the modeling of the motor control system, and in particular how the motor

cortex generates the signals needed to execute movements and updates its commands

as it receives proprioceptive feedback.

In chapter two, two variations of the equilibrium point hypothesis, the lambda

and the alpha models, are explored. According to the equilibrium point hypothesis,

there exists a map from the equilibrium point that might be specified by the CNS in

terms of joint angles, to the actual input to the muscle. This map would have to be

different for the two different models if they were to be driven from the same signal.
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Figure 1-4: The system that is investigated is made up of a plant, the arm and
spinal cord, and a command generator, the sensorimotor cortex. The various other
components of the more complex multi-loop feedback system, such as cerebellum,
thalamus and basal ganglia, are not shown here. The command generator issues the
desired joint and position signals, 0 ,ef and 0 ref, to the spinal cord which scales and
routes the signals to the muscles. The command generator receives joint position, 6,
velocity, 6, and force, F, information from the plant.

So the map is explored in the context of the two specific models by determining the

relationship between

* the equilibrium joint angle,

" the supposed muscle input signal, the alpha activation in the case of the alpha

model and the threshold of the stretch reflex in the case of the lambda model,

" and the muscle driving signal.

The effect of musculoskeletal geometry and physiological properties of the muscles

on these relationships is also investigated. Having done that, the reasonableness of

assuming the existence of this map and its implementation by spinal circuitry is

evaluated in the interest of arguing that using a simpler second-order arm model in

simulations reduces modeling complexity, but, for the purposes of this work, does not

forfeit behavioral or performance characteristics of the arm.

Assuming that an appropriate map exists from a centrally specified variable such

as the equilibrium joint angle to the required muscle input, and that it is reason-

able that the map might be implemented in spinal circuitry [6], then lumping the
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spinal cord together with a muscle-based arm model results in a second-order nonlin-

ear "arm" model that receives as inputs equilibrium point trajectories, such as joint

position 0,ef and velocity 0,ef. In this case, the task of the middle level of the CNS

(sensorimotor and association cortices) would be to generate the needed equilibrium

point trajectory. Where and how the equilibrium point is calculated by the brain

is unknown. In chapter three, the possibility that the motor cortex issues the equi-

librium point trajectory is explored. The known projections to and from the motor

cortex and the observed cortical signals and their correlations with task variables

underly the proposed command generating mechanism.

In chapter four, the work done is assessed for strengths and weaknesses. The issues

that have arisen in the course of the investigation are discussed and future directions

and plans are suggested.
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Chapter 2

Arm Models

In order to make less complex and more well-defined the task of understanding and

interpreting the observed signals in the sensorimotor cortex and then attempting

to suggest how these signals are generated in the context of horizontal planar arm

movements, the problem was first approached backwards. Given a certain model of

the arm, what are the signals needed to drive the arm to produce the desired behavior,

and how do these compare with the observed sensorimotor signals. In this chapter,

the two variations of the equilibrium point hypothesis, the alpha muscle model and

the lambda model are investigated.

2.1 Motor Spaces

The kinematics and dynamics of the arm can be described using different frameworks,

or relative to different motor spaces: task, joint, and muscle. In building an overall

model of the double joint (elbow and shoulder) arm, the conversions between the

different spaces, though not always well-posed, are useful to move from the detailed

experimentally derived descriptions of individual muscles, to the description of the

joint angle kinematics, and finally the end-effector (hand) movement in space.

The inverse kinematic transformations from task space to joint space or from

muscle space to joint space, are ill-posed. This is due to redundancy: the muscles,

the "actuators" in the system that result in the positioning of the joints, are more

33



numerous than the joints. Thus, there are several sets of allowable muscle lengths

that will result in setting a desired joint angle; there are several sets of allowable

joint angles that will result in setting the desired end-effector position. The inverse

kinematics are usually solved using some optimization criteria and are sometimes

subject to geometric constraints such as the allowed workspace and positions of the

arm or the mechanical constraints of the limbs, such as the fact that the elbow cannot

bend backwards.

The well-posed of the conversions are the forward kinematic transformations, from

joint space to to task space or from joint space to muscle space. Below, the different

spaces are described and the forward kinematic equations that will be useful later in

deriving the overall arm model are presented.

2.1.1 Muscle space

The muscle space description consists of the length, q, and rate of change of length,

4, of each muscle. The muscle lengths can be related to the joint angles (joint space)

under the simplifying assumption that when a muscle is stretched, it wraps around

the joint like a string around a pulley. Thus, starting from some reference muscle

length, qref, that corresponds to some reference joint angle, 0ref, usually chosen to be

the middle of the range of operation of the joint, the change in muscle length will be:

q - qref = m(O - Oref). (2.1)

Using vector notation, which useful in generalizing for different uses: for two muscles

around a single joint in single joint flexion and extension motions or for the six muscle

groups assumed to be involved in the two joint motion (see figure 2-1):

q - qref = M(E - Ore) (2.2)

where for the single joint, q = [ qagoniat qantagonist ] and E = Oji,,t ; for the double

joint, q = qi q2 q 3 q4 q5 q6 and E = [ shoulder 9
elbow . m is the moment
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Figure 2-1: The muscle groups acting on the bones are shown; 1: shoulder flexors,
2: shoulder extensors, 3: elbow flexors, 4: elbow extensors, 5: biarticular flexors, 6:
biarticular extensors.

arm, or "radius" of the joint, and M is a matrix containing the moment arms of the

different muscles; assuming that the equivalent moment arms of the shoulder and

elbow joints are constant (independent from the joint position), for the single joint,

M = [ -ragonist rantagonist ] (2.3)

and for the double joint,

M= [mi
0

0

-M3

M2

0

0

M4 -n 5 2

1

M 6 1 .

in6 2 J (2.4)

The numbering refers to the muscle groups shown in figure 2-1; and mij is the moment

arm for biarticular muscle of group i at the shoulder (j = 1) or at the elbow (j = 2).
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Figure 2-2: The arm skeleton is modeled as a two link rigid body.

2.1.2 Joint space

The joint space description consists of the joint angle magnitudes, 6, and angular

velocities, 6. The forward kinematic relationships between the joint space variables

and the muscle and task space variables are described in sections 2.1.1 and 2.1.3. But

the inverse kinematic conversion is needed on several occasions, and a useful set of

equations that relate the elbow and shoulder joint coordinates to the Cartesian and

polar coordinates of the end-effector (task space) and work well near the center of the

workspace are:

Oe arccos 2±1e= arccos ( -- )e
arctn a~uai l~ose~la = -( _______ (2.5)

= arctan ( )(- arctan sine, = ee - arctankx 1, -CO ee k1 ( ,COS Oe +s

where Pee and #ee are the polar coordinates of the end-effector. Refer to figure 2-2

for the definitions of the rest of the variables.
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2.1.3 Task space

Finally, the task space description consists of the Cartesian (x, y) or polar (Pee, bee)

coordinates of the the end-effector, and the tangential velocity of the end-effector,

vt. The Cartesian x and y coordinates of the end-effector can be related to the

shoulder and elbow angles, 0, and 0e of the joint space (refer to figure 2-2 for variable

definitions):

x = i cos 0, + le cos (0s + Oe) (2.6)

y l sin 0s + le sin (0, + 0e). (2.7)

Taking differentials,

dx -1, sin 0,0 - le sin (0s, + Oe) -le sin (0s, + 0eo) dO0s

dy J [ i cos 0s, + le cos (0, + Oeo) le cos (0s, + Oeo) L dOeo J
In vector notation,

dx = J dE0 . (2.8)

where the Jacobian,

[ i1 sin G, - le sin (Oo + Oeo) -1e sin (Os + Oe.)

Lis Cos 0, + le cos (0, + Geo) le cos (Oo + Geo )

(2.9)

is clearly dependent on the initial (unperturbed) shoulder and elbow positions, Oso

and 0e0. The joint angle differential, dE, = e - e0, represents small perturbations

of Os and Oe from their initial unperturbed positions.

Alternatively, taking the derivative with respect to time in equations 2.6 and 2.7

yields:

5 = JO (2.10)

where 5 = [ y and e = [ 6e . And the magnitude of the tangential
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velocity of the end-effector is vt = VI 2 + .2

2.2 Skeletal Dynamics

The arm skeleton is usually modeled as a two-link rigid body (for example in [30],

[17], [40] , [29], [24]), and the parameters, 1s, 1e, rs, and re, and variables, 0, and 0e,

that are used are shown in figure 2-2.

The torque, T = [ T, Te ], needed to displace the joints along a certain trajec-

tory when the system is subject to some external disturbance torque is a function of

the inertial dynamics of the links and the Coriolis forces that arise due to the inter-

action of the links. Using Newton-Euler method for the two-link body in a horizontal

plane (as in [34]),

T = H(E)0 + C(E, 6)E + Td (2.11)

where Td = [Ts Tde ,'is a vector containing the disturbance torques in N -m at

the shoulder and the elbow links respectively; E, 6, and ® are the vectors I [ e ,

[ 6s je ], and [ & ], containing the shoulder and elbow angular positions in

rad, angular velocities in rad/s, and angular accelerations in rad/s2.

H(6) and C(E, 0) are matrices that contain the inertial terms associated with

centripetal and Coriolis forces:

H = I1+ 12 + mrs 2 + me(l2 +re 2 + 2lsre cosOe) 12 + Me(re2 + l.reCOSOe)

L 12 + me(re2 + isre cos Oe) 12 + mere2  J
(2.12)

(Melsresin0e)Oe -(melsresin e)( e + 1s)
C = . (2.13)

(Melsre sin Ge)O, 0

Here, ms and me, 1, and le, I, and 12, and r, and re are the masses in Kg, the lengths

in m, the moments of inertia in Kg - m 2 , and the positions of the centers of mass in

m of the shoulder and elbow links; refer to figure 2-2 for parameter definitions.
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2.3 Muscle Models

The muscles are the "actuators" that provide the torque needed to move the passive

arm skeleton. The force generated by each muscle is a function of the muscle length,

q, rate of change in muscle length, , and input to the muscle by the central nervous

system (CNS), u,

Fmuscle f (q, 4, u) (2.14)

A first order approximation of this equation using the Taylor series expansion around

some equilibrium trajectory, (qq(t), qeq(t)), gives:

Fmuscle = f (qeq(t), qeq(t), u) + K (qeq(t), qeq(t), u) dq + B(qeq (t), qeq (t), u) d4 (2.15)

where

_ f
K = (2.16)

B = . (2.17)

K and B are stiffness and viscosity terms that are not necessarily linear with respect

to the CNS input, u.

The two muscle models that are investigated differ in their definitions of the CNS

input, u = N, the level of activation of motoneurons for the alpha model, and u = A,

the threshold of the stretch reflex for the lambda model; refer to section 1.1.3 for

detailed descriptions of N and A. Proponents of the alpha model claim that the CNS

activation modulates the stiffness of the muscle directly by setting the slope of the

muscle force-length characteristic proportional to N, whereas the proponents of the

lambda model claim that the CNS modulates the stiffness of the muscle indirectly by

setting the threshold length of the stretch reflex, A (see figure 2-3). In this section,

the terms K and B in equations 2.16 and 2.17 for the two models and the input

signals that drive the models, N and A are compared.
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Figure 2-3: Plots for muscle force versus length in the static case, that is when the
rate of change of length of the muscle is negligible, based on the alpha model (A) and
the lambda model (B). A: According to the alpha model the CNS will set the slope of
the F-l curve. B: According to the lambda model, the CNS sets the threshold muscle
length for force generation,A.

2.3.1 Alpha-type model

This model is based on the Hill model where the actuator, the muscle, is considered

to be composed of two elements, the muscle fibers and the tendons, both functioning

together to produce the force that is exerted on the skeleton, see figure 2-4. So, the

muscle fiber and tendon properties that have been carefully studied experimentally

and modeled in isolation need to be combined in order to accurately model the "mus-

culotendon actuator" [53]. But adding the tendon to the model adds computational

complexity that could be avoided for the purposes of this study by simply ignoring

that element.

The tendon is modeled by a nonlinear spring, that is, the force produced is a

function of the length of the tendon, [52] and [53]. The force produced in the muscle

fibers is a function of both the muscle fiber length and the muscle fiber rate of change

of length. Thus, because the two elements are connected in series, the total muscle

force is:

Fmuscie = Ftendon = Fmuscle fibers (2.18)
Fmuscie = gt (Lt) = gm(u, Lm, Ln)

40

A F BF



- CE -

TENDON -0

F F
m - E -- muscle

fibers

MI -

FT = Fm
Lm > t

q

Figure 2-4: The musculotendon actuator is composed of two series elements, the

tendon and the muscle fiber. The muscle fibers are modeled as two parallel elements,
the contractile element (CE) and the passive element (PE). FT is the force exerted by

the tendon and Fm is the force exerted by the muscle. Lm is the length of the muscle
fibers, Lt is the length of the tendon, and q is their combined length.

where Fmusciefibers = gm(u, Lm, Lm) will be discussed in detail below, and the variables

Lt and Lm are the lengths of the tendon and the muscle fiber respectively, see figure 2-

4. But the total muscle length is q = Lm + Lt and the rate of change of the muscle

length is 4 = Lr + it . So, in terms of the total muscle length,

Fmuscie = gt(Lt) = g.(u, q - Lt, 4 - it). (2.19)

When some given q and u are plugged into the functions gt and gm of equation 2.19,

the result will be a differential equation in Lt which is usually nonlinear. Using

numerical methods, this differential equation can be solved for Lt, which is then used

in 2.18 to determine the muscle force Fmuscie.

If the tendon is assumed to be much stiffer than the muscle fibers, then the

muscle fibers will tend to respond to changes in length of the muscle, lengthening

or shortening as needed, while the tendon length remains constant, it = 0. This

simplifies the calculations significantly in that for a given q and u, and since Lt is now

a known parameter, Fmuscie is easily found by direct substitution into equation 2.19.
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In effect, the static force-length relationship of the muscle, Fmusc e = gm(u, q - Lt, 0)

vs. q, is now a shifted version of the muscle fiber force-length characteristic, Fmusce =

gm(u, Lm, 0) vs. Lm, where the shift reflects the fact that the muscle length is equal

to the fixed tendon length plus the varying muscle fiber length. Once this shift is

taken into account, one can ignore the tendon.

In the Hill model, the muscle fibers are composed of two elements in parallel,

the contractile element (CE), which models the sarcomeres that actively produce

force by contracting in response to neural activation, and the passive element (PE),

which models the passive properties of the muscle such as spring-like resistance to

stretch.1 The total muscle fiber force is equal to the sum of the forces produced by the

two parallel elements.

Fmuscie fiber = gm(u, L, Lm ) = FPE (Lm) + FCE (u, L., Lm) (2.20)

The force produced by the contractile element is a function of muscle fiber length,

change in length, and the neural activation as will be discussed below. The force

produced by the passive element, which is frequently modeled as a non-linear spring

as in [51] and [8], where:

FPE = a- (ec(Lm-Lo) (2.21)

For simplicity, here the passive force is assumed to be linear with respect to the muscle

fiber length, as in [29]

FPE K - (Lm - Lo) (2.22)

where Kp is the passive stiffness of the muscle and L, is the muscle resting length,

see table 2.5 for the values used.

The dependence of the force produced by the contractile element on the muscle

fiber length, Lm, and the rate of change of length, Lm., is shown in figure 2-5. As

in [51], [8], and [36], the contractile force can be broken down in to a static length-

'More detailed models also include a passive spring-like element in series with the contractile
element (CE) to model the compliance of the cross bridges [52], [53], and [18]. This is neglected here
as it adds significant but unneeded complexity to the model.
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Figure 2-5: The force-length characteristics of the contractile element for different
activation levels are shown in A. The force-velocity characteristics is shown in B.

and activation-dependent force that is then scaled by a velocity-of-stretch-dependent

function:

FCE hs (N, Lm) - hd (Lm, Lm) (2.23)

Here, the function used for the force-length relationship was a modified version of

that used in [51]; the activation dependent shift of the curves in [51] was eliminated

such that the curves resembled those of [8]. Still, the low activation curves, which are

the ones that come into play for the no-load reaching movements, closely approximate

the ones used in [51]:

hs (N, Lm) = NFmaxe 4 ) (2.24)

where L, is the muscle fiber length when the CNS input is zero (the resting length).

It can be seen from this equation that the static force is directly proportional to the

activation, N, of the contractile element. This can be also seen from figure 2-5, where

the left-halves of the curves have slopes that are monotonically increasing in N. That

is, the stiffness of the muscle is directly proportional to the activation, and this means

that the model belongs to the Alpha-type category.

The velocity-of-stretch-dependent scaling function models the dependence of the
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contractile force on the velocity of stretch. Less force can be produced by the muscle

fibers as they shorten. The function used here, from [29], is a good approximation of

the various different functions used in the literature, for example in [51], [8] and [3];

but this is simpler because this single function models both shortening (by convention,

Lrm < 0) and lengthening (Lr > 0) as opposed to having two separate functions for

the different cases:

hd(-Lm) = c1 + c2 arctan(c 3 + c4 - Lm) (2.25)

where, as in [29], ci, c2, c3, and c4 are 0.82, 0.5, 0.43, and 58 respectively.

Finally, the time dependence of force generation needs to be included in the model.

This corresponds to the sluggishness or low-pass nature of the muscles, the gradual

build-up of force in response to the input activation as a result of the excitation-

coupling that is due to calcium activation dynamics. One can model this phenomenon

in two ways, which are equivalent. Frequently, a low pass filter (inserted before block

"a" in figure 2-6) is used to to shape the input activation signal, u(t), as in [53], [3],

and [36]. One could alternatively use a low pass filter to shape the force output from

the force-length characteristic (that is, the filter, block "b" in figure 2-6, is inserted

after block "a"), as in [29] and [18]. Whether block "b" comes before or after block

"a" makes no difference because for any given muscle fiber length, Lm, block "a" is a

simple gain (see equation 2.24). The filter used here is the one used in [29]:

Ha 1/T 2  (2.26)

s) - 1(s )2

where T is equal to 15 ms.

The overall muscle model is shown in figure 2-6, where blocks "a", "b", "c", and

"d" represent equations 2.24, 2.26, 2.25, and 2.22 respectively.

Activation inputs: The inverse muscle model

One of the reasons for which the functions of equations 2.24, 2.25, 2.26, and 2.22 were

chosen instead of other functions that are frequently used in the literature is that they

are relatively simple yet capture the desired muscle characteristics for the reaching
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Figure 2-6: Block diagram, modified from [29], of the muscle fiber model; see text
for details. Block "a" is intentionally left empty because the function that the block
represents is different for alpha and lambda models.

movements. Because the functions are simple, it is easy to invert the overall muscle

model, equation 2.20, and explicitly solve for the activation given a required level of

force, Fd, for some muscle length Ld, and velocity of stretch, id, provided that the

low pass filtering is ignored:

N = gm(Fd, Ld,id) (2.27)

N Fd - (Kp - (Ld - Lo)) (2.28)

Fmaxe 0 (C1 + c2 arctan(c3 + C4 -d))

It turns out that the muscle activation that is calculated this way is not affected by

the fact that the low pass filtering was ignored, and the actual muscle length and

velocity of stretch track the desired ones almost perfectly.

The muscle force can be calculated from the skeletal dynamics equations; it is the

force needed to move the end-effector through some distance in some desired direc-

tion, or equivalently the joint angles through some desired trajectory. The desired

trajectory can be easily converted to the desired Lm and Lm using equations 2.2, refer

to section 2.1.1. So, the desired activation is easily calculated from the skeletal dy-
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namics and equation 2.28. Alternatively, the desired force maybe calculated without

knowledge of the skeletal dynamics and based on the assumption of the equilibrium

point control that the torque at the joint is equal to zero (see section 2.4.1).

Though this is useful of the purpose of analysis of the model and comparison

with other models, there is no reason to believe that the central nervous system does

indeed use either inverse dynamics to determine the required muscle force, nor an

inverse muscle model in order to determine the feed-forward activation signals for the

muscle.

The spinal reflex

The alpha muscle actuator model was derived without taking into account the effects

of the stretch reflex; both the static and dynamic characteristics of the contractile

element, equations 2.24 and 2.25, are experimentally determined for deafferented mus-

cles [53] and [8]. Thus, the effect of the spinal reflex, the excitation of homonymous

muscles via Ia afferent feedback and inhibition of the opposing muscles via the Ia

afferents and inhibitory spinal neurons, needs to be added to the model. Ultimately

the spinal reflex serves to increase the stiffnesses of the joint, refer to section 2.4.2.

As in [3], for each muscle, the excitatory activation that feeds back to the same

muscle, Ne, and the inhibitory activation that feeds back into the opposing muscle, Ni,

that arise due to the spinal reflex were found by solving two equations. The difference

between the excitatory activation and the inhibitory activation was approximated by

a second order function, and the two activations were related by a hyperbolic function:

Ne -Ni = Ks(Lm(t - 6) - xs) + Bs(Lm(t - 6) - is) (2.29)
N 2

Ne = N. (2.30)

Here, N is the inhibition constant; 6 represents the delay in the spinal feedback loop,

the difference between the time when Lm and Lm are available to the Ia afferents,

and the time that the activation commands are issued to the muscles. xs and -i,

are "setpoints" that are issued by the brain; these signals were set to be equal to
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the desired Lm and Lm, constant, or a combination of the aforementioned signals.

In reality, these setpoints would correspond to the gamma activation of the muscles

that tunes the sensitivity of the spindles, that produce the Ia afferents, to the stretch.

Letting x, and i, follow the desired Lm and Lrn is essentially equivalent to letting

the spindles (that generate the Ia afferent signal) reflect the velocity of stretch of

the muscle fibers because the resultant activations will be proportional to Lm; when

x. and i, are constant, the spindles reflect the magnitude of stretch of the muscle

fibers; and the combination if signals allows the spindles to reflect both the velocity

of stretch and magnitude of stretch of muscles.

Thus, the total muscle activation is the sum of the "feed-forward" CNS excitation,

as in equations 2.23 and 2.27, the excitation due to feedback from homonymous (or the

same muscle for simplicity) muscles, and inhibition from the opposing muscle, from

equations 2.29 and 2.30. The activation for for muscle a whose action is opposed by

b is therefore,

Aa = Na + Nea +Nib (2.31)

Aa = ja (Fda, Lda, Lda) + + (2.32)

where

Na = J(FdaLda, Lda) = gma(Fd.,Ld.,Lda)

Ne, = e = (a(Lm(t6) -XsaLrn(t6) -Xa) (2.33)

Nb =b e= b(m(t -)-Xsb Lrb(t -6 Sb),

where the spinal "setpoints", xzj and 's,, are linear combinations of Ld, and Ld;

and the function (i is a polynomial in its arguments because solving equations 2.29

and 2.30 simultaneously yields a quadratic in Ne (or N) . So, Na is a function of the

feed-forward signals and Nea and Nia are error-like signals.
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2.3.2 Lambda-type model

The A model used here differs slightly but significantly from the a-type model in that

the difference between the two models is only in the function corresponding to block

"a" in figure 2-6, but the interpretation of the CNS-issued driving signal, u(t), for

the different models is different. Here, u = A, which essentially parameterizes the

parallel force-length curves of 2-3B, represents not the activation of the muscle, but

the threshold of its stretch reflex: the length that the muscle must be stretched to

before it begins to generate an active force.

Thus, as in [48], [29] and [18], the muscle activation is a combination of the CNS-

set threshold, A, and the muscle length and velocity of stretch that are fed back by

the Ia afferent fibers (and are therefore delayed by 6):

A = [Lm(t - 6) + pILr(t - 6) - A(t) - g]+ (2.34)

where

[ fx ifx>O

0 if x < 0

that is, activation cannot be negative; ,u represents the amount of velocity feedback

available, which is probably set by dynamic gamma activation of the spindles; and '

is inhibition due to the opposing muscles. This activation will recruit motoneurons

that will activate the muscle fibers to produce the contractile force:

FCE = p(ecA - 1) (2.35)

where p and c are constants calculated such that the functions fit the experimen-

tally determined muscle characteristics; see tables 2.5 and 2.3 for the values of these

parameters.

Now, equation 2.35 is combined with 2.25, 2.26, and 2.22 to give the overall

muscle model.
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Activation inputs: The inverse muscle model

Again, as in section 2.3.1, for the sake of model comparisons and signal analysis, it

was easy and useful to invert the muscle model and derive the necessary activation

for desired muscle force, Fd, and muscle length and velocity trajectories, Ld and Ld.

Ignoring the filter (block "b" in figure 2-6):

A = Ld + pAI - -In .(Kr (Ld-Lo)) + 1 (2.36)
C 1P(Ci + C2 arctan(c3 + c4 - Ld))

Now, substituting equation 2.36 into 2.34, one can see how the muscle activation

signal is a combination of an error signal, e , its derivative, e, and a feed forward

signal:

A = e + e + jA(Ld, id, Fd) (2.37)

where

e = Lm(t - 6) - Ld (2.38)

= Lrm(t - 6) - id (2.39)
1 [Fd- 1 ,-(La-L

iA(LdFd) = -In .(K. (Ld - Lo)) +1 + Q. (2.40)
C P(Ci + C2 arctan(c3 + C4 - L))

The spinal reflex

Since the lambda model is based on the force-length characteristics of the intact

human arm [13], [11], [12], and [14], there is no need to explicitly include spinal reflex

in the model; it is automatically taken care of in that the stiffness of the muscle

(tangent to the force-length characteristic) increases as the length of the muscle and

the velocity of stretch increase, see equations 2.34 and 2.35 and figure 2-3B. On the

one hand this reduces the complexity of the model in that there is one less component

to model, but on the other hand, the driving signals of the model, A, have a slightly

more complex interpretation.
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2.4 Single Joint Arm

The torque exerted on the elbow joint is a result of the forces exerted by the agonist

and the antagonist muscles (the negative sign ensures that the torque is positive in

the direction of increasing elbow angle, 0e):

T = -M'F (2.41)

where M is the moment arm vector of equation 2.3 and F is the vector

[ Fagonist Fantagonist ]
and Fagonist and Fantagonist are forces generated by the muscles, as in equation 2.20,

for either A or a models. When this torque produced by the muscles is equated to

the torque required by the passive skeleton, the complete description of the arm is

obtained.

For the sake of analysis and comparison of the models, suppose that the expres-

sions for Fmuscie, where muscle = agonist or antagonist, are linearized, as in

equation 2.15, around a static equilibrium point, specifically, some muscle length,

qO, at which the muscle will be at rest for the CNS input u for which the net force

produced by the muscles about the joint is zero ( 2.41 is set equal to zero); q was

chosen to be the mean operating length of the muscle. The mean operating length

is assumed correspond to approximately 0.7 of the muscle "resting" length; see fig-

ure 2-5. Since static equilibrium is assumed, the rate of change of muscle length is

zero, 4 = 0. Then, equation 2.15 becomes:

Fmuscle = fmuscie(qo, 0, u) + Kmuscie(qo, 0, u)(q - q.) + Bmuscie(qo, 0, u); (2.42)

or, to make the notation more concise, and since u is the only variable in the functions

f, K, and B of the above equation:

Fmuscie = fmuscie(U) + Kmuscie(u) (q - qo) + Bmuscie(U)4 (2.43)
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which is valid for small and slow deviations of muscle length from its resting position.

In vector notation,

(2.44)

where the vectors and matrices are bold and underlined to emphasize the fact that

they are matrices:

F = F1,

Iui) = fi(Ui)

q =, q 2

= qi q2

K4414

F2 - -Fi ... F ]

f2(U2)

.. - i

-.. fi (ui)

- qn ]

... qO, qo,,

- ... '4n
K 2(u2)

B 2(U2)

-.. fn (un)

1'I

... Ki(ui)

... Bi(ui)

... Kn(un) )

... B(un) ),

n is the number of muscles acting on the joint, so for the single elbow joint, n = 2

and i = agonist, antagonist.

Now, substituting 2.2 and 2.44 into 2.41,

T = -M'f(u) - M'K(u) -(q - qe) - M'K(u)M -(E) -ee) - M'B(_u)M - (2.52)

where for the single joint,

e= oe

M'f(u)

M'K(u)M

M'B(u)M

- rifi(ui) - r 2 f 2 (U2 )

- r K,(ui) + r2K 2 (u2 )

- r2 B(ui) + rjB2 (U2 )

(2.53)

(2.54)

(2.55)

where the subscript 1 refers to the agonist and 2 refers to the antagonist.
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K(u)

_B(u)

= diag ( Ki(ui)

= diag ( Bi(ui)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

_F = f (u) + K(11) (q - q ) + B(_1) g



2.4.1 Equilibrium point trajectories

An (static) "equilibrium point" of the system is the joint angle (or corresponding

lengths of the muscles acting at the joint) at which the torque exerted on the joint is

zero, T = 0, and the system is at rest, O = 0. That is, the torque produced by the

agonists is equal and opposite to that produced by the antagonists, and any small dis-

turbance to the system will cause it to go back to the equilibrium configuration. The

definition used by different researchers for the equilibrium point is slightly different

when there is an external load acting on the system; the lambda model proponents

define the equilibrium point as that at which total joint torque, including torques

applied by external loads, is equal to zero. The proponents of the alpha model, on

the other hand, define the equilibrium point as that at which the total torque exerted

at the joint is zero in the absence of any external torques. In the presence of external

torque, the actual joint angle at which all forces are balanced is different from the

equilibrium position that would be reached when there is no load. Thus, the no-load

equilibrium point in this case was called a virtual equilibrium point [6]. When there

is no external load applied to the system, which is the case studied here, the physical

equilibrium point is the same as the so-called virtual equilibrium point.

According to the equilibrium point hypothesis, the CNS achieves the desired static

postures by setting the desired equilibrium point; that is, the CNS activation appro-

priately selects the agonist and antagonist force-length curves such that the limb is

positioned at the required joint angle for which:

T = -M'F = 0 (2.56)

To produce slow movements, the equilibrium point is shifted such that at all times, 2.56

holds. The difference between the actual position of the limb and the equilibrium

point specified by the CNS will generate a force in the spring-like muscles that will

propel the limb towards the new equilibrium point. Thus, the equilibrium trajectory

is a series of equilibrium points specifying equilibrium postures.

So, for the single joint arm, the desired agonist and antagonist forces should be
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such that:

T = rF1 + r 2 F2 =0 (2.57)

where the the subscript 1 refers to the agonist and 2 refers to the antagonist. Equa-

tion 2.57 is solved by specifying a level of cocontraction, which is necessary for the

production of the forces needed for faster movements, by the following equation:

F2 =Fagonist -Fantagonist (2.58)

where F, is the cocontraction force level. Now, as was mentioned in section 2.3.1, the

desired force can be substituted into equation 2.28 or 2.36 to calculate the desired

muscle activation level. Thus, the desired activation is determined without the explicit

use of the skeletal dynamics as in [29], [18], and [3]. This is useful because the brain

need not keep track of the limb inertias, which are required in the calculation of forces

from desired trajectories and skeletal dynamics and are required to be known with

accuracy or else the inaccurate values of inertia may lead to errors in the inverse

dynamics that could result in unstable system behavior.

Alternatively, the equilibrium point condition, 2.56 can be used to relate the cen-

tral inputs, u, to a centrally specified equilibrium point, such that the force required

by the muscles need not be explicitly calculated [6]. For example, setting equation 2.52

to zero and solving for the static (6 = 0) equilibrium joint position, Oeq:

T = U) = 0 (2.59)

yields:

eeq = eref - (M'K(u)M) (M'f (u) + M'K(u) - (q - q e)) (2.60)

where M'K(u)M is invertible when it is positive definite (note, K(u) is a diagonal

matrix with positive terms), which is indeed the case, as experimentally verified

in [40].
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Thus, a map 2 is established between the inputs to the individual muscles and

the equilibrium joint position (which is identical to the desired joint position in the

absence of external loads). Now, the CNS may specify a specific equilibrium point,
0 eq, by choosing the activations to the individual muscles, in vector u, such that

equation 2.60 holds. Equivalently, by setting some equilibrium point, the CNS also

chooses a certain subset in the space of allowable muscle activations, or vectors u, and

those are the ones that satisfy the equality in 2.60. The joint position can be changed

to a new equilibrium position by changing the vector u such that equation 2.60 holds

for the new equilibrium position. For a certain equilibrium point, one can find a

unique solution for u in equation 2.60 by adding additional constraints, like imposing

a constant tonic activation level that relates the activations of muscles around a

certain joint, for example:

S Nagonist * Nantagonist (2.61)

It is interesting to note that if u is such that:

M'f (u) + M'K(u) - (q - qf) M'K(u)M - (ed - Eref) + M'B(u)M -6d (2.62)

then, substituting back in 2.52:

T = R(u)(Ed -) + D(_u)(d - 6) (2.63)

where Od and 6d are the vectors of desired joint angles and angular velocities cor-

responding to the desired end-effector trajectory and R = M'K(u)M and D =

M'B(u)M are the joint stiffness and joint viscosity matrices.

Now, when the joint torque produced by the muscles, 2.63, is equated to the

joint torque required by the passive skeleton, like in equation 2.11 for the double

joint case, a second order equation is obtained to describe the system; this will be

2 This map is linear with respect to N of the alpha model but exponential with respect to A of
the lambda model.
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discussed further in section 2.5.

2.4.2 Comparing the a and A single joint arm models

Computer models were constructed for the single joint arm using both the alpha and

lambda muscle models. The expressions for muscle force derived in section 2.3 for

the a and A models are repeated here for convenience (the low pass filter, block "b"

of figure 2-6, is ignored in the equations but included in the computer simulations):

Fmuscle Kp (L - L,) + Fa(c1 + c2 arctan(c3 + C4 Lm)) (2.64)

where

Fa = Fmaxe for a model

p(ec(L--pLm-A) - 1) for A model

Inverse dynamics was used to determine the required CNS activation levels. There

were two sets of models, both required the use of appropriate (inverse) muscle models

to determine the required muscle inputs, that is, either equation 2.28 or 2.36 for the

first set or equation 2.64 for the second set. In the first set of models, the desired

joint torque was determined using the skeletal dynamics and desired joint angles.

Then, the desired muscle force was determined using the equilibrium point condition

of equation 2.57 and the cocontraction criterion of 2.58. Now, the desired muscle

force, along with desired joint position trajectory, were substituted in the inverse

muscle model expressions of equation 2.28 or 2.36 to determine the required a or A

inputs. As discussed earlier, there are reasons to believe that this open loop method

for determining the required activation of the muscle is probably not the one used by

the CNS; for example, it requires accurate knowledge of the parameters of the skeletal

and muscle model such as limb inertias, and uncertain or incorrect parameters, when

used to calculate the CNS input, result in inputs that may destabilize the system.

Still, these calculations were useful to compare the models and the activation or

driving signals required by each.
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In the second set of models, the skeletal dynamics were not used to determine

the requisite joint torque; in fact, the desired joint torque was not calculated at all.

Instead, for the alpha model, the expressions for the agonist and antagonist muscle

forces, from equation 2.64, were substituted in the equilibrium point condition of

equation 2.57 to get an equation of two unknowns, Nantagonist and Nagoinist. A unique

solution was determined by solving this simultaneously with equation 2.61. For the

lambda model, the value of lambda was set to the required muscle length trajectory

plus a corresponding cocontraction signal, as was done in [48]. This is merely an

approximation of the exact value required by equation 2.36, where the cocontraction

signal approximates the term -} 1 cd- ( "pc.Ld- ))] , which is a constant when the

cocontractive forces are assumed constant and much greater than the forces involved

in the actual movement and the passive force, such that the change in Fd - (Kp) -

(Ld - Lo) with time is basically negligible. Again, these calculations are open loop

and work in the absence of external disturbances; the activations obviously need to

be modified by the CNS in the presence of disturbances according to the feedback

that the brain receives from the arm. This will be explored later.

For both sets of models, both alpha and lambda models tracked the desired joint

angle and exhibited the bell-shaped velocity profile, even in the presence of the reflex

delays and calcium activation dynamics (block "b"), and even though these were not

accounted for in the inverse calculations for the desired activation level. However, the

reflex delays did result in a small delay between the desired joint trajectory and the

actual joint trajectory. Furthermore, the addition of an external torque step did not

destabilize the system, but, as expected, did alter the final position reached by the

arm as feedback to the brain, that may result in adjustments of the muscle activations

such that the external torque is countered and the original final position is reached,

has still not been added to the model; this outcome of the models is exactly like that

observed by Bizzi in deafferented monkeys [5] and [4]. Thus, both models exhibit

the observed kinematics and spring-like properties of the single joint arm. Moreover,

both models involved some work to determine the required activation signals. The

equilibrium point hypothesis mapping of equilibrium joint angle to the muscle inputs
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f (u) N FmaxCe- pC(e(LO- 1

Kp + N - Fmax 4Ce~ Kp + e( Lo cpC

B = N - Fmaxe P ec( Lo-) +

Table 2.1: When the a and A models are linearized around some muscle resting
length, L0 , and Lm = 0 as in equation 2.43, the tabulated stiffness, K, and viscosity,
B terms, in addition to a function, f(u), of the muscle input, u = N for the alpha
model and u = A for the alpha model, are obtained. Here, C = c1 + c2 arctan c3-

which enables the CNS to simply set the desired joint trajectory was not explored for

the single joint case, but will be used for the double joint arm in section 2.5.

To further highlight the differences and investigate similarities of the two models,

Fmuscie is linearized, as in equation 2.43, and the terms of the linear model are tab-

ulated in table 2.1. These were then used in equations 2.54 and 2.55 to determine

the joint stiffness and viscosities for the activation levels calculated when the models

described above were simulated for small perturbations around the resting length, L,.

The parameter values used in the models are shown in tables 2.5, 2.2, 2.3 and 2.4.

Table 2.1 shows that the muscle stiffness and viscosity values vary with the central

inputs (N and A), either proportionally (with N) or exponentially (with A). Thus, it

follows that the joint stiffness and viscosities, of equations 2.54 and 2.55, also vary

with the central inputs. In fact, as the muscle input increases, the joint stiffness

predicted by the alpha model also increases; therefore, it is easy to see from here

that, as mentioned in section 2.3.1, the additional excitation that is provided by the

spinal reflex serves to increase the joint stiffness.

It was found that for the same small perturbations form the resting position, the

lambda model muscle stiffness was larger than that calculated using the alpha model.

The joint stiffness and viscosity values, however, were within the experimentally de-

rived ranges in [40] and [17]. Furthermore, to produce the same small movements

around the resting position, the A inputs were around ten times smaller than the a

inputs; this is not surprising as the A inputs are related exponentially, not propor-
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6 (s) Ir (s) CI C2 C3 C4
0.03 0.015 0.82 0.5 0.43 58

Table 2.2: The values of the parameters used in the alpha model are tabulated here
and in table 2.5. These are values also used in the lambda model, from [29] and [18].

c 6 (s) T (s) P i CIC2 c3 c 4
112 0.03 0.015 0.15 0.82 0.5 0.43 58

Table 2.3: The values of the parameters used in the lambda model, from [29] and [18]
are tabulated here and in table 2.5

tionally, to the desired muscle force. But, despite these differences, it was observed

that, for both models, when the inputs, A and N that were calculated using inverse

dynamics, were used in equations 2.53 to 2.55, the equality of equation 2.62 was sat-

isfied, and therefore equation 2.63 holds. This is useful in the modeling of the double

joint arm, as is discussed in section 2.5.

2.5 Double Joint Arm

Assembling a model for a double joint arm is a more complex task than that of mod-

eling the single joint arm; there are six muscle groups arranged in agonist-antagonist

pairs around the two joints as shown in figure 2-1. Thus, a new problem of redundancy

arises due to the "extra" muscle pair, and determining the activations to the muscles

involves either optimization or making certain assumptions on how the desired forces

at a joint are distributed among the muscle pairs that act at that joint. For example,

when the skeletal dynamics equations are used to determine required joint torques

that are substituted into equation 2.41 or when the equilibrium point condition of

equation 2.56 is used, two equations with six unknowns, the muscle forces, are ob-

tained. One way to solve for the muscle forces is to assume a cocontraction level

for each of the muscle pairs and distribute the required torque at a joint equally (or

according to some ratio) between the joint muscle pair and the biarticular pair, as
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was done in [3]. Alternatively, the muscle force vector, F, can be found by minimizing

the norm of F such that net torque is zero, that is, equation 2.56 is satisfied, and

then adding cocontraction forces to the muscle pairs proportionally such that the net

torque around each joint remains zero, as in [29] and [18]. But, as discussed in sec-

tion 2.4.1, there is no strong reason to believe that the CNS works this way; still, use

of either of the two above methods to determine muscle activation will work, and the

models will exhibit the required kinematic properties of multi-joint arm movement.

The mapping between the desired (or equilibrium) joint trajectories and the re-

quired muscle activations that is derived from the equilibrium point condition, like

that of equation 2.62 in section 2.4.1, does not simplify the task of finding the individ-

ual muscle activations either. Again because of redundancy, the muscle activations

are not unique, and some optimization criterion is needed to determine the muscle

activations from the desired joint trajectory. But, since the mapping implies that the

specification of equilibrium joint position is equivalent to specifying the muscle activa-

tion, if one assumes that the mapping is taken care of automatically one can simplify

the muscle model by assuming that the CNS inputs are the desired trajectories, as in

equation 2.63, repeated here for convenience:

T = R(U)(Ed - 0) + D()(6d -

where ed and 6d are the vectors of desired joint angles and angular velocities corre-

sponding to the desired end-effector trajectory and R(u) = M'K(u)M and D(u) =

M'_B(u)M are the 2x2 joint stiffness and joint viscosity matrices.

One may bypass the need to assign individual muscle activations by modeling

the limb as a whole instead of modeling the individual muscles and putting them

together to model the double joint arm. It has been experimentally shown that like

the individual muscles, the multi-joint arm as a whole exhibits the elastic spring-like

properties and the stiffness matrix of the arm has been derived for different postural

conditions [40], and when the limb is in motion [24]. This approach of viewing the

multi-joint arm as a damped spring leads to the same equation, 2.63, that was derived
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Shoulder Link Elbow Link

mi Kg 1 1

4i m 0.3 0.3
ri m 0.15 0.15
I Kg . M2 0.075 0.075

Table 2.4: The values of the parameters related to the skeletal dynamics, defined in
section 2.2 and shown in figure 2-2, are tabulated here. Here, the subscript i is s for
the shoulder link and e for the elbow link.

by assuming the relationship of equation 2.62 between the muscle inputs and the

desired trajectories. A version of this equation (that does not include 6d and uses

constant stiffness and viscosity matrices) was used by Flash along with straight end-

effector virtual equilibrium trajectories to successfully model the kinematics of the

multi-joint reaching movement [17]. But the model was successful for slow movements.

By adding the dependence on desired angular velocity, 6d, as in equation 2.63, a model

that works for faster movements is obtained [38].

Equating the torque produced by the muscle, equation 2.63, to the torque required

by the passive skeleton, equation 2.11 leads to a second order equation of the multi-

joint arm:

H(e)e = -C(E, e)e + R(U)(ed - 6) + D(1)(Ed - 0) (2.65)

S= H-'(0) [-C(E, )e + R(I)(Ed - 0) + D(1)(ed - e)] (2.66)

where H-1(0) is an invertible matrix because the moments of inertia of the links are

always positive (nonzero).

In this equation, the inputs are the desired joint position and joint angular ve-

locity trajectories as well as the muscle inputs, u, that vary the joint stiffness and

viscosity matrices. In [17], these matrices were assumed to be constant through out

the movement. Gomi and Kawato's measurements for the stiffness of the moving

limb, however, show that the stiffness matrix does change during the course of the

movement.
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Muscle Muscle Passive Maximum Resting Moment p
I___ I Function Stiffness (N/m) Force (N) Length (m) arm (m) I (in eq. 2.35)

1 Pectoralis Shoulder 258.5 700 0.1153 0.03 6.8
flexor

2 Deltoid Shoulder 258.5 263 0.2195 0.04 11
extensor

3 Biceps long Elbow 190.9 740 0.1055 0.04 3.6
head flexor

4 Triceps lateral Elbow 209.9 1000 0.2855 0.02 6
head extensor

5 Biceps short Biarticular 36.5 400 0.3002 0.05; 0.05* 2.1
head flexor

6 Triceps long Biarticular 116.3 587 0.3055 0.04; 0.02* 6.7
head extensor

Table 2.5: The numbers in the first column correspond to the same numbers in
figure 2-1. The values for the passive stiffness were taken from [29]; the moment
arms and p were taken from [18]; the values for maximum or peak force were taken
from [36]; and the muscle resting lengths were taken from [42]. * For the biarticular
muscles that span two joints, the first number is the moment arm at the shoulder and
the second is the moment arm at the elbow joint.

2.6 Arm Model Activation Signals

The purpose of looking at different models of the arm, the nonlinear models that were

based on either the alpha or the lambda muscle models and the simpler second order

models that are based on linearizing the muscle models and experimental evidence

of the limb's damped-spring-like behavior, was to gain a better understanding of

the feed-forward signals that need to be issued by the brain to drive the models.

Though the driving signals of the different models, N, A, or [0d, dl , are quantitatively

different, they are similar in that they appear to be linear combinations of the desired

joint trajectory, which is a smooth sigmoid, and its derivative, the bell-shaped velocity

profile:

U = W1Od + W2OA (2.67)

where w, and w2 are constants. This was not only observed from the simulations,

but is also evident in equation 2.62.

Assuming that there is some map from the desired joint angle and joint velocity

trajectories to the individual muscles, and it is possibly implemented in the spinal cord

through the wiring of corticospinal neurons that synapse onto different motoneurons
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and from the motoneurons to different muscle units, then the driving signals that

need to be issued by the CNS are simply [Od, d] . How these might be generated in

the brain and how they might be modified by proprioceptive feedback are the subjects

of the next chapter.

2.7 Summary

In this chapter two versions of equilibrium point arm models, a and A, have been

explored and compared. The two models essentially emphasize different behaviors

of the muscle force-length characteristic in response to activation: a change in slope

according to the a model and a shift of the characteristic according to the A model.

Using either muscle model to build a model of a single or double joint arm, however,

results in arm models which have similar behaviors, especially when reflex loops,

which are built into the lambda formulation but not the alpha formulation, are added

to the alpha model. Even though the physical interpretation of the inputs to either

model, u = N or A, is different, both models are based on the notion that the muscle

properties propel the arm from its current equilibrium state to a centrally specified

equilibrium state, such as desired arm position.

It has been shown that there is a mathematical mapping between the desired arm

position and the muscle inputs; and reformulating either the a or A arm model in

terms of the desired arm position simplifies it from one with six inputs in the double

joint case, one for each muscle around the shoulder and elbow joints, to a simpler

model with desired joint position and velocity as inputs. This removes some of the

complexity that is introduced to the model by having the six muscles, such as the

need to deal with the redundancy of six muscles by activating the muscles according

to some predetermined, possibly somewhat artificial, scheme such as one whereby

the desired force changes are distributed "evenly" among muscles. Furthermore, it

eliminates the need for calculating precise muscle inputs using inverse muscle models,

which is not necessarily the way the CNS operates. Though the reduced complexity

comes at the price of losing some biological accuracy, the overall performance and
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behavior of the arm model, which are for the purposes of this work more important

than the detailed muscle mechanism underlying arm movement, are not forfeited.

So, given that there is a mapping that essentially exploits muscle properties such

that, potentially, simpler central commands need to be issued to the "plant", the

question is whether this map actually exists in reality, and if so, where it is im-

plemented. Since it has been observed that the inputs to the muscles, u = N or

A, are basically weighted combinations of joint position and velocity signals, it has

been suggested here that the "map" in question, which basically involves scaling and

routing joint position and velocity signals to the appropriate muscles, takes place

in the spinal cord. This seems plausible for several reasons. First, the pyramidal

neurons project both directly onto motoneurons and indirectly via interneuron pools;

this provides both scaling and routing capabilities. Projection strengths are deter-

mined by synaptic connections, which can have different strengths, so signals can be

weighted. Furthermore, anatomy reveals both convergence of cortical signals from

different pyramidal cells onto the same motoneurons and divergence of cortical sig-

nals from the same pyramidal cell onto different motoneurons; that is, the spinal cord

does route signals. Secondly, there is some experimental evidence of the existence of

the map in the spinal cord [6].

Assuming that the map is taken care of in the spinal cord means that, effectively,

the spinal cord has been lumped with the six-muscle arm model to obtain a simpler

model of the plant with inputs 0 ref and 6 ref. For the purposes of this work, namely

to propose and test a mechanism that is based on simple biologically reasonable as-

sumptions by which sensorimotor cortex commands the "arm" as will be discussed in

the next chapter, the second order "arm"3 is adequate. However, since the dynamics

of the arm model play an important role in the outcome of the simulations of the pro-

posed command generator, using six muscle models to test the command generator is

an important part of future work. This entails a more detailed study of the different

maps for different muscle models, and whether the spinal circuitry that implements

3From here on, "arm" is to mean the spinal cord and six muscle arm in the context of horizontal
point-to-point reaching.
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them exists. This is to be addressed in future work, as is mentioned in chapter 4.
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Chapter 3

Command Generation in the

Sensorimotor Cortex

The previous chapter was concluded with the statement that the equilibrium point

arm models, whether alpha, lambda, or some second order approximation of these,

can be driven by appropriate combinations of signals that encode desired joint posi-

tion and joint velocity. If these signals are generated somewhere in the brain, then

it is possible that they are properly scaled and sent to the individual muscles via

the spinal cord circuitry. Here, the existence of this circuitry is going to be assumed

and is not the subject of investigation; rather, the question investigated is the re-

quired structure of the command (joint velocity and position) generating mechanism

in the sensorimotor cortex given the known anatomy and physical structure of the

cortex. A major concern is how and where each functional block of the command

generator is actually implemented in the sensorimotor cortex. The operation of the

proposed command generating model is then tested with a simple second order model

of the arm for features that conform (or possibly don't) with the observed kinemat-

ics of human arm movements, as reported in [17], [31], [50], and [2]; and features

that conform (or possibly don't) with the data from neurophysiological studies such

as [22], [23], [32], [37], [39], [44], and [46]. First, however, the model of the basic

building block of the generator, the neuron, and how it fits in a larger network of

neurons will be discussed.
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3.1 Neuronal Network Model

Before the model of the neuron is described, it should be noted that central to the

whole work is the observation that the envelopes of firing signals (which corresponds

to the profile of neuron firing rate over time) of individual cells in sensorimotor ar-

eas (motor, premotor, and sensory cortex) and association areas (parietal cortex) as

shown in neurophysiological studies ( [22], [23], [37], [39], and [44]) have sigmoidal or

bell shaped profiles (or a combination of both) that are reminiscent of the profiles of

the hand kinematics, bell-shaped tangential velocity, and consequently the sigmoidal

joint position and bell-shaped joint velocity profiles. The sigmoidal and bell-shaped

profiles as well as a combination of both are shown in figure 3-1. These are smoothed

versions of the envelopes of the actual firing signals of the neurons, which, as can be

seen in the aforementioned papers, appear more "bumpy". Still, to a first approxi-

mation, the envelopes resemble the kinematic profiles; thus, the main assumption is

that the envelopes of the firing signals contain position and velocity information, and

it is these envelopes or firing rates that the model of the neuron, described below,

receives as input and will consequently output.

The model of the neuron used in this study is a simple abstraction that does not

capture any neuronal dynamics; refer to figure 3-2. The output firing rate of some

neuron, j, is function of a weighted sum of the firing rates of input neurons and the

threshold of that neuron, j.

y= f (Zw ijyi + 1: Vj - t9j) (3.1)
i k

where yj is the output firing rate of the j th neuron in the cortical area under consid-

eration, wij and Vk3 are synaptic weights that are described in sections 3.1.1 and 3.1.2

and Xk is the firing rate of the k th remote neuron (located in some different cortical

area). Finally, 9 is the firing threshold of the j th neuron and f is a nonlinear function

that describes the input-output behavior of the neuron, the simplest of which is a

saturation function.
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Envelopes of Firing Rates Observed in Sensorimotor Cortex
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Figure 3-1: Neurons in the motor, premotor, sensory, and parietal cortices have firing
rates that vary with time as reported in neurophysiological studies and shown above.
The (smoothed) profiles are either sigmoidal (A), bell-shaped (B), some combination
of the previous two (C), or bi-phasic (D).
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Figure 3-2: The abstract model of the neuron is described in detail in the text.

The output firing, y, is assumed to be instantaneous; there is no time delay be-

tween the moment the neuron receives its input and the moment it fires. The neuron's

threshold for firing, 0, was ignored for simplicity, but this does not change the model.

The nonlinearity in the input-output neuron model, f, the simplest of which is a

saturation function, was not explicitly coded in the simulations, rather, f was simply

a gain constant; but, the firing rates were monitored closely to make sure that no

neuron fires excessively, that is, the neurons never reach saturation. This simplicity

was intentionally seeked as a start and in order to see what one could or could not

achieve by using the simplest possible models; thus, the complexity that the more

detailed but more realistic models would add was forsaken in order to find out to what

extent this detail is really necessary and a determining factor in the simulation results.

As will be discussed in chapter 4, an interesting improvement to be implemented in

future work is to incorporate the neuron dynamics, such as delays at synapses and

attenuation of signals traversing the dendritic tree, within more detailed models of

neurons and see if and how this changes the results.
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3.1.1 Remote Inputs of Neurons

As was discussed in detail in section 1.1.1, the motor cortex receives afferent and

re-efferent information via projections from the sensory cortex, the parietal cortex,

the premotor areas, and the thalamus. The projections to and from the motor cortex

are summarized in figure 1-1. Such projections from areas outside the area under

consideration are here called "remote inputs" to distinguish them from the inputs a

neuron may receive from neurons within the same area, which will be discussed in

section 3.1.2 below.

Any modeled neuron can receive any number of remote inputs, each of which may

influence the cell to a different extent. In the neuronal model described above, the

remote inputs are designated by the letter x. The strength of the influence of the k th

remote neuron on the j th neuron, the neuron under consideration, is determined by

the weight Vkj. Thus, a weight, Vkj, of zero, for example, means that the Jth neuron

does not receive input from the kth remote neuron. A positive (negative) weight,

Vkj > 0 (Vkj < 0) , means that the j th neuron receives excitatory (inhibitory) input

from the k th remote neuron. Excitatory and inhibitory connections will be discussed

further in section 3.1.3.

In the network model that is implemented in this work, the values for the weights,

Vkj, from a network of N remote neurons onto some j th neuron were chosen such

that the values of (vij, v2 , ... , VNj) are inversely proportional 1 to the "distance" be-

tween remote neurons; that is, the strongest projections to neuron j are from remote

cells whose distance from each other is smallest. First, "distance" does not neces-

sarily mean physical distance between cells; rather, distance refers to the difference

between the values of the variable encoded by the cells. For example, if the remote

neurons encode some desired movement direction, then the "distance" between a pair

of neurons is the difference between the directions encoded by these neurons. Second,

the weight assignment was carried out by first making a connection from an arbitrary

remote neuron to the the target neuron, j, and assigning it the highest weight, and

'Both here and in subsequent uses, an "inversely proportional" relationship between a and b is
such that when a increases, b decreases in some sense, not necessarily reciprocally.
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then relating the weights of the rest of the connections from the remaining remote

neurons to that arbitrary neuron such that connections from neurons which are at a

smaller distance from the first arbitrarily chosen neuron had stronger weights. More

precisely, an equivalent way to achieve this was that the target neuron, j, was assigned

a random number, j, that lies with in the needed range of the variable assumed to

be encoded by the remote neurons, as will be discussed below. The weight from the

k th remote neuron was then calculated by:

Vkj = kv e- 2o, (3.2)

where kv and - are arbitrary constants, and q5k is the value of the variable encoded

by the k th remote neuron.

For example, the remote neurons could represent an ensemble code for arm move-

ment; that is, the neurons map the workspace of the hand such that each neuron

or group of neurons represent a small region in the workspace to which the hand is

required to move. Then depending on the position to which the arm is required to

move, a certain group of remote neurons will fire; if one thinks of the workspace in

polar coordinates, then the fact that a certain group of neurons fire could indicate the

required direction of movement, and the distance of movement (and speed) could be

encoded by both the magnitude of the firing rate and the the duration of the change

in the firing rate. Thus, under this formulation, the variable that the remote neu-

rons encode is the direction of the required arm position relative to some fixed point

in the workspace.

A network was built and simulated with 4 remote neurons, representing 4 direc-

tions in the workspace: I, 7r, 3, and 27r. The regions of the workspace with directions

in between the above directions are easily specified by having several remote neurons

representing different directions fire with the appropriate magnitudes. This is analo-

gous to vector addition; in fact, each of the neurons could be considered to represent

a vector in the workspace and as long as two neurons form a basis, then any point

in the workspace could be theoretically represented. Having the four neurons instead
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Population Coding in the Network
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Figure 3-3: The simulated firing rate of 100 cortical neurons in response to input from
a remote neuron that encodes required movement to the right is plotted versus the
variable assigned to each of the 100 neurons. The magnitude of each of the thin lines
represents the firing rate and the direction represents the value of the corresponding
variable . The thick line is the population vector, which is obtained by vectorally
adding the thin lines, and is in the same direction as the required movement direction
signaled by the remote neuron.

of only two means that all positions in the workspace could be realized using only

positive scaling of the vectors (that is, positive firing rates, though it will be seen

in section 3.1.3 that negative firing rates are allowed in certain circumstances and

have a special interpretation). It can be seen in figure 3-3 that the network simulated

with 100 local neurons was observed to exhibit the population coding that is reported

in the cortical areas in studies like [22], [23], [32], [37], [39], and [44], even though

directional tuning is not "hard wired" into the neurons. That is, population coding

(discussed in section 1.1.2) is a result of the way the inputs are wired to the neurons

in the network, and not a result of the firing function of the neurons (which is in fact

linear in these simulations; that is, f in equation 3.1 is simply a gain constant).
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3.1.2 Local Interactions of Neurons

Neurons within a cortical area, such as the motor cortex or sensory cortex, receive

as inputs the outputs of neurons from other areas, as discussed above, but also re-

ceive inputs from cells of the same area as well, often via inhibitory and excitatory

interneurons [43]. These projections from neighboring neurons of the same area will

be referred to as local projections.

The local interactions of neurons have been studied by several investigators as

in [23] and [37]. In [23], Georgopoulos et al. report that the firing of pairs of neu-

rons in the motor cortex is negatively correlated with the difference in their preferred

directions; that is, if the difference in the preferred directions of a pair of neurons is

small (close to 00), the two neurons are likely to be interconnected via strong exci-

tatory synapses, while neurons with nearly opposite preferred directions (that is, the

difference between their preferred directions is close to 180') are likely to be intercon-

nected via strong inhibitory synapses. In fact, through their analysis, Georgopoulos

et al. conclude that "mean synaptic strength was negatively correlated with the angle

(0' and 1800) between the preferred directions of the two neurons ... throughout the

range of connections from positive (excitation) to negative (inhibition)." In [37], on

the other hand, while Maynard et al. also report on the interactions between the neu-

rons in the motor cortex, they do not find a correlation between these interactions and

the preferred direction of the cell. However they do report that neurons whose firing

is correlated when the arm moves in one direction will exhibit a negative correlation

in their firing for the opposite direction; through their analysis they conclude that

the correlation between neuron firing actually carries extra information that improves

the cortical population coding of movement direction.

While there is no consensus on the the correlation of the local interactions of

neurons with the preferred direction of neurons, there seems to be agreement that

neurons whose firing is strongly correlated in one direction of the hand movement in

the workspace will have negatively correlated firing in the opposite direction. In this

work, this result was the basis of setting up the local interactions of neurons such that
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the neurons receiving inputs from the same remote neurons had strongest interactions;

the larger the "distance" between the strongest remote inputs that a pair of neurons

receive, the weaker their interactions. Practically, this was implemented conveniently

by choosing the weights wij that determine the strength of the connection between

the output of the ith and the j th target neuron using the variable that was discussed

in the previous section. The weights, wij, were calculated using:

________ ( _I-,)
2

wi3 = kE e 2E - k e 2aJ (3.3)

where kE, kI, JE, and oI are constants chosen such that kE > kI and aI > CE; the

subscripts E and I stand for excitatory and inhibitory connections. The weight wij

is the sum of all the excitatory connections that the J th neuron receives from the ith

neuron, which are subsumed in the first exponential term on the right hand side of

equation 3.3, plus all the inhibitory connections, subsumed in the second exponential

term on the right hand side of equation 3.3. Obviously, this is a simplification that

eliminates any dynamics or timing differences in the arrival, at the target neuron

soma, of several signals from the same neighboring neuron due to more than one

synapse of the neighboring neuron onto the target neuron. These timing differences

could be a result of the different locations of the synapses of the different inputs

from the ith neighboring neuron on the dendritic tree of the target neuron. Here,

however, it is assumed that any interaction between two neurons is a result of at

most two synapses: one from the Jth to the ith, and the second from the ith to the

j th. Finally, wjj, that weights the signal from the output of the j th neuron back onto

itself as an input, which represents recurrent excitation via a collateral of the axon

(and is physically observed to happen in the motor cortex [43]) was allowed but for

simplicity ignored; it resulted in no changes in the results when the proper weighting

of projections onto the output neurons was chosen.

A network of four remote neurons and 100 local neurons that were fully intercon-

nected as described above was simulated; a sample result is shown in figure 3-4. It

can be seen in this figure that the local interactions have served to shape the firing
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Population Coding in the Network: Modelling Local Interacti ons
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Figure 3-4: The simulated firing rate of 100 interconnected cortical neurons in re-
sponse to input from a remote neuron that encodes required movement to the right is
plotted versus the variable assigned to each of the 100 neurons. The magnitude of
each of the thin lines represents the firing rate and the direction represents the value
of the variable . The thick line is the population vector, which is obtained by vec-
torally adding the thin lines, and is in the same direction as the required movement
direction signaled by the remote neuron. Local interactions between the neurons that
were modeled in this network appear to improve the directivity of the population
code.
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distribution of the cells such that the "main lobe" which peaks around the desired

movement direction is narrower than was the case when there were no local interac-

tions (compare with figure 3-3).

3.1.3 Inhibition, Excitation, and Interneurons

The weights Vkj and wij could theoretically take on either positive or negative values.

The sign of the weight is an abstraction that models the type of the synapse. If the

sign of the weight is positive, then the synapse is excitatory; signals arriving from

the pre-synaptic cell will result, if some threshold is exceeded due to the input, in the

increased firing (higher firing rate) of the post-synaptic cell. If the sign of the weight

is negative, then the synapse is inhibitory; signals arriving from the pre-synaptic cell

will result, if some threshold is reached, in the decreased firing of the post-synaptic

cell. In practice, the signs that the weights were allowed to take on were values

that reasonably model the actual connections in the brain. For example, Vkj had

positive values, to model excitatory connections between cortical regions. The local

interactions, as modeled by wij, took on both positive and negative values as was

described in the previous section.

Physically, the output firing rate of some neuron might increase from some initial

level in response to its inputs, as shown in figure 3-1, or decrease in response to its

inputs, as shown in figure 3-5 and can be seen in reports of electrophysiological stud-

ies on the motor, sensory and parietal cortices, such as [22], [23], [37], [39], and [44].

In this work, it was found simpler to ignore initial firing rate; and indeed, it is not

modeled in the equation 3.1. This is another simplification that yielded abstraction in

the sense that inhibited outputs are manifested by negative signals. In reality, there

is no such thing as a negative firing rate; but as an abstraction, it is to be thought

of as a drop from some initial firing rate. In future work, it might be interesting to

incorporate the additional information provided by initial firing rates in the model of

the neuron, and study the value of this information provided, how it affects the dy-

namics of the command generating model suggested below, and what brain structures

determine, monitor and regulate such bias levels.
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Envelopes of Firing Rates Observed in Sensorimotor Cortex
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Figure 3-5: Neurons in the motor, premotor, sensory, and parietal cortices have
firing rates that vary with time as reported in neurophysiological studies and shown
above. The firing rate of a neuron may either increase in response to input signals

(excitation), as was shown in figure 3-1, or decrease (inhibition) as shown here.
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3.1.4 Network Output

In the motor cortex, pyramidal cells are the output neurons that integrate the in-

formation processed in the motor cortex and then project this information to the

appropriate circuitry in the spinal cord. This concept of output neurons was useful in

the network model of the proportional integrator command generator model (PICG)

that is discussed below, where there was a need for output "neurons" that integrate

the signal that comes out of the neuronal network and interface with the "plant" (the

arm model). The arm model used requires four input signals: 0s, 0e, s, and Oe. So,

the signals generated in the network of neurons as a result of remote inputs need to

be channeled in an appropriate way to the arm model.

The output neurons are modeled again by equation 3.1. Again, the output of

the neuron is a weighted combination of the inputs. But now, the inputs are from

each of the local cortical neurons of the network (there are no "remote" inputs). In

the PICG model, two output neurons were used, the reason for which will become

apparent later. The weights of the connections of the the local cortical neurons onto

the output neurons is probably the most crucial aspect of the whole model, and in

this choice lies a lot of power and flexibility to make the network produce the required

signals in response to some input.

In the PICG model, the weights of the connections of cortical neurons onto the

output neurons were chosen such that the network as a whole behaved like a "kine-

matics converter"; that is, it converts the remote neuron inputs that specify a desired

Cartesian position (or velocity) for the end-effector to the desired joint position (or

velocity) by proper scaling. The output neurons were set up this way because un-

der the circumstances explored in this work, unobstructed, unloaded, point-to-point

movements in air, and because of the propositions in the literature that the mo-

tor cortex possibly processes information in joint coordinates while it receives inputs

from areas, such as the parietal cortex, that possibly process information in Cartesian

(extrapersonal) coordinates (these will be discussed in more detail below), then the

function of the motor cortex would essentially be to convert the Cartesian commands
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it receives to joint coordinates that the spinal circuitry can process and route to

the proper muscles. Mathematically speaking, the conversion between Cartesian and

joint coordinates (inverse Jacobian) is a function of the position of the arm in the

workspace, its (x, y) or (0s, 0e) coordinates, as is apparent from equation 2.9. But,

in the PICG model, it suffices to make the neuronal network approximate the inverse

Jacobian of a central workspace position. Why and how this is so is the subject of

the next section where the PI command generator will be discussed in detail.

3.2 The PI Command Generator

The proportional integrator command generator that is suggested in this work as a

possible mechanism by which the motor cortex produces the desired signals to com-

mand an arm model is shown in figure 3-6. The blocks of remote neurons, local

neurons, and output neurons have already been described in sections 3.1.1, 3.1.2,

and 3.1.4. As has been described in section 3.1.1, four remote neurons signal the de-

sired final location in Cartesian coordinates of the end-effector in the workspace. The

time profile of the signals was a sigmoid, as in figure 3-lA and 3-5A. Physically, such

a network of neurons could exist in the parietal cortex (areas 5 and 7) which moni-

tors ongoing movement of the arm in the workspace, compares the movement to the

intended movement commanded by central inputs, and modifies central commands

in response to peripheral inputs [7] [32]. Since area 7 receives visual information

and visual information is probably represented an extrapersonal frame of reference

(the Cartesian representation of the workspace for example) [10], it has been sug-

gested that information in the parietal cortex may be represented in extrapersonal

coordinates [32].

Physically, the parietal cortex neurons project to the motor cortex; in the PICG,

the remote neurons provide the input to the "local network," which is possibly realized

in the motor cortex. The local network is set up as described in section 3.1.2. However,

instead of using a hundred neurons or more with a random value assigned to the

variable corresponding to each neuron, only four neurons were used, having the
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Figure 3-6: The PICG model provides the needed joint position and velocity signals

to the arm model. The g, and g, blocks are tunable gains. The "sensory network"

block in the smaller feedback path represents the processing of re-efferent signals,
possibly by the thalamus (T) and sensory cortex (Si), and takes care of a needed

coordinate transformation; it is discussed in the text. The dashed part of the figure

represents parts that were not investigated in this work but are to be explored in

future work. The dashed lines represent the flow of proprioceptive information that

is fed back from the limb; the dashed blank box represents processing of that fed-back

information, possibly by cerebellum (CBLLM), basal ganglia, and thalamus, before

it reaches the cortical areas. It is proposed that the processed information is then

used to adapt the gains g, and g,.
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preselected values: 2, 7r , and 7r. Essentially, the only effect that this has is to2' ' 2

simplify the modeling by reducing the size of the needed local network; fixing the

values of the variable such that its values are uniformly spaced is analogous to

having a large number of neurons with (uniformly) randomly assigned values. The

large number of the neurons is needed to obtain the population coding observed in

the motor cortex [41] [49].

The output neuron block, again, set up as described previously in section 3.1.4,

is such that the local network and the output network together effectively perform a

kinematic conversion from Cartesian to joint coordinates. It should be noted that,

in the PICG, the input to the local network is the difference between the desired

Cartesian trajectory of the end-effector, as specified by the remote neurons, and

the actual issued Cartesian trajectory that is fed-back via the sensory cortex (and

discussed below). Physically, the comparison of the desired signal of the remote

network with the fed-back signal could take place in the parietal cortex, since, as was

mentioned above, it is believed to monitor and update command signals that it then

sends to the motor cortex. It is also possible that the comparison occurs in the motor

cortex itself, because it is known that the motor cortex receives re-efferent signals via

the thalamus; or, the comparison could occur in both these cortical areas. In any

case, the local neurons receive a bell-shaped velocity-like error signal like that shown

in figure 3-1B and 3-5B, that, when scaled properly and goes through the inverse

Jacobian transformation of the local and output networks, results in joint velocity

signals.

The joint velocity signals project to both the arm model and an integrator; as

such, the outputs of the integrator are the desired joint positions which are both

projected to the arm and fed through a feedback module back for comparison with

the desired signal. Thus, the PICG model is basically a servo that scales and tracks

the desired input.

Physically, the integrator could be implemented in either the cerebellum, basal

ganglia, or perhaps in the motor cortex itself. This is certainly possible via the

dynamic responses of various types of neurons located in these structures and the
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interconnections between these neurons, but this is a thesis topic on its own and is

an area of future work, as will be discussed in chapter 4. The fed-back joint position

information goes through a block that performs another coordinate transformation

which is needed for proper signal comparison. The block could be located in the

thalamus and sensory motor cortex which are structures known to process joint infor-

mation that they receive and project back to parietal and motor cortex; as discussed

above, in the parietal or motor cortex the desired position might be then compared

to the issued signal. This kind of a loop that consists of the signal to be issued to

the "plant" being fed-back to the motor cortex is biologically plausible as it is known

that the motor cortex receives such "re-efferent" information from cerebellum and

basal ganglia via the thalamus. But the precise role of the re-efferent information in

motor control is not known and has been subject of speculation in the literature; so,

it is possible that the re-efferent information is actually used as proposed here.

Finally, the gain blocks labeled g, and g, in figure 3-6 are the tunable parameters

of the model and model both adaption in the motor cortex and the need for several

populations with different interconnections within the cortex. These gains provide

the ability to fine tune the output of the command generator such that the desired

behavior (performance) is achieved by the limb. Tuning these gains is equivalent to

tuning the synaptic weights in the local network, which happens physically during

learning. However, in this model, not only did it suffice to tune these two gains,

as opposed to changing the weights in the local network, but it was simpler to see

the effect of tuning by varying only these two parameters as opposed to varying

many more parameters in the local network. Biologically, the "tuning" (learning)

would occur as a result of peripheral information such as proprioceptive and visual

information (as represented by the dotted line in figure 3-6 from the arm back to the

gain blocks). The exact mechanism for such tuning is another area for further work,

as will be discussed in chapter 4.

Thus, tuning g, and ge during a single movement (between the same two points)

models adaption that happens in the motor cortex during learning. Alternatively,

tuning g, and g, could take on a new meaning for different movements (that is,
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movements between different sets of points). As will be discussed below, the gain

parameters may take on different values to achieve the same kinematic performance

of the arm in different regions in the workspace. This is expected because the connec-

tions of the local network are kept constant and, when taken together with the output

neurons they provide the inverse Jacobian of a fixed location in the workspace; but

as has been previously pointed out, the inverse Jacobian is not the same all over the

workspace. Thus, tuning the gains serves to improve the inverse Jacobian transforma-

tion that is implemented. Physically, the local network, output neurons and new gain

parameters could be thought of as a new population of neurons, with a different set

of interconnections, that comes into play when a different region in the workspace is

traversed. These roles of the gain parameters will become clearer as these parameters

are discussed below in the context of the arm kinematics that are simulated by the

model.

3.2.1 Simulated Features of Arm Kinematics

The PICG was tested on a second order arm model (refer to equation 2.66) using

MATLAB's Simulink, as described in appendix A. As was mentioned previously, it

is assumed that the spinal cord circuitry takes care of scaling and routing the PICG

signals to the proper muscles; since such circuitry was not explored in this work (but

could be another area for future work), the six-muscle models were not used in the

simulations.

The performance of the PICG was tested using the arm model by simulating

movements in different directions and in different locations of the workspace. Figure 3-

7 shows sample simulated hand trajectories for medium-speed movements (having a

peak hand tangential velocity of 170mm/s) starting at the center and ending at the

eight different positions around the circle. The thick lines are the trajectories followed

by the hand when it receives the joint velocity and position commands from the PICG;

the thin lines are the trajectories followed by the hand when it receives the proper

joint velocity and position commands directly. That is, the thin lines take on the

shown curved trajectories due to the dynamics of the arm model; but the trajectories
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Sample Trajectories Simulated Using the PICG

X

Figure 3-7: When g, and g, are fixed at 3, the commands issued by the PICG cause
the end-effector of the second order arm model to follow the thick trajectories. The
thin lines are the trajectories that would be followed by the hand had the desired
joint position and velocity commands been issued directly to the arm, without a
PICG module. The dotted lines are the straight line paths from the central starting
position of the movement to each of the eight target positions located 0.15m from the
starting position. The peak speed of hand movement is approximately 170mm/s.

produced using the PICG are quite different and are not characteristic of the arm

dynamics alone.

It is clear from figure 3-7 that performance varies for the different directions

when the gain parameters are fixed at the same values for all the directions; more

specifically, the trajectories followed in the 00, 450, and 2250 directions are closer to

the dotted straight line paths. Still, by tuning the gain parameters for each of the

different movements in the workspace, the required performance can be obtained; this

is illustrated in figure 3-9. It is significant to note, however, that the PICG trajectories

are qualitatively similar to observed hand paths reported in [17], [31], [50], and [2];

furthermore, the tangential velocity of the hand is approximately bell-shaped as shown

in figure 3-8 and also reported in the aforementioned studies.

For example, in figure 3-7, the shapes of the PICG model generated hand trajec-
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Tangential hand velocity profile simulated using the PICG
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Figure 3-8: The tangential hand velocity has a bell-shaped time profile, as shown in
this sample plot, where g, = g, = 3 and the movement direction is 45'.

tories for the movement in the 00, 450 , and 2250 directions look very much like the

trajectories recorded by Flash and reported in [17]. Noteworthy are the small hooks

that occur at the end of the movements, which are more visible in figure 3-9, and are

not at all present when the arm model is simulated without the PICG. The trajecto-

ries in the other directions shown in figure 3-7 look like those recorded in null fields

(especially the 180* trajectory) and in force fields [50] [2] [3], as well as those reported

in [31] when visual feedback is modified (especially the 1350 trajectory). Tuning the

gain parameters, however, results in simulated trajectories that are similar to those

observed under more normal conditions.

The effect of varying g is shown in figure 3-9 for fast movements (peak hand

tangential velocity of 500mm/s). The higher the values of the gain parameters, the

more accurately the output of the PICG tracks the desired input, so the performance

of the model improves; still, even for the relatively large gains, g, = g, = 20, the

trajectory is curved in a way that is not characteristic of the dynamics of the arm

alone (refer to figure 3-7). This is encouraging because physically, it has been observed

84



0.45
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Figure 3-9: The trajectories generated by the hand due to the PICG model improve as
the g parameter increases. Fast movements (peak tangential hand speed of 500mm/s)
in a direction 3150 from the horizontal are simulated here when g, = ge = 3 (a), g, = 5,
ge = 7 (b), and g, = ge = 20 (c).

that fast movements are rarely perfectly straight, and because the combined PICG-

arm dynamics seem to match real movements nicely. As for "large" gain values,

further work needs to be done to determine the limits of amplification of neuronal

firing rates, and this entails a closer look at the dynamic responses of individual

neurons and as the neruons interact within larger groups; this will be discussed in

chapter 4. Still, it should be noted that these larger values may not even be needed

in the presence of proprioceptive feedback and correction via the cerebellum, which

is completely ignored in this model but will be added in future work.

In figure 3-10, the values of the gains, g, and ge, have been roughly optimized for

each of the eight movement directions; the gains were manually tuned to achieve the

best possible linear hand trajectory. In some cases, further tuning of the gains did

not yield any notable improvements to the trajectories shown in figure 3-10, as for

the 00, 450, 900 and 2250 trajectories; but in others, it was not possible to achieve

the best performance without increasing the gain parameters too much, as for the
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Figure 3-10: The central plot shows the trajectories followed by the hand moving
a distance of 0.15m in eight directions when the gains, g, and ge, have been tuned
for best performance, as described in the text. The surrounding plots show the bell-
shaped tangential hand velocities for the movement trajectories shown in the center.
The optimal gains, g, and ge, are indicated for each of the eight movements over the
corresponding plot of tangential hand velocity.
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1350, 180 , and 3150 trajectories. This result resembles biological reality as human

arm movements characteristically do not follow perfectly linear trajectories except for

very slow movements. The movements illustrated in figure 3-10 cannot be considered

slow; the peak tangential hand velocities lie between 160mm/s and 250mm/s, as can

be seen on the tangential hand velocity plots for each of the eight movements.

Finally, the PICG-arm model also exhibits qualities of real movements for fast ver-

sus slow movements and for movements of different distances. When the gain values,

g, and ge, are fixed, slow movements simulated by the PICG-arm model are straighter

than fast movements. This is illustrated in figure 3-11. Figure 3-12 shows that when

the gain values are fixed for a given movement direction, movements through smaller

distances tend to be straighter than movements through larger distances. The move-

ments through larger distances are simulated by having the appropriate remote neu-

rons provide a sigmoid of a larger step magnitude, that is, a sigmoid of larger final

value; however, the duration of the step, or the time for the value of the signal to

increase from its initial value to its final value, remains fixed. The result of this is

that, for any movement direction, the peak tangential hand velocity, shown in fig-

ure 3-12 for the movements in each of the eight directions, doubles as the distance of

the movement is doubled. This is a characteristic of "speed-sensitive" movement (re-

fer to section 1.1.3) which was hypothesized to occur when the CNS issues a "pulse"

of increasing magnitude but fixed duration [28]. The fact that PICG-arm model does

indeed exhibit speed-sensitive behavior due to increasing the magnitude of the re-

mote neuron signals and keeping the duration of the command fixed, points to the

possibility that the CNS may in fact employ the aforementioned command strategy

to achieve speed-sensitive movement.

3.2.2 Simulated Features of Neuronal Activity

In addition to causing the arm model to closely approximate the kinematics of arm

movement when used to provide the command signals, the PICG model also exhibited

the features of neuronal activity that are characteristic of the sensorimotor cortex,

such as directional tuning and population coding; refer to section 1.1.2 for a discussion
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Figure 3-11: The trajectories generated by the hand due to the PICG model improve
as the movement speed drops. The gain parameters are fixed at g, = g, = 3 as
the movements in a direction 3150 from the horizontal are simulated for different
movement speeds, with peak tangential hand velocities: 500mm/s (a), 180mm/s (b),
and 80mm/s (c).
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Figure 3-12: The central plot shows the hand trajectories simulated by the PICG-arm
model in the eight directions for two movement distances: O.1m (shown in black) and
0.2m (shown in grey). The surrounding plots of tangential hand velocities for both
movement distances, 0.1m (black) and 0.2m (grey), in each of the eight movement
directions show that as the movement distance doubles, the peak tangential hand
velocity also doubles. The values of the gains, g, and ge, are indicated for each of the
eight movements over the corresponding plot of tangential hand velocity.
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Figure 3-13: The input and output signals to the local network, (A) and (B) respec-
tively, and the input signals to the re-efferent network (C) are shown for a hand move-
ment of 0.15m in the 1800 direction and peak tangential hand velocity of 230mm/s.
9s = ge = 5.

of directional tuning and population coding. But first of all, since the input signal

generated by the remote network is a sigmoidal signal, the error signal input to the

local network is a bell-shaped signal, and in fact, all the signals in the PICG are

roughly either bell-shaped or sigmoids, as shown in figure 3-13; that is, they resemble

the signals actually observed in the sensorimotor cortex (refer to figure 3-1).

Secondly, the local network "neurons" were indeed directionally tuned, though,

as was explained in section 3.1.2, directional tuning is not a property of the firing

function of the neuron, but is a result of the way the network is wired. The PICG-

arm model was run for the arm starting at a central position and reaching towards

each of the eight targets, at 00, 450, 900, 1350, 1800, 2250, 2700 , and 3150. Both

the average and the maximum output firing rates of each of the local neurons were

recorded for each of the trials and plotted against the direction of arm movement.

Both plotting the maximum firing rate and the average firing rate, the latter being

the one usually used in studies such as [46] and [39], revealed that the neurons were in
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Directional Tuning of Neurons

cc:
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Direction of Hand Movement

Figure 3-14: Each of the four curves represents the maximal firing rate of one of the
four neurons of the local network during arm reaching toward a target, plotted versus
the direction of movement of the arm. The local neurons exhibit maximal discharge
rates in their "preferred" directions: 00, 900, 1800, and 270'.

fact directionally tuned. A sample plot is shown in figure 3-14, where it can be seen

that discharge rate of each neuron was highest with movements in a certain direction

(00, 900, 1800 , and 2700).

Finally, using the above preferred direction information, the population code al-

gorithm was implemented using readings of neuron firing rates that were gathered

from simulations of arm movements in the eight different directions. The popula-

tion vector that was calculated for each direction had a direction close to the real

movement direction, but within a margin of error; figure 3-15 shows the population

vectors calculated using the simulations. The difference between the direction of the

population vector and the actual arm movement direction is probably due to the

fact that the number of neurons used to derive the population vectors is too small

(four only); when a larger population is used to calculate the population vector, the

error will average out. So, it seems reasonable to conclude that the PICG neurons

satisfactorily exhibit population coding.
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Population Vectors Calculated from PICG Simulations
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Figure 3-15: The thick lines are the population vectors that are calculated using the
firing rates of the four local neurons of the PICG when arm movement was simulated
in each of the eight target directions around the circle. The numbers at the tip of each
population vector are the directions of movement of the arm for which the population
vector was calculated.

3.3 Summary

In this chapter, a sensorimotor proportional-integrator command generator (PICG)

has been proposed to model the mechanism by which the primary motor area (Ml)

interacts with surrounding areas, the primary sensory area (Si) and posterior parietal

areas (areas 5 and 7), to produce the feedforward signals that are needed to command

the arm, modeled by a standard second order nonlinear arm-spinal cord model, during

unloaded and unobstructed point-to-point arm reaching. The goal was to investigate

the simplest possible structure that would be needed for the PICG, but remains true

to the biology of the sensorimotor cortex.

The PICG model that is proposed is a "skeleton" model that is based on several

simplifying assumptions that are biologically reasonable. Still, when simulated with

the arm module, the kinematic performance of the overall sensorimotor-arm system

resembles performance of human and primate arms, especially in the curvature of
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point-to point movements and the properties of slow versus fast and short versus

long movements. Furthermore, the PICG module exhibits some of the characteristics

of cortical neuron activity such as directional tuning and population vector coding.

These results are powerful in light of the simplicity of the proposed PICG model, but,

there is much to be learned by gradually taking away the simplifying assumptions

made in this work and building up the complexity of both the arm and PICG models

to resemble the real biological system more accurately. Improvements that are to be

made in future work are discussed in the next chapter, and the work reported in this

thesis is evaluated.
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Chapter 4

Future Work

When studying the work done to model the function of the brain, one discerns two

approaches to modeling. The first approach attempts to construct the model using

as building blocks detailed models of the building blocks of the system itself. For

example, detailed models of neurons and the knowledge of their interconnections are

used to put together models of a brain area with some known function and behavior.

The second approach depends on the knowledge of the features and attributes (input-

output behavior) of the system to reconstruct its behaviors using as parsimonious

assumptions that observe the limits imposed by the known physical properties of

the system as possible. To begin with, both approaches require different degrees of

abstraction; the extent to which one abstracts the elements of a model depends on

the amount of complexity one is willing to forgo, or, rather, needs to reduce. And

this changes as a model is tested and refined, and depending on what is expected and

required of the model.

In this thesis, the second approach was the one adopted; the sensorimotor cortex

function was investigated in a very particular context, un-obstructed and un-loaded

point-to-point arm reaching, the kinematics of which has been studied extensively,

and for which there exists a wealth of studies and electrophysiological data from the

sensorimotor cortex and other involved brain regions. But, these studies indicate,

at best, correlations between the observed neuronal firing rates and the behavior

of the arm and characteristics of movement, rather than causal relationships. So,
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what the variables are that the brain encodes in its signals, how the brain signals are

translated to produce movement, and why the movements have certain characteristics

or stereotypes is still unknown.

Hence, there is a need for models that aim to understand the nature of the signals

of the brain in the context of its functions; models that might explain what the signals

are that neurophysiologists are recording and how they are used. In fact, there are not

many models in the literature that attempt to do this while observing the anatomical

features of the brain; many of the models that have been proposed are neural network

models, which are often times not biologically reasonable. For example, these models

may require training via methods that are not necessarily biologically plausible, or

require an unreasonably large number of iterations to learn a behavior, which is not

necessarily true of human learning. So, it is the aim here to remain as true to the

physiology of the brain as possible, while using reasonable abstractions. A successful

model should reproduce the observed behavior (arm reaching) and its characteristic

features (kinematics of the arm and dynamics of the brain) while allowing for adap-

tion. Finally, it should be able to predict the signals to be measured from the brain

and thus lend insight to how the brain works, the ultimate goal of an endeavor, such

as this modest one, in this field.

4.1 Evaluation of the Work Done

The work in this thesis was done in two parts. First, the "plant", the arm, was

modeled; second, the needed command generator was suggested. The arm modeling

provided insight and justification to the signals that are claimed to be needed of a

command generator. Thus, modeling the arm provided a launch-pad for attacking

the problem of brain modeling.

Part of arm modeling entailed the exploration of the equilibrium point hypothesis

and its two main variations: the lambda and the alpha models. Some level of detail

was observed in the modeling, in that each muscle was modeled using both active

and passive elements and including calcium activation dynamics. But other detail
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was left out, for example, proprioceptive information carried by Golgi tendon organs

was ignored and spindle dynamics were not modeled, so the Ia-afferents were assumed

to carry joint position and velocity signals. This was of no consequence in this work

because the proprioceptive feed-back from the arm was not used by the PICG, and

in fact, this level of detail is beyond that adopted in this work; for this work, the

assumption of the availability of proprioceptive joint and position signals somewhere

in the nervous system and the fact that that information ultimately reaches the brain

is sufficient. However, as the model becomes more detailed in future work, the issue

of adding more biological detail to the plant model should be addressed.

Looking at the two versions of the arm model was instructive in that it was an

exploration of the differences and similarities of two models that are in the literature

and have divided opinion. It seems that each of the two models is an approximation

that emphasizes a different feature of the muscle's force-length activation curves.

While the alpha model emphasizes the change of the slope of the static force length

curves as activation to the muscle changes, the lambda model emphasizes the shift in

the curves. In reality, both things happen at the same time, and can be taken into

account in the same model. This "combination" model need not be more complex

than either of the alpha or lambda models because complexity can be reduced using

abstraction that does not necessarily forfeit the important features of the muscle

activation curves. Such a combination model should be the one used if more biological

detail is to be added. Otherwise, the second order model was sufficient for the level

of detail used in this work. Still, simulating the more complex nonlinear models was

important to gain an understanding of the activation signals that are to be issued

to the brain and of the extent, if at all, to which the added complexity could be

significant from the perspective of the brain.

Given the knowledge of the activation signals that the arm needs to be driven, the

second part of the thesis suggests the mechanism by which the sensorimotor cortex

generates those signals. The model suggested was based on its required function,

the generation of the joint signals using a kinematic conversion of variables, and the

available building blocks to provide that function, the abstract model of the neuron.
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Some pieces of the model were suggested as a matter of necessity, like the integrator

blocks; but the existence of brain structures that perform suggested functions, such

as integration, does not seem to be unreasonable. Still, where and how integration of

a signal may occur in the brain are issues for future investigation.

Nevertheless, the suggested PICG model was expected to satisfactorily simulate

reaching movements, and it indeed did. The simulated reaching movements were

not characteristic of the arm model alone; but the dynamics of both the PICG and

arm model combined resulted in kinematics that were similar to those of human and

monkey movements. Furthermore, the tunable gains in the model allow for adaption

or learning, though an algorithm for this needs to be worked out in the future. In fact,

though the PICG model performs quite well considering its simplicity and the level of

detail and abstraction employed, on the one hand, it bears room for improvement, and

on the second hand, the effect of additional detail in the modeling on the performance

of the model seems to be interesting to explore.

4.2 Improvements to the Model

Both the PICG model and the arm model used in this work could be refined to in-

corporate more biological detail. Improvements and small changes to the the second

order arm model that was used in the PICG-arm simulations may affect the perfor-

mance of the PICG and are thus important to carry out and test. For example, the

stiffness and viscosity matrices used in the arm model were held constant, although

in reality, experimental measurements have shown that these values change as a func-

tion of the arm position in the workspace. Secondly, reflex delays were neglected for

simplicity, and these should be added to make the model more biologically accurate.

There are some minor additions that are to be made to the PICG model as well.

For example, one could address the issue of interfacing the PICG to a six-model arm

via a block whose function might be physically accomplished by the spinal cord. More

interesting to explore, however, are adjustments that require more in-depth work. For

example, closing the loop of proprioceptive information from the arm model to the
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brain entails more work to determine the adaption mechanism of the cortex, or an

algorithm by which the gains g, and g, are tuned and how they vary in different

locations in the workspace, and a more detailed model of the thalamus and sensory

cortex, the solid blank box in figure 3-6.

Secondly, the issue of how the CNS deals with the time delays in the flow of

afferent information from the arm to the brain and efferent information the other

way round has been addressed by other work [36], and of interest in regard to this

work is how well the suggested scheme of [36] could work with the PICG in place.

Furthermore, one could study the need and applicability of the wave variable method

of [36], or other predictive methods, to handle the delays in the re-efferent pathway,

the solid feedback loop in figure 3-6, which are shorter than the afferent delays.

Finally, the neuronal dynamics that were ignored in this work in order to simplify

the model in the first stage of modeling should be included, as the model is refined,

to better represent the biology of the brain, which was one of the priorities from the

outset of this work. At a third stage of refinement, one can also take into account

the stochastic nature of the cell responses.

So, in conclusion, given that the PICG-arm model presented in this thesis is a first

approximation model that was built on simplifying assumptions and abstractions, it

seemed to model well the behavior of the arm during unobstructed and unloaded

point-to-point arm reaching through air; the main characteristics of the kinematics of

simulated movement matched the experimentally observed characteristics, and some

features of cortical neurons such as directional tuning and population coding were

also features of the PICG model, even though these features were not directly hard-

wired into the model. The model still needs work, especially in the addition of the

proprioceptive feedback loop. The addition of more biological detail and refinements

to the model might turn out to be necessary as this change, and others, such as the

aforementioned improvements to the arm model, are implemented.
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Appendix A

Simulink Simulations
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The PICG-Arm model was implemented and simulated using MATLAB's Simulink

package. The block diagram of the Simulink implementation is shown in figure A-

1. Indicated on the figure are the blocks corresponding to the remote neurons, the

local network, output neurons and the re-efferent network that have been shown in

figure 3-6 and discussed in detail in chapter 3. Although 4 remote neurons and 4

local neurons were used in the actual simulations discussed in chapter 3, for the sake

of generality, it is assumed in the following discussion of the Simulink block diagram

that there are N remote neurons and M local neurons.

As was discussed in section 3.1.1, the remote neurons encode Cartesian coordi-

nates of target hand positions in the workspace. For a fixed desired hand movement

distance, the k th remote neuron fires maximally when some direction, #k, with which

that remote neuron is associated, is required. If desired movement is thought of

as a vector pointing in the desired direction and having some magnitude (possibly

proportional to the desired velocity), the firing rate of the k th neuron depends on

the magnitude of the component of the desired movement vector in the direction #.
Thus, each remote neuron is associated with a firing rate (a magnitude), Zk, and a

direction, #k. The desired Cartesian position will then be encoded by the population

of remote neurons according to:

Z1

Xd cos 01 cOS 02 ... cOS ON Z2  (A.1)

Yd sin 4 1  sin4 2 ... sinq#N -

ZN

where Xd and Yd are the Cartesian coordinates that the arm is required to track (and

can vary with time) and,

T = cos 1 cos 02 ... cos ON (A.2)
L sin 01 sin 02 ... sinON

The remote neuron block in figure A-1 translates the trajectory, specified in Carte-
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sian coordinates, that the arm is required to track to the proper firing rate profiles of

the appropriate remote neurons via the block labeled T 1 in figure A-1, which is the

pseudo-inverse of T. The output of the block T 1 is the vector, [ ZI Z2 ... ZN 1 T

that contains the firing rate magnitudes of the N remote neurons at any time instant.

In order for the temporal profiles of these firing rates to take on the assumed sig-

moidal shapes (refer to section 3.1), the Cartesian trajectories are issued as sigmoids

by the block "p2cart", which also converts the desired movement distance and direc-

tion, which are more convenient to specify, to the Cartesian coordinates of the final

position. The parameters A and C of p2cart are related to the shape of the sigmoids

produced by the block; C is the time, t, at which the magnitude of the sigmoid is

0.5 * (xf - x,2) + x0 , where xf and x, are the final and initial values of the signal and

A specifies the slope (hence the duration for a fixed step magnitude) of the rising

portion of the sigmoid.

The signals generated by the remote neurons drive the local network neurons, as

was explained in chapter 3. The output firing rate, yf, of the j th local neuron is,

according to equation 3.1, and incorporating all the assumptions pertaining to the

output firing rate as discussed in chapter 3:

y|*= Z Wijyf| + > VjZk t (A.3)
i k

where yrft+1 is the output firing rate of the j th neuron at time interval t + 1, wij and

vkj are synaptic weights that are described in sections 3.1.1 and 3.1.2 and Zkt (used

instead of Xk for the sake of clarity and continuity from the above discussion) is the

firing rate of the k th remote neuron at the time interval t.

Rewriting equation A.3,

Yf1  Zlj

yf7 +1 WLy W2j ... WMj ] + [ V1j V2j ... VNj J t (A.4)

YfM ZNt
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And, for the M local neurons:

Yfi t+1 W11 W21 -. - M1 Yfi t 11 V21 -. - N -I tN

Yf2t+1 W12  W2 2  - WM2 Yf2 V1 2  V2 2  -.. - N2 Z2t

YfM w1M W2M ... WMM J YfM VIN V2N ... VNN ZN

(A.5)

which is, in matrix notation,

yft+1 = Wyft + Vzt (A.6)

where, as explained in chapter 3, the elements of the NxN matrix W and the MxN

matrix V are calculated according to equations 3.2 and 3.3.

The superscripts indicating time intervals are included here to emphasize that,

in general, the output firing rate of a neuron is not instantaneously affected by the

inputs to the neuron. In fact, if one assumes fixed length time intervals, the output of

a given neuron need not be updated by the next time interval; furthermore, updating

for all neurons is not necessarily synchronous, that is, the outputs of different neurons

are updated at different times. These are details that will be addressed in future work

as they potentially raise important issues such as well-posedness and stability. For

now, though, they are ignored for the sake of simplicity, and, as stated in chapter 3,

the output is assumed to be instantaneously affected by the inputs. That is:

yf = Wyf + VZ. (A.7)

So,

yf = (I - W)- 1 Vz. (A.8)

The matrices V and (I - W)-' of equation A.8 are implemented in the blocks

of the same names that are shown in figure A-1. The block "P" represents a matrix

P that corresponds to the strength of the connections from the local neurons to the

output neurons. As explained in chapter 3, these connections are chosen such that
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the local and output neurons perform an inverse Jacobian transformation on the

Cartesian commands issued by the remote neurons. That is, P is chosen such that:

J-1 = P(I - W)-1 VT- 1  (A.9)

or equivalently,

J~1T = P(I - W)-'V (A.10)

where J-1 is the inverse Jacobian for a "central workspace position", x = O.1m and

y = 0.2m. P is calculated using the "pinv" function in MATLAB.

Finally, the re-efferent network shown in figure A-1 performs a transformation

from joint coordinates to Cartesian coordinates. This is done by the block labeled

"cart2joit" using equation 2.7. The T- 1 block distributes and interfaces the output

from the cart2joit block to N signals that correspond to each of the remote neurons.
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