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Abstract

The registration of pre-operative volumetric datasets to intra-operative two-dimensional
images provides an improved way of verifying patient position and medical instrument
location. In applications from orthopedics to neurosurgery, it has a great value in
maintaining up-to-date information about changes due to intervention. We propose
a mutual information-based registration algorithm to establish the proper alignment.
For optimization purposes, we compare the performance of the non-gradient Powell
method and two slightly different versions of a stochastic gradient ascent strategy: one
using a sparsely sampled histogramming approach and the other Parzen windowing
to carry out probability density approximation.

Our main contribution lies in adopting the stochastic approximation scheme suc-
cessfully applied in 3D-3D registration problems to the 2D-3D scenario, which obvi-
ates the need for the generation of full DRRs at each iteration of pose optimization.
This facilitates a considerable savings in computation expense. We also introduce
a new probability density estimator for image intensities via sparse histogramming,
derive gradient estimates for the density measures required by the maximization pro-
cedure and introduce the framework for a multiresolution strategy to the problem.
Registration results are presented on fluoroscopy and CT datasets of a plastic pelvis
and a real skull, and on a high-resolution CT-derived simulated dataset of a real skull,
a plastic skull, a plastic pelvis and a plastic lumbar spine segment.
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Chapter 1

Introduction

1.1 2D-3D Registration

Recently, there has been a growing number of medical experts who advocate a mini-

mally invasive approach to surgery. Their aim is to reduce the physical stress applied

to the human body due to medical treatment/procedures and also to reduce treatment

costs, for example, by minimizing the size and number of incisions. Unfortunately,

in comparison to open procedures, these approaches restrict the surgeon's view of

the anatomy. This leads to an increasing need for advanced imaging techniques that

would help them not only with diagnosis, but also with planning and guiding inter-

ventions.

Pre-operative images provide an excellent source of detail about the anatomy

in question. The widely used three-dimensional image modalities such as Magnetic

Resonance Imaging (MRI) and Computed Tomography (CT) contain high resolution

information about the imaged body part. Other imaging techniques such as Positron

Emission Tomography (PET) and Functional MRI (fMRI) complement that knowl-

edge with metabolic and functional information. All these datasets can greatly assist

in establishing diagnosis and planning procedures pre-operatively or evaluating an

intervention post-operatively. The same set of images can be conveniently utilized

in surgery as well. However, they have the drawback that they may not completely

15



reflect the surgical situation, since they are static.

In some applications it is important to use intra-operative images to follow the

changes caused by the procedure or to visualize the location of a tool. In the operating

room or interventional suite, it is mostly 2D images that are available to record details

about the current anatomical state. X-ray, X-ray fluoroscopy and portal images are

all good examples of image modalities used for this purpose. Two-dimensional acqui-

sitions are often taken instead of volumetric datasets because of timing, radiation-

related and technological arguments. First, acquiring several 3D volumetric images

during a procedure takes too long to make it practical compared to 2D imaging. Sec-

ond, the radiation dose to both the patient and the doctor is reduced if only image

slices are recorded rather than all the projections needed to reconstruct a 3D volume.

Third, by using only 2D images, it is sufficient to have simpler imaging equipment in

the operating suites.

Unfortunately, 2D images lack significant information that is present in the 3D

modalities. Hence, in order to relate the changes recorded by the 2D modalities

to the detailed 3D model, medical experts need to fuse the information from the

pre-operative and intra-operative images mentally, which can be a challenging task.

Therefore, it is useful to find a way to both automate that procedure and to make it

reliable.

The combination of pre-operative and intra-operative images conveys the most

information if the components are properly aligned in space. To achieve this it is

necessary to determine their relative position and orientation. The procedure that

identifies a geometrical transformation that aligns two datasets, or in other words

locates one of them in the coordinate system of the other, is called registration.

There already exist several techniques that can perform this task either semi- or

fully-automatically. Matching, for example, different types of MRI with each other

or with CT datasets is routinely done at numerous medical institutions. Most of

these applications operate on images of the same dimensionality, aligning inputs from

either 2D or 3D. Could we, nevertheless, align images with different dimensionality
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and complement the information from high-resolution pre-operative datasets with the

more up-to-date, intra-procedural images? To achieve this goal, not only would we

have to account for the different representations of a particular anatomical structure

in the multimodal inputs, but we would also need to process information represented

in different spaces. Additionally, as the registration results are expected during the

medical procedure, the computation time would also be constrained. In a nutshell,

these are the main challenges that one needs to address when solving the 2D-3D

registration task. In our work, we present a solution to these problems and discuss

the performance behavior of our registration framework.

1.2 Medical Applications

In this section, we give some specific examples of medical applications that could

benefit from a reliable (and efficient) solution to the 2D-3D registration problem.

They belong to the field of Image Guided Surgery (IGS). Their main objective is to

introduce highly accurate pre-operative information about the examined anatomy into

the operating room (where normally only lower dimensional images can be acquired)

and help the execution of interventions carefully planned prior to the procedure by

fusing the more detailed pre-operative with the more current intra-operative images.

1.2.1 3D Roadmapping

There exist a number of serious illnesses which can treated by the use of catheters

that are maneuvered into the blood vessels of the brain. These include aneurysms

and arteriovenous malformations.

Traditionally, X-ray fluoroscopy has been widely used in these cranio-catheter

procedures. There is a currently existing procedure called 2D roadmapping in which

doctors follow the path of a catheter in the patient's body with the help of dynamic

intra-operative 2D imaging. The procedure takes place in a special fluoroscopy suite.

Prior to the intervention, opaque contrast material is injected into the patient, and

a 2D acquisition is obtained. The resulting image shows vessels with high contrast
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because of the injected contrast agents. This type of data is used pre-operatively for

diagnosis and planning, and it is also often acquired at the beginning of a procedure

to serve as a reference set during the procedure. When the contrast agent is no longer

present in the blood, dynamic fluoro images are acquired to follow the changes due to

the intervention and to record the most current state of the treated body part. These

are then subtracted from the pre-operative static image. As a result the vessels (of

high contrast in the pre-operative data) and the catheter (not present at all in the pre-

operative data) are the only structures highlighted. Continuing this process allows

the physician to obtain information about the actual location and the movement of

the catheter.

The main disadvantage of this method lies in having only a static 2D reference

image highlighting the vessels. It is not rare that cranio-catheter procedures take

more than 5 hours. During such a long time it is difficult to prevent any patient

movement. Misalignment between the pre-operative image and the intra-procedural

ones is inevitable. When that happens re-injection of the contrast agent is necessary

for obtaining another static reference image and the intervention is halted.

In the future, the drawbacks of the 2D roadmapping method might be overcome by

using a 3D dataset as the reference from which synthetic 2D images can be generated

as needed'.

Prior to the surgery, when the initial dose of contrast agent is injected, it requires

a 3D volume rather than 2D images to be taken. During the procedure, when the

dynamic fluoro images are obtained, they are compared to simulated projection im-

ages created from the 3D dataset. In this way, if the patient moves, it is only the

parameters that describe the patient position and orientation in the imaging model

that have to be modified in order to have the simulated and intra-procedural images

line up again. These parameters are the ones that a 2D-3D registration algorithm

would compute.

'This project has been jointly proposed by Alexander M. Norbash, MD (Department of Radiology,
Brigham and Women's Hospital and Prof. William Wells (Artificial Intelligence Laboratory, MIT).
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1.2.2 Orthopedics

Metastatic Bone Cancer

Another application is related to an orthopedics procedure, the treatment of metastatic

cancer in the bones. The task here is to remove localized lesions from particular lo-

cations of the bones. Again, the treatment plan can be thoroughly designed prior

to the operation using 3D CT volumes with high information content, but during

the intervention, guidance and verification is only practical by making use of intra-

operative images. Utilizing both of the two data sources requires the alignment of

the intra-operative and pre-operative datasets.

Total Hip Replacement

Hip joint replacement surgery has several uses for 2D-3D registration. One is implant-

ing an acetabular cup into the pelvic bone during total hip replacement procedures.

In order to verify the correct position and orientation of the metal cup before the op-

eration terminates 2D images are acquired. These need to be related to the 3D model

of the anatomy. Another use concerns cases in revision surgery. Such a procedure

is necessary if, following a total hip replacement procedure, the acetabular cup gets

mislocated or gets deattached from the pelvis.

These orthopedics applications are currently pursued by the HipNav project at

CMU and researchers at Johns Hopkins University.

Spine Procedures

Spine procedures are another very large application area for IGS, since back problems

are very common, and the potential complications of damage to the spinal cord are

devastating. Planning may effectively use pre-operative CT, while the interventions

may be most practically guided by the use of C-arm X-ray equipment. One example

procedure is vertebroplasty, which is the reinforcement of a failing vertebra by the

placement of cement. Other applications include the placement of pedicle screws as

components of stabilization hardware.
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1.3 Problem Statement

The goal of the project described in this document is to register pre-operative volumet-

ric data to intra-procedural 2D images. We are particularly interested in examining

the problem of aligning 3D CT volumes to corresponding X-ray fluoroscopy. As a

single 2D image, in practice, does not convey sufficient information about the spatial

location of the imaged object, we require two projection images to achieve our task.

We assume that the two imaging views are related by a known transformation, hence

it is necessary to recover the required transformation with respect to only one of

them. (This is a realistic assumption as biplanar images are often taken by rotating

the imaging source by a pre-specified angle around one of the imaging axis. Also,

biplanar acquisitions are considered to be standards in cranio-catheter applications.)

In solving the proposed problem, our main challenges lie in identifying a similarity

measure, or objective function, that can quantify the quality of the alignment between

the images and defining a procedure to modify and refine current estimates of the

problem parameters in a way that the similarity score is optimized.

An additional primary focus of this effort is finding 2D-3D alignment methods

which have computational complexity that is compatible with the time constraints

implied by the interventional applications.

Experimentally, we aim to demonstrate the performance characteristics of our reg-

istration algorithm on a wide variety of datasets. The collection includes fluoroscopy

and CT datasets of a plastic pelvis and a real skull and also a high-resolution CT-

derived dataset of a real and plastic skull, a plastic pelvis and a plastic lumbar spine

segment.

1.4 Thesis Outline

In Chapter 2, we introduce the problem of 2D-3D registration in a more thorough

manner. We present the technical difficulties involved in the analysis and comparison

of the multimodal and multidimensional datasets. We then summarize a handful
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of approaches that have already presented promising results in this area. We also

introduce some frequently-used medical image modalities, describe some objective

functions and some fast methods that simulate X-ray generation; which is a subtask

of some registration methods. In Chapter 3, we focus on the computational details

of our own approach. We describe the particular choices made when designing the

components of our algorithm, we demonstrate the data structures used to encode the

transformation variables and provide an in-depth derivation of the most important

formulas used in the implementation. In Chapter 4, registration experiments are

described using both synthetic and real datasets as well as detailed analysis of their

results. The thesis concludes with Chapter 5, which summarizes the project and

our contributions. Finally we describe some related future research ideas that we

would like to investigate. In the Appendix, the reader may find a precise derivation

of a particular mathematical formula and also a summary of the fascinating case of

Phineas Gage, whose skull was used in our experiments.
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Chapter 2

Background and Technical Issues

Introduction

In this chapter, we give a general introduction to the 2D-3D rigid-body registration

problem applied specifically to medical modalities. We present a concise summary of

research studies that have been applied to the problem while outlining a highly selec-

tive set of objective functions, optimization procedures and medical image modalities

that are most frequently used in medical image processing. We also describe a fast

technique that produces simulated projection images, called digitally reconstructed

radiographs, as this technique was crucial in speeding up and monitoring our regis-

tration procedure. Then we introduce a new approach that we used to address the

2D-3D registration task.

2.1 2D-3D Rigid-Body Registration

Registering pre-operative datasets to images acquired intra-operatively can provide

up-to-date information at the treatment site, guiding surgery or other interventions.

When using different image modalities, information invisible in one of them can be

incorporated into the other. Three-dimensional intra-procedural image acquisition

is uncommon - typically only two-dimensional datasets can be obtained for such

purposes. Although these images lack the spatial detail of volumetric data, they have
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the advantages of faster acquisition time and potentially reduced amount of radiation

exposure to both patients and doctors. Ideally, one can recover the advantages of the

volumetric data by aligning the intra-operative 2D images with pre-operative volumes.

However, not only do we have to focus on solving the multi-dimensional registration

problem, but the algorithm running time should also be kept reasonable. If the

alignment results cannot be produced well within the time-limits of an intervention,

the algorithm cannot be used.

The majority of the medical applications for the proposed kind of registration task

has emerged in the field of radiology. Alignment information is crucial in planning,

guidance and treatment procedures. More specifically, the medical community has

expressed interest in applying the 2D-3D alignment results in the following applica-

tion areas: placement of pedicle screws in spine surgery [5, 6], aortic endoprostheses

in transfemoral endovascular aneurysm management [7], verifying patient setup ac-

curacy for radiotherapy and acetabular implant position in case of total hip replace-

ment [1, 2, 11], displaying surgical instruments in the pre-operative CT volume [5],

projecting important anatomical structures visible in CT onto 2D acquisitions and

confirmation of depth electroencephalogram electrode position [33].

Our collaborators1 , in specific, are interested in applying the 2D-3D registration

in the field of orthopedics and neuroradiology. Two of the major projects that of

interest are head catheter tracking in case of cranio-catheter procedures and monitor-

ing acetabular cup insertion during total hip replacement surgery. (A more detailed

description of these and other procedures can be found in Chapter 1.) Therefore,

the experimental dataset that we have acquired is mostly images of the skull and the

pelvis.

'Alexander M. Norbash, MD (Department of Radiology, Brigham and Women's Hospital) and
the Engineering Research Center (ERC) group including collaborators from CMU, Johns Hopkins
University and MIT
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2.1.1 Medical Image Modalities

The most commonly used 2D medical image modalities for the 2D-3D alignment task

have been portal images and X-ray fluoroscopy (fluoro). Portal images are used in

radiation treatment procedures. Their creation employs high-energy treatment radi-

ation beams instead of low-energy imaging radiation, hence they could be considered

byproducts of a procedure and their quality is extremely poor - they are of low

resolution and they have low contrast. Research studies involving this modality use

various segmentation techniques prior to or simultaneously with the registration pro-

cedure [1, 2, 30] in order to identify key structures in the portal images. Otherwise

the individual intensity values have not been found to be sufficiently informative to

describe the imaged anatomy.

Fluoroscopic images, on the other hand, reveal much more detail about the exam-

ined anatomy. They are taken by X-ray machines and are created by short wavelength

energy. Fluoro images best visualize bony structures of the anatomy (Figure 2-1), as

it is the bony tissues that absorb the most amount of radiation in the human body.

The major disadvantage of this modality stems from the fact that without correction,

its geometric accuracy degrades due to pincushion and radial distortion effects in cur-

rent equipment. (Distortions of this sort are not a problem with the newer generation

solid-state detectors.)

Among the 3D image modalities, Computed Tomography (CT) has been most

widely considered for the registration task. CT images are created by assimilating

multiple X-ray acquisitions. The X-ray machine rotates around the patient's body

and at pre-specified angles shoots X-ray beams through the imaged object. The

reconstructed images represent the absorption rate due to the intervening tissues

called the Hounsfield number.

On the other end, the imaging plate records the absorption rate of different tissue

types which quantities are referred to as Hounsfield numbers. The tomographic data

acquisition is conventionally modeled by the Radon Transform and reconstructed

according to the Filtered Backprojection algorithm. Distortion problems are usually
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Figure 2-1: Lateral and AP acquisitions of X-ray fluoroscopic images of the pelvis
phantom.

not of major concern in case of this modality. Figure 2-2 shows three orthogonal slices

of a real head CT acquisition.

Figure 2-2: Orthogonal slices of a head CT acquisition: axial, sagittal and coronal

views

2.1.2 Digitally Reconstructed Radiographs

In our application, we focus on fusing CT and X-ray fluoroscopy images. One of

the key challenges when attacking the 2D-3D registration problem is the need for an

appropriate way to compare input images that are of different dimensionalities. The
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most common approach is to simulate one of the modalities given the other dataset

and an estimate about their relative spatial relationship, so that the images can be

compared in the same space. Then the transformation estimate can be updated to

maximize an alignment score according to some similarity measure.

Reconstructing the 3D volume from 2D images is one alternative, but it requires

numerous projection acquisitions and large computation time. It is more feasible

to simulate 2D images from the 3D volume. Most existing applications follow this

approach.

Ray-Casting

Simulated projection images, that are to model the production of X-ray acquisitions

from volumetric CT are called Digitally Reconstructed Radiographs (DRRs). These

images are traditionally formed by implementing the so-called ray-casting algorithm

which we briefly summarize. Rays are first constructed between points of the imaging

plane and the imaging source. Then the individual intensity values of the DRR images

are computed by summing up the attenuation coefficients associated with each volume

element (voxel) along a particular ray. An example of a DRR image created according

to this algorithm is shown in Fig. 2-3.

Although producing high-quality results, this procedure can be quite inefficient

for our purposes. As it must visit every voxel while computing the projection image,

it tends to be extremely time-consuming. The creation of just one projection slice

can take up to 100 seconds on a fast 1000 MHz machine. If we want to introduce a

registration algorithm for interventional use, which task might require the creation

of hundreds of DRRs as intermediate steps, we need to find alternative methods to

approximate the 2D projections.

The speed limitations of the ray-casting algorithm are partly due to the size of

the volumetric datasets. The majority of the CT volumes that we analyzed had

dimensions of (512x512x200). (See a more detailed summary of the specifications of

our datasets in Table 4.1 of Chapter 4). But the other part of the problem stems

from the fact that if we closely follow the ray-casting algorithm, the data voxels are
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(a) (b)

Figure 2-3: CT-derived DRR images produced by the ray-casting algorithm

not accessed in an optimal way. As DRR-creation is a significant component of the

registration application, several research studies have concentrated on defining more

practical methods for their computation.

One way to address the problem of handling large volumes is to somehow restrict

the size of the 3D datasets to be analyzed. In [3], the authors introduce a focused

registration technique. The region of interest in the CT acquisition is segmented out

prior to the intervention (e.g., the image of a vertebra) and the alignment algorithm

is applied only with respect to that sub-entity. The same issue may also be effectively

addressed by the application of a multiresolution approach, where it is a downsampled

and smoothed version of the input images that are first aligned[18, 15, 16]. (The

hierarchical approach not only decreases the computational time, but also increases

the robustness of the algorithm. A more detailed description of the hierarchical

approach can be found in Chapter 4, where we present our experimental results.)

Voxel-Projection

To approach the problem from an algorithmic development point of view, it is useful

to invent new approximation methods for constructing the DRRs. One such proce-
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dure, which we used in our registration experiments, is called voxel-projection [14].

The main idea behind this new method is the attempt to maximally optimize memory

accesses while processing the input datasets. Instead of carrying out the calculations

following the layout of the DRR intensities to be determined in memory (and travers-

ing the CT volume in a random manner), it accesses the volume elements in the order

in which they are stored. First the algorithm estimates how much influence an indi-

vidual volume element would contribute to elements of the DRR image. Then, after

projecting the voxel centers onto the imaging plane, a smoothing function assures that

the resulting image is not corrupted by banded intensities. That could happen due to

lack of interpolation and due to ignoring the impact of a voxel on neighboring pixels.

In our application, we achieved some improvement in the quality of the DRR images

by increasing the minimal size of the smoothing kernel originally determined [14]. To

compare the image quality of radiographs produced by the ray-casting method and

the voxel-projection technique, compare Fig. 2-3 and Fig. 2-4, which display DRR

images derived from the same CT volume with the two different algorithms.

Careful examination of Fig. 2-3 and Fig. 2-4 reveals that the two DRR-production

algorithms result in images that are very similar. The main criticism against the

outputs of the fast, voxel-projection technique could be that its images are not as

smooth as that of the traditional procedure. Some intensity banding is visible on the

more uniformly colored regions of its images.

The voxel-projection strategy has led to a speedup of factor 6, especially when

relatively lower resolution projection images are sufficient.

Other DRR Techniques

Other approaches that also improve the computational burden of the ray-casting

procedure include shear-warp factorization [32, 8 and the pre-computation of line

integrals with the construction of a new data structure called Transgraph2 [12].

2 The name Transgraph is based on Lumigraph from the field of Computer Graphics.

29



(a) (b)

Figure 2-4: CT-derived DRR images produced by the voxel-projection algorithm

The main idea behind the latter comes from the field of computer graphics, and

is referred to as view-based rendering. It allows for fast computation of the DRR

values and easy differentiation of the function generating them. Interpolating the

densely sampled pre-computed line integrals proves to be more efficient than im-

plementing the ray-casting technique. However, that strategy imposes a significant

pre-computational/pre-processing step.

2.1.3 Similarity Measures

In many registration systems, the quality of alignment is scored by objective functions.

Common registration methods can be grouped into two major categories based upon

the nature of the similarity measure that they apply: they can be classified as feature-

or intensity-based.

Feature-based Techniques

Feature-based approaches rely on the presence and identification of natural landmarks

or fiducial markers in the input datasets in order to determine the best alignment. It is

necessary to segment the most significant features in both of the input images and the
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matching criterion is then optimized with respect to them. Contour- and point-based

techniques [5, 6, 10, 41] are examples of this strategy, as well as registration methods

that compare medialness properties of segmented anatomies [30]. Others carry out

a minimax entropy strategy [1, 2] executing simultaneous registration and segmenta-

tion steps. Although the reduced number of features to be registered could provide

great computational speedup (after the segmentation procedure is completed), major

drawbacks of these methods lie in the need to carefully plan the image acquisition

protocols in advance and the need for potentially re-scanning the patient if the diag-

nostic images do not contain the fiducials, the assumption that most of the fiducial

markers can be located in all of the analyzed inputs, the inconvenience of planting

artificial markers on the patient and the dependence on the segmentation procedure

that can potentially introduce (additional) errors. These solutions might also require

some level of user interaction, which generally is not desirable throughout medical

procedures.

Intensity-based Measures

Intensity-based measures operate on the pixel or voxel intensities directly. They

calculate various statistics using the raw intensity values of the inputs which are then

compared in the images to be aligned. Though the number of points to be registered

is much greater than in the case of the feature-based methods, no feature extraction

step is required.

An extensive study of intensity-based similarity measures applied specifically to

2D-3D applications has evaluated the performance of six different objective functions

in matching X-ray fluoroscopy and CT images [3]. The imaged organ was a phan-

tom spine, and it was only a user-defined small region of interest (e.g., an individual

vertebra) that was registered at a time. The objective functions considered by the

authors were: normalized cross-correlation [33], entropy of the difference image [9],

pattern intensity [6], mutual information [20, 15], gradient correlation [34, 33] and

gradient difference [3]. After a careful registration study (using fiducial markers to

ensure accuracy), the authors ranked these measures based upon their accuracy and
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robustness. They found that the best objective functions for the examined multi-

modal registration task are pattern intensity and gradient difference. These measures

proved to be the most robust with respect to the (simulated) presence of soft tis-

sue and of a surgical instrument appearing only on one of the modalities. Both of

these objective functions were implemented to use the whole input image in order to

evaluate the current quality of alignment.

The information theoretic measure of mutual information (MI) performed poorly

in these experiments. It did not handle partial occlusions and truncations well and

its performance further deteriorated when soft tissue was present. The study found

two possible explanations for the failures of this similarity measure that has at the

same time been very successful in the 3D-3D domain. First, MI is stated to require a

large set of samples to obtain a good probability density estimate for the underlying

entropy calculations. Although that is given in the 3D-3D registration problems, for

the 2D-3D application that was not true. We say more about this aspect of their

results later, in Chapter 3. Second, the authors claimed that as the search space of

MI is much larger than what the problem requires, it is more difficult to recover the

required parameters in it. (MI does not make the assumption that the two compared

modalities are related via a linear function, it assumes a broader statistical relation-

ship between the analyzed variables.)

Other intensity-based measures that have also been introduced for solving the

CT-DRR registration task are absolute correlation coefficient [34], cross correlation

and magnitude of scalar product of gradient [33] and a second order estimation to

mutual information that aims to incorporate spatial information into its MI-measure

[31]. The pattern intensity measure was also successfully applied in an MR-derived

DRR and CT registration problem [14].

2.1.4 Optimization

Provided we have a suitable similarity function, the best alignment parameters can

be located with the help of an optimization procedure. Such a protocol is responsible
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for modifying the current parameter estimates in a way that the similarity function

eventually takes on its (local) extremum. In this work, we assume that the similarity

measure is a reward and not a cost function. Hence the perfect/ideal alignment

is assigned the highest score and an optimization procedure aims to maximize the

objective function.

There are two major types of strategies that perform the maximization task:

non-gradient and gradient methods. Non-gradient strategies execute a local search

in the parameter space by evaluating the objective function at different locations

according to a pattern, while gradient procedures use the gradient information to

indicate the direction to the desired extremum. The former strategy might be easier

to implement as it requires only the evaluation of the objective function and no

additional computations to derive the consecutive search directions. However, the

latter could potentially be much faster as its search is specifically guided towards

the extremum. Among the non-gradient methods, we found that the Powell method

[34], the downhill simplex strategy [14] and an iterative optimization of individual

transformation parameters (often called as "coordinate ascent" method) [5, 3] are the

most popular. Among the gradient-based approaches, it is the Levenberg-Marquardt-

type strategies [11, 29] and the hill-climbing (gradient ascent) approach [42, 15] that

dominate.

2.1.5 Number of Views

In our experiments, examining only a single 2D image is not sufficient to robustly re-

cover all registration parameters required to properly position the examined anatomy

in the 3D world. While we can quite accurately recover in-plane rotation and displace-

ment transformations, it is difficult to determine any out-of-plane transformations.

In order to establish all of the transformation components with a desired level of cer-

tainty, it has proven advantageous to use two or more 2D acquisitions [2, 12, 14, 35]

for the proposed alignment problem.
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2.1.6 Transformation Representation

Our task when attacking the 2D-3D registration problem is to return a geomet-

ric transformation that best specifies the position and orientation of the examined

anatomy at the time of obtaining the 2D projection images. In other words, we want

to find a way to align the imaging and the world coordinate systems or to deter-

mine the correspondence between the intra-operative imaging environment and the

coordinates of the pre-operative volumetric data (Fig. 2-5).

We focus on fusing CT and biplanar X-ray fluoroscopy images. In that specific

case, the emphasis is on registering bony structures, since both modalities best visual-

ize such information. Characterizing the rigid movement of bones implies six degrees

of freedom. One 3D parameter specifies orientation, the other provides displacement

information. No other transformation, such as shearing or scaling is allowed. If we also

wished to align finer details, such as soft tissues, we would define higher-dimensional

transformations.

Data coordin

T

ate system

Imaging coordinate
system

Figure 2-5: The transformation parameter T which relates the coordinate frames of

the imaging environment and the data volume; T = D, o R o Dd.
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Throughout this thesis, we denote the transformation that aligns the two coor-

dinate systems by transformation T. In order to obtain a better intuition for what

movement T represents, we decompose it into a collection of sub-transforms. When

operating on data-points of the 3D volume, it is most natural to have all rotations

happen around the center of the volume. Hence, if the data is not centered in its own

coordinate system, a displacement operator needs to be applied. This displacement

operator is constant for a given registration task as it only depends on the specifica-

tions of the input volumetric dataset. Following the displacement, it is a rotational

step and a translation in the oriented system that ensure the desired alignment. If

we denote these operations by Bc, Q and B respectively (the underscore c notation

emphasizes the fact that the associated variable refers to a constant), then a trans-

formation G from data coordinates to the imaging environment could be composed

as

G= BoQoB.

As mentioned above, though, we are interested in computing the inverse of this

transform, G- 1 , which converts image coordinates into data coordinates. Hence, we

can write transformation T:

T = G-' = B; o Q o B- 1. (2.1)

In order to simplify our notation, we introduce new transformation variables for

the inverse operations

Dc Bc- 1, R Q 1 , and Dd = B 1 ,

and thus modify the way we express T as:

T = G-' = B;1 o Q-'o B1  = D o R o Dd. (2.2)

The objective of the registration algorithm is to recover the non-constant compo-
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nents of T as accurately as possible. In Chapter 3, where we iteratively estimate the

best parameters to provide the ideal alignment between the input images, the nature

of the above decomposition plays an important role. (Note that we keep the same

notation introduced for the decomposition of T throughout the rest of this document.)

2.1.7 Transformation Parameterization

For representing all six degrees of freedom of the rigid-body transformation, we use

a new data structure. It is called pose and its name stems from the two notions that

it describes: position and orientation. Given a pose parameter we can easily identify

both its rotational and displacement components. As the rotational component is

not linear in its parameters, the order of applying the transformation elements is

essential; reversing them could produce a significantly different transformation. We

use the usual convention of applying rotation first and then displacement. Therefore,

if pose S were composed of rotational and displacement components (r, d), when

applied to a coordinate point x, the resulting point could be written as

x' = S(r, d, x) = r(x) + d.

The composition of two pose transformations is not commutative. Given two poses

Si(ri, di) and S 2 (r 2 , d2 ), we have

S3 (r3 , d3 , x) = S2 (r2, d2, Si(ri, di, x)) = S2 o S1(ri, di, x)= r2 (rl(x)) + r2 (di) + d2,

so r 3 = r2 o r1 and d3 = r2(di) + d2.

That is to say, in the case of two consecutive transformations, the rotational elements

are composed and the total displacement results from the rotated version of the first

translation added to the second translation.

If the pose parameter only had a displacement component, we would write

x' = S(d, x) = x + d,

36



and if it only involved rotation, then the transformed point would become

X' = S(r, x) = r(x).

It is important to remember the above conventions, as in Chapter 3, when deriving

the partial derivatives of the objective function with respect to the transformation

parameters, we heavily rely on them.

There exists several ways to encode the transformation parameters that need

to be recovered. The displacement part of T can be conveniently represented in

a 3D vector format, however, the rotation parameter can be formulated in several

different ways. Just to name a few of the options, we could use: roll-pitch-yaw; Z-

Y-X Euler angles; Z-Y-Z Euler angles; equivalent angle-axis, orthonormal matrices

and quaternions [23, 36]. We decided to represent our rotation operators as unit

quaternions. This representation was appropriate for our needs as the quaternion

encoding is easy to formulate and the composition of rotation operators (which occurs

very frequently in our code) becomes a vector multiplication in that space. One way

to define a quaternion is by a four-dimensional vector whose elements encode the

rotational information as follows:

q = cos , sin 0 . (2.3)

In Definition (2.3), 0 refers to the angle of rotation around the unit-length axis w.

Quaternions are appropriate measures if we want to define a metric on the space of

rotations and they allow a uniform sampling of the rotation space [36].

We also use the equivalent angle-axis notation when illustrating the derivation of

one of the update terms of the gradient ascent procedure in Chapter 3. In that case,

if we represent the rotation transform with vector k, the magnitude of k determines

the angle of rotation and its direction stands for the axis of rotation.
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2.1.8 Other Notations

To follow the conventional notation in the medical imaging literature, we write U

to denote the reference image and V to express the intensity values of the moving

or floating images. In our case, U stands for the X-ray fluoroscopy acquisitions

while V stands for the simulated radiographs. As the DRRs are constructed from

the CT volume given a transformation estimate T, when we indicate the images

that we compare, we use the notation (U(x); V(T(x))) to explicitly emphasize that

dependence.

2.2 Outline of Our Registration Approach

Goal

The aim of our study is the registration of biplanar 2D X-ray fluoroscopic images to a

corresponding 3D CT dataset. The geometry of the imaging environment is assumed

to be known, so the location of the two imaging sources for the 2D acquisitions

is taken to be fixed. By updating our initial best estimate of the transformation

components, we aim to make the CT-derived simulated projection images (DRRs)

best approximate the observed fluoro acquisitions.

The Choice of Similarity Measure

Our choice of similarity measure depended on the examined image modalities, prior

knowledge about features and possible distortions in the images to be registered, speed

requirements (whether the registration needed to be completed in real time during a

surgical intervention or the procedure was for treatment purposes and hence it could

run for hours prior to or following the intervention) and implementation issues.

We decided to use the information theoretic notion, mutual information, to mea-

sure the quality of image alignment. While Penney et al. found the performance of

pattern intensity to be superior to MI [3], we have chosen this particular objective

function because of several reasons.
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First, we have experienced robust performance and good accuracy in the past

using MI, both in addressing the 3D-3D multi-modal rigid-body registration [15, 16]

and the 2D-3D video-frame to model surface alignment [17].

Secondly, execution time played another critical factor in our decision. We did

not intend to use any pre-segmentation techniques to reduce the size of the examined

data volume to make the algorithm run faster. We made this choice partly because

we wanted to eliminate user interaction from our procedure and partly because, even

if desired, it could be quite difficult to segment out individual bone segments in the

anatomies that we analyzed. For instance, in case of the pelvis, the ischium, ileum and

sacrum are so uniformly and smoothly joined that it would be extremely difficult to

distinguish clear boundaries between them. Also, in case of MI, it has been shown that

it is possible to reliably maximize its value even without using all available intensity

information provided by the inputs. We investigate a stochastic sampling approach,

which was introduced in a 3D-3D multi-modal registration problem [16]. The full

input volume is considered in the registration task, but only a few randomly selected

samples of it represent the dataset at each iteration. According to that scheme, we

estimate probability distributions of image intensities by a sparse ray-casting method

as opposed to by constructing full DRRs. It is not clear that pattern intensity could

be implemented in this framework. That similarity measure is evaluated over the

whole input image or at least on connected subregions of it. Hence, using pattern

intensity in case of bigger datasets could become very computationally intensive and

time-consuming.

Third, the generality of MI, the fact that it does not assume a linear relationship

between the random variables being compared, allows for a potential reuse of the

algorithm for image modalities other than the ones currently presented.
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Maximization Strategy

In our study, to automatically locate the transformation that corresponds to the best

alignment, we consider two optimization procedures: a stochastic gradient ascent pro-

cedure and the non-gradient Powell method. We preferred a gradient-guided search

because of its computational efficiency, however, the Powell method was found to

be extremely robust and was very helpful when designing experiments on the real

X-ray datasets. The stochastic nature of the gradient-based optimization procedure

is explained by using noisy approximations of partial derivatives instead of relying on

true and accurate measures. The reason for applying such an estimate is to simplify

computations, to speed up the overall registration process and to help escaping local

extrema of the similarity measure.

2.3 Summary

In this Chapter, we presented a high-level description of the 2D-3D registration prob-

lem and we provided some terminology and background information relevant to our

proposed project. Additional details included specifics about medical image modali-

ties, similarity functions, optimization techniques and about the transformation rep-

resentation that we used to encode the searched pose parameters. We also gave a

short summary of the motivation and the basic framework of the alignment approach

that we investigated.
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Chapter 3

The Registration Algorithm

Chapter Summary

In this Chapter, we give a detailed description of our registration procedure. First

we remind the reader what transformation components we aim to recover as a result

of our rigid-body registration algorithm. Then we introduce mutual information, the

objective function we use, and describe its implementation details. We also compare

two different optimization approaches, Powell's method and stochastic gradient as-

cent, which we have used to locate the extremum of the objective function. We derive

in detail some of the update terms that are necessary for finding the desired alignment

transformation. Lastly, we give a general overview of the registration algorithm. The

description, results and performance evaluation of our experiments are presented in

Chapter 4.

3.1 The Transformation Parameter

For the specific case of fusing CT and X-ray images, the primary focus is on registering

bony structures, since both modalities best visualize such information. Characteriz-

ing the rigid movement of bones implies six degrees of freedom, three describing a

rotational and three a displacement term. Our registration tool can also be thought

of as a tool for aligning two different coordinate systems: that of the intra-operative
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imaging environment and that of the pre-operative image volume itself. Transforma-

tion T is used to transform the imaging coordinates to their corresponding equivalent

in world coordinates (Fig. 2-5).

As detailed in Chapter 2, T is a pose parameter. It is constructed from a rotational

and a translational element. However, in order to distinguish constant and variable

components of T, we decompose it into three individual sub-transforms. We write

T = D, o R(r) o Dd(d). (3.1)

In Eq. (3.1), D, is a constant displacement term that is responsible for positioning

the data volume into the center of its own coordinate system (so that rotation may be

performed around its center). R encodes the rotational component required to per-

form the match, and translation Dd positions the object in the imaging coordinate

system. As we specify T to be the transformation that expresses imaging coordi-

nates in terms of data coordinates, the appropriate order of the sub-transforms is Dd

followed by R and D,. Decoupling the components of the transformation in such a

way is useful because it makes the parameter space more directly searchable for the

optimization procedures.

When we have access to multiple views of the same anatomy, we assume that the

relationship between the various viewing sources is known. Hence, when we want

to simulate projection images taken by other than the initial imaging source, we

first apply a known, view-dependent transform to the coordinates and then apply

the above introduced T. In case of a biplanar application, where transformation N

provides the relationship between the two imaging locations, we have T2 = T o N. In

more detail, we can write the expression of a point transformed by T and T 2 as

T(x) = D, o R o Dd(X) = Dc o R(r) o Dd(d, x) = Dc(R(r, x + d)) = Dc(r(x + d))
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and

T 2(x) = D,(r(N(x) + d)).

Given this formulation, it is only the variables R and Dd that we need to accurately

recover. The rest of the components are known and constant; they are determined

from a calibration procedure. Dc is purely dependent on the specifications of the

input volume dataset and the imaging geometry is characterized by the non-varying

transform N. Hence, when we investigate how the alignment quality changes with

respect to infinitesimal changes in T (Section 3.4), we implicitly refer to modifications

with respect to the operations R and Dd.

3.2 The Objective Function

We refer to measures that quantify the alignment quality of the input images as

objective functions. From a broad range of candidates that have been used to assist

in registration procedures, we decided to employ an information theoretic term called

mutual information (MI). This similarity measure has quickly gained popularity in

multi-modal medical image registration after it was first introduced [15, 20]. In case

of 3D-3D rigid registration of head datasets, MI has proved to be a robust objective

function, that could be applied with numerous image modalities.

Recently, there have been several extensions suggested to improve the general

performance of MI. In most cases, it is gradient or some type of spatial information

that is incorporated in the measure. One such example is the introduction of both the

magnitude and the direction of the gradients into the mutual information formulation

[18]. Although some robustness improvements can be demonstrated with these new

methods, the altered objective functions did not preserve the information theoretical

framework of the original formulation. We did not use these measures.
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3.2.1 Definition of MI

In information theory, the mutual information of two discrete random variables ex-

presses how much the knowledge about one of these variables increases the knowledge

about the other. More informally, instead of assuming a linear relationship between

the values of the random variables that are compared (as some of the widely used

correlation functions do), it proposes that, in the registration problem, the inten-

sity values from the corresponding images maximally explain each other if they are

perfectly aligned. When mutual information is zero between two random variables,

knowing one of them will convey no further information about the other and they

are statistically independent. However, a non-zero mutual information term indicates

that given one of the variables, the value of the other could be predicted with a given

level of certainty.

There exists several definitions of mutual information. For example, according

to the Kullback-Leibler distance interpretation, mutual information of two random

variables, A and B, is defined to be the relative entropy between the joint probability

distribution of the two variables and the product of their marginal distributions which

would be the correct joint model if they were statistically independent. Thus MI is a

measure of the extent to which they are not statistically independent. (Note that the

information theoretical notation, in the rest of this chapter adheres to the conventions

of [43].)

I(A, B) = D(p(A, B) || p(A)p(B)) = EA,B log p(A, B) =p(a, b) log p(a, b)
p( A)p(B) aEA bcB p(a) * p(b)

In our computations, we will use another definition of MI. In order to introduce

that formulation, we need to introduce another information theoretic term, entropy.

The Shannon entropy of a random discrete variable A, H(A), measures the uncer-

tainty about that variable, or the amount of "randomness". It is formulated as the
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expected value of the negative log probability:

H(A) = EA[- log p(A)] = - p(a) * log(p(a)). (3.2)
aGA

Likewise, the joint entropy term between two random variables A and B is written

as

H(A, B) = EA,B [- log p(A, B)] - p(a, b) * log(p(a, b)) (3.3)
aEA bEB

The formula that we apply for our registration calculations involves the sum of

individual entropy terms less the joint entropy of the variables.

I(A, B) = H(A) + H(B) - H(A, B) (3.4)

3.2.2 MI in the Registration Problem

In our biplanar registration procedure, we use two 2D projection images to guide the

search for the best alignment parameters. Hence, we define our objective function g

as the sum of mutual information terms,

9 = l1 + 12,

where I1 and I2 stand for the mutual information quantities computed between the

two observed fluoroscopy images and the CT-derived DRRs that are to be registered.

Hereafter, for sake of simplicity, when describing the computational details of the

algorithm, we use only the first MI term of the sum, Ii, and refer to it as I (leaving

the subscript off). All procedures, however, need to be carried out with respect to

both of the image pairs.

Our 2D-3D registration strategy is based upon the comparison of the input X-

ray fluoroscopic acquisitions to their simulated equivalents produced from the 3D

volumetric dataset by applying the current estimate of the transformation parameter.

These are treated as two discrete random variables whose mutual information needs
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to be evaluated. As noted in Chapter 2, we denote the observed 2D image by U(X)

and the transformation-dependent DRR by V(T(X)), where X is the set of sample

points examined for comparison purposes. When writing our objective function with

respect to these terms,

I(U(X), V(T(X))) = H(U(X)) + H(V(T(X))) - H(U(X), V(T(X))) =

- Euv[log(p(U(x), V(T(x))))] - Eu[log(p(U(x)))] - Ev[log(p(V(T(x))))] (3.5)

3.3 Probability Density Estimation

One of the main challenges in evaluating the objective function expressed in Eq. (3.5)

lies in accurately estimating the marginal and joint probability densities of the random

variables. These quantities denote the probability distributions of the image intensi-

ties. We apply two different types of density estimators in our calculations. One of

our approaches uses the non-parametric density estimator, called Parzen Windowing

[38], and the other uses ID and 2D histograms.

The available information presented by high resolution image volumes however is

huge, and considering contributions from all pairs of corresponding image pixels is not

always practical. It requires the generation of full DRR images for each iteration which

creates an immense computational burden. Therefore, we experimented with both a

dense and a sparse sampling approach. In the latter scenario, we base our probability

estimates on a small number of random image intensity samples instead of using

all the intensity values available from overlapping image regions. The smaller the

sample size we use, the faster the estimations become. However, with each intensity

value ignored we trade off accuracy (and possibly convergence of the algorithm). This

strategy provides noisy estimates at each individual step, however, if the samples are

randomly selected and the estimation procedure occurs a sufficiently large amount of

times, it can be shown that the estimates converge to the true values [26].

46



3.3.1 Parzen Windowing

Applying Parzen Windowing for probability density estimation is a standard tech-

nique in the computational community. With this method, the underlying probabil-

ity density is estimated by the sum of symmetric kernels. The centers of the kernels

are fit to individual sample points and most frequently, the kernel is defined to be

Gaussian. This kernel choice significantly simplifies computations.

Given the Parzen Windowing formulation and a Gaussian kernel, we can write

the probability density estimate of a random variable z as

p(z) = Ge (z - zi), where G4,(z) = (27r)2 l/{T exp 2 z V- z. (3.6)
i=1

In Eq. (3.6), n signifies the number of points in the sample collection Z (where

Vi E N+ and 0 <= i < n, zi E Z) based upon which our estimates rest, 0 indicates

the covariance matrix and G stands for the Gaussian kernel.

3.3.2 Histogramming

As opposed to the continuous Parzen Windowing strategy, the histogramming ap-

proach uses a discrete approximation. Probability densities are calculated after the

construction of ID and 2D intensity histograms. Sample points from overlapping

regions of the corresponding image pairs are used to fill the histograms and proba-

bility densities are estimated directly based upon those entries. Dense histograms,

for which all the available corresponding intensity pairs are utilized in formulating

these estimates have been widely used. Many use it for 3D-3D MI registration and

one specific application that successfully applied this method is a 2D-3D registration

algorithm aligning surface models to video [17]. We used dense histogramming when

evaluating MI in the case of our Powell procedure.

Experimenting with sparsely sampled histograms is a new idea. It would be

reasonable to expect that just a few random samples from a large dataset cannot

provide a valid approximation about the underlying probability density function of
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the image intensities. However, empirically, we found that in the case of the medical

modalities that we have examined, the estimates can be useful and they can be used

in the stochastic gradient ascent optimization procedure.

In general, building histograms from 100-150 random samples and using 32 in-

tensity bins on the intensity range of 0-255 proved to be adequate in our stochastic

optimization framework. Decreasing the bin sizes did not improve the registration

results.

3.4 The Optimization Procedures

As a reminder, our task of finding the ideal transformation T is formulated as a max-

imization problem. We do an iterative search to locate the parameters that produce

the highest score according to a reward function. At each iteration of the algorithm,

we use the current estimate of transformation T to simulate the creation of the ob-

served X-ray images by DRRs. We compute the quality of the alignment between

these DRRs and the corresponding fluoro acquisitions. Then, to improve the match-

ing score, we update the transformation estimate and start the registration loop over.

In order to identify in an efficient and/or reliable manner the set of updates, we

need to select an optimization procedure. We compare the performance of a direction

set and a gradient-based optimization strategy: Powell's method and the stochastic

gradient ascent procedure [40].

3.4.1 Powell's Method

Powell's method is a direction set method. It optimizes the input function in a suc-

cession of one dimensional line maximization steps. Given an n dimensional search

space, the function maximum could be located in just one pass of n line optimiza-

tions. That would, however, assume that linearly independent search directions are

provided. In practice, it can be difficult to identify those. Hence, instead of aiming

to work with mutually conjugate directions, a few good directions are selected that
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enable the localization of function extrema quickly.

The Powell procedure requires no calculation of the gradient. However, in order

to evaluate the similarity measure in case of the individual line optimizations, full

reconstruction of the DRRs is necessary. That can easily cause a computational bot-

tleneck in the algorithm. As we operate on huge datasets, applying the multiresolution

approach was inevitable when using this strategy.

It has also been established that the Powell method is sensitive to the order

in which the parameters are optimized during the line maximizations. One study

concluded that the updates should happen in the order of in-plane followed by out-

of-plane parameters [21]. We handle the translation components first and then the

rotational elements.

3.4.2 Gradient Ascent Strategy

The gradient ascent technique is a maximization method whose local search for the op-

timal parameter settings is guided by calculations of the objective function's gradient.

As opposed to the Powell method, whose search directions are either predetermined

or continuously modified to approximate the state of being linearly independent, it

explores the parameter space by making steps in the directions defined by the gra-

dients. As a result, the objective function does not even need to be evaluated at

each round, it is sufficient to only calculate the partial derivative terms. (Neverthe-

less, as explained in Chapter 4, in order to monitor the convergence behavior of the

algorithm, we do compute the similarity measure at each step of the maximization

phase.)

We use a probabilistic version of the gradient ascent procedure to find the local

maximum of our objective function. The stochastic approximation [26, 27, 28] ap-

proach uses noisy estimates of the derivatives instead of the true ones in order to

increase computational efficiency. The stochastic nature of our algorithm originates

from two sources: we approximate the probability distributions of our variables by

Parzen Windowing or sparse histogramming and we use various simplifications to

compute the required derivatives. This approach has performed remarkably well in
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3D-3D multi-modal medical image registration problems [15, 16].

3.4.3 Defining the Update Terms

In case of the Powell experiments, the optimization task is carried out almost as a

black-box procedure. Mutual information is evaluated for each estimate of T and the

transformation updates are calculated by the Brent line optimization method [40].

The optimization procedure finishes as soon as the gain from refining the estimate

for T falls below a threshold tolerance measure.

When the gradient-based approach is used, we formulate a good estimate of the

transformation update by computing the partial derivative of the objective function

g with respect to the transformation parameters. We write:

Tupdated Tcurrent+ A * - (3.7)
BTcurrent

In Eq. (3.7), A represents the learning rate (or step-size) of the algorithm; it constrains

the maximal magnitude of individual update operations. Finding the appropriate

range for A forms a crucial part of the experiments. If its magnitude is too small,

convergence might take a long time, however, if it is set to be too high, convergence

to the searched optimum might not even occur.

One way to avoid fixing an ideal value for the learning rate is to vary it over

time. This practice is called annealing, and it assigns decreasing values to A as the

iteration number increases. We eliminate the difficulty of selecting the ideal learning

rate by using a hierarchical structure. Registration can be executed on several levels

of resolution in order to make the algorithm run faster and to make it more robust.

At the bottom of the pyramid, working with downsampled and smoothed versions of

the input, we expect that it is easier to jump over local extrema and calculations can

be executed in a smaller amount of time. At this level, the estimates might not be

very accurate (they are indeed quite noisy), but that can be easily and swiftly refined

on higher levels where smaller step sizes and more data samples can be used. As
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the resolution of the inputs increases, the transformation approximation can be made

more precise. Details of this strategy with some experimental results are explained

in Chapter 4.

We differentiate between the learning rates of rotational and displacement com-

ponents. It is important to have both types of components contributing at the same

rate to the overall transformation update. Further distinction could be made between

components corresponding to in-plane and out-of-plane operations.

3.5 Gradient-based Update Calculations

As explained above, to improve our current transformation estimate according to the

gradient ascent procedure, we require the computation of the partial derivative of our

objective function with respect to the transformation parameters (Eq.(3.7)). Using

Eq.(3.4) to express MI, we want to compute

9I(U(X), V(T(X))) _ &H(U(X)) &H(V(T(X))) OH(U(X), V(T(X)))
aT. (3.8)

As the first term on the right of Eq.(3.8), the entropy of the observed image, does

not depend on the transformation parameter, the equation can be simplified:

WI(U(X), V(T(X))) _H(V(T(X))) _ &H(U(X), V(T(X)))
OT aT . (3.9)8T8T 8T

The first approximation step in our algorithm results from the fact that we esti-

mate statistical expectation terms with sample averages. In such a case, the entropy

of a random variable A can be estimated as follows:

H(A) = EA [- log p(A)j log(p(a)), (3.10)
aEA

where a is one of N observed samples drawn from sample set A.

Therefore, in the specific case of our registration problem, given M samples in our
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observation set X whose zth sample point is xi, we can write Eq. (3.9) as

M I T log(p(VM a V(T(x))))+ IE
i=1

(log(p(U(xi), V(T(xi)))).
a(

(3.11)

3.5.1 Partial Derivatives of Density Estimators

Parzen Windowing Approach

Given the definition of the Parzen Windowing probability density estimator in Def.

(3.6) we can rewrite the entropy approximation in Eq.(3.10):

h(z) - In G (z - zi),
zNCA BzCB

where B is another random variable, another set of sample points.

This expression is continuous, taking its partial derivative with respect to the

transformation parameter produces

dh(z(T))
NT AAzjEA ZiEB

z (z, zi) (Z - Zi)T dT(z - zi)

GV@(z. - zi)
Wz(zi, zi) = G(z - Z)

- zkeBo G(zj - Zk)

Writing the partial derivative of mutual information from Eq. (3.9) and (3.11)

then becomes:

dl 1 N7 (v, v) [W~(~ >) d
dT NA Ldj Wi wi>$uv -1 dTj

xdN A xEB

where we use the following definitions

sO --1 = DIAG(Ouu-', Ovv-1)

(3.14)

(3.15)
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9I(U(X), V(T(X)))
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(3.13)



W~~(vGv(v)-- v%) ~)G- 4kE (w - W )
WZG(vB, vi) -" - , W.(Wj, wi) (3.16)

E, G), (v- -Vk) -ExkB G.. (wj -Wk)

and uiu U(xi), vi - V(T(xi)), w, [ztvi]T. (3.17)

This formulation of entropy manipulation and estimation is called EMMA1 [42]. It

provides an efficiently optimizable entropy measure, which is calculated from random

samples of the available data points. Exhaustive sampling would be of quadratic cost

in the sample size, hence only a few samples are selected. Although the less samples

are used the more noise this approach introduces into the calculations, this allows it

to effectively escape from local extrema. The convergence of this estimate to its true

value was proved by Viola [42]. The EMMA estimate uses a Gaussian function for

the Parzen kernel, but that could be replaced by any differentiable function.

The only unknown expression in Eq. (3.14) is the partial derivative of volume

intensities with respect to the transformation components: (vi -I-). It is computed

in great detail in Section 3.5.2.

Histogramming

For the histogramming approach we need to further manipulate Eq. (3.11). After

some algebraic operations and expanding the partial derivatives,

0I(U(X), V(T(X)))
OT

M M
1 M~ 1 9p(U(xi),V(T(xj))) - 1 j 1 p(V(T(xj))) -

XY p(U(xj),V(T(xj))) aT M p(V(T(xi))) aT ~

M 1 Op(U(xj),V(T(xj))) 1 p(V(T(x))) (31
M p(U(xj),V(T(x ))) aT p(V(T(xi))) aT '

Then

I(U(X), V(T(X))) 1 1 I p(Ui, vi) 1 Dp(vi) 1 319)
OT L _ p(ui,vi) OT p(vi) DT _

To complete the optimization task, the density estimator needs to be differentiated

'The acronym stands for Empirical Entropy Manipulation and Analysis
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(Eq.(3.19)) with respect to the components of transformation T. We adopted ideas

that were introduced for dense histograms [17]. Given a histogramming function f,
approximating the probability density function of random variable A based upon a

collection of sample points B, the probability of a - A is given by p(a) a f(a, B) and

the derivative of f with respect to variable s is estimated according to

d da a dB
df (a, B) = -f (a, B)d + f (a, B) d. (3.20)

ds (9a ds (9B ds

The application of the chain rule in Eq.(3.20) makes an implicit assumption. It holds

only for cases when the histogram estimator function f is not explicitly dependent on

the variable s with respect to which the derivative is taken. Although this assumption

is not quite valid in our scenario (the histograms do depend on transformation T

with respect to which we take derivatives), empirically, it was established that small

changes in the parameters of T are unlikely to (greatly) alter the nature of the density

estimator. Hence, we apply the simplification. Furthermore, the last term on the right

of Eq. (3.20) can be ignored if differential changes in the sample intensities in B result

in vanishingly small changes in the density values estimated by f. Based on our

experiments, that condition also holds for sparse sampling.

Utilizing the assumptions explained in case of equation (3.20) and after some

algebraic manipulations, the terms in Eq. (3.19) can be expressed as:

OP (ui Vi) ap (ui IVi) Ovi OP(vi) (Vj) Ovi~ * and ) - * - (3.21)
OT (9vi -OT OT avi aT

The terms in Eq. (3.21) correspond to changes in the DRR image intensity values

resulting from modifications in the transformation parameters and to changes in the

probability densities as a result of changes in sample intensities.

We approximate the derivatives of the probability densities by the use of finite

differences calculated from their corresponding histogram estimates. Deriving the

other unknown term, i, though is more complex, and the details of the related

computations are explained below. This is the same term that we need for the Parzen

approximation in Eq. (3.14).
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3.5.2 Partial Derivatives of Volume Intensities wrt T

Each iteration of our iterative search corresponds to a small angle rotation and small

displacement applied to the current transform estimate. As among the components

of transformation T, only rotation R and displacement Dd need to be recovered, we

only take partial derivatives with respect to these terms.

For calculations of the update elements, we introduce a new term, the update

rotation Ru. This operator represents the small angle rotation r which adjusts the

value of the current rotation estimate at the end of each iteration cycle. (Note that

at the beginning of each iteration of the registration algorithm r is reset to be a zero

angle rotation.) Hence we write the new rotation component of the transform as

(R, o R) and the transformation itself as

T = D, o Ra o R o Dd = D, o Ru(r) o R o Dd(d).

A transformed point becomes

T(x) = T(r, d, x) = D,(Ru(r, R(Dd(d, x)))). (3.22)

From Eq.(3.21), we need to compute

8vi _ &V(T(xi)) _ V (T(xi)) iV(T(xi)) (3.23)
-T T &r ad

In the following calculations, the vector r encodes a rotation transform according

to the equivalent angle-axis notation. The magnitude of vector r determines the angle

of rotation and its direction stands for the axis of rotation (see Section 2.1.7).

In order to express the partial derivative terms, we use the ray-casting algorithm

to model the formation of the fluoro image intensities. (The ray-casting algorithm is

used instead of a more efficient procedure, as we only sample a small fraction of the

image intensities and the whole image is not constructed.) In particular, a sample

of the simulated fluoroscopic image at location xi on the image plane (or at T(xi) in
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data coordinates) is approximated as

V(T(xi)) = E Vol(z),
zeray(T(xi),S)

where ray refers to the line segment which connects the imaging source S with T(xi)

on the imaging plane and z indicates uniformly distributed steps along that ray within

the volume. As the steps are located in the transformed coordinate space, we could

write z = T(y) = T(r, d, y). Therefore,

OV(T(xi)) _ EVol(T(r, d, y))
-T T . (3.24)

zCray(T(xj),S)

Update wrt Displacement

We first calculate the partial derivative of the volume intensity with respect to the

ith component of displacement d, denoted as di. In Eq. (3.30) and (3.25), ej stands for

a unit vector whose components are all zero except for the jth one which equals one.

[dVol(T(y)) =

VVol(T(y)) e a(D,(R-(r,R(Dd(d,y))))) _
Od,

VVol(T(y)) * (R-(r,R(Dd(d,y)))) -

VVol(T(y)) o 9(R,(r,R(y+d))) _

VVol(T(y)) o 1(R-(r,R(y))+R.(r,R(d))) -

VVol(T(y)) * 9(Ru(r,R(d))) _

VVol(T(y)) o (Rs(r, R(e2 ))) (3.25)

The full expression is

VVol(T(y)) 9 (Rs(r, R(ei)))

dVol(T(y)) = VVol(T(y)) o (Ru(r, R(e2))) . (3.26)

VVol(T(y)) o (Ru(r, R(e3 )))
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Update wrt Small Angle Rotation

We derive the partial derivative terms of the volume intensities with respect to the

rotation component of transformation T similarly to the above. First we only consider

the ith element of r, which we denote as rT.

aVol(T(y))=
iBri

VVol(T(y)) e 0(Dc(R, (r,R(Dd(d,y))))) (3.27)

VVol(T(y)) * 1(R-(r,R(Dd(d,y)))) (3.28)

VVol(T(y)) * (R(D(d,y))+rxR(Dd(d,y))) (3.29)

VVol(T(y)) (rxR(Dd(d,y))) _

VVol(T(y)) * (ei x R(Dd(d, y))) = (3.30)

ej * (R(Dd(d, y)) x N7Vol(T(y)))=

(R(Dd(d, y)) x VVol(T(y)))=

Hence, with respect to the full vector r,

a
-- Vol(T(y)) = R(Dd(d, y)) x VVo1(T(y)). (3.31)ar

We note two of the steps in the above derivation. First, Eq.(3.28) is a result of

a simplification to the formula in Eq.(3.27). As the constant displacement operation

Dc only happens after the rotation, this has no effect on the partial derivatives that

are being calculated. That term disappears from the numerator. Secondly, to arrive

at Eq.(3.29), we use the fact that R, is strictly defined to stand for a small angle

rotation. In that case that we can make the assumption that a coordinate point p,

after a rotation by r can be expressed in the form:

p' = R.(r,p) = r(p) = p + r x p. (3.32)

For a more detailed explanation of why Eq. (3.32) holds, see the Appendix.
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As a reminder, calculations in case of the second projection image and the corre-

sponding fluoroscopy image are performed in the same manner. The only difference

is that before T is applied to transform a coordinate, an additional transformation

takes place which is responsible for expressing the second projection environment.

3.6 Summary

We provided a detailed description of the objective function that we selected to eval-

uate the estimated transformation parameters at intermediate stages of the registra-

tion algorithm. We use two different strategies to identify the parameters that would

maximize that measure. One of them, Powell's method, only needs to know how to

evaluate the matching score, while the more efficient gradient-based techniques rather

compute the direction of the updates that could lead to the optimum. We derived,

in great detail, the terms that are required for the latter strategy and presented two

distinct ways of estimating probability densities which is also a required component

of the maximization process.
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Chapter 4

Experimental Results

Chapter Summary

This chapter introduces the experimental framework that we used in order to charac-

terize the performance of our registration procedure. We also describe the 2D and 3D

datasets that were available to us and provide quantitative and qualitative evaluation

of the registration results. We present results not only from experiments with CT and

fluoroscopic images, but also with CT and CT-derived simulated DRRs. The latter

experiments were necessary as we did not obtain ground truth information along with

the real projection images. In order to thoroughly explore the characteristics of our

method, we provide accuracy results also with respect to simulated datasets. In that

analysis, we address issues related to multiresolution techniques, speed criterion and

robustness.

4.1 Probing Experiments

Before we started evaluating the performance of our registration approach, we in-

tended to carefully and extensively investigate the robustness of our objective func-

tion. We also intended to compare the properties of mutual information to those

of another widely used similarity function, pattern intensity. Therefore, we designed

probing experiments that would quantitatively describe the behavior of an objective

59



function with respect to its free variables. Given a ground-truth estimate of the

searched parameters as the starting position and orientation, the matching qualities

were computed while some/all of the free variables were slightly and iteratively mod-

ified. In the majority of the experiments, we only varied one of the variables at a

time. Although that decision prohibited us from acquiring a more complete charac-

terization of the similarity measure, it was a way to keep the computation time under

reasonable limits. (Otherwise, thoroughly evaluating any kind of a matching criterion

in a higher dimensional space could be a real challenge especially given the average

size of our input volumes. For a detailed reference on the size of the datasets, see

Table 4.1.)

With the help of the probing experiments, we were able to form a reasonable

prediction about the major objective function characteristics. The capture range,

the height and location of the function extremum were all useful for estimating the

registration performance of the examined objective function given a specific dataset.

We show two examples of outputs of such probing experiments in Fig. 4-1. The one

on the left hand side, Fig. 4-1 (a), evaluates mutual information and the other, Fig.

4-1 (b), the pattern intensity on a CT-derived skull dataset.

Pattern intensity (PI) is an objective function, that some studies found to be quite

robust when solving the 2D-3D rigid-body registration task [6, 3]. It operates on the

difference image of its two inputs and computes the structuredness in small neighbor-

hoods of each individual pixel. The more uniform the neighboring intensities are the

higher the score that pattern intensity assigns at that particular pixel location. We

provide the formula for calculating PI on the difference image (Idiff) of the two input

images (Ifluoro and Idrr) in Eq. (4.1). The detailed definition of mutual information

was provided in Section 3.2.1.

PIr,y(Idiff) = 1: + (d( 2 - Icuwr(UV)) 2 1 s.t. ~ is a constant, (4.1)
xy 02 + (Idff , y) -

(U - x) 2 + (v - y) 2 < r 2, and Idiff = fluoro - S * Idrr, where s E R+.
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Figure 4-1: Results of two probing experiments evaluating (a) mutual information
and (b) pattern intensity on the skull dataset. Displacement range of +/ - 20 (mm)
and rotational range of ~ +/ - 45 (deg) were specified.

A collection of probing experiments, similar to the ones displayed in Fig. 4-1

could verify that mutual information peaked when the correct alignment was evalu-

ated. Although pattern intensity also took its maximum at the zero offset location

(ground truth value, in this case), we found more local extrema in the vicinity of the

ideal transformation parameters. In Fig.4-1, probing experiments are displayed with

respect to all six of the free variables. Evaluation curves in the upper rows correspond

to experiments with displacement modifications, while similar curves in the bottom

rows contain the evaluation results due to perturbing rotation angles (roll, pitch and

yaw respectively). We can see that especially in case of changes due to rotational

changes, curves corresponding to pattern intensity are more jagged. That means that

the optimization function could more easily get trapped in local extrema when using

PI as opposed to MI. These and more extensive analysis of the same sort led us to

decide that pattern intensity was a less preferable function to work with.

We also carried out numerous probing experiments at different levels of resolution.

Our aim was to use their results to support our argument about increasing robustness

with decreasing resolution level. In Fig. 4-2, we present probing curves from two
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Figure 4-2: Results of two probing experiments evaluating a cost function on (a) the
original and (b) the downsampled and smoothed version of the same phantom pelvis
dataset. Displacement range of +/ -20 (mm) and rotational range of ~ +/ -45 (deg)
were specified.

identical experiments with the only difference being that the input CT volume was

downsampled by a factor of 2 and smoothed (with a small Gaussian kernel) in case of

the second one (Fig. 4-2 (b)). Analyzing the objective function curves, it is apparent

that in case of the downsampled dataset the peaks of the curves are less pointy, all

six curves are smoother and there are fewer local extrema encountered around the

ground truth position. (The curves in the top row, just in case of Fig. 4-1, indicate

evaluation results due to displacement changes and curves at the bottom represent

changes with respect to rotational components.)

4.2 Summary of the Registration Algorithm

We first provide a brief summary of our registration framework. The short, top-level

outline is followed by more implementation details in the subsequent sections. The

three major steps of our alignment algorithms are:

1. Preprocessing the input images and input volume

2. Initializing the imaging environment
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3. Iterative optimization of the similarity measure

4.2.1 Step 1: Preprocessing

During the preprocessing step, we smooth the fluoro images to better match the

resolution of the CT-derived DRR images during the alignment process. We also

eliminate all artificial labels from the acquisitions that were placed there for patient

identification and check whether the fluoroscopy data contains a black rim around

the image margins. If it is present, that is the artifact of the image intensifier of the

imaging X-ray machine (Figure 4-6 serves as a good example).

In case of the CT volume, the desirable window and level settings have to be

defined. These entities determine the range and average value of intensities which are

usually set by radiologists following an image acquisition.

In a multiresolution approach, it is at this stage that additional downsampling and

smoothing operators are applied to the volumetric dataset and the fluoro images. If

the input volumetric dataset contains too much background (in case of head imaging

that could easily happens), we can also crop the volume. In this way we do not have

to spend time ignoring voxels with no useful data content during the registration

procedure. (Note, however, that this step is not equal to a full segmentation task.

We do not eliminate the whole background, which provides useful information during

alignment procedures, we just roughly estimate the smallest bounding volume around

the imaged anatomy.)

4.2.2 Step 2: Initialization

The initialization step involves reading in the parameters that are known about the

imaging environment. That information is necessary in order to simulate the X-

ray creation procedure as accurately as possible. Also, at this point, we roughly

position the CT volume in the scene: we make an initial guess about the parameters

of transformation T. (We make the assumption that a rough estimate about the

required transformation is always available. That is a realistic/reasonable expectation
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as registration algorithms, solving the proposed problem, are not applied to find

alignments greater than 300 and 30 (mm) in general, but instead to provide finer

details.)

4.2.3 Step 3: Optimization Loop

Non-gradient Powell Approach

Until convergence is detected or, in other words, as long as the Powell tolerance mea-

sure is smaller than the individual improvements that are made after each iteration

towards the function optimum, two steps alternate. First, the evaluation of the simi-

larity measure given the CT volume, the observed projection images and the current

transformation estimate T takes place. Second, the transformation estimate is up-

dated in a way that increases the matching score. This method can be treated almost

as a black box procedure. Besides the Powell tolerance measure, the order of linear

optimizations and an upper limit for maximum optimization iterations, there are no

other parameters that need to be fine-tuned.

Gradient-based Maximization

The current version of the algorithm executes the iterated part of the code a pre-

determined number of times. In our case, that number is 5000. (This number was

experimentally determined.) Hence, for a fixed number of iterations and for all fluoro-

DRR image pairs, we follow these steps.

1. Fluoro sampling Randomly sample image points from the observed image and

extract their intensities (U(X) where X denotes the sample collection).

2. DRR sampling Calculate the corresponding DRR values (V(T(X))) by applying

the current transformation estimate to the CT volume and running the ray-

casting algorithm. (In case we did not use the sparse sampling approach but

utilized all available intensity information, we would apply one of the more

efficient techniques for creating the DRR images (see Section 2.1.2), because
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the fast DRR-creating strategies usually achieve significant speedup only if the

whole DRR image has to be calculated.)

3. *Objective function evaluation This step is indicated with a (*) symbol as it is

not an integral part of the algorithm using the gradient maximization method.

This approach guides its search towards the target extremum considering only

the gradient and not the value of the objective function value. We evaluate the

MI estimate at each iteration for the purposes of monitoring the convergence

behavior of the algorithm as a function of iterations, but it is not a required

step in the optimization procedure. To compute our similarity measure, mutual

information, we use Eq.(3.4).

4. Transformation update Compute transformation updates and assign a new trans-

formation estimate according to Eq. (3.7), applying all the computations de-

rived for probability density and partial derivative estimates in Chapter 3. The

update is

Tupdated = T +* A-v( 1 &p(ui v) 1 OpV) 42)
N . . 9T p(ui, vji) &vji p(vji) ivji

i=1 i=1 zEray(Tj(xi),Sj)

for the histogramming approach and

Tupdated = T+ -v )T [W (v(,vib(-- - w),>) u,--1] (dTv_ v,)
A xjEA xiEB

(4.3)

for the method using Parzen estimation.

In Eq. (4.2) and (4.3), A denotes the learning rate of the update variables which

is experimentally determined for our application. The learning rates for rotational

and translational components are significantly different but the influence of their unit

update on the transformation should be approximately the same.

Many times, it can also be useful to distinguish between in- and out-of-plane

transformations, as the latter transformations are usually more difficult to correctly

estimate.
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We found that the magnitude of the step size is more crucial in case of the his-

togramming approach and especially in case of the higher resolution computations.

It took us some experimentation to find the best set of values (which can sometimes

vary among the different datasets as well).

In most of our experiments, convergence took place much earlier than the 5000

iteration that were used. It usually took less than half as many steps as we required

to reach the ideal settings. It also happened, though, that in certain cases the fixed

number of iterations was not enough. Hence, instead of using the predetermined

number of iterations as a stopping criterion, it would be more desirable to halt the

registration procedure as soon as convergence is detected.

4.3 Registration Results

We would like to point out at the very beginning of this section that no special code

optimization has been applied to our algorithm. All relative speed-ups demonstrated

are purely the result of either the sampled or the multiresolution approach. We also

carry out a great number of additional/superfluous similarity function evaluations and

full DRR generations that significantly increase the execution time. Hence, our run-

ning times are not directly comparable to solutions geared towards minimal running

time.

4.3.1 Registration Error Evaluation

In case of our controlled experiments, when we possess ground truth information

about the searched transformation, we determine the quality of the registration results

by calculating an error transformation, Terror. This variable is defined to be the

transformation that takes the registration output pose to the ground truth one.

TGT = Terror 0 output - (4.4)
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When referring to the magnitude of the registration error, we actually describe a

tuple, (de, re). One component of that tuple, de, is the magnitude of the displacement

component of Trror and the second element, re, is the magnitude of the rotation angle

encoded by the unit quaternion component of the error pose. (See Chapter 2 for a

detailed description of pose parameters.) We want the reader to notice that de and

re do not directly represent errors in the searched components of the transformation.

For instance, displacement errors in the estimate for sub-transform Dd are summed

together to produce de and a non-zero de could also be the result of merely a noisy es-

timate for R, the rotational sub-transform of T, without any actual error in Dd itself.

(As a reminder, transformation T, in Chapter 2, is defined to be T = D, o R o Dd.)

See an example for that case in Fig. 4-5 (b). Even though we only perturbed the

ground truth pose by a rotation angle of 150 around the y-axis, there is a significant

error in the displacement term de as well.

This unusual error interpretation is the result of the particular way we constructed

transformation T. Results in the registration literature are often times presented with

respect to the displacement and rotation angle error specific to displacement directions

and rotation axes. Therefore, one should keep in mind this difference when comparing

measures produced by the various approaches.

In order to determine whether we perform our task with high accuracy, we es-

tablish a range for de within which the results satisfy our interpretation of sub-voxel

accuracy requirements. For re, no special bound needs to be defined as R is the only

rotational component of T, so all rotation angle errors are directly related to R.

If (dx, dy, dz) denoted the size of the CT voxels, we formulate a criterion for

sub-voxel accuracy in the displacement parameter by specifying the range

0 <= de <= (dx 2 + dy 2 + dz 2 ). (4.5)

That is to say, we bound the displacement error term with the magnitude of the diag-

onal of a volume element. That upper limit represents a worst case scenario: having a
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translational offset of exactly the length of the volume element in all three directions.

So for example, if the voxel dimensions were (0.5; 0.5; 1), then a displacement error

in the range of de <= 1.5 ~ 1.224 meets the criterion of being highly accurate. As

this measure depends on the input data specifications, we calculated its value for all

of the CT volumes that we used in our experiments. They are denoted by d* and

appear in the last column of Table 4.1.

As an alternative, we could also look at error in the subcomponents themselves.

That is, we could look at how much transformation Dd and R are different from their

ground truth values. We look at these measurements more closely in case of the real

X-ray - CT experiments in Section 4.5, where we obtain results with bigger variance

than in case of the controlled setup.

4.3.2 Objective Function Evaluation

In order to closely follow the convergence pattern of our algorithm, we computed the

mutual information measure at each iteration of the registration procedure. This is

an optional step in case of the stochastic gradient ascent methods. Although the

objective function curves are quite jagged in all cases (which is an expected result

of the sparse sampling method), we can definitely observe an overall convergence

pattern. Some example figures, to which we are going to refer in a later analysis, are

displayed in Fig. 4-5.

In case of the Powell maximization method, we did not record intermediate eval-

uation results throughout the registration process.

4.4 CT-DRR Experiments

4.4.1 CT-DRR Registration

We designed several controlled experiments in order to obtain a thorough characteri-

zation of the algorithmic behavior of our registration methods given a known, ground

truth transformation parameter. We wanted to test their accuracy under a wide range
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of circumstances: on different resolution levels, with different learning rates and with

different sample sizes.

After an initial offset was specified, high-quality, CT-derived DRR datasets of

a plastic pelvis, plastic skull, real skull, real head and plastic lumbar spine were

registered to their volumetric counterparts.

The specifications for the CT datasets from which we created the simulated pro-

jection images are listed in Table 4.1. The second column contains row, column,

and slice information in that order and the third column specifies voxel dimensions

(dx, dy, dz). The last column, with quantity d*, represents the sub-voxel accuracy

upper bound (Sec. 4.3.1) to which we compare our registration results. As a fasci-

nating bit of information, one set of our experiments was run on Phineas Gage's skull

dataset 2 .

DATASET VOLUME DIMENSIONS VOXEL DIMENSIONS d*

Plastic Pelvis 265 x 455 x 107 [0.6621; 0.6621; 2.0] 2.2083
Plastic Pelvis (smi) 132 x 227 x 107 [1.3242; 1.3242; 2.0] 2.7399
Plastic Pelvis (sm2) 66 x 113 x 107 [2.6484; 2.6484; 2.0] 4.2460
Plastic Pelvis (sm3) 33 x 56 x 53 [5.2969; 5.2969; 4.0] 8.4920
Real Skull 512 x 512 x 390 [0.4844; 0.4844; 0.5] 0.8481
Real Skull (smi) 256 x 256 x 195 [0.9688; 0.9688; 1.0] 1.6962
Real Skull (sm2) 128 x 128 x 97 [1.9375; 1.9375; 2.0] 3.3923
Gage's Skull 512 x 512 x 424 [0.4473; 0.4473; 0.5] 0.8063
Gage's Skull (smi) 256 x 256 x 212 [0.8945; 0.8945; 1.0] 1.6126

Gage's Skull (sm2) 128 x 128 x 106 [1.7891; 1.7891; 2.0] 2.8985
Plastic Skull 188 x 128 x 105 [1.0156; 1.0156; 2.0] 2.4623
Real Head 512 x 512 x 127 [0.4883; 0.4883; 1.0] 1.2153
Plastic Lumbar Spine 512 x 512 x 103 [0.2344; 0.2344; 1.5] 1.5362

Table 4.1: CT dataset specifications; sml: smoothed volume on hierarchy level 2;
sm2: smoothed volume on hierarchy level 3; sm3: smoothed volume on hierarchy
level 4

Single views of the observed DRR images that were used as the simulated fluoro

images in the registration experiments are displayed in Figure 4-3.

2We provide a brief description of his famous head injury in the Appendix.
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(b) Pelvis phantom

(c) Phineas G,, (d) Lumbar spine segment

(e)Real head

Figure 4-3:
ments.

Single-view simulated fluoroscopic images from the controlled experi-
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In the following, we provide a performance evaluation of our registration ap-

proaches on these datasets. We focus on three key features of the algorithms: benefits

from the multiresolution hierarchy, capture range and accuracy. During the evalua-

tion, we use the following naming convention to distinguish between our algorithms

with different optimization methods:

" Reg-Pow: registration using the Powell maximization method

* Reg-Hi: registration using stochastic gradient ascent with sparse histogramming

for density estimation

" Reg-Pz: registration using stochastic gradient ascent with Parzen Windowing

for density estimation

Further abbreviations used in the succeeding sections are:

" LEVELS smO, smi, sm2, sm3: To indicate the various levels of resolution we

use in the hierarchy. They denote, respectively, the highest level of resolution

(the original dataset with no downsampling), lst, 2nd and 3rd level of hierarchy

of downsampled datasets3

" No.: number of experiments executed for the given task.

Machine Specifications

We had access to two types of computing resources and we indicate their characteris-

tics in Table 4.2. The name section in the first column demonstrates the abbreviations

by which we refer to them in our analysis.

NAME MODEL NAME CPU (MHz) CACHE SIZE

Ml Pentium III (Coppermine) 1004.542 256KB
M2 Pentium III (Katmai) 497.446 512KB

Table 4.2: Computing resources - machine specifications.

3The downsampling procedure always takes place with respect to a factor of two.
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4.4.2 Multiresolution Approach

Motivation

As we have already mentioned in Chapter 2, we investigated a hierarchical approach

to the 2D-3D registration problem. The idea behind this formulation stems from an

approach originally offered in the field of image compression [37]. Essentially, as we

descend to lower levels of the hierarchy we aim to eliminate superfluous information

encoded in the dataset and attempt to represent it in a more compact manner.

Since the introduction of this strategy, it has been widely used in the computer

vision community. In medical imaging applications, for instance, excellent results

have been presented in multi-modal 3D-3D head registration applications [16, 18].

Our main motivation behind running our experiments on various levels of resolu-

tion was to increase the speed and the robustness of our alignment procedure. Even

if we did not want to find the fastest solution to the problem, we can see in Table

4.1 that most of the datasets available to us are extremely large. These were taken

specifically to test research efforts, so their resolution is generally higher than that

of an acquisition for medical/treatment purposes would be. For example, the skull

dataset (indicated in the 5th row of Table 4.1) has 390 slices and a slice thickness of

0.5 mm which is 2 or 3 times more than it would have been if requested for ordinary

diagnostic purposes. Handling such large datasets efficiently is a challenging task,

especially when we have to traverse the volume several times in order to produce full

projection images (in case of the Powell method and when displaying intermediate

registration results). Hence, given the 3D and 2D input datasets, we downsampled

and smoothed them (with a Gaussian kernel) to obtain versions of the original with

lower resolution. Due to the high accuracy of our initial volumetric datasets, we used

3-4 levels of hierarchy. The data specifications about the lower resolution volumes

are also included in Table 4.1.
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Experiments

We demonstrated in Section 4.1 that the objective function can be made much

smoother if we downsample the original input datasets, see Fig. 4-2, for an example,

where we show probing experiments on Gage's skull dataset. It is apparent from the

figures that local extrema can be avoided by downsampling the images.

To measure the registration speedup that we could gain from applying the hierar-

chy, we ran some experiments with the same initial offset applied to the ideal/ground

truth transformation at each level of the pyramid using all three of the optimization

methods. In all of the experiments, we recorded the running time it took for the

algorithms to converge to the optimal parameters.

We summarize our results in Table 4.3. For these experiments, we used two differ-

ent ways to initialize our transformation estimate. We either defined a fixed offset of

20 or 30 mm in displacement or 15-20' in rotation angle for one of the free variables or

we specified a displacement and rotation range from which the offset value was ran-

domly picked for all of the six unknown elements. The former initialization method,

in general, allows testing for maximum possible offsets that could be recovered in

individual dimensions of the space. Only a single parameter is offset and goal is to

identify what the upper bound is for it. The latter initialization helps to evaluate

the robustness of an algorithm in a given subspace. As all of the components are

perturbed from their optimal value, it is a more complex task to optimize for them

simultaneously.

We recorded the computation time for all three of the alignment strategies: the

Powell, the Parzen windowing and the histogramming methods. In all cases, but

most significantly, for the Powell approach, the computational speedup achieved by

the hierarchy was enormous. As Table 4.3 indicates, for the direction set method,

computations on the pelvis dataset converged 8.357 times faster on the third level

of the hierarchy than on the second and in case of the Gage dataset the algorithm

was completed 6.812 and 19.413 times faster on the forth pyramid level than on the

second and third respectively. (In our table, running time is indicated in seconds and
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the offset measures are given in mm and degrees.)

METHOD DATA LEVEL TIME (sec) CPU No. OFFSET
Reg-Pow pelvis smi 14992.50 M2 6 [20 mm;15']

sm2 1794.00 M2 6 [20 mm;15']
gage smi 29663.25 Ml 6 [20 mm;15]

sm2 3327.00 MI 6 [20 mm;15']
sm3 1528.00 MI 6 [20 mm;15']

Reg-Hi pelvis smO 8619.50 MI 6 [20 mm;15']
smi 4311.50 M1 6 [20 mm;15']
sm2 2156.33 MI 6 [20 mm;15']

skull sm 6613.00 MI 6 [30 mm;20']
smi 3410.00 MI 6 [30 mm;20]
sm2 1592.00 M1 12 [30 mm;20 ]

Reg-Pz gage sm1 12084.33 M2 6 [0-10 mm;0-20]
sm2 6337.33 M2 6 [0-10 mm;0-20]
sm3 3567.33 M2 6 [0-10 mm;0-20]

Table 4.3: Timing measurements
hierarchical levels.

to contrast registration running time on different

In case of the histogramming approach (using the Reg-Hi method), running the

alignment procedure on the pelvis dataset was 1.9992 and 3.9973 faster on the second

and first pyramid levels than on the original input. The same experiments produced

a 1.94 and a 4.154 speed-up in case of the skull experiments comparing results with

the original and the second level of the hierarchy.

With the Parzen Windowing approach we achieved similar results. For example,

a speedup of 1.907 and of 3.387 was noted when registering images taken of the skull

dataset.

It is important to point out that we carry out the downsampling procedure with

a factor of two in all desired dimensions in a way that the voxels in the resulting

volume approximate cubical elements. Therefore, with each level of hierarchy, the

data volume size grows by 23 in the worst case scenario. For algorithms that fully

traverse the 3D image and produce full-sized DRRs that increase directly appears

in the running time. In the sampled approach, the slowdown is (approximately) at

most by a factor of two if the number of samples used remains the same between the
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levels. That is because we only have to access more voxels when following rays going

through the volumes.

We note that the execution times of the three different approaches should not

be directly compared using data indicated in Table 4.3. That is especially true for

the two different optimization strategies. The reason for that is the fact that the

experiments using the Powell method ran until convergence was detected while the

gradient methods were executed for a fixed number of iterations.

We are able to conclude, though, that the hierarchical approach is inevitable

when using the non-gradient maximization method on large datasets. Otherwise the

running time grows unreasonably high, exceeding several hours. In case of a sampled

approach, using only a few data points for the computations keeps the execution time

well-manageable. The relative gain in between hierarchy levels is smaller but still

significant.

4.4.3 Robustness, Size of Attraction Basin

Given the ground-truth pose parameter TGT, the capture range of the algorithm with

respect to a particular dataset can be established by finding the greatest perturbation

of individual components that could be consistently reset by our application.

First, we could get a good intuition for the extent of the capture range while

running probing experiments (Section 4.1). As probing the six dimensional parameter

space is computationally highly expensive, lower dimensional experiments can be

carried out to characterize the objective function. However, the probing results can

be misleading as they are not capable of representing the parameter space in its full

complexity. So to evaluate the registration power of our optimization methods, we

ran some initial experiments by only offsetting one of the free parameters from its

ideal value. In these controlled experiments, we found that a displacement offset of

35-40 mm and rotation angle offset of 20-25 degrees could generally be registered

with all three of the methods. The alignment was more sensitive when the images

were truncated. In these cases, the maximum displacement offsets had to be lowered.
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(That situation occurs in case of the pelvis, spine and the Gage's skull.) We then also

ran some experiments where the initial offset was determined by randomly assigning

offset values to all of the free variables given a pre-specified range of values. As all

six parameters were offset at the same time, the individual perturbation ranges were

specified to be smaller in this case.

4.4.4 Accuracy Testing

Preliminary Results

Without using the hierarchical approach and only offsetting one of the free variables

at a time, we obtained good preliminary results. We were able to show that the

algorithms could be applied to several types of datasets with good accuracy. We

assigned offsets in the range of 35-40 (mm) or 20-25 (deg) and we ran the algorithms

on four different datasets. These were a plastic pelvis, plastic skull, plastic lumbar

spine and a real head. Most of the times, the quality of the convergence results only

depended on finding the appropriate set of registration parameters (step size and

sample size, mostly). We present our results for the newReg-Hi method in Table 4.4.

DATASET No. de (mm) r, (deg)
Pelvis 31 1.9637 0.3100
Plastic Skull 26 1.1783 0.1564
Plastic Spine 18 0.5319 0.0430
Real Head 14 2.3513 0.3810

Table 4.4: Controlled, registration accuracy tests using the Reg-Hi method; No hier-
archy;

Table 4.4 displays the number of experiments executed in case of each given dataset

and the average magnitude of the displacement component and of the rotation angle

of Terror. In the majority of the experiments, the displacement error terms fall under

the d* value (Table 4.1) and the rotation angle errors are under 0.5 deg. We can notice

a relative weakness in the accuracy results related to the real head experiments. This,

most probably, stems from the fact that the dataset is seriously truncated with the

top and the bottom (below the nose) of the head completely missing (see Fig. 4-3).
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With Hierarchy

After obtaining the above described preliminary results, we wanted to optimize both

the accuracy and the running time of our methods. That is when we implemented

the multiresolution approach.

In the following, we analyze performance results on two particular datasets com-

paring all three of our algorithms. We decided to run these more extensive experi-

ments on the Gage skull dataset and the images of the phantom pelvis as our collab-

orators are particularly interested in seeing results related to two of these anatomies.

We constructed the multiresolution hierarchy in the following way. We started

the experiments on the lowest level of the volume pyramid. We randomly offset

the ground truth transformation variable in a particular range. The extent of this

range was determined based upon some initial tests with respect to capture range

calculations. More specifically, they were specified by providing an upper bound for all

of the displacement components and by assigning an maximum value for the rotation

angle, while the rotation axis was determined randomly. The four parameters were

selected uniformly from their specified ranges. We continued the alignment process

on higher resolution levels using the results of the lower stages as inputs until the top

level of the pyramid was reached.

It was not only the resolution level that changed in-between the multiresolution

steps. We also used lower step sizes (A) and more sample points towards the top of

the hierarchy. In case of the Reg-Pow experiments, we also added an additional small

perturbation to the starting poses on higher levels, in order to prevent the optimiza-

tion method to get trapped in local extrema. The stochastic approach introduces

sufficient amount of noise into its estimates that this perturbation was not necessary

in case of the gradient ascent procedures. The results of these controlled experiments

are summarized in Table 4.5.

All timing results were measured on our Mi-type machines.

Although, in general, the pre-specified 5000 iteration were more than sufficient

for the gradient-based algorithms to converge, both in case of the Reg-Pz and Reg-
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METHOD DATASET LEVEL No. d, (mm) re (deg) OFFSET TIME

Reg-Pz Pelvis smO 9/10 0.5199 0.0947 from smi 3608
sm1 9/10 0.3580 0.1146 from sm2 2591
sm2 9/10 0.6604 0.1337 from sm3 1558
sm3 8/10 3.5453 0.3173 [15,15,15,200] 843

Skull smO 10 0.8551 0.0938 from smi 4573
sm1 10 1.5816 0.1919 from sm2 3516
sm2 10 5.5943 0.6463 [10,1010,200] 2084

Reg-Hi Pelvis smO 10/11 0.5368 0.1071 from smi 3620
smi 10/11 0.3170 0.1031 from sm2 2422
sm2 10/11 1.4763 0.1576 from sm3 1388
sm3 10/11 1.9451 0.2131 [15,15,15,200] 699

Skull smO 11 0.8145 0.0869 from smi 4666
smi 11 1.0348 0.1331 from sm2 3553
sm2 11 11.5438 1.1923 [10,10,10,200] 2820

Reg-Pow Pelvis smO 12 1.1164 0.1472 from smi 25358
smi 12 2.9557 0.1495 from sm2 4839
sm2 12 5.3905 0.3676 from sm3 1478
sm3 12 13.6580 1.298 [15,15,15,200] 240

Skull smi 12 2.7144 0.1432 from sm2 13744
sm2 12 5.2431 0.4744 from sm3 2583
sm3 12 10.9750 1.1474 [12,12,12,150] 561

Table 4.5: Registration results of
experiments of a phantom pelvis

methods Reg-Pz, Reg-Hi and Reg-Pow on controlled
and a real skull

Hi method we encountered exceptions. In those cases, the randomly assigned offset

values were so large compared to the given step size that the registration process could

not take place during the provided interval. When that happened we did not average

in the results of those runs into our accuracy measures. When such an event happened,

we specifically indicate in the fourth column of Table 4.5 the actual number of data

samples out of the total with respect to which we present the accuracy measures. (In

case of the Reg-Pz pelvis experiments, the considered number of experiments increases

from 8 to 9 after the second hierarchical level, as even though the first set of iterations

was not sufficient, during the second step the parameters did manage to converge to

the optimal settings.)

The offset range for the registration algorithms was almost the same in all cases,

with a slight variation in the displacement settings (and only once in the rotation
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bound). The capture range for the skull dataset was smaller in translation, but the

rotational element did not have to be modified. The table entries nicely present

how by ascending the multiresolution pyramid the registration errors decrease, both

with respect to the rotational and the displacement components. When comparing

the results of the controlled Reg-Hi and Reg-Pz experiments, we can say that their

performance was very similar. Running on the pelvis and the skull datasets, they

both completed the registration task even before getting to the top-most level of the

hierarchy. (See Table 4.1 for upper bound on error terms to achieve high accuracy.)

We have to admit though, that in case of the histogramming method, we had to

experiment more with the appropriate parameter settings. That was especially true

as we got close to the top of the registration pyramid. It proved to be more crucial to

increase the sample size for more accurate density estimations, and Reg-Hi was also

much more sensitive to the optimization step size.

The data also suggests that the Reg-Pow procedure might have got attracted to

several local extrema. That would be the only explanation for the fact that, even on

the original dataset, its error terms are larger than that of the two other methods.

For each registration run, we also provide the running time. As we have already

hinted it in earlier sections, in case of the gradient-based methods these represent only

an upper bound as convergence might occur way before the pre-specified iteration

number is completed. Although the Powell method converges very quickly during the

first couple of stages, the additional refinement of the intermediate results approaching

the top of the hierarchy takes an extremely long time. Such a delay prevents this

approach to even be considered for interventional applications.

To demonstrate the extent of the registration errors in a way other than the nu-

merical scores, we present the results of the registration experiments of the pelvis

phantom images using the non-gradient technique. These examples contain the con-

tours of projection images produced by the registration output parameters overlaid

on the observed, input acquisitions. See Figure 4-4 for a qualitative evaluation of the

performance of Powell's method. By visual inspection, only tiny misalignments are

detectable on the images created with the output of the algorithm; the majority of
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the contours aligns well.

4.4.5 Convergence Pattern

As part of the registration algorithm for the gradient-based optimization approaches,

we evaluated the similarity measure at intermediate steps of the procedure. We

recorded the MI estimates together with the error transformation components. Dis-

playing these values as a function of the iteration number allowed us to monitor the

convergence behavior of the alignment procedure closely. Two such convergence plots

are displayed in Fig. 4-5. These present the results of a Reg-Hi plastic pelvis experi-

ment. In case of the left-hand side, on Fig. 4-5 (a), the displacement parameter was

perturbed by 20 (mm) in the direction of the y-axis and in case of 4-5 (b) the rotation

angle around the y-axis was perturbed by 150.

The MI curve, in both experiments, is very noisy. This can be explained by the

fact that the objective function is only evaluated on a small-sized, random set of

sample points. However, it is apparent that the closer the transformation estimate

gets to its optimal value (as iteration counter increases), the higher the reward value is

that we assign to the most current set of transformation variables. The optimization

method in this particular example was Reg-Hi and the number of sample points used

was 150.

In the first experiment, Fig. 4-5 (a), the initial error in the displacement com-

ponent quickly causes an offset in the rotational component as well. It is only then

that they converge to the zero-offset solution simultaneously. The second run, Fig.

4-5 (b), is a good example of the discussion in Section 4.3.1. Even though it is only

the rotational component of transformation T that is offset initially, our displacement

error measure d, is also non-zero at the outset of the alignment procedure. As the

rotation error decreases, the displacement error vanishes, too.
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(a) With initial transformation estimate

(b) With transformation estimate resulting from registration

Figure 4-4: Registration results of a phantom pelvis controlled experiment with the

Reg-Pow method: contours of registration results are overlaid on the observed DRR

images
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Figure 4-5: Sample output from a controlled set of Reg-Hi experiments. Dataset:

plastic pelvis. Initial offsets: (a) y = 20 (mm) and (b) /3 = 15 (deg). Plots display

the magnitude of displacement error, rotation angle and the MI estimate at each

iteration.

4.4.6 Registration Parameter Settings

It was mainly in case of the registration methods using gradient-based optimization

that we had to carefully set the operating parameters. For the Powell method the

only setting that we tried to alter was the tolerance level. However, changing that

variable did not produce significantly different results, so we did not invest time in

quantifying its influence on the registration results.

In case of the Reg-Hi and Reg-Pz methods there are several settings that could be

adjusted; for example: size of sample collection, step size, iteration number, standard

deviation of Gaussian kernels (for Reg-Pz) and number of intensity buckets used for

constructing histograms. Some of these values were treated as constants and were

never changed throughout all our study. For example, the standard deviation of

the Gaussian kernel was set to be 2.0 and the number of intensity bins to 32. We

experimented more with the sample and the step size measures. For all our sampled

experiments we used only 100-150 sample points with an increasing number towards

the top of the hierarchy.

Most of the time was invested in finding appropriate step sizes (learning rates)

for the optimization procedure. We found that, especially when the multiresolution
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approach was not used and the algorithm was run only on the top-most level, the

maximization could be very sensitive to these values. If the learning rates were too

high, convergence did not take place and when they were too small, the predetermined

number of iterations were not sufficient to include the full convergence path. What is

more, we differentiated between the update rate of the rotational and the translational

components. It was crucial to set the ratio between them properly as their influence

on the update had to be balanced. Neither of the update terms were to dominate the

other.

4.5 CT-Fluoroscopy Experiments

We obtained real X-ray fluoroscopy and X-ray images for two of the CT datasets

that are listed in Table 4.1. We had corresponding biplanar 2D acquisitions of the

phantom pelvis and Phineas Gage's skull. We present these four images on Fig. 4-6.

Unfortunately though, the ground truth specifications describing the imaging ge-

ometry at the time of image acquisition were not recorded. Hence, our best esti-

mates about the ideal transformation TGT were the results of a manual registration

procedure. We attempted to reconstruct the imaging environment as accurately as

possible while producing the best equivalents of the real fluoroscopy or X-ray images.

However, it is highly probable that the ground truth approximations contain some

(hopefully, slight) amount of error. Therefore, when registering the real fluoro/X-

ray images to the CT volume, we allow for a bigger range of variance in the accuracy

results compared to the standards established in the synthetic examples (Section 4.4).

In order to make it more intuitive to interpret the extent of the registration errors,

we also present our registration results in two additional ways for these datasets. It is

in this section that we look at not only the error term provided by the computation

of the error transformation Terror, but also errors with respect to the subcomponents

of T themselves. We examine how precise our estimates are regarding the rotational

component R and the displacement term Dd. We also provide a qualitative analysis
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(a) Phantom pelvis: lateral acquisition

(c) Phineas Gage's skull: sagittal view

Figure 4-6: Real X-ray fluoroscopy of the
Phineas Gage's skull

(d) Phineas Gage's skull: coronal view

phantom pelvis and real X-ray images of

84

(b) Phantom pelvis: AP acquisition



of our results. We produce a DRR image both with the offset parameters and the

results of the registration algorithm and overlay their main contours onto the ob-

served (real) 2D images. In this way we are able to see how much of an error was

recovered by our alignment procedure and also how well our final estimates match

the original acquisitions. To extract the major outlines of the examined objects in

these experiments, we used the Canny edge detector algorithm '.

4.5.1 Experiments with X-Ray Images of Gage's Skull

We ran extensive experiments on the Gage dataset with all three of our registration

methods. The initial offset range was specified to be a random combination of max-

imum [0,10,10] or [5,10,10]5 in displacement and maximum 20 degrees in rotation.

We used at most three levels of the multiresolution registration pyramid. Below we

present results obtained by the Parzen windowing and the Powell methods. We do

not include a report on the histogramming technique as we did not find it to be ro-

bust and consistent enough in these experiments. With Reg-Hi, the confident range of

convergence was much smaller than in case of the other two strategies (only [5,5,5,5]

as opposed to [5,10,10,200]). It also seemed even more sensitive to code parameter

settings than in case of the controlled experiments.

Reg-Pz Experiments

We ran 30 experiments with the Parzen windowing method starting from the third

pyramid level (sm2). We obtained the following encouraging results. On the 3rd

level of the hierarchy, with the input volume downsampled twice, 27 (~ 90%) of the

experiments finished converging to an approximate wider neighborhood of the ground

truth pose. In two cases, the initial offsets were too high to be recovered. These

originated from a coupling of a large rotational and a large displacement offset. And in

the remaining third experiment, convergence has started but the number of iterations

4Thanks to Lily Lee for providing the C++ code implementation of the Canny edge detector
'The range is smaller in the x-direction as the chin is missing form the datasets.
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was not sufficient to complete the procedure. On the second level, continuing the

registration with the output from the lower hierarchy level, we could acquire even

higher accuracy. Although in all cases we got closer to the optimal settings, the three

cases that did not get close enough in the first round of registration remained behind.

That is explained by the fact that on higher hierarchy levels the step size decreases,

hence even with an increased resolution the size of error that could be corrected

decreases. (Also, we showed that the danger of being attracted by local extrema also

increases.)

We first present our results quantitatively. We prepared two plot diagrams dis-

playing the displacement and the rotational error terms both prior to and after the

registration procedure was run. We calculated these error measures both with re-

spect to the components of the error transformation Terror and the individual (vari-

able) components of transformation T: Dd and R. The error terms, in all cases,

are specified with respect to the manually determined ground truth pose. Figure 4-7

displays results obtained on the third pyramid level and Fig. 4-8 reports on the out-

comes achieved on the second level. On each of the sub-plots, the x-axis stands for

displacement error (measured in mm) and the y-axis represents rotation angle error

(measured in degrees). The left hand side columns, on both of the main figures, repre-

sent settings from before the alignment procedure and the right hand side from after

completing registration. The top row corresponds to measures with respect to the

error transformation Terror, and in the bottom row indicates error measures computed

with respect to the two varying subcomponents of transformation T.

On Fig. 4-7, we can see that with the exception of the few cases where the

algorithm did not have enough time to complete convergence, the results cluster

closely around the ideal settings. (The outlier data points are indicated by a circled

cross-mark to distinguish them from the others.) These results are further improved

on a higher level of the pyramid. These results are presented in Fig. 4-8.

We also ran experiments on the original dataset, trying to even refine the outputs

from the 2nd pyramid level, but these experiments did not improve the results very

much and they are very expensive computationally. Hence, we do not include those
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results here.

A summary of the error terms corresponding to Terror are also summarized in Table

4.6.

DATASET METHOD LEVEL No. de (mm) re (deg) OFFSET

Gage's skull Reg-Pz smi 27/30 2.4073 0.2256 from sm2
sm2 27/30 4.1094 0.4835 [0,10,10,15 deg]

Reg-Pow smi 9 8.5726 0.9849 from sm2
sm2 9 9.1946 0.8982 from sm3
sm3 9 17.6407 1.627 [5,10,10,15 deg]

Table 4.6: Error measurements for the X-ray fluoroscopy and CT registration exper-
iments on the Gage skull dataset

We also invite the reader to judge the registration results qualitatively. Images in

the top row of Figure 4-9 display the two views created using the offset transformation

estimates and in the bottom row they show projection images produced with the

output of the registration. These images are suitable to demonstrate the extent of

the recovered offset. Figure 4-10 is the one that helps to judge accuracy. There, the

main outlines of the DRR images in both the offset and registered poses are displayed

on the real X-ray images. We can see that the DRR boundaries closely follow the

outlines appearing on the original acquisitions.

Reg-Pow Experiments

We ran a set of nine experiments on three levels of the registration hierarchy using the

Powell optimization method. All nine of the experiments converged to the optimal

transformation settings. Although there is a definite improvement in the accuracy

results of the different stages, on average, these experiments could not produce the

same accuracy results as the above presented stochastic gradient method. Table 4.6

presents the relevant registration outcomes. It is possible, that we might have gained

some error reduction on the top-most level of the pyramid, however, the running

time was so high even in case of the second level (smi), that these experiments

were not conducted. Such a time-consuming solution could not be considered in the

applications that we focus our attention on.
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(a) With initial transformation estimate

(b) With transformation estimate resulting from registration

Figure 4-9: Registration results of an e

skull dataset using the Reg-Pz method.
xperiment on real X-ray and CT of the Gage's
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(a) With initial transformation estimate

(b) With transformation estimate resulting from registration

Figure 4-10: Registration results of an experiment on real X-ray and CT of the Gage's

skull dataset using the Reg-Pz method. Contours of the DRR images created by the

output of the registration algorithm are overlaid on the original fluoro images
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Figure 4-11 present results from an experiment where a fixed displacement offset

of 30 mm was applied in the x-direction.

4.5.2 Experiments with Fluoroscopy of the Phantom Pelvis

In case of the experiments involving the phantom pelvis, we had a very difficult time

finding the accurate ground truth pose even manually. The lateral images contain

considerably less information about the position of the anatomy as the AP ones as

images from the two opposite sides are almost identical.

Two other challenges involved were the fact that the fluoroscopic images of the

phantom pelvis are greatly truncated (some parts of the ileum is missing and a black

rim appears around the margin of the acquisition) and the pincushion distortion

effects were not accounted for at the time of imaging.

Hence, our results with respect to this anatomy are in very early stages. We

present only qualitative results in this Section. Figure 4-12 presents results from an

experiment with the Reg-Pow method and Fig. 4-13 shows the results of method

Reg-Hi.

We can see that while at the outset of the algorithm the DRR outlines do not

really fit the edges in the fluoro acquisitions, the edges at the final stage nicely match

the boundaries of the observed images.

In case of the pelvis images, one should focus on matching object boundaries closer

to the image centers as the warping effect is not as strong in that region as towards

the image margins.

4.6 Summary

This chapter presented the experimental analysis of our newly proposed alignment

procedures. We first characterized our objective function via probing experiments

and gave an incentive for the use of a multiresolution registration framework. Then

the performance of the various algorithms was tested both on CT-derived and real

medical image datasets. In the controlled settings, the two gradient-based techniques
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(a) With initial transformation estimate

(b) With transformation estimate resulting from registration

Figure 4-11: Registration results of an experiment on real X-ray and CT of the Gage's

skull dataset using the Reg-Pow method. Contours of the DRR images created by

the output of the registration algorithm are overlaid on the original fluoro images

93



(a) With initial transformation estimate

(b) With transformation estimate resulting from registration

Figure 4-12: Registration results of an experiment on real X-ray fluoroscopy and

CT of the phantom pelvis dataset using the Reg-Pow method. Contours of the DRR

images created by the output of the registration algorithm are overlaid on the original

fluoro images.
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(a) With initial transformation estimate

(b) With transformation estimate resulting from registration

Figure 4-13: Registration results of an experiment on real X-ray fluoroscopy and CT

of the phantom pelvis dataset using the Reg-Hi method. Contours of the DRR images

created by the output of the registration algorithm are overlaid on the original fluoro

images.
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produced very similar results both in terms of accuracy and running time. Their error

range proved to be consistently lower than that of the standard Powell method. In

case of the latter, running time was also a major handicap. When applied to high-

resolution datasets the direction set method took several hours to converge to the

optimal settings. We presented some preliminary results on real X-ray - CT registra-

tion, too. On Gage's skull dataset the Reg-Pz method performed the best. In case

of the phantom pelvis dataset, we qualitatively evaluate our results. A quantitative

analysis is missing because we have not yet included a distortion model in our reg-

istration techniques which would account for the warping artifacts present in X-ray

fluoroscopy.
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Chapter 5

Concluding Remarks

5.1 Summary

We have introduced a novel framework to address the 2D-3D rigid-body registration

problem between the medical image modalities of CT and X-ray fluoroscopy. The

main objective of our task was to (efficiently) identify a geometrical transformation

in 3D space that describes the relative position and orientation of coordinate systems

of the imaging environment and the pre-operative data volume.

Our main contribution to the state of the art is demonstrating that the sparse-

sampling approach of stochastic gradient ascent, which has been heavily used in 3D-

3D registration, can also be applied to significant advantage in 2D-3D registration.

Its usage obviates the need for the generation of full DRRs at each iteration, which

typically requires a full traversal of the volumetric data. In contrast, our approach

only samples approximately 100 ray traversals from the volume. We presented two

such approaches and compared their performance to that of a standard method. All

of the algorithms that we implemented apply the information theoretic measure called

mutual information to evaluate the alignment quality of the input datasets given a

transformation estimate. They only differ in the way they optimize that similarity

value. The standard optimization method, Powell's method, carries out a series of

one dimensional searches to determine the best settings, while the stochastic gradient

ascent strategies guide the estimate-update procedure by computing partial deriva-
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tives of the objective function with respect to the transformation components. The

difference between our two gradient-based strategies originates from the estimation

of probability density functions. One of them uses Parzen windowing while the other

makes use of histogramming. In order to reduce the running time of these methods,

they both operate on only a sparsely sampled version of the original inputs and ap-

proximate the true update terms.

We examined the registration characteristics of these algorithms by both running

them on simulated and real datasets. The controlled experiments used images of a

phantom spine, of a real and a plastic skull, of a real head and of a lumbar plastic spine

segment, and the experiments using real X-ray images concerned datasets acquired

of the pelvis and of the skull.

The experiments were run in a multiresolution setting, which not only proved to

decrease execution time, but also increased the robustness of the algorithms.

5.1.1 Controlled Experiments

Gradient-based Techniques

In the controlled experiments the two gradient-based methods performed very sim-

ilarly. They achieved highly accurate alignment results that were almost equivalent

and their running times were not significantly different. We found, that on high

resolution pyramid levels the histogramming method was more sensitive to code pa-

rameter settings and we had to experiment longer to identify proper values for such

measures as the optimization step size and the sample size.

Powell's Method

The Powell method proved to be a robust optimizer, too. Although, the initial off-

set values were reduced swiftly on the lowest pyramid levels, the refinement of the

transformation estimates on higher levels took an unreasonably long time. In some

cases the experiments were even stopped before starting to operate on the original
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resolution of the input datasets as the running time exceeded several hours. The

accuracy results for this method were also overruled by the outputs of the gradient-

based techniques.

5.1.2 CT - X-ray Registration

For the experiments using real X-ray images, we showed promising, though somewhat

preliminary, results. The Parzen windowing method consistently aligned the input

images according to the ground truth estimates. Powell's method also converged, but

its resulting error terms were even higher in these experiments. The histogramming

approach proved to be the least robust in this scenario. It only converged on a

fairly small offset range. The full explanation for this phenomenon is still under

investigation. We also demonstrated some initial results on aligning X-ray fluoroscopy

and CT acquisitions of a phantom pelvis. We only presented a qualitative analysis

of these experiments as the ground truth pose could not be determined with high

accuracy and our framework did not model the radial/pincushion distortion effects

present in the fluoroscopies. Comparing the major anatomy contours the registration

results seem to be promising, but a quantitative evaluation was not prepared.

5.2 Future Research Questions and Ideas

In this final section, we describe several ideas that emerged while we worked on the

presented 2D-3D rigid-body registration project. These are interesting thoughts or

techniques that could either improve or complement the performance of the existing

system.

5.2.1 Coupling Segmentation and Registration

Segmentation, along with registration, is another major area within medical image

processing. Its goal is to identify and group together image components representing
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the same region or having similar properties based upon some specific criteria. Tra-

ditionally, registration and segmentation methods have been investigated in relative

isolation, but many times the assumption is made that the solution to one is known

in order to tackle the other. That statement clearly applies for feature-based registra-

tion algorithms. In their case (as discussed in Chapter 2), the alignment procedure

only considers a few landmark points and identifying those depends on either some

user interaction or some form of a segmentation technique.

Segmentation could benefit from registration when multiple acquisitions are pro-

cessed at the same time. The relative correspondence between the targeted images

contain useful information for completing the task. Executing the two procedures si-

multaneously is motivated by the hope that overall computation time could be saved

by not having to complete one before the other and that the parallel registration and

segmentation procedures can provide sufficient information to each other in order to

improve their individual performances.

We have started investigating' the problem of coupling intensity-based registration

and segmentation. Our main motivation for involving an intensity-based method

within such a framework is the aim to improve or extend the performance of already

robust methods in more complex rigid-body or non-rigid registration problems. For

example, the problem of registering spine datasets has long been a research challenge.

Although the individual vertebrae behave as rigid bodies individually, the global

movement of the spine cannot be described as that of a single rigid entity. A general

approach to the problem is to piece-wise align single vertebrae and then to describe

the spine movement as some combination of these. That scenario could be closely

related to the study by Penney et al., which reduced the computational burden of its

2D-3D registration algorithm by only considering a small portion of the original CT

dataset [3] . The imaged anatomy (in their case, a single vertebra) was segmented out

'These ideas have been discussed with Tina Kapur (Chief Scientist, Visualization Technology Inc.)
and Prof. Anthony Yezzi (Electrical and Computer Engineering Department, Georgia Institute of
Technology).
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in the CT volume prior to any other processing. It was only then, that the alignment

step took place with only the sub-volume considered.

Within our new approach the segmentation and registration stages would not have

to be isolated, but they could operate dynamically in parallel. Even the hierarchical

approach could be incorporated in that framework. This could allow the algorithm to

focus more and more on the targeted (parts of the) anatomies as the resolution level

is increasing. That application could be useful in addressing the 2D-3D registration

problem as reducing the size of the image volume to be traversed when creating DRR

images, could improve computation time significantly.

5.2.2 View and Number of Fluoroscopic Acquisitions

Another interesting question addresses the problem of how important the view is

from which the fluoroscopic images are taken. It is an open question whether the

registration results could be improved at all if these images were taken from a specific

view and a given angle apart. Initial (synthesized) probing studies demonstrate that,

in case of the skull, the location of the projection source has a very insignificant

impact on the performance of the objective function. In case of the pelvis, however,

these results might be different as it has a much more irregular geometry.

We would also like to investigate the related problem of how many images are

sufficient (and still practical) to accurately carry out the registration procedure. It

would be very useful to know how much the robustness and the capture range of

the algorithm would grow with a couple of more additional input projection images

(without the computational costs overwhelming the potential benefits).

5.2.3 Defining Automatic Stopping Criterion for Gradient

Optimization Protocols

An algorithm that would automatically identify convergence to the optimal settings

would be of great value if incorporated into our current registration framework. The

fact that we execute the alignment method a predetermined number of times could
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be quite inefficient if execution time is of key importance.

The complexity of this task originates from the fact that in case of our sampled

stochastic approaches, the objective function evaluations are noisy estimates of the

true values. Hence, any kind of stopping criterion would have to anticipate a large

enough variance in the similarity values even in case of convergence.

5.2.4 Truncation/Limited Field of View

We would also like to carry out more experiments to study the robustness of our

algorithms with respect to errors due to truncation and limited field of view. In case

of mutual information, it has been known to be a weakness, but we would like to

fully understand how much that problem surfaces in 2D-3D applications. This is

an important question to be analyzed as in case of real procedures, intra-procedural

images are likely to contain images of surgical/treatment tools that could partially

obstruct the anatomy of interest.

5.2.5 Distortion Effects & Dewarping

We mentioned in Section 2.1.1 that one of the main disadvantages of using X-ray

fluoroscopies is the geometrical distortion effects that are not corrected for at the time

of image acquisition. Our current registration framework does not account for this

problem, we have not implemented a dewarping algorithm. As the distortion effects

can potentially be significant and qualitative evaluation of the algorithm on distorted

images is not truly meaningful, our preprocessing step could definitely benefit from

this feature. The sensitive sparsely sampled histogramming approach could also be

expected to have an improved performance with that addition.

5.2.6 Histogram Characteristics

We found that the histogramming approach worked quite well when the number of

bins for both the ID and 2D histograms was set to be 32. However, we did not

experiment thoroughly with other histogram settings/specifications, so we do not
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really know how much influence the bin size would have on the registration results.

We suspect that it is unlikely to obtain comparable results if the bin numbers were

decreased (as that would make the probability density estimates even cruder) but

increasing them might not increase the performance significantly either given the

gray-scale image modalities. It also depends on the number of sample points that we

use for the stochastic estimation.

As discussed in Section 4.5, the histogram approach, while promising in the con-

trolled experiments, was not consistently successful in the experiments using real

X-ray images. We would like to further characterize this behavior, both empirically

and analytically, with an eye towards potentially useful modifications to the method.

5.2.7 Code Optimization

As of now, the C++ code that we are using for the 2D-3D registration task is not

optimized. We initiate numerous IO operations to print out partial results, to create

projection images at intermediate stages and we also do an additional function eval-

uation at each iteration of the gradient-based approach in order to be able to analyze

the registration performance. It would be interesting to compare our algorithm's

running time to the fastest state of the art solutions after eliminating all unnecessary

computations and using aggressive implementations of inner loops.

5.2.8 Improving MI

Since mutual information has become a similarity measure applied in a wide range of

applications, there has been several modifications suggested that would complement

its performance in particular scenarios. Improved results have been reported by,

for example, using normalized mutual information (NMI) [21, 44] and by another

approach which incorporates gradient information into the definition of its MI-based

objective function [18]. In the latter, both magnitude and directional information are

included. It has been also investigated how spatial information could be introduced

in MI-based similarity measures. Such an attempt was to use higher level entropies
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in order to calculate mutual information [31].

We are also interested in improving the registration results achieved by mutual

information. However, instead of modifying the objective function itself, we aim

to investigate the independence properties of image pixels. In order to make the

mathematical formulation of the registration problem manageable, we make the as-

sumption that image components are independent and identically distributed (IID),

or that there is no correlation in between them. Although that assumption is not

valid, especially on the top of a multiresolution pyramid, a great portion of the image

processing algorithms heavily rely on it. We would like to study the question of how

to process our input images in order to more accurately satisfy the IID criterion, or

else ways to relax the assumption.
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Chapter 6

APPENDIX

6.1 Small Angle Rotation

This section provides the proof for why we could approximate the movement resulting

from a small angle rotation as the vector sum when deriving the partial derivative of

volume intensities with respect to the rotation parameters of transformation T. In

Section 3.5.2, we assumed that

R(r, R(D(d, x))) ~ R(D(d, x)) + r x R(D(d, x)).

In the following calculations, we use the equivalent angle-axis notation to param-

eterize rotation transformations. As opposed to the 4-element quaternion notation,

here the rotation operator is encoded as a 3D vector. The length of the rotation vec-

tor equals to the rotation angle and its direction stands for the rotation axis (which

is a vector of unit length).

Let's represent rotation in 3D with vector r, where rotation angle 0 can be written

as the magnitude of the vector 0 = Vr -2 + ry2 + rz2 and the direction of r, ft (a unit

length vector), stands for the rotation axis. By Rodrigue's formula, the rotated

version of a given 3D coordinate point can be written as

R(r, x) = x * cos(0) + h(ii - x)(1 - cos 0) + sin 0(f. x c)
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If 0< 1, then R(r,x) ~ x+0(h xx) =x+r x x

That result, if applied to the registration scenario of Chapter 3, does indeed produce

Rs(r, R(D(d, x))) ~ R(D(d, x)) + r x R(D(d, x)).

6.2 The Story of Phineas Gage

In our experiments, we used the CT and X-ray fluoroscopic images of a real skull. As

an interesting bit of information, it is the skull of Phineas Gage whose case has been

studied during and well after his lifetime by neurologists. The following is an excerpt

from an article revealing the accident that resulted in the profound change in Gage's

life and explaining the intriguing questions that this event raised in neuroscience [39].

" On 13 September 1848, Phineas P. Gage, a 25-year-old construction

foreman for the Rutland and Burlington Railroad in New England, became

a victim of a bizarre accident.... One the fateful day, a momentary distrac-

tion let Gage begin tamping directly over the powder before his assistant

had had a chance to cover it with sand. The result was a powerful explo-

sion away from the rock and toward Gage. The fine-pointed, 3-cm-thick,

109-cm-long tamping iron was hurled, rocket-like, through his face, skull,

brain, and into the sky. Gage was momentarily stunned but regained full

consciousness immediately thereafter. He was able to talk and even walk

with the help of his men. The iron landed many yards away.... Phineas

Gage not only survived the momentous injury, in itself enough to earn

him a place in the annals of medicine, but he survived as a different man,

and therein lies the greater significance of this case."

(Science, Vol. 264; 20 May 1994)
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