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Abstract

Object-oriented database (OODB) systems provide persistent storage for large num-
bers of long-lived objects shared by many programs. At any point in time, the
database obeys some schema. Over time, the system is likely to experience schema
changes. The requirement for both good performance and sound semantics has made
schema evolution a long-standing challenge. When and how to evolve existing objects
to conform to a new schema is at the core of the problem. This thesis addresses this
problem with both semantics analysis and an implementation.

First, we provide a simple interface for users to specify upgrades as a collection
of class upgrades. Each class upgrade contains a transform function that converts an
object of the old class into an object of the new class.

Next, the question of when to apply these transform functions is addressed. In
order to preserve the availability of the system, we proposed a lazy upgrade model
where the transformation of objects is delayed until they are accessed by applications.
To guarantee the consistency of the database, our model requires that the upgrades be
complete and the transform functions well-defined. The interleaving of applications
and transforms poses some problems. Specifically, an object might belong to either
an earlier or later version when it is encountered by a transform function. To cope
with the former case, our model provides a mechanism for running nested transforms;
to deal with the latter case, our model keeps snapshots of objects when they are
transformed.

Finally, we implemented our approach in Thor, an object-oriented database sys-
tem. The implementation was done with efficiency and performance in mind.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering
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Chapter 1

Introduction

1.1 Overview

Object-oriented database (OODB) systems provide persistent storage for large num-

bers of long-lived objects shared by many programs. At any point in time, the

database obeys some schema. A schema usually defines a relation on classes that

make up the inheritance graph. This class graph defines not only how data is repre-

sented in the database but also an interface through which users and programmers

of the database query and modify data. Each object in the database assumes a type

in the schema and the database is type-correct as a whole.

Over time, the system is likely to experience changes that affect the interface to the

persistent data. These changes are necessary when the old design and implementation

become obsolete or inappropriate and modifications are needed to meet the new

demands. These changes often involve updates of the database schema and support

of schema evolution or upgrades is crucial for any realistic OODB systems.

Adding/removing classes/attributes/methods and changing the type/class hierar-

chy are among the common changes to the schema. Since an object-oriented database

is populated by objects instantiating classes, a change in the schema necessarily yields

some objects incompatible with post-evolution programs. Evolving existing objects

to be compatible with the new schema is thus the core of schema evolution.
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1.2 Challenges

Much work ([4, 25, 10, 24, 17, 18, 29, 27, 7, 23, 26]) has been done on schema evolution

in the past. However, schema evolution remains a hard problem for researchers. The

main challenges are the following.

1. A good schema evolution system should provide a simple programming interface,

yet be flexible enough to allow arbitrary schema changes.

2. The system is long-lived, so errors introduced into the system are also long-lived.

Hence, it is very important to preserve the consistency of the database.

3. The system contains a large number of objects and has many users. Running

upgrades on many of these objects may take a long time. Hence, it is important

to preserve the availability of the system.

4. A system that supports schema evolution should not sacrifice performance.

Hence, the implementation should be efficient. In particular, upgrades are likely

to be rare, so that the implementation should be optimized for the common case

where there is no active upgrade.

1.3 Thesis Contribution

This thesis makes the following contributions:

1. We provide a simple yet flexible interface for programmers to define a schema

upgrade as a collection of class upgrades.

2. Based on class upgrades, we developed an efficient lazy upgrade propagation

model where transformations of objects are delayed until they are accessed by

applications. To guarantee the consistency of the database while applications

and transforms are interleaved is non-trivial. This thesis provides a thorough

investigation of this issue.
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3. We implemented schema evolution in an object-oriented database system. For

running normal applications, the overhead of the system is small.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the seman-

tics of upgrades and our design for a system implementing lazy upgrades. Chapter 3

covers additional details, including the syntax and type checking of transform func-

tions, simulation methods and the completeness of upgrades.

Our implementation is done in the context of Thor [3], an object-oriented database.

Chapter 4 gives an overview of Thor. It is followed by Chapter 5, which describes our

implementation in detail. Our work is compared with previous work in Chapter 6.

Finally, Chapter 7 draws conclusion and discusses paths for future work.

11



Chapter 2

Semantics and Design

This chapter discusses semantics for running upgrades.

2.1 System Model

We assume an object-oriented database system. The system uses an object-oriented

programming language, such as Java. This language is based on classes and is

statically-typed.

The types defined in the language form a directed acyclic graph (DAG). Classes

implement types and objects instantiate classes. Types and classes are identified by

their names. We assume that there is a root type, Object, which is the supertype of

all types. Objects are identified by their object ids. Objects store these object ids

to refer to one another, forming an object graph. Objects can also contain primitive

values such as integers, booleans, etc.

All fields of an object are fully encapsulated, which means they can only be accessed

indirectly through method calls. From an object, we can also get to the class it belongs

to and hence to its interface.

There is a special object that is designated as the persistent root of the database.

All objects reachable from it are defined to be persistent. Objects that are not

reachable from the persistent root or from any application are garbage collected.

To keep the database in a consistent state, applications access and modify the

12



objects within atomic transactions.

2.2 Upgrades

At any point in time, the database obeys some schema. A schema defines a relation

on classes that make up the inheritance graph. This class graph defines not only how

data is represented in the database but also an interface through which users and

programmers of the database query and modify data. Each object in the database

assumes a type in the schema and the database is type-correct as a whole.

Schemas are not expected to change often. However, sometimes we need to upgrade

the schema, in order to

1. correct an implementation error;

2. make an implementation more efficient;

3. extend an interface; or,

4. modify an interface.

In cases 1, 2 and 3, the upgrade is compatible with respect to the previous schema

because after the upgrade the objects still support the same interface as before the

upgrade. In case 4, the upgrade is incompatible because the type changes to a different

type.

An object retains its identity when it is upgraded. This means all other objects

that refer to it continue to do so after the upgrade. However, when the upgrade is

incompatible, objects that refer to the upgraded object either directly or indirectly

may also need to be upgraded to guarantee the consistency of the database. In

particular, every object whose implementation depends on properties of the old type

of an upgraded object that are not supported by the new type will need to be upgraded

to use the new type instead. All of these objects are said to be affected by the upgrade.

In general, an upgrade changes many objects, and these objects can belong to

many different classes and types. An upgrade is said to be complete if it includes all

13



the objects affected by the upgrade. We assume that all upgrades are complete in

this thesis. Checking of completeness is discussed in Chapter 3.

2.3 Upgrade as a Single Transaction

The simplest way to upgrade a database is to run the transformation as a single

transaction. The transaction runs on a consistent database that conforms to the old

schema and transforms it into a consistent database that conforms to the new schema.

This approach is error prone. The consistency of the database relies solely on the

meticulousness of the upgrade definer. Excluding even one object from the transform

transaction by mistake would result in a broken database. Therefore we want to shift

the task of upgrading to the system, which can do it automatically.

In addition, running the upgrade as one transaction requires "stopping the world",

that is, no application transaction is allowed to run during the time when the upgrade

transaction is running. Because there might be many objects involved in the upgrade,

database access can be interrupted for a long period of time. This is unacceptable

for most systems.

For the above reasons, we do not take this approach. The following section de-

scribes an alternative approach.

2.4 Upgrade as a Collection of Transforms

In our system, an upgrade is defined as a set of class upgrades. Each class upgrade is

a tuple:

(Cold, Cnew, TF)

where Cold is the class to be modified by the upgrade, Cnew is the corresponding class

after the upgrade, and TF is a transform function of the following type:

Cold -+ Cnew

14



That is, a transform function takes as an argument an object of class Cold and produces

an object of class Cnew. The system then causes the new object to take on the identity

of the old object. Exactly when this happens depends on how we choose to run the

upgrade. Section 2.5 and Section 2.6 discuss this issue. The syntax for writing

transform functions is described in Section 3.1.1.

Earlier systems that support upgrades, such as ORION [4] and Gemstone [25], do

not have transform functions. Rather, the schema can only be changed by composing

some fixed primitives. Later systems, such as ObjectStore [24], OTGen [17] and

02 [30, 10], allow user-defined transform functions to enable more flexible schema

changes. Some of these systems only allow access to data members of the object

to be transformed in a transform function; our system removes this restriction by

supporting method invocation on objects other than the object being transformed by

the transform function. This gives our transform functions more expressive power.

We do impose two restrictions on the transform functions to ensure the consistency

of the database:

1. Transform functions must be well-defined. A transform function is well-defined if

it does not modify any existing objects other than the object being transformed.

The justification for this restriction is given in the next section.

2. Transform functions must terminate, which implies two things. First, transform

functions must return normally, with the new objects initialized. Secondly,

transform functions must not create objects that belong to classes affected

by the upgrade. This is to ensure that the upgrade will not go on forever.

Type checking can be used to check these constraints to some extent (see Sec-

tion 3.1.3).

We call an application of a transform function a transform. Thus, we can think

of an upgrade as a collection of transforms.

Defining upgrades in the above fashion does have some fundamental limitations:

1. We have no way to transform more than one object in one transform.

15



2. Because the transforms are run independently, we can not impose any order on

when objects get transformed.

The impact of these limitations is discussed in Section 2.6.5.

2.4.1 Upgrade Execution

At a high level, the execution of an upgrade happens in two stages. First, the upgrade

is installed. As part of the upgrade installation, the system serializes the upgrade with

respect to all previous upgrades and assigns it a unique version number. New class def-

initions and transform functions are checked to ensure type correctness. The system

also checks transform functions for well-definedness, completeness, and termination.

Finally, all classes affected by the upgrade are marked as no longer current and the

system will not allow objects of these classes to be created.

Next, the upgrade is propagated to the whole database. All the objects belonging to

the affected classes in the upgrade are transformed to their new forms as determined

by the upgrade. The transformation is accomplished by applying the appropriate

transform functions.

Conceptually when an upgrade is installed, it is propagated to the entire database

immediately. Furthermore, the transforms run as independent transactions. There-

fore, by the time the propagation of the nth upgrade occurs, all earlier upgrades have

already been propagated and no objects belonging to old classes from earlier upgrades

exist. Once this upgrade has been completely propagated, there will no longer be any

objects in the database belonging to the old classes of this upgrade. At this point,

old classes and transform code can be garbage collected.

Although the upgrades are propagated instantly after installation in the concep-

tual model, the real implementation does not have to work like this. In the following

sections, we explore and compare two approaches: immediate and lazy upgrade prop-

agation. Note that in either approach, objects are transformed in an arbitrary order.

Thus, if transform functions were allowed to modify existing objects in the database,

they might observe effects of other transforms. To guarantee the deterministic be-
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havior of the system, we restrict transform functions to be well-defined.

2.5 Immediate Upgrade Propagation

Many systems ([4, 25, 24]) implement immediate upgrade propagation. This approach

is consistent with the conceptual model, where all objects affected by the upgrade are

transformed immediately after the upgrade is installed.

2.5.1 Basic Mechanism

First, we abort all running applications. No application is allowed to run when the

upgrade is being propagated. In other words, we "stop the world" to run an upgrade.

Next, an empty space, S, is allocated to temporarily store all newly transformed

objects. In the worst case, S needs to be large enough to hold the entire database.

Next, we find all objects that are affected by the upgrade. Since our system

maintains a persistent root, we can find such objects by traversing the object graph

from the root and checking each object to see whether it is affected. For systems

that maintain a list of instances associated with each class, finding affected objects

involves enumerating the instance lists of the classes affected by the upgrade.

If an object is affected by the upgrade, a transform is triggered. This invokes

the appropriate transform function on the object. The new objects produced by

the transform is placed into the storage, S. When the traversal is completed and all

affected objects have been transformed, the old objects in the database are replaced

with their new counterparts in S. Thus, the new objects take on the identities of the

old objects.

At this point, the upgrade propagation is complete and applications based on the

new schema can start running.

17



2.5.2 Analysis

Pros

The advantage of the immediate approach is its straightforward implementation and

clean semantics. There is a clear boundary between when and where transform func-

tions and applications run. An upgrade runs on the snapshot of the database con-

forming to the old schema and applications are oblivious to the upgrade since they

only see the database conforming to the most up-to-date schema.

Cons

The size of the temporary space required by this approach is proportional to the

number of objects affected by the upgrade in the whole database. Since upgrades is

likely to affect a large number of objects, this storage can be huge.

In addition, finding and transforming all objects affected by the upgrade all at

once will take a long time for a large, distributed database. This disrupted availability

is unacceptable for most systems and this is why we decided to take a lazy approach

instead.

2.6 Lazy Upgrade Propagation

In a lazy upgrade propagation approach, transformation of an object affected by the

upgrade is delayed until the object is first accessed by an application transaction. In

other words, transform functions are run "just in time" to transform objects needed by

the application at the moment. Systems such as 02 [10] and Shan Ming's system [29]

take this approach.

The time overhead of the upgrade is incremental in the lazy approach - it is

spread across applications. The system is not interrupted for a long period of time

to perform the upgrade, only as long as it takes to transform objects immediately

needed by an application. For applications that do not use objects affected by the

upgrade, there is no cost. However, interleaving applications and transforms can

18



cause type inconsistency and invariant violations if the implementation is not careful.

Section 2.6.1 discusses the interleaving of applications and transforms in our system.

Section 2.6.3 and Section 2.6.4 explore two ways to run lazy upgrades and Section 2.6.5

discusses the interaction between upgrades and invariants.

2.6.1 Interleaving Applications and Transforms

Unlike in the immediate approach, object transformation is done on an as-needed

basis. Like the immediate approach, applications only see the most up-to-date objects

and are oblivious to the upgrades.

Each object that an application accesses must be checked to see if it belongs to

the current schema. If it does, the application uses it as it is. If it does not, in a naive

implementation, the application transaction is aborted and a transform transaction is

started to run the appropriate transform function on this object. When the transform

transaction completes, the application is rerun.

Aborting a transaction to run a transform is not efficient, especially if the trans-

action has done a large amount of work already. Furthermore, the path of execution

may not be the same when an application is rerun because some objects may have

been changed by some other applications. Therefore, instead of aborting, we suspend

the triggering transaction to run a transform. The transaction continues running

after the transform completes if it does not conflict with the transform. If there is

a conflict, the triggering transaction is aborted. A triggering transaction conflicts

with the transform it triggered if it accessed objects that were then modified by the

transform. Note that it is impossible for a well-defined transform function to conflict

with other applications or transforms since it does not modify any objects other than

the one being transformed.

A stack can be used to save the necessary states of the suspended transactions so

that they can be restored and run in the reverse order they started. This mechanism

is similar to the context-switching in operating systems.

Because of the laziness, one schema may be installed before an earlier one is

propagated to the entire database. As a result, the database may contain objects from
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multiple schemas at any point in time. Therefore, a running transform transaction

may encounter objects from different versions, even though applications can only see

the most up-to-date objects. There are two cases that we need to handle:

1. The transform transaction encounters an object, o, of an earlier version. At

this point, we run transforms on o as many times as necessary in order to bring

it up to the version that existed at the time the transform function's upgrade

was installed.

2. The transform transaction encounters an object, o, that has already been trans-

formed to a version beyond that of the current transform function. The system

needs to provide the old interface and its state for the transform function.

Case 2 highlights the need for the system to keep versions of objects, as is done

in both designs to be described in Section 2.6.3 and Section 2.6.4.

2.6.2 Time Analysis of Lazy Upgrade Propagation

For the immediate approach, the time overhead of an upgrade is paid once and for all

at the beginning of the upgrade. This is the time it takes for the entire database to

be transformed and it may be long. But after the upgrade is complete, applications

can run normally without any extra overhead.

By contrast, the lazy approach spreads the overhead of transforms over appli-

cations incrementally. Applications do not have to wait until the upgrade is fully

propagated to start running but they "pay as they go" on individual transforms.

Furthermore, there is a fixed cost of checking object versions imposed on transactions

that does not exist in the immediate approach. An efficient implementation (see

Chapter 5) can keep this cost low.

2.6.3 Upgrade Snapshot Approach

This approach is a straightforward emulation of the immediate approach described in

Section 2.5. Like the immediate approach, we save the snapshot of the database as it
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was at the beginning of the upgrade (hence "upgrade snapshot") and run transforms

on this snapshot. The difference is, we save the snapshot incrementally and run the

transforms lazily.

Design

The upgrade snapshot is only read by the transform functions. Two kinds of objects

might be used by the transform functions in a particular upgrade and hence need to

be saved:

1. Objects affected by the upgrade. Since they might be used by later transforms

within this upgrade, their pre-transformed states (snapshots) need to be saved

the first time they are transformed.

2. Objects that are not affected by the upgrade but might be read by some trans-

form function of the upgrade. We call these objects tf-read objects.

Unlike in the immediate scheme, tf-read objects can be modified by an appli-

cation before they are read by a transform function. To prevent exposing the

modification to transform functions, we need to save the pre-modified states of

tf-read objects.

To save the snapshot, we allocate some space, P, which is initially empty. Affected

objects are copied into P when they are first accessed by an application; and tf-read

objects are copied into P when they are first modified by an application since the

upgrade was installed.

Applications and transforms are interleaved as described in Section 2.6.1. When

a transform function runs, it uses P to locate the right object to use. P is carried

across upgrades and therefore may contain many versions of objects.

Objects that are no longer referenced are removed from P. However, old classes

cannot be garbage collected until all objects of the class are transformed, which might

take a long time.
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Analysis

The cost of the upgrade snapshot approach is related to the time and space required

to save the states of the tf-read objects. Ideally we would like to save only the states

of objects that are modified and then later read by a transform, but this is clearly

not a realizable goal.

One approach that might work would be to recognize (by static analysis of the

transform functions) tf-read classes. Tf-read classes are classes whose objects might

become tf-read objects. Then only these objects need to have their snapshots saved

when they are modified.

However, identifying tf-read objects this way is far from precise. As a result, the

space overhead is very likely to be more than what it could be. In a language like

Java, where there is no parametric polymorphism, the Object class is used at a lot of

places. For example, an object being transformed may refer (directly or indirectly) to

objects as belonging to type Object. If the transform function uses Object methods

on these objects, then we need to save the snapshot of these modified objects. In the

worst case, we may end up saving the entire database.

Furthermore, unlike in the immediate approach, the temporary storage for the

snapshot is carried across upgrade. Even though garbage collection can help to reduce

the size, there is no obvious upper bound on this storage. In the worst case, the

space overhead could be many times bigger than the database itself, containing many

versions of the database.

In summary, the space overhead of upgrade snapshot approach is very hard to

quantify and may be much larger than that of the immediate approach.

2.6.4 Transaction Snapshot Approach

As mentioned in Section 2.6.3, the space overhead of the upgrade snapshot approach

can be huge. In particular, saving all objects of classes that might be read by some

transform function seems to be an overkill. To solve this problem, we developed a

different approach. In this approach, we use the snapshot of tf-read objects at the be-
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ginning of an application transaction (hence "transaction snapshot") to approximate

their upgrade snapshot. The space overhead is greatly reduced as a result.

Design

As in the upgrade snapshot approach, some space P is allocated to store the snapshot

of affected objects. However, P no longer contains the snapshots of the tf-read objects.

Instead, we use the undo log to record tf-read objects.

Undo logs are used in some transactional systems, e.g., Thor [3], to revert the

state of the system when a transaction aborts. Each application transaction keeps an

undo log, which is initially empty. The undo log records old copies of objects when

they are first modified by the application transaction. This log is cleared when the

application commits.

If a transform function needs to access a tf-read object, it looks for it first in the

undo log of the triggering application transaction. If the object is not found there,

the transform function simply uses the current object in the database. Therefore,

the transform function might observe a modification of the tf-read object made by an

earlier application transaction. Essentially, transform functions run on the snapshot

of tf-read object at the beginning of the triggering application transaction, rather

than the snapshot at the beginning of the upgrade. Both snapshots are equivalent

only if no earlier application transaction modified the tf-read object since the upgrade

installation. This point is discussed in Section 2.6.5.

Analysis

Compared with the upgrade snapshot approach, the transaction snapshot approach

does not have the space overhead of the tf-read objects. This could be a big saving

in space if most of the transform functions are complex. Furthermore, this approach

completely avoids the potential space blowup caused by transform functions that use

Object methods, as mentioned in Section 2.6.3.

23



2.6.5 Discussion

Because of its space advantage, we chose the transaction snapshot approach for our

implementation over the upgrade snapshot approach. However, as mentioned earlier,

the snapshot observed by a transform in this approach may not be identical to what

would have been observed in either the immediate or the upgrade snapshot approach.

The difference arises only when some classes have unencapsulated representations.

The representation of a class (or rep for short) is the set of objects accessible from

the instance variables([19]). The rep is encapsulated if it is not possible to access any

of these objects except by using methods of the containing object; otherwise the rep

is unencapsulated and the offending object or objects are exposed.

A fully encapsulated rep is desirable because the correctness of a class can be

determined through local reasoning. In particular, part of this reasoning is based on

preserving the rep invariant. This is a property that must hold for every object in the

class. When reasoning about each method, we can assume that the invariant holds

when the method starts to run, and we must prove that the invariant holds when the

method terminates.

An example of an unencasulated object is given in Figure 2-1. Here unencapsu-

lated object x refers to object z, but code outside of x also refers to z. Thus z is

exposed.

An unencapsulated rep is not a problem provided the implementation of the con-

taining object depends only on invariant properties of the exposed objects. We call

such dependencies safe dependencies. Examples of safe dependencies are:

e The containing object relies on the identity of the exposed object. This situation

is not a problem because object identity does not change.

e The exposed objects are immutable. This situation is not a problem because it

will not be possible for code outside the object to interfere with any assumptions

made within the code about the exposed object.

Safe dependencies do not interfere with local reasoning about the rep invariant

because code outside the class is unable to cause the invariant to not hold.
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However, if the code of the containing object depends on non-invariant properties

of the exposed objects, there might be a problem, because it is no longer possible to

reason locally about the correctness of the code. In this case, we say that the rep is

exposed (119]).

For example, in Figure 2-1, suppose z is mutable and that x depends on a property

of z that would be violated if z were modified. Then x would have an exposed rep.

Figure 2-1: An example of a rep exposure

When there are rep exposures, there are two situations where the rep invariants

are still preserved. Using our example, the rep invariant of x is preserved in the

following two cases.

1. There is some encapsulating object y that points to both x and z. All modifi-

cations to z go through some methods of y, which ensure that the rep invariant

of x holds with respect to z. This is shown in Figure 2-2.

2. All code outside x that accesses z preserves the rep invariants of x. In other

words, any code that modifies z must also preserve the rep invariant of x, maybe

by modifying it as well. In fact, this can be looked upon as the same as case

1, except that the encapsulating object is the whole database. This is shown in

Figure 2-3.

Both cases above preserve rep invariants despite the rep exposure. However, case

2 is undesirable compared to case 1. From a software engineering point of view,

requiring arbitrary code to preserve some rep invariant makes the system very fragile
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Figure 2-2: Encapsulating object ensures rep invariants

x z

Figure 2-3: Access code ensures rep invariants

and error-prone. A system with encapsulation makes the system more robust and is

therefore preferred.

Now let us see what happens when there are upgrades. When an old schema is

evolved to a new schema, new invariants associated with the new schema may need

to be established while the old ones are abandoned. The transform functions will

be required to establish the new invariants. However, we also expect to be able to

assume the old invariants when the transform functions start to run. The issue is

whether an upgrade would violate this assumption.

In the immediate upgrade propagation approach, transform functions run entirely
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on the snapshot of the old database and new transformed objects are put back into

the database only at the end of the upgrade. Furthermore, applications run after

the upgrade propagation completes. Therefore, transform functions do not observe

any modifications from the application that might break some invariants of the old

schema; and the applications are oblivious to the upgrade. For the upgrade snapshot

approach, there is also no problem because it is a straightforward emulation of the

immediate approach.

For the transaction snapshot approach, we know that applications will not ob-

serve broken invariants. This is because the propagation of the upgrade guarantees

that applications are oblivious to the upgrade: they only observe objects of the new

schema. Thus, assuming that applications are rep preserving, the new rep invariants

are preserved.

However, transform functions in the transaction snapshot approach might observe

modifications from applications, depending on which objects are accessed and when.

Since the objects are transformed in arbitrary order, the transform functions might

observe broken invariants. Consider the example we gave at the beginning of this

section (Figure 2-1 and 2-2):

1. Both x and z are affected by the upgrade. Suppose z is transformed to z' before

x is transformed. If the transform function of x uses z, we can still use the old

version of z even if z' is modified by some application. This is because we

save the old versions of transformed objects in this approach, as in the upgrade

snapshot approach. On the other hand, since the transform function of z can

not possibly rely on x, we do not have a problem if x is transformed before z. In

other words, transform functions do not observe broken invariants if all objects

involved are affected by the upgrade. Note that this is true even if we do not

have the encapsulating object y as in Figure 2-3.

2. x is affected by the upgrade but z is not. Furthermore, the transform function

of x uses z, i.e., z is a tf-read object. Now, suppose before x is transformed,

z is modified by some application. Since z is a tf-read object, its snapshot is
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not saved. Therefore, the transform of x would use the modified z. Since the

modification of z does not necessarily preserve the old invariants (because it is

caused by an application in the new schema), the rep invariant of x might be

broken and this could be observed by the transform function.

As a concrete example, suppose z is a mutable object but the implementation

of x depends on its value being constant. This assumption is ensured by the

implementation of y in the old schema, assuming the structure in Figure 2-2.

Now suppose the upgrade causes y to mutate z and the implementation of x

is changed to accept this. Note that y and x are both affected by the upgrade

while z is not.

Now suppose an application transaction calls a method m on y, which causes y

to be transformed; furthermore, suppose m actually modifies z. Since the new

rep invariant of x does not depend on z, x is not accessed in this application

transaction. Later, when x is accessed and transformed, it accesses z with a

modified state, which might break the invariant that the transform function

assumes.

In case 2 above, the safe dependency between x and z is made unsafe by the up-

grade. Upgrade definers should be careful to avoid such incompatible upgrades, e.g.,

turning immutable objects into mutable objects, especially in the case where there is

not any encapsulating object outside the exposed rep. However, if the programmer

must define such an upgrade, there are a couple of ways to get around the problem:

1. Let transform functions deal with it, i.e., the transform functions are aware of

potential rep exposure caused by the upgrade. In our example, the transform

function for x can be written to take into account the fact that z might be

modified by the time the transform function is run on x. Note that this approach

also works for the situation in Figure 2-3, where there is no encapsulating object.

This solution places more of a burden on transform function writers. They no

longer have the simple snapshot illusion as provided by the immediate approach

and the upgrade snapshot approach; and they can no longer rely on the old rep
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invariants if they are changed in the new schema. However, this solution is

practical: after all, writers of transform functions need to understand both

the old and new schemas and they need to think hard about issues related to

invariants.

Defining "upgrade-aware" transform functions only solves part of the problem,

however. Section 3.2 explains why it is not sufficient and how we can solve it

using simulation methods.

2. We can extend the definition of upgrades to give programmers some control over

the order in which transforms are applied. Such an extension would be inex-

pensive to implement in the case illustrated in Figure 2-2, in which the exposed

object is encapsulated within a containing object. For example, we can allow

the transform function for y to specify that x should be transformed immedi-

ately after the transform for y completes. This ensures that x is transformed

before an application modifies z, i.e., before an application can interfere with

the old rep invariant.

In the case where the exposed object is not encapsulated inside any object, as in

Figure 2-3, a general query mechanism might be required to determine the order

to apply transforms. This could be both complicated to define and expensive

to implement. Exploring what would be required for such a query mechanism

is an interesting avenue for future work.
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Chapter 3

Defining Upgrades

This chapter discusses a number of issues that arise in defining upgrades.

3.1 Transform functions

3.1.1 Syntax of Transform Functions

For every class upgrade, (Cold, Cew, TF) in an upgrade, there is exactly one transform

function:

TF : Cold -+ Cnew

In this section, we explain the basic syntax of writing transform functions. In our

system, transform functions are written using an extension of Java. A transform

function is defined like a constructor for the new class:

NewClass (OldClass x) {

// initialize new object of NewClass using x

}

If the names of the old and new classes are different, the transform function uses

these names to refer to them. But sometimes one might want to use the same name

30



for both old and new classes in a compatible class upgrade. In this case, the transform

code can use className-old and className-new to refer the old and new version of

the same class className.

The body of a transform function is similar to a normal Java function. It refers to

the object being transformed using whatever variable name is defined in the header,

and it refers to the new object being constructed as this. It initializes all fields of the

new object. During the initialization, the transform function may read other objects.

To illustrate how to write transform functions, let us consider an example. Sup-

pose a schema has two classes, Employer and Employee. They have the following

representations:

Employer {

String name;

String address;

}

Employee {

String name;

int salary; // monthly salary

Employer employer;

}

In the new schema, both class representations of Employer and Employee are

changed. The address field is removed from Employer and the salary field of

Employee now represents the yearly rather than the monthly salary of the employee.

The new classes are called NewEmployer and NewEmployee, respectively:

NewEmployer {

String name;

}

NewEmployee {
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String name;

int salary; // yearly salary

NewEmployer employer;

}

The transform function for Employer is straightforward. We simply copy the name

field and ignore the address field:

NewEmployer (Employer e) {

name = e.name;

}

Note that our system assumes full encapsulation, i.e., application code must access

fields of an object through its methods. However, we allow transform functions to

directly access private fields of the object being transformed.

In our system, transform functions must explicitly initialize all fields of the new

object, even if initialization is trivial like the assignment of name in the transform

function for Employer. As part of future work, the system could provide default

transform functions for such simple transforms. Systems like 02 [10] and OTGen [17]

already provide such facilities.

3.1.2 Type Incorrect Assignments

Now let us consider the transform function for Employee. One might want to write

it as follows:

NewEmployee (NewEmployee e) {

name = e.name;

yearly-salary = e.monthly-salary * 12;

employer = e.employer; // type incorrect assignment!

}

The first assignment copies the name field from the old Employee object and the

second assignment derives the yearly salary from the monthly salary. However, the

assignment,
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employer = e.employer;

is not type correct. The type of the left-hand side variable is NewEmployer whereas

the type of the right-hand side variable is Employer.

So how do we initialize the employer field? Here are some approaches that do not

work:

1. Let the transform code do the assignment. This does not work not only because

of type inconsistency, but also because the transform function might call a

method on the object referred to by the field later as part of the transform.

2. Assign a default value to the uninitialized field. This does not work because

the resulting new object might not satisfy its representation invariant leading

to problems when methods are called on it.

3. Transform the field before assigning to it. This does not work because in some

cases it might cause a cycle of transforms that never terminates. As an example,

consider a circular list whose interface and implementation are being changed:

where there used to be just one value at each link, now there are two. The

representation of List used to be

int val;

List next;

The upgrade changes it to

int valil;

int val2;

NewList next;

As we transform some list x whose next field points to some list y, we cannot

transform y as part of the transform of x because this would cause a cycle

of transforms, (i.e., as part of running the transform on y, we need to first

transform x.)
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Our solution is to delay the assignment until the very end of the transform, when

no more transform code is running. To achieve this, we extend the syntax of transform

functions as follows:

NewClass (OldClass x) {

// initialize new object of NewClass using x

} assign {

field_1: expr_1;

field_2: expr_2;

}

The assign clause is optional. It identifies the type incorrect assignments that

need to be done at the end of the transform. The body of the assign clause is a list

of (f ield, expr) pairs. For each (f ield, expr) pair, f ield is a field of the new

object being constructed, belonging to some new class Cnew, expr is of type Cold, and

the class upgrade (Cold, Cnew, TF) is part of the upgrade.

Using the extended syntax with type incorrect assignments, we can now write the

transform function for Employee as follows:

NewEmployee (Employee e) {

name = e.name;

yearly-salary = e.monthly-salary * 12;

} assign {

employer: e.employer;

}

Allowing type incorrect assignment solves the problem we had at the beginning

of this section in a way that ensures that the code of the transform functions can

not use the object incorrectly. Furthermore, the type inconsistency is never visible to

the application code because those fields would have been transformed by the system

before any application accesses them.
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3.1.3 Type Checking

Transform functions are fed into a preprocessor for type checking. This processor

has relaxed typing rules to cope with the type incorrect assignments. The transform

functions can refer to both old and new classes in the upgrade and must be type

consistent with respect to the old and new schema.

We would also like to check the following properties of the transform function:

" Well-definedness, i.e., a transform function should not modify an object besides

the one it transforms.

" Termination. In particular, creating objects belonging to old classes affected by

the upgrade or calling other transform functions might cause cycles of trans-

forms.

Unfortunately, checking the above properties is impossible in general. Some al-

gorithm can be used to conservatively approximate this checking and warn the pro-

grammer if anything might be wrong, but it cannot be precise. A good programmer

should keep the above restrictions in mind when he defines an upgrade.

3.2 Simulation Methods

In Section 2.6.5, we mentioned two ways to deal with the rep exposure problem caused

by the transaction snapshot approach. The first solution is to define "upgrade-aware"

transform functions that deal with this problem; the second solution is to have a way

to impose an ordering on transforms. This section discusses how to support upgrade-

aware transform functions.

"Upgrade-aware" transform functions goes hand-in-hand with simulation methods,

which are not needed in the general query solution. Simulation methods have the

same interface as the methods in the old classes affected by the upgrade but their

implementation is different. Before we get into the details for simulation methods, we

first use the following example to illustrate why upgrade-aware transform functions

alone does not solve the rep exposure problem.
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Suppose that at time t1, object x and object y are both affected by the current

upgrade but have not been transformed yet. y refers to x and x refers to another

object z, which is not affected by the upgrade but is read by the transform function

of x, i.e, it is a tf-read object. Furthermore, x is not encapsulated within y but

z is encapsulated within x. This situation is shown in Figure 3-1. At time t2,

x is accessed by an application transaction and therefore is transformed to x' via

transform function Tx as shown in Figure 3-2. Suppose that x and x' still both

refer to object z. Another application transaction modifies z to zimod at time t3 via

x', as shown in Figure 3-3. At time t4, object y is accessed by an application and

transformed to y' by transform function Ty, as shown in Figure 3-4.

Figure 3-1: At t1, y refers to x, x refers to z

Tx

x'

Figure 3-2: At t2, x is transformed to x'

Suppose that Ty calls some method m of x. Furthermore, suppose m returns some

information about z. In the upgrade snapshot approach, z's unmodified state is

36



Tx

x'

Figure 3-3: At t3, z is modified to z-mod

Tx Ty

Figure 3-4: At t4, y is transformed to y' using x

preserved. Figure 3-5 shows what it would look like in the upgrade snapshot approach

at time t4. Here, method m of x uses z instead of z-mod. However, in the transaction

snapshot approach, since the state of z is not saved before it is modified, m uses z-mod.

This might break some rep invariants of x that is assumed by the implementation of m.

Note that in this case, making Ty upgrade-aware does not solve the problem. This is

because Ty relies on the proper returning of m and m may not return properly because

its original implementation cannot cope with the broken invariant.

Our solution is to provide another implementation of m that deals with the possible

broken invariant. We call this additional implementation the simulation method of m.

In a way, simulation methods are the analog of upgrade-aware transform functions:
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Tx Ty

z mod 'I

Figure 3-5: In upgrade snapshot approach, z's state is preserved when it is modified

the return value of a simulation method is used by the calling transform function

whereas the result of an upgrade-aware transform function is used by applications.

Both simulation methods and upgrade-aware transform functions are needed for the

system to function correctly in the transaction snapshot approach.

The definition of upgrades must be extended to include simulation methods. More

specifically, the class upgrade tuple now becomes

(Cold, Cnew, TF, SM) (3.1)

where SM is the code for simulation methods.

Simulation methods have the same signatures as the methods they simulate. How-

ever, they have the following properties:

9 The implementation of a simulation method has access to the old object of the

class being upgraded, e.g., to x in Figure3-5. Note that a simulation method

does not need to access the new state of the transformed object to work properly.

Using the previous example, if the new implementation of y' depended on

the new state of x', y' would have been modified in the same application

transaction that modified x'. Since it was not included in that transaction, it

is not important for the simulation method for m to reflect the new state of x'.

Therefore, it does not have to access x'.
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" The simulation methods are hidden from applications and are only accessible

to transform functions.

" After an object is transformed, the old snapshot of the object is accessed through

its simulation methods instead of the original methods.

3.3 Completeness of Upgrades

As mentioned in Section 2.2, upgrades should be complete to guarantee the consis-

tency of the database. Complete upgrade provides replacement code for all classes

affected by the upgrade. In this section, we discuss what it means for a class to be

affected by an upgrade.

Class upgrades are either compatible or incompatible. A class upgrade

(Cold, Cnew , TF, SM) (3.2)

is compatible if Cnew is a subtype of Cold ([20]). For example, COnew may provide a

different implementation but preserve the same interface for Cold. Classes that use

Cold do not needed to be upgraded in the case of a compatible upgrade.

However, the subclasses of Cold may be affected by the upgrade. For example,

suppose a protected field of Cold is used by a subclass; then if this field is removed

in Cnew, the subclass must be changed to to cope with this.

A class upgrade is incompatible if Cnew is not a subtype of Cold. The incompati-

bility includes changes in behavior even if there is no change in the interface.

When Cold is changed incompatibly, subclasses of Cold are affected even if all fields

are private. Here are some possible ways to upgrade the subclasses of Cold:

1. They could be changed to become subclasses of Cnew.

2. They could be changed to become subclasses of the superclass of Cold.

3. They could be changed to become subclasses of some other class.
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In all of these cases, the behavior of the subclasses must be changed to be the same

as those of their new superclass ([20]).

Furthermore, all code using Cold and its subclasses should be checked to see if it

is affected by the upgrade. A complete upgrade provides the recompiled code for all

code affected by the upgrade.
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Chapter 4

Thor

In this chapter, we first give an overview of JPS [6], a version of Thor [3] that our

implementation is based on. We then describe various components of Thor focusing

on the ones that are most relevant to our implementation.

4.1 Overview

Thor provides persistent storage for a large number of objects. It is intended to be

used in a distributed environment with many servers and clients. Thor has a client-

server architecture. Objects are stored on reliable servers called Object Repositories

(OR's). Each server has a persistent root. All objects reachable from the persistent

root or from an application are persistent and the rest are garbage.

Applications run on client machines using cached copies of persistent objects. The

part of Thor that runs on the client machines is called the front end (FE).

An application interacts with Thor by starting a session. Each session consists of

a sequence of transactions; a new transaction starts after the previous one ends. A

transaction invokes methods on Thor objects and ends with a request to commit or

abort. A commit request may fail and cause an abort; if it succeeds, Thor guarantees

that the transaction is serialized with respect to all other transactions and that all

its modifications to the persistent objects are recorded reliably. If the transaction

aborts, Thor discards all its modifications and guarantees that it has no effect on the
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persistent state of the system.

Each object in Thor has a unique identity, a set of methods, and a state. The

state of an object is encapsulated and is accessed only through its methods. An object

may contain references to other objects, even those in other OR's. Thor objects are

implemented using a type-safe language. This language is Java [14] for the version of

Thor that we are using. Previous versions used Theta [5, 21].

In the following sections, we describe the most important components of Thor.

FE and client, OR and server are used interchangeably. We emphasize the FE side

of the system, which is where our implementation runs, while keeping the description

of the rest of the system brief.

4.2 Object Format

Servers store objects on disk in pages. To improve performance on both servers and

clients [28, 13], objects in Thor are kept small.

4.2.1 Object Reference

Objects are small because object references (orefs) are 32 bits in Thor. Orefs refer

to objects at the same OR; objects point to objects at other ORs indirectly via

surrogates. A surrogate is simply a small object containing the OR number of the

target OR and the oref inside that OR.

The first 22-bit pid of an oref identifies the page containing the object and the

next 9 bits (oid) is an index into in the offset table of that page. The offset table

maps oids to addresses within that page. This indirection is important because it

allows the servers to compact objects within a page independently from other servers

and clients, e.g., during garbage collection. The last bit of an oref is used to indicate

if an object is swizzled in the client cache. This is explained below.
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4.2.2 ROT

It is not practical to use orefs as object references in the client cache. This is because

each pointer deference would require a table lookup. Therefore, Thor uses pointer

swizzling: an oref is translated to a pointer to an entry in an indirection table (ROT,

for resident object table) and the entry points the target object. Indirection allows

the FE to move and evict objects from client cache with low overhead.

ROT entries are as depicted in Figure 4-1. Conceptually, each object's ROT entry

contains three parts: a pointer to the dispatch vector (DV) of the object's class, a

pointer to the fields of the object and some header information including the object's

oref and a reference count for garbage collection. The dispatch vector is shared by

all objects of the same class whereas the fields are unique to each object. Fields are

represented as an array of slots of either object references or actual data.

Object references are orefs when the page containing the object is first fetched

into the persistent cache. An object reference is swizzled, i.e., replaced by a pointer

to the ROT entry corresponding to this object, when it is first traversed. Thus later

pointer traversal is sped up. The last bit of the oref is set to 0 to indicate that the

object reference is swizzled.

The ROT may contain persistent objects as well as non-persistent objects. A

non-persistent object is indicated by a zero oref in the ROT entry.

4.2.3 Class Objects

For each class in Thor, there is a class object. The class object has an oref, just like

a regular object. Every non-surrogate object has a field containing its class oref. The

class object contains all the information about the class, such as orefs of superclasses,

dispatch vectors, etc. When an object is installed into the ROT, its class object is

looked up from its oref and a pointer to the dispatch vector of the class object is put

into the ROT entry1 .

'In the current implementation of Thor, class objects are non-persistent objects initialized at
boot time and pinned in the client cache.
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Resident Object Table (ROT)

Objecti _ _ _ DV -

--- Fields ---
Obj Header

Object 2 -------------

------------

0 (A pe

Object i

Object n

Fields Header
Field 1
Field 2
Field n

Object Fields

r-object structure)

DV Header
Method 1
Method 2

Method n

Dispatch Vector

(A per-class structure)

Figure 4-1: ROT Object Layout
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4.3 Transaction Management

Thor uses optimistic concurrency control to avoid communication between clients and

servers. The client runs a transaction assuming that reads and writes of the cached

objects are permitted. When the transaction is ready to commit, the client informs the

OR about reads and writes of the transaction. The server determines if the transaction

can commit by checking if it is serializable with respect to other transactions. If

the transaction used objects from multiple servers, a two-phase commit protocol is

used. If the transaction can commit, modifications to objects are made persistent;

otherwise, the client is told to abort. Invalidation messages are sent to the clients

that cache stale copies of modified objects. Clients evict those objects from the cache

upon receiving the message and abort their current running transaction if it used any

invalidated objects. Invalidation messages are piggybacked on other messages sent to

the client to reduce overhead.

The transaction manager (TM) at an FE keeps track of the ROS (read object

set) and the MOS (modified object set) when an application is running. It also keeps

an undo log, which records the states of objects when they are first modified. When

a commit is requested, the TM sends the ROS, MOS and NOS (new object set, the

set of newly persistent objects) to an OR. If the commit request is granted, the TM

makes the newly created objects persistent and prepares for the next transaction.

Otherwise, the TM undoes the effect of the transaction using the undo log.

The TM also processes invalidation messages. It discards invalid objects from the

cache and determines if the current transaction used those objects (by looking at its

ROS and MOS). If it did, the TM aborts the transaction.

The OR performs validation checks and sends invalidation messages. Details can

be found in [1], [12], and [2].

Experimental results in [1, 12] show that this scheme out-performs adaptive call-

back locking, which is considered to be the strongest competitor, in all reasonable

environments and almost all workloads.
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4.4 Client Cache Management

Thor uses hybrid adaptive caching(HAC) [22] for managing its client cache. HAC

combines page caching with object caching to achieve both low overheads and low

miss rates. HAC partitions the client cache into page frames and fetches entire pages

from the server. To make room for an incoming page, HAC does the following:

" selects some page frames for compacting,

" discards the cold objects in these frames,

" compacts the hot objects to free one of the frames.

HAC selects page frames for compaction based on the current statistics: pages

in which locality is high remain untouched whereas pages with low locality are com-

pacted.

Experimental results in [22] show that HAC out-performs other object storage

systems across a wide range of cache sizes and workloads. It performs substantially

better on the expected workloads, which have low to moderate locality.

4.5 Server Storage Management

Thor uses object shipping because we use HAC and also because we discard invalid

objects from client cache. At commit time, the clients send the modified objects

to the servers that must eventually write them back to their containing pages to

preserve clustering. To reduce the overhead of installation of new objects, Thor uses

the MOB [11]. The MOB (for modified object buffer) is a volatile buffer used to store

recently modified objects. The modifications are written back to disk lazily as the

MOB fills up and space is required for new modification.

The MOB architecture combines the benefits of both object caching and page

caching while reducing the overhead by avoiding installation reads and taking up

less storage than what is required by page caching. Furthermore, Thor guarantees
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reliability by writing committed transactions to persistent transaction logs before

inserting them to MOB.

Experimental results in [11] show that for typical object-oriented database access

patterns, the MOB architecture out-performs the traditional page-based organization

of server memory that is used in most databases.

4.6 JPS

In the original Thor, objects are implemented using the Theta [5, 21] language.

JPS [6], a later version of Thor, replaces Theta with Java. Like Theta, Java is

type-safe and object-oriented.

To preserve the good performance of the original Theta-based system, we did not

replace the runtime system with a standard Java interpreter. Rather, a modified

bytecodes-to-C translator (TOBA) is used to generate code that interfaces appropri-

ately with the Thor runtime environment. We then run an optimizing C compiler on

the generated C code to produce native machine code. This is illustrated in Figure 4-

2.

Java source standard Jaamodified C oe.optimizing machine code

Java compiler bytecode TOBA C compiler

Figure 4-2: JPS compiler structure

JPS provides a clean functional interface between its runtime system and the code

produced by TOBA. The translator-generated code uses this interface, while the JPS

runtime system implements this interface with a set of C macros. The generated code

does not need to know all the details of how the underlying system is implemented.

For example, the generated code does not need to know how to check if an object is

in cache or how to fetch it from an OR if it is not. The macros take care all these

details.
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Experimental results in [6] show that JPS performs almost as well as the original

Theta-based Thor.
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Chapter 5

Implementation

This chapter describes how we extended Thor to support schema evolution.

5.1 Basic Approach

Our implementation is based on the lazy transaction snapshot approach described in

Section 2.6.4. In this approach, the system keeps upgrade snapshots of transformed

objects and transaction snapshots of other objects. Transform functions run on these

snapshots. Objects are transformed on demand and applications only operate on the

most up-to-date objects.

Since the OR is the bottleneck of the system, modification to the OR is minimized.

Therefore, most changes are done at the FE side of Thor. Our implementation as-

sumes there is only one OR that is connected to all FEs. This OR is also the upgrade

OR, which stores and processes all the upgrades.

The rest of this chapter goes into more detail about how upgrades are supported

by the implementation of Thor.

5.2 Upgrade Check-in

We assume that a programmer defines an upgrade and saves the code in some files.

These files contain the new class definitions, transform functions, and simulation
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methods for the old classes. The classes and simulation methods are defined in Java

whereas the transform functions are written in the Java-like syntax that we described

in Section 3.1.1.

A user checks in or initiates an upgrade by starting an upgrade transaction with the

name of the directory where the upgrade files are stored. As part of this transaction,

the system finds the upgrade code contained in the files and compiles it.

Recall from Section 4.6 that Thor uses the standard Java compiler to compile Java

source into bytecode and then uses a modified bytecode-to-C translator, TOBA, to

get C code. An optimizing C compiler is then used to produce native machine code.

This structure cannot be used directly as it is because the Java compiler takes

regular Java code whereas our transform functions are written in the special syntax

that allows type incorrect assignments. To get past Java compiler without type

errors, we can use a translator to translate the special syntax into regular Java code.

The TOBA translator is then modified to recognize and undo the changes that the

Java translator made so that the type incorrect assignments are made. Figure 5-1

illustrates this approach.

transform functions

translator
modified

stndrd Java TOBA C code opiiig machine code

upgrade code Java compiler bytecode with C compiler
type checking

Figure 5-1: Modified JPS compiler to support upgrades

The modified TOBA translator is also modified to type check the upgrade code

to ensure the type consistency, and to some extent, completeness of the upgrade.

If the upgrade code fails the type check, the system rejects the upgrade by aborting

the upgrade transaction. Otherwise, the system assigns the upgrade a unique version
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number. The system keeps a global counter. This counter is incremented every time

an upgrade is checked in. This counter is used as the version number for that upgrade.

Class objects are initialized as part of the upgrade transaction. Recall from Sec-

tion 4.2.3 that in Thor a class object contains all the information about a class, such

as pointers to dispatch vector and superclasses, etc. To support schema upgrades, a

class object is enlarged to contain the following information:

version-num is the version number of the upgrade that this class is part of.

next-class is a pointer to the class object of the next version.

tf is a pointer to the code of the transform function that transforms objects of this

class to the class pointed to by next-class.

sim-dv is the simulation dispatch vector for the simulation methods of the class.

The last three fields are initialized to NULL when a class object is first created. They

are changed to point to the non-NULL values when the next upgrade that affects this

class is installed as described in Section 5.3. Because a class object is a per-class data

structure, increasing its size to contain upgrade information only imposes small space

overhead.

Eventually, the FE running the upgrade makes an upgrade object and commits it

at upgrade OR, which stores information about the all upgrades. An upgrade object

includes the following items:

" version number;

" initialized class objects;

" compiled code; and

" a manifest of all class upgrades in the form of a list of (ClassOrefold, ClassOrefnew, TF)

pairs.

Upon receiving an upgrade commit request, the upgrade OR serializes the upgrade

with respect to all previous upgrades. Once an upgrade is checked in at the upgrade
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OR, it needs to be propagated to the other FEs. In a single-OR implementation, the

upgrade OR is the only OR. It can piggyback the current upgrade version number

to all the FEs connected to it. Section 7.2.1 discusses upgrade propagation in a

multiple-OR system.

5.3 Upgrade Installation

When an FE learns about a version number that is higher than the highest number

it knows so far, it needs to install the current upgrade. After fetching the upgrade

object from the upgrade OR using its version number, the class objects affected by

the upgrade are identified via the list of class upgrades. Their next-class, tf and

sim-dv fields are initialized to point to their counterparts in the upgrade object.

Next, the FE checks if the current transaction used any objects whose classes

are affected by the upgrade. If it did, the transaction is aborted; otherwise, the FE

performs a ROT scan (described below) and the transaction is continued. A simpler

approach to implement this is to abort the current transaction even if it did not

use any objects affected by the upgrade. Assuming that upgrades occur rarely, this

approach is also acceptable. In either case, a ROT scan is performed immediately.

During a ROT scan, each entry in the ROT is examined and entries pointing to

objects affected by the upgrade are changed to point to NULL. The purpose of the

ROT scan is to ensure the ROT Invariant:

When an application runs, all objects pointed at by ROT entries reflect

all upgrades that have been installed at the FE.

In later sections, we will show how the ROT Invariant is preserved during the execu-

tion of a transaction.

The ROT scan is an expensive operation because the ROT is likely to contain

many entries. However, we assume that upgrade installation is rare and thus the cost

of the ROT scan is negligible. After the ROT scan, the installation of the upgrade is

complete and the FE can start running applications conforming to the new schema.
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5.4 Version Check

The essence of lazy upgrades is to transform objects on-demand. Therefore, the

system needs a mechanism to detect an object that needs to be transformed when

a transaction is running and "trap" for a transform, if necessary. We call this the

version check. As the name suggests, the version check examines the version number

of an object to determine if it is the right object to use for the running transaction

and if not, appropriate actions are taken.

The first question we need to answer in the implementation is when to do version

checks. The naive approach of checking version on every object access obviously poses

too much runtime overhead. One key observation is that an object must be in the

ROT in order to be used. Thus, we can fold the version check into the installation of

ROT entries, which occurs whenever an object not in the ROT is accessed. However,

checking versions only on ROT installation is not enough. Since the ROT is shared

by both applications and transforms, an object in the ROT that is the right version

for an application might not be the right version to use for a transform. For example,

an application transaction might trigger a transform of object o to the current version

o'. When the transform finishes, o' is installed in the ROT. A later transform on

some other object t might want to read the untransformed version of o. In this case,

o' would be the wrong version to read for this transform function.

One approach to solving this problem is to have a ROT scan (described in Sec-

tion 5.3) before running any transaction of a different version than the previous one.

However, this approach is not practical for performance reasons. As mentioned be-

fore, a ROT scan is a time-consuming operation and an application may access many

objects and trigger many transforms. If a ROT scan must be performed at the begin-

ning of each transform, ROT scans may need to be done very frequently. This would

severely slow down the system.

Our approach is to check the version of an object even if it is already installed

in the ROT, if we are running a transform. Our rational for this choice is: 1) the

version check is only done during the running of transforms. The cost of the version
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check is small compared to certain overheads already associated with transforms; and

2) checking if a transaction is a transform or an application can be done quickly by

moving the mode bit into a register.

The last point about the version check concerns where version numbers of objects

are stored. Recall from Section 5.2 that class objects contain version numbers. Given

an object, we can get to its class object and hence its version number. The alternative

approach of adding a version number field to every object was considered but was

rejected for its impact on the space overhead.

5.5 Transaction Management

This section describes how the transaction manager (TM) at the FE side of Thor is

modified to support schema evolution.

5.5.1 Data Structures

Below are the main data structures that we added to the TM to support upgrades.

Other auxiliary structures are introduced later as we go into more details.

is-tf is true if the FE is running a transform transaction, and false if it is running

an application transaction. Our FE is single-threaded which means the TM is

either running a transform or an application.

version-num is the version number of the transaction that the FE is currently run-

ning. If a transform is running, this number is equal to the version number of

the upgrade that the transform is part of. Otherwise, the version number is the

version number of the most recent upgrade that this FE has installed.

curr-log ROS, MOS and undo log of the currently running transaction, which could

be either an application or a transform.

a-curr holds the state (see below) of an interrupted application.

t-stack is a stack of states of suspended transform transactions.
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tilog records state of all completed transform transactions. They are indexed in the

order they are completed.

The state information in the a-curr, tstack and t-log structures is captured in

the data structure, trecord, which contains the following fields:

ver-num is the version number of the upgrade this transaction is part of.

tlog-index is the index of the last entry in t-log before this transaction was inter-

rupted.

post-state contains the new states of objects modified by the interrupted transac-

tion.

ros, mos, undo log are the ROS, MOS and undo log of transaction.

Figure 5-2 illustrates the initialization of a TM at the beginning of an application.

Figure 5-2: Initial state of TM at the beginning of an application transaction when
the system is running at version 3

5.5.2 Interleaving Transforms and Applications

Unlike in the original Thor, applications may interleave with the transforms. The

implementation of managing interleaving transactions follows the design described in

Section 2.6.1 and 2.6.4.
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Triggering Transforms

As an application is running, the TM keeps track of the objects that the application

reads and writes in currlog as illustrated by Figure 5-3. A transform is triggered if

an object is found to belong to an earlier schema during a version check, as described

in Section 5.4.

TM

is tf = false
versionnum = 3
currlog = , ros

t_stack = <empty> mos
undo log

a_curr = <empty>

tlog = <empty>

Figure 5-3: State of a TM running an application transaction

Before the transform starts to run, the state of the application transaction must

be saved. In particular, the state recorded in curr-log is saved in a-curr. Be-

cause we are using the transaction snapshot approach, transforms should run on the

transaction snapshot of the enclosing application. Therefore, for all objects modified

by this application, we save pointers to their new states in post-state and restore

their original states by pointing their ROT entries to the corresponding values in the

undo log. If t-log is non-empty, the index of the most recent entry is saved in the

tiog-index field of a.curr.

Finally, the TM is initialized to run the transform. Figure 5-4 illustrates the state

of the TM right before a transform function of version number 2 is about to run.

Note that the state of the application is saved in a-curr; and the curr-log, is-tf

and versionnum are all initialized to run the transform function.
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is tf = true
versionnum = 2
currilog = <empty>

t_stack = <empty>

a_curr= ver_num = 3 a = 3

tlog = <empty> tlog-index = -1 b = 5

post -state

ros, mos, undo log

Figure 5-4: State of a TM with application suspended to run a transform function

Running a Transform Function

Given an object to be transformed, the system finds the code for its transform func-

tion from its class object and starts a transform transaction to run it. A transform

transaction runs just like an application transaction except for more frequent version

checks as described in Section 5.4.

During the version check in a transform function, there are two scenarios where

the object being checked is not the right version for the transform:

1. The version of the object is greater than the version needed by the current

transform. This means that the object has been transformed earlier by some

other transform function. In this case, we find the earlier version of the object

(see Section 5.5.4). Since this object has already been transformed beyond that

version, simulation methods must be used to access the object. This is achieved

by pointing the DV pointer in the ROT entry to the DV of the simulation

methods, which can be found via the class object.

2. The version of the object is earlier than the version needed by the current

transform. In this case, we invoke a nested transform transaction to transform

this object. The transition from the current transform to the nested transform is

similar to the transition from an application to a transform. The only difference
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is that the suspended transform is pushed onto the transform stack, t-stack,

instead of a-curr. Figure 5-5 shows the state of a TM with nested transforms.

As shown in the figure, there are two completed transforms (TO and T1) and

a stack of transforms on t-stack. The TM is currently running a transform of

version 0.

_______________________________________________ I _______________________________I

ros, mos, undo log

1 vernum = 3
tlog-index = 1

poststate

ros, mos, undo log

TO

vernum = 1
post-state
ros, mos, undo log

T1

vernum = 2
post-state

ros, mos, undo log

Figure 5-5: An

vernum = 1
tlog-index = 1

post-state

ros, mos, undo log

ver num = 2
tlogindex = 1

post-state
ros, mos, undo log

example of TM with multiple, nested transforms

In both of the cases above, we may install objects of versions earlier than the most

up-to-date version into the ROT. To preserve the ROT Invariant stated in Section 5.3,

we discard these entries before the application is restored.

When a transform transaction finishes running, its state is appended to the end

of the t-log and the suspended transform or application transaction that triggered

it is restored.
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Restoring a Suspended Transaction

If t-stack is not empty, the transaction on top of the stack is popped off and restored;

otherwise, it is the suspended application in a-curr that is to be restored. Before

the transaction can be restored, the TM checks if it conflicts with any completed

transforms, using the following rules. Let A be the transaction to be restored and T1

a completed transform:

* A.ros n T1.mos = 0

If this is non-empty, it means that A read an earlier value of an object modified

by T1. Note that if our transform functions are well-defined, this intersection is

always empty because T1 would only modify the object that it transforms and

A could not have read the untransformed version of that object.

" A.mos n T1.mos = 0

If this set is non-empty, it means that A modified an object that is later modified

by T1. Again, this intersection is always empty if the transform functions are

well-defined.

Note that A does not need to be compared with all the completed transforms in

the t-log, but only those that were last triggered by A since it was suspended (the

index of the first such transform is stored in A . tlog-index). This is because the last

restoration of A has already validated A against transforms in the t-log up to the

point of tlog-index.

If the transaction can be restored, we swing the ROT entries of modified objects

to point to the values pointed to by post-state of this transaction when it was

interrupted. The rest of the system (version.num, istf, etc.) is initialized from the

saved information and the interrupted transaction continues to run.

If the transaction cannot be restored, we need to undo its effects. For each object

modified by this transaction, we overwrite its state pointed to by its post-state with

its current value. We then swing the ROT entry of the object back to that pointed

by post-state. This abort cascades to all suspended transactions until there is no
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transaction left. Note that at the end of this abort, we still commit the transforms

left in tlog, if any.

5.5.3 Transaction Commit

The original Thor TM on the FE side only handles commit of one transaction at a

time. Now it still commits at the end of each application transaction, but the appli-

cation might have triggered transforms, which also need to be committed. According

to our lazy semantics described in Chapter 2, all transforms are committed before the

application that triggered them. This means that all transforms recorded in t-log

should be committed in the order that they completed and before the application

transaction.

A naive approach is to commit each transform in t-log as a separate transaction.

This approach is not very practical because the commit process is time consuming.

Our more efficient approach is to commit all completed transforms as one big transac-

tion, called T. Depending on the result of committing T, the application transaction,

A, is committed or aborted as usual. The disadvantage of this approach is that if

there are many transforms in T, it is more likely for T to conflict with other FEs and

therefore abort. One possible solution for this problem is to divide T into smaller

chunks and commit them separately if T gets too big. This is part of our future

work. For now, all transforms are committed as one big transaction, T, followed by

application transaction, A.

In the following sections, we assume that t-log is non-empty at the end of the

transaction; if it were empty, it means that no transforms were triggered during the

application transaction and therefore the normal commit protocol of Thor is used to

commit or abort the application.

Commit Request

The TM computes the commit set for T as follows:

T.ros = Ut-log[i].ros (5.1)
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T.mos = tlog[i].mos (5.2)

(x-oref, xvalue), if A aborts

T.post (x-oref, x-value'), where x-oref E T.mos and (5.3)

xvalue' = {A.undo(x-oref), if x-oref E A.mos

x-value, if x-oref V A.mos

T.mos and T.ros are sets of orefs containing the write set and read set, respectively.

T.post contains the values of the write set. If we know that A must abort before we

commit T, T.post contains the current values of objects in T.mos, because A has

already been aborted. Otherwise, if A modified any object after it was transformed

by T, T.post should contain the pre-modified state of that object.

The commit request also includes a new object set (NOS). The NOS is generated

during the process of recursive unswizzlingi of all modified objects. Objects in this

set are made persistent if the commit succeeds.

After the commit request for T is generated, it is sent to the OR. The transac-

tion snapshot approach requires that we save the snapshot of the old objects after

transforming them. Section 5.5.4 shows a way to do this using surrogates.

Commit Response

The OR validates T against transactions from other FEs as described in Section 4.3

and sends back a commit response. Depending on the response, there are several

scenarios:

* If T cannot commit, both A and T should abort. T.undo is used to undo the

effect of T and A.undo is used to undo the effect of A, if it has not already been

aborted.

" If T can commit, send commit request of A to the OR. If A must abort, undo

the effects of A but install the new objects of T. Otherwise, install new objects

of both T and A.

'Unswizzling is the opposite of swizzling. It replaces a reference to a ROT entry with its oref.
All fields of an object are unswizzled before it is committed at the OR.
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There are a couple of ways to make the implementation more efficient. They are part

of our future work.

9 Rather than sending the commit request for T and then A, we could have sent

both in one request if A has not aborted. This approach saves time on commit;

but it requires modifying the implementation of the OR.

e Instead of aborting T when the commit response is negative, we could try

committing entries in t-log one by one, starting from the first entry, until an

abort occurs.

5.5.4 Upgrade Surrogates

The Transaction snapshot approach requires that we save the snapshots of all trans-

formed objects. This means that after an object is transformed, we cannot replace

it with the new object; instead, the old and new objects must remain distinct. In

addition, there must be a way to go from one version to the other. There are two

cases:

9 We must be able to go to the old object from the new object if an earlier version

is needed by a transform function.

e We must be able to go to the new object from the old because we want to

"snap" the pointer that points to the old object to point to the new one if the

old object has already been transformed.

A doubly-linked list seems to be the natural solution. One way to implement this

is shown in Figure 5-6. Each object has two additional fields: next, which points

to the next object in the upgrade chain; and prev, which points to the previous

version of the same object. The prev of the first version and the next of the last

version are NULL. The chain is extended when the object of the most recent version is

transformed. Given an external object reference to any of the object in the chain, one

can navigate to any other object in the chain. This approach requires major changes

to the current implementation of Thor, which assumes an object format without the
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object reference

version 0 object version 1 object version 2 object version n object

oref = 20037 oref = 20048 oref = 20052 oref = 20100

next = - next = next = next = NULL

prev = NULL) prev = prev = prev =

Figure 5-6: Doubly-linked chain structure of transformed objects

additional pointers. A "smart" garbage collection scheme is needed to remove the

older versions in a chain of objects.

To minimize the impact to the existing system, we propose the structure of

doubly-linked chain of upgrade surrogates, as shown in Figure 5-7. As mentioned

in Section 4.2.1, a surrogate is a small object that is used to point to an object at

a different OR. It contains an OR number and the oref inside that OR. An upgrade

surrogate is a surrogate that is extended to contain pointers to its neighbors. Once

an object is transformed, a surrogate is created in its place to point to both the old

and the new object. An external object reference that previously pointed at the old

object now points at its surrogate.

This approach does not need to change the format of non-surrogate Thor objects

and therefore requires the minimal changes. Like the first approach, we need an

efficient garbage collection to get rid of the old objects. The main disadvantage of

this approach is that the locality of objects is affected. As a remedy, we try to commit

the old and new objects on the same page as the surrogate wherever possible.

The linked chain structure in Figure 5-7 is how the OR stores the old and new

versions of objects. At the FE side, traversing the surrogate chain can be inefficient.

Instead, a pointer that initially points at an upgrade surrogate is "short-circuited"

to point to the snapshot directly when the pointer is traversed, and we maintain

a map between the surrogates and their corresponding snapshots. Thus, one can
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oref = 20037 oref = 20048 oref = 20052 oref = 20100 version n
next - next - next -next ojc

prev = NULL prev - prv prev ojc
old old old old

version 0 version 1 version 2 version n-
object object object object

Figure 5-7: Doubly-linked chain structure of surrogates

still navigate on the chain of surrogates and get to any version of an object. For

objects that are newly transformed, we delay creating upgrade surrogates for them

until commit time; a data structure is therefore needed to save these mappings.

Extra work needs to be done at commit time. First, upgrade surrogates are cre-

ated and initialized to point to all objects that are transformed during the application

transaction. Existing surrogates are changed to point to these new surrogates. Sec-

ondly, during unswizzling, any short-circuited reference is changed to contain the oref

of the corresponding upgrade surrogate.
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Chapter 6

Related Work

The topic of schema evolution has been heavily studied in object-oriented database

research [4, 25, 10, 24, 17, 18, 29, 27, 7, 23, 26]. Roughly speaking, previous research

extends along the following dimensions: program compatibility, types of schema

changes, schema consistency and the implementation of database transformation.

In the following sections, we will discuss how previous work and our work approach

these issues.

6.1 Program Compatibility

Depending on whether old programs are supported after a new schema is in place, all

schema evolution systems take either the conversion or versioning approach.

In a conversion approach, a new schema replaces the old schema. After the instal-

lation of the new schema, only programs conforming to the new schema are allowed

to run. Orion [4], GemStone [25], 02 [10], ObjectStore [24], OTGen [17], Woo [29],

and our system belong in this category. The main disadvantage of this approach is

the lack of support of legacy code.

In contrast, a versioning system keeps versions of all previous schemas and old

programs can still run after a new schema is installed. Systems like Encore [27],

Clamen [7], COLSQL [23] and Coast [26] take this approach. The disadvantage of

versioning is the complexity of the implementation and the runtime overhead. For
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the rest of this section, we give an overview of four prominent versioning systems.

Encore [27] is one of the earliest versioning systems. It keeps a version set for

each class. An object is accessed through the version set interface of its class, which

is a virtual class definition that contains the union of all attributes of the versions of

the class. A handler is defined for every attribute of a class version that appears in

the version set interface, but not in that version of the class. These handlers return

default values when the attributes are accessed. There are two serious limitations with

this approach: 1) if an evolution adds a new attribute to a class, an instance that was

created by an earlier version of this class cannot store any new value associated with

this attribute (unless it coincides with the default value provided by the handler);

2) attributes of the same name in different versions are assumed to represent the

same information, thus it is impossible to represent a change in the semantics of the

attribute between versions.

Clamen [7] proposed a scheme where the creation of a new version of a class results

in a new version (or facet) of every instance of the class. Thus, an instance can have

multiple facets and different programs access the object using different facets. This

approach is similar to ours, where versions of objects are kept for the use of transform

functions. However, in our system, versions are garbage collected when they are no

longer needed by transform functions, whereas in his system, versioned objects persist

forever. To reduce the storage requirement, he allows attributes to be shared among

facets. Clamen's approach does not have Encore's limitations mentioned above, but

now updates to one facet must be reflected in all other facets. Clamen suggested a

delayed propagation scheme but since this system was never implemented, the exact

mechanism of update propagation between facets is not clear.

COLSQL [23] lets users define update and backdate methods between class versions.

Instances are not versioned as in Clamen's approach; instead, they are converted to

the right version using the update or backdate methods when they are accessed. To

address the problem of lost information during conversions, the system saves the value

of an attribute that was dropped. When the object is converted back to the original

version, this value, rather than some default value, is restored to that attribute.
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Compared with Clamen's approach, COLSQL sacrifices time for space.

In Coast [26, 15], each application works on top of exactly one schema version

and through each schema version, sv, a certain set of objects, called the instance

access scope (IAS(sv)) of the schema version, is available. Forward and backward

conversion functions can be defined between schemas to make objects created under

one schema version visible to application on top of another schema version. Coast is

similar to Clamen's system in that multiple versions of instances are kept in different

lASs; it is also similar to COLSQL because conversion functions are provided at

the class level. The most innovative feature of Coast is its propagation flags. These

flags are associated with each conversion function and can be switched on or off

independently. They give the designer fine-grained control over how creation, deletion

and modification of an instance in one IAS should be propagated to another 1AS.

Since our system adopts the conversion approach, we focus our attention on sys-

tems that take the same approach in the rest of this chapter.

6.2 Types of Schema Changes

Different schema evolution systems offer different sets of allowed changes to an existing

schema. Most changes can be put into two categories: 1) changes to class definition,

i.e., adding, deleting and modifying attributes or methods; and, 2) changes to the

inheritance graph, i.e., adding, deleting or changing classes and inheritance links.

Table 6.11 lists schema changes offered by some of the systems we are going to discuss.

In the following discussion, we will distinguish between simple and complex trans-

form functions. A simple transform function can only access the state of the object

being transformed whereas a complex transform function can access objects other

than the object being transformed.

Orion [4] offers a wide variety of operations that one can do to change the schema.

However, the application of each operation is governed by a set of rules to preserve

the structural invariants of the schema (e.g., class lattice, domain compatibility in-

'The format of this table is borrowed from [16]
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variants, etc.). Since the set of rules is fixed, it necessarily restricts the power of

schema modifications. For example, the domain of an instance variable can only be

generalized. In addition, a new attribute can only be initialized with a default value.

In contrast, our system allows users to provide transform functions that can be used

to define arbitrary changes; in particular, we allow complex transforms.

GemStone [25] only offers a few schema operations, for example, it does not sup-

port any method or inheritance link manipulations. This limitation might have come

from its lack of any invariant preserving rules, such as those defined in Orion, or

invariance checking mechanism, as in 02 [8]. GemStone inherits the limitations of

Orion that we mentioned above.

02 [10, 30] does not allow modifications to the attributes or methods of a class,

i.e., the name and domain of an attribute cannot be changed and the signature of

a method cannot be changed. However, like our system, it allows users to define

conversion functions where the initialization of attributes can use other attributes or

their sub-objects. This feature is lacking in Orion and Gemstone. However, it is not

clear from the literature if the conversion functions can invoke method calls in 02, a

feature that is supported by our system.

02 also supports object migration. There are two kinds of object migration. Note

that 02 only allow migrations to subclasses to avoid runtime errors.

* any particular object can be migrated to belong to any of its subclasses. This is

done via a system method migrationo associated with the root class Object,

which takes the as argument the name of the target class.

e all or some of the objects of a class can be changed to belong to one of its

subclasses. This is done via migration functions. A migration function (like

a conversion function) has access to the state of the object being migrated; it

is not clear if a migration function can access objects other than the one it

migrates.

Our system does support the transform of objects of one class to belong to another

class (not necessarily a subclass); but we do not provide the "filtering" mechanism
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of migration functions to transform only a subset of objects of a class to different

classes.

In addition to basic operations, ObjectStore [24] allows user-defined transformer

functions to transform objects. However, transformer functions can only access the

values of the old attributes of the object being transformed and cannot invoke method

calls on them. ObjectStore also provides a convenient way to transfer objects of a

class to one of its subclasses, called instance reclassification.

OTGen [17] automatically constructs a transformation table, where a default

transformation function is provided for each modified class by comparing the old and

new schemas. The default transformation functions can be modified by the user. As

seen from Table 6.1, OTGen does not support any method modifications. However,

OTGen provides the following general operations:

Initialization of variables By allowing users to modify the default transform func-

tion, OTGen allows arbitrary computation to be used to initialize attributes of

the transformed objects. In particular, transformation functions can invoke

methods on attributes as part of initialization. This is similar to our system.

Context-dependent changes OTGen allows boolean expressions to be attached

to a transformation table entry. For instance, an object can be transformed

to class C or class D, depending on the value of one of its attributes. This is

a more generalized form of "object migration" of 02, where there has to be a

subclass relationship between C and D.

Sharing of information OTGen uses shared expression to support sharing of in-

formation among objects when attributes are initialized. A shared expression is

evaluated once for each distinct set of argument values it is instantiated with.

A table that is indexed by the argument values is used to look up the shared

expressions. This functionality is convenient but not essential; our system can

simulate it at the application level.

Note that OTGen provides the above functionalities on top of the core schema evolu-

tion operations via some special constructs. Our system currently does not support
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Table 6.1: Types of changes supported by schema evolution systems

Attribute Method Class Inheritance Link
add del mod' add del modb add del mod' add del mod'

Orion * * e * * * *

GemStone * * of .0

02 0 0 0 0 0 0

ObjectStore * * . . . .9 0 ei 0i
OTGen . . . . . .

amodify name and domain
bmodify name and signature
cmodify name
dmodify superclass

edomain can only be generalized
fdomain can only be generalized
gonly when there is no instance of the class
hadd only base classes
iremove only base classes
'changing between virtual and nonvirtual inheritance

either context-dependent changes or sharing of information. Extending our system to

support context-dependent changes would increase our expressive power; supporting

sharing of information is mainly for convenience.

In Woo [29], transform functions are defined in similar fashion as ours and therefore

provide the same expressive power.

6.3 Schema Consistency

Different systems have different notions for what a consistent or valid schema is.

In general, there are two aspects of schema consistency: structural and behavioral

([4, 30, 17]).

6.3.1 Structural Consistency

Structural consistency refers to the static invariants that a schema evolution should

preserve. Most data models in the literature require the following invariants:
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Class Lattice Invariant The class lattice (inheritance graph) is a rooted and con-

nected directed acyclic graph (DAG).

Unique Name Invariant All class names must be unique; within a class definition,

names of all attributes and methods must be unique, no matter whether they

are defined or inherited.

Full Inheritance Invariant A class inherits all attributes and methods from all its

superclasses.

Type Compatibility Invariant The type of an inherited attribute must be the

type or the subtype of the attribute it inherits. Also the type of an attribute

must correspond to a class in the class lattice.

Orion [4] and GemStone [25] ensure the above invariants by defining a set of rules

for each schema update operation that they support. A particular rule is selected

from this set when the operation is applied, so that the invariants would hold. For

example, when the domain of an instance variable is changed, the rule says that it

can only be generalized.

In OTGen [17], the checking for these invariants is built into the automatic system

that generates default transform functions, although the transform functions can be

overridden by the user.

02 [10, 30] uses an integrity checker [8] to check these invariants. It is similar to

our approach where the checking is done as part of the type checking.

ObjectStore [24] and Woo [29] do not provide a description of how to check for

the structural consistency.

6.3.2 Behavioral Consistency

Behavioral consistency refers to the runtime behavior of the schema evolution. Infor-

mally, it means that each method respects its signature and its code does not result

in runtime errors or unexpected results. It is equivalent to the "completeness" of

upgrades that we discussed in Section 3.3 of this thesis.
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Behavioral Consistency was not addressed by Orion, GemStone, OTGen or Ob-

jectStore. In our system and Woo's thesis, the completeness of upgrades is discussed.

Some global analysis can be used to approximate the completeness of an upgrade.

Zicari [30] outlined an algorithm to check behavioral consistency in 02. A method

dependency graph is extracted by looking at the code of each method. In addition,

extra information is kept about which portion of a class a method actually uses. The

systems uses this dependency information to determine if a method might become

invalid or need to be recompiled when a new upgrade is installed.

6.4 Database Transformation

As discussed in Chapter 2, there are two approaches to transform existing objects

in the database once the upgrade is installed: immediate and lazy. If a system

only allows simple transforms, whether the upgrade is propagated immediately or

lazily does not affect the semantics; however, if a system allows complex transform

functions, it must be done carefully to ensure the correct behavior.

This thesis identifies two problems that arise when implementing complex trans-

form functions lazily. First, an object affected by the upgrade might be accessed by

another complex transform function. In this case, the problem is that the object

might be of an earlier or later version depending on when it is accessed. Secondly,

an object not affected by the upgrade might be accessed by a complex transform

function (we call these objects tf-read object in this thesis). In this case, the problem

is that the object might have been modified by some application and the transform

function might observe broken invariants.

Our thesis is the first to address both problems. To solve the first problem, we save

versions of objects when they are transformed, so that we can find an earlier version

if needed; in addition, we developed a mechanism to trigger nested transforms if a

later version is needed. To solve the second problem, we proposed a solution that

is a combination of "upgrade-aware" transform functions and "simulation methods".

Now we discuss how other systems implement database transformation.
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First, we look at systems that do not support complex transforms, such as Orion

and GemStone. In Orion, deletion or addition of attributes is delayed until an object

is fetched from disk to memory. In GemStone, all objects of the affected classes are

enumerated, transformed and put back to the database. In both systems, since trans-

forms are not complex, doing the transform in-place does not create any semantics

problems.

Next, we look at the systems that do support complex transforms. ObjectStore

takes an immediate approach, which is divided into two steps: instance initialization

and instance transformation. During the first phase, a new object is created and

initialized for each affected object. All pointers to the old object are swung to point

to the newly created object. During the second phase, user-defined transformed

functions are applied to the newly created objects. The system provides access to the

values of data members of the corresponding old object for transform functions. At

the end of the second phase, all old objects are discarded.

The pointer swinging of the initialization phase described above is problematic

because it changes all pointers, including those contained within attributes of some

untransformed objects to point to the new instances. These objects and their at-

tributes may be accessed by some transform function during the transform phase

later. Thus, these transform function would access the new objects instead the old.

ObjectStore mentioned the use of exception handlers to handle illegal pointers dur-

ing the initialization phase, but it is not very clear how it handles the problem we

described here during the transformation phase.

In OTGen, objects are partitioned into collections. Each collection of connected

objects has a root through which it can be externally accessed. Each root has a

version number indicating the version of the database server that last accessed it.

This collection of objects is transformed the first time it is accessed with the new

version of the server. For each collection of objects, the transform is immediate; from

the point of view of the whole database, the transform is lazy. It is not clear from

the paper [17] how exactly the transformation of objects is done, however.

In 02, the user can choose whether to transform the database lazily or imme-
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diately. 02 physically retains the deleted or modified information in the object in

a so-called screened part. Applications do not have access to the screened parts of

objects, but conversion functions use the screened parts to perform the correct trans-

formations. By dependency analysis of transform functions, the storage overhead

of screened parts can be reduced by not saving fields that are not going to be ac-

cessed by transform functions. Furthermore, whenever an immediate transformation

is launched, 02 transforms all the objects in the database to conform to the most re-

cent schema and screened parts of objects are dropped. By having screened parts, 02

addressed the problem of complex transform functions accessing transformed objects.

However, it did not address the problem with the tf-read objects.

Like 02, objects are transform in-place in the work of Woo [29]. He recognized

the same problem that 02 solved. Rather than saving screened fields for objects,

his system forbids the installation of upgrades affecting objects that can be read by

the complex transform functions of any previous upgrades that has not retired. This

method saves the space overhead but restricts the installation of upgrades. Further-

more, he did not address the tf-read problem either.
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Chapter 7

Conclusions

7.1 Summary

The requirement for both good performance and sound semantics has made schema

evolution a long-standing challenge for object-oriented database systems. The chal-

lenge primarily concerns when and how to transform existing objects in the database

in the case of an incompatible upgrade. This thesis presents our solution to this

problem.

First, we provide a simple interface for users to specify upgrades as a collection

of class upgrades. Each class upgrade contains a transform function that converts an

object of the old class into an object of the new class.

Next, the question of when to apply these transform functions is addressed. In

order to preserve the availability of the system, we proposed a lazy upgrade model

where object transformations are delayed until they are accessed by applications. To

guarantee the consistency of the database, our model requires that the upgrades be

complete and the transform functions well-defined.

The interleaving of applications and transforms poses some problems. More specif-

ically, an object might belong to either an earlier or later version when it is encoun-

tered by a transform function. To cope with the former case, our model provides

a mechanism for running nested transforms; to deal with the latter case, our model

keeps snapshots of objects when they are transformed. Keeping snapshots of trans-
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formed objects is not enough to prevent complex transform functions from observing

broken rep invariants, however. For this problem, we proposed a solution where

"upgrade-aware" transform functions and "simulation methods" are defined.

Finally, we implemented our approach in Thor, an object-oriented database sys-

tem. The implementation was done with efficiency and performance in mind.

7.2 Future Work

There are many ways our work can be improved or extended. This section suggests

a few paths for future work.

7.2.1 Multiple-OR Implementation

Our current implementation assumes a single OR system where the upgrade OR is the

only OR. As part of the future work, this implementation can be extended to support

multiple ORs. An interesting research problem is how to propagate the upgrade

information from the upgrade OR to the FEs in an efficient and timely fashion. If a

lazy upgrade snapshot approach were taken to transform the database, all ORs used

need to be informed about the upgrade when it is committed at the upgrade OR

because of the tf-read objects. With the transaction snapshot approach an epidemic

algorithm can be used to propagate the upgrades among ORs and FEs.

7.2.2 Upgrade Limitations

The lazy upgrade model that we proposed in this thesis has some limitations. In

particular, our model does not handle two kinds of transforms:

Multiple-object Transforms There are transforms where a group of objects must

be transformed all at once. Such transforms are not supported by our current

model because our transform functions are limited to transforming only one ob-

ject at a time. As part of future work, we could extend the transform functions

to transform multiple objects at once.

76



Ordered Transforms Since transforms run independently in the current model,

there is no way we can impose any order to them. As mentioned in Section 2.6.5,

sometimes we want to run transforms in a certain order to get the correct seman-

tics. One of the main reasons for our proposal of "upgrade-aware" transform

functions and "simulation methods" in this thesis is to get around this problem.

Allowing ordered transforms may eliminate the need for this.

A general query mechanism as described in Section 2.6.5 could give the user

more control over the order of transforms. An efficient implementation of this

idea is worth exploring.

7.2.3 Garbage Collection

As mentioned in Section 5.5.4, a good garbage collector is essential to the performance

of our system. Normal GC does not help in removing the old versions in our system

because we use doubly-linked chain of surrogates in our implementation.

One possible approach is to perform some global analysis of the code and detect

which classes of the previous upgrade are not used. Objects belonging to those classes

can then be garbage collected. To speed up the upgrade of the database, the garbage

collector can also proactively transform objects by sending them to the upgrade OR

when the system is not busy. The garbage collector used need to be incremental and

distributed in order to work well in a large, distributed system.
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