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Abstract

In an effort to better understand how language and vision connect, I have implemented
theories of the human capacity for description and visualization. A visually-inspired
representation for language termed Lexical-Conceptual Semantics (LCS), invented
by Ray Jackendoff, is key to these theories and the resulting programs. The first
program, called VISUALIZE, maps a sentence to an image or movie. VISUALIZE
demonstrates that

" LCS simplifies the visualization task.

" Visualization can be performed by incremental composition.

" Common-sense questions can be answered by reading off the visualized image,
rendering symbolic rules unnecessary.

Program DESCRIBE inverts VISUALIZE, generating sentences from an image or
movie. DESCRIBE v.1 shows that matching by hallucination can work when there is
a strong "top-down" model and few hallucinations to consider. It uses bi-directional
search to bring fragments of LCS structure into correspondence with parts of an
image. DESCRIBE v.2 demonstrates that LCS frames can be filled using the results
of surprisingly few visual predicates computed on the image.

Taken together, these programs indicate that LCS holds promise as a description
language for vision.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science
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Chapter 1

Introduction

Two simple questions motivate this thesis:

1. How do we talk about what we see?

2. How do we visualize what others say?

Answering both questions will require a better understanding of how human lan-

guage and vision connect. Through such an understanding, it is my hope that we

make progress toward two goals: an explanation of physical thinking (scientific goal)

and simulating such thought in a machine (engineering goal). It is my belief that these

two goals are not separate but, in fact, joined at the hip. Creating a human-level

Al will require understanding human thinking and, conversely, a full explanation of

human cognition will take the form of a computational model.

As a step toward these goals, In have chosen to focus on visualization and de-

scription because I believe these reveal how we conceptualize and reason about the

physical world. I have implemented and tested theories of how language and vision

connect in computer programs. Central to these programs is a representation for

language created by Ray Jackendoff called Lexical-Conceptual Semantics (LCS) [13].

Introduced in 1990, this representation has yet to be recognized by Al researchers.

The LCS makes possible what previous representations could not.

Chapter 2 introduces Jackendoff's representation and compares it with previous

representations for language. Logical Form (LF) and Conceptual Dependency (CD)
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are shown to lack several important features which LCS possesses. In particular, LCS

" Represents what is in our minds, not what is in the world; it is a cognitive

representation.

" Includes the contribution of syntax to semantics.

* Makes explicit notions like PATHs and PLACEs which are absent in LF and

CD.

" Extends readily to domains other than the spatial-temporal which it specializes

in.

In chapter 3 I describe program VISUALIZE which uses the LCS to map sentences

to images. Humans perform visualization effortlessly, as part of a more general ca-

pacity for physical simulation. VISUALIZE partly models that performance. The

program takes as input an LCS structure and outputs an image or movie depicting

the state or event described. From these images, VISUALIZE can answer questions

about the event simply by reading off the answer from the image. No symbolic rules

are required, making VISUALIZE a more realistic model of human question-answering

than rule-based systems.

Chapter 4 presents program DESCRIBE which performs the inverse operation of

VISUALIZE: mapping an image to a sentence. This inverse operation is considerably

more difficult because it is a many-to-many relation whereas VISUALIZE's task was

many-to-one.

DESCRIBE uses a strategy that can be summarized as "Only see what you can

say" in order to constrain visual interpretation. It searches for an image descrip-

tion in the small space of LCS representations, not the larger space of geometric

configurations.

I've written two versions of DESCRIBE.

DESCRIBE v.1 matches images to sentences by aggressively hallucinating possi-

ble matches and then testing them against the image. It uses a bi-directional search

14



method to bring the elements of the image and the constituents of the LCS represen-

tation into correspondence.

DESCRIBE v.2 answers the question "What minimal information must vision

supply to language in order to fill the LCS structures?" The short answer is "not

much." By computing a few simple visual predicates on the image, DESCRIBE v.2

can fill LCS frames. These predicates can be computed retinotopically, using the

same operations Ullman describes in his Visual Routines [32].

I leave for appendix A the psychological and neurological evidence for the Jack-

endoff representation. This evidence assures us that the representation is on the right

track.

The final chapter reviews the contributions of this thesis. Briefly, they are:

VISUALIZE

* Jackendoff's representation simplifies the visualization task.

* The process of visualization parallels syntactic parsing.

* Question-answering using images and movies obviates the need for symbolic

rules and is more cognitively plausible.

DESCRIBE v.1

* Matching by hallucination can work when there is a strong top-down model and

few hallucinations to consider.

" The LCS is a useful description language for vision because it collapses the usual

geometric description-space.

* Visual scene recognition can be accomplished by incremental, bi-directional

composition rather than the more common one-shot, uni-directional filter meth-

ods.

DESCRIBE v.2

9 LCS frames can be filled using the results of visual predicates computed on an

image.

15



* Visual predicates can be computed using only retinotopic routines which fixate,

saccade and track.

16



Chapter 2

Lexical-Conceptual Semantics

Chapter Summary

In this chapter I describe a novel representation for language invented

by Ray Jackendoff which is core to the programs presented in succeeding

chapters. The representation is termed Lexical- Conceptual Semantics

(LCS). I compare LCS to previous representations for language, in-

cluding Logical Form and Conceptual Dependency, showing how LCS

improves upon them because it is cognitive and syntax-driven. Al-

though the LCS centers on spatial language, it easily extends to other

domains like time and possession.

2.1 Jackendoff's Novel Representation for Language

This work is inspired by and depends heavily upon a new representation for language

invented by linguist Ray Jackendoff [13]. Jackendoff decomposes a wide swath of

natural language into a set of primitive features and functions. What's most surprising

about this decomposition is how much of language can be satisfyingly decomposed

into so few primitives. In this regard, LCS is to natural language what machine

instructions are to source code.

For a more complete introduction to Jackendoff's representation than I will present

here, see Chapter 9 of his Semantics and Cognition or, for the most thorough treat-

ment, see his magnum opus Semantic Structures [12, 13]. Below I describe Jackend-
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off's work only in enough detail to make my own work comprehensible.

2.1.1 Lexical-Conceptual Semantics

Jackendoff terms his representation Lexical-Conceptual Semantics (LCS). It is lexical

because it is intended to be included in every lexical entry, alongside phonology and

syntax. The fact that this representation is lexical has some important implications.

First, it implies that each word has an isolated meaning apart from other words

in the sentence. This contrasts with Logical Form (LF) - the classical semantics used

by linguists - in which there is no clear correspondence between individual words and

their meaning. In LCS, there is a direct mapping. Each part of speech corresponds to

a conceptual entity: nouns correspond to THINGS, verbs to EVENTS and STATES,

prepositional phrases to PATHS and PLACEs.

Second, lexicalness implies that semantic structures are constructed in parallel

with syntax. So, for example, the prepositional phrase in the house has a direct cor-

respondence in semantics, [Place IN [Thing HOUSE]], which is built from the meanings

of the individual words IN and HOUSE. This lexicalness also stands in contrast to

LF and other representations.

Because LCS is lexical, constructing an LCS structure from natural language is

as straightforward as parsing syntax. For example,

"John walked into the room." -+

[s [np [n John]] [vp [v walk] [pp [p into] [n room]]]] -+

[Event GO [Thing JOHN] [Path TO [Place IN [Thing ROOM]]]]

Note how each syntactic constituent corresponds to a conceptual entity. I'll explain

why this is important by way of comparing LCS to other representations.

18



2.2 Previous Representations for Language

To fully appreciate the advantages of the LCS representation, I will describe tradi-

tional representations for sentences, indicate their problems, and show how the LCS

representation remedies them.

2.2.1 Logical Form (LF)

Traditionally, linguists represent sentences using a semantics called Logical Form (LF)

[2]. Not surprisingly, LF has its roots in classical logic.

In a sense, LF is not strictly comparable to LCS. LF is meant to represent what

is true of the world; it is, like any logic, a "science of statements" [34]. In contrast,

LCS is a mental representation, meant to to represent what is true in our minds. As

a mental representation, the LCS primitives map to concepts, not sets of possible

worlds. As Jackendoff put it, "unlike propositions of the standard truth-conditional

logic, LCS expressions refer not to the real world or to possible worlds, but rather to

the world as we conceptualize it" (italics his) [12].

As an example of LF, consider "Bob broke a glass", which might be represented:

3 x (glass (x) & broke(Bob, x))

Immediately, we see several problems with this formulation. First, "a glass" corre-

sponds to no constituent in the formula. Instead, we roughly have "there exists some

thing which is made of glass". Second, the "a", which is the most embedded and least

meaningful element of "Bob broke a glass, " is at the highest, least embedded level in

the formula, the existential quantifier.

If the above formulation is incorrect, then what is the correct one? We cannot

say because LF has no theory of how to map a sentence's syntax to a logical formula.

In the literature, LF semanticists debate which of several possible formulae is best

for a given sentence. There is even debate over the meaning of primitive relations

like or (is it the truth-conditional inclusive or or is it exclusive or, as in "is it the

truth-conditional inclusive or or is it exclusive or"?) Lacking a consistent method for
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mapping syntax to semantics, LF cannot account for the contribution syntax makes

to semantics. Indeed, as "Bob broke the glass" demonstrates, the mapping is the

reverse of what would be expected.

To see some the problems in interpreting LF formulas, consider how LF would

represent the simple sentence "A is in B ". Intuitively, it as a relation, IN (A,B). Indeed,

past AI researchers have treated prepositions this way [4]. But this intuitive treatment

actually convolves two entities which ought to be kept separate: a place, IN(B), and

a state, BE(A, IN(B)). Convolving IN and BE is a mistake because the place IN(B)

can be more that just a location for A - it could also be:

" A point along A's path, e.g. "The water went in the bucket and out the hole in

the bottom."

" A place where A is kept, e.g. "The dishes stayed in the cupboard."

But in LF, IN(B) can only mean all possible worlds where "B is IN", which is not

meaningful. This gets at the crux of the problem with LF: all statements evaluate to

true/false for a set of possible worlds. To determine which worlds those are requires

knowing the meaning of the sentence, which is what LF was supposed to represent

to begin with!

Fundamentally, LF is circular because it does not decompose words to primitive

features and functions as LCS does. In LF, every word is its own primitive. Even

though fly, walk and slither are all verbs of motion, each has its own incomparable

predicate: fly(x,y,z), walk(x,y,z) and slither(x,y,z). This of course leads to a profusion

of incomparable predicates. In LCS, by contrast, similar verbs decompose similarly.

For instance,

BUTTER: [Event GO [Thing BUTTER] [Path TO [Place ON [Thing X]]]]

HAMMER: [Event GO [Thing HAMMER] [Path TO [Place ON [Thing X]]]]

In both cases, we have one object taking a path onto another. This similarity is

captured by the decomposition, but would be obscured in LF. We could conceivably

20



Table 2.1: Example role frame

SEND
AGENT Bob
PATIENT Mary
OBJECT bomb
INSTRUMENT plane

make this same decomposition in LF, but then we'd actually be simulating LCS in

LF.

To summarize, the problems with LF as a representation for language are:

" LF represents what is in the world, not what is in our heads, thereby failing to

capture how we think about language.

" LF has no consistent method for mapping from syntax to semantics.

" LF does not decompose word meanings into primitive features and functions,

but must be interpreted using a circular "possible worlds" model

2.2.2 Role Frames and Conceptual Dependency

Al researchers have made attempts to represent natural language for the purpose of

manipulating language in computers. Role frames, which were invented by linguists,

were quickly adopted by Al [6, 21]. Role frames reveal that syntax does indeed carry

semantic information: the position of a noun with respect to the verb indicates its

role in the action. Role frames use linguistic roles like agent, patient and instrument

to fill verb-specific frame slots. For example, "Bob sent the bomb to Mary by plane."

would fill the SEND frame shown in table 2.1.

Different verbs have frames with different slots, depending on what linguistic roles

the verb takes. Some verbs have slots pre-filled with default values. For instance, the

INSTRUMENT of the verb shot is usually gun.

Roger Schank augmented role frames with his Conceptual Dependency (CD) the-

ory [26]. CD includes the usual role frame slots, but adds new ones like PTRANS
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(physical transfer), ATRANS (change of attribute) and MTRANS (change of mem-

ory).

CD theory was an important first step in decomposing verbs into primitive features

and functions. For instance, the verbs 'give', 'receive' and 'exchange' all decompose

into variants of PTRANS. Schank's purpose in making this decomposition was to

allow a series of sentences (a 'story') to be connected via the primitives, with the goal

being to understand the story as a whole. That goal was met only for a few idealized

stories, but nevertheless CD was a milestone because it represented sentence semantics

conceptually, as its name implies.

However, as a conceptual semantics, CD is rife with problems. First, several of

its 'primitives' are not really primitive. For instance,

" GRASP

" INGEST (put into mouth)

" EXPEL (send out of body)

all ought to be decomposed into more primitive elements '. Siskind gives a full

treatment of GRASP in terms of contact, support and attachment, which I won't

repeat here [28]. INGEST and EXPEL are both verbs of motion. In LCS, they are:

INGEST: [Event GO [Thing X] [Path TO [Place IN [Thing MOUTH]]]]

EXPEL: [Event GO [Thing X] [Path FROM [Place IN [Thing BODY]]]]

The 'primitives' ATRANS (example: give) and PTRANS (example: go) are also

only variants of GO. And MOVE and PROPEL are considered primitive in CD, but

doesn't PROPEL just mean cause to MOVE? In the LCS,

MOVE: [Event GO [Thing X] [Path ...]]

PROPEL: [Cause CAUSE Y [Event GO [Thing X] [Path ... ]1]

'Schank may have invented INGEST and EXPEL because they were useful for the restaurant
story which motivated his work.
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The lack of orthagonality in Schank's primatives can be traced to his neglect of

paths. Paths are at the core of at least seven of his primatives: PTRANS, ATRANS,

MTRANS, MOVE, PROPEL, INGEST, EXPEL. The consquences of this neglect

are clearer when we consider what PTRANS, for example, can and cannot represent.

PTRANS will capture "The boat sailed from Boston to New York" but not any of

these paths:

1. The boat sailed along the river.

2. The boat sailed toward shore.

3. The boat sailed away from port.

4. The boat sailed through the strait.

In all cases there is motion without point-to-point 'physical transfer', which PTRANS

cannot account for. Nor can CD account for cases of PATHs without motion, such

as:

1. The road extends along the river. (extension)

2. The sign pointed toward California. (orientation)

In LCS these are,

[State EXTEND [Thing ROAD] [Path ALONG [Thing RIVER]]]

[State ORIENT [Thing SIGN] [Path TOWARD [Place CALIFORNIA]]]

A practical theory of semantics must say how syntax is mapped onto the semantic

representation, but CD does not do this. Instead, Schank dismisses syntax as a

'surface' representation and takes pride in CD's independence from syntax. The

consquences of not deriving semantics from syntax are apparent in the examples

above.

To summarize, CD theory suffers from problems similar to LF:
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1. CD does not decompose language down to the most cognitively basic features

and functions, although it takes a step in that direction

2. CD does not include syntax's contribution to semantics

3. CD primatives are not orthagonal because they don't factor out paths

2.3 The Complete LCS Formalism

For completeness, here is the full LCS formalism:

" [THING]

" [PLACE] - PLACE-FUNC( [THING])

PLACE-FUNC E (AT, ON, IN, ABOVE, BELOW, BEHIND, ...)

* [PATH] - PATH-FUNC( [PLACE] I [THING] )

PATH-FUNC E (TO, FROM, TOWARD, AWAY-FROM, VIA, ALONG,

" [EVENT] +-

GO ([THING], [PATH]) I

STAY ([THING], [PLACE])

" [STATE] +-

BE ([THING], [PLACE]) I

ORIENT ([THING], [PATH]) I

EXTEND ([THING], [PATH])

* [CAUSE] <- CAUSE ([THING], [EVENT])

24



Bear in mind that these entities themselves decompose into even more primative

features and functions. In his Semantic Structures, Jackendoff likens this representa-

tion to John Dalton's atomic theory of chemistry [13]. Dalton's theory bottomed-out

at atoms, not the electrons or protons which, it would later be discovered, comprise

them. Still, Dalton's rules for combining atoms remained true even after his 'atoms'

were resolved into finer particles. Similarly, Jackendoff expects that his entities -

PATH, THING, etc. - will someday be resolved into more primative elements, but

this will not negate those larger entities. Indeed, since creating the LCS representa-

tion, he has already decomposed some of the entities himself [10].

What is the exact meaning of PLACE-FUNCs and PATH-FUNCs? PLACE-

FUNCs map a THING to a PLACE. Similarly, PATH-FUNCs map PLACEs or

THINGs to PATHs. Jackendoff writes that these are functions of 3D object models

(in particular, he imagines 3-D Marr-like models) [25]. But I will show in the final

chapter of this thesis that many of Jackendoff's PLACE- and PATH-FUNCs do not

require a 3D model, but can instead be computed retinotopically.

2.4 Much of natural language is spatial

Jackendoff's representation centers on the physical world, as opposed to social or

abstract domains. One might therefore challenge the representation's generality by

asking, "Just how much of langauge is spatial?".

One crude method to answer this question is to examine the most frequently

occuring words in English. Table 2.2 lists the 100 most frequently occuring words

in English, ranked in desceding order of frequency. Keep in mind that these are

computed from written and not spoken material, mainly newspaper articles [7].

After removing all articles, conjunctions, pronouns, possesives, and helping verbs

we have a list that includes mostly words about space/time (*) and quantity (**),

shown in table 2.3.

This crude assessment indicates that, indeed, spatial/temporal and quantitative

words comprise the bulk of natural language.
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Table 2.2: 100 most frequent English words

the this we can man
of had him only me
and not been other even
to are was new most
a but when some made
in from who could after
that or will time also
is have more these did
was an no two many
he they if may before
for which out then must
it one so do through
with you said first back
as were what any years
his her up my where
on all its now much
be she about such your
at there into like may
by would than our well
i their them over down

26



Table 2.3: Most frequent words after removing filler words.
of what after *
to * up * did
in * about * many **
for into * before *

with than through *
as other back *
on * new * years *
at * time * where *

by * these much **

not two ** well
from * do down *
one ** first **

all ** any **
there * now *

when * out *

who over *
more ** man
no even
out * most **
said made

indicates space/time words
** indicates quantity words
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2.5 LCS is extensible

Although all the LCS examples presented so far are in the spatial domain, the repre-

sentation readily extends to other domains. "Until 10 o'clock" locates an interval of

time just as "until the road ends" represents a path segment; "at/by/around noon" is

like "at/by/around the park". The path

[Path FROM [Place AT [2:00]], TO [Place AT [3:00]]]

specifies the interval of time between 2:00 and 3:00. All PLACE-FUNCs and

PATH-FUNCs used in the spatial domain keep their same meaning in the time do-

main. Time is simply the 1-dimensional case. Some more complicated examples:

1. "The meeting will begin at midnight." -+

[Event GO [Thing MEETING] [Path FROM [Place AT [time MIDNIGHT]]]]

2. "The presentation was during the day." --+

[State EXTEND [Thing PRESENTATION] [Path ALONG [time DAY]]]

3. "I was at the office until 9:00." -+

[State BE [State STAY [Thing I] [Place AT [Thing OFFICE]]] [Path TO [time 9:00]]]

The LCS also readily extends to verbs of possesion. In possession-space, the

meaning of GO becomes transfer of possession:

[Event GO [Thing MONEY] [Path FROM [Thing TOM], TO [Thing HARRY]]]

Physical proximity equates with ownership. Again, the meanings of all PATH-

FUNCs and PLACE-FUNCs are preserved.

The LCS appears at first incapable of representing social and emotional state-

ments. However, Leonard Talmy has shown that many social and emotional sentences

can be analyzed in terms of "Force Dynamics", a notation like LCS [31]. For instance,

She pressured John to accpt the money. -+
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[Cause CAUSE [Thing SHE] [Event GO [Thing MONEY] [Path TO [Thing JOHN]]]]

Talmy shows that verbs like pressured and forced behave according to the same

rules whether applied to physical or social situations.

These mappings from physical space onto other spaces are not analogies. Instead,

the claim is that we necessarily make this mapping (even if unconsciously) every

time we think in those "abstract" spaces [17, 8]. Many more examples of how ab-

stract domains map onto physical ones are presented in Lakoff and Johnson's book

Metaphors We Live By [17].

2.6 What LCS represents

It is important to be clear about what the LCS representation is meant to capture

and what it leaves out. Obviously, the symbols [Path TO [Place ON [Thing TABLE]]]

do not represent the particular contour of the path itself. The actual path contour

is represented in vision. But to describe that contour with words, we need PATH-

FUNCs which reference points in the visual domain. That is what language is for

and what LCS represents: a method of referring to what we see.

Tokens in the LCS like BALL are meant to be pointers to information in visual

agencies which store shape, color, size, etc. The LCS leaves these features to vision.

Although the LCS is representation is closely tied to language, it is invariant to

some aspects of language:

e Some word choices: "Bill walked into the room" and "Bill came into the room"

are both represented by [Event GO [Thing BILL] [Path TO [Place IN([Thing ROOM])]]]

e Word order: "Bill walked into the room" and "Into the room came Bill" are

represented the same

* Language: Both Japanese and English sentences use the same LCS
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2.7 Summary

To summarize, the benefits of the LCS representation are that it is:

Lexical : It decomposes the meaning of words into primitive features and functions.

Cognitive : It represents what is in our heads, not what is in the world.

Syntax-driven : It comes with a method of mapping syntax to semantics which

takes syntax's contribution to semantics into account.

Extensible : It maps readily to more abstract domains like time and possession.

Specific : It captures exactly the information a language system needs to produce

sentences; the rest is left to other faculties to represent.
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Chapter 3

VISUALIZE: From Sentence to

Image

Chapter Summary

In an effort to model human visualization ability, program VISUAL-

IZE maps sentences to images. The LCS representation makes visual-

izing sentences straightforward. The process of visualization is compo-

sitional, executed in same order that the sentence is syntacticly parsed.

Once the sentence is visualized, questions about it can be readily an-

swered by reading off the generated image(s). Thus the need for sym-

bolic rules is obviated.

So far I have described Jackendoff's representation and compared it to other rep-

resentations for language, in order to highlight its benefits. To a linguist, the very fact

that Jackendoff's representation satisfyingly captures many example sentences is ev-

idence enough of its power. But to an Al researcher, the power of any representation

ultimately hinges on the question, "What problems can it be used to solve?". To an-

swer that question, I have written several programs that use the LCS representation.

I will discuss them in the remainder of this thesis.

The first program, named VISUALIZE, takes as input an LCS representation

and outputs a 3D image or short movie. The goal of the program is to make a

correspondence between what we say and what we see. The program demonstrates
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how this correspondence can be made by incremental composition which pays strict

attention to the syntactic embedding of the sentence.

Once a sentence has been visualized, the program can answer simple questions

about what the sentence means. This is accomplished simply by reading off the

answer from the image. No symbolic rules are required.

3.1 From sentence to image

Program VISUALIZE models a task humans perform effortlessly: visualization of

a sentence, or more poetically "seeing in the mind's eye". Brain scan experiments

demonstrate that during a visualization task the same regions are active as are used

in normal vision, indicating that visualization is to some extent a controlled halluci-

nation. We do not yet know how these hallucinations are kept separate from reality;

perhaps they are isolated by a mechanism akin to how the brain stem cuts off signals

to the body during dreaming.

Psychological evidence indicates that visualization is true to reality. Mentally ro-

tating an object takes as much time to perform as would be required to rotate the

object in reality [27]. Thus visual hallucination simulates reality not in an abbrevi-

ated, symbolic fashion but with high physical fidelity.

The goal of VISUALIZE is to partially model human visualization. It takes as

input a sentence, given in LCS, and produces as output an image or movie (series

of images) corresponding to the sentence. Past visualization programs began with

explicit machine instructions for constructing the visual representation, rather than

natural language, and represented only static relations, not motion [3]. VISUALIZE

begins with natural language, as given by the LCS representation, and can represent

both static scenes (images) as well as motion events.

3.2 Example Run

VISUALIZE's operation is best illustrated by example. Consider
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"Bill went into the room."

represented in LCS as

[Event GO [Thing BILL] [Path TO [Place IN [Thing ROOM]]]]

Given this input, VISUALIZE returns a scene giving the coordinates of all objects

or, for moving objects, their position as a function of time. This function can be

'expanded' into a series of images locating Bill along his path into the room. The

movie can then be used to answer common-sense questions about the event, such as

"Where is Bill after he came into the room?".

The procedure for constructing a visual representation for this example is:

1. Imagining [Thing ROOM] by recalling its object model from a database.

2. Computing the PLACE [Place IN [Thing ROOM]] by applying the IN operator to

the room object.

3. Computing the PATH [Path TO [Place IN [Thing ROOM]]] by imagining a vector

which terminates at the PLACE [Place IN [Thing ROOM]].

4. Imagining [Thing BILL] by recalling his object model from the database.

5. Creating a function of time which gives Bill's location along the PATH computed

in step 3.

Figure 3.2 shows the flow of control in VISUALIZE. First the sentence is decom-

posed to its primitive constituents, then those constituents are visualized, and finally

reassembled into the final image.

The result is a 3-dimensional, viewer-independent model of the scene(s). To verify

that VISUALIZE's output is correct, I wrote a utility to draw the final image or "play"

the movie on screen.

To accomplish its task, VISUALIZE requires a database of object models for

objects like Bill, room, table, cup, etc. These models are extremely course but do
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[e:cG 0 [mig B A L L] [pah V1A [ipce OVER [u-g TAB LE]]]]

[t BALL] [pat VlA [pbxe OVER [chnir TABLE]]]

[pixe OVER [ting TABL E]]

[hing TABLE]

Figure 3-1: Flow of control in VISUALIZE.
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capture the relative sizes and dimensions of the objects. Visualizing a THING just

means recalling its object model from the database.

Visualizing PLACEs is more complicated than THINGs. PLACE-FUNCs for

prepositions like IN, ON, ABOVE have been implemented. Each takes a THING as

its argument and outputs a point (example: AT), surface (example: ON) or space

(example: IN).

PATH-FUNCs for prepositions like TO, FROM, VIA, etc. take PLACEs as input

and generate vectors representing a path.

Verbs of motion like GO take an object and path vector as input and return the

object's location as a function of time.

VISUALIZE has a small lexicon of verbs and corresponding LCS representations.

For example, the verbs walk and butter are represented in the lexicon as:

WALK: [Event GO [Thing X] [Path Y]]

BUTTER: [Event GO [Thing BUTTER] [Path TO [Place ON([Thing X])]]]

Obviously VISUALIZE can only accept sentences containing objects in its database,

verbs in its lexicon, and prepositions given by implemented PLACE- and PATH-

FUNCs. However, there is no reason why, in principle, VISUALIZE could not easily

scale up to include a wider breadth of language, simply by filling the object database

and lexicon. No changes need be made to VISUALIZE itself.

3.3 The Complete Mapping

For completeness, here is a detailed description of the full mapping made by VISU-

ALIZE:

THING -+ Object: A 3D model, which may be a singe prism or, in the case of

objects composed of parts, a hierarchy of prisms.

PLACE -+ Space: A point, line, area or volume, depending on what the PLACE-

FUNC is (for example, ID: a road, 2D: a baseball field or 3D: the interior of a

room).
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PATH - Function f(t): Gives (x,y,z) at t, where t ranges over the time interval

the object moved or, in the case of ORIENT and EXTENT, t is a dummy

variable. By using a generalized function rather than a linear vector, PATHs can

represent any trajectory or contour, not only straight lines. In the case where

f(t) represents motion, it also implicitly represents the velocity and acceleration

of the object along its path, though VISUALIZE does not make use of this

information.

EVENT -+ Movie: a series of sets of objects and their locations. The number of

'scenes' in the movie can vary depending on the granularity of the time step of

f(t) 1.

STATE -4 Image: a set of objects and their locations.

CAUSE -+ Pair: (THING, EVENT) where THING is the agent.

3.4 The mapping is made in parallel with syntax

The mapping from sentence to image follows the same embedding pattern as the

sentence's syntax. Most embedded are visualized first, least embedded last. Why is

this important? Because, by visualizing sentences in the order they are parsed, we

implicitly account for cognitive constraints on visualization. To see why this is the

case, consider:

1. The bike is in front of the house.

2. The house is behind the bike.

Though both sentences convey the same information about the relative positioning

of the bike and the house, people presented with both prefer (1) to (2). The reason

for this preference should be obvious. In (1), the light, mobile bike is being located

'The ability to vary the granularity of the simulation is important. Sometimes a course simulation
is sufficient to answer a question, such as "Where is Bill after entering the room?". Other times a
finer-grained simulation is required, such as "Did Bill touch the wall as he entered the room?"
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with reference to the heavy, immobile house. Syntax parallels physics: first locate

the immobile objects, then locate the mobiles with respect to them. In (2), however,

syntax and physics conflict, and this is why (2) is judged awkward: the syntax signals

that the bike be placed first but physics says the heavy, immobile house ought to be.

This preference indicates that we place objects not with regard to which is intro-

duced first in the sentence, but rather which is parsed first. Put differently, syntax

directs the order in which a visualization is constructed.

3.5 Problems encountered

In writing VISUALIZE, I encountered several problems which are interesting in their

own right and ought to be taken into consideration in any future version of VISUAL-

IZE.

VISUALIZE's place-functions (i.e. prepositions) compute PLACEs in an object-

independent manner but this is not always the case in natural language. For example,

VISUALIZE computes

* [Place IN [Thing ROOM]] by averaging the dimensions of the room

* [Place ON [Thing TABLE]] by choosing an arbitrary point on the surface of the

table

Thus place-functions compute places independent of the object they operate on.

But in natural language, prepositions sometimes modify nouns in a noun-dependent

manner. For instance, "in the room" takes the conventional meaning of the interior

space bounded by the room's walls, but "in bed" does not pick out a space inside the

mattress. "In bed" refers to the space between the mattress and cover. To account for

noun-dependencies like this, VISUALIZE would either require that its place-functions

be sensitive to the object operated on, or that its objects come attached with non-

default interpretations.

A second problem is that prepositions have variable interpretations depending on

the location of the speaker. For most spatial prepositions, there are at least four pos-
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sible interpretations: viewer-centered ("deictic"), object-centered ("intrinsic"), which

can be either along the canonical axis or motion axis, and absolute ("basic") [5]. For

instance, "in front of the car" could mean:

1. The space in front of the headlights (object-centered along canonical axis)

2. The space between the car and the speaker, which depends on the location of

the speaker (viewer-centered)

3. The space in front of whichever direction the car happens to be moving, which

could even be canonical "behind the car" if the car were moving in reverse

(object-centered along axis of motion)

Which of these applies in a given situation depends also on the particular object.

"In front of the car" is more tightly bound to the canonical axis interpretation than

"in front of the rock" because cars have a well-defined canonical axis whereas rocks

do not.

To fully account for preposition ambiguity, VISUALIZE would need to know the

location of the speaker, the canonical axis of the objects involved and the direction of

motion of the objects at the time of the utterance. There are psychology experiments

showing which of the several interpretations is preferred for different values of these

variables. There is also considerable work attempting to pin down exactly what "on"

or "above" mean without regard to context [5].

A third issue encountered involves the physical constraints on visualization. Vi-

sualizing "the box is on the table" seems like a simple matter of locating the box at

the place given by [Place ON [Thing TABLE]]. But if the table is already covered with

other items, we must be sure that the box isn't placed on those items and that there

is enough table surface remaining to place the box without it falling off.

I added a check to VISUALIZE to prevent such object inter-penetrations and,

if necessary, randomly choose another point "on the table" (there are many such

points) where the box will not inter-penetrate other objects. I also added a simple

mechanism for "bending" paths around obstacles to prevent inter-penetration when

an object moves along a path.
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But these workarounds only begin to address the full range of physical constraints

on visualization, which include object stability, friction and gravity. I have little

doubt that a complete physics simulator could be built to account for all these con-

straints, but the more difficult problem of how humans selectively apply them or find

alternatives to satisfy them is still an open question.

3.6 VISUALIZE answers questions

VISUALIZE can answer common sense questions by reading off answers from the

image. The advantage of a visual representation over a purely symbolic one like

logic is that visual representations make a large number of inferences immediately

available, without requiring multistep deductions and the combinatorial explosions

which can come with them [1].

The following example situations and questions can be answered by VISUALIZE:

1. Given: "Jan buttered the toast." "Jan put the the toast on her plate."

Q: Is the butter above the plate?

A: Yes.

2. Given: "The cup and the plate are on the table."

Q: How many THINGs are on the table?

A: Two.

3. Given: "John walked into the room."

Q: Is John's nose in the room?

A: Yes.

In (1), a CYC-like system would require a "Transitivity of ON" rule to answer

the question [18]. VISUALIZE instead generates an image for the situation and then

tests weather or not the BUTTER's z coordinate is greater than the PLATE's.
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Situation (2) requires the ability to count, which can be reduced to two operations:

mark and increment. As we visit each object which is on the table, we mark it and

increment the counter. Ullman points out in "Visual Routines" that mark is generally

a useful operation for visual tasks like testing if a contour is bounded [32]. For that

task, mark stores the start of tracking the contour and, if that mark is reached again

during tracking, the contour is bounded.

For (3), a CYC-like system would need a rule:

IF (AND (IN A B) (PART-OF C A)) -+

THEN (IN C B)

But a system which can perform physical simulation need only imagine A being

in B and then test if C, which happens to be a part of A, is also in B. No special rules

like the one above are required.

Another way to see the advantage of images over symbolic representations is to

consider the amount of information required to symbolicly represent the information

contained in an image. Consider an image of N objects. We can make at least one

statement about the relative positions of every pair of objects, such as "A is above B"

or "B is left of C". There are N! such pairs, so N! symbolic sentences are needed to

capture the same information implicitly contained in the image. A picture is indeed

worth 1000 words or, in this particular case, a picture of only seven objects would be

worth 5040 symbolic statements.

In addition to using images to answer questions about static scenes, VISUALIZE

can use movies to answer questions about the STATE of affairs at various times during

an EVENT. For instance, given that "Bill walked into the room", the program can

answer the common-sense question "Is Bill now in the room?" by finding that, in

the final scene of the movie, Bill is indeed in the room.

This is accomplished by a procedure which takes an EVENT as input and "ex-

pands" it into a series of scenes which are then each visualized. The last several scenes

in the sequence will show Bill in the room. More difficult questions questions like "Did

Bill go through the doorway?" could conceivably be answered by testing Bill's path
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for intersection through the plane bounded by the doorway, but VISUALIZE's object

models are currently too primitive to accomplish this.

Jackendoff, in a 1976 paper [11], writes inference rules for his LCS representation

to answer questions like "Is Bill in the room?":

IF [Event GO [Thing X] [Path TO([piace Y)]] from time T to T2

THEN [State BE [Thing X1 [Place AT([piace Y])] at time T2

VISUALIZE demonstrates how the same inference can be made without such a

rule. Jackendoff later downplays his early work as cognitively implausible, in favor of

the method VISUALIZE employs.
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Chapter 4

DESCRIBE: LCS for Vision

Chapter Summary

Program DESCRIBE tackles the inverse problem of VISUALIZE: it

maps images to sentences. Two versions of describe have been imple-

mented. The first demonstrates that matching by hallucination can

succeed using the LCS to restrict the number of hallucinations (i.e.

the size of the 'description-space') under consideration. The program

uses bi-directional search to bring the hallucinations, coming from the

top-down direction, into correspondence with LCS structures gener-

ated from the image, coming in the bottom-up. The second version of

DESCRIBE takes a very different approach by filling LCS frames using

primitive visual predicates computed on the image. The surprising find-

ing is that the results of computing only a few simple predicates suffices

to fill the LCS frames. Both versions of DESCRIBE demonstrate that

LCS holds promise as a description language for vision.

The overarching goal of this thesis is to better understand how human language

and vision connect. Having explored the language -+ vision direction of that connec-

tion in VISUALIZE, I next turn to the opposite direction, vision -+ language.

In "How do we talk about what we see?", Macnamara points out that in order to

talk about what we see, information provided by the visual system must be translated

into a form compatible with the information used by the language system [20]. In this
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chapter, I present a program called DESCRIBE which uses the LCS representation

to make that translation.

Traditionally, the problem of mapping an image to its description would be con-

sidered a Vision project, but DESCRIBE bears little resemblance to classical vi-

sion systems. DESCRIBE does not take raw image input and does not perform

object recognition, line detection, or any of the usual image processing techniques.

DESCRIBE assumes that object segmentation, recognition, and tracking are solved

problems.

The program is given the identities and location(s) of objects. The program's goal

is to use this information to construct a sentence describing the path or other spatial

relations between the objects involved. A second version of DESCRIBE is given less

information; indeed, its purpose is to fill LCS frames using a minimum of information

from vision.

4.1 DESCRIBE: From image to sentence

DESCRIBE faces a considerably harder task than VISUALIZE. VISUALIZE began

with a symbolic representation (the LCS) and mapped it to any one of many correct

analogical representations (3D images or movies). Thus VISUALIZE made a one-

to-many mapping. DESCRIBE, however, must make a many-to-many mapping. For

example, there are infinitely many images satisfying "A is above B". A could be two feet

above B, ten feet, 100 feet, etc. Furthermore, there are potentially N! statements that

can be made about an image containing N objects, as explained in the last chapter.

Finally, agent and patient roles can often be reversed, as in "A is above B" vs. "B is

below A". Considering all these dimensions of variation, how will DESCRIBE decide

what to say?

The first version of DESCRIBE does not decide, but simply generates all possible

sentences involving A and B, then matches them piecewise and returns all matches.

The second version does not generate all possible sentences, but instead fills in LCS

frames which can later be used to generate any sentence. This second version is a
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more cognitively plausible model of how human vision might inform language.

4.2 Classical Vision Problems

To appreciate the task facing DESCRIBE, we must review the "vision problem".

Vision researchers frame their field's problem as one of "inverse optics" [9]. The goal

is to invert a 2D pixel array to recover the 3D geometry which generated it. This

problem, framed as it is, is known to be under-constrained. A single 2D image can

be generated by a potentially infinite number of 3D scenes.

Knowing that vision is an under-constrained problem, the obvious remedy is to

add a constraint. That is effectively what DESCRIBE does; it constrains a poten-

tially infinite number of scene descriptions to only LCS representations. In effect, its

strategy is to take "Only see what we can say".

The goal of any vision system is to produce a description of an image [9]. In

practice, description has almost always meant the identity of the objects in the scene

and their positions and orientations in 3-space. DESCRIBE does not produce such

a geometric description but rather outputs a sentence - in the LCS representation -

describing the image. Because a sentence covers many particular geometries (recall

that "A is above B" covers infinitely many positionings of A and B), the geometric

"description-space" is effectively collapsed. More importantly, it is collapsed along

exactly the categories which humans care most about: "A is above B", not "A is at

(1.3, 4, 7) and B is at (1.3, 4, 9)".

4.3 DESCRIBE assumes object recognition

Object recognition has historically been the centerpiece of vision research, to the

detriment of motion processing and higher-level vision. DESCRIBE, however, as-

sumes object recognition is a solved problem and focuses instead on motion and the

relations between objects. Is this a fair assumption?

Recent vision research indicates that using motion and color (another traditionally
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ignored feature), object recognition is greatly simplified. Jeffrey Siskind, for example,

has put inexpensive CCD cameras and fast processors to good use in an active vision

system [29]. Siskind has demonstrated that object segmentation can be achieved with

stunning accuracy using only motion and color to segment objects. Once segmented,

object recognition is easier.

Some researchers take issue with Siskind's methods, believing they are somehow

"unfair." But, if such criticisms hold, nature could also be accused of cheating. For,

as Shimon Ullman points out, motion and color are extracted at the lowest levels

of vision, in parallel units which cover the entire visual field, both in humans and

animals [32].

Siskind's work suggests that earlier vision systems built in a static, colorless world

may have tackled some artificially difficult problems. Given the progress he has made,

along with the ever-increasing feasibility of brute-force object recognition [22], it seems

reasonable for DESCRIBE to assume that object recognition is solved.

4.4 DESCRIBE v.1: Matching by Hallucination

The first version of DESCRIBE uses the generate-and-test paradigm to match an

image to a sentence. The program generates LCS structures, VISUALIZEs them and

then matches those visualizations against the input image. This version is obviously

not meant to model human performance, as humans do not hallucinate ad hoc until

coming upon a match. But DESCRIBE v.1 does demonstrate that "matching by hal-

lucination" is possible and feasible when the LCS representation limiting the number

of matches under consideration.

To guide the search for a match between the hallucinations and the actual image, I

implemented the bidirectional search method described by Ullman [32]. This method

is inspired by neurological findings suggesting that object recognition succeeds when

top-down and bottom-up processing streams, both operating in parallel, meet at an

intermediate point. Computationally, this method has the benefit of halving the

depth of uni-directional search.
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In DESCRIBE, the "top" of top-down corresponds to the hallucinated LCS repre-

sentation, while the "bottom" is the input image. The program simulates parallelism

by having the top and bottom streams take turns deepening their respective search

trees. At each iteration, either the top or bottom will expand a node in its search

tree. Coming from the top, expansion means "select one constituent from a larger

LCS structure". Coming from the bottom, expansion means "select one constituent

from the image".

All nodes at the frontiers of the search trees are marked primed. Primed nodes

are preferentially expanded at the next iteration. This way, when either the top or

bottom stream encounters a node already primed by the other, the search quickly

terminates. One stream will immediately retrace a path already laid down by the

other, and a match is then declared. See figure 4.4 for an example of how a match is

made.

If the top is a complete LCS structure and the bottom an image, what then are the

intermediate nodes? They are partial LCS structures - THINGs, PLACEs, PATHs

- or parts of the image. Recall that the LCS representation is heavily embedded.

DESCRIBE v.1 takes advantage of this by, for instance, applying all PLACE-FUNCs

(e.g. "ON", "UNDER") to a THING in the bottom-up direction. Top-down, it begins

with completed LCS structures like EVENTs and STATEs which are decomposed into

smaller units to be matched against the image.

DESCRIBE v.1 demonstrates how scene recognition can be compositional. In

contrast, neural nets and other uni-directional image processing techniques recognizes

a whole scene in one-shot or not at all. DESCRIBE v.1 instead recognizes the scene in

an incremental, piecewise fashion, with processing shifting direction between source

and target. For example, an object in the image first spurs the generation of a larger

structure, like a PLACE relative to that object. This is the bottom-up direction.

Next, a full LCS structure at the top (a hallucination) is decomposed into smaller

pieces which seek a match in the image. Eventually, all fragments generated bottom-

up come into correspondence with the pieces of larger LCS structures coming from

the top down, and a complete match is made.
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DESCRIBE v.1's main flaw, however, is that as a model of human performance it

is an implausibly aggressive hallucinater. In terms of the generate-and-test method-

ology, we would say its 'generator' is too permissive. A second problem is that it

terminates when one matching sentence is found when, in fact, many other sentences

could also describe the image. Which is "right" or are all right to various degrees?

These issues led to the development of DESCRIBE v.2.

4.5 DESCRIBE v.2: Filling LCS Frames Retino-

topically

The primary question motivating the development of DESCRIBE v.2 is "What min-

imal information must vision supply to language?" More specificly, what low-level

detectors must vision have in order to fill an LCS structure? Rather than generate-

and-test in the top-heavy manner of DESCRIBE v.1, the methodology now is to fill

bits bottom-up which can then generate any LCS structure which fits the image.

This approach avoids generating unlikely candidates and it needn't decide on only

one match but instead allows for any correct match.

Also, by treating the LCS as a static frame representation rather than an incre-

mentally composed one, we can now pre-fill slots with defaults, give slots assignments

with various degrees of certainty, and use information from other sources to fill slots.

For example, knowing that a bird makes one shape of trajectory while a bug makes

a more erratic one and a snake still another will alter our path perception of these

animals.

The overall strategy employed by DESCRIBE v.2 is to compute what I call visual

predicates from a raw image and use the results to fill LCS frame slots. First, the

simple predicates Exists? and Moving? are applied to yield the objects (again, I

assume object recognition) and whether they are moving (1/0). From this informa-

tion, an LCS frame is initialized. In the case of moving object, a [Event GO ... ] frame

would be initialized.
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Table 4.1: STATE example Exists? and Moving? bits

Exists? Moving?
CUP 1 0 - [State BE [Thing CUP] [Place ?]]
TABLE 1 0 4 [State BE [Thing TABLE] [Place ?]]

Next, the path the object took is related to other objects in the scene. At the

most primitive level of human vision, a PATH is just a streak of activity across the

retina (though DESCRIBE uses vectors). Visual predicates DIR and TER are applied

to the image to select PATH-FUNCs. DIR computes whether the path is directed

toward or away from a point (+/-/?) and TER determines if a point is a terminus of

the path (1/0). From the results of these predicates, the PATH-FUNCs TO, FROM,

TOWARD, AWAY-FROM, VIA are selected. Methods for computing DIR, TER and

the PLACE-FUNCs are described below, though these have not been implemented.

Instead DESCRIBE v.2 is handed the results of those visual predicates, though more

realisticly it ought to compute them; perhaps DESCRIBE v.3 will.

DESCRIBE v.2's operation is best explained by example.

4.5.1 STATE example

As a first example, consider an image depicting "The cup is on the table."

To construct the LCS representation from this image, we begin by noting which

objects exist and which are moving in table 4.1.

Existence and motion passively initiate an LCS frame. Once initiated, DESCRIBE

actively seeks to fill in the other missing slots using visual predicates. The procedure

is:

1. An object exists - [Thing CUP]

2. The CUP is not moving, so a BE frame is initialized 4 [State BE [Thing CUP]

[Place I

3. Having setup the BE frame, we need to fill the [Place ?] slot. Assuming TABLE
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Table 4.2: STATE example Intersects? bits

PLACE Intersects?
[Place ON [Thing TABLE]] 1.0
[Place OVER [Thing TABLE]] 0.0
[Place UNDER [Thing TABLE]] 0.0

Table 4.3: STATE example Intersects? for other objects

PLACE Intersects?
[Place ON [Thing TABLE]] 1.0
[Place LEFT-OF [Thing WALL]] 0.9
[Place UNDER [Thing CEILING]] 0.7
[Place ABOVE [Thing FLOOR]] 0.6

is the only other object in the image, we begin to generate place-functions of

TABLE (see table 4.2).

4. Each PLACE-FUNC of TABLE is tested for intersection with the CUP's posi-

tion.

5. Having found that ON intersects, we complete the frame:

[State BE [Thing CUP] [Place ON [Thing TABLE]]]

If there were other objects in the scene, there would be more than one intersection,

with gradated judgments of how close to perfect (1.0) the intersection is (table 4.3).

With these additional PLACES, we can produce any sentence such as

[State BE [Thing CUP] [Place UNDER [Thing CEILING]]]

Note that a second sentence initiated at the start of this example
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Table 4.4: EVENT example Exists? and Moving? bits

Exists? Moving?

BIRD 1 1
TREE 1 0
PERCH 1 0

-4 [Event GO [Thing BIRD] [Path ?]]
-4 [State BE [Thing TREE] [Place ?]]
-+ [State BE [Thing PERCH] [Place ?]]

Table 4.5: Determining PATH-FUNC from DIR and TER

Point DIR? TER?

#2l3skd - 1

#762jnw + 0
- [Path FROM #213skd]

-+ [Path TOWARD #762jnw]

[State BE [Thing TABLE] [Place ?]]

This sentence is also completed

[State BE [Thing TABLE] [Place UNDER [Thing CUP]]]

4.5.2 EVENT example

A more difficult example, this time involving motion, is

"The bird flew from its perch toward the tree."

1. An object exists -+ [Thing BIRD] (table 4.4)

2. The BIRD is moving, so initialize a GO frame -+ [Event GO [Thing BIRD] [Path

?1]

3. Having setup a GO frame, we need to fill in the [Path ?] slot. Knowing only

the direction (DIR, +/-) and whether this is a terminal point (TER, 1/0) of the

path, we can compute which of the PATH-FUNCs (TO, FROM, TOWARD,

AWAY-FROM and VIA) holds in table 4.5.

The gensyms #213skd and #762jnw represent absolute, retinotopic points along

the path. They are 'markers' on the retina. I use gensyms because, at this stage

of processing, we do not know the relation of these points to other objects.
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Table 4.6: EVENT example Intersects? bits (1)

PLACE Intersects?
[Place ON [Thing PERCH]] 0.9
[Place LEFT-OF [Thing HOUSE]] 0.4
[Place IN [Thing TREE]] 0.3

Table 4.7: EVENT example Intersects? bits (2)

PLACE Intersects?
[Place IN [Thing TREE] 0.8
[Place LEFT-OF [Thing HOUSE]] 0.4
[Place ON [Thing PERCH]] 0.2

4. We now relate the retinotopic points to objects in the scene using the same

intersection method as before.

(a) Find intersection points for #213skd (table 4.6)

The LCS frame filled so far is:

[Event GO [Thing BIRD] [Path FROM [Place ON [Thing PERCH]]]]

(b) Find intersection points for #762jnw (table 4.7)

The final result, then, is:

[Event GO [Thing BIRD] [Path FROM [Place ON[Thing PERCH]] TOWARD [Place

IN[Thing TREE]]]]

Another result with a poorer fit is:

[Event GO [Thing BIRD] [Path FROM [Place ON [Thing PERCH]] TOWARD [Place

LEFT-OF [Thing HOUSE]]]]
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Table 4.8: Computing PATH-FUNCs from DIR and TER

4.6 Computing PATH- and PLACE-FUNCs

In the examples above, I left out how the intermediate PATH-FUNCS (DIR and TER)

and the PLACE-FUNCs (ON, IN, etc.) are computed from the image. DESCRIBE

does not in fact compute these. I have assumed an as-yet-unimplemented visual

system delivers the results of DIR and TER and the PLACE-FUNCs. Given those

results, the language system has enough information to fill the PATH-FUNCs (see

table 4.8).

How might DIR, TER and the PLACE-FUNCs be computed? What about PATH-

FUNCs like ALONG which require tracing the path's contour, not just its endpoints

and direction?

The answer to these questions comes in Shimon Ullman's "Visual Routines" [32].

There Ullman shows that visual processing can be directed to solve visual tasks. These

tasks include testing a curve for closure or boundedness - routines more complicated

than DIR, TER and others I have assumed. I will suggest a method for implementing

my visual predicates in light of Ullman's work.

Ullman's routines use the same operations as natural vision systems: 'mark',

'fixate', 'saccade' and 'track'. Here is what each does:

* mark - store a point (equivalent to DESCRIBE's gensyms)

* fixate - fix on a point

" saccade - shift to a point

* track - follow a moving point
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Monkey brain cell recordings respond selectively when the monkey fixates (fixation

neurons), when it tracks (tracking neurons), and when it saccades to an object (sac-

cading neurons) [231. Psychological tests of human visual memory also demonstrate

the reality of these operations [32].

Given we have these operations, the routines I've assumed can be computed like

this:

" (DIR A, P) (i.e., is path P directed toward or away from point A?)

1. fixate on A

2. saccade to P head (let saccade time = th)

3. saccade back to A

4. saccade to P tail (let saccade time = tt)

5. if th < tt, then DIR+ else DIR-

* (TER A, P) (i.e., is point A one of the endpoints of path P?)

1. fixate on any point on P

2. track P until P ends (repeat for both directions)

3. if A is where P tracking ends, then A is a TER point

" Intersects?

1. fixate on A

2. saccade to B

3. let saccade time = t,

4. for tt < c, A and B intersect

See figure 4.6 for examples of computing DIR and TER.

Note that, in these methods, saccade time is used as a measure of distance. Sac-

cade direction can also be used to determine PLACE-FUNCs:
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Figure 4-2: Example computations of DIR and TER visual predicates. A path is
directed at a point (DIR+) when the time to saccade from that point to the head of
the path is less than the time to saccade to the tail. Conversely for DIR-. When the
times are equal, DIR? results, meaning the path is VIA the point (if the point is on
path).
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" (ABOVE A B)

1. fixate on A

2. saccade to B

3. if saccade direction is down, then A is above B

" (LEFT-OF A B)

1. fixate on A

2. saccade to B

3. if saccade direction is right, then A is left of B

Some more difficult PLACE-FUNCs:

" (ALONG A B)

1. fixate on an endpoint of A

2. track A until reaching opposite endpoint

3. if B is fixated on all during tracking, then A is along B

" (CONTACT A B)

1. fixate on a boundary point P of A (see Ullman for computing boundary

points)

2. track bounding contour of A

3. if a boundary point of B is encountered, then A contacts B

4. if point P is reached without encountering boundary point of B, then A

does not contact B

" (ON A B)

1. (CONTACT A B) and (ABOVE A B)

These routines give one method to compute the predicates, but as Ullman points

out, there are often multiple visual routines which compute the same function.
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Chapter 5

Contributions

The programs I've implemented demonstrate the power of Jackendoff's representation

for visualization and description tasks.

In VISUALIZE, we saw how LCS made visualization by composition possible. In

DESCRIBE v.1, LCS shrunk the description-space to make matching by hallucination

work. And in DESCRIBE v.2, LCS focuses vision on only those visual predicates

needed to fill the LCS frames.

5.1 VISUALIZE

VISUALIZE demonstrates that:

" Jackendoff's representation simplifies the visualization task.

* Visualization can be performed by an incremental composition which exactly

parallels syntax. This method is true to human performance.

" Images and movies possess latent knowledge that obviate the need for symbolic

rules. This knowledge can be recovered by reading off the image or expanding

the movie into discrete images.
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5.2 DESCRIBE

Both versions of DESCRIBE show that LCS holds promise as a description language

for vision. In DESCRIBE v.1, the LCS shrunk the description-space being searched

while in DESCRIBE v.2, the LCS served as a framework for organizing the results of

computing visual predicates to form sentences.

5.2.1 DESCRIBE v.1

The first version of DESCRIBE was motivated by the question, "How can we invert

the mapping made by VISUALIZE?" The main result is that inversion can be ac-

complished by piecewise matching of generated images against the actual image. A

bi-directional search method brought together hallucinations (complete LCS struc-

tures) from the "top-down" and image elements from the "bottom-up" via partial

LCS structures generated from the image elements. DESCRIBE v.1 demonstrates

that visual recognition can be carried out in an incremental, compositional manner,

rather than a one-shot, all-or-nothing method. The program also demonstrates the

usefulness of a "top-down" force in directing recognition, as opposed to a strictly

"bottom-up" methods.

5.2.2 DESCRIBE v.2

The second version of DESCRIBE was motivated by the question, "What minimal

information must a vision system provide to language in order for language to gen-

erate all sentences true of that image?" The surprising answer is "very little". LCS

structures can be filled using only retinotopic operations of the sort Ullman used in

constructing visual routines - fixate, track, saccade - applied to salient points and

streaks of activity across the retina. This second version of DESCRIBE did not ac-

tually implement those operations, but used simulated results to fill the LCS frames.

DESCRIBE v.2 suggests a future project: implementing visual predicates for the LCS

structures with only the primitive operations fixate, saccade and track and, eventu-

ally, executing these routines on real camera input. The final system, then, would in
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fact be able to "say what it sees".
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Appendix A

The Evidence for Paths

Summary

Central to the LCS representation is the notion of a path. This chapter

presents the psychological and neurological evidence for the cognitive

reality of paths in humans and animals. This evidence assures us that

LCS is on the right track.

The most innovative aspect of Jackendoff's representation is the notion of a path.

A surprisingly large number of verbs involve motion, orientation, or extension along

paths. For instance,

1. The boat traveled along the river. (motion)

2. The sign pointed along the river. (orientation)

3. The road extends alongside the river. (extension)

The LCS representation claims PATHs are a distinct ontological category, irre-

ducible to other entities.

But what is the evidence that paths are cognitively distinct? How do we know

that what we call a path is not a mere shorthand for a more basic representation,

perhaps a list of (time, location) pairs? In this chapter I review infant and animal

experiments demonstrating that paths are indeed a distinct, primitive category.

63



CONTINUITY COHESION BOUNDEDNESS

Figure A-1: Example violations of Spelke's principles of object motion.

A.1 Psychological Evidence for Paths

There is considerable psychological evidence for the cognitive reality of paths in the

form of experiments on humans and animals.

A.1.1 Human Experiments

Elizabeth Spelke has shown that infants as young as 18 months stare longer at phys-

ically impossible paths [30]. Looking-time increases when any of the following three

principles of object motion are violated:

CONTINUITY - "All parts of an object move on connected paths over space and

time."

BOUNDEDNESS - "Two objects cannot occupy the same place at the same time."

COHESION - "All parts of an object move on connected paths over space and

time."

Infants, despite having underdeveloped object recognition, have also been shown

to smoothly pursue moving objects and, more impressively, they can do "predictive

reaching" for a moving object [33]. The infant correctly estimates a moving object's

velocity and the time needed to extend its arm such that the object will be where their
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hand is by the time their hand arrives. This prediction ability requires interpolating

the prior positions of the object into a curve which is then extrapolated, suggesting

that object paths are represented continuously and not as a sequence of discontinuous

states.

A famous experiment on adults indicates that paths are wired into the lowest

levels of vision [16]. A person stands at a distance from two lights, one red and one

green, positioned close together. First the red light is on and the green off, then red

turns off and milliseconds later the green light turns on. The subject reports that one

dot 'moved' rather than two alternating. Furthermore, they report the dot changed

color gradually from red to green mid-path. These experiments indicate that the eye

interpolates paths where none exist, even in the face of conflicting evidence from a

color change. This suggests that paths are constructed at a lower level of vision than

we can consciously control.

A.1.2 Animal Experiments

In "What the frog's eye tells the frog's brain", Lettvin et. al. showed that frog vision

is similarly wired at its lowest levels to see motion [19]. When a dot about the size

of a bug streaks across the frog's retina, the ON/OFF cells fire. If the dot does not

move, or moves at a slower or faster pace than a bug naturally would, the ON/OFF

cells do not fire. These cells, along with others (ON only cells, OFF only cells and

shape cells) form a 'bug detector' which solves the frog's vision problem.

Experiments with mice demonstrate that PATHs are whole conceptual entities

[15]. When mice see food through a screen barrier, they do not run directly toward

the food and collide with the barrier repeatedly until eventually bumping around it.

Such 'hill climbing' behavior is how ants find food. But the mouse makes a smooth arc

around the edge of the barrier and toward the food, as if it had planned a continuous

path before taking its first step.
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Figure A-2: The mouse's trajectory indicates a pre-planned path.

A.2 How might paths be implemented neurologi-

cally?

Neurological findings are beginning to reveal how paths are implemented in the human

brain. We know that the hippocampus contains place cells which represent individual

places [24]. We also know that the direction code is carried by a pattern of firing of

head direction cells in the postsubiculum, which neighbors the hippocampus [14].

How place and direction are coordinated is not yet known. Based on the findings so

far, John O'Keefe, author of The Hippocampus as a Cognitive Map and discoverer

of place cells, theorizes that language may have evolved as a means to communicate

spatial maps [24]. If this is indeed the case, it would lend strong support to spatial

representations for language such as Jackendoff's.
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